STEEL CONSTRUCTION

MANUAL

An Online Resource

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

FIFTEENTH EDITION

CONTENTS

Dimensions and Properties 1 General Design Considerations 2

Design of Flexural Members 3

Design of Compression Members 4

Design of Tension Members 5

Design of Members Subject to Combined Forces 6

Design Considerations for Bolts 7

Design Considerations for Welds 8

Design of Connecting Elements 9

Design of Simple Shear Connections 10

Design of Partially Restrained Moment Connections 11

Design of Fully Restrained Moment Connections 12

Design of Bracing Connections and Truss Connections 13

Design of Beam Bearing Plates, Col. Base Plates, Anchor Rods, and Col. Splices 14

Design of Hanger Connections, Bracket Plates, and Crane-Rail Connections 15

Specifications and Codes 16 Miscellaneous Data and Mathematical Information 17
by

American Institute of Steel Construction
ISBN 978-1-56424-033-0

> All rights reserved. This resource or any part thereof must not be reproduced in any form without the written permission of the publisher.
> The AISC logo is a registered trademark of AISC.

The information presented in this publication has been prepared following recognized principles of design and construction. While it is believed to be accurate, this information should not be used or relied upon for any specific application without competent professional examination and verification of its accuracy, suitability and applicability by a licensed engineer or architect. The publication of this information is not a representation or warranty on the part of the American Institute of Steel Construction, its officers, agents, employees or committee members, or of any other person named herein, that this information is suitable for any general or particular use, or of freedom from infringement of any patent or patents. All representations or warranties, express or implied, other than as stated above, are specifically disclaimed. Anyone making use of the information presented in this publication assumes all liability arising from such use.

Caution must be exercised when relying upon standards and guidelines developed by other bodies and incorporated by reference herein since such material may be modified or amended from time to time subsequent to the printing of this edition. The American Institute of Steel Construction bears no responsibility for such material other than to refer to it and incorporate it by reference at the time of the initial publication of this edition.

Printed in the United States of America

This resource is based upon the Steel Construction Manual, 15th Ed., First Printing: May 2017

DEDICATION

This edition of the AISC Steel Construction Manual is dedicated to Robert O. Disque, a retired AISC staff member and long-time member of the AISC Committee on Manuals. Bob, or Mr. Steel, as his friends on the Committee call him, worked closely with the Committee on Manuals, developing the 1st Edition of the LRFD Manual of Steel Construction and the 9th Edition ASD Manual of Steel Construction. After retiring from AISC in 1991, Bob continued to be involved with the Committee as a member.

He joined AISC in 1959, after working as a structural designer for firms in Philadelphia and New York. His career at AISC began as a District Engineer in Pittsburgh, where he marketed to architects and engineers by providing them with the latest technical information on structural steel. After a brief period as Assistant Chief Engineer, he was promoted to Chief Engineer in 1963 at AISC headquarters, which, at that time, was in New York City. In this capacity, Bob supervised 32 engineers throughout the country. In 1964, he launched the first AISC lecture series on steel design, educating thousands of engineers across the country on various topics related to steel design and construction.

In 1979, Bob left AISC for a brief stint as an associate professor of Civil Engineering at the University of Maine, only to return to AISC a few years later as Assistant Director of Engineering in Chicago, where AISC made its home in the early 1980s. It was at this time that he worked on the development of the two aforementioned AISC Manuals. In 1991, Bob retired from AISC and joined the consulting firm of Gibble, Norden, Champion and Brown in Old Saybrook, Connecticut.

Bob invented many things that today are the norm. He created the "snug tight" concept for bolted joints, in conjunction with his contemporary and fellow Manual Committee member Ted Winneberger of W\&W Steel Company of Oklahoma City. He coined the term "anchor rods" to highlight that bolts are not rods; the astute reader will also note that it incorporates his initials. He advanced the use of flexible moment connections, formerly known as "Type 2 with Wind Connections," as a simplified and economical design approach based on the beneficial inelastic behavior of steel.

Bob shared his knowledge of structural steel by authoring numerous papers and the textbook, Applied Plastic Design of Steel. He also co-authored the textbook, Load and Resistance Factor Design of Steel Structures, with Louis F. Geschwindner and Reidar Bjorhovde. Of greatest importance to this Manual, however, Bob always emphasized that the Manual is not a textbook, but rather a handbook to provide design guidance and aids for practicing engineers.

For all that he has done to advance the practice of structural steel design, this Committee of friends and former colleagues is pleased to dedicate this 15th Edition Manual to Mr. Steel.

FOREWORD

The American Institute of Steel Construction, founded in 1921, is the nonprofit technical standards developer and trade organization for the fabricated structural steel industry in the United States. AISC is headquartered in Chicago and has a long tradition of service to the steel construction industry providing timely and reliable information.

The continuing financial support and active participation of Members in the engineering, research and development activities of the Institute make possible the publishing of this Steel Construction Manual. Those Members include the following: Full Members engaged in the fabrication, production and sale of structural steel; Associate Members, who include erectors, detailers, service consultants, software developers, and steel product manufacturers; Professional Members, who are structural or civil engineers and architects, including architectural and engineering educators; Affiliate Members, who include general contractors, building inspectors and code officials; and Student Members.

The Institute's objective is to make structural steel the material of choice, by being the leader in structural-steel-related technical and market-building activities, including specification and code development, research, education, technical assistance, quality certification, standardization and market development.

To accomplish this objective, the Institute publishes manuals, design guides and specifications. Best known and most widely used is the Steel Construction Manual, which holds a highly respected position in engineering literature. The Manual is based on the Specification for Structural Steel Buildings and the Code of Standard Practice for Steel Buildings and Bridges. Both standards are included in the Manual for easy reference.

The Institute also publishes technical information and timely articles in its Engineering Journal, Design Guide series, Modern Steel Construction magazine, and other design aids and research reports. Nearly all of the information AISC publishes is available for download from the AISC web site at www.aisc.org.

PREFACE

This Manual is the 15th Edition of the AISC Steel Construction Manual, which was first published in 1927. It replaces the 14th Edition Manual originally published in 2011.

The following specifications, codes and standards are printed in Part 16 of this Manual:

- 2016 AISC Specification for Structural Steel Buildings
- 2014 RCSC Specification for Structural Joints Using High-Strength Bolts
- 2016 AISC Code of Standard Practice for Steel Buildings and Bridges

The following resources supplement the Manual and are available on the AISC web site at www.aisc.org:

- AISC Design Examples, which illustrate the application of tables and specification provisions that are included in this Manual.
- AISC Shapes Database V15.0 and V15.0H.
- Background and supporting literature (references) for the AISC Steel Construction Manual.

The following major changes and improvements have been made in this revision:

- All tabular information and discussions are updated to comply with the 2016 Specification for Structural Buildings, and the standards and other documents referenced therein.
- Shape information is updated to ASTM A6/A6M-14 throughout this Manual. Larger pipe, HSS and angle sizes have also been incorporated into the dimensions and properties tables in Part 1.
- The available compressive strength tables are expanded to include 65 - and $70-\mathrm{ksi}$ steel for a limited number of shapes.
- In Part 6, a new design aid is included that provides the width-to-thickness slenderness limits for various steel strengths.
- In Part 6, a new design aid is included that provides the available flexural strength, available shear strength, available compressive strength, and available tensile strength for W-shapes in one table.
- In Part 9, a new interaction equation is provided for connection design based on a plastic strength approach.
- In Part 9, a new approach to designing coped beams is presented based on recent studies.

In addition, many other improvements have been made throughout this Manual.

By the AISC Committee on Manuals,

Mark V. Holland, Chairman
Gary C. Violette, Vice-Chairman
Allen Adams
Scott Adan
Abbas Aminmansour
Craig Archacki
Charles J. Carter
Harry A. Cole, Emeritus
Brad Davis
Robert O. Disque, Emeritus
Bo Dowswell
Matthew Eatherton
Marshall T. Ferrell, Emeritus
Patrick J. Fortney
Timothy P. Fraser
Louis F. Geschwindner, Emeritus
John L. Harris III
Christopher M. Hewitt
W. Steven Hofmeister

William P. Jacobs V
Benjamin Kaan
Ronald L. Meng
Larry S. Muir
Thomas M. Murray
James Neary
Davis G. Parsons II, Emeritus
John Rolfes
Rafael Sabelli
Thomas J. Schlafly
Clifford W. Schwinger
William T. Segui, Emeritus
Victor Shneur
William A. Thornton
Michael A. West
Ronald G. Yeager
Cynthia J. Duncan, Secretary

The committee gratefully acknowledges the contributions made to this Manual by the AISC Committee on Specifications and the following individuals: W. Scott Goodrich, Heath Mitchell, William N. Scott, Marc L. Sorenson, and Sriramulu Vinnakota.

SCOPE

The specification requirements and other design recommendations and considerations summarized in this Manual apply in general to the design and construction of steel buildings and other structures.

The design of seismic force-resisting systems also must meet the requirements in the AISC Seismic Provisions for Structural Steel Buildings, except in the following cases for which use of the AISC Seismic Provisions is not required:

- Buildings and other structures in seismic design category (SDC) A
- Buildings and other structures in SDC B or C with $R=3$ systems [steel systems not specifically detailed for seismic resistance per ASCE/SEI 7 Table 12.2-1 (ASCE, 2016)]
- Nonbuilding structures similar to buildings with $R=1^{1} / 2$ braced-frame systems or $R=1$ moment-frame systems (see ASCE/SEI 7 Table 15.4-1)
- Nonbuilding structures not similar to buildings (see ASCE/SEI 7 Table 15.4-2), which are designed to meet the requirements in other standards entirely

Conversely, use of the AISC Seismic Provisions is required in the following cases:

- Buildings and other structures in SDC B or C when one of the exemptions for steel seismic force-resisting systems above does not apply
- Buildings and other structures in SDC B or C that use composite seismic force-resisting systems (those containing composite steel-and-concrete members and those composed of steel members in combination with reinforced concrete members)
- Buildings in SDC D, E or F
- Nonbuilding structures in SDC D, E or F, when the exemption above does not apply

The AISC Seismic Design Manual provides guidance on the use of the AISC Seismic Provisions.

The Manual consists of seventeen parts addressing various topics related to steel building design and construction. Part 1 provides the dimensions and properties for structural products commonly used. For proper material specifications for these products, as well as general specification requirements and other design considerations, see Part 2. For the design of members, see Parts 3 through 6. For the design of connections, see Parts 7 through 15. For Specifications and Codes, see Part 16. For other miscellaneous information, see Part 17.

Tables in the Manual that present available strengths are developed using the geometric conditions indicated and the applicable limit states from the AISC Specification for Structural Steel Buildings. Given the nature of the tables, and the possible governing limit state for each table value, linear interpolation between tabulated values may or may not provide correct strengths.

REFERENCE

ASCE (2016), Minimum Design Loads for Buildings and Other Structures, including Supplement No. 1, ASCE/SEI 7-16, American Society of Civil Engineers, Reston, VA.

PART 1
 DIMENSIONS AND PROPERTIES

SCOPE 1-3
STRUCTURAL PRODUCTS 1-3
W-, M-, S- and HP-Shapes 1-3
Channels 1-4
Angles 1-4
Structural Tees (WT-, MT- and ST-Shapes) 1-5
Hollow Structural Sections (HSS) 1-5
Pipes 1-7
Double Angles 1-7
Double Channels 1-8
W-Shapes and S-Shapes with Cap Channels 1-8
Plate and Bar Products 1-9
Raised-Pattern Floor Plates 1-9
Crane Rails 1-9
Other Structural Products 1-9
STANDARD MILL PRACTICES 1-10
Hot-Rolled Structural Shapes 1-10
Hollow Structural Sections 1-10
Pipes 1-10
Plate Products 1-10
PART 1 REFERENCES 1-11
DESIGN DIMENSIONS, DETAILING DIMENSIONS, AND AXIAL, STRONG- AXIS FLEXURAL, AND WEAK-AXIS FLEXURAL PROPERTIES TABLES 1-12
Table 1-1. W-Shapes 1-12
Table 1-2. M-Shapes 1-32
Table 1-3. S-Shapes 1-34
Table 1-4. HP-Shapes 1-36
Table 1-5. C-Shapes 1-38
Table 1-6. MC-Shapes 1-40
Table 1-7. Angles 1-44
Table 1-7A. Workable Gages in Angle Legs 1-52
Table 1-7B. Width-to-Thickness Criteria for Angles 1-53
Table 1-8. WT-Shapes 1-54
Table 1-9. MT-Shapes 1-74
Table 1-10. ST-Shapes 1-76
Table 1-11. Rectangular HSS 1-78
Table 1-12. Square HSS 1-96
Table 1-12A. Width-to-Thickness Criteria for Rectangular and Square HSS 1-100
Table 1-13. Round HSS 1-101
Table 1-14. Pipes 1-106
Table 1-15. Double Angles 1-108
Table 1-16. 2C-Shapes 1-118
Table 1-17. 2MC-Shapes 1-119
Table 1-18. Weights of Raised-Pattern Floor Plates 1-121
Table 1-19. W-Shapes with Cap Channels 1-122
Table 1-20. S-Shapes with Cap Channels 1-124
Table 1-21. Crane Rails 1-126
Table 1-22. ASTM A6 Tolerances for W-Shapes and HP-Shapes 1-127
Table 1-23. ASTM A6 Tolerances for S-Shapes, M-Shapes and Channels 1-129
Table 1-24. ASTM A6 Tolerances for WT-, MT- and ST-Shapes 1-130
Table 1-25. ASTM A6 Tolerances for Angles, 3 in. and Larger 1-131
Table 1-26. ASTM A6 Tolerances for Angles, < 3 in. 1-132
Table 1-27. ASTM Tolerances for Rectangular and Square HSS 1-133
Table 1-28. ASTM Tolerances for Round HSS and Pipes 1-135
Table 1-29. Rectangular Plates 1-137

SCOPE

The dimensions and properties for structural products commonly used in steel building design and construction are given in this Part. Although the dimensions and properties tabulated in Part 1 reflect "commonly" used structural products, some of the shapes listed are not commonly produced or stocked. These shapes are usually only produced to order, and will likely be subject to mill production schedules and minimum order quantities. For availability of shapes, go to www.aisc.org. For torsional and flexural-torsional properties of rolled shapes, see AISC Design Guide 9, Torsional Analysis of Structural Steel Members (Seaburg and Carter, 1997). For surface areas, box perimeters and areas, W/D ratios and A / D ratios, see AISC Design Guide 19, Fire Resistance of Structural Steel Framing (Ruddy et al., 2003).

STRUCTURAL PRODUCTS

W-, M-, S- and HP-Shapes

Four types of H-shaped (or I-shaped) members are covered in this Manual:

- W-shapes, which have essentially parallel inner and outer flange surfaces.
- M-shapes, which are H-shaped members that are not classified in ASTM A6 as W-, S- or HP-shapes. M-shapes may have a sloped inside flange face or other cross-section features that do not meet the criteria for W-, S- or HP-shapes.
- S-shapes (also known as American standard beams), which have a slope of approximately $16^{2} / 3 \%$ (2 on 12) on the inner flange surfaces.
- HP-shapes (also known as bearing piles), which are similar to W-shapes except their webs and flanges are of equal thickness and the depth and flange width are nominally equal for a given designation.

These shapes are designated by the mark W, M, S or HP, nominal depth (in.) and nominal weight ($\mathrm{lb} / \mathrm{ft}$). For example, a W 24×55 is a W-shape that is nominally 24 in . deep and weighs $55 \mathrm{lb} / \mathrm{ft}$.

The following dimensional and property information is given in this Manual for the W-, M-, S- and HP-shapes covered in ASTM A6:

- Design dimensions, detailing dimensions, axial properties and flexural properties are given in Tables 1-1, 1-2, 1-3 and 1-4 for W-, M-, S- and HP-shapes, respectively.
- SI-equivalent designations are given in Table 17-1 for W-shapes and in Table 17-2 for M-, S- and HP-shapes.

Tabulated decimal values are appropriate for use in design calculations, whereas fractional values are appropriate for use in detailing. All decimal and fractional values are similar with one exception: Because of the variation in fillet sizes used in shape production, the decimal value, $k_{\text {des }}$, is conservatively presented based on the smallest fillet used in production, and the fractional value, $k_{d e t}$, is conservatively presented based on the largest fillet used in production. For the definitions of the tabulated variables, refer to the Nomenclature section at the back of this Manual.

When appropriate, this Manual presents tabulated values for the workable gage of a section. The term workable gage refers to the gage for fasteners in the flange that provides for entering and tightening clearances and edge distance and spacing requirements. When
the listed value is footnoted, the actual size, combination, and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility. Other gages that provide for entering and tightening clearances and edge distance and spacing requirements can also be used. In Table 1-1, for the shapes W14×145 through W14×873, the Workable Gage column contains either $3-7 \frac{1}{2}-3$ or $3-8 \frac{1}{2}-3$, whereas for the remainder of the tabulated shapes only a single dimension is given. For these shapes, the three dimensions provide the workable dimension for a row of four holes across the flange. For example, a workable gage of $3-7 \frac{1}{2}-3$ indicates that the workable gage for the inner holes is $7 \frac{1}{2} \mathrm{in}$., and the workable gage between the inner and outer holes is 3 in .

Channels

Two types of channels are covered in this Manual:

- C-shapes (also known as American standard channels), which have a slope of approximately $16^{2} / 3 \%$ (2 on 12) on the inner flange surfaces.
- MC-shapes (also known as miscellaneous channels), which have a slope other than $16^{2} / 3 \%$ (2 on 12) on the inner flange surfaces.

These shapes are designated by the mark C or MC, nominal depth (in.) and nominal weight ($\mathrm{lb} / \mathrm{ft}$). For example, a $\mathrm{C} 12 \times 25$ is a C -shape that is nominally 12 in . deep and weighs $25 \mathrm{lb} / \mathrm{ft}$.

The following dimensional and property information is given in this Manual for the channels covered in ASTM A6:

- Design dimensions, detailing dimensions, and axial, flexural and torsional properties are given in Tables 1-5 and 1-6 for C- and MC-shapes, respectively.
- SI-equivalent designations are given in Table 17-3.

For the definitions of the tabulated variables, refer to the Nomenclature section at the back of this Manual.

Angles

Angles (also known as L-shapes) have legs of equal thickness and either equal or unequal leg sizes. Angles are designated by the mark L, leg sizes (in.) and thickness (in.). For example, an $L 4 \times 3 \times 1 / 2$ is an angle with one 4 in . leg, one 3 in . leg, and $\frac{1}{2}$ in. thickness.

The following dimensional and property information is given in this Manual for the angles covered in ASTM A6:

- Design dimensions, detailing dimensions, and axial, flexural and flexural-torsional properties are given in Table 1-7. The effects of leg-to-leg and toe fillet radii have been considered in the determination of these section properties. The S value that is given for the $Z-Z$ axis in Table 1-7 is based on the largest perpendicular distance measured from the $Z-Z$ axis to the center of the thickness at the tip of the angle toe(s) or heel. Additional properties of single angles are provided in the electronic shapes database available at www.aisc.org/manualresources. These properties are used for calculations involving $Z-Z$ and $W-W$ principal axes. For unequal leg angles, the database includes I, and values of S at the toe of the short leg, the heel, and the toe of the long leg for the $Z-Z$ and $W-W$ principal axes. For equal leg angles, the database includes I, and values of S at the toe of the leg and the heel for $Z-Z$ and $W-W$ principal axes.
- Workable gages in angle legs are tabulated in Table 1-7A.
- Width-to-thickness criteria for angles are tabulated in Table 1-7B.
- SI-equivalent designations are given in Table 17-4.

For the definitions of the tabulated variables, refer to the Nomenclature section at the back of this Manual.

Structural Tees (WT-, MT- and ST-Shapes)

Three types of structural tees are covered in this Manual:

- WT-shapes, which are made from W-shapes
- MT-shapes, which are made from M-shapes
- ST-shapes, which are made from S-shapes

These shapes are designated by the mark WT, MT or ST, nominal depth (in.) and nominal weight (lb/ft). WT-, MT- and ST-shapes are split (sheared or thermal-cut) from W-, M- and S-shapes, respectively, and have half the nominal depth and weight of that shape. For example, a WT12×27.5 is a structural tee split from a W-shape (W24×55), is nominally 12 in . deep and weighs $27.5 \mathrm{lb} / \mathrm{ft}$. Although off-center splitting or splitting on two lines can be obtained by special order, the resulting nonstandard shape is not covered in this Manual.

The following dimensional and property information is given in this Manual for the structural tees cut from the W-, M- and S-shapes covered in ASTM A6:

- Design dimensions, detailing dimensions, and axial, flexural and torsional properties are given in Tables 1-8, 1-9 and 1-10 for WT-, MT- and ST-shapes, respectively.
- SI-equivalent designations are given in Table 17-5 for WT-shapes and in Table 17-6 for MT- and ST-shapes.
For the definitions of the tabulated variables, refer to the Nomenclature section at the back of this Manual.

Hollow Structural Sections (HSS)

Three types of HSS are covered in this Manual:

- Rectangular HSS, which have an essentially rectangular cross section, except for rounded corners, and uniform wall thickness, except at the weld seam(s)
- Square HSS, which have an essentially square cross section, except for rounded corners, and uniform wall thickness, except at the weld seam(s)
- Round HSS, which have an essentially round cross section and uniform wall thickness, except at the weld seam(s)

In each case, ASTM A500 covers only electric-resistance-welded (ERW) HSS with a maximum periphery of 64 in . The coverage of HSS in this Manual is similarly limited.

Rectangular HSS are designated by the mark HSS, overall outside dimensions (in.), and wall thickness (in.), with all dimensions expressed as fractional numbers. For example, an HSS $10 \times 10 \times 1 / 2$ is nominally 10 in . by 10 in . with a $1 / 2 \mathrm{in}$. wall thickness. Round HSS are designated by the term HSS, nominal outside diameter (in.), and wall thickness (in.) with both dimensions expressed to three decimal places. For example, an HSS10.000 $\times 0.500$ is nominally 10 in . in diameter with a $\frac{1}{2}$ in. nominal wall thickness.

Per AISC Specification Section B4.2, the wall thickness used in design, $t_{\text {des }}$, is taken as 0.93 times the nominal wall thickness for ASTM A500. The rationale for this requirement is explained in the corresponding Specification Commentary Section B4.2.

In calculating the b / t and h / t ratios in Tables 1-11 and 1-12, each corner radius is taken as $1.5 t_{\text {des }}$ for rectangular and square HSS. This is in conformity with AISC Specification Section $\mathrm{B} 4.1 \mathrm{~b}(\mathrm{~d})$, which states, "If the corner radius is not known, b and h shall be taken as the corresponding outside dimension minus three times the thickness. The thickness, t, shall be taken as the design wall thickness, per Section B4.2." In Table 1-11, b is the lesser value and h is the greater value of the outside dimensions. When using AISC Specification Table B4.1a, Case 6, with Table 1-11, b/t should be taken from the h / t column in the table. In other tabulated properties, each corner radius is taken as $2 t_{\text {des }}$. In the tabulated workable flat dimensions of rectangular (and square) HSS, the outside corner radii are taken as $2.25 t_{\text {nom }}$. The term workable flat refers to a reasonable flat width or depth of material for use in making connections to HSS. The workable flat dimension is provided as a reflection of current industry practice, although the tolerances of ASTM A500 allow a greater maximum corner radius of $3 t_{\text {nom }}$.

The following dimensional and property information is given in this Manual for the HSS covered in ASTM A500, A501, A618 or A847:

- Design dimensions, detailing dimensions, and axial, strong-axis flexural, weak-axis flexural, torsional, and flexural-torsional properties are given in Tables 1-11 and 1-12 for rectangular and square HSS, respectively.
- Design dimensions, detailing dimensions, and axial, flexural and torsional properties are given in Table 1-13 for round HSS.
- SI-equivalent designations are given in Tables 17-7, 17-8 and 17-9 for rectangular, square and round HSS, respectively.
- Width-to-thickness criteria of rectangular and square HSS are given in Table 1-12A.

AISC Specification Chapter A references ASTM A1065 and ASTM A1085 for HSS. These specifications differ from the other current specifications in the controls on thickness and corner radii. Both specifications control wall thickness such that the geometrical properties can be determined based on the nominal wall thickness, $t_{n o m}$. Dimensions and properties for ASTM A1085 are available at www.aisc.org/manualresources. Dimensions and properties for ASTM A1065 are available from the Steel Tube Institute (STI, 2015). ASTM A1065 retains the upper limit on the corner radius of $3 t$, as required in ASTM A500. ASTM A1085 limits corner radius to a lower and upper limit depending on wall thickness as follows:

$$
\begin{array}{ll}
t \leq 0.400 \mathrm{in} . & R_{\text {min }}=1.6 t, R_{\text {max }}=3 t \\
t>0.400 \mathrm{in.} & R_{\text {min }}=1.8 t, R_{\text {max }}=3 t
\end{array}
$$

As was the case previously, due to production variations within specified limits for rectangular (and square) HSS, it is necessary to establish a basis for the calculation of properties affected by the corner radius dimension. The same radii that are used in the Part 1 tables are recommended for the properties of shapes produced to ASTM A1065 and ASTM A1085:

- b / t and h / t calculated using a corner radius of $1.5 t_{\text {nom }}$ per AISC Specification Sections B4.1b(d) and B4.2 for HSS produced to ASTM A1065 and ASTM A1085
- Other tabulated properties are calculated using $2 t_{n o m}$
- Workable flat dimensions are calculated using $2.25 t_{n o m}$

For the definitions of the tabulated variables, refer to the Nomenclature section at the back of this Manual.

Pipes

Pipes have an essentially round cross section and uniform thickness, except at the weld seam(s) for welded pipe.

Pipes up to and including NPS 12 are designated by the term Pipe, nominal diameter (in.) and weight class (Std., x-Strong, xx-Strong). NPS stands for nominal pipe size. For example, Pipe 5 Std. denotes a pipe with a 5 in. nominal diameter and a 0.258 in. wall thickness, which corresponds to the standard weight series. Pipes with wall thicknesses that do not correspond to the foregoing weight classes are designated by the term Pipe, outside diameter (in.), and wall thickness (in.), with both expressed to three decimal places. For example, Pipe 14.000×0.375 and Pipe 5.563×0.500 are proper designations.

Per AISC Specification Section B4.2, the wall thickness used in design, $t_{\text {des }}$, is taken as 0.93 times the nominal wall thickness, $t_{\text {nom }}$. The rationale for this requirement is explained in the corresponding Specification Commentary Section B4.2.

The following dimensional and property information is given in this Manual for the pipes covered in ASTM A53:

- Design dimensions, detailing dimensions, and axial, flexural and torsional properties are given in Table 1-14.
- SI-equivalent designations are given in Table 17-9.

For the definitions of the tabulated variables, refer to the Nomenclature section at the back of this Manual.

Double Angles

Double angles (also known as 2L-shapes) are made with two angles that are interconnected through their back-to-back legs along the length of the member, either in contact for the full length or separated by spacers at the points of interconnection.

These shapes are designated by the mark 2L, the sizes and thickness of their legs (in.), and their orientation when the angle legs are not of equal size (LLBB or SLBB) ${ }^{1}$. For example, a $2 L 4 \times 3 \times 1 / 2$ LLBB has two angles with one 4 in . leg and one 3 in . leg and the 4 in . legs are back-to-back; a $2 L 4 \times 3 \times 1 / 2$ SLBB is similar, except the 3 in . legs are back-to-back. In both cases, the legs are $1 / 2$ in. thick.

The following dimensional and property information is given in this Manual for the double angles built-up from the angles covered in ASTM A6:

- Design dimensions, detailing dimensions, and axial, strong-axis flexural, weak-axis flexural, torsional, and flexural-torsional properties are given in Table 1-15 for equalleg, LLBB and SLBB angles. For angle legs 8 in. or less, angle separations of zero in., $3 / 8$ in. and $3 / 4$ in. are covered. For longer angle legs, angle separations of zero, $3 / 4 \mathrm{in}$. and $1^{1 / 2}$ in. are covered. The effects of leg-to-leg and toe fillet radii have been considered in the determination of these section properties. For workable gages on legs of angles, see Table 1-7A.

[^0]For the definitions of the tabulated variables, refer to the Nomenclature section at the back of this Manual.

Double Channels

Double channels (also known as 2C- and 2MC-shapes) are made with two channels that are interconnected through their back-to-back webs along the length of the member, either in contact for the full length or separated by spacers at the points of interconnection.

These shapes are designated by the mark 2 C or 2 MC , nominal depth (in.), and nominal weight per channel (lb/ft). For example, a $2 \mathrm{C} 12 \times 25$ is a double channel that consists of two channels that are each nominally 12 in . deep and each weigh $25 \mathrm{lb} / \mathrm{ft}$.

The following dimensional and property information is given in this Manual for the double channels built-up from the channels covered in ASTM A6:

- Design dimensions, detailing dimensions, and axial, strong-axis flexural, and weakaxis flexural properties are given in Tables 1-16 and 1-17 for 2C- and 2MC-shapes, respectively. In each case, channel separations of zero, $3 / 8$ in. and $3 / 4 \mathrm{in}$. are covered.

For the definitions of the tabulated variables, refer to the Nomenclature section at the back of this Manual.

W-Shapes and S-Shapes with Cap Channels

Common combined sections made with W - or S-shapes and channels (C- or MC-shapes) are tabulated in this Manual. In either case, the channel web is interconnected to the W-shape or S-shape top flange, respectively, with the flange toes down. The interconnection of the two elements must be designed for the horizontal shear, q, where

$$
\begin{equation*}
q=\frac{V Q}{I} \tag{1-1}
\end{equation*}
$$

where
$I=$ moment of inertia of the combined cross section, in. ${ }^{4}$
$Q=$ first moment of the channel area about the neutral axis of the combined cross section, in. ${ }^{3}$
$V=$ vertical shear, kips
$q=$ horizontal shear, kip/in.
The effects of other forces, such as crane horizontal and lateral forces, may also require consideration, when applicable.

The following dimensional and property information is given in this Manual for combined sections built-up from the W-shapes, S-shapes and cap channels covered in ASTM A6:

- Design dimensions, detailing dimensions, and axial, strong-axis flexural, and weakaxis flexural properties of W-shapes with cap channels are given in Table 1-19.
- Design dimensions, detailing dimensions, and axial, strong-axis flexural, and weakaxis flexural properties of S-shapes with cap channels are given in Table 1-20.

For the definitions of the tabulated variables, refer to the Nomenclature section at the back of this Manual.

Plate and Bar Products

Plate products may be ordered as sheet, strip or bar material. Sheet and strip are distinguished from structural bars and plates by their dimensional characteristics, as outlined in Table 2-3 and Table 2-5.

The historical classification system for structural bars and plates suggests that there is only a physical difference between them based upon size and production procedure. In raw form, flat stock has historically been classified as a bar if it is less than or equal to 8 in. wide and as a plate if it is greater than 8 in . wide. Bars are rolled between horizontal and vertical rolls and trimmed to length by shearing or thermal cutting on the ends only. Plates are generally produced using one of two methods:

1. Sheared plates are rolled between horizontal rolls and trimmed to width and length by shearing or thermal cutting on the edges and ends; or
2. Stripped plates are sheared or thermal cut from wider sheared plates.

There is very little, if any, structural difference between plates and bars. Consequently, the term plate is becoming a universally applied term today and a $\mathrm{PL}^{1} / 2 \times 4^{1} / 2 \times 1 \mathrm{ft} 3 \mathrm{in}$., for example, might be fabricated from plate or bar stock.

For structural plates, the preferred practice is to specify thickness in $1 / 16 \mathrm{in}$. increments up to $3 / 8$ in. thickness, $1 / 8$ in. increments over $3 / 8$ in. to 1 in. thickness, and $1 / 4$ in. increments over 1 in . thickness. The current extreme width for sheared plates is 200 in. Because mill practice regarding plate widths vary, individual mills should be consulted to determine preferences.

For bars, the preferred practice is to specify width in $1 / 4 \mathrm{in}$. increments, and thickness and diameter in $1 / 8$ in. increments.

Raised-Pattern Floor Plates

Weights of raised-pattern floor plates are given in Table 1-18. Raised-pattern floor plates are commonly available in widths up to 120 in. For larger plate widths, see literature available from floor plate producers.

Crane Rails

Although crane rails are not listed as structural steel in the AISC Code of Standard Practice Section 2.1, this information is provided because some fabricators may choose to provide crane rails. Crane rails are designated by unit weight in lb/yard. Dimensions and properties for the crane rails shown are given in Table 1-21. Crane rails can be either heat treated or end hardened to reduce wear. For additional information or for profiles and properties of crane rails not listed, manufacturer's catalogs should be consulted. For crane-rail connections, see Part 15.

Other Structural Products

The following other structural products are covered in this Manual as indicated:

- High-strength bolts, common bolts, washers, nuts and direct-tension-indicator washers are covered in Part 7.
- Welding filler metals and fluxes are covered in Part 8.
- Forged steel structural hardware items, such as clevises, turnbuckles, sleeve nuts, recessed-pin nuts, and cotter pins are covered in Part 15.
- Anchor rods and threaded rods are covered in Part 14.

STANDARD MILL PRACTICES

The production of structural products is subject to unavoidable variations relative to the theoretical dimensions and profiles, due to many factors, including roll wear, roll dressing practices and temperature effects. Such variations are limited by the dimensional and profile tolerances as summarized below.

Hot-Rolled Structural Shapes

Acceptable dimensional tolerances for hot-rolled structural shapes (W-, M-, S- and HPshapes), channels (C- and MC-shapes), and angles are given in ASTM A6 Section 12 and summarized in Tables 1-22 through 1-26. Supplementary information, including permissible variations for sheet and strip and for other grades of steel, can also be found in literature from steel plate producers and the Association of Iron and Steel Technology.

Hollow Structural Sections

Acceptable dimensional tolerances for HSS are given in ASTM A500 Section 11, A501 Section 12, A618 Section 8, A847 Section 10, A1065 Section 8, or A1085 Section 12, as applicable, and summarized in Tables 1-27 and 1-28, for rectangular and square, and round HSS, respectively. Supplementary information can also be found in literature from HSS producers and the Steel Tube Institute.

Pipes

Acceptable dimensional tolerances for pipes are given in ASTM A53 Section 10 and summarized in Table 1-28. Supplementary information can also be found in literature from pipe producers.

Plate Products

Acceptable dimensional tolerances for plate products are given in ASTM A6 Section 12 and summarized in Table 1-29. Note that plate thickness can be specified in inches or by weight per square foot, and separate tolerances apply to each method. No decimal edge thickness can be assured for plate specified by the latter method. Supplementary information, including permissible variations for sheet and strip and for other grades of steel, can also be found in literature from steel plate producers and the Association of Iron and Steel Technology.

PART 1 REFERENCES

Ruddy, J.L., Marlo, J.P., Ioannides, S.A. and Alfawakhiri, F. (2003), Fire Resistance of Structural Steel Framing, Design Guide 19, AISC, Chicago, IL.
Seaburg, P.A. and Carter, C.J. (1997), Torsional Analysis of Structural Steel Members, Design Guide 9, AISC, Chicago, IL.
STI (2015), HSS Design Manual, Volume One: Section Properties \& Design Information, Steel Tube Institute, Glenview, IL.

${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$.
${ }^{h}$ Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.
${ }^{v}$ Shape does not meet the h / t_{w} limit for shear in AISC Specification Section G2.1(a) with $F_{y}=50 \mathrm{ksi}$.

Table 1-1 (continued) W-Shapes Dimensions																	
Shape	$\begin{gathered} \text { Area, } \\ \boldsymbol{A} \end{gathered}$	Depth, d		Web			Flange				Distance						
				Thickness, t_{w}		t_{w}	Width, \boldsymbol{b}_{f}		Thickness, $\boldsymbol{t}_{\boldsymbol{f}}$		k		k_{1}	T	Workable Gage		
				2	$\boldsymbol{k}_{\text {des }}$	$k_{\text {det }}$											
	in. ${ }^{2}$	in.				in.		in.	in.		in.		in.	in.	in.	in.	in.
W $36 \times 925^{\text {h }}$	272	43.1	431/8	3.02	3	11/2	18.6	185/8	4.53	41/2	5.28	53/8	25/16	$32^{3 / 8}$	1/2		
$\times 853^{\text {h }}$	251	43.1	431/8	2.52	$2^{1 / 2}$	11/4	18.2	181/4	4.53	41/2	5.28	53/8	21/16				
$\times 802^{\text {h }}$	236	42.6	425/8	2.38	$2^{3 / 8}$	13/16	18.0	18	4.29	$45 / 16$	5.04	$51 / 8$	2				
$\times 723^{\text {h }}$	213	41.8	413/4	2.17	23/16	$11 / 8$	17.8	173/4	3.90	37/8	4.65	$4^{11 / 16}$	$1^{7 / 8}$	γ			
$\times 652^{\text {h }}$	192	41.1	41	1.97	2	1	17.6	175/8	3.54	$39 / 16$	4.49	$4^{13 / 16}$	$2^{3 / 16}$	$313 / 8$			
$\times 529^{\text {h }}$	156	39.8	393/4	1.61	$15 / 8$	13/16	17.2	171/4	2.91	$2^{15 / 16}$	3.86	43/16	2				
$\times 487^{\text {h }}$	143	39.3	393/8	1.50	$11 / 2$	$3 / 4$	17.1	171/8	2.68	$2^{11 / 16}$	3.63	4	$17 / 8$				
$\times 441^{\text {h }}$	130	38.9	387/8	1.36	$13 / 8$	11/16	17.0	17	2.44	$2^{7 / 16}$	3.39	$3^{3 / 4}$	$17 / 8$				
$\times 395{ }^{\text {h }}$	116	38.4	383/8	1.22	$11 / 4$	5/8	16.8	167/8	2.20	23/16	3.15	37/16	13/16				
$\times 361^{\text {h }}$	106	38.0	38	1.12	$11 / 8$	9/16	16.7	163/4	2.01	2	2.96	$35 / 16$	$13 / 4$				
$\times 330$	96.9	37.7	375/8	1.02	1	1/2	16.6	165/8	1.85	17/8	2.80	31/8	$13 / 4$				
$\times 302$	89.0	37.3	$373 / 8$	0.945	15/16	$1 / 2$	16.7	165/8	1.68	$1^{11 / 16}$	2.63	3	$1^{11 / 16}$				
$\times 282^{\text {c }}$	82.9	37.1	371/8	0.885	7/8	7/16	16.6	165/8	1.57	19/16	2.52	$2^{7 / 8}$	15/8				
$\times 262^{\text {c }}$	77.2	36.9	$36^{7} / 8$	0.840	13/16	7/16	16.6	161/2	1.44	17/16	2.39	$2^{3 / 4}$	15/8				
$\times 247^{\text {c }}$	72.5	36.7	365/8	0.800	13/16	7/16	16.5	161/2	1.35	$13 / 8$	2.30	25/8	15/8				
$\times 231{ }^{\text {c }}$	68.2	36.5	361/2	0.760	$3 / 4$	$3 / 8$	16.5	161/2	1.26	$11 / 4$	2.21	29/16	19/16	\dagger	1		
W36×256	75.3	37.4	$373 / 8$	0.960	15/16	$1 / 2$	12.2	121/4	1.73	$13 / 4$	2.48	25/16	$1^{11 / 16}$	$311 / 2$	$5^{1 / 2}$		
$\times 232^{\text {c }}$	68.0	37.1	371/8	0.870	7/8	7/16	12.1	121/8	1.57	19/16	2.32	$2^{13 / 16}$	15/8				
$\times 210^{\text {c }}$	61.9	36.7	$363 / 4$	0.830	13/16	7/16	12.2	121/8	1.36	$13 / 8$	2.11	25/8	15/8				
$\times 194{ }^{\text {c }}$	57.0	36.5	$361 / 2$	0.765	$3 / 4$	$3 / 8$	12.1	121/8	1.26	$11 / 4$	2.01	$2^{1 / 2}$	19/16				
$\times 182^{\text {c }}$	53.6	36.3	$363 / 8$	0.725	$3 / 4$	$3 / 8$	12.1	121/8	1.18	13/16	1.93	23/8	19/16				
$\times 170^{\text {c }}$	50.0	36.2	$361 / 8$	0.680	11/16	$3 / 8$	12.0	12	1.10	$11 / 8$	1.85	23/8	19/16				
$\times 160^{\text {c }}$	47.0	36.0	36	0.650	$5 / 8$	5/16	12.0	12	1.02	1	1.77	$2^{1 / 4}$	19/16				
$\times 150{ }^{\text {c }}$	44.3	35.9	357/8	0.625	5/8	5/16	12.0	12	0.940	15/16	1.69	23/16	$11 / 2$				
$\times 135^{\text {c,v }}$	39.9	35.6	$351 / 2$	0.600	$5 / 8$	5/16	12.0	12	0.790	13/16	1.54	21/16	$11 / 2$	η	1		
W $33 \times 387^{\text {h }}$	114	36.0	36	1.26	$11 / 4$	5/8	16.2	161/4	2.28	21/4	3.07	$39 / 16$	$1^{13 / 16}$	287/8	$51 / 2$		
$\times 354{ }^{\text {h }}$	104	35.6	351/2	1.16	13/16	5/8	16.1	161/8	2.09	21/16	2.88	$3^{3} / 8$	$1^{13 / 16}$				
$\times 318$	93.7	35.2	351/8	1.04	$11 / 16$	9/16	16.0	16	1.89	17/8	2.68	33/16	$1^{3 / 4}$				
$\times 291$	85.6	34.8	$34^{7} / 8$	0.960	15/16	$1 / 2$	15.9	157/8	1.73	$13 / 4$	2.52	25/16	$1^{11 / 16}$				
$\times 263$	77.4	34.5	341/2	0.870	7/8	7/16	15.8	153/4	1.57	19/16	2.36	$2^{13 / 16}$	$15 / 8$				
$\times 241^{\text {c }}$	71.1	34.2	341/8	0.830	13/16	7/16	15.9	157/8	1.40	$13 / 8$	2.19	$2^{11 / 16}$	$15 / 8$				
$\times 221{ }^{\text {c }}$	65.3	33.9	337/8	0.775	$3 / 4$	$3 / 8$	15.8	153/4	1.28	$11 / 4$	2.06	21/2	15/8				
$\times 201^{\text {c }}$	59.1	33.7	335/8	0.715	11/16	$3 / 8$	15.7	153/4	1.15	$11 / 8$	1.94	$2^{7 / 16}$	19/16	γ	\downarrow		

${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$.
${ }^{\mathrm{h}}$ Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.
${ }^{v}$ Shape does not meet the h / t_{w} limit for shear in AISC Specification Section G2.1(a) with $F_{y}=50 \mathrm{ksi}$.

Table 1-1 (continued) W-Shapes Dimensions																	
Shape	Area, A	Depth, d		Web			Flange				Distance						
				Thickness, t_{w}		t_{w}	Width, $\boldsymbol{b}_{\boldsymbol{f}}$		Thickness, $\boldsymbol{t}_{\boldsymbol{f}}$		k		k_{1}	T	Workable Gage		
				2	$\boldsymbol{k}_{\text {des }}$	$k_{\text {det }}$											
	in. ${ }^{2}$	in.				in.		in.	in.		in.		in.	in.	in.	in.	in.
W $33 \times 169^{\text {c }}$	49.5	33.8	337/8	0.670	11/16	$3 / 8$	11.5	111/2	1.22	$11 / 4$	1.92	$2^{7 / 16}$	19/16	287/8	51/2		
$\times 152^{\text {c }}$	44.9	33.5	331/2	0.635	5/8	5/16	11.6	115/8	1.06	$11 / 16$	1.76	25/16	$11 / 2$				
$\times 141^{\text {c }}$	41.5	33.3	331/4	0.605	$5 / 8$	5/16	11.5	111/2	0.960	15/16	1.66	23/16	$11 / 2$				
$\times 130^{\text {c }}$	38.3	33.1	331/8	0.580	9/16	5/16	11.5	111/2	0.855	7/8	1.56	$2^{1} / 8$	$11 / 2$				
$\times 118^{\text {c,v }}$	34.7	32.9	327/8	0.550	9/16	5/16	11.5	111/2	0.740	$3 / 4$	1.44	2	$11 / 2$	γ	γ		
W30×391 ${ }^{\text {h }}$	115	33.2	331/4	1.36	$13 / 8$	11/16	15.6	155/8	2.44	27/16	3.23	33/4	17/8	253/4	$5^{1 / 2}$		
$\times 357{ }^{\text {h }}$	105	32.8	323/4	1.24	$11 / 4$	$5 / 8$	15.5	151/2	2.24	$2^{1 / 4}$	3.03	$31 / 2$	$1^{13 / 16}$				
$\times 326^{\text {h }}$	95.9	32.4	323/8	1.14	$1^{1 / 8}$	9/16	15.4	153/8	2.05	21/16	2.84	$35 / 16$	$13 / 4$				
$\times 292$	86.0	32.0	32	1.02	1	1/2	15.3	151/4	1.85	17/8	2.64	31/8	$13 / 4$				
$\times 261$	77.0	31.6	315/8	0.930	15/16	1/2	15.2	151/8	1.65	15/8	2.44	25/16	111/16				
$\times 235$	69.3	31.3	311/4	0.830	13/16	7/16	15.1	15	1.50	$11 / 2$	2.29	$2^{3 / 4}$	15/8				
$\times 211$	62.3	30.9	31	0.775	$3 / 4$	$3 / 8$	15.1	151/8	1.32	15/16	2.10	29/16	15/8				
$\times 191{ }^{\text {c }}$	56.1	30.7	305/8	0.710	11/16	$3 / 8$	15.0	15	1.19	13/16	1.97	2112	19/16				
$\times 173^{\text {c }}$	50.9	30.4	301/2	0.655	5/8	5/16	15.0	15	1.07	$11 / 16$	1.85	25/16	19/16	γ	γ		
W $30 \times 148^{\text {c }}$	43.6	30.7	305/8	0.650	5/8	5/16	10.5	101/2	1.18	13/16	1.83	21/2	19/16	253/4	51⁄2		
$\times 132^{\text {c }}$	38.8	30.3	301/4	0.615	5/8	5/16	10.5	$10^{1 / 2}$	1.00	1	1.65	$2^{1 / 4}$	$11 / 2$				
$\times 124^{\text {c }}$	36.5	30.2	301/8	0.585	9/16	5/16	10.5	101/2	0.930	15/16	1.58	$2^{1 / 4}$	$11 / 2$				
$\times 116^{\text {c }}$	34.2	30.0	30	0.565	9/16	5/16	10.5	101/2	0.850	7/8	1.50	$2^{1 / 8}$	$11 / 2$				
$\times 108{ }^{\text {c }}$	31.7	29.8	297/8	0.545	9/16	5/16	10.5	101/2	0.760	$3 / 4$	1.41	2	$11 / 2$				
$\times 99{ }^{\text {c }}$	29.0	29.7	295/8	0.520	$1 / 2$	1/4	10.5	101/2	0.670	11/16	1.32	2	$11 / 2$				
$\times 90^{\text {c,v }}$	26.3	29.5	291/2	0.470	$1 / 2$	1/4	10.4	103/8	0.610	$5 / 8$	1.26	17/8	17/16	V	γ		
W27×539 ${ }^{\text {h }}$	159	32.5	$32^{1 / 2}$	1.97	2	1	15.3	151/4	3.54	$39 / 16$	4.33	47/16	13/16	23	$51 / 2^{9}$		
$\times 368^{\text {h }}$	109	30.4	$303 / 8$	1.38	$13 / 8$	11/16	14.7	145/8	2.48	$2^{1 / 2}$	3.27	$3^{11 / 16}$	$17 / 8$		$51 / 2$		
$\times 336{ }^{\text {h }}$	99.2	30.0	30	1.26	$11 / 4$	5/8	14.6	141/2	2.28	$2^{1 / 4}$	3.07	$31 / 2$	$1^{13 / 16}$				
$\times 307{ }^{\text {h }}$	90.2	29.6	295/8	1.16	13/16	5/8	14.4	141/2	2.09	$21 / 16$	2.88	$35 / 16$	$1{ }^{13 / 16}$				
$\times 281$	83.1	29.3	291/4	1.06	$11 / 16$	9/16	14.4	143/8	1.93	15/16	2.72	$31 / 8$	$13 / 4$				
$\times 258$	76.1	29.0	29	0.980	1	$1 / 2$	14.3	141/4	1.77	$13 / 4$	2.56	3	$1^{11 / 16}$				
$\times 235$	69.4	28.7	285/8	0.910	15/16	1/2	14.2	141/4	1.61	15/8	2.40	27/8	$111 / 16$				
$\times 217$	63.9	28.4	283/8	0.830	13/16	7/16	14.1	141/8	1.50	$11 / 2$	2.29	211/16	15/8				
$\times 194$	57.1	28.1	281/8	0.750	$3 / 4$	$3 / 8$	14.0	14	1.34	15/16	2.13	29/16	19/16				
$\times 178$	52.5	27.8	273/4	0.725	$3 / 4$	$3 / 8$	14.1	141/8	1.19	$13 / 16$	1.98	23/8	19/16				
$\times 161^{\text {c }}$	47.6	27.6	275/8	0.660	11/16	3/8	14.0	14	1.08	$11 / 16$	1.87	25/16	19/16				
$\times 146^{\text {c }}$	43.2	27.4	$273 / 8$	0.605	$5 / 8$	5/16	14.0	14	0.975	1	1.76	23/16	$11 / 2$	V	γ		

[^1]

Table 1-1 (continued) W-Shapes Dimensions																	
Shape	Area, A	Depth, d		Web			Flange				Distance						
				Thickness, t_{w}		t_{w}	Width, \boldsymbol{b}_{f}		Thickness, $\boldsymbol{t}_{\boldsymbol{f}}$		k		k_{1}	T	Workable Gage		
				2	$\boldsymbol{k}_{\text {des }}$	$k_{\text {det }}$											
	in. ${ }^{2}$	in.				in.		in.	in.		in.		in.	in.	in.	in.	in.
W $27 \times 129^{\text {c }}$	37.8	27.6	275/8	0.610	5/8	5/16	10.0	10	1.10	11/8	1.70	25/16	$11 / 2$	23	51/2		
$\times 114{ }^{\text {c }}$	33.6	27.3	271/4	0.570	9/16	5/16	10.1	101/8	0.930	15/16	1.53	$2^{1 / 8}$	$11 / 2$				
$\times 102^{\text {c }}$	30.0	27.1	271/8	0.515	$1 / 2$	$1 / 4$	10.0	10	0.830	13/16	1.43	21/16	17/16				
$\times 94{ }^{\text {c }}$	27.6	26.9	267/8	0.490	$1 / 2$	$1 / 4$	10.0	10	0.745	$3 / 4$	1.34	15/16	17/16				
$\times 84{ }^{\text {c }}$	24.7	26.7	$26^{3} / 4$	0.460	7/16	$1 / 4$	10.0	10	0.640	5/8	1.24	$17 / 8$	$1^{7 / 16}$	γ	γ		
W $24 \times 370^{\text {h }}$	109	28.0	28	1.52	$11 / 2$	3/4	13.7	135/8	2.72	$2^{3 / 4}$	3.22	4	2	20	$51 / 2$		
$\times 335^{\text {h }}$	98.3	27.5	$27^{1 / 2}$	1.38	$13 / 8$	11/16	13.5	131/2	2.48	$2^{1 / 2}$	2.98	$3^{3 / 4}$	$1^{7 / 8}$				
$\times 306{ }^{\text {h }}$	89.7	27.1	271/8	1.26	$11 / 4$	5/8	13.4	13/3/8	2.28	$2{ }^{1 / 4}$	2.78	39/16	$1^{13 / 16}$				
$\times 279{ }^{\text {h }}$	81.9	26.7	263/4	1.16	$13 / 16$	5/8	13.3	$13^{1 / 4}$	2.09	21/16	2.59	$33 / 8$	$1^{13 / 16}$				
$\times 250$	73.5	26.3	263/8	1.04	11/16	9/16	13.2	131/8	1.89	$17 / 8$	2.39	$31 / 8$	$13 / 4$				
$\times 229$	67.2	26.0	26	0.960	15/16	1/2	13.1	$13^{1 / 8}$	1.73	$13 / 4$	2.23	3	111/16				
$\times 207$	60.7	25.7	253/4	0.870	7/8	7/16	13.0	13	1.57	19/16	2.07	27/8	15/8				
$\times 192$	56.5	25.5	251/2	0.810	13/16	7/16	13.0	13	1.46	17/16	1.96	$2^{3 / 4}$	15/8				
$\times 176$	51.7	25.2	251/4	0.750	$3 / 4$	3/8	12.9	$12^{7 / 8}$	1.34	15/16	1.84	25/8	19/16				
$\times 162$	47.8	25.0	25	0.705	11/16	3/8	13.0	13	1.22	$11 / 4$	1.72	$21 / 2$	19/16				
$\times 146$	43.0	24.7	243/4	0.650	5/8	5/16	12.9	$12^{7 / 8}$	1.09	11/16	1.59	23/8	19/16				
$\times 131$	38.6	24.5	$24^{1} / 2$	0.605	$5 / 8$	5/16	12.9	$12^{7 / 8}$	0.960	15/16	1.46	$2^{1 / 4}$	$11 / 2$				
$\times 117^{\text {c }}$	34.4	24.3	241/4	0.550	9/16	5/16	12.8	$12^{3 / 4}$	0.850	7/8	1.35	$2^{1 / 8}$	$11 / 2$				
$\times 104{ }^{\text {c }}$	30.7	24.1	24	0.500	$1 / 2$	$1 / 4$	12.8	$12^{3 / 4}$	0.750	$3 / 4$	1.25	21/16	17/16	γ	η		
W $24 \times 103^{\text {c }}$	30.3	24.5	$241 / 2$	0.550	9/16	5/16	9.00	9	0.980	1	1.48	$2^{1 / 4}$	$11 / 2$	20	$51 / 2$		
$\times 94{ }^{\text {c }}$	27.7	24.3	24 $1 / 4$	0.515	$1 / 2$	$1 / 4$	9.07	$9^{1 / 8}$	0.875	7/8	1.38	21/8	17/16				
$\times 84{ }^{\text {c }}$	24.7	24.1	241/8	0.470	$1 / 2$	$1 / 4$	9.02	9	0.770	$3 / 4$	1.27	$2^{1 / 16}$	17/16				
$\times 76{ }^{\text {c }}$	22.4	23.9	237/8	0.440	7/16	$1 / 4$	8.99	9	0.680	11/16	1.18	$1^{15} / 16$	17/16	\checkmark			
$\times 68{ }^{\text {c }}$	20.1	23.7	233/4	0.415	7/16	$1 / 4$	8.97	9	0.585	9/16	1.09	$17 / 8$	17/16	∇	γ		
W24×62 ${ }^{\text {c }}$	18.2	23.7	$233 / 4$	0.430	7/16	$1 / 4$	7.04	7	0.590	9/16	1.09	$11 / 2$	11/16	$20^{3 / 4}$	$31 / 2^{9}$		
$\times 55^{\mathrm{c}, \mathrm{v}}$	16.2	23.6	235/8	0.395	$3 / 8$	3/16	7.01	7	0.505	$1 / 2$	1.01	17/16	1	$20^{3 / 4}$	$31 / 2^{9}$		

[^2]

Table 1-1 (continued) W-Shapes Dimensions																	
Shape	Area, A	Depth, d		Web			Flange				Distance						
				Thickness, t_{w}		t_{w}	Width, $\boldsymbol{b}_{\boldsymbol{f}}$		Thickness, $\boldsymbol{t}_{\boldsymbol{f}}$		k		k_{1}	T	Workable Gage		
				2	$\boldsymbol{k}_{\text {des }}$	$\boldsymbol{k}_{\text {det }}$											
	in. ${ }^{2}$	in.				in.		in.	in.		in.		in.	in.	in.	in.	in.
W $21 \times 275^{\text {h }}$	81.8	24.1	241/8	1.22	$11 / 4$	5/8	12.9	$12^{7 / 8}$	2.19	$2^{3 / 16}$	3.37	$3^{7 / 16}$	13/16	171/4	$5^{1 / 2}$		
$\times 248$	73.8	23.7	233/4	1.10	$1^{1 / 8}$	9/16	12.8	123/4	1.99	2	3.17	$31 / 4$	$13 / 4$				
$\times 223$	66.5	23.4	233/8	1.00	1	1/2	12.7	125/8	1.79	$1^{13 / 16}$	2.97	31/16	$1^{11 / 16}$				
$\times 201$	59.3	23.0	23	0.910	15/16	1/2	12.6	125/8	1.63	15/8	2.13	$2^{7 / 8}$	$1^{11 / 16}$				
$\times 182$	53.6	22.7	223/4	0.830	13/16	7/16	12.5	121/2	1.48	$11 / 2$	1.98	$2^{3 / 4}$	15/8				
$\times 166$	48.8	22.5	221/2	0.750	$3 / 4$	$3 / 8$	12.4	123/8	1.36	13/8	1.86	25/8	19/16				
$\times 147$	43.2	22.1	22	0.720	$3 / 4$	3/8	12.5	121/2	1.15	$11 / 8$	1.65	$2^{7 / 16}$	19/16				
$\times 132$	38.8	21.8	217/8	0.650	5/8	5/16	12.4	121/2	1.04	$11 / 16$	1.54	21/4	19/16				
$\times 122$	35.9	21.7	215/8	0.600	5/8	5/16	12.4	123/8	0.960	15/16	1.46	21/4	$11 / 2$				
$\times 111$	32.6	21.5	211/2	0.550	9/16	5/16	12.3	123/8	0.875	7/8	1.38	21/8	$11 / 2$				
$\times 101{ }^{\text {c }}$	29.8	21.4	213/8	0.500	$1 / 2$	$1 / 4$	12.3	121/4	0.800	13/16	1.30	21/16	17/16	\downarrow	η		
W 21×93	27.3	21.6	215/8	0.580	9/16	5/16	8.42	83/8	0.930	15/16	1.43	15/8	15/16	183/8	$51 / 2$		
$\times 83{ }^{\text {c }}$	24.4	21.4	$21^{3} / 8$	0.515	$1 / 2$	$1 / 4$	8.36	83/8	0.835	13/16	1.34	$11 / 2$	7/8				
$\times 73^{\text {c }}$	21.5	21.2	211/4	0.455	7/16	$1 / 4$	8.30	$81 / 4$	0.740	$3 / 4$	1.24	$1^{7 / 16}$	7/8				
$\times 68{ }^{\text {c }}$	20.0	21.1	211/8	0.430	7/16	$1 / 4$	8.27	$81 / 4$	0.685	11/16	1.19	$13 / 8$	7/8				
$\times 62^{\text {c }}$	18.3	21.0	21	0.400	$3 / 8$	3/16	8.24	81/4	0.615	$5 / 8$	1.12	$15 / 16$	13/16				
$\times 55^{\text {c }}$	16.2	20.8	203/4	0.375	$3 / 8$	3/16	8.22	$81 / 4$	0.522	$1 / 2$	1.02	$13 / 16$	13/16				
$\times 48^{\text {c,f }}$	14.1	20.6	205/8	0.350	$3 / 8$	3/16	8.14	81/8	0.430	7/16	0.930	$11 / 8$	13/16	γ	η		
W21×57 ${ }^{\text {c }}$	16.7	21.1	21	0.405	$3 / 8$	3/16	6.56	$61 / 2$	0.650	5/8	1.15	15/16	13/16	183/8	$31 / 2$		
$\times 50^{\text {c }}$	14.7	20.8	207/8	0.380	$3 / 8$	3/16	6.53	$61 / 2$	0.535	9/16	1.04	$11 / 4$	13/16	\downarrow			
$\times 44^{\text {c }}$	13.0	20.7	205/8	0.350	$3 / 8$	3/16	6.50	$61 / 2$	0.450	7/16	0.950	$11 / 8$	13/16	γ	\downarrow		

[^3]

Shape	Area, A	Depth, d		Web			Flange				Distance						
				Thickness, t_{w}		$\frac{t_{w}}{2}$	Width, b_{f}		Thickness, $\boldsymbol{t}_{\boldsymbol{f}}$		k		k_{1}	T	Workable Gage		
				$\boldsymbol{k}_{\text {des }}$	$k_{\text {det }}$												
	in. ${ }^{2}$		in.			in		in.	in		in	n.	in.	in.	in.	in.	in.
W18×311 ${ }^{\text {n }}$	91.6	22.3	$22^{3 / 8}$	1.52	$11 / 2$	3/4	12.0	12	2.74	$2^{3 / 4}$	3.24	39/16	19/16	$15^{1 / 8}$	$5^{1 / 2}$		
$\times 283{ }^{\text {h }}$	83.3	21.9	217/8	1.40	13/8	11/16	11.9	117/8	2.50	$21 / 2$	3.00	$33 / 8$	$11 / 2$				
$\times 258{ }^{\text {h }}$	76.0	21.5	211/2	1.28	$11 / 4$	5/8	11.8	113/4	2.30	25/16	2.70	33/16	17/16				
$\times 234{ }^{\text {h }}$	68.6	21.1	21	1.16	13/16	5/8	11.7	115/8	2.11	$2^{1 / 8}$	2.51		$13 / 8$				
$\times 211$	62.3	20.7	205/8	1.06	11/16	9/16	11.6	111/2	1.91	15/16	2.31	$2^{13 / 16}$	$13 / 8$				
$\times 192$	56.2	20.4	203/8	0.960	15/16	1/2	11.5	111/2	1.75	$13 / 4$	2.15	$25 / 8$	15/16				
$\times 175$	51.4	20.0	20	0.890	7/8	7/16	11.4	113/8	1.59	19/16	1.99	$2^{7 / 16}$	$11 / 4$				
$\times 158$	46.3	19.7	193/4	0.810	13/16	7/16	11.3	111/4	1.44	17/16	1.84	$23 / 8$	$11 / 4$				
$\times 143$	42.0	19.5	191/2	0.730	$3 / 4$	3/8	11.2	111/4	1.32	15/16	1.72	23/16	13/16				
$\times 130$	38.3	19.3	191/4	0.670	11/16	3/8	11.2	111/8	1.20	13/16	1.60	$21 / 16$	13/16				
$\times 119$	35.1	19.0	19	0.655	$5 / 8$	5/16	11.3	111/4	1.06	11/16	1.46	15/16	13/16				
$\times 106$	31.1	18.7	183/4	0.590	9/16	5/16	11.2	111/4	0.940	15/16	1.34	$1^{13 / 16}$	$11 / 8$				
$\times 97$	28.5	18.6	185/8	0.535	9/16	5/16	11.1	111/8	0.870	7/8	1.27	$1^{3 / 4}$	$11 / 8$				
$\times 86$	25.3	18.4	183/8	0.480	$1 / 2$	$1 / 4$	11.1	111/8	0.770	3/4	1.17	15/8	11/16				
$\times 76{ }^{\text {c }}$	22.3	18.2	$181 / 4$	0.425	7/16	$1 / 4$	11.0	11	0.680	11/16	1.08	19/16	11/16	\checkmark	γ		
W18×71	20.9	18.5	$18^{1 / 2}$	0.495	1/2	$1 / 4$	7.64	75/8	0.810	13/16	1.21	$11 / 2$	7/8	$15^{1 / 2}$	$31 / 2^{9}$		
$\times 65$	19.1	18.4	183/8	0.450	7/16	$1 / 4$	7.59	75/8	0.750	$3 / 4$	1.15	17/16	7/8				
$\times 60^{\text {c }}$	17.6	18.2	$181 / 4$	0.415	7/16	$1 / 4$	7.56	$71 / 2$	0.695	11/16	1.10	$13 / 8$	13/16				
$\times 55^{\text {c }}$	16.2	18.1	$181 / 8$	0.390	$3 / 8$	3/16	7.53	$71 / 2$	0.630	5/8	1.03	15/16	13/16				
$\times 50^{\text {c }}$	14.7	18.0	18	0.355	$3 / 8$	3/16	7.50	$71 / 2$	0.570	9/16	0.972	$11 / 4$	13/16	\checkmark	\checkmark		
W $18 \times 46^{\text {c }}$	13.5	18.1	18	0.360	$3 / 8$	3/16	6.06	6	0.605	5/8	1.01	$11 / 4$	13/16	$15^{1 / 2}$	$31 / 2^{9}$		
$\times 40^{\text {c }}$	11.8	17.9	177/8	0.315	5/16	3/16	6.02	6	0.525	1/2	0.927	13/16	13/16				
$\times 35^{\text {c }}$	10.3	17.7	173/4	0.300	5/16	3/16	6.00	6	0.425	7/16	0.827	11/8	$3 / 4$	\checkmark	γ		
W16×100	29.4	17.0	17	0.585	9/16	5/16	10.4	103/8	0.985		1.39	17/8	$11 / 8$	$13^{1 / 4}$	$51 / 2$		
$\times 89$	26.2	16.8	$16^{3 / 4}$	0.525	$1 / 2$	$1 / 4$	10.4	103/8	0.875	7/8	1.28	$13 / 4$	11/16				
$\times 77$	22.6	16.5	$161 / 2$	0.455	7/16	$1 / 4$	10.3	101/4	0.760	$3 / 4$	1.16	15/8	11/16				
$\times 67^{\text {c }}$	19.6	16.3	163/8	0.395	$3 / 8$	3/16	10.2	101/4	0.665	11/16	1.07	19/16	1	\checkmark	\checkmark		
W16×57	16.8	16.4	163/8	0.430	7/16	$1 / 4$	7.12	$71 / 8$	0.715	11/16	1.12	$13 / 8$	7/8	135/8	$3^{1 / 2} 2^{9}$		
$\times 50^{\text {c }}$	14.7	16.3	$161 / 4$	0.380	$3 / 8$	3/16	7.07	$7^{1 / 8}$	0.630	5/8	1.03	15/16	13/16				
$\times 45^{\text {c }}$	13.3	16.1	161/8	0.345	$3 / 8$	3/16	7.04	7	0.565	9/16	0.967	11/4	13/16				
$\times 40^{\text {c }}$	11.8	16.0	16	0.305	5/16	3/16	7.00	7	0.505	1/2	0.907	13/16	13/16				
$\times 36^{\text {c }}$	10.6	15.9	157/8	0.295	5/16	3/16	6.99	7	0.430	7/16	0.832	$11 / 8$	$3 / 4$	\checkmark	\checkmark		
W16x31 ${ }^{\text {c }}$	9.13	15.9	157/8	0.275	$1 / 4$	1/8	5.53	$5^{1 / 2}$	0.440	7/16	0.842	11/8	$3 / 4$	135/8	$31 / 2$		
$\times 26{ }^{\text {c,v }}$	7.68	15.7	153/4	0.250	$1 / 4$	1/8	5.50	$51 / 2$	0.345	$3 / 8$	0.747	11/16	3/4	135/8	$31 / 2$		

[^4]

Table 1-1 (continued) W-Shapes Dimensions																	
Shape	$\begin{gathered} \text { Area, } \\ \text { A } \end{gathered}$	Depth, d		Web			Flange				Distance						
				Thickness, t_{w}		t_{w}	Width, $\boldsymbol{b}_{\boldsymbol{f}}$		Thickness, $\boldsymbol{t}_{\boldsymbol{f}}$		k		k_{1}	T	Workable Gage		
				2	$\boldsymbol{k}_{\text {des }}$	$k_{\text {det }}$											
	in. ${ }^{2}$	in.				in.		in.	in.		in.		in.	in.	in.	in.	in.
W14×873 ${ }^{\text {h }}$	257	23.6	235/8	3.94	$3^{15} / 16$	2	18.8	183/4	5.51	51/2	6.10	63/16	29/16	111/4	3-81/2-39		
$\times 808^{\text {h }}$	238	22.8	223/4	3.74	$33 / 4$	17/8	18.6	185/8	5.12	51/8	5.71	53/4	$2^{1 / 2}$	111/4	$3-81 / 2-39$		
$\times 730^{\text {h }}$	215	22.4	223/8	3.07	$31 / 16$	19/16	17.9	177/8	4.91	$4^{15} / 16$	5.51	63/16	$2^{3 / 4}$	10	3-71/2-3 ${ }^{\text {g }}$		
$\times 665{ }^{\text {h }}$	196	21.6	215/8	2.83	$2^{13 / 16}$	17/16	17.7	175/8	4.52	$41 / 2$	5.12	$5^{13 / 16}$	$25 / 8$		$3-7 / 2-39$		
$\times 605{ }^{\text {h }}$	178	20.9	207/8	2.60	$25 / 8$	15/16	17.4	173/8	4.16	43/16	4.76	57/16	$2^{1 / 2}$		3-71/2-3		
$\times 550{ }^{\text {h }}$	162	20.2	201/4	2.38	$2^{3 / 8}$	13/16	17.2	171/4	3.82	$3^{13 / 16}$	4.42	51/8	23/8				
$\times 500{ }^{\text {h }}$	147	19.6	195/8	2.19	23/16	$11 / 8$	17.0	17	3.50	$31 / 2$	4.10	$4^{13 / 16}$	25/16				
$\times 455{ }^{\text {n }}$	134	19.0	19	2.02	2	1	16.8	167/8	3.21	$33 / 16$	3.81	$41 / 2$	$2^{1 / 4}$				
$\times 426{ }^{\text {h }}$	125	18.7	185/8	1.88	$17 / 8$	15/16	16.7	163/4	3.04	$31 / 16$	3.63	45/16	$2^{1 / 8}$				
$\times 398{ }^{\text {h }}$	117	18.3	181/4	1.77	$13 / 4$	7/8	16.6	165/8	2.85	27/8	3.44	41/8	$2^{1 / 8}$				
$\times 370^{\text {h }}$	109	17.9	177/8	1.66	$1^{11 / 16}$	13/16	16.5	161/2	2.66	$2^{11 / 16}$	3.26	$3^{15} / 16$	21/16				
$\times 342^{\text {h }}$	101	17.5	171/2	1.54	19/16	13/16	16.4	163/8	2.47	$2^{1 / 2}$	3.07	$33 / 4$	2				
$\times 311^{\mathrm{h}}$	91.4	17.1	171/8	1.41	$1^{7 / 16}$	$3 / 4$	16.2	161/4	2.26	$2^{1 / 4}$	2.86	39/16	$1^{15} / 16$				
$\times 283{ }^{\text {h }}$	83.3	16.7	163/4	1.29	$15 / 16$	11/16	16.1	161/8	2.07	21/16	2.67	$33 / 8$	$17 / 8$				
$\times 257$	75.6	16.4	163/8	1.18	$13 / 16$	5/8	16.0	16	1.89	$17 / 8$	2.49	$33 / 16$	$1^{13 / 16}$				
$\times 233$	68.5	16.0	16	1.07	$11 / 16$	9/16	15.9	157/8	1.72	$13 / 4$	2.32		$1^{3 / 4}$				
$\times 211$	62.0	15.7	153/4	0.980	1	1/2	15.8	153/4	1.56	19/16	2.16	27/8	$1^{11 / 16}$				
$\times 193$	56.8	15.5	$151 / 2$	0.890	7/8	7/16	15.7	153/4	1.44	17/16	2.04	23/4	$1^{11 / 16}$				
$\times 176$	51.8	15.2	151/4	0.830	13/16	7/16	15.7	155/8	1.31	15/16	1.91	25/8	15/8				
$\times 159$	46.7	15.0	15	0.745	$3 / 4$	$3 / 8$	15.6	155/8	1.19	$13 / 16$	1.79	$2^{11 / 2}$	19/16				
$\times 145$	42.7	14.8	143/4	0.680	11/16	$3 / 8$	15.5	151/2	1.09	11/16	1.69	23/8	19/16	V	η		
W14×132	38.8	14.7	145/8	0.645	$5 / 8$	5/16	14.7	143/4	1.03	1	1.63	25/16	19/16	10	$51 / 2$		
$\times 120$	35.3	14.5	$141 / 2$	0.590	9/16	5/16	14.7	145/8	0.940	15/16	1.54	$2^{1 / 4}$	$11 / 2$				
$\times 109$	32.0	14.3	143/8	0.525	$1 / 2$	$1 / 4$	14.6	145/8	0.860	7/8	1.46	23/16	$11 / 2$				
$\times 99^{\dagger}$	29.1	14.2	$14^{1} / 8$	0.485	$1 / 2$	$1 / 4$	14.6	145/8	0.780	$3 / 4$	1.38	21/16	17/16				
$\times 90{ }^{\dagger}$	26.5	14.0	14	0.440	7/16	$1 / 4$	14.5	$14^{1 / 2}$	0.710	11/16	1.31	2	17/16	V	,		
W14×82	24.0	14.3	$141 / 4$	0.510	$1 / 2$	$1 / 4$	10.1	101/8	0.855	7/8	1.45	$111 / 16$	$11 / 16$	107/8	$51 / 2$		
$\times 74$	21.8	14.2	$14^{1 / 8}$	0.450	7/16	$1 / 4$	10.1	101/8	0.785	13/16	1.38	15/8	$11 / 16$				
$\times 68$	20.0	14.0	14	0.415	7/16	$1 / 4$	10.0	10	0.720	$3 / 4$	1.31	19/16	$11 / 16$	\downarrow			
$\times 61$	17.9	13.9	$13^{7} / 8$	0.375	$3 / 8$	3/16	10.0	10	0.645	5/8	1.24	$11 / 2$	1	V	γ		
W14×53	15.6	13.9	137/8	0.370	$3 / 8$	3/16	8.06	8	0.660	11/16	1.25	$11 / 2$	1	107/8	$51 / 2$		
$\times 48$	14.1	13.8	133/4	0.340	5/16	3/16	8.03	8	0.595	5/8	1.19	17/16	1	1			
$\times 43^{\text {c }}$	12.6	13.7	135/8	0.305	$5 / 16$	$3 / 16$	8.00	8	0.530	$1 / 2$	1.12	$13 / 8$	1	η	η		

[^5]

Shape	Area, A	Depth, d		Web			Flange				Distance						
				Thickness, t_{w}		t_{w}	Width, b_{f}		Thickness, $\boldsymbol{t}_{\boldsymbol{f}}$		k		k_{1}	T	Workable Gage		
				2	$\boldsymbol{k}_{\text {des }}$	$k_{\text {det }}$											
	in. ${ }^{2}$	in.				in.		in.	in.		in.		in.	in.	in.	in.	in.
W14×38 ${ }^{\text {c }}$	11.2	14.1	141/8	0.310	5/16	3/16	6.77	63/4	0.515	1/2	0.915	$11 / 4$	13/16	115/8	$31 / 2^{9}$		
$\times 34^{\text {c }}$	10.0	14.0	14	0.285	5/16	3/16	6.75	$63 / 4$	0.455	7/16	0.855	$13 / 16$	$3 / 4$	\downarrow	$31 / 2$		
$\times 30^{\text {c }}$	8.85	13.8	137/8	0.270	$1 / 4$	$1 / 8$	6.73	$63 / 4$	0.385	$3 / 8$	0.785	$11 / 8$	$3 / 4$	γ	$31 / 2$		
W $14 \times 26^{\text {c }}$	7.69	13.9	137/8	0.255	$1 / 4$	$1 / 8$	5.03	5	0.420	7/16	0.820	$11 / 8$	$3 / 4$	115/8	$2^{3 / 4}{ }^{9}$		
$\times 22^{\text {c }}$	6.49	13.7	133/4	0.230	$1 / 4$	1/8	5.00	5	0.335	5/16	0.735	11/16	$3 / 4$	115/8	$2^{3 / 4}{ }^{9}$		
W12×336 ${ }^{\text {h }}$	98.9	16.8	167/8	1.78	$1^{3 / 4}$	7/8	13.4	133/8	2.96	215/16	3.55	$37 / 8$	111/16	$91 / 8$	$51 / 2$		
$\times 305{ }^{\text {h }}$	89.5	16.3	163/8	1.63	15/8	13/16	13.2	$13^{1 / 4}$	2.71	$2^{11 / 16}$	3.30	35/8	15/8				
$\times 279{ }^{\text {h }}$	81.9	15.9	157/8	1.53	$11 / 2$	$3 / 4$	13.1	$13^{1 / 8}$	2.47	$21 / 2$	3.07	$33 / 8$	15/8				
$\times 252^{\text {h }}$	74.1	15.4	153/8	1.40	13/8	11/16	13.0	13	2.25	21/4	2.85	$31 / 8$	$11 / 2$				
$\times 230^{\text {h }}$	67.7	15.1	15	1.29	15/16	11/16	12.9	$12^{7 / 8}$	2.07	21/16	2.67	215/16	$11 / 2$				
$\times 210$	61.8	14.7	143/4	1.18	$13 / 16$	5/8	12.8	12/3/4	1.90	$17 / 8$	2.50	$2^{13 / 16}$	17/16				
$\times 190$	56.0	14.4	143/8	1.06	$11 / 16$	9/16	12.7	125/8	1.74	$13 / 4$	2.33	25/8	$1^{3 / 8}$				
$\times 170$	50.0	14.0	14	0.960	15/16	$1 / 2$	12.6	125/8	1.56	19/16	2.16	27/16	15/16				
$\times 152$	44.7	13.7	133/4	0.870	7/8	7/16	12.5	$12^{1 / 2}$	1.40	$13 / 8$	2.00	25/16	$11 / 4$				
$\times 136$	39.9	13.4	13/3	0.790	13/16	7/16	12.4	123/8	1.25	$11 / 4$	1.85	21/8	$11 / 4$				
$\times 120$	35.2	13.1	$131 / 8$	0.710	11/16	$3 / 8$	12.3	123/8	1.11	$11 / 8$	1.70	2	$13 / 16$				
$\times 106$	31.2	12.9	$12^{7} / 8$	0.610	5/8	5/16	12.2	$12^{1 / 4}$	0.990	1	1.59	$17 / 8$	$11 / 8$				
$\times 96$	28.2	12.7	$12^{3 / 4}$	0.550	9/16	5/16	12.2	121/8	0.900	7/8	1.50	$1^{13 / 16}$	$11 / 8$				
$\times 87$	25.6	12.5	$12^{1 / 2}$	0.515	$1 / 2$	1/4	12.1	121/8	0.810	13/16	1.41	$111 / 16$	11/16				
$\times 79$	23.2	12.4	$12^{3} / 8$	0.470	$1 / 2$	$1 / 4$	12.1	$12^{1 / 8}$	0.735	$3 / 4$	1.33	15/8	11/16				
$\times 72$	21.1	12.3	$12^{1 / 4}$	0.430	7/16	$1 / 4$	12.0	12	0.670	11/16	1.27	19/16	11/16				
$\times 65^{\dagger}$	19.1	12.1	$12^{1 / 8}$	0.390	$3 / 8$	3/16	12.0	12	0.605	$5 / 8$	1.20	$11 / 2$	1	\checkmark	γ		
W12×58	17.0	12.2	$12^{1 / 4}$	0.360	$3 / 8$	3/16	10.0	10	0.640	$5 / 8$	1.24	$11 / 2$	15/16	$91 / 4$	$51 / 2$		
$\times 53$	15.6	12.1	12	0.345	$3 / 8$	3/16	10.0	10	0.575	9/16	1.18	$1^{3 / 8}$	15/16	$91 / 4$	$51 / 2$		
W12×50	14.6	12.2	$121 / 4$	0.370	$3 / 8$	3/16	8.08	81/8	0.640	5/8	1.14	$11 / 2$	15/16	91/4	$51 / 2$		
$\times 45$	13.1	12.1	12	0.335	5/16	3/16	8.05	8	0.575	9/16	1.08	13/8	15/16				
$\times 40$	11.7	11.9	12	0.295	5/16	3/16	8.01	8	0.515	$1 / 2$	1.02	$13 / 8$	7/8	\downarrow	\checkmark		
W $12 \times 35^{\text {c }}$	10.3	12.5	$12^{1 / 2}$	0.300	5/16	$3 / 16$	6.56	$61 / 2$	0.520	1/2	0.820	$13 / 16$	$3 / 4$	101/8	$31 / 2$		
$\times 30^{\text {c }}$	8.79	12.3	$12^{3} / 8$	0.260	$1 / 4$	$1 / 8$	6.52	$61 / 2$	0.440	7/16	0.740	$11 / 8$	$3 / 4$				
$\times 26^{\text {c }}$	7.65	12.2	$12^{1 / 4}$	0.230	$1 / 4$	$1 / 8$	6.49	$61 / 2$	0.380	$3 / 8$	0.680	11/16	$3 / 4$	\downarrow	\downarrow		
W $12 \times 22^{\text {c }}$	6.48	12.3	$121 / 4$	0.260	$1 / 4$	1/8	4.03	4	0.425	7/16	0.725	15/16	5/8	$10^{3} / 8$	$21 / 4^{9}$		
$\times 19^{\text {c }}$	5.57	12.2	$12^{1 / 8}$	0.235	$1 / 4$	$1 / 8$	4.01	4	0.350	$3 / 8$	0.650	7/8	9/16				
$\times 16^{\text {c }}$	4.71	12.0	12	0.220	$1 / 4$	1/8	3.99	4	0.265	$1 / 4$	0.565	13/16	9/16				
$\times 14^{c, v}$	4.16	11.9	117/8	0.200	3/16	1/8	3.97	4	0.225	$1 / 4$	0.525	$3 / 4$	9/16	V	γ		

[^6]| Nominal Wt. | Table 1-1 (continued) W-Shapes Properties | | | | | | | | | | | | W1 | 4-W12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Compact Section Criteria | | Axis X-X | | | | Axis Y-Y | | | | $r_{\text {ts }}$ | \boldsymbol{h}_{0} | Torsional Properties | |
| | \boldsymbol{b}_{f} | h | I | S | r | Z | I | S | r | Z | | | J | $C_{\text {w }}$ |
| lb/ft | $2 t_{f}$ | t_{w} | in. ${ }^{4}$ | in. ${ }^{3}$ | in. | in. ${ }^{3}$ | in. ${ }^{4}$ | in. ${ }^{3}$ | in. | in. ${ }^{3}$ | in. | in. | in. ${ }^{4}$ | in. ${ }^{6}$ |
| 38 | 6.57 | 39.6 | 385 | 54.6 | 5.87 | 61.5 | 26.7 | 7.88 | 1.55 | 12.1 | 1.82 | 13.6 | 0.798 | 1230 |
| 34 | 7.41 | 43.1 | 340 | 48.6 | 5.83 | 54.6 | 23.3 | 6.91 | 1.53 | 10.6 | 1.80 | 13.5 | 0.569 | 1070 |
| 30 | 8.74 | 45.4 | 291 | 42.0 | 5.73 | 47.3 | 19.6 | 5.82 | 1.49 | 8.99 | 1.77 | 13.4 | 0.380 | 887 |
| 26 | 5.98 | 48.1 | 245 | 35.3 | 5.65 | 40.2 | 8.91 | 3.55 | 1.08 | 5.54 | 1.30 | 13.5 | 0.358 | 405 |
| 22 | 7.46 | 53.3 | 199 | 29.0 | 5.54 | 33.2 | 7.00 | 2.80 | 1.04 | 4.39 | 1.27 | 13.4 | 0.208 | 314 |
| 336 | 2.26 | 5.47 | 4060 | 483 | 6.41 | 603 | 1190 | 177 | 3.47 | 274 | 4.13 | 13.8 | 243 | 57000 |
| 305 | 2.45 | 5.98 | 3550 | 435 | 6.29 | 537 | 1050 | 159 | 3.42 | 244 | 4.05 | 13.6 | 185 | 48600 |
| 279 | 2.66 | 6.35 | 3110 | 393 | 6.16 | 481 | 937 | 143 | 3.38 | 220 | 4.00 | 13.4 | 143 | 42000 |
| 252 | 2.89 | 6.96 | 2720 | 353 | 6.06 | 428 | 828 | 127 | 3.34 | 196 | 3.93 | 13.2 | 108 | 35800 |
| 230 | 3.11 | 7.56 | 2420 | 321 | 5.97 | 386 | 742 | 115 | 3.31 | 177 | 3.87 | 13.0 | 83.8 | 31200 |
| 210 | 3.37 | 8.23 | 2140 | 292 | 5.89 | 348 | 664 | 104 | 3.28 | 159 | 3.81 | 12.8 | 64.7 | 27200 |
| 190 | 3.65 | 9.16 | 1890 | 263 | 5.82 | 311 | 589 | 93.0 | 3.25 | 143 | 3.77 | 12.7 | 48.8 | 23600 |
| 170 | 4.03 | 10.1 | 1650 | 235 | 5.74 | 275 | 517 | 82.3 | 3.22 | 126 | 3.70 | 12.4 | 35.6 | 20100 |
| 152 | 4.46 | 11.2 | 1430 | 209 | 5.66 | 243 | 454 | 72.8 | 3.19 | 111 | 3.66 | 12.3 | 25.8 | 17200 |
| 136 | 4.96 | 12.3 | 1240 | 186 | 5.58 | 214 | 398 | 64.2 | 3.16 | 98.0 | 3.61 | 12.2 | 18.5 | 14700 |
| 120 | 5.57 | 13.7 | 1070 | 163 | 5.51 | 186 | 345 | 56.0 | 3.13 | 85.4 | 3.56 | 12.0 | 12.9 | 12400 |
| 106 | 6.17 | 15.9 | 933 | 145 | 5.47 | 164 | 301 | 49.3 | 3.11 | 75.1 | 3.52 | 11.9 | 9.13 | 10700 |
| 96 | 6.76 | 17.7 | 833 | 131 | 5.44 | 147 | 270 | 44.4 | 3.09 | 67.5 | 3.49 | 11.8 | 6.85 | 9410 |
| 87 | 7.48 | 18.9 | 740 | 118 | 5.38 | 132 | 241 | 39.7 | 3.07 | 60.4 | 3.46 | 11.7 | 5.10 | 8270 |
| 79 | 8.22 | 20.7 | 662 | 107 | 5.34 | 119 | 216 | 35.8 | 3.05 | 54.3 | 3.43 | 11.7 | 3.84 | 7330 |
| 72 | 8.99 | 22.6 | 597 | 97.4 | 5.31 | 108 | 195 | 32.4 | 3.04 | 49.2 | 3.41 | 11.6 | 2.93 | 6540 |
| 65 | 9.92 | 24.9 | 533 | 87.9 | 5.28 | 96.8 | 174 | 29.1 | 3.02 | 44.1 | 3.38 | 11.5 | 2.18 | 5780 |
| 58 | 7.82 | 27.0 | 475 | 78.0 | 5.28 | 86.4 | 107 | 21.4 | 2.51 | 32.5 | 2.81 | 11.6 | 2.10 | 3570 |
| 53 | 8.69 | 28.1 | 425 | 70.6 | 5.23 | 77.9 | 95.8 | 19.2 | 2.48 | 29.1 | 2.79 | 11.5 | 1.58 | 3160 |
| 50 | 6.31 | 26.8 | 391 | 64.2 | 5.18 | 71.9 | 56.3 | 13.9 | 1.96 | 21.3 | 2.25 | 11.6 | 1.71 | 1880 |
| 45 | 7.00 | 29.6 | 348 | 57.7 | 5.15 | 64.2 | 50.0 | 12.4 | 1.95 | 19.0 | 2.23 | 11.5 | 1.26 | 1650 |
| 40 | 7.77 | 33.6 | 307 | 51.5 | 5.13 | 57.0 | 44.1 | 11.0 | 1.94 | 16.8 | 2.21 | 11.4 | 0.906 | 1440 |
| 35 | 6.31 | 36.2 | 285 | 45.6 | 5.25 | 51.2 | 24.5 | 7.47 | 1.54 | 11.5 | 1.79 | 12.0 | 0.741 | 879 |
| 30 | 7.41 | 41.8 | 238 | 38.6 | 5.21 | 43.1 | 20.3 | 6.24 | 1.52 | 9.56 | 1.77 | 11.9 | 0.457 | 720 |
| 26 | 8.54 | 47.2 | 204 | 33.4 | 5.17 | 37.2 | 17.3 | 5.34 | 1.51 | 8.17 | 1.75 | 11.8 | 0.300 | 607 |
| 22 | 4.74 | 41.8 | 156 | 25.4 | 4.91 | 29.3 | 4.66 | 2.31 | 0.848 | 3.66 | 1.04 | 11.9 | 0.293 | 164 |
| 19 | 5.72 | 46.2 | 130 | 21.3 | 4.82 | 24.7 | 3.76 | 1.88 | 0.822 | 2.98 | 1.02 | 11.9 | 0.180 | 131 |
| 16 | 7.53 | 49.4 | 103 | 17.1 | 4.67 | 20.1 | 2.82 | 1.41 | 0.773 | 2.26 | 0.983 | 11.7 | 0.103 | 96.9 |
| 14 | 8.82 | 54.3 | 88.6 | 14.9 | 4.62 | 17.4 | 2.36 | 1.19 | 0.753 | 1.90 | 0.961 | 11.7 | 0.0704 | 80.4 |
| | | | | | | | | | | | | | | |

Table 1-1 (continued) W-Shapes Dimensions																	
Shape	Area, A	Depth, d		Web			Flange				Distance						
				Thickness, t_{w}		t_{w}	Width, $\boldsymbol{b}_{\boldsymbol{f}}$		Thickness, \boldsymbol{t}_{f}		k		k_{1}	T	Workable Gage		
				2	$\boldsymbol{k}_{\text {des }}$	$k_{\text {det }}$											
	in. ${ }^{2}$	in.				in.		in.	in.		in.		in.	in.	in.	in.	in.
W10×112	32.9	11.4	113/8	0.755	$3 / 4$	3/8	10.4	103/8	1.25	$11 / 4$	1.75	15/16	1	$71 / 2$	51/2		
$\times 100$	29.3	11.1	111/8	0.680	11/16	3/8	10.3	103/8	1.12	11/8	1.62	$1{ }^{13 / 16}$	1				
$\times 88$	26.0	10.8	$10^{7} / 8$	0.605	5/8	5/16	10.3	101/4	0.990	1	1.49	$111 / 16$	15/16				
$\times 77$	22.7	10.6	105/8	0.530	$1 / 2$	1/4	10.2	101/4	0.870	7/8	1.37	19/16	7/8				
$\times 68$	19.9	10.4	103/8	0.470	1/2	$1 / 4$	10.1	101/8	0.770	$3 / 4$	1.27	17/16	7/8				
$\times 60$	17.7	10.2	101/4	0.420	7/16	$1 / 4$	10.1	101/8	0.680	11/16	1.18	13/8	13/16				
$\times 54$	15.8	10.1	101/8	0.370	$3 / 8$	3/16	10.0	10	0.615	5/8	1.12	15/16	13/16				
$\times 49$	14.4	10.0	10	0.340	$5 / 16$	$3 / 16$	10.0	10	0.560	9/16	1.06	$11 / 4$	13/16	\checkmark			
W10×45	13.3	10.1	$10^{1} / 8$	0.350	$3 / 8$	3/16	8.02	8	0.620	5/8	1.12	15/16	13/16	$71 / 2$	$51 / 2$		
$\times 39$	11.5	9.92	97/8	0.315	5/16	3/16	7.99	8	0.530	$1 / 2$	1.03	13/16	13/16	1			
$\times 33$	9.71	9.73	93/4	0.290	5/16	$3 / 16$	7.96	8	0.435	7/16	0.935	$11 / 8$	$3 / 4$	V	γ		
W10×30	8.84	10.5	101/2	0.300	5/16	3/16	5.81	$53 / 4$	0.510	$1 / 2$	0.810	$11 / 8$	11/16	$8^{1 / 4}$	$2^{3 / 4}{ }^{9}$		
$\times 26$	7.61	10.3	103/8	0.260	$1 / 4$	1/8	5.77	53/4	0.440	7/16	0.740	11/16	11/16	1			
$\times 22^{\text {c }}$	6.49	10.2	101/8	0.240	1/4	1/8	5.75	53/4	0.360	$3 / 8$	0.660	15/16	5/8	V	γ		
W10×19	5.62	10.2	$10 \frac{1}{4}$	0.250	1/4	1/8	4.02	4	0.395	$3 / 8$	0.695	15/16	5/8	$83 / 8$	$21 / 4^{9}$		
$\times 17^{\text {c }}$	4.99	10.1	101/8	0.240	$1 / 4$	1/8	4.01	4	0.330	5/16	0.630	7/8	9/16				
$\times 15^{\text {c }}$	4.41	9.99	10	0.230	$1 / 4$	1/8	4.00	4	0.270	$1 / 4$	0.570	13/16	9/16				
$\times 12^{\text {c,f }}$	3.54	9.87	97/8	0.190	$3 / 16$	1/8	3.96	4	0.210	3/16	0.510	$3 / 4$	9/16	γ			
W8×67	19.7	9.00	9	0.570	9/16	5/16	8.28	81/4	0.935	15/16	1.33	15/8	15/16	53/4	$51 / 2$		
$\times 58$	17.1	8.75	$83 / 4$	0.510	$1 / 2$	$1 / 4$	8.22	81/4	0.810	13/16	1.20	$11 / 2$	7/8				
$\times 48$	14.1	8.50	$81 / 2$	0.400	$3 / 8$	3/16	8.11	81/8	0.685	11/16	1.08	$1^{3 / 8}$	13/16				
$\times 40$	11.7	8.25	$81 / 4$	0.360	$3 / 8$	3/16	8.07	81/8	0.560	9/16	0.954	$11 / 4$	13/16				
$\times 35$	10.3	8.12	81/8	0.310	5/16	3/16	8.02	8	0.495	$1 / 2$	0.889	$13 / 16$	13/16				
$\times 31^{\text {f }}$	9.13	8.00	8	0.285	5/16	3/16	8.00	8	0.435	7/16	0.829	$11 / 8$	$3 / 4$	V	γ		
W 8×28	8.25	8.06	8	0.285	5/16	3/16	6.54	$61 / 2$	0.465	7/16	0.859	15/16	5/8	61/8	4		
$\times 24$	7.08	7.93	77/8	0.245	$1 / 4$	$1 / 8$	6.50	$61 / 2$	0.400	$3 / 8$	0.794	7/8	9/16	61/8	4		
W8×21	6.16	8.28	$81 / 4$	0.250	$1 / 4$	$1 / 8$	5.27	$51 / 4$	0.400	$3 / 8$	0.700	7/8	9/16	61/2	$2^{3 / 4}{ }^{9}$		
$\times 18$	5.26	8.14	81/8	0.230	$1 / 4$	1/8	5.25	51/4	0.330	5/16	0.630	13/16	9/16	$61 / 2$	$23 / 4^{9}$		
W 8×15	4.44	8.11	81/8	0.245	$1 / 4$	$1 / 8$	4.02	4	0.315	5/16	0.615	13/16	9/16	$61 / 2$	$21 / 4^{9}$		
$\times 13$	3.84	7.99	8	0.230	$1 / 4$	1/8	4.00	4	0.255	$1 / 4$	0.555	$3 / 4$	9/16	\checkmark	\downarrow		
$\times 10^{c, f}$	2.96	7.89	$77 / 8$	0.170	$3 / 16$	$1 / 8$	3.94	4	0.205	3/16	0.505	11/16	$1 / 2$	V	γ		

[^7]| Nominal Wt. | Table 1-1 (continued) W-Shapes Properties | | | | | | | | | | | | $\frac{\text { W10-W8 }}{\text { W }}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Compact Section Criteria | | Axis X-X | | | | Axis Y-Y | | | | $r_{\text {ts }}$ | \boldsymbol{h}_{0} | Torsional Properties | |
| | | - | I | S | r | Z | I | S | r | 7 | | | J | $C_{\text {w }}$ |
| Ib/ft | $\overline{2 t_{f}}$ | $\overline{t w}$ | in. ${ }^{4}$ | in. ${ }^{3}$ | in. | in. ${ }^{3}$ | in. ${ }^{4}$ | in. ${ }^{3}$ | in. | in. ${ }^{3}$ | in. | in. | in. ${ }^{4}$ | in. ${ }^{6}$ |
| 112 | 4.17 | 10.4 | 716 | 126 | 4.66 | 147 | 236 | 45.3 | 2.68 | 69.2 | 3.08 | 10.2 | 15.1 | 6020 |
| 100 | 4.62 | 11.6 | 623 | 112 | 4.60 | 130 | 207 | 40.0 | 2.65 | 61.0 | 3.04 | 10.0 | 10.9 | 5150 |
| 88 | 5.18 | 13.0 | 534 | 98.5 | 4.54 | 113 | 179 | 34.8 | 2.63 | 53.1 | 2.99 | 9.81 | 7.53 | 4330 |
| 77 | 5.86 | 14.8 | 455 | 85.9 | 4.49 | 97.6 | 154 | 30.1 | 2.60 | 45.9 | 2.95 | 9.73 | 5.11 | 3630 |
| 68 | 6.58 | 16.7 | 394 | 75.7 | 4.44 | 85.3 | 134 | 26.4 | 2.59 | 40.1 | 2.92 | 9.63 | 3.56 | 3100 |
| 60 | 7.41 | 18.7 | 341 | 66.7 | 4.39 | 74.6 | 116 | 23.0 | 2.57 | 35.0 | 2.88 | 9.52 | 2.48 | 2640 |
| 54 | 8.15 | 21.2 | 303 | 60.0 | 4.37 | 66.6 | 103 | 20.6 | 2.56 | 31.3 | 2.85 | 9.49 | 1.82 | 2320 |
| 49 | 8.93 | 23.1 | 272 | 54.6 | 4.35 | 60.4 | 93.4 | 18.7 | 2.54 | 28.3 | 2.84 | 9.44 | 1.39 | 2070 |
| 45 | 6.47 | 22.5 | 248 | 49.1 | 4.32 | 54.9 | 53.4 | 13.3 | 2.01 | 20.3 | 2.27 | 9.48 | 1.51 | 1200 |
| 39 | 7.53 | 25.0 | 209 | 42.1 | 4.27 | 46.8 | 45.0 | 11.3 | 1.98 | 17.2 | 2.24 | 9.39 | 0.976 | 992 |
| 33 | 9.15 | 27.1 | 171 | 35.0 | 4.19 | 38.8 | 36.6 | 9.20 | 1.94 | 14.0 | 2.20 | 9.30 | 0.583 | 791 |
| 30 | 5.70 | 29.5 | 170 | 32.4 | 4.38 | 36.6 | 16.7 | 5.75 | 1.37 | 8.84 | 1.60 | 9.99 | 0.622 | 414 |
| 26 | 6.56 | 34.0 | 144 | 27.9 | 4.35 | 31.3 | 14.1 | 4.89 | 1.36 | 7.50 | 1.58 | 9.86 | 0.402 | 345 |
| 22 | 7.99 | 36.9 | 118 | 23.2 | 4.27 | 26.0 | 11.4 | 3.97 | 1.33 | 6.10 | 1.55 | 9.84 | 0.239 | 275 |
| 19 | 5.09 | 35.4 | 96.3 | 18.8 | 4.14 | 21.6 | 4.29 | 2.14 | 0.874 | 3.35 | 1.06 | 9.81 | 0.233 | 104 |
| 17 | 6.08 | 36.9 | 81.9 | 16.2 | 4.05 | 18.7 | 3.56 | 1.78 | 0.845 | 2.80 | 1.04 | 9.77 | 0.156 | 85.1 |
| 15 | 7.41 | 38.5 | 68.9 | 13.8 | 3.95 | 16.0 | 2.89 | 1.45 | 0.810 | 2.30 | 1.01 | 9.72 | 0.104 | 68.3 |
| 12 | 9.43 | 46.6 | 53.8 | 10.9 | 3.90 | 12.6 | 2.18 | 1.10 | 0.785 | 1.74 | 0.983 | 9.66 | 0.0547 | 50.9 |
| 67 | 4.43 | 11.1 | 272 | 60.4 | 3.72 | 70.1 | 88.6 | 21.4 | 2.12 | 32.7 | 2.43 | 8.07 | 5.05 | 1440 |
| 58 | 5.07 | 12.4 | 228 | 52.0 | 3.65 | 59.8 | 75.1 | 18.3 | 2.10 | 27.9 | 2.39 | 7.94 | 3.33 | 1180 |
| 48 | 5.92 | 15.9 | 184 | 43.2 | 3.61 | 49.0 | 60.9 | 15.0 | 2.08 | 22.9 | 2.35 | 7.82 | 1.96 | 931 |
| 40 | 7.21 | 17.6 | 146 | 35.5 | 3.53 | 39.8 | 49.1 | 12.2 | 2.04 | 18.5 | 2.31 | 7.69 | 1.12 | 726 |
| 35 | 8.10 | 20.5 | 127 | 31.2 | 3.51 | 34.7 | 42.6 | 10.6 | 2.03 | 16.1 | 2.28 | 7.63 | 0.769 | 619 |
| 31 | 9.19 | 22.3 | 110 | 27.5 | 3.47 | 30.4 | 37.1 | 9.27 | 2.02 | 14.1 | 2.26 | 7.57 | 0.536 | 530 |
| 28 | 7.03 | 22.3 | 98.0 | 24.3 | 3.45 | 27.2 | 21.7 | 6.63 | 1.62 | 10.1 | 1.84 | 7.60 | 0.537 | 312 |
| 24 | 8.12 | 25.9 | 82.7 | 20.9 | 3.42 | 23.1 | 18.3 | 5.63 | 1.61 | 8.57 | 1.81 | 7.53 | 0.346 | 259 |
| 21 | 6.59 | 27.5 | 75.3 | 18.2 | 3.49 | 20.4 | 9.77 | 3.71 | 1.26 | 5.69 | 1.46 | 7.88 | 0.282 | 152 |
| 18 | 7.95 | 29.9 | 61.9 | 15.2 | 3.43 | 17.0 | 7.97 | 3.04 | 1.23 | 4.66 | 1.43 | 7.81 | 0.172 | 122 |
| 15 | 6.37 | 28.1 | 48.0 | 11.8 | 3.29 | 13.6 | 3.41 | 1.70 | 0.876 | 2.67 | 1.06 | 7.80 | 0.137 | 51.8 |
| 13 | 7.84 | 29.9 | 39.6 | 9.91 | 3.21 | 11.4 | 2.73 | 1.37 | 0.843 | 2.15 | 1.03 | 7.74 | 0.0871 | 40.8 |
| 10 | 9.61 | 40.5 | 30.8 | 7.81 | 3.22 | 8.87 | 2.09 | 1.06 | 0.841 | 1.66 | 1.01 | 7.69 | 0.0426 | 30.9 |
| | | | | | | | | | | | | | | |

${ }^{\text {f }}$ Shape exceeds compact limit for flexure with $F_{y}=50 \mathrm{ksi}$.
${ }^{9}$ The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility.

					Tab	le 1- S-S Pro		ties	nued				S-SH	HAPES
Nominal Wt.	Compact Section Criteria		Axis X-X				Axis Y-Y				$r_{t s}$	\boldsymbol{h}_{0}	Torsional Properties	
			I	S	r	7	1	S	r	7			J	C_{w}
lb/ft	$\overline{2 t_{f}}$	$\overline{t_{w}}$	in. ${ }^{4}$	in. ${ }^{3}$	in.	in. ${ }^{3}$	in. ${ }^{4}$	in. ${ }^{3}$	in.	in. ${ }^{3}$	in.	in.	in. ${ }^{4}$	in. ${ }^{6}$
121	3.69	25.9	3160	258	9.43	306	83.0	20.6	1.53	36.3	1.94	23.4	12.8	11400
106	3.61	33.4	2940	240	9.71	279	76.8	19.5	1.57	33.4	1.93	23.4	10.1	10500
100	4.16	27.8	2380	199	9.01	239	47.4	13.1	1.27	24.0	1.66	23.1	7.59	6350
90	4.09	33.1	2250	187	9.21	222	44.7	12.5	1.30	22.4	1.66	23.1	6.05	5980
80	4.02	41.4	2100	175	9.47	204	42.0	12.0	1.34	20.8	1.67	23.1	4.89	5620
96	3.91	21.1	1670	165	7.71	198	49.9	13.9	1.33	24.9	1.71	19.4	8.40	4690
86	3.84	25.6	1570	155	7.89	183	46.6	13.2	1.36	23.1	1.71	19.4	6.65	4370
75	4.02	26.6	1280	128	7.62	152	29.5	9.25	1.16	16.7	1.49	19.2	4.59	2720
66	3.93	33.5	1190	119	7.83	139	27.5	8.78	1.19	15.4	1.49	19.2	3.58	2530
70	4.52	21.5	923	103	6.70	124	24.0	7.69	1.08	14.3	1.42	17.3	4.10	1800
54.7	4.34	33.2	801	89.0	7.07	104	20.7	6.91	1.14	12.1	1.42	17.3	2.33	1550
50	4.53	22.7	485	64.7	5.75	77.0	15.6	5.53	1.03	10.0	1.32	14.4	2.12	805
42.9	4.42	30.4	446	59.4	5.95	69.2	14.3	5.19	1.06	9.08	1.31	14.4	1.54	737
50	4.16	13.7	303	50.6	4.55	60.9	15.6	5.69	1.03	10.3	1.32	11.3	2.77	501
40.8	3.98	20.6	270	45.1	4.76	52.7	13.5	5.13	1.06	8.86	1.30	11.3	1.69	433
35	4.67	23.1	228	38.1	4.72	44.6	9.84	3.88	0.980	6.80	1.22	11.5	1.05	323
31.8	4.60	28.3	217	36.2	4.83	41.8	9.33	3.73	1.00	6.44	1.21	11.5	0.878	306
35	5.03	13.4	147	29.4	3.78	35.4	8.30	3.36	0.899	6.19	1.16	9.51	1.29	188
25.4	4.75	25.6	123	24.6	4.07	28.3	6.73	2.89	0.950	4.99	1.14	9.51	0.603	152
23	4.91	14.1	64.7	16.2	3.09	19.2	4.27	2.05	0.795	3.67	0.999	7.58	0.550	61.2
18.4	4.71	22.9	57.5	14.4	3.26	16.5	3.69	1.84	0.827	3.18	0.985	7.58	0.335	52.9
17.25	4.97	9.67	26.2	8.74	2.28	10.5	2.29	1.28	0.673	2.35	0.859	5.64	0.371	18.2
12.5	4.64	19.4	22.0	7.34	2.45	8.45	1.80	1.08	0.702	1.86	0.831	5.64	0.167	14.3
10	4.61	16.8	12.3	4.90	2.05	5.66	1.19	0.795	0.638	1.37	0.754	4.67	0.114	6.52
9.5	4.77	8.33	6.76	3.38	1.56	4.04	0.887	0.635	0.564	1.13	0.698	3.71	0.120	3.05
7.7	4.54	14.1	6.05	3.03	1.64	3.50	0.748	0.562	0.576	0.970	0.676	3.71	0.0732	2.57
7.5	4.83	5.38	2.91	1.94	1.15	2.35	0.578	0.461	0.513	0.821	0.638	2.74	0.0896	1.08
5.7	4.48	11.0	2.50	1.67	1.23	1.94	0.447	0.383	0.518	0.656	0.605	2.74	0.0433	0.838

				Table 1-4 P-Shapes Dimensions										
Shape	Area, A	Depth, d		Web			Flange				Distance			
				Thickness, t_{w}		$\frac{t_{w}}{2}$	Width, b_{f}		Thickness, $\boldsymbol{t}_{\boldsymbol{f}}$		k	k_{1}	T	Workable Gage
	in. ${ }^{2}$	in.		in.		in.	in.		in.		in.	in.	in.	in.
HP18×204	60.2	18.3	181/4	1.13	$11 / 8$	9/16	18.1	181/8	1.13	$11 / 8$	2/516	$1^{3 / 4}$	$13^{1 / 2}$	$71 / 2$
$\times 181$	53.2	18.0	18	1.00	1	$1 / 2$	18.0	18	1.00	1	23/16	111/16		
$\times 157^{\dagger}$	46.2	17.7	173/4	0.870	7/8	7/16	17.9	$17^{7 / 8}$	0.870	7/8	21/16	15/8		
$\times 135{ }^{\text {f }}$	39.9	17.5	171/2	0.750	$3 / 4$	$3 / 8$	17.8	$173 / 4$	0.750	$3 / 4$	15/16	$19 / 16$	η	γ
HP16×183	54.1	16.5	161/2	1.13	$11 / 8$	9/16	16.3	161/2	1.13	$11 / 8$	25/16	$1^{3 / 4}$	$11^{3 / 4}$	$51 / 2$
$\times 162$	47.7	16.3	161/4	1.00	1	$1 / 2$	16.1	161/8	1.00	1	23/16	111/16		
$\times 141$	41.7	16.0	16	0.875	7/8	7/16	16.0	16	0.875	7/8	$21 / 16$	15/8		
$\times 121^{\text {f }}$	35.8	15.8	153/4	0.750	$3 / 4$	3/8	15.9	157/8	0.750	$3 / 4$	15/16	19/16		
$\times 101^{\text {f }}$	29.9	15.5	151/2	0.625	5/8	5/16	15.8	153/4	0.625	5/8	$13 / 16$	$11 / 2$	\downarrow	
$\times 88^{\text {c,f }}$	25.8	15.3	153/8	0.540	9/16	5/16	15.7	$15^{11 / 16}$	0.540	9/16	$13 / 4$	17/16	γ	\checkmark
HP14×117 ${ }^{\text {f }}$	34.4	14.2	141/4	0.805	13/16	7/16	14.9	147/8	0.805	13/16	21/16	15/8	111/4	$51 / 2$
$\times 102^{\dagger}$	30.1	14.0	14	0.705	11/16	$3 / 8$	14.8	$143 / 4$	0.705	11/16	15/16	19/16		
$\times 89{ }^{\text {f }}$	26.1	13.8	137/8	0.615	5/8	5/16	14.7	143/4	0.615	$5 / 8$	17/8	$11 / 2$,	
$\times 73{ }^{\text {c,f }}$	21.4	13.6	135/8	0.505	$1 / 2$	$1 / 4$	14.6	145/8	0.505	$1 / 2$	$1^{3 / 4}$	17/16	γ	\dagger
HP12×89	25.9	12.4	123/8	0.720	$3 / 4$	3/8	12.3	$12^{3 / 8}$	0.720	$3 / 4$	15/8	13/16	91122	$51 / 2$
$\times 84$	24.6	12.3	121/4	0.685	$11 / 16$	3/8	12.3	$12^{1 / 4}$	0.685	11/16	19/16	13/16		
$\times 74^{\dagger}$	21.8	12.1	121/8	0.605	5/8	5/16	12.2	$12^{1 / 4}$	0.610	5/8	$11 / 2$	$11 / 8$		
$\times 63{ }^{\text {f }}$	18.4	11.9	12	0.515	$1 / 2$	$1 / 4$	12.1	121/8	0.515	$1 / 2$	17/16	11/16	\downarrow	
$\times 53{ }^{\text {c,f }}$	15.5	11.8	113/4	0.435	7/16	$1 / 4$	12.0	12	0.435	7/16	15/16	11/16	η	\checkmark
HP10×57	16.7	9.99	10	0.565	9/16	5/16	10.2	101/4	0.565	9/16	$11 / 4$	15/16	$71 / 2$	$51 / 2$
$\times 42^{f}$	12.4	9.70	93/4	0.415	7/16	$1 / 4$	10.1	101/8	0.420	7/16	$11 / 8$	13/16	7112	51/2
HP8 $\times 36^{\text {f }}$	10.6	8.02	8	0.445	7/16	$1 / 4$	8.16	8118	0.445	7/16	$11 / 8$	7/8	$53 / 4$	$51 / 2$
${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$. ${ }^{\mathrm{f}}$ Shape exceeds compact limit for flexure with $F_{y}=50 \mathrm{ksi}$.														

Shape	Area, A	Depth, d		Web			Flange				Distance			$r_{\text {ts }}$	\boldsymbol{h}_{0}
				Thickness, t_{w}		$\frac{t_{w}}{2}$	Width, $\boldsymbol{b}_{\boldsymbol{f}}$		Average Thickness, $\boldsymbol{t}_{\boldsymbol{f}}$		k	T	Work- able Gage		
	in. ${ }^{2}$	in.		in.		in.	in.		in.		in.	in.	in.	in.	in.
C15×50	14.7	15.0	15	0.716	11/16	$3 / 8$	3.72	$33 / 4$	0.650	5/8	17/16	121/8	$2^{1 / 4}$	1.17	14.4
$\times 40$	11.8	15.0	15	0.520	1/2	1/4	3.52	$3^{1 / 2}$	0.650	5/8	17/16		2	1.15	14.4
$\times 33.9$	10.0	15.0	15	0.400	3/8	3/16	3.40	33/8	0.650	5/8	17/16	V	2	1.13	14.4
C12×30	8.81	12.0	12	0.510	1/2	1/4	3.17	$31 / 8$	0.501	$1 / 2$	$11 / 8$	$9^{3 / 4}$	$13 / 4{ }^{9}$	1.01	11.5
$\times 25$	7.34	12.0	12	0.387	3/8	3/16	3.05	3	0.501	$1 / 2$	$11 / 8$			1.00	11.5
$\times 20.7$	6.08	12.0	12	0.282	5/16	3/16	2.94	3	0.501	$1 / 2$	$11 / 8$	γ	γ	0.983	11.5
C10×30	8.81	10.0	10	0.673	11/16	$3 / 8$	3.03	3	0.436	7/16	11/16	8	$1^{3 / 4}{ }^{9}$	0.924	9.56
$\times 25$	7.35	10.0	10	0.526	1/2	1/4	2.89	27/8	0.436	7/16	11/16		$13 / 4{ }^{9}$	0.911	9.56
$\times 20$	5.87	10.0	10	0.379	$3 / 8$	3/16	2.74	$2^{3 / 4}$	0.436	7/16	11/16		$11 / 2^{9}$	0.894	9.56
$\times 15.3$	4.48	10.0	10	0.240	$1 / 4$	1/8	2.60	$25 / 8$	0.436	7/16	11/16	γ	$11 / 2^{9}$	0.868	9.56
C9×20	5.87	9.00	9	0.448	7/16	1/4	2.65	25/8	0.413	7/16	1	7	$11 / 2^{9}$	0.850	8.59
$\times 15$	4.40	9.00	9	0.285	5/16	3/16	2.49	$21 / 2$	0.413	7/16	1	1	$13 / 8{ }^{9}$	0.825	8.59
$\times 13.4$	3.94	9.00	9	0.233	1/4	1/8	2.43	$2^{3 / 8}$	0.413	7/16	1	γ	$13 / 8{ }^{9}$	0.814	8.59
C8×18.75	5.51	8.00	8	0.487	$1 / 2$	1/4	2.53	$2^{1 / 2}$	0.390	$3 / 8$	15/16	61/8	$11 / 2^{9}$	0.800	7.61
$\times 13.75$	4.03	8.00	8	0.303	5/16	3/16	2.34	$2^{3 / 8}$	0.390	$3 / 8$	15/16		$13 / 8{ }^{\text {g }}$	0.774	7.61
$\times 11.5$	3.37	8.00	8	0.220	1/4	1/8	2.26	$2^{1 / 4}$	0.390	3/8	15/16	V	$13 / 8{ }^{9}$	0.756	7.61
C7×14.75	4.33	7.00	7	0.419	7/16	$1 / 4$	2.30	$21 / 4$	0.366	$3 / 8$	7/8	$51 / 4$	$11 / 4{ }^{9}$	0.738	6.63
$\times 12.25$	3.59	7.00	7	0.314	5/16	3/16	2.19	21/4	0.366	$3 / 8$	7/8	1		0.722	6.63
$\times 9.8$	2.87	7.00	7	0.210	3/16	1/8	2.09	$2^{1 / 8}$	0.366	$3 / 8$	7/8	V	γ	0.698	6.63
C6x13	3.82	6.00	6	0.437	7/16	1/4	2.16	$2^{1 / 8}$	0.343	5/16	13/16	43/8	$13 / 8^{9}$	0.689	5.66
$\times 10.5$	3.07	6.00	6	0.314	5/16	3/16	2.03	2	0.343	5/16	13/16		$11 / 8^{9}$	0.669	5.66
$\times 8.2$	2.39	6.00	6	0.200	3/16	1/8	1.92	$17 / 8$	0.343	5/16	13/16	γ	$11 / 8^{9}$	0.643	5.66
C5×9	2.64	5.00	5	0.325	5/16	3/16	1.89	17/8	0.320	5/16	$3 / 4$	$31 / 2$	$11 / 8^{9}$	0.616	4.68
$\times 6.7$	1.97	5.00	5	0.190	3/16	1/8	1.75	$13 / 4$	0.320	5/16	$3 / 4$	$31 / 2$	-	0.584	4.68
C4×7.25	2.13	4.00	4	0.321	5/16	3/16	1.72	$13 / 4$	0.296	5/16	$3 / 4$	$21 / 2$	19	0.563	3.70
$\times 6.25$	1.84	4.00	4	0.247	$1 / 4$	1/8	1.65	15/8	0.296	5/16	$3 / 4$		-	0.549	3.70
$\times 5.4$	1.58	4.00	4	0.184	3/16	1/8	1.58	15/8	0.296	5/16	$3 / 4$		-	0.528	3.70
$\times 4.5$	1.34	4.00	4	0.125	$1 / 8$	1/16	1.52	$1^{1 / 2}$	0.296	5/16	$3 / 4$	V	-	0.506	3.70
C3×6	1.76	3.00	3	0.356	$3 / 8$	3/16	1.60	15/8	0.273	$1 / 4$	11/16	15/8	-	0.519	2.73
$\times 5$	1.47	3.00	3	0.258	$1 / 4$	1/8	1.50	$11 / 2$	0.273	$1 / 4$	11/16		-	0.496	2.73
$\times 4.1$	1.20	3.00	3	0.170	3/16	1/8	1.41	$13 / 8$	0.273	$1 / 4$	11/16		-	0.469	2.73
$\times 3.5$	1.09	3.00	3	0.132	1/8	1/16	1.37	$13 / 8$	0.273	$1 / 4$	11/16	γ	-	0.456	2.73

[^8]

Shape	Area, A	Depth, d		Web			Flange				Distance			$r_{\text {ts }}$	h_{0}
				Thickness, t_{w}		$\frac{t_{w}}{2}$	Width, \boldsymbol{b}_{f}		\qquad		k	T	Workable Gage		
	in. ${ }^{2}$	in.		in.		in.	in.		in.		in.	in.	in.	in.	in.
MC18×58	17.1	18.0	18	0.700	11/16	$3 / 8$	4.20	$41 / 4$	0.625	5/8	17/16	151/8	$2^{1 / 2}$	1.35	17.4
$\times 51.9$	15.3	18.0	18	0.600	5/8	5/16	4.10	411/8	0.625	5/8	17/16			1.35	17.4
$\times 45.8$	13.5	18.0	18	0.500	$1 / 2$	$1 / 4$	4.00	4	0.625	5/8	17/16			1.34	17.4
$\times 42.7$	12.6	18.0	18	0.450	7/16	1/4	3.95	4	0.625	5/8	17/16	V	γ	1.34	17.4
MC13×50	14.7	13.0	13	0.787	13/16	7/16	4.41	43/8	0.610	5/8	17/16	101/8	21/2	1.41	12.4
$\times 40$	11.7	13.0	13	0.560	9/16	5/16	4.19	41/8	0.610	5/8	17/16			1.38	12.4
$\times 35$	10.3	13.0	13	0.447	7/16	$1 / 4$	4.07	411/8	0.610	5/8	17/16			1.35	12.4
$\times 31.8$	9.35	13.0	13	0.375	$3 / 8$	3/16	4.00	4	0.610	5/8	17/16	γ	η	1.34	12.4
MC12×50	14.7	12.0	12	0.835	13/16	7/16	4.14	411/8	0.700	11/16	15/16	$93 / 8$	$21 / 2$	1.37	11.3
$\times 45$	13.2	12.0	12	0.710	11/16	$3 / 8$	4.01	4	0.700	11/16	15/16			1.35	11.3
$\times 40$	11.8	12.0	12	0.590	9/16	5/16	3.89	$37 / 8$	0.700	11/16	15/16			1.33	11.3
$\times 35$	10.3	12.0	12	0.465	7/16	$1 / 4$	3.77	33/4	0.700	11/16	15/16		\checkmark	1.30	11.3
$\times 31$	9.12	12.0	12	0.370	$3 / 8$	3/16	3.67	3/8	0.700	11/16	15/16	\checkmark	21/4	1.28	11.3
MC12×14.3 ${ }^{\text {c }}$	4.18	12.0	12	0.250	$1 / 4$	1/8	2.12	21/8	0.313	5/16	$3 / 4$	101/2	$1 \frac{1}{1 / 4}{ }^{9}$	0.672	11.7
MC12×10.6 ${ }^{\text {c }}$	3.10	12.0	12	0.190	$3 / 16$	1/8	1.50	$11 / 2$	0.309	5/16	$3 / 4$	101/2	-	0.478	11.7
MC10×41.1	12.1	10.0	10	0.796	13/16	7/16	4.32	43/8	0.575	9/16	15/16	73/8	$2^{1 / 2}{ }^{\text {g }}$	1.44	9.43
$\times 33.6$	9.87	10.0	10	0.575	9/16	5/16	4.10	41/8	0.575	9/16	15/16			1.40	9.43
$\times 28.5$	8.37	10.0	10	0.425	7/16	$1 / 4$	3.95	4	0.575	9/16	15/16	\downarrow	\downarrow	1.36	9.43
MC10×25	7.34	10.0	10	0.380	$3 / 8$	3/16	3.41	33/8	0.575	9/16	15/16	73/8	2^{9}	1.17	9.43
$\times 22$	6.45	10.0	10	0.290	5/16	3/16	3.32	$33 / 8$	0.575	9/16	15/16	73/8	2^{9}	1.14	9.43
MC10×8.4 ${ }^{\text {c }}$	2.46	10.0	10	0.170	$3 / 16$	1/8	1.50	$11 / 2$	0.280	$1 / 4$	$3 / 4$	81/2	-	0.486	9.72
$\times 6.5^{\text {c }}$	1.95	10.0	10	0.152	1/8	1/16	1.17	$11 / 8$	0.202	3/16	9/16	87/8	-	0.363	9.80
MC9 $\times 25.4$	7.47	9.00	9	0.450	7/16	$1 / 4$	3.50	$3^{1 / 2}$	0.550	9/16	$11 / 4$	$61 / 2$	2^{9}	1.20	8.45
$\times 23.9$	7.02	9.00	9	0.400	$3 / 8$	3/16	3.45	$31 / 2$	0.550	9/16	$11 / 4$	$61 / 2$	2^{9}	1.18	8.45
MC8×22.8	6.70	8.00	8	0.427	7/16	$1 / 4$	3.50	$3^{1 / 2}$	0.525	1/2	13/16	55/8	2^{9}	1.20	7.48
$\times 21.4$	6.28	8.00	8	0.375	$3 / 8$	3/16	3.45	$3^{1 / 2}$	0.525	$1 / 2$	13/16	55/8	2^{9}	1.18	7.48
MC8×20	5.87	8.00	8	0.400	$3 / 8$	3/16	3.03	3	0.500	1/2	$11 / 8$	$53 / 4$	2^{9}	1.03	7.50
$\times 18.7$	5.50	8.00	8	0.353	3/8	3/16	2.98	3	0.500	1/2	$11 / 8$	53/4	2^{9}	1.02	7.50
MC8×8.5	2.50	8.00	8	0.179	3/16	1/8	1.87	$17 / 8$	0.311	5/16	13/16	63/8	$11 / 8^{9}$	0.624	7.69

[^9]

			Table 1-7 Angles Properties									
Shape	k	Wt.	Area, A	Axis X-X						Flexural-Torsional Properties		
				I	S	r	\bar{y}	Z	y_{p}	J	C_{w}	\bar{r}_{o}
	in.	lb/ft	in. ${ }^{2}$	in. ${ }^{4}$	in. ${ }^{3}$	in.	in.	in. ${ }^{3}$	in.	in. ${ }^{4}$	in. ${ }^{6}$	in.
L12×12×13/8	21/16	105	31.1	413	48.6	3.64	3.50	88.1	1.30	19.9	211	6.51
$\times 1 \frac{1}{4}$	15/16	96.4	28.4	381	44.6	3.66	3.45	80.7	1.18	14.9	160	6.54
$\times 11 / 8$	13/16	87.2	25.8	350	40.7	3.68	3.41	73.7	1.08	11.1	120	6.58
$\times 1$	111/16	77.8	23.0	315	36.5	3.70	3.36	65.9	0.958	7.80	84.5	6.61
L10×10×13/8	23/16	87.1	25.6	231	33.0	3.00	3.00	59.9	1.28	16.4	118	5.36
$\times 1 \frac{1}{4}$	21/16	79.9	23.4	213	30.2	3.02	2.95	54.9	1.17	12.3	89.4	5.39
$\times 11 / 8$	15/16	72.3	21.3	196	27.6	3.03	2.90	50.2	1.07	9.21	67.3	5.41
$\times 1$	13/16	64.7	19.0	177	24.8	3.05	2.86	45.0	0.950	6.46	47.6	5.46
$\times^{7} / 8$	111/16	56.9	16.8	158	21.9	3.07	2.80	39.9	0.840	4.39	32.5	5.47
$\times^{3 / 4}$	19/16	49.1	14.5	139	19.2	3.10	2.76	34.6	0.725	2.80	20.9	5.53
L $8 \times 8 \times 1$ 1/8	13/4	56.9	16.8	98.1	17.5	2.41	2.40	31.6	1.05	7.13	32.5	4.29
$\times 1$	15/8	51.0	15.1	89.1	15.8	2.43	2.36	28.5	0.944	5.08	23.4	4.32
$\times 7 / 8$	$11 / 2$	45.0	13.3	79.7	14.0	2.45	2.31	25.3	0.831	3.46	16.1	4.36
$\times 3 / 4$	13/8	38.9	11.5	69.9	12.2	2.46	2.26	22.0	0.719	2.21	10.4	4.39
$\times 5 / 8$	$11 / 4$	32.7	9.69	59.6	10.3	2.48	2.21	18.6	0.606	1.30	6.16	4.42
$\times 9 / 16$	13/16	29.6	8.77	54.2	9.33	2.49	2.19	16.8	0.548	0.961	4.55	4.43
$\times 1 / 2$	11/8	26.4	7.84	48.8	8.36	2.49	2.17	15.1	0.490	0.683	3.23	4.45
L8×6×1	$11 / 2$	44.2	13.1	80.9	15.1	2.49	2.65	27.3	1.45	4.34	16.3	3.88
$\times 7 / 8$	13/8	39.1	11.5	72.4	13.4	2.50	2.60	24.3	1.43	2.96	11.3	3.92
$\times 3 / 4$	$11 / 4$	33.8	9.99	63.5	11.7	2.52	2.55	21.1	1.34	1.90	7.28	3.95
$\times 5 / 8$	11/8	28.5	8.41	54.2	9.86	2.54	2.50	17.9	1.27	1.12	4.33	3.98
$\times 9 / 16$	11/16	25.7	7.61	49.4	8.94	2.55	2.48	16.2	1.24	0.823	3.20	3.99
$\times 1 / 2$	1	23.0	6.80	44.4	8.01	2.55	2.46	14.6	1.20	0.584	2.28	4.01
$\times{ }^{7 / 16}$	15/16	20.2	5.99	39.3	7.06	2.56	2.43	12.9	1.15	0.396	1.55	4.02
L8×4×1	$11 / 2$	37.4	11.1	69.7	14.0	2.51	3.03	24.3	2.45	3.68	12.9	3.75
$\times 7 / 8$	13/8	33.1	9.79	62.6	12.5	2.53	2.99	21.7	2.41	2.51	8.89	3.78
$\times 3 / 4$	$11 / 4$	28.7	8.49	55.0	10.9	2.55	2.94	18.9	2.34	1.61	5.75	3.80
$\times 5 / 8$	$11 / 8$	24.2	7.16	47.0	9.20	2.56	2.89	16.1	2.27	0.955	3.42	3.83
$\times 9 / 16$	11/16	21.9	6.49	42.9	8.34	2.57	2.86	14.6	2.23	0.704	2.53	3.84
$\times^{1 / 2} 2$	1	19.6	5.80	38.6	7.48	2.58	2.84	13.1	2.20	0.501	1.80	3.86
$\times^{7 / 16}$	15/16	17.2	5.11	34.2	6.59	2.59	2.81	11.6	2.16	0.340	1.22	3.87
L7×4× ${ }^{3 / 4}$	$11 / 4$	26.2	7.74	37.8	8.39	2.21	2.50	14.8	1.84	1.47	3.97	3.31
$\times 5 / 8$	11/8	22.1	6.50	32.4	7.12	2.23	2.45	12.5	1.80	0.868	2.37	3.34
$\times 1 / 2$	1	17.9	5.26	26.6	5.79	2.25	2.40	10.2	1.74	0.456	1.25	3.37
$\times 7 / 16$	15/16	15.7	4.63	23.6	5.11	2.26	2.38	9.03	1.71	0.310	0.851	3.38
$\times 3 / 8$	7/8	13.6	4.00	20.5	4.42	2.27	2.35	7.81	1.67	0.198	0.544	3.40
Note: For workable gages, refer to Table 1-7A. For width-to-thickness criteria, refer to Table 1-7B.												

		Table 1-7 (continued) Angles Properties										
Shape	k	Wt.	Area, A	Axis X-X						Flexural-Torsional Properties		
				I	S	r	\bar{y}	Z	y_{p}	J	C_{w}	\bar{r}_{0}
	in.	lb/ft	in. ${ }^{2}$	in. ${ }^{4}$	in. ${ }^{3}$	in.	in.	in. ${ }^{3}$	in.	in. ${ }^{4}$	in. ${ }^{6}$	in.
L6×6×1	$11 / 2$	37.4	11.0	35.4	8.55	1.79	1.86	15.4	0.917	3.68	9.24	3.18
$\times 7 / 8$	$13 / 8$	33.1	9.75	31.9	7.61	1.81	1.81	13.7	0.813	2.51	6.41	3.21
$\times 3 / 4$	$11 / 4$	28.7	8.46	28.1	6.64	1.82	1.77	11.9	0.705	1.61	4.17	3.24
$\times 5 / 8$	$11 / 8$	24.2	7.13	24.1	5.64	1.84	1.72	10.1	0.594	0.955	2.50	3.28
$\times 9 / 16$	11/16	21.9	6.45	22.0	5.12	1.85	1.70	9.18	0.538	0.704	1.85	3.29
$\times^{1} 12$	1	19.6	5.77	19.9	4.59	1.86	1.67	8.22	0.481	0.501	1.32	3.31
$\times^{7 / 16}$	15/16	17.2	5.08	17.6	4.06	1.86	1.65	7.25	0.423	0.340	0.899	3.32
$\times 3 / 8$	7/8	14.9	4.38	15.4	3.51	1.87	1.62	6.27	0.365	0.218	0.575	3.34
$\times 5 / 16$	13/16	12.4	3.67	13.0	2.95	1.88	1.60	5.26	0.306	0.129	0.338	3.35
L6x4×7/8	$13 / 8$	27.2	8.00	27.7	7.13	1.86	2.12	12.7	1.43	2.03	4.04	2.82
$\times^{3} / 4$	$11 / 4$	23.6	6.94	24.5	6.23	1.88	2.07	11.1	1.37	1.31	2.64	2.85
$\times 5 / 8$	$11 / 8$	20.0	5.86	21.0	5.29	1.89	2.03	9.44	1.31	0.775	1.59	2.88
$\times 1 / 16$	11/16	18.1	5.31	19.2	4.81	1.90	2.00	8.59	1.28	0.572	1.18	2.90
$\times 1 / 2$	1	16.2	4.75	17.3	4.31	1.91	1.98	7.71	1.25	0.407	0.843	2.91
$\times 7 / 16$	15/16	14.3	4.18	15.4	3.81	1.92	1.95	6.81	1.22	0.276	0.575	2.93
$\times 3 / 8$	7/8	12.3	3.61	13.4	3.30	1.93	1.93	5.89	1.19	0.177	0.369	2.94
$\times 5 / 16$	13/16	10.3	3.03	11.4	2.77	1.94	1.90	4.96	1.15	0.104	0.217	2.96
L6 $631 / 2 \times 1 / 2$	1	15.3	4.50	16.6	4.23	1.92	2.07	7.49	1.50	0.386	0.779	2.88
$\times 3 / 8$	7/8	11.7	3.44	12.9	3.23	1.93	2.02	5.74	1.41	0.168	0.341	2.90
$\times 5 / 16$	13/16	9.80	2.89	10.9	2.72	1.94	2.00	4.84	1.38	0.0990	0.201	2.92
L5 $\times 5 \times 7 / 8$	$13 / 8$	27.2	8.00	17.8	5.16	1.49	1.56	9.31	0.800	2.07	3.53	2.64
$\times 3 / 4$	$11 / 4$	23.6	6.98	15.7	4.52	1.50	1.52	8.14	0.698	1.33	2.32	2.67
$\times 5 / 8$	$11 / 8$	20.0	5.90	13.6	3.85	1.52	1.47	6.93	0.590	0.792	1.40	2.70
$\times 1 / 2$	1	16.2	4.79	11.3	3.15	1.53	1.42	5.66	0.479	0.417	0.744	2.73
$\times 7 / 16$	15/16	14.3	4.22	10.0	2.78	1.54	1.40	5.00	0.422	0.284	0.508	2.74
$\times 3 / 8$	7/8	12.3	3.65	8.76	2.41	1.55	1.37	4.33	0.365	0.183	0.327	2.76
$\times 5 / 16$	13/16	10.3	3.07	7.44	2.04	1.56	1.35	3.65	0.307	0.108	0.193	2.77
$L 5 \times 31 / 2 \times 3 / 4$	13/16	19.8	5.85	13.9	4.26	1.55	1.74	7.60	1.10	1.09	1.52	2.36
$\times 5 / 8$	11/16	16.8	4.93	12.0	3.63	1.56	1.69	6.50	1.06	0.651	0.918	2.39
$\times 1 / 2$	15/16	13.6	4.00	10.0	2.97	1.58	1.65	5.33	1.00	0.343	0.491	2.42
$\times 3 / 8$	13/16	10.4	3.05	7.75	2.28	1.59	1.60	4.09	0.933	0.150	0.217	2.45
$\times 5 / 16$	$3 / 4$	8.70	2.56	6.58	1.92	1.60	1.57	3.45	0.904	0.0883	0.128	2.47
$\times 1 / 4$	11/16	7.00	2.07	5.36	1.55	1.61	1.55	2.78	0.860	0.0464	0.0670	2.48
Note: For workable gages, refer to Table 1-7A. For width-to-thickness criteria, refer to Table 1-7B.												

Angles Properties												
Shape	k	Wt.	Area, A	Axis X-X						Flexural-Torsional Properties		
				I	S	r	\bar{y}	Z	y_{p}	J	C_{w}	\bar{r}_{0}
	in.	lb/ft	in. ${ }^{2}$	in. ${ }^{4}$	in. ${ }^{3}$	in.	in.	in. ${ }^{3}$	in.	in. ${ }^{4}$	in. ${ }^{6}$	in.
L5 $\times 3 \times 1 / 2$	15/16	12.8	3.75	9.43	2.89	1.58	1.74	5.12	1.25	0.322	0.444	2.38
$\times 7 / 16$	7/8	11.3	3.31	8.41	2.56	1.59	1.72	4.53	1.22	0.220	0.304	2.39
$\times 3 / 8$	13/16	9.80	2.86	7.35	2.22	1.60	1.69	3.93	1.19	0.141	0.196	2.41
$\times 5 / 16$	$3 / 4$	8.20	2.41	6.24	1.87	1.61	1.67	3.32	1.14	0.0832	0.116	2.42
$\times 1 / 4$	11/16	6.60	1.94	5.09	1.51	1.62	1.64	2.68	1.12	0.0438	0.0606	2.43
L4×4×3/4	$11 / 8$	18.5	5.44	7.62	2.79	1.18	1.27	5.02	0.680	1.02	1.12	2.10
$\times 5 / 8$	1	15.7	4.61	6.62	2.38	1.20	1.22	4.28	0.576	0.610	0.680	2.13
$\times 1 / 2$	7/8	12.8	3.75	5.52	1.96	1.21	1.18	3.50	0.469	0.322	0.366	2.16
$\times^{7 / 16}$	13/16	11.3	3.30	4.93	1.73	1.22	1.15	3.10	0.413	0.220	0.252	2.18
$\times 3 / 8$	$3 / 4$	9.80	2.86	4.32	1.50	1.23	1.13	2.69	0.358	0.141	0.162	2.19
$\times 5 / 16$	11/16	8.20	2.40	3.67	1.27	1.24	1.11	2.26	0.300	0.0832	0.0963	2.21
$\times 1 / 4$	$5 / 8$	6.60	1.93	3.00	1.03	1.25	1.08	1.82	0.241	0.0438	0.0505	2.22
$L 4 \times 31 / 2 \times 1 / 2$	7/8	11.9	3.50	5.30	1.92	1.23	1.24	3.46	0.500	0.301	0.302	2.03
$\times 3 / 8$	$3 / 4$	9.10	2.68	4.15	1.48	1.25	1.20	2.66	0.427	0.132	0.134	2.06
$\times 5 / 16$	11/16	7.70	2.25	3.53	1.25	1.25	1.17	2.24	0.400	0.0782	0.0798	2.08
$\times 1 / 4$	5/8	6.20	1.82	2.89	1.01	1.26	1.14	1.81	0.360	0.0412	0.0419	2.09
L4×3x ${ }^{5} / 8$	1	13.6	3.99	6.01	2.28	1.23	1.37	4.08	0.808	0.529	0.472	1.91
$\times 1 / 2$	7/8	11.1	3.25	5.02	1.87	1.24	1.32	3.36	0.750	0.281	0.255	1.94
$\times 3 / 8$	$3 / 4$	8.50	2.49	3.94	1.44	1.26	1.27	2.60	0.680	0.123	0.114	1.97
$\times 5 / 16$	11/16	7.20	2.09	3.36	1.22	1.27	1.25	2.19	0.656	0.0731	0.0676	1.98
$\times 1 / 4$	5/8	5.80	1.69	2.75	0.988	1.27	1.22	1.77	0.620	0.0386	0.0356	1.99
$L 3^{1} / 2 \times 3^{1 / 2} \times 1 / 2$	7/8	11.1	3.25	3.63	1.48	1.05	1.05	2.66	0.464	0.281	0.238	1.87
$\times^{7 / 16}$	13/16	9.80	2.89	3.25	1.32	1.06	1.03	2.36	0.413	0.192	0.164	1.89
$\times 3 / 8$	$3 / 4$	8.50	2.50	2.86	1.15	1.07	1.00	2.06	0.357	0.123	0.106	1.90
$\times 5 / 16$	11/16	7.20	2.10	2.44	0.969	1.08	0.979	1.74	0.300	0.0731	0.0634	1.92
$\times 1 / 4$	5/8	5.80	1.70	2.00	0.787	1.09	0.954	1.41	0.243	0.0386	0.0334	1.93
$L 3^{1} / 2 \times 3 \times 1 / 2$	7/8	10.2	3.02	3.45	1.45	1.07	1.12	2.61	0.480	0.260	0.191	1.75
$\times^{7 / 16}$	13/16	9.10	2.67	3.10	1.29	1.08	1.09	2.32	0.449	0.178	0.132	1.76
$\times 3 / 8$	$3 / 4$	7.90	2.32	2.73	1.12	1.09	1.07	2.03	0.407	0.114	0.0858	1.78
$\times 5 / 16$	11/16	6.60	1.95	2.33	0.951	1.09	1.05	1.72	0.380	0.0680	0.0512	1.79
$\times 1 / 4$	5/8	5.40	1.58	1.92	0.773	1.10	1.02	1.39	0.340	0.0360	0.0270	1.80
$L 3^{1} / 2 \times 2^{1} / 2 \times 1 / 2$	7/8	9.40	2.77	3.24	1.41	1.08	1.20	2.52	0.730	0.234	0.159	1.66
$\times 3 / 8$	$3 / 4$	7.20	2.12	2.56	1.09	1.10	1.15	1.96	0.673	0.103	0.0714	1.69
$\times 5 / 16$	11/16	6.10	1.79	2.20	0.925	1.11	1.13	1.67	0.636	0.0611	0.0426	1.71
$\times 1 / 4$	5/8	4.90	1.45	1.81	0.753	1.12	1.10	1.36	0.600	0.0322	0.0225	1.72
Note: For workable gages, refer to Table 1-7A. For width-to-thickness criteria, refer to Table 1-7B.												

	Table 1-7 (continue Angles Properties								L5-	
Shape	Axis Y-Y						Axis Z-Z			
	I	S	r	\bar{X}	Z	$\boldsymbol{x}_{\boldsymbol{p}}$	I	S	r	Tan $\boldsymbol{\alpha}$
	in. ${ }^{4}$	in. ${ }^{3}$	in.	in.	in. ${ }^{3}$	in.	in. ${ }^{4}$	in. ${ }^{3}$	in.	
L5 $\times 3 \times 1 / 2$	2.55	1.13	0.824	0.746	2.08	0.375	1.55	0.957	0.642	0.357
$\times 7 / 16$	2.29	1.00	0.831	0.722	1.82	0.331	1.37	0.840	0.644	0.361
$\times^{3 / 8}$	2.01	0.874	0.838	0.698	1.57	0.286	1.20	0.727	0.646	0.364
$\times 5 / 16$	1.72	0.739	0.846	0.673	1.31	0.241	1.01	0.608	0.649	0.368
$\times 1 / 4$	1.41	0.600	0.853	0.648	1.05	0.194	0.825	0.491	0.652	0.371
L4× $4 \times 3 / 4$	7.62	2.79	1.18	1.27	5.02	0.680	3.25	1.81	0.774	1.00
$\times 5 / 8$	6.62	2.38	1.20	1.22	4.28	0.576	2.76	1.60	0.774	1.00
$\times 1 / 2$	5.52	1.96	1.21	1.18	3.50	0.469	2.25	1.35	0.776	1.00
$\times{ }^{7 / 16}$	4.93	1.73	1.22	1.15	3.10	0.413	1.99	1.22	0.777	1.00
$\times 3 / 8$	4.32	1.50	1.23	1.13	2.69	0.358	1.73	1.08	0.779	1.00
$\times 5 / 16$	3.67	1.27	1.24	1.11	2.26	0.300	1.46	0.930	0.781	1.00
$\times 1 / 4$	3.00	1.03	1.25	1.08	1.82	0.241	1.19	0.778	0.783	1.00
L4×3 ${ }^{1 / 2} \times 1 / 2$	3.76	1.50	1.04	0.994	2.69	0.438	1.79	1.16	0.716	0.750
$\times^{3 / 8}$	2.96	1.16	1.05	0.947	2.06	0.335	1.39	0.939	0.719	0.755
$\times 5 / 16$	2.52	0.980	1.06	0.923	1.74	0.281	1.16	0.806	0.721	0.757
$\times 1 / 4$	2.07	0.794	1.07	0.897	1.40	0.228	0.953	0.653	0.723	0.759
L4×3×5/8	2.85	1.34	0.845	0.867	2.45	0.499	1.59	1.13	0.631	0.534
$\times 1 / 2$	2.40	1.10	0.858	0.822	1.99	0.406	1.30	0.929	0.633	0.542
$\times^{3 / 8}$	1.89	0.851	0.873	0.775	1.52	0.311	1.00	0.699	0.636	0.551
$\times 5 / 16$	1.62	0.721	0.880	0.750	1.28	0.261	0.849	0.590	0.638	0.554
$\times 1 / 4$	1.33	0.585	0.887	0.725	1.03	0.211	0.692	0.474	0.639	0.558
$L 3^{1 / 2} \times 3^{1 / 2} \mathrm{X}^{1 / 2}$	3.63	1.48	1.05	1.05	2.66	0.464	1.51	1.02	0.679	1.00
$\times^{7 / 16}$	3.25	1.32	1.06	1.03	2.36	0.413	1.33	0.911	0.681	1.00
$\times 3 / 8$	2.86	1.15	1.07	1.00	2.06	0.357	1.17	0.830	0.683	1.00
$\times 5 / 16$	2.44	0.969	1.08	0.979	1.74	0.300	0.984	0.713	0.685	1.00
$\times 1 / 4$	2.00	0.787	1.09	0.954	1.41	0.243	0.802	0.594	0.688	1.00
L3 ${ }^{1} / 2 \times 3 \times 1 / 2$	2.32	1.09	0.877	0.869	1.97	0.431	1.15	0.846	0.618	0.713
$\times{ }^{7 / 16}$	2.09	0.971	0.885	0.846	1.75	0.381	1.02	0.773	0.620	0.717
$\times^{3 / 8}$	1.84	0.847	0.892	0.823	1.52	0.331	0.894	0.693	0.622	0.720
$\times 5 / 16$	1.58	0.718	0.900	0.798	1.28	0.279	0.758	0.602	0.624	0.722
$\times 1 / 4$	1.30	0.585	0.908	0.773	1.04	0.226	0.622	0.486	0.628	0.725
$L 3^{1 / 2} \times 2^{1 / 2} \times^{1 / 1 / 2}$	1.36	0.756	0.701	0.701	1.39	0.396	0.781	0.651	0.532	0.485
$\times 3 / 8$	1.09	0.589	0.716	0.655	1.07	0.303	0.609	0.499	0.535	0.495
$\times 5 / 16$	0.937	0.501	0.723	0.632	0.900	0.256	0.518	0.418	0.538	0.500
$\times 1 / 4$	0.775	0.410	0.731	0.607	0.728	0.207	0.426	0.341	0.541	0.504
Note: For workable gages, refer to Table 1-7A. For width-to-thickness criteria, refer to Table 1-7B.										

	$\begin{aligned} & -X \\ & 2 x_{p} \\ & 2 \end{aligned}$	PNA		ble	1-7 An Prop		tinu	d)				
Shape	k	Wt.	Area, A	Axis X-X						Flexural-Torsional Properties		
				I	S	r	\bar{y}	Z	y_{p}	J	C_{w}	\bar{r}_{o}
	in.	lb/ft	in. ${ }^{2}$	in. ${ }^{4}$	in. ${ }^{3}$	in.	in.	in. ${ }^{3}$	in.	in. ${ }^{4}$	in. ${ }^{6}$	in.
L3×3×1/2	7/8	9.40	2.76	2.20	1.06	0.895	0.929	1.91	0.460	0.230	0.144	1.59
$\times^{7 / 16}$	13/16	8.30	2.43	1.98	0.946	0.903	0.907	1.70	0.405	0.157	0.100	1.60
$\times 3 / 8$	$3 / 4$	7.20	2.11	1.75	0.825	0.910	0.884	1.48	0.352	0.101	0.0652	1.62
$\times 5 / 16$	11/16	6.10	1.78	1.50	0.699	0.918	0.860	1.26	0.297	0.0597	0.0390	1.64
$\times 1 / 4$	5/8	4.90	1.44	1.23	0.569	0.926	0.836	1.02	0.240	0.0313	0.0206	1.65
$\times 3 / 16$	9/16	3.71	1.09	0.948	0.433	0.933	0.812	0.774	0.182	0.0136	0.00899	1.67
$L 3 \times 2^{1 / 2} \times 1 / 2$	7/8	8.50	2.50	2.07	1.03	0.910	0.995	1.86	0.500	0.213	0.112	1.46
$\times^{7 / 16}$	13/16	7.60	2.22	1.87	0.921	0.917	0.972	1.66	0.463	0.146	0.0777	1.48
$\times^{3} / 8$	$3 / 4$	6.60	1.93	1.65	0.803	0.924	0.949	1.45	0.427	0.0943	0.0507	1.49
$\times 5 / 16$	11/16	5.60	1.63	1.41	0.681	0.932	0.925	1.23	0.392	0.0560	0.0304	1.51
$\times 1 / 4$	5/8	4.50	1.32	1.16	0.555	0.940	0.900	1.00	0.360	0.0296	0.0161	1.52
$\times 3 / 16$	9/16	3.39	1.00	0.899	0.423	0.947	0.874	0.761	0.333	0.0130	0.00705	1.54
L $3 \times 2 \times 1 / 2$	13/16	7.70	2.26	1.92	1.00	0.922	1.08	1.78	0.740	0.192	0.0908	1.39
$\times 3 / 8$	11/16	5.90	1.75	1.54	0.779	0.937	1.03	1.39	0.667	0.0855	0.0413	1.42
$\times 5 / 16$	$5 / 8$	5.00	1.48	1.32	0.662	0.945	1.01	1.19	0.632	0.0510	0.0248	1.43
$\times 1 / 4$	9/16	4.10	1.20	1.09	0.541	0.953	0.980	0.969	0.600	0.0270	0.0132	1.45
$\times 3 / 16$	$1 / 2$	3.07	0.917	0.847	0.414	0.961	0.952	0.743	0.555	0.0119	0.00576	1.46
$L 2^{1 / 2} \times 2^{1 / 2} \mathrm{X}^{1 / 2}$	$3 / 4$	7.70	2.26	1.22	0.716	0.735	0.803	1.29	0.452	0.188	0.0791	1.30
$\times 3 / 8$	5/8	5.90	1.73	0.972	0.558	0.749	0.758	1.01	0.346	0.0833	0.0362	1.33
$\times 5 / 16$	9/16	5.00	1.46	0.837	0.474	0.756	0.735	0.853	0.292	0.0495	0.0218	1.35
$\times 1 / 4$	$1 / 2$	4.10	1.19	0.692	0.387	0.764	0.711	0.695	0.238	0.0261	0.0116	1.36
$\times 3 / 16$	7/16	3.07	0.901	0.535	0.295	0.771	0.687	0.529	0.180	0.0114	0.00510	1.38
$\mathrm{L}^{1} / 2 \times 2 \times 3 / 8$	5/8	5.30	1.55	0.914	0.546	0.766	0.826	0.982	0.433	0.0746	0.0268	1.22
$\times 5 / 16$	9/16	4.50	1.32	0.790	0.465	0.774	0.803	0.839	0.388	0.0444	0.0162	1.23
$\times 1 / 4$	$1 / 2$	3.62	1.07	0.656	0.381	0.782	0.779	0.688	0.360	0.0235	0.00868	1.25
$\times 3 / 16$	7/16	2.75	0.818	0.511	0.293	0.790	0.754	0.529	0.319	0.0103	0.00382	1.26
$L 2^{1} / 2 \times 11 / 2 \times 1 / 4$	1/2	3.19	0.947	0.594	0.364	0.792	0.866	0.644	0.606	0.0209	0.00694	1.19
$\times^{3 / 16}$	7/16	2.44	0.724	0.464	0.280	0.801	0.839	0.497	0.569	0.00921	0.00306	1.20
L2x $2 \times 3 / 8$	5/8	4.70	1.37	0.476	0.348	0.591	0.632	0.629	0.343	0.0658	0.0174	1.05
$\times 5 / 16$	9/16	3.92	1.16	0.414	0.298	0.598	0.609	0.537	0.290	0.0393	0.0106	1.06
$\times 1 / 4$	$1 / 2$	3.19	0.944	0.346	0.244	0.605	0.586	0.440	0.236	0.0209	0.00572	1.08
$\times 3 / 16$	7/16	2.44	0.722	0.271	0.188	0.612	0.561	0.338	0.181	0.00921	0.00254	1.09
$\times 1 / 8$	3/8	1.65	0.491	0.189	0.129	0.620	0.534	0.230	0.123	0.00293	0.000789	1.10
Note: For workable gages, refer to Table 1-7A. For width-to-thickness criteria, refer to Table 1-7B.												

	Table 1-7 (contin Angles Properties								L3	
Shape	Axis Y-Y						Axis Z-Z			
	I	S	r	\bar{X}	Z	$\boldsymbol{x}_{\boldsymbol{p}}$	I	S	r	Tan $\boldsymbol{\alpha}$
	in. ${ }^{4}$	in. ${ }^{3}$	in.	in.	in. ${ }^{3}$	in.	in. ${ }^{4}$	in. ${ }^{3}$	in.	
L3 $\times 3 \times 1 / 2$	2.20	1.06	0.895	0.929	1.91	0.460	0.922	0.704	0.580	1.00
$\times 7 / 16$	1.98	0.946	0.903	0.907	1.70	0.405	0.817	0.638	0.580	1.00
$\times^{3 / 8}$	1.75	0.825	0.910	0.884	1.48	0.352	0.716	0.573	0.581	1.00
$\times 5 / 16$	1.50	0.699	0.918	0.860	1.26	0.297	0.606	0.497	0.583	1.00
$\times 1 / 4$	1.23	0.569	0.926	0.836	1.02	0.240	0.490	0.415	0.585	1.00
$\times 3 / 16$	0.948	0.433	0.933	0.812	0.774	0.182	0.373	0.324	0.586	1.00
L3 $\times 2^{1 / 2} \times 1 / 2$	1.29	0.736	0.718	0.746	1.34	0.417	0.665	0.568	0.516	0.666
$\times{ }^{7 / 16}$	1.17	0.656	0.724	0.724	1.19	0.370	0.594	0.521	0.516	0.671
$\times 3 / 8$	1.03	0.573	0.731	0.701	1.03	0.322	0.514	0.463	0.517	0.675
$\times 5 / 16$	0.888	0.487	0.739	0.677	0.873	0.272	0.435	0.403	0.518	0.679
$\times 1 / 4$	0.734	0.397	0.746	0.653	0.707	0.220	0.355	0.329	0.520	0.683
$\times 3 / 16$	0.568	0.303	0.753	0.627	0.536	0.167	0.271	0.246	0.521	0.687
$L 3 \times 2 \times 1 / 2$	0.667	0.470	0.543	0.580	0.887	0.377	0.409	0.411	0.425	0.413
$\times 3 / 8$	0.539	0.368	0.555	0.535	0.679	0.292	0.319	0.313	0.426	0.426
$\times 5 / 16$	0.467	0.314	0.562	0.511	0.572	0.247	0.271	0.263	0.428	0.432
$\times 1 / 4$	0.390	0.258	0.569	0.487	0.463	0.200	0.223	0.214	0.431	0.437
$\times 3 / 16$	0.305	0.198	0.577	0.462	0.351	0.153	0.173	0.163	0.435	0.442
$L 2^{1 / 2} \times 2^{1 / 2} \times 1 / 2$	1.22	0.716	0.735	0.803	1.29	0.452	0.526	0.461	0.481	1.00
$\times 3 / 8$	0.972	0.558	0.749	0.758	1.01	0.346	0.400	0.374	0.481	1.00
$\times 5 / 16$	0.837	0.474	0.756	0.735	0.853	0.292	0.338	0.325	0.481	1.00
$\times 1 / 4$	0.692	0.387	0.764	0.711	0.695	0.238	0.276	0.273	0.482	1.00
$\times 3 / 16$	0.535	0.295	0.771	0.687	0.529	0.180	0.209	0.215	0.482	1.00
$L^{1} 1 / 2 \times 2 \times 3 / 8$	0.513	0.361	0.574	0.578	0.657	0.310	0.273	0.295	0.419	0.612
$\times 5 / 16$	0.446	0.309	0.581	0.555	0.557	0.264	0.233	0.261	0.420	0.618
$\times 1 / 4$	0.372	0.253	0.589	0.532	0.454	0.214	0.192	0.213	0.423	0.624
$\times 3 / 16$	0.292	0.195	0.597	0.508	0.347	0.164	0.148	0.162	0.426	0.628
$L 2^{1 / 2} \times 1^{1 / 2} \times 1 / 4$	0.160	0.142	0.411	0.372	0.261	0.189	0.0977	0.120	0.321	0.354
$\times 3 / 16$	0.126	0.110	0.418	0.347	0.198	0.145	0.0754	0.0906	0.324	0.360
L2x $2 \times 3 / 8$	0.476	0.348	0.591	0.632	0.629	0.343	0.203	0.227	0.386	1.00
$\times 5 / 16$	0.414	0.298	0.598	0.609	0.537	0.290	0.172	0.200	0.386	1.00
$\times 1 / 4$	0.346	0.244	0.605	0.586	0.440	0.236	0.142	0.171	0.387	1.00
$\times 3 / 16$	0.271	0.188	0.612	0.561	0.338	0.181	0.109	0.137	0.389	1.00
$\times 1 / 8$	0.189	0.129	0.620	0.534	0.230	0.123	0.0756	0.100	0.391	1.00
Note: For workable gages, refer to Table 1-7A. For width-to-thickness criteria, refer to Table 1-7B.										

Workable																	
\square^{9}	Leg	12	10	8	7	6	5	4	31/2	3	21/2	2	13/4	11/2	13/8	1/4	1
	g	6	5	$41 / 2$	4	$31 / 2$	3	$2^{1 / 2}$	2	$13 / 4$	$13 / 8$	$11 / 8$	1	7/8	7/8	$3 / 4$	5/8
g_{1}	g_{1}	3	3	3	$21 / 2$	21/4	2	-	-	-	-	-	-	-	-	-	-
i_{2}	g_{2}	21/2	$2^{1 / 2}$	3	3	$2^{1 / 2}$	2	-	-	-	-	-	-	-	-	-	-
g_{3}	g_{3}	21/2	$2^{1 / 2}$	-	-	-	-	-	-	-	-	-	-	-	-	-	-
$\square g_{4}$	g_{4}	$21 / 2$	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Note: Other gages are permitted to suit specific requirements subject to clearances and edge distance limitations.																	

Midth-to-Thickness Criteria for Angles							
$F_{y}=36 \mathrm{ksi}$				$F_{y}=50 \mathrm{ksi}$			
t	Compression	Flexure		t	Compression	Flexure	
	Nonslender up to	Compact up to	Noncompact up to		Nonslender up to	Compact up to	Noncompact up to
	Width of angle leg, in.				Width of angle leg, in.		
13/8	12	12	-	$1^{3 / 8}$	12	12	-
$11 / 4$			-	11/4	\downarrow		-
$11 / 8$	1		-	$1^{1 / 8}$	η		-
1	γ	γ	-	1	10	γ	-
7/8	10	10	-	7/8	8	10	-
$3 / 4$	8	10	-	$3 / 4$	8	8	10
5/8	8	8	-	5/8	6	8	-
9/16	7	8	-	9/16	6	7	8
1/2	6	7	8	1/2	5	6	
7/16	5	6	\downarrow	7/16	4	5	
$3 / 8$	4	5	γ	$3 / 8$	4	4	γ
5/16	4	4	6	5/16	3	4	6
$1 / 4$	3	$31 / 2$	5	1/4	$2^{1 / 2}$	3	5
3/16	2	21/2	3	3/16	2	2	3
$1 / 8$	$11 / 2$	11/2	2	1/8	1	11/2	2

${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$.
${ }^{\mathrm{h}}$ Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.
${ }^{v}$ Shear strength controlled by buckling effects $\left(C_{V 2}<1.0\right)$ with $F_{y}=50$ ksi.

	Table 1-8 (continued) WT-Shapes Dimensions															
Shape	Area, A	Depth, d		Stem				Flange				Distance				
				Thickness, t_{w}		$\frac{t_{w}}{2}$	Area	Width, \boldsymbol{b}_{f}		Thickness, $\boldsymbol{t}_{\boldsymbol{f}}$		k		Work able Gage		
				$\boldsymbol{k}_{\text {des }}$	$\boldsymbol{k}_{\text {det }}$											
	in. ${ }^{2}$	in.				in.		in.	in. ${ }^{2}$	in.		in.		in.	in.	in.
WT18×462.5 ${ }^{\text {h }}$	136	21.6	215/8	3.02	3	11/2	65.2	18.6	185/8	4.53	$41 / 2$	5.28	53/8	$71 / 2$		
$\times 426.5{ }^{\text {h }}$	126	21.6	215/8	2.52	$2^{1 / 2}$	$1^{1 / 4}$	54.4	18.2	181/4	4.53	$41 / 2$	5.28	53/8			
$\times 401^{\text {h }}$	118	21.3	211/4	2.38	$2^{3 / 8}$	$1^{3 / 16}$	50.7	18.0	18	4.29	45/16	5.04	$51 / 8$			
$\times 361.5^{\text {h }}$	107	20.9	207/8	2.17	23/16	$1^{1 / 8}$	45.4	17.8	173/4	3.90	$37 / 8$	4.65	$4^{11 / 16}$			
$\times 326^{\text {h }}$	96.2	20.5	201/2	1.97	2	1	40.4	17.6	175/8	3.54	39/16	4.49	$4^{13 / 16}$			
$\times 264.5{ }^{\text {h }}$	77.8	19.9	197/8	1.61	15/8	13/16	32.0	17.2	171/4	2.91	$2^{15 / 16}$	3.86	43/16			
$\times 243.5{ }^{\text {h }}$	71.7	19.7	195/8	1.50	$11 / 2$	$3 / 4$	29.5	17.1	171/8	2.68	$2^{11 / 16}$	3.63	4			
$\times 220.5^{\text {h }}$	64.9	19.4	193/8	1.36	$13 / 8$	11/16	26.4	17.0	17	2.44	27/16	3.39	33/4			
$\times 197.5^{\text {h }}$	58.1	19.2	191/4	1.22	$11 / 4$	5/8	23.4	16.8	167/8	2.20	23/16	3.15	37/16			
$\times 180.5{ }^{\text {h }}$	53.0	19.0	19	1.12	$11 / 8$	9/16	21.3	16.7	163/4	2.01	2	2.96	35/16			
$\times 165{ }^{\text {c }}$	48.4	18.8	187/8	1.02	1	1/2	19.2	16.6	165/8	1.85	$17 / 8$	2.80	$31 / 8$			
$\times 151^{\text {c }}$	44.5	18.7	185/8	0.945	15/16	$1 / 2$	17.6	16.7	165/8	1.68	$1^{11 / 16}$	2.63	3			
$\times 141^{\text {c }}$	41.5	18.6	181/2	0.885	7/8	7/16	16.4	16.6	165/8	1.57	19/16	2.52	27/8			
$\times 131^{\text {c }}$	38.5	18.4	183/8	0.840	13/16	7/16	15.5	16.6	161/2	1.44	17/16	2.39	23/4			
$\times 123.5{ }^{\text {c }}$	36.3	18.3	183/8	0.800	13/16	7/16	14.7	16.5	161/2	1.35	$13 / 8$	2.30	25/8			
$\times 115.5{ }^{\text {c }}$	34.1	18.2	181/4	0.760	$3 / 4$	$3 / 8$	13.9	16.5	161/2	1.26	$11 / 4$	2.21	29/16	V		
WT18×128 ${ }^{\text {c }}$	37.6	18.7	183/4	0.960	15/16	$1 / 2$	18.0	12.2	121/4	1.73	$13 / 4$	2.48	25/16	$51 / 2$		
$\times 116^{\text {c }}$	34.0	18.6	181/2	0.870	7/8	7/16	16.1	12.1	$12^{1 / 8}$	1.57	19/16	2.32	$2^{13 / 16}$			
$\times 105^{\text {c }}$	30.9	18.3	183/8	0.830	13/16	7/16	15.2	12.2	121/8	1.36	$13 / 8$	2.11	25/8			
$\times 97{ }^{\text {c }}$	28.5	18.2	181/4	0.765	$3 / 4$	$3 / 8$	14.0	12.1	121/8	1.26	$11 / 4$	2.01	$2^{1 / 2}$			
$\times 91{ }^{\text {c }}$	26.8	18.2	181/8	0.725	$3 / 4$	$3 / 8$	13.2	12.1	121/8	1.18	13/16	1.93	23/8			
$\times 85{ }^{\text {c }}$	25.0	18.1	181/8	0.680	11/16	$3 / 8$	12.3	12.0	12	1.10	$11 / 8$	1.85	$2^{3 / 8}$			
$\times 80^{\text {c }}$	23.5	18.0	18	0.650	5/8	5/16	11.7	12.0	12	1.02	1	1.77	$2^{1 / 4}$			
$\times 75^{\text {c }}$	22.1	17.9	$17^{7} / 8$	0.625	5/8	5/16	11.2	12.0	12	0.940	15/16	1.69	23/16			
$\times 67.5{ }^{\text {c,v }}$	19.9	17.8	173/4	0.600	5/8	5/16	10.7	12.0	12	0.790	13/16	1.54	$21 / 16$	V		
WT16.5×193.5 ${ }^{\text {h }}$	57.0	18.0	18	1.26	$11 / 4$	5/8	22.6	16.2	161/4	2.28	$2^{1 / 4}$	3.07	39/16	$51 / 2$		
$\times 17{ }^{\text {h }}$	52.1	17.8	173/4	1.16	13/16	5/8	20.6	16.1	161/8	2.09	21/16	2.88	$33 / 8$			
$\times 159$	46.8	17.6	175/8	1.04	11/16	9/16	18.3	16.0	16	1.89	$17 / 8$	2.68	$33 / 16$			
$\times 145.5{ }^{\text {c }}$	42.8	17.4	173/8	0.960	15/16	$1 / 2$	16.7	15.9	157/8	1.73	$13 / 4$	2.52	$2^{15} / 16$			
$\times 131.5{ }^{\text {c }}$	38.7	17.3	171/4	0.870	7/8	7/16	15.0	15.8	153/4	1.57	19/16	2.36	$2^{13 / 16}$			
$\times 120.5{ }^{\text {c }}$	35.6	17.1	171/8	0.830	13/16	7/16	14.2	15.9	157/8	1.40	$13 / 8$	2.19	$2^{11 / 16}$			
$\times 110.5{ }^{\text {c }}$	32.6	17.0	17	0.775	$3 / 4$	$3 / 8$	13.1	15.8	153/4	1.28	$11 / 4$	2.06	$2^{1 / 2}$			
$\times 100.5{ }^{\text {c }}$	29.7	16.8	$167 / 8$	0.715	11/16	$3 / 8$	12.0	15.7	153/4	1.15	$11 / 8$	1.94	27/16	γ		

${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$.
${ }^{\mathrm{h}}$ Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.
${ }^{v}$ Shear strength controlled by buckling effects $\left(C_{V 2}<1.0\right)$ with $F_{y}=50$ ksi.

	Table 1-8 (continued) WT-Shapes Dimensions															
Shape	Area, A	Depth, d		Stem				Flange				Distance				
				Thickness, t_{w}		$\frac{t_{w}}{2}$	Area	Width, \boldsymbol{b}_{f}		Thickness, $\boldsymbol{t}_{\boldsymbol{f}}$		k		Work able Gage		
				$\boldsymbol{k}_{\text {des }}$	$\boldsymbol{k}_{\text {det }}$											
	in. ${ }^{2}$	in.				in.		in.	in. ${ }^{2}$	in.		in.		in.	in.	in.
WT16.5×84.5 ${ }^{\text {c }}$	24.7	16.9	167/8	0.670	11/16	$3 / 8$	11.3	11.5	111/2	1.22	$11 / 4$	1.92	27/16	$51 / 2$		
$\times 76{ }^{\text {c }}$	22.5	16.7	163/4	0.635	5/8	5/16	10.6	11.6	115/8	1.06	11/16	1.76	2/16			
$\times 70.5{ }^{\text {c }}$	20.7	16.7	165/8	0.605	$5 / 8$	5/16	10.1	11.5	111⁄2	0.960	15/16	1.66	23/16			
$\times 65{ }^{\text {c }}$	19.1	16.5	161/2	0.580	9/16	5/16	9.60	11.5	11112	0.855	7/8	1.56	21/8			
$\times 59^{\text {c,v }}$	17.4	16.4	163/8	0.550	9/16	5/16	9.04	11.5	11112	0.740	$3 / 4$	1.44	2	γ		
WT15 $\times 195.5^{\text {h }}$	57.6	16.6	165/8	1.36	$13 / 8$	11/16	22.6	15.6	155/8	2.44	$2^{7 / 16}$	3.23	$33 / 4$	$51 / 2$		
$\times 178.5^{\text {h }}$	52.5	16.4	163/8	1.24	$11 / 4$	5/8	20.3	15.5	151/2	2.24	$2^{1 / 4}$	3.03	$31 / 2$			
$\times 163^{\text {h }}$	48.0	16.2	161/4	1.14	$11 / 8$	9/16	18.5	15.4	153/8	2.05	21/16	2.84	35/16			
$\times 146$	43.0	16.0	16	1.02	1	1/2	16.3	15.3	151/4	1.85	$17 / 8$	2.64	31/8			
$\times 130.5$	38.5	15.8	153/4	0.930	15/16	1/2	14.7	15.2	151/8	1.65	15/8	2.44	$2^{15} / 16$			
$\times 117.5^{\text {c }}$	34.7	15.7	155/8	0.830	13/16	7/16	13.0	15.1	15	1.50	$11 / 2$	2.29	23/4			
$\times 105.5^{\text {c }}$	31.1	15.5	151/2	0.775	$3 / 4$	$3 / 8$	12.0	15.1	151/8	1.32	15/16	2.10	29/16			
$\times 95.5^{\text {c }}$	28.0	15.3	153/8	0.710	11/16	3/8	10.9	15.0	15	1.19	13/16	1.97	$21 / 2$			
$\times 86.5^{\text {c }}$	25.4	15.2	151/4	0.655	5/8	5/16	10.0	15.0	15	1.07	11/16	1.85	$25 / 16$	γ		
WT15 $\times 74^{\text {c }}$	21.8	15.3	153/8	0.650	5/8	5/16	10.0	10.5	101/2	1.18	13/16	1.83	$2^{1 / 2}$	$51 / 2$		
$\times 66{ }^{\text {c }}$	19.5	15.2	151/8	0.615	$5 / 8$	5/16	9.32	10.5	101/2	1.00	1	1.65	$2^{1 / 4}$			
$\times 62^{\text {c }}$	18.2	15.1	151/8	0.585	9/16	5/16	8.82	10.5	101/2	0.930	15/16	1.58	$2^{1 / 4}$			
$\times 58{ }^{\text {c }}$	17.1	15.0	15	0.565	9/16	5/16	8.48	10.5	101/2	0.850	7/8	1.50	$2^{1 / 8}$			
$\times 5{ }^{\text {c }}$	15.9	14.9	147\%	0.545	9/16	5/16	8.13	10.5	101/2	0.760	$3 / 4$	1.41	2			
$\times 49.5{ }^{\text {c }}$	14.5	14.8	$14^{7} / 8$	0.520	$1 / 2$	$1 / 4$	7.71	10.5	101/2	0.670	11/16	1.32	2			
$\times 45^{\text {c,v }}$	13.2	14.8	143/4	0.470	$1 / 2$	$1 / 4$	6.94	10.4	103/8	0.610	5/8	1.26	17/8	V		
WT13.5×269.5 ${ }^{\text {h }}$	79.3	16.3	161/4	1.97	2	1	32.0	15.3	151/4	3.54	39/16	4.33	47/16	$51 / 2^{9}$		
$\times 184^{\text {h }}$	54.2	15.2	151/4	1.38	$13 / 8$	11/16	21.0	14.7	145/8	2.48	$2^{1 / 2}$	3.27	$3^{11 / 16}$	$51 / 2$		
$\times 168^{\text {h }}$	49.5	15.0	15	1.26	$11 / 4$	5/8	18.9	14.6	141/2	2.28	$2^{1 / 4}$	3.07	$31 / 2$			
$\times 153.5^{\text {h }}$	45.2	14.8	143/4	1.16	$13 / 16$	5/8	17.2	14.4	141/2	2.09	21/16	2.88	$35 / 16$			
$\times 140.5$	41.5	14.6	145/8	1.06	11/16	9/16	15.5	14.4	143/8	1.93	15/16	2.72	$31 / 8$			
$\times 129$	38.1	14.5	141/2	0.980	1	$1 / 2$	14.2	14.3	141/4	1.77	$13 / 4$	2.56	3			
$\times 117.5$	34.7	14.3	143/8	0.910	15/16	$1 / 2$	13.0	14.2	141/4	1.61	15/8	2.40	$2^{7 / 8}$			
$\times 108.5$	32.0	14.2	141/4	0.830	13/16	7/16	11.8	14.1	$141 / 8$	1.50	$1 \frac{1}{2}$	2.29	$2^{11 / 16}$			
$\times 97{ }^{\text {c }}$	28.6	14.1	14	0.750	$3 / 4$	$3 / 8$	10.5	14.0	14	1.34	15/16	2.13	29/16			
$\times 89{ }^{\text {c }}$	26.3	13.9	137/8	0.725	$3 / 4$	$3 / 8$	10.1	14.1	$14^{1} / 8$	1.19	13/16	1.98	23/8			
$\times 80.5^{\text {c }}$	23.8	13.8	133/4	0.660	11/16	$3 / 8$	9.10	14.0	14	1.08	$11 / 16$	1.87	$25 / 16$			
$\times 73^{\text {c }}$	21.6	13.7	133/4	0.605	5/8	5/16	8.28	14.0	14	0.975	1	1.76	23/16	γ		

${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$.
${ }^{9}$ The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility.
${ }^{\mathrm{h}}$ Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.
${ }^{v}$ Shear strength controlled by buckling effects ($C_{v 2}<1.0$) with $F_{y}=50 \mathrm{ksi}$.

							$\begin{gathered} 1-8 \\ \text { Prop } \end{gathered}$	(con hap ertie		$e d)$				VT13.5
Nom- inal Wt.	Compact Section Criteria		Axis X-X						Axis Y-Y				Torsional Properties	
			J	C_{w}										
	$\boldsymbol{b}_{\boldsymbol{f}}$	d			1	S	r	\bar{y}	Z	y_{p}	I	S	r	Z
lb/ft	$\overline{2 t_{f}}$	t_{w}	in. ${ }^{4}$	in. ${ }^{3}$	in.	in.	in. ${ }^{3}$	in.	in. ${ }^{4}$	in. ${ }^{3}$	in.	in. ${ }^{3}$	in. ${ }^{4}$	in. ${ }^{6}$
84.5	4.71	25.2	649	51.1	5.12	4.21	90.8	1.08	155	27.0	2.50	42.1	8.81	55.4
76	5.48	26.3	592	47.4	5.14	4.26	84.5	0.967	136	23.6	2.47	36.9	6.16	43.0
70.5	6.01	27.6	552	44.7	5.15	4.29	79.8	0.901	123	21.3	2.43	33.4	4.84	35.4
65	6.73	28.4	513	42.1	5.18	4.36	75.6	0.832	109	18.9	2.38	29.7	3.67	29.3
59	7.76	29.8	469	39.2	5.20	4.47	70.8	0.862	93.5	16.3	2.32	25.6	2.64	23.4
195.5	3.19	12.2	1220	96.9	4.61	4.00	177	1.85	774	99.2	3.67	155	86.3	636
178.5	3.45	13.2	1090	87.2	4.56	3.87	159	1.70	693	89.6	3.64	140	66.6	478
163	3.75	14.2	981	78.8	4.52	3.76	143	1.56	622	81.0	3.60	126	51.2	361
146	4.12	15.7	861	69.6	4.48	3.62	125	1.41	549	71.9	3.58	111	37.5	257
130.5	4.59	17.0	765	62.4	4.46	3.54	112	1.27	480	63.3	3.53	97.9	26.9	184
117.5	5.02	18.9	674	55.1	4.41	3.41	98.2	1.15	427	56.8	3.51	87.5	20.1	133
105.5	5.74	20.0	610	50.5	4.43	3.39	89.5	1.03	378	50.1	3.49	77.2	14.1	96.4
95.5	6.35	21.5	549	45.7	4.42	3.34	80.8	0.935	336	44.7	3.46	68.9	10.5	71.2
86.5	7.04	23.2	497	41.7	4.42	3.31	73.5	0.851	299	39.9	3.42	61.4	7.78	53.0
74	4.44	23.5	466	40.6	4.63	3.84	72.2	1.04	114	21.7	2.28	33.9	7.24	37.6
66	5.27	24.7	421	37.4	4.66	3.90	66.8	0.921	98.0	18.6	2.25	29.2	4.85	28.5
62	5.65	25.8	396	35.3	4.66	3.90	63.1	0.867	90.4	17.2	2.23	27.0	3.98	23.9
58	6.17	26.5	373	33.7	4.67	3.94	60.4	0.815	82.1	15.6	2.19	24.6	3.21	20.5
54	6.89	27.3	349	32.0	4.69	4.01	57.7	0.757	73.0	13.9	2.15	21.9	2.49	17.3
49.5	7.80	28.5	322	30.0	4.71	4.09	54.4	0.912	63.9	12.2	2.10	19.3	1.88	14.3
45	8.52	31.5	290	27.1	4.69	4.04	49.0	0.835	57.3	11.0	2.09	17.3	1.41	10.5
269.5	2.15	8.30	1530	128	4.39	4.34	242	2.60	1060	138	3.65	218	247	1740
184	2.96	11.0	939	81.7	4.16	3.71	151	1.85	655	89.3	3.48	140	84.5	532
168	3.19	11.9	839	73.4	4.12	3.58	135	1.70	587	80.8	3.45	126	65.4	401
153.5	3.46	12.8	753	66.4	4.08	3.47	121	1.56	527	72.9	3.41	113	50.5	304
140.5	3.72	13.8	677	59.9	4.04	3.35	109	1.44	477	66.4	3.39	103	39.6	232
129	4.03	14.8	613	54.7	4.02	3.27	98.9	1.33	430	60.2	3.36	93.3	30.7	178
117.5	4.41	15.7	556	50.0	4.00	3.20	89.9	1.22	384	54.2	3.33	83.8	23.4	135
108.5	4.71	17.1	502	45.2	3.96	3.10	81.1	1.13	352	49.9	3.32	77.0	18.8	105
97	5.24	18.8	444	40.3	3.94	3.02	71.8	1.02	309	44.1	3.29	67.8	13.5	74.3
89	5.92	19.2	414	38.2	3.97	3.04	67.7	0.932	278	39.4	3.25	60.8	10.0	57.7
80.5	6.49	20.9	372	34.4	3.95	2.98	60.8	0.849	248	35.4	3.23	54.5	7.53	42.7
73	7.16	22.6	336	31.2	3.95	2.94	55.0	0.772	222	31.7	3.20	48.8	5.62	31.7

Table 1-8 (continued) WT-Shapes Dimensions																
Shape	Area, A	Depth, d		Stem				Flange				Distance				
				Thickness, t_{w}		$\frac{t_{w}}{2}$	Area	Width, \boldsymbol{b}_{f}		Thickness, $\boldsymbol{t}_{\boldsymbol{f}}$		k		Work- able Gage		
				$\boldsymbol{k}_{\text {des }}$	$k_{\text {det }}$											
	in. ${ }^{2}$	in.				in.		in.	in. ${ }^{2}$	in.		in.		in.	in.	in.
WT13.5×64.5 ${ }^{\text {c }}$	18.9	13.8	137/8	0.610	5/8	5/16	8.43	10.0	10	1.10	11/8	1.70	25/16	$51 / 2$		
$\times 57^{\text {c }}$	16.8	13.6	135/8	0.570	9/16	5/16	7.78	10.1	101/8	0.930	15/16	1.53	$2^{1} / 8$			
$\times 51^{\text {c }}$	15.0	13.5	131/2	0.515	$1 / 2$	$1 / 4$	6.98	10.0	10	0.830	13/16	1.43	21/16			
$\times 47^{\text {c }}$	13.8	13.5	131/2	0.490	$1 / 2$	$1 / 4$	6.60	10.0	10	0.745	$3 / 4$	1.34	15/16			
$\times 42^{\text {c }}$	12.4	13.4	133/8	0.460	7/16	$1 / 4$	6.14	10.0	10	0.640	$5 / 8$	1.24	$17 / 8$	η		
WT12×185 ${ }^{\text {h }}$	54.5	14.0	14	1.52	$11 / 2$	$3 / 4$	21.3	13.7	135/8	2.72	23/4	3.22	4	$51 / 2$		
$\times 167.5^{\text {h }}$	49.1	13.8	133/4	1.38	$13 / 8$	11/16	19.0	13.5	131/2	2.48	$2^{1 / 2}$	2.98	$33 / 4$			
$\times 153{ }^{\text {h }}$	44.9	13.6	135/8	1.26	$11 / 4$	5/8	17.1	13.4	133/8	2.28	$2^{1 / 4}$	2.78	$39 / 16$			
$\times 139.5{ }^{\text {h }}$	41.0	13.4	133/8	1.16	13/16	5/8	15.5	13.3	131/4	2.09	21/16	2.59	$33 / 8$			
$\times 125$	36.8	13.2	131/8	1.04	11/16	9/16	13.7	13.2	131/8	1.89	$17 / 8$	2.39	$3^{1 / 8}$			
$\times 114.5$	33.6	13.0	13	0.960	15/16	$1 / 2$	12.5	13.1	131/8	1.73	$1^{3 / 4}$	2.23	3			
$\times 103.5$	30.3	12.9	127/8	0.870	7/8	7/16	11.2	13.0	13	1.57	19/16	2.07	$2^{7 / 8}$			
$\times 96$	28.2	12.7	123/4	0.810	13/16	7/16	10.3	13.0	13	1.46	17/16	1.96	$2^{3 / 4}$			
$\times 88$	25.8	12.6	125/8	0.750	$3 / 4$	$3 / 8$	9.47	12.9	127/8	1.34	15/16	1.84	25/8			
$\times 81$	23.9	12.5	121/2	0.705	11/16	$3 / 8$	8.81	13.0	13	1.22	$11 / 4$	1.72	$2^{1 / 2}$			
$\times 73^{\text {c }}$	21.5	12.4	123/8	0.650	5/8	5/16	8.04	12.9	127/8	1.09	11/16	1.59	$23 / 8$			
$\times 65.5^{\text {c }}$	19.3	12.2	$12^{1 / 4}$	0.605	$5 / 8$	5/16	7.41	12.9	127/8	0.960	15/16	1.46	$2^{1 / 4}$			
$\times 58.5^{\text {c }}$	17.2	12.1	121/8	0.550	9/16	5/16	6.67	12.8	123/4	0.850	7/8	1.35	21/8			
$\times 52^{\text {c }}$	15.3	12.0	12	0.500	$1 / 2$	$1 / 4$	6.02	12.8	123/4	0.750	$3 / 4$	1.25	21/16	\dagger		
WT12×51.5 ${ }^{\text {c }}$	15.1	12.3	$12^{1 / 4}$	0.550	9/16	5/16	6.75	9.00	9	0.980	1	1.48	$2^{1 / 4}$	$5^{1 / 2}$		
$\times 47^{\text {c }}$	13.8	12.2	121/8	0.515	$1 / 2$	$1 / 4$	6.26	9.07	91/8	0.875	7/8	1.38	$2^{1 / 8}$	1		
$\times 42^{\text {c }}$	12.4	12.1	12	0.470	$1 / 2$	$1 / 4$	5.66	9.02	9	0.770	$3 / 4$	1.27	$21 / 16$	1		
$\times 38{ }^{\text {c }}$	11.2	12.0	12	0.440	7/16	$1 / 4$	5.26	8.99	9	0.680	11/16	1.18	$15 / 16$	$51 / 2^{9}$		
$\times 34^{\text {c }}$	10.0	11.9	117/8	0.415	7/16	$1 / 4$	4.92	8.97	9	0.585	9/16	1.09	$17 / 8$	$51 / 2^{9}$		
WT $12 \times 31^{\text {c }}$	9.11	11.9	117/8	0.430	7/16	$1 / 4$	5.10	7.04	7	0.590	9/16	1.09	$11 / 2$	$3^{1 / 2}$		
$\times 27.5^{\text {c,v }}$	8.10	11.8	113/4	0.395	$3 / 8$	$3 / 16$	4.66	7.01	7	0.505	$1 / 2$	1.01	$17 / 16$	$31 / 2$		

[^10]

	Table 1-8 (continued) WT-Shapes Dimensions															
Shape	Area, A	Depth, d		Stem				Flange				Distance				
				Thickness, t_{w}		$\frac{t_{w}}{2}$	Area	Width, b_{f}		Thickness, $\boldsymbol{t}_{\boldsymbol{f}}$		k		Work able Gage		
				$\boldsymbol{k}_{\text {des }}$	$\boldsymbol{k}_{\text {det }}$											
	in. ${ }^{2}$	in.				in.		in.	in. ${ }^{2}$	in.		in.		in.	in.	in.
WT9×155.5 ${ }^{\text {h }}$	45.8	11.2	111/8	1.52	$11 / 2$	$3 / 4$	17.0	12.0	12	2.74	23/4	3.24	39/16	$51 / 2$		
$\times 141.5{ }^{\text {h }}$	41.7	10.9	107/8	1.40	$13 / 8$	11/16	15.3	11.9	117/8	2.50	$21 / 2$	3.00	$33 / 8$			
$\times 129^{\text {h }}$	38.0	10.7	103/4	1.28	$1 \frac{1}{4}$	5/8	13.7	11.8	113/4	2.30	25/16	2.70	$33 / 16$			
$\times 117^{\text {h }}$	34.3	10.5	101/2	1.16	$13 / 16$	5/8	12.2	11.7	115/8	2.11	21/8	2.51	3			
$\times 105.5$	31.2	10.3	103/8	1.06	11/16	9/16	11.0	11.6	11112	1.91	15/16	2.31	$2^{13 / 16}$			
$\times 96$	28.1	10.2	101/8	0.960	15/16	1/2	9.77	11.5	111/2	1.75	$13 / 4$	2.15	25/8			
$\times 87.5$	25.7	10.0	10	0.890	7/8	7/16	8.92	11.4	113/8	1.59	19/16	1.99	27/16			
$\times 79$	23.2	9.86	97/8	0.810	13/16	7/16	7.99	11.3	111/4	1.44	17/16	1.84	23/8			
$\times 71.5$	21.0	9.75	93/4	0.730	$3 / 4$	$3 / 8$	7.11	11.2	111/4	1.32	15/16	1.72	23/16			
$\times 65$	19.2	9.63	95/8	0.670	11/16	$3 / 8$	6.45	11.2	111/8	1.20	$13 / 16$	1.60	21/16			
$\times 59.5$	17.6	9.49	91/2	0.655	$5 / 8$	5/16	6.21	11.3	111/4	1.06	11/16	1.46	15/16			
$\times 53$	15.6	9.37	93/8	0.590	9/16	5/16	5.53	11.2	111/4	0.940	15/16	1.34	$13 / 16$			
$\times 48.5$	14.2	9.30	91/4	0.535	9/16	$5 / 16$	4.97	11.1	111/8	0.870	7/8	1.27	13/4			
$\times 43^{\text {c }}$	12.7	9.20	91/4	0.480	$1 / 2$	$1 / 4$	4.41	11.1	1111/8	0.770	$3 / 4$	1.17	15/8			
$\times 38^{\text {c }}$	11.1	9.11	91/8	0.425	7/16	1/4	3.87	11.0	11	0.680	11/16	1.08	19/16	V		
WT9 $\times 35.5{ }^{\text {c }}$	10.4	9.24	$91 / 4$	0.495	$1 / 2$	$1 / 4$	4.57	7.64	7\%	0.810	13/16	1.21	$11 / 2$	$3^{1 / 2} 2^{9}$		
$\times 32.5{ }^{\text {c }}$	9.55	9.18	91/8	0.450	7/16	$1 / 4$	4.13	7.59	75/8	0.750	$3 / 4$	1.15	17/16			
$\times 30^{\text {c }}$	8.82	9.12	91/8	0.415	7/16	$1 / 4$	3.78	7.56	$71 / 2$	0.695	11/16	1.10	$13 / 8$			
$\times 27.5^{\text {c }}$	8.10	9.06	9	0.390	$3 / 8$	3/16	3.53	7.53	$71 / 2$	0.630	5/8	1.03	15/16			
$\times 25{ }^{\text {c }}$	7.34	9.00	9	0.355	$3 / 8$	3/16	3.19	7.50	$71 / 2$	0.570	9/16	0.972	$11 / 4$	γ		
WT9 $\times 23^{\text {c }}$	6.77	9.03	9	0.360	$3 / 8$	$3 / 16$	3.25	6.06	6	0.605	5/8	1.01	$11 / 4$	$3^{1 / 2} 2^{9}$		
$\times 20^{\text {c }}$	5.88	8.95	9	0.315	5/16	$3 / 16$	2.82	6.02	6	0.525	1/2	0.927	13/16	\downarrow		
$\times 17.5^{\mathrm{c}, \mathrm{v}}$	5.15	8.85	87/8	0.300	5/16	3/16	2.66	6.00	6	0.425	7/16	0.827	$11 / 8$	\downarrow		
WT8×50	14.7	8.49	81/2	0.585	9/16	5/16	4.96	10.4	103/8	0.985	1	1.39	17/8	$51 / 2$		
$\times 44.5$	13.1	8.38	83/8	0.525	$1 / 2$	$1 / 4$	4.40	10.4	103/8	0.875	7/8	1.28	$1^{3 / 4}$			
$\times 38.5{ }^{\text {c }}$	11.3	8.26	81/4	0.455	7/16	$1 / 4$	3.76	10.3	101/4	0.760	$3 / 4$	1.16	15/8			
$\times 33.5{ }^{\text {c }}$	9.81	8.17	81/8	0.395	$3 / 8$	$3 / 16$	3.23	10.2	101/4	0.665	11/16	1.07	$19 / 16$	\dagger		
WT8×28.5 ${ }^{\text {c }}$	8.39	8.22	81/4	0.430	7/16	$1 / 4$	3.53	7.12	$71 / 8$	0.715	11/16	1.12	$13 / 8$	$3^{1 / 2} 2^{9}$		
$\times 25^{\text {c }}$	7.37	8.13	81/8	0.380	$3 / 8$	3/16	3.09	7.07	$71 / 8$	0.630	5/8	1.03	15/16	\downarrow		
$\times 22.5{ }^{\text {c }}$	6.63	8.07	81/8	0.345	$3 / 8$	3/16	2.78	7.04	7	0.565	9/16	0.967	$11 / 4$	\downarrow		
$\times 20{ }^{\text {c }}$	5.89	8.01	8	0.305	5/16	3/16	2.44	7.00	7	0.505	1/2	0.907	$13 / 16$	$31 / 2$		
$\times 18^{\text {c }}$	5.29	7.93	77/8	0.295	5/16	$3 / 16$	2.34	6.99	7	0.430	7/16	0.832	$11 / 8$	$31 / 2$		

[^11]| Nom-
 inal Wt. | Properties | | | | | | | | | | | | WT9-WT8 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Compact Section Criteria | | Axis X-X | | | | | | Axis Y-Y | | | | Torsional Properties | |
| | | | | | | | | |
| | b_{f} | d | | | | | | | I | S | r | $\overline{\boldsymbol{y}}$ | Z | y_{p} | I | S | r | Z | | |
| lb/ft | $2 t_{f}$ | t_{w} | in. ${ }^{4}$ | in. ${ }^{3}$ | in. | in. | in. ${ }^{3}$ | in. | in. ${ }^{4}$ | in. ${ }^{3}$ | in. | in. ${ }^{3}$ | in. ${ }^{4}$ | in. ${ }^{6}$ |
| 155.5 | 2.19 | 7.37 | 383 | 46.6 | 2.89 | 2.93 | 90.6 | 1.91 | 398 | 66.2 | 2.95 | 104 | 87.2 | 339 |
| 141.5 | 2.38 | 7.79 | 337 | 41.5 | 2.85 | 2.80 | 80.2 | 1.75 | 352 | 59.2 | 2.91 | 92.5 | 66.5 | 251 |
| 129 | 2.56 | 8.36 | 298 | 37.0 | 2.80 | 2.68 | 71.0 | 1.61 | 314 | 53.4 | 2.88 | 83.1 | 51.1 | 189 |
| 117 | 2.76 | 9.05 | 261 | 32.7 | 2.75 | 2.55 | 62.4 | 1.48 | 279 | 47.9 | 2.85 | 74.4 | 39.1 | 140 |
| 105.5 | 3.02 | 9.72 | 229 | 29.1 | 2.72 | 2.44 | 55.0 | 1.34 | 246 | 42.7 | 2.82 | 66.1 | 29.1 | 102 |
| 96 | 3.27 | 10.6 | 202 | 25.8 | 2.68 | 2.34 | 48.5 | 1.23 | 220 | 38.4 | 2.79 | 59.4 | 22.3 | 75.7 |
| 87.5 | 3.58 | 11.2 | 181 | 23.4 | 2.66 | 2.26 | 43.6 | 1.13 | 196 | 34.4 | 2.76 | 53.1 | 16.8 | 56.5 |
| 79 | 3.92 | 12.2 | 160 | 20.8 | 2.63 | 2.17 | 38.5 | 1.02 | 174 | 30.7 | 2.74 | 47.4 | 12.5 | 41.2 |
| 71.5 | 4.25 | 13.4 | 142 | 18.5 | 2.60 | 2.09 | 34.0 | 0.937 | 156 | 27.7 | 2.72 | 42.7 | 9.58 | 30.7 |
| 65 | 4.65 | 14.4 | 127 | 16.7 | 2.58 | 2.02 | 30.5 | 0.856 | 139 | 24.9 | 2.70 | 38.3 | 7.23 | 22.8 |
| 59.5 | 5.31 | 14.5 | 119 | 15.9 | 2.60 | 2.03 | 28.7 | 0.778 | 126 | 22.5 | 2.69 | 34.5 | 5.30 | 17.4 |
| 53 | 5.96 | 15.9 | 104 | 14.1 | 2.59 | 1.97 | 25.2 | 0.695 | 110 | 19.7 | 2.66 | 30.2 | 3.73 | 12.1 |
| 48.5 | 6.41 | 17.4 | 93.8 | 12.7 | 2.56 | 1.91 | 22.6 | 0.640 | 100 | 18.0 | 2.65 | 27.6 | 2.92 | 9.29 |
| 43 | 7.20 | 19.2 | 82.4 | 11.2 | 2.55 | 1.86 | 19.9 | 0.570 | 87.6 | 15.8 | 2.63 | 24.2 | 2.04 | 6.42 |
| 38 | 8.11 | 21.4 | 71.8 | 9.83 | 2.54 | 1.80 | 17.3 | 0.505 | 76.2 | 13.8 | 2.61 | 21.1 | 1.41 | 4.37 |
| 35.5 | 4.71 | 18.7 | 78.2 | 11.2 | 2.74 | 2.26 | 20.0 | 0.683 | 30.1 | 7.89 | 1.70 | 12.3 | 1.74 | 3.96 |
| 32.5 | 5.06 | 20.4 | 70.7 | 10.1 | 2.72 | 2.20 | 18.0 | 0.629 | 27.4 | 7.22 | 1.69 | 11.2 | 1.36 | 3.01 |
| 30 | 5.44 | 22.0 | 64.7 | 9.29 | 2.71 | 2.16 | 16.5 | 0.583 | 25.0 | 6.63 | 1.68 | 10.3 | 1.08 | 2.35 |
| 27.5 | 5.98 | 23.2 | 59.5 | 8.63 | 2.71 | 2.16 | 15.3 | 0.538 | 22.5 | 5.97 | 1.67 | 9.26 | 0.830 | 1.84 |
| 25 | 6.57 | 25.4 | 53.5 | 7.79 | 2.70 | 2.12 | 13.8 | 0.489 | 20.0 | 5.35 | 1.65 | 8.28 | 0.619 | 1.36 |
| 23 | 5.01 | 25.1 | 52.1 | 7.77 | 2.77 | 2.33 | 13.9 | 0.558 | 11.3 | 3.71 | 1.29 | 5.84 | 0.609 | 1.20 |
| 20 | 5.73 | 28.4 | 44.8 | 6.73 | 2.76 | 2.29 | 12.0 | 0.489 | 9.55 | 3.17 | 1.27 | 4.97 | 0.404 | 0.788 |
| 17.5 | 7.06 | 29.5 | 40.1 | 6.21 | 2.79 | 2.39 | 11.2 | 0.450 | 7.67 | 2.56 | 1.22 | 4.02 | 0.252 | 0.598 |
| 50 | 5.29 | 14.5 | 76.8 | 11.4 | 2.28 | 1.76 | 20.7 | 0.706 | 93.1 | 17.9 | 2.51 | 27.4 | 3.85 | 10.4 |
| 44.5 | 5.92 | 16.0 | 67.2 | 10.1 | 2.27 | 1.70 | 18.1 | 0.631 | 81.3 | 15.7 | 2.49 | 24.0 | 2.72 | 7.19 |
| 38.5 | 6.77 | 18.2 | 56.9 | 8.59 | 2.24 | 1.63 | 15.3 | 0.549 | 69.2 | 13.4 | 2.47 | 20.5 | 1.78 | 4.61 |
| 33.5 | 7.70 | 20.7 | 48.6 | 7.36 | 2.22 | 1.56 | 13.0 | 0.481 | 59.5 | 11.6 | 2.46 | 17.7 | 1.19 | 3.01 |
| 28.5 | 4.98 | 19.1 | 48.7 | 7.77 | 2.41 | 1.94 | 13.8 | 0.589 | 21.6 | 6.06 | 1.60 | 9.42 | 1.10 | 1.99 |
| 25 | 5.61 | 21.4 | 42.3 | 6.78 | 2.40 | 1.89 | 12.0 | 0.521 | 18.6 | 5.26 | 1.59 | 8.15 | 0.760 | 1.34 |
| 22.5 | 6.23 | 23.4 | 37.8 | 6.10 | 2.39 | 1.86 | 10.8 | 0.471 | 16.4 | 4.67 | 1.57 | 7.22 | 0.555 | 0.974 |
| 20 | 6.93 | 26.3 | 33.1 | 5.35 | 2.37 | 1.81 | 9.43 | 0.421 | 14.4 | 4.12 | 1.56 | 6.36 | 0.396 | 0.673 |
| 18 | 8.12 | 26.9 | 30.6 | 5.05 | 2.41 | 1.88 | 8.93 | 0.378 | 12.2 | 3.50 | 1.52 | 5.42 | 0.272 | 0.516 |
| | | | | | | | | | | | | | | |

Nominal Wt.	Properties												WT7-WT6							
	Compact Section Criteria		Axis X-X						Axis Y-Y				Torsional Properties							
	\boldsymbol{b}_{f}	d							1	S	r	$\overline{\boldsymbol{y}}$	Z	y_{p}	I	S	r	Z	J	
lb/ft	$2 t_{f}$	t_{w}	in. ${ }^{4}$	in. ${ }^{3}$	in.	in.	in. ${ }^{3}$	in.	in. ${ }^{4}$	in. ${ }^{3}$	in.	in. ${ }^{3}$	in. ${ }^{4}$	in. ${ }^{6}$						
26.5	6.11	18.8	27.6	4.94	1.88	1.38	8.87	0.484	28.8	7.15	1.92	11.0	0.967	1.46						
24	6.75	20.3	24.9	4.49	1.88	1.35	8.00	0.440	25.7	6.40	1.91	9.80	0.723	1.07						
21.5	7.54	22.4	21.9	3.98	1.86	1.31	7.05	0.395	22.6	5.65	1.89	8.64	0.522	0.751						
19	6.57	22.7	23.3	4.22	2.04	1.54	7.45	0.412	13.3	3.94	1.55	6.07	0.398	0.554						
17	7.41	24.5	20.9	3.83	2.04	1.53	6.74	0.371	11.6	3.45	1.53	5.32	0.284	0.400						
15	8.74	25.6	19.0	3.55	2.07	1.58	6.25	0.329	9.79	2.91	1.49	4.49	0.190	0.287						
13	5.98	27.3	17.3	3.31	2.12	1.72	5.89	0.383	4.45	1.77	1.08	2.76	0.179	0.207						
11	7.46	29.9	14.8	2.91	2.14	1.76	5.20	0.325	3.50	1.40	1.04	2.19	0.104	0.134						
168	2.26	4.72	190	31.2	1.96	2.31	68.4	1.84	593	88.6	3.47	137	120	481						
152.5	2.45	5.01	162	27.0	1.90	2.16	59.1	1.69	525	79.3	3.42	122	92.0	356						
139.5	2.66	5.18	141	24.1	1.86	2.05	51.9	1.56	469	71.3	3.38	110	70.9	267						
126	2.89	5.51	121	20.9	1.81	1.92	44.8	1.42	414	63.6	3.34	97.9	53.5	195						
115	3.11	5.84	106	18.5	1.77	1.82	39.4	1.31	371	57.5	3.31	88.4	41.6	148						
105	3.37	6.24	92.1	16.4	1.73	1.72	34.5	1.21	332	51.9	3.28	79.7	32.1	112						
95	3.65	6.78	79.0	14.2	1.68	1.62	29.8	1.10	295	46.5	3.25	71.2	24.3	82.1						
85	4.03	7.31	67.8	12.3	1.65	1.52	25.6	0.994	259	41.2	3.22	62.9	17.7	58.3						
76	4.46	7.89	58.5	10.8	1.62	1.43	22.0	0.896	227	36.4	3.19	55.6	12.8	41.3						
68	4.96	8.49	50.6	9.46	1.59	1.35	19.0	0.805	199	32.1	3.16	48.9	9.21	28.9						
60	5.57	9.24	43.4	8.22	1.57	1.28	16.2	0.716	172	28.0	3.13	42.7	6.42	19.7						
53	6.17	10.6	36.3	6.92	1.53	1.19	13.6	0.637	151	24.7	3.11	37.5	4.55	13.6						
48	6.76	11.6	32.0	6.12	1.51	1.13	11.9	0.580	135	22.2	3.09	33.7	3.42	10.1						
43.5	7.48	12.2	28.9	5.60	1.50	1.10	10.7	0.527	120	19.9	3.07	30.2	2.54	7.34						
39.5	8.22	13.2	25.8	5.03	1.49	1.06	9.49	0.480	108	17.9	3.05	27.1	1.91	5.43						
36	8.99	14.3	23.2	4.54	1.48	1.02	8.48	0.439	97.5	16.2	3.04	24.6	1.46	4.07						
32.5	9.92	15.5	20.6	4.06	1.47	0.985	7.50	0.398	87.2	14.5	3.02	22.0	1.09	2.97						
29	7.82	16.9	19.1	3.76	1.50	1.03	6.97	0.426	53.5	10.7	2.51	16.2	1.05	2.08						
26.5	8.69	17.5	17.7	3.54	1.51	1.02	6.46	0.389	47.9	9.58	2.48	14.5	0.788	1.53						
25	6.31	16.5	18.7	3.79	1.60	1.17	6.88	0.452	28.2	6.97	1.96	10.6	0.855	1.23						
22.5	7.00	18.0	16.6	3.39	1.59	1.13	6.10	0.408	25.0	6.21	1.95	9.47	0.627	0.885						
20	7.77	20.2	14.4	2.95	1.57	1.09	5.28	0.365	22.0	5.50	1.94	8.38	0.452	0.620						

Nominal Wt.	Properties												WT6-WT4	
	Compact Section Criteria		Axis X-X						Axis Y-Y				Torsional Properties	
			J	C_{w}										
	$\frac{b_{f}}{2 t_{f}}$	$\frac{d}{t_{w}}$			I	S	r	$\overline{\boldsymbol{y}}$	Z	y_{p}	I	S	r	Z
lb/ft			in. ${ }^{4}$	in. ${ }^{3}$	in.	in.	in. ${ }^{3}$	in.	in. ${ }^{4}$	in. ${ }^{3}$	in.	in. ${ }^{3}$	in. ${ }^{4}$	in. ${ }^{6}$
17.5	6.31	20.8	16.0	3.23	1.76	1.30	5.71	0.394	12.2	3.73	1.54	5.73	0.369	0.437
15	7.41	23.7	13.5	2.75	1.75	1.27	4.83	0.337	10.2	3.12	1.52	4.78	0.228	0.267
13	8.54	26.6	11.7	2.40	1.75	1.25	4.20	0.295	8.66	2.67	1.51	4.08	0.150	0.174
11	4.74	23.7	11.7	2.59	1.90	1.63	4.63	0.402	2.33	1.15	0.847	1.83	0.146	0.137
9.5	5.72	25.9	10.1	2.28	1.90	1.65	4.11	0.348	1.88	0.939	0.821	1.49	0.0899	0.0934
8	7.53	27.3	8.70	2.04	1.92	1.74	3.72	0.639	1.41	0.706	0.773	1.13	0.0511	0.0678
7	8.82	29.8	7.67	1.83	1.92	1.76	3.32	0.760	1.18	0.593	0.753	0.947	0.0350	0.0493
56	4.17	7.52	28.6	6.40	1.32	1.21	13.4	0.791	118	22.6	2.67	34.6	7.50	16.9
50	4.62	8.16	24.5	5.56	1.29	1.13	11.4	0.711	103	20.0	2.65	30.5	5.41	11.9
44	5.18	8.96	20.8	4.77	1.27	1.06	9.65	0.631	89.3	17.4	2.63	26.5	3.75	8.02
38.5	5.86	10.0	17.4	4.05	1.24	0.990	8.06	0.555	76.8	15.1	2.60	22.9	2.55	5.31
34	6.58	11.1	14.9	3.49	1.22	0.932	6.85	0.493	66.7	13.2	2.58	20.0	1.78	3.62
30	7.41	12.2	12.9	3.04	1.21	0.884	5.87	0.438	58.1	11.5	2.57	17.5	1.23	2.46
27	8.15	13.6	11.1	2.64	1.19	0.836	5.05	0.395	51.7	10.3	2.56	15.6	0.909	1.78
24.5	8.93	14.7	10.0	2.39	1.18	0.807	4.52	0.361	46.7	9.34	2.54	14.1	0.693	1.33
22.5	6.47	14.4	10.2	2.47	1.24	0.907	4.65	0.413	26.7	6.65	2.01	10.1	0.753	0.981
19.5	7.53	15.7	8.84	2.16	1.24	0.876	3.99	0.359	22.5	5.64	1.98	8.57	0.487	0.616
16.5	9.15	16.8	7.71	1.93	1.26	0.869	3.48	0.305	18.3	4.60	1.94	7.00	0.291	0.356
15	5.70	17.5	9.28	2.24	1.45	1.10	4.01	0.380	8.35	2.87	1.37	4.41	0.310	0.273
13	6.56	19.9	7.86	1.91	1.44	1.06	3.39	0.330	7.05	2.44	1.36	3.75	0.201	0.173
11	7.99	21.2	6.88	1.72	1.46	1.07	3.02	0.282	5.71	1.99	1.33	3.05	0.119	0.107
9.5	5.09	20.5	6.68	1.74	1.54	1.28	3.10	0.349	2.15	1.07	0.874	1.67	0.116	0.0796
8.5	6.08	21.1	6.06	1.62	1.56	1.32	2.90	0.311	1.78	0.887	0.844	1.40	0.0776	0.0610
7.5	7.41	21.7	5.45	1.50	1.57	1.37	2.71	0.305	1.45	0.723	0.810	1.15	0.0518	0.0475
6	9.43	26.0	4.35	1.22	1.57	1.36	2.20	0.322	1.09	0.551	0.785	0.869	0.0272	0.0255
33.5	4.43	7.89	10.9	3.05	1.05	0.936	6.29	0.594	44.3	10.7	2.12	16.3	2.51	3.56
29	5.07	8.59	9.12	2.61	1.03	0.874	5.25	0.520	37.5	9.13	2.10	13.9	1.66	2.28
24	5.92	10.6	6.85	1.97	0.986	0.777	3.94	0.435	30.5	7.51	2.08	11.4	0.977	1.30
20	7.21	11.5	5.73	1.69	0.988	0.735	3.25	0.364	24.5	6.08	2.04	9.24	0.558	0.715
17.5	8.10	13.1	4.82	1.43	0.968	0.688	2.71	0.321	21.3	5.31	2.03	8.05	0.384	0.480
15.5	9.19	14.0	4.28	1.28	0.969	0.668	2.39	0.285	18.5	4.64	2.02	7.03	0.267	0.327

${ }^{\mathrm{c}}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$.
${ }^{\mathrm{f}}$ Shape exceeds compact limit for flexure with $F_{y}=50 \mathrm{ksi}$.
${ }^{9}$ The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility.

Table 1-8 (continued) WT-Shapes
 Properties

WT4-WT2

Table 1-9 (continued) MT-Shapes
 Properties

	Table 1-10 T-Shapes Dimensions												
Shape	Area, A	Depth, d		Stem				Flange				Distance	
				Thickness, t_{w}		$\frac{t_{w}}{2}$	Area	Width, b_{f}		Thickness, $\boldsymbol{t}_{\boldsymbol{f}}$		k	Workable Gage
	in. ${ }^{2}$	in.		in.		in.	in. ${ }^{2}$	in.		in.		in.	in.
ST12×60.5	17.8	12.3	121/4	0.800	13/16	7/16	9.80	8.05	8	1.09	11/16	2	4
$\times 53$	15.6	12.3	121/4	0.620	5/8	5/16	7.60	7.87	7 7 /8	1.09	11/16	2	4
ST12×50	14.7	12.0	12	0.745	$3 / 4$	$3 / 8$	8.94	7.25	71/4	0.870	7/8	$13 / 4$	4
$\times 45$	13.2	12.0	12	0.625	5/8	5/16	7.50	7.13	$71 / 8$	0.870	7/8	$13 / 4$	4
$\times 40^{\text {c }}$	11.7	12.0	12	0.500	1/2	1/4	6.00	7.00	7	0.870	7/8	$13 / 4$	4
ST10×48	14.1	10.2	101/8	0.800	13/16	7/16	8.12	7.20	$71 / 4$	0.920	15/16	$1^{3 / 4}$	4
$\times 43$	12.7	10.2	101/8	0.660	11/16	$3 / 8$	6.70	7.06	7	0.920	15/16	$13 / 4$	4
ST10×37.5	11.0	10.0	10	0.635	5/8	5/16	6.35	6.39	63/8	0.795	13/16	15/8	$3^{1 / 2}{ }^{9}$
$\times 33$	9.70	10.0	10	0.505	1/2	1/4	5.05	6.26	$61 / 4$	0.795	13/16	15/8	$3^{1 / 2} 2^{9}$
ST9 $\times 35$	10.3	9.00	9	0.711	11/16	$3 / 8$	6.40	6.25	61/4	0.691	11/16	$1^{1 / 2}$	$3^{1 / 2} 2^{9}$
$\times 27.35$	8.02	9.00	9	0.461	7/16	1/4	4.15	6.00	6	0.691	11/16	$1^{1 / 2}$	$3^{1 / 2} 2^{9}$
ST7.5×25	7.34	7.50	$71 / 2$	0.550	9/16	5/16	4.13	5.64	$55 / 8$	0.622	5/8	$1^{3 / 8}$	$3^{1 / 2} 2^{9}$
$\times 21.45$	6.30	7.50	$71 / 2$	0.411	7/16	1/4	3.08	5.50	51/2	0.622	5/8	$13 / 8$	$3^{1 / 2} 2^{9}$
ST6×25	7.33	6.00	6	0.687	11/16	$3 / 8$	4.12	5.48	$51 / 2$	0.659	11/16	17/16	3^{9}
$\times 20.4$	5.96	6.00	6	0.462	7/16	1/4	2.77	5.25	$51 / 4$	0.659	11/16	17/16	3^{9}
ST6×17.5	5.12	6.00	6	0.428	7/16	1/4	2.57	5.08	$51 / 8$	0.544	9/16	13/16	3^{9}
$\times 15.9$	4.65	6.00	6	0.350	$3 / 8$	3/16	2.10	5.00	5	0.544	9/16	13/16	3^{9}
ST5×17.5	5.14	5.00	5	0.594	5/8	5/16	2.97	4.94	5	0.491	1/2	$1^{1 / 8}$	$2^{3 / 4}{ }^{9}$
$\times 12.7$	3.72	5.00	5	0.311	5/16	3/16	1.56	4.66	45/8	0.491	1/2	$11 / 8$	$2^{3 / 4}{ }^{9}$
ST4×11.5	3.38	4.00	4	0.441	7/16	1/4	1.76	4.17	$41 / 8$	0.425	7/16	1	$2^{1 / 4}{ }^{9}$
$\times 9.2$	2.70	4.00	4	0.271	$1 / 4$	1/8	1.08	4.00	4	0.425	7/16	1	$2^{1 / 4}{ }^{9}$
ST3×8.6	2.53	3.00	3	0.465	7/16	1/4	1.40	3.57	$35 / 8$	0.359	$3 / 8$	13/16	-
$\times 6.25$	1.83	3.00	3	0.232	1/4	1/8	0.696	3.33	$33 / 8$	0.359	$3 / 8$	13/16	-
ST2.5×5	1.46	2.50	21/2	0.214	3/16	1/8	0.535	3.00	3	0.326	5/16	$3 / 4$	-
ST 2×4.75	1.40	2.00	2	0.326	5/16	3/16	0.652	2.80	$2^{3 / 4}$	0.293	5/16	$3 / 4$	-
$\times 3.85$	1.13	2.00	2	0.193	3/16	$1 / 8$	0.386	2.66	25/8	0.293	5/16	$3 / 4$	-
ST1.5×3.75	1.10	1.50	$11 / 2$	0.349	$3 / 8$	3/16	0.524	2.51	$2^{1 / 2}$	0.260	1/4	5/8	-
$\times 2.85$	0.830	1.50	$11 / 2$	0.170	3/16	$1 / 8$	0.255	2.33	23/8	0.260	1/4	5/8	-

[^12]| | | | | | Tabl | | | | inue | | | | | APES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nom inal Wt. | $\begin{gathered} \hline \text { Compact } \\ \text { Section } \\ \text { Criteria } \\ \hline \end{gathered}$ | | Axis X-X | | | | | | Axis Y-Y | | | | Torsional Properties | |
| | $\boldsymbol{b}_{\boldsymbol{f}}$ | d | I | S | r | $\overline{\boldsymbol{y}}$ | Z | y_{p} | I | S | r | Z | J | C_{w} |
| lb/ft | $2 t_{f}$ | t_{w} | in. ${ }^{4}$ | in. ${ }^{3}$ | in. | in. | in. ${ }^{3}$ | in. | in. ${ }^{4}$ | in. ${ }^{3}$ | in. | in. ${ }^{3}$ | in. ${ }^{4}$ | in. ${ }^{6}$ |
| 60.5 | 3.69 | 15.4 | 259 | 30.1 | 3.82 | 3.63 | 54.5 | 1.26 | 41.5 | 10.3 | 1.53 | 18.1 | 6.38 | 27.5 |
| 53 | 3.61 | 19.8 | 216 | 24.1 | 3.72 | 3.28 | 43.3 | 1.02 | 38.4 | 9.76 | 1.57 | 16.7 | 5.05 | 15.0 |
| 50 | 4.17 | 16.1 | 215 | 26.3 | 3.83 | 3.84 | 47.5 | 2.16 | 23.7 | 6.55 | 1.27 | 12.0 | 3.76 | 19.5 |
| 45 | 4.10 | 19.2 | 190 | 22.6 | 3.79 | 3.60 | 41.1 | 1.42 | 22.3 | 6.27 | 1.30 | 11.2 | 3.01 | 12.1 |
| 40 | 4.02 | 24.0 | 162 | 18.6 | 3.72 | 3.30 | 33.6 | 0.909 | 21.0 | 6.00 | 1.34 | 10.4 | 2.44 | 6.94 |
| 48 | 3.91 | 12.7 | 143 | 20.3 | 3.18 | 3.13 | 36.9 | 1.35 | 25.0 | 6.93 | 1.33 | 12.5 | 4.16 | 15.0 |
| 43 | 3.84 | 15.4 | 124 | 17.2 | 3.13 | 2.91 | 31.1 | 0.972 | 23.3 | 6.59 | 1.36 | 11.6 | 3.30 | 9.17 |
| 37.5 | 4.02 | 15.7 | 109 | 15.8 | 3.15 | 3.07 | 28.6 | 1.34 | 14.8 | 4.62 | 1.16 | 8.36 | 2.28 | 7.21 |
| 33 | 3.94 | 19.8 | 92.9 | 12.9 | 3.10 | 2.81 | 23.4 | 0.841 | 13.7 | 4.39 | 1.19 | 7.70 | 1.78 | 4.02 |
| 35 | 4.52 | 12.7 | 84.5 | 14.0 | 2.87 | 2.94 | 25.1 | 1.78 | 12.0 | 3.84 | 1.08 | 7.17 | 2.02 | 7.03 |
| 27.35 | 4.34 | 19.5 | 62.3 | 9.60 | 2.79 | 2.51 | 17.3 | 0.737 | 10.4 | 3.45 | 1.14 | 6.06 | 1.16 | 2.26 |
| 25 | 4.53 | 13.6 | 40.5 | 7.72 | 2.35 | 2.25 | 14.0 | 0.826 | 7.79 | 2.76 | 1.03 | 4.99 | 1.05 | 2.02 |
| 21.45 | 4.42 | 18.2 | 32.9 | 5.99 | 2.29 | 2.01 | 10.8 | 0.605 | 7.13 | 2.59 | 1.06 | 4.54 | 0.765 | 0.995 |
| 25 | 4.17 | 8.73 | 25.1 | 6.04 | 1.85 | 1.84 | 11.0 | 0.758 | 7.79 | 2.84 | 1.03 | 5.16 | 1.36 | 1.97 |
| 20.4 | 3.98 | 13.0 | 18.9 | 4.27 | 1.78 | 1.58 | 7.71 | 0.577 | 6.74 | 2.57 | 1.06 | 4.43 | 0.842 | 0.787 |
| 17.5 | 4.67 | 14.0 | 17.2 | 3.95 | 1.83 | 1.65 | 7.12 | 0.543 | 4.92 | 1.94 | 0.980 | 3.40 | 0.524 | 0.556 |
| 15.9 | 4.60 | 17.1 | 14.8 | 3.30 | 1.78 | 1.51 | 5.94 | 0.480 | 4.66 | 1.87 | 1.00 | 3.22 | 0.438 | 0.364 |
| 17.5 | 5.03 | 8.42 | 12.5 | 3.62 | 1.56 | 1.56 | 6.58 | 0.673 | 4.15 | 1.68 | 0.899 | 3.10 | 0.633 | 0.725 |
| 12.7 | 4.75 | 16.1 | 7.79 | 2.05 | 1.45 | 1.20 | 3.70 | 0.403 | 3.36 | 1.44 | 0.950 | 2.49 | 0.300 | 0.173 |
| 11.5 | 4.91 | 9.07 | 5.00 | 1.76 | 1.22 | 1.15 | 3.19 | 0.439 | 2.13 | 1.02 | 0.795 | 1.84 | 0.271 | 0.168 |
| 9.2 | 4.71 | 14.8 | 3.49 | 1.14 | 1.14 | 0.942 | 2.07 | 0.336 | 1.84 | 0.922 | 0.827 | 1.59 | 0.167 | 0.0642 |
| 8.6 | 4.97 | 6.45 | 2.12 | 1.02 | 0.915 | 0.915 | 1.85 | 0.394 | 1.14 | 0.642 | 0.673 | 1.17 | 0.181 | 0.0772 |
| 6.25 | 4.64 | 12.9 | 1.26 | 0.547 | 0.831 | 0.692 | 1.01 | 0.271 | 0.901 | 0.541 | 0.702 | 0.930 | 0.0830 | 0.0197 |
| 5 | 4.60 | 11.7 | 0.671 | 0.348 | 0.677 | 0.570 | 0.650 | 0.239 | 0.597 | 0.398 | 0.638 | 0.686 | 0.0568 | 0.0100 |
| 4.75 | 4.78 | 6.13 | 0.462 | 0.319 | 0.575 | 0.553 | 0.592 | 0.250 | 0.444 | 0.317 | 0.564 | 0.565 | 0.0590 | 0.00995 |
| 3.85 | 4.54 | 10.4 | 0.307 | 0.198 | 0.522 | 0.448 | 0.381 | 0.204 | 0.374 | 0.281 | 0.576 | 0.485 | 0.0364 | 0.00457 |
| 3.75 | 4.83 | 4.30 | 0.200 | 0.187 | 0.426 | 0.432 | 0.351 | 0.219 | 0.289 | 0.230 | 0.513 | 0.411 | 0.0432 | 0.00496 |
| 2.85 | 4.48 | 8.82 | 0.114 | 0.0970 | 0.370 | 0.329 | 0.196 | 0.171 | 0.223 | 0.192 | 0.518 | 0.328 | 0.0216 | 0.00189 |
| | | | | | | | | | | | | | | |

	Table 1-11 tangular HSS ions and Properties								
Shape	Design Wall Thickness, t	Nominal Wt.	Area, A	b/t	h / t	Axis X-X			
						I	S	r	Z
	in.	lb/ft	in. ${ }^{2}$			in. ${ }^{4}$	in. ${ }^{3}$	in.	in. ${ }^{3}$
HSS24x $12 \times 3 / 4$	0.698	171.16	47.1	14.2	31.4	3440	287	8.55	359
$\times 5 / 8$	0.581	144.39	39.6	17.7	38.4	2940	245	8.62	304
$\times 1 / 2$	0.465	116.91	32.1	22.8	48.6	2420	202	8.68	248
HSS20x $12 x^{3} / 4$	0.698	150.75	41.5	14.2	25.6	2190	219	7.26	270
$\times 5 / 8$	0.581	127.37	35.0	17.7	31.4	1880	188	7.33	230
$\times 1 / 2$	0.465	103.30	28.3	22.8	40.0	1550	155	7.39	188
$\times 3 / 8$	0.349	78.52	21.5	31.4	54.3	1200	120	7.45	144
$\times 5 / 16$	0.291	65.87	18.1	38.2	65.7	1010	101	7.48	122
HSS20×8×5/8	0.581	110.36	30.3	10.8	31.4	1440	144	6.89	185
$\times 1 / 2$	0.465	89.68	24.6	14.2	40.0	1190	119	6.96	152
$\times 3 / 8$	0.349	68.31	18.7	19.9	54.3	926	92.6	7.03	117
$\times 5 / 16$	0.291	57.36	15.7	24.5	65.7	786	78.6	7.07	98.6
HSS20×4× ${ }^{1 / 2}$	0.465	76.07	20.9	5.60	40.0	838	83.8	6.33	115
$\times 3 / 8$	0.349	58.10	16.0	8.46	54.3	657	65.7	6.42	89.3
$\times 5 / 16$	0.291	48.86	13.4	10.7	65.7	560	56.0	6.46	75.6
$\times 1 / 4$	0.233	39.43	10.8	14.2	82.8	458	45.8	6.50	61.5
HSS $18 \times 6 \times 5 / 8$	0.581	93.34	25.7	7.33	28.0	923	103	6.00	135
$\times 1 / 2$	0.465	76.07	20.9	9.90	35.7	770	85.6	6.07	112
$\times 3 / 8$	0.349	58.10	16.0	14.2	48.6	602	66.9	6.15	86.4
$\times 5 / 16$	0.291	48.86	13.4	17.6	58.9	513	57.0	6.18	73.1
$\times 1 / 4$	0.233	39.43	10.8	22.8	74.3	419	46.5	6.22	59.4
HSS16x $12 x^{3 / 4}$	0.698	130.33	35.9	14.2	19.9	1270	159	5.95	193
$\times 5 / 8$	0.581	110.36	30.3	17.7	24.5	1090	136	6.00	165
$\times 1 / 2$	0.465	89.68	24.6	22.8	31.4	904	113	6.06	135
$\times 3 / 8$	0.349	68.31	18.7	31.4	42.8	702	87.7	6.12	104
$\times 5 / 16$	0.291	57.36	15.7	38.2	52.0	595	74.4	6.15	87.7
HSS16×8×5/8	0.581	93.34	25.7	10.8	24.5	815	102	5.64	129
$\times 1 / 2$	0.465	76.07	20.9	14.2	31.4	679	84.9	5.70	106
$\times 3 / 8$	0.349	58.10	16.0	19.9	42.8	531	66.3	5.77	82.1
$\times 5 / 16$	0.291	48.86	13.4	24.5	52.0	451	56.4	5.80	69.4
$\times 1 / 4$	0.233	39.43	10.8	31.3	65.7	368	46.1	5.83	56.4
Note: For width-to-thickness criteria, refer to Table 1-12A.									

			e 1 ta sion			ed) SS erti		HSS	HSS16
Shape	Axis Y-Y				Workable Flat		Torsion		Surface Area
	I	S	r	Z	Depth	Width	J	C	
	in. ${ }^{4}$	in. ${ }^{3}$	in.	in. ${ }^{3}$	in.	in.	in. ${ }^{4}$	in. ${ }^{3}$	$\mathrm{ft}^{2} / \mathrm{ft}$
HSS24×12×3/4	1170	195	4.98	221	205/8	85/8	2850	366	5.80
$\times^{5} / 8$	1000	167	5.03	188	213/16	93/16	2430	310	5.83
$\times 1 / 2$	829	138	5.08	154	213/4	93/4	1980	252	5.87
HSS20×12×3/4	988	165	4.88	190	165/8	85/8	2220	303	5.13
$\times 5 / 8$	851	142	4.93	162	173/16	93/16	1890	257	5.17
$\times^{1 / 2}$	705	117	4.99	132	173/4	$93 / 4$	1540	209	5.20
$\times^{3} / 8$	547	91.1	5.04	102	185/16	105/16	1180	160	5.23
$\times 5 / 16$	464	77.3	5.07	85.8	185/8	105/8	997	134	5.25
HSS20×8× ${ }^{5} / 8$	338	84.6	3.34	96.4	173/16	53/16	916	167	4.50
$\times^{1 / 2}$	283	70.8	3.39	79.5	173/4	$53 / 4$	757	137	4.53
$\times 3 / 8$	222	55.6	3.44	61.5	185/16	65/16	586	105	4.57
$\times 5 / 16$	189	47.4	3.47	52.0	185/8	$65 / 8$	496	88.3	4.58
HSS20×4×1/2	58.7	29.3	1.68	34.0	173/4	-	195	63.8	3.87
$\times 3 / 8$	47.6	23.8	1.73	26.8	185/16	25/16	156	49.9	3.90
$x^{5} / 16$	41.2	20.6	1.75	22.9	185/8	25/8	134	42.4	3.92
$\times^{1 / 4}$	34.3	17.1	1.78	18.7	187/8	27/8	111	34.7	3.93
HSS18×6×5/8	158	52.7	2.48	61.0	153/16	33/16	462	109	3.83
$x^{112} 2$	134	44.6	2.53	50.7	153/4	$33 / 4$	387	89.9	3.87
$\times^{3} / 8$	106	35.5	2.58	39.5	165/16	45/16	302	69.5	3.90
$\times^{5 / 16}$	91.3	30.4	2.61	33.5	16\%/16	49/16	257	58.7	3.92
$\times 1 / 4$	75.1	25.0	2.63	27.3	167/8	$47 / 8$	210	47.7	3.93
HSS16x12x3/4	810	135	4.75	158	125/8	85/8	1610	240	4.47
$\times 5 / 8$	700	117	4.80	135	133/16	93/16	1370	204	4.50
$\times 1 / 2$	581	96.8	4.86	111	$13^{3 / 4}$	93/4	1120	166	4.53
$\times^{3} / 8$	452	75.3	4.91	85.5	145/16	105/16	862	127	4.57
$\times 5 / 16$	384	64.0	4.94	72.2	145/8	$105 / 8$	727	107	4.58
HSS16 $\times 8 \times 5 / 8$	274	68.6	3.27	79.2	133/16	53/16	681	132	3.83
$\times^{1 / 2}$	230	57.6	3.32	65.5	$13^{3 / 4}$	53/4	563	108	3.87
$\times^{3} / 8$	181	45.3	3.37	50.8	145/16	65/16	436	83.4	3.90
$\times 5 / 16$	155	38.7	3.40	43.0	145/8	65/8	369	70.4	3.92
$\times^{1 / 1 / 4}$	127	31.7	3.42	35.0	147/8	$67 / 8$	300	57.0	3.93
- Indicates flat depth or width is too small to establish a workable flat.									

	Table 1-11 (continued) Rectangular HSS imensions and Properties								
Shape	Design Wall Thickness, t	Nominal Wt.	Area, A	b/t	h / t	Axis X-X			
						I	S	r	Z
	in.	lb/ft	in. ${ }^{2}$			in. ${ }^{4}$	in. ${ }^{3}$	in.	in. ${ }^{3}$
HSS16×4×5/8	0.581	76.33	21.0	3.88	24.5	539	67.3	5.06	92.9
$\times^{1 / 2}$	0.465	62.46	17.2	5.60	31.4	455	56.9	5.15	77.3
$\times 3 / 8$	0.349	47.90	13.2	8.46	42.8	360	45.0	5.23	60.2
$\times 5 / 16$	0.291	40.35	11.1	10.7	52.0	308	38.5	5.27	51.1
$\times 1 / 4$	0.233	32.63	8.96	14.2	65.7	253	31.6	5.31	41.7
$\times 3 / 16$	0.174	24.73	6.76	20.0	89.0	193	24.2	5.35	31.7
HSS14×10×5/8	0.581	93.34	25.7	14.2	21.1	687	98.2	5.17	120
$\times 1 / 2$	0.465	76.07	20.9	18.5	27.1	573	81.8	5.23	98.8
$\times 3 / 8$	0.349	58.10	16.0	25.7	37.1	447	63.9	5.29	76.3
$\times 5 / 16$	0.291	48.86	13.4	31.4	45.1	380	54.3	5.32	64.6
$\times^{1 / 4} 4$	0.233	39.43	10.8	39.9	57.1	310	44.3	5.35	52.4
HSS14×6×5/8	0.581	76.33	21.0	7.33	21.1	478	68.3	4.77	88.7
$\times 1 / 2$	0.465	62.46	17.2	9.90	27.1	402	57.4	4.84	73.6
$\times 3 / 8$	0.349	47.90	13.2	14.2	37.1	317	45.3	4.91	57.3
$\times 5 / 16$	0.291	40.35	11.1	17.6	45.1	271	38.7	4.94	48.6
$\times 1 / 4$	0.233	32.63	8.96	22.8	57.1	222	31.7	4.98	39.6
$\times^{3 / 16}$	0.174	24.73	6.76	31.5	77.5	170	24.3	5.01	30.1
HSS $14 \times 4 \times 5 / 8$	0.581	67.82	18.7	3.88	21.1	373	53.3	4.47	73.1
$\times^{1 / 2}$	0.465	55.66	15.3	5.60	27.1	317	45.3	4.55	61.0
$\times 3 / 8$	0.349	42.79	11.8	8.46	37.1	252	36.0	4.63	47.8
$\times 5 / 16$	0.291	36.10	9.92	10.7	45.1	216	30.9	4.67	40.6
$\times 1 / 4$	0.233	29.23	8.03	14.2	57.1	178	25.4	4.71	33.2
$\times^{3 / 16}$	0.174	22.18	6.06	20.0	77.5	137	19.5	4.74	25.3
HSS $12 \times 10 \times 1 / 2$	0.465	69.27	19.0	18.5	22.8	395	65.9	4.56	78.8
$\times 3 / 8$	0.349	53.00	14.6	25.7	31.4	310	51.6	4.61	61.1
$\times 5 / 16$	0.291	44.60	12.2	31.4	38.2	264	44.0	4.64	51.7
$\times 1 / 4$	0.233	36.03	9.90	39.9	48.5	216	36.0	4.67	42.1
HSS $12 \times 8 \times 5 / 8$	0.581	76.33	21.0	10.8	17.7	397	66.1	4.34	82.1
$\times 1 / 2$	0.465	62.46	17.2	14.2	22.8	333	55.6	4.41	68.1
$\times 3 / 8$	0.349	47.90	13.2	19.9	31.4	262	43.7	4.47	53.0
$\times 5 / 16$	0.291	40.35	11.1	24.5	38.2	224	37.4	4.50	44.9
$\times 1 / 4$	0.233	32.63	8.96	31.3	48.5	184	30.6	4.53	36.6
$\times 3 / 16$	0.174	24.73	6.76	43.0	66.0	140	23.4	4.56	27.8
Note: For width-to-thickness criteria, refer to Table 1-12A.									

		Ta R Dime	$\begin{aligned} & \text { e } 1- \\ & \text { sior } \end{aligned}$			ed) SS ertie		HSS	HSS12
Shape	Axis Y-Y				Workable Flat		Torsion		Surface Area
	I	S	r	Z	Depth	Width	J	C	
	in. ${ }^{4}$	in. ${ }^{3}$	in.	in. ${ }^{3}$	in.	in.	in. ${ }^{4}$	in. ${ }^{3}$	$\mathrm{ft}^{2} / \mathrm{ft}$
HSS16×4×5/8	54.1	27.0	1.60	32.5	$133 / 16$	-	174	60.5	3.17
$\times^{1 / 2}$	47.0	23.5	1.65	27.4	133/4	-	150	50.7	3.20
$\times 3 / 8$	38.3	19.1	1.71	21.7	145/16	25/16	120	39.7	3.23
$\times 5 / 16$	33.2	16.6	1.73	18.5	145/8	25/8	103	33.8	3.25
$\times 1 / 4$	27.7	13.8	1.76	15.2	147/8	$2^{7 / 8}$	85.2	27.6	3.27
$\times 3 / 16$	21.5	10.8	1.78	11.7	153/16	33/16	65.5	21.1	3.28
HSS $14 \times 10 \times 5 / 8$	407	81.5	3.98	95.1	113/16	73/16	832	146	3.83
$\times^{1 / 2}$	341	68.1	4.04	78.5	$11^{3 / 4}$	$73 / 4$	685	120	3.87
$\times^{3 / 8}$	267	53.4	4.09	60.7	125/16	85/16	528	91.8	3.90
$\times 5 / 16$	227	45.5	4.12	51.4	129/16	89/16	446	77.4	3.92
$\times 1 / 4$	186	37.2	4.14	41.8	$12^{7} / 8$	87/8	362	62.6	3.93
HSS14×6×5/8	124	41.2	2.43	48.4	113/16	33/16	334	83.7	3.17
$\times^{1 / 2}$	105	35.1	2.48	40.4	$11^{3 / 4}$	$33 / 4$	279	69.3	3.20
$\times 3 / 8$	84.1	28.0	2.53	31.6	125/16	45/16	219	53.7	3.23
$\times 5 / 16$	72.3	24.1	2.55	26.9	129/16	49/16	186	45.5	3.25
$\times^{1 / 4}$	59.6	19.9	2.58	22.0	$12^{7} / 8$	4/8	152	36.9	3.27
$\times 3 / 16$	45.9	15.3	2.61	16.7	133/16	53/16	116	28.0	3.28
HSS $14 \times 4 \times 5 / 8$	47.2	23.6	1.59	28.5	$111 / 4$	-	148	52.6	2.83
$x^{1 / 2}$	41.2	20.6	1.64	24.1	113/4	-	127	44.1	2.87
$\times^{3 / 8}$	33.6	16.8	1.69	19.1	121/4	21/4	102	34.6	2.90
$\times 5 / 16$	29.2	14.6	1.72	16.4	125/8	25/8	87.7	29.5	2.92
$\times 1 / 4$	24.4	12.2	1.74	13.5	$12^{7 / 8}$	$2^{7 / 8}$	72.4	24.1	2.93
$\times 3 / 16$	19.0	9.48	1.77	10.3	131/8	$31 / 8$	55.8	18.4	2.95
HSS $12 \times 10 \times 1 / 2$	298	59.7	3.96	69.6	$9^{3 / 4}$	$73 / 4$	545	102	3.53
$\times^{3 / 8}$	234	46.9	4.01	54.0	10\%/16	$85 / 16$	421	78.3	3.57
$\times 5 / 16$	200	40.0	4.04	45.7	10\%/16	89/16	356	66.1	3.58
$\times 1 / 4$	164	32.7	4.07	37.2	107/8	87/8	289	53.5	3.60
HSS12×8×5/8	210	52.5	3.16	61.9	93/16	53/16	454	97.7	3.17
$\times^{1 / 2}$	178	44.4	3.21	51.5	93/4	$53 / 4$	377	80.4	3.20
$\times 3 / 8$	140	35.1	3.27	40.1	105/16	$65 / 16$	293	62.1	3.23
$\times 5 / 16$	120	30.1	3.29	34.1	10\%/16	69/16	248	52.4	3.25
$\times 1 / 4$	98.8	24.7	3.32	27.8	107/8	$67 / 8$	202	42.5	3.27
$\times 3 / 16$	75.7	18.9	3.35	21.1	111/8	71/8	153	32.2	3.28
- Indicates flat depth or width is too small to establish a workable flat.									

	Table 1-11 (continued) Rectangular HSS imensions and Properties								
Shape	Design Wall Thickness, t	Nominal Wt.	Area, A	b / t	h / t	Axis X-X			
						I	S	r	Z
	in.	lb/ft	in. ${ }^{2}$			in. ${ }^{4}$	in. ${ }^{3}$	in.	in. ${ }^{3}$
HSS12×6×5/8	0.581	67.82	18.7	7.33	17.7	321	53.4	4.14	68.8
$\times^{1 / 2}$	0.465	55.66	15.3	9.90	22.8	271	45.2	4.21	57.4
$\times 3 / 8$	0.349	42.79	11.8	14.2	31.4	215	35.9	4.28	44.8
$\times 5 / 16$	0.291	36.10	9.92	17.6	38.2	184	30.7	4.31	38.1
$\times 1 / 4$	0.233	29.23	8.03	22.8	48.5	151	25.2	4.34	31.1
$\times 3 / 16$	0.174	22.18	6.06	31.5	66.0	116	19.4	4.38	23.7
HSS12×4×5/8	0.581	59.32	16.4	3.88	17.7	245	40.8	3.87	55.5
$\times^{1 / 2}$	0.465	48.85	13.5	5.60	22.8	210	34.9	3.95	46.7
$\times 3 / 8$	0.349	37.69	10.4	8.46	31.4	168	28.0	4.02	36.7
$\times 5 / 16$	0.291	31.84	8.76	10.7	38.2	144	24.1	4.06	31.3
$\times 1 / 4$	0.233	25.82	7.10	14.2	48.5	119	19.9	4.10	25.6
$\times 3 / 16$	0.174	19.63	5.37	20.0	66.0	91.8	15.3	4.13	19.6
HSS $12 \times 31 / 2 \times^{3 / 8}$	0.349	36.41	10.0	7.03	31.4	156	26.0	3.94	34.7
$\times 5 / 16$	0.291	30.78	8.46	9.03	38.2	134	22.4	3.98	29.6
HSS12×3 $\times^{5 / 16}$	0.291	29.72	8.17	7.31	38.2	124	20.7	3.90	27.9
$x^{1 / 4}$	0.233	24.12	6.63	9.88	48.5	103	17.2	3.94	22.9
$\times 3 / 16$	0.174	18.35	5.02	14.2	66.0	79.6	13.3	3.98	17.5
HSS $12 \times 2 \times 5 / 16$	0.291	27.59	7.59	3.87	38.2	104	17.4	3.71	24.5
$\times 1 / 4$	0.233	22.42	6.17	5.58	48.5	86.9	14.5	3.75	20.1
$\times 3 / 16$	0.174	17.08	4.67	8.49	66.0	67.4	11.2	3.80	15.5
HSS $10 \times 8 \times 5 / 8$	0.581	67.82	18.7	10.8	14.2	253	50.5	3.68	62.2
$\times^{1 / 2}$	0.465	55.66	15.3	14.2	18.5	214	42.7	3.73	51.9
$\times 3 / 8$	0.349	42.79	11.8	19.9	25.7	169	33.9	3.79	40.5
$\times 5 / 16$	0.291	36.10	9.92	24.5	31.4	145	29.0	3.82	34.4
$\times 1 / 4$	0.233	29.23	8.03	31.3	39.9	119	23.8	3.85	28.1
$\times 3 / 16$	0.174	22.18	6.06	43.0	54.5	91.4	18.3	3.88	21.4
HSS $10 \times 6 \times 5 / 8$	0.581	59.32	16.4	7.33	14.2	201	40.2	3.50	51.3
$\times^{1 / 2}$	0.465	48.85	13.5	9.90	18.5	171	34.3	3.57	43.0
$\times 3 / 8$	0.349	37.69	10.4	14.2	25.7	137	27.4	3.63	33.8
$\times 5 / 16$	0.291	31.84	8.76	17.6	31.4	118	23.5	3.66	28.8
$\times 1 / 4$	0.233	25.82	7.10	22.8	39.9	96.9	19.4	3.69	23.6
$\times 3 / 16$	0.174	19.63	5.37	31.5	54.5	74.6	14.9	3.73	18.0
Note: For width-to-thickness criteria, refer to Table 1-12A.									

		Ta R ime	e 1- ta sion			ed) SS erti		HSS1	HSS10
Shape	Axis Y-Y				Workable Flat		Torsion		Surface Area
	I	S	r	Z	Depth	Width	J	C	
	in. ${ }^{4}$	in. ${ }^{3}$	in.	in. ${ }^{3}$	in.	in.	in. ${ }^{4}$	in. ${ }^{3}$	$\mathrm{ft}^{2} / \mathrm{ft}$
HSS $12 \times 6 \times 5 / 8$	107	35.5	2.39	42.1	93/16	33/16	271	71.1	2.83
$\times^{1 / 2}$	91.1	30.4	2.44	35.2	93/4	$33 / 4$	227	59.0	2.87
$\times 3 / 8$	72.9	24.3	2.49	27.7	105/16	45/16	178	45.8	2.90
$\times 5 / 16$	62.8	20.9	2.52	23.6	10\%/16	49/16	152	38.8	2.92
$\times 1 / 4$	51.9	17.3	2.54	19.3	107/8	47/8	124	31.6	2.93
$\times 3 / 16$	40.0	13.3	2.57	14.7	113/16	53/16	94.6	24.0	2.95
HSS $12 \times 4 \times 5 / 8$	40.4	20.2	1.57	24.5	93/16	-	122	44.6	2.50
$\times^{1 / 2}$	35.3	17.7	1.62	20.9	93/4	-	105	37.5	2.53
$\times 3 / 8$	28.9	14.5	1.67	16.6	105/16	25/16	84.1	29.5	2.57
$\times 5 / 16$	25.2	12.6	1.70	14.2	105/8	25/8	72.4	25.2	2.58
$\times 1 / 4$	21.0	10.5	1.72	11.7	107/8	$2^{7 / 8}$	59.8	20.6	2.60
$\times^{3 / 16}$	16.4	8.20	1.75	9.00	113/16	33/16	46.1	15.7	2.62
HSS12×31/2×3/8	21.3	12.2	1.46	14.0	105/16	-	64.7	25.5	2.48
$\times 5 / 16$	18.6	10.6	1.48	12.1	105/8	-	56.0	21.8	2.50
HSS $12 \times 3 \times 5 / 16$	13.1	8.73	1.27	10.0	105/8	-	41.3	18.4	2.42
$\times 1 / 4$	11.1	7.38	1.29	8.28	107/8	-	34.5	15.1	2.43
$\times 3 / 16$	8.72	5.81	1.32	6.40	113/16	23/16	26.8	11.6	2.45
HSS12× $2 \times 5 / 16$	5.10	5.10	0.820	6.05	105/8	-	17.6	11.6	2.25
$x^{1 / 4}$	4.41	4.41	0.845	5.08	$10^{7 / 8}$	-	15.1	9.64	2.27
$\times^{3 / 16}$	3.55	3.55	0.872	3.97	113/16	-	12.0	7.49	2.28
HSS $10 \times 8 \times 5 / 8$	178	44.5	3.09	53.3	73/16	53/16	346	80.4	2.83
$\times 1 / 2$	151	37.8	3.14	44.5	$73 / 4$	$53 / 4$	288	66.4	2.87
$\times 3 / 8$	120	30.0	3.19	34.8	$85 / 16$	65/16	224	51.4	2.90
$\times 5 / 16$	103	25.7	3.22	29.6	85/8	65/8	190	43.5	2.92
$\times^{1 / 4}$	84.7	21.2	3.25	24.2	87/8	67/8	155	35.3	2.93
$\times^{3 / 16}$	65.1	16.3	3.28	18.4	93/16	73/16	118	26.7	2.95
HSS10×6 $\times^{5} / 8$	89.4	29.8	2.34	35.8	73/16	33/16	209	58.6	2.50
$\times^{1 / 2}$	76.8	25.6	2.39	30.1	73/4	$33 / 4$	176	48.7	2.53
$\times^{3 / 8}$	61.8	20.6	2.44	23.7	85/16	45/16	139	37.9	2.57
$\times 5 / 16$	53.3	17.8	2.47	20.2	$85 / 8$	45/8	118	32.2	2.58
$\times 1 / 4$	44.1	14.7	2.49	16.6	$87 / 8$	$47 / 8$	96.7	26.2	2.60
$x^{3 / 16}$	34.1	11.4	2.52	12.7	93/16	53/16	73.8	19.9	2.62
- Indicates flat depth or width is too small to establish a workable flat.									

	Table 1-11 (continued) Rectangular HSS Dimensions and Properties								
Shape	Design Wall Thickness, t	Nominal Wt.	Area, A	b/t	h / t	Axis X-X			
						I	S	r	Z
	in.	lb/ft	in. ${ }^{2}$			in. ${ }^{4}$	in. ${ }^{3}$	in.	in. ${ }^{3}$
HSS $10 \times 5 \times 3 / 8$	0.349	35.13	9.67	11.3	25.7	120	24.1	3.53	30.4
$\times 5 / 16$	0.291	29.72	8.17	14.2	31.4	104	20.8	3.56	26.0
$\times 1 / 4$	0.233	24.12	6.63	18.5	39.9	85.8	17.2	3.60	21.3
$\times 3 / 16$	0.174	18.35	5.02	25.7	54.5	66.2	13.2	3.63	16.3
HSS10×4×5/8	0.581	50.81	14.0	3.88	14.2	149	29.9	3.26	40.3
$\times 1 / 2$	0.465	42.05	11.6	5.60	18.5	129	25.8	3.34	34.1
$\times 3 / 8$	0.349	32.58	8.97	8.46	25.7	104	20.8	3.41	27.0
$\times 5 / 16$	0.291	27.59	7.59	10.7	31.4	90.1	18.0	3.44	23.1
$\times 1 / 4$	0.233	22.42	6.17	14.2	39.9	74.7	14.9	3.48	19.0
$\times 3 / 16$	0.174	17.08	4.67	20.0	54.5	57.8	11.6	3.52	14.6
$\times 1 / 8$	0.116	11.56	3.16	31.5	83.2	39.8	7.97	3.55	10.0
HSS10 $\times 31 / 2 \times 1 / 2$	0.465	40.34	11.1	4.53	18.5	118	23.7	3.26	31.9
$\times 3 / 8$	0.349	31.31	8.62	7.03	25.7	96.1	19.2	3.34	25.3
$\times 5 / 16$	0.291	26.53	7.30	9.03	31.4	83.2	16.6	3.38	21.7
$\times 1 / 4$	0.233	21.57	5.93	12.0	39.9	69.1	13.8	3.41	17.9
$\times 3 / 16$	0.174	16.44	4.50	17.1	54.5	53.6	10.7	3.45	13.7
$\times 1 / 8$	0.116	11.13	3.04	27.2	83.2	37.0	7.40	3.49	9.37
HSS $10 \times 3 \times 3 / 8$	0.349	30.03	8.27	5.60	25.7	88.0	17.6	3.26	23.7
$\times 5 / 16$	0.291	25.46	7.01	7.31	31.4	76.3	15.3	3.30	20.3
$\times 1 / 4$	0.233	20.72	5.70	9.88	39.9	63.6	12.7	3.34	16.7
$\times 3 / 16$	0.174	15.80	4.32	14.2	54.5	49.4	9.87	3.38	12.8
$\times 1 / 8$	0.116	10.71	2.93	22.9	83.2	34.2	6.83	3.42	8.80
HSS10×2x ${ }^{3} / 8$	0.349	27.48	7.58	2.73	25.7	71.7	14.3	3.08	20.3
$\times 5 / 16$	0.291	23.34	6.43	3.87	31.4	62.6	12.5	3.12	17.5
$\times 1 / 4$	0.233	19.02	5.24	5.58	39.9	52.5	10.5	3.17	14.4
$\times 3 / 16$	0.174	14.53	3.98	8.49	54.5	41.0	8.19	3.21	11.1
$\times 1 / 8$	0.116	9.86	2.70	14.2	83.2	28.5	5.70	3.25	7.65
HSS9×7× ${ }^{5} / 8$	0.581	59.32	16.4	9.05	12.5	174	38.7	3.26	48.3
$\times 1 / 2$	0.465	48.85	13.5	12.1	16.4	149	33.0	3.32	40.5
$\times 3 / 8$	0.349	37.69	10.4	17.1	22.8	119	26.4	3.38	31.8
$\times 5 / 16$	0.291	31.84	8.76	21.1	27.9	102	22.6	3.41	27.1
$\times 1 / 4$	0.233	25.82	7.10	27.0	35.6	84.1	18.7	3.44	22.2
$\times 3 / 16$	0.174	19.63	5.37	37.2	48.7	64.7	14.4	3.47	16.9
Note: For width-to-thickness criteria, refer to Table 1-12A.									

		Tab Re Dime	e 1- cta sion	(CO gula and				HSS	-HSS9
Shape	Axis Y-Y				Workable Flat		Torsion		Surface Area
	I	S	r	Z	Depth	Width	J	C	
	in. ${ }^{4}$	in. ${ }^{3}$	in.	in. ${ }^{3}$	in.	in.	in. ${ }^{4}$	in. ${ }^{3}$	$\mathrm{ft}^{2} / \mathrm{ft}$
HSS10×5 $\times 3 / 8$	40.6	16.2	2.05	18.7	85/16	35/16	100	31.2	2.40
$\times 5 / 16$	35.2	14.1	2.07	16.0	$85 / 8$	$35 / 8$	86.0	26.5	2.42
$\times^{1 / 4} 4$	29.3	11.7	2.10	13.2	87/8	$37 / 8$	70.7	21.6	2.43
$\times^{3} / 16$	22.7	9.09	2.13	10.1	93/16	43/16	54.1	16.5	2.45
HSS10×4×5/8	33.5	16.8	1.54	20.6	73/16	-	95.7	36.7	2.17
$\times 1 / 2$	29.5	14.7	1.59	17.6	73/4	-	82.6	31.0	2.20
$\times 3 / 8$	24.3	12.1	1.64	14.0	85/16	25/16	66.5	24.4	2.23
$\times 5 / 16$	21.2	10.6	1.67	12.1	85/8	25/8	57.3	20.9	2.25
$\times 1 / 4$	17.7	8.87	1.70	10.0	87/8	27/8	47.4	17.1	2.27
$\times 3 / 16$	13.9	6.93	1.72	7.66	93/16	3/16	36.5	13.1	2.28
$\times 1 / 8$	9.65	4.83	1.75	5.26	97/16	3/16	25.1	8.90	2.30
HSS $10 \times 31 / 2 \times 1 / 2$	21.4	12.2	1.39	14.7	73/4	-	63.2	26.5	2.12
$\times 3 / 8$	17.8	10.2	1.44	11.8	$85 / 16$	-	51.5	21.1	2.15
$\times 5 / 16$	15.6	8.92	1.46	10.2	85/8	-	44.6	18.0	2.17
$\times 1 / 4$	13.1	7.51	1.49	8.45	87/8	-	37.0	14.8	2.18
$\times 3 / 16$	10.3	5.89	1.51	6.52	93/16	$2^{11 / 16}$	28.6	11.4	2.20
$\times 1 / 8$	7.22	4.12	1.54	4.48	97/16	$2^{15 / 16}$	19.8	7.75	2.22
HSS10×3×3/8	12.4	8.28	1.22	9.73	85/16	-	37.8	17.7	2.07
$\times 5 / 16$	11.0	7.30	1.25	8.42	$85 / 8$	-	33.0	15.2	2.08
$\times 1 / 4$	9.28	6.19	1.28	6.99	87/8	-	27.6	12.5	2.10
$\times 3 / 16$	7.33	4.89	1.30	5.41	$93 / 16$	23/16	21.5	9.64	2.12
$\times 1 / 8$	5.16	3.44	1.33	3.74	97/16	27/16	14.9	6.61	2.13
HSS $10 \times 2 \times 3 / 8$	4.70	4.70	0.787	5.76	$85 / 16$	-	15.9	11.0	1.90
$\times 5 / 16$	4.24	4.24	0.812	5.06	85/8	-	14.2	9.56	1.92
$\times 1 / 4$	3.67	3.67	0.838	4.26	$87 / 8$	-	12.2	7.99	1.93
$x^{3} / 16$	2.97	2.97	0.864	3.34	$93 / 16$	-	9.74	6.22	1.95
$\times 1 / 8$	2.14	2.14	0.890	2.33	97/16	-	6.90	4.31	1.97
HSS9×7× $/ 8$	117	33.5	2.68	40.5	63/16	43/16	235	62.0	2.50
$\times^{1 / 2}$	100	28.7	2.73	34.0	$63 / 4$	$43 / 4$	197	51.5	2.53
$\times 3 / 8$	80.4	23.0	2.78	26.7	75/16	$55 / 16$	154	40.0	2.57
$\times 5 / 16$	69.2	19.8	2.81	22.8	75/8	$55 / 8$	131	33.9	2.58
$\times 1 / 4$	57.2	16.3	2.84	18.7	$77 / 8$	$57 / 8$	107	27.6	2.60
$\times 3 / 16$	44.1	12.6	2.87	14.3	83/16	$63 / 16$	81.7	20.9	2.62
- Indicates flat depth or width is too small to establish a workable flat.									

			e 1 cta sion			ed) SS ertie		HS	-HSS8
Shape	Axis Y-Y				Workable Flat		Torsion		Surface Area
	I	S	r	Z	Depth	Width	J	C	
	in. ${ }^{4}$	in. ${ }^{3}$	in.	in. ${ }^{3}$	in.	in.	in. ${ }^{4}$	in. ${ }^{3}$	$\mathrm{ft}^{2} / \mathrm{ft}$
HSS $9 \times 5 \times 5 / 8$	52.0	20.8	1.92	25.3	63/16	23/16	128	42.5	2.17
$\times^{1 / 2}$	45.2	18.1	1.97	21.5	63/4	23/4	109	35.6	2.20
$\times 3 / 8$	36.8	14.7	2.03	17.1	75/16	35/16	86.9	27.9	2.23
$\times 5 / 16$	32.0	12.8	2.05	14.6	75/8	35/8	74.4	23.8	2.25
$\times^{1 / 4}$	26.6	10.6	2.08	12.0	$77 / 8$	37/8	61.2	19.4	2.27
$\times 3 / 16$	20.7	8.28	2.10	9.25	$83 / 16$	43/16	46.9	14.8	2.28
HSS9 $\times 3 \times 1 / 2$	13.2	8.81	1.17	10.8	63/4	-	40.0	19.7	1.87
$\times 3 / 8$	11.2	7.45	1.21	8.80	75/16	-	33.1	15.8	1.90
$\times 5 / 16$	9.88	6.59	1.24	7.63	75/8	-	28.9	13.6	1.92
$\times 1 / 4$	8.38	5.59	1.27	6.35	77/8	-	24.2	11.3	1.93
$\times 3 / 16$	6.64	4.42	1.29	4.92	$83 / 16$	23/16	18.9	8.66	1.95
HSS $8 \times 6 \times 5 / 8$	72.3	24.1	2.27	29.5	53/16	$33 / 16$	150	46.0	2.17
$\times^{11 / 2}$	62.5	20.8	2.32	24.9	53/4	33/4	127	38.4	2.20
$\times 3 / 8$	50.6	16.9	2.38	19.8	65/16	45/16	100	30.0	2.23
$\times 5 / 16$	43.8	14.6	2.40	16.9	65/8	45/8	85.8	25.5	2.25
$\times^{1 / 4}$	36.4	12.1	2.43	13.9	67/8	47/8	70.3	20.8	2.27
$\times 3 / 16$	28.2	9.39	2.46	10.7	73/16	53/16	53.7	15.8	2.28
HSS8×4×5/8	26.6	13.3	1.51	16.6	53/16	-	70.3	28.7	1.83
$\times^{1 / 2}$	23.6	11.8	1.56	14.3	$5^{3 / 4}$	-	61.1	24.4	1.87
$x^{3 / 8}$	19.6	9.80	1.61	11.5	65/16	25/16	49.3	19.3	1.90
$\times 5 / 16$	17.2	8.58	1.63	9.91	65/8	25/8	42.6	16.5	1.92
$\times^{1 / 4}$	14.4	7.21	1.66	8.20	$67 / 8$	27/8	35.3	13.6	1.93
$\times 3 / 16$	11.3	5.65	1.69	6.33	73/16	3/16	27.2	10.4	1.95
$\times 1 / 8$	7.90	3.95	1.71	4.36	77/16	$3^{7 / 16}$	18.7	7.10	1.97
HSS $8 \times 3 \times 1 / 2$	11.7	7.81	1.15	9.64	53/4	-	34.3	17.4	1.70
$\times^{3 / 8}$	10.0	6.63	1.20	7.88	65/16	-	28.5	14.0	1.73
$\times 5 / 16$	8.81	5.87	1.23	6.84	65/8	-	24.9	12.1	1.75
$\times^{1 / 4}$	7.49	4.99	1.25	5.70	$67 / 8$		20.8	10.0	1.77
$x^{3 / 16}$	5.94	3.96	1.28	4.43	$73 / 16$	23/16	16.2	7.68	1.78
$\times 1 / 8$	4.20	2.80	1.31	3.07	77/16	27/16	11.3	5.27	1.80
- Indicates flat depth or width is too small to establish a workable flat.									

	Table 1-11 (continued) Rectangular HSS Dimensions and Properties								
Shape	Design Wall Thickness, t in.	Nominal Wt.	Area, A	b/t	h / t	Axis X-X			
						I	S	r	Z
		lb/ft	in. ${ }^{2}$			in. ${ }^{4}$	in. ${ }^{3}$	in.	in. ${ }^{3}$
HSS8×2x ${ }^{3 / 8}$	0.349	22.37	6.18	2.73	19.9	38.2	9.56	2.49	13.4
$\times 5 / 16$	0.291	19.08	5.26	3.87	24.5	33.7	8.43	2.53	11.6
$\times 1 / 4$	0.233	15.62	4.30	5.58	31.3	28.5	7.12	2.57	9.68
$\times 3 / 16$	0.174	11.97	3.28	8.49	43.0	22.4	5.61	2.61	7.51
$\times 1 / 8$	0.116	8.16	2.23	14.2	66.0	15.7	3.93	2.65	5.19
HSS7×5 $\times^{1 / 12}$	0.465	35.24	9.74	7.75	12.1	60.6	17.3	2.50	21.9
$\times 3 / 8$	0.349	27.48	7.58	11.3	17.1	49.5	14.1	2.56	17.5
$\times 5 / 16$	0.291	23.34	6.43	14.2	21.1	43.0	12.3	2.59	15.0
$\times 1 / 4$	0.233	19.02	5.24	18.5	27.0	35.9	10.2	2.62	12.4
$\times 3 / 16$	0.174	14.53	3.98	25.7	37.2	27.9	7.96	2.65	9.52
$\times 1 / 8$	0.116	9.86	2.70	40.1	57.3	19.3	5.52	2.68	6.53
HSS7×4×1⁄2	0.465	31.84	8.81	5.60	12.1	50.7	14.5	2.40	18.8
$\times 3 / 8$	0.349	24.93	6.88	8.46	17.1	41.8	11.9	2.46	15.1
$\times 5 / 16$	0.291	21.21	5.85	10.7	21.1	36.5	10.4	2.50	13.1
$\times 1 / 4$	0.233	17.32	4.77	14.2	27.0	30.5	8.72	2.53	10.8
$\times 3 / 16$	0.174	13.25	3.63	20.0	37.2	23.8	6.81	2.56	8.33
$\times 1 / 8$	0.116	9.01	2.46	31.5	57.3	16.6	4.73	2.59	5.73
HSS7 $\times 3 \times 1 / 2$	0.465	28.43	7.88	3.45	12.1	40.7	11.6	2.27	15.8
$\times 3 / 8$	0.349	22.37	6.18	5.60	17.1	34.1	9.73	2.35	12.8
$\times 5 / 16$	0.291	19.08	5.26	7.31	21.1	29.9	8.54	2.38	11.1
$\times 1 / 4$	0.233	15.62	4.30	9.88	27.0	25.2	7.19	2.42	9.22
$\times 3 / 16$	0.174	11.97	3.28	14.2	37.2	19.8	5.65	2.45	7.14
$\times 1 / 8$	0.116	8.16	2.23	22.9	57.3	13.8	3.95	2.49	4.93
HSS7×2×1/4	0.233	13.91	3.84	5.58	27.0	19.8	5.67	2.27	7.64
$\times 3 / 16$	0.174	10.70	2.93	8.49	37.2	15.7	4.49	2.31	5.95
$\times 1 / 8$	0.116	7.31	2.00	14.2	57.3	11.1	3.16	2.35	4.13
HSS6×5 $\times^{1 / 2} 2$	0.465	31.84	8.81	7.75	9.90	41.1	13.7	2.16	17.2
$\times 3 / 8$	0.349	24.93	6.88	11.3	14.2	33.9	11.3	2.22	13.8
$\times 5 / 16$	0.291	21.21	5.85	14.2	17.6	29.6	9.85	2.25	11.9
$\times 1 / 4$	0.233	17.32	4.77	18.5	22.8	24.7	8.25	2.28	9.87
$\times 3 / 16$	0.174	13.25	3.63	25.7	31.5	19.3	6.44	2.31	7.62
$\times 1 / 8$	0.116	9.01	2.46	40.1	48.7	13.4	4.48	2.34	5.24
Note: For width-to-thickness criteria, refer to Table 1-12A.									

		Ta Re Dime	e 1- ta sion			ed) SS ertie		HS	
Shape	Axis Y-Y				Workable Flat		Torsion		Surface Area
	I	S	r	Z	Depth	Width	J	C	
	in. ${ }^{4}$	in. ${ }^{3}$	in.	in. ${ }^{3}$	in.	in.	in. ${ }^{4}$	in. ${ }^{3}$	$\mathrm{ft}^{2} / \mathrm{ft}$
HSS8×2×3/8	3.73	3.73	0.777	4.61	65/16	-	12.1	8.65	1.57
$\times 5 / 16$	3.38	3.38	0.802	4.06	65/8	-	10.9	7.57	1.58
$\times 1 / 4$	2.94	2.94	0.827	3.43	67/8	-	9.36	6.35	1.60
$\times 3 / 16$	2.39	2.39	0.853	2.70	73/16	-	7.48	4.95	1.62
$\times 1 / 8$	1.72	1.72	0.879	1.90	77/16	-	5.30	3.44	1.63
HSS $7 \times 5 \times 1 / 2$	35.6	14.2	1.91	17.3	43/4	$2^{3 / 4}$	75.8	27.2	1.87
$\times 3 / 8$	29.3	11.7	1.97	13.8	55/16	35/16	60.6	21.4	1.90
$\times 5 / 16$	25.5	10.2	1.99	11.9	5/8	35/8	52.1	18.3	1.92
$\times^{1 / 4}$	21.3	8.53	2.02	9.83	57/8	$37 / 8$	42.9	15.0	1.93
$\times 3 / 16$	16.6	6.65	2.05	7.57	63/16	43/16	32.9	11.4	1.95
$\times 1 / 8$	11.6	4.63	2.07	5.20	$6^{7 / 16}$	$4^{7 / 16}$	22.5	7.79	1.97
HSS $7 \times 4 \times 1 / 2$	20.7	10.4	1.53	12.6	43/4	-	50.5	21.1	1.70
$\times 3 / 8$	17.3	8.63	1.58	10.2	$55 / 16$	25/16	41.0	16.8	1.73
$\times 5 / 16$	15.2	7.58	1.61	8.83	5/8	25/8	35.4	14.4	1.75
$\times 1 / 4$	12.8	6.38	1.64	7.33	57/8	27/8	29.3	11.8	1.77
$x^{3 / 16}$	10.0	5.02	1.66	5.67	$61 / 8$	$31 / 8$	22.7	9.07	1.78
$\times 1 / 8$	7.03	3.51	1.69	3.91	$67 / 16$	$3^{7 / 16}$	15.6	6.20	1.80
HSS7 $\times 3 \times 1 / 2$	10.2	6.80	1.14	8.46	43/4	-	28.6	15.0	1.53
$\times^{3 / 8}$	8.71	5.81	1.19	6.95	55/16	-	23.9	12.1	1.57
$\times 5 / 16$	7.74	5.16	1.21	6.05	$55 / 8$	-	20.9	10.5	1.58
$\times^{1 / 4}$	6.60	4.40	1.24	5.06	$57 / 8$	-	17.5	8.68	1.60
$\times 3 / 16$	5.24	3.50	1.26	3.94	63/16	23/16	13.7	6.69	1.62
$\times 1 / 8$	3.71	2.48	1.29	2.73	$67 / 16$	$2^{7 / 16}$	9.48	4.60	1.63
HSS $7 \times 2 \times 1 / 4$	2.58	2.58	0.819	3.02	57/8	-	7.95	5.52	1.43
$x^{3} / 16$	2.10	2.10	0.845	2.39	63/16	-	6.35	4.32	1.45
$x^{1 / 8}$	1.52	1.52	0.871	1.68	$67 / 16$	-	4.51	3.00	1.47
HSS6×5 $\times^{1 / 2}$	30.8	12.3	1.87	15.2	$33 / 4$	23/4	59.8	23.0	1.70
$\times^{3 / 8}$	25.5	10.2	1.92	12.2	45/16	$35 / 16$	48.1	18.2	1.73
$\times 5 / 16$	22.3	8.91	1.95	10.5	$45 / 8$	35/8	41.4	15.6	1.75
$\times 1 / 4$	18.7	7.47	1.98	8.72	$47 / 8$	37/8	34.2	12.8	1.77
$\times 3 / 16$	14.6	5.84	2.01	6.73	53/16	43/16	26.3	9.76	1.78
$\times 1 / 8$	10.2	4.07	2.03	4.63	57/16	47/16	18.0	6.66	1.80
- Indicates flat depth or width is too small to establish a workable flat.									

Note: For width-to-thickness criteria, refer to Table 1-12A.

	Table 1-11 (continued) Rectangular HSS imensions and Properties								
Shape	Design Wall Thickness, t	Nominal Wt.	Area, A	b/t	h / t	Axis X-X			
						I	S	r	Z
	in.	lb/ft	in. ${ }^{2}$			in. ${ }^{4}$	in. ${ }^{3}$	in.	in. ${ }^{3}$
HSS5 $\times 2^{1 / 2} 2 \times 1 / 4$	0.233	11.36	3.14	7.73	18.5	9.40	3.76	1.73	4.83
$\times 3 / 16$	0.174	8.78	2.41	11.4	25.7	7.51	3.01	1.77	3.79
$\times 1 / 8$	0.116	6.03	1.65	18.6	40.1	5.34	2.14	1.80	2.65
HSS5 $\times 2 \times 3 / 8$	0.349	14.72	4.09	2.73	11.3	10.4	4.14	1.59	5.71
$\times 5 / 16$	0.291	12.70	3.52	3.87	14.2	9.35	3.74	1.63	5.05
$\times 1 / 4$	0.233	10.51	2.91	5.58	18.5	8.08	3.23	1.67	4.27
$\times 3 / 16$	0.174	8.15	2.24	8.49	25.7	6.50	2.60	1.70	3.37
$\times 1 / 8$	0.116	5.61	1.54	14.2	40.1	4.65	1.86	1.74	2.37
HSS4× $3 \times 3 / 8$	0.349	14.72	4.09	5.60	8.46	7.93	3.97	1.39	5.12
$\times 5 / 16$	0.291	12.70	3.52	7.31	10.7	7.14	3.57	1.42	4.51
$\times 1 / 4$	0.233	10.51	2.91	9.88	14.2	6.15	3.07	1.45	3.81
$\times 3 / 16$	0.174	8.15	2.24	14.2	20.0	4.93	2.47	1.49	3.00
$\times 1 / 8$	0.116	5.61	1.54	22.9	31.5	3.52	1.76	1.52	2.11
HSS $4 \times 21 / 2 \times 3 / 8$	0.349	13.44	3.74	4.16	8.46	6.77	3.38	1.35	4.48
$\times 5 / 16$	0.291	11.64	3.23	5.59	10.7	6.13	3.07	1.38	3.97
$\times 1 / 4$	0.233	9.66	2.67	7.73	14.2	5.32	2.66	1.41	3.38
$\times 3 / 16$	0.174	7.51	2.06	11.4	20.0	4.30	2.15	1.44	2.67
$\times 1 / 8$	0.116	5.18	1.42	18.6	31.5	3.09	1.54	1.47	1.88
HSS4×2×3/8	0.349	12.17	3.39	2.73	8.46	5.60	2.80	1.29	3.84
$\times 5 / 16$	0.291	10.58	2.94	3.87	10.7	5.13	2.56	1.32	3.43
$\times 1 / 4$	0.233	8.81	2.44	5.58	14.2	4.49	2.25	1.36	2.94
$\times 3 / 16$	0.174	6.87	1.89	8.49	20.0	3.66	1.83	1.39	2.34
$\times 1 / 8$	0.116	4.75	1.30	14.2	31.5	2.65	1.32	1.43	1.66
HSS3 ${ }^{1 / 2 \times 21 / 2 \times 3 / 8}$	0.349	12.17	3.39	4.16	7.03	4.75	2.72	1.18	3.59
$\times 5 / 16$	0.291	10.58	2.94	5.59	9.03	4.34	2.48	1.22	3.20
$\times 1 / 4$	0.233	8.81	2.44	7.73	12.0	3.79	2.17	1.25	2.74
$\times 3 / 16$	0.174	6.87	1.89	11.4	17.1	3.09	1.76	1.28	2.18
$\times 1 / 8$	0.116	4.75	1.30	18.6	27.2	2.23	1.28	1.31	1.54
HSS3 $1 / 2 \times 2 \times 1 / 4$	0.233	7.96	2.21	5.58	12.0	3.17	1.81	1.20	2.36
$\times 3 / 16$	0.174	6.23	1.71	8.49	17.1	2.61	1.49	1.23	1.89
$\times 1 / 8$	0.116	4.33	1.19	14.2	27.2	1.90	1.09	1.27	1.34
Note: For width-to-thickness criteria, refer to Table 1-12A.									

		Tab Re imen	e 1- cta sion	(CO and		ed) SS ertie		HSS!	
Shape	Axis Y-Y				Workable Flat		Torsion		Surface Area
	I	S	r	Z	Depth	Width	J	C	
	in. ${ }^{4}$	in. ${ }^{3}$	in.	in. ${ }^{3}$	in.	in.	in. ${ }^{4}$	in. ${ }^{3}$	$\mathrm{ft}^{2} / \mathrm{ft}$
HSS5 $\times 2^{1 / 2} \times 1 / 4$	3.13	2.50	0.999	2.95	$3^{7 / 8}$	-	7.93	4.99	1.18
$\times 3 / 16$	2.53	2.03	1.02	2.33	43/16	-	6.26	3.89	1.20
$\times 1 / 8$	1.82	1.46	1.05	1.64	47/16	-	4.40	2.70	1.22
HSS5 $\times 2 \times 3 / 8$	2.28	2.28	0.748	2.88	$35 / 16$	-	6.61	5.20	1.07
$\times 5 / 16$	2.10	2.10	0.772	2.57	3/8	-	5.99	4.59	1.08
$\times 1 / 4$	1.84	1.84	0.797	2.20	37/8	-	5.17	3.88	1.10
$\times^{3 / 16}$	1.51	1.51	0.823	1.75	43/16	-	4.15	3.05	1.12
$\times 1 / 8$	1.10	1.10	0.848	1.24	47/16	-	2.95	2.13	1.13
HSS $4 \times 3 \times 3 / 8$	5.01	3.34	1.11	4.18	25/16	-	10.6	6.59	1.07
$\times 5 / 16$	4.52	3.02	1.13	3.69	25/8	-	9.41	5.75	1.08
$\times^{1 / 4}$	3.91	2.61	1.16	3.12	27/8	-	7.96	4.81	1.10
$\times^{3 / 16}$	3.16	2.10	1.19	2.46	33/16	-	6.26	3.74	1.12
$\times 1 / 8$	2.27	1.51	1.21	1.73	37/16	-	4.38	2.59	1.13
HSS $4 \times 21 / 2 \times 3 / 8$	3.17	2.54	0.922	3.20	25/16	-	7.57	5.32	0.983
$\times 5 / 16$	2.89	2.32	0.947	2.85	25/8	-	6.77	4.67	1.00
$\times 1 / 4$	2.53	2.02	0.973	2.43	27/8	-	5.78	3.93	1.02
$\times^{3 / 16}$	2.06	1.65	0.999	1.93	31/8	-	4.59	3.08	1.03
$\times 1 / 8$	1.49	1.19	1.03	1.36	$37 / 16$	-	3.23	2.14	1.05
HSS $4 \times 2 \times 3 / 8$	1.80	1.80	0.729	2.31	25/16	-	4.83	4.04	0.900
$\times 5 / 16$	1.67	1.67	0.754	2.08	25/8	-	4.40	3.59	0.917
$\times 1 / 4$	1.48	1.48	0.779	1.79	27/8	-	3.82	3.05	0.933
$\times 3 / 16$	1.22	1.22	0.804	1.43	$33 / 16$	-	3.08	2.41	0.950
$\times 1 / 8$	0.898	0.898	0.830	1.02	$37 / 16$	-	2.20	1.69	0.967
HSS3 ${ }^{1 / 2 \times 21 / 2 \times 3 / 8}$	2.77	2.21	0.904	2.82	-	-	6.16	4.57	0.900
$\times 5 / 16$	2.54	2.03	0.930	2.52	21/8	-	5.53	4.03	0.917
$\times 1 / 4$	2.23	1.78	0.956	2.16	23/8	-	4.75	3.40	0.933
$\times 3 / 16$	1.82	1.46	0.983	1.72	$2^{11 / 16}$	-	3.78	2.67	0.950
$\times 1 / 8$	1.33	1.06	1.01	1.22	25/16	-	2.67	1.87	0.967
HSS3 ${ }^{1} / 2 \times 2 \times 1 / 4$	1.30	1.30	0.766	1.58	$2^{3 / 8}$	-	3.16	2.64	0.850
$\times 3 / 16$	1.08	1.08	0.792	1.27	$2^{11 / 16}$	-	2.55	2.09	0.867
$\times 1 / 8$	0.795	0.795	0.818	0.912	215/16	-	1.83	1.47	0.883
- Indicates flat depth or width is too small to establish a workable flat.									

	Table 1-11 (continued) Rectangular HSS imensions and Properties								
Shape	Design Wall Thickness, t	Nominal Wt.	Area, A	b/t	h / t	Axis X-X			
						I	S	r	Z
	in.	lb/ft	in. ${ }^{2}$			in. ${ }^{4}$	in. ${ }^{3}$	in.	in. ${ }^{3}$
HSS3 ${ }^{1 / 2 \times 11 / 2 \times 1 / 4}$	0.233	7.11	1.97	3.44	12.0	2.55	1.46	1.14	1.98
$\times 3 / 16$	0.174	5.59	1.54	5.62	17.1	2.12	1.21	1.17	1.60
$\times 1 / 8$	0.116	3.90	1.07	9.93	27.2	1.57	0.896	1.21	1.15
HSS $3 \times 2^{1 / 2} 2 \times 5 / 16$	0.291	9.51	2.64	5.59	7.31	2.92	1.94	1.05	2.51
$\times 1 / 4$	0.233	7.96	2.21	7.73	9.88	2.57	1.72	1.08	2.16
$\times 3 / 16$	0.174	6.23	1.71	11.4	14.2	2.11	1.41	1.11	1.73
$\times 1 / 8$	0.116	4.33	1.19	18.6	22.9	1.54	1.03	1.14	1.23
HSS3 $\times 2 \times 5 / 16$	0.291	8.45	2.35	3.87	7.31	2.38	1.59	1.01	2.11
$\times 1 / 4$	0.233	7.11	1.97	5.58	9.88	2.13	1.42	1.04	1.83
$\times 3 / 16$	0.174	5.59	1.54	8.49	14.2	1.77	1.18	1.07	1.48
$\times 1 / 8$	0.116	3.90	1.07	14.2	22.9	1.30	0.867	1.10	1.06
HSS 3×1 112 $2 \times 1 / 4$	0.233	6.26	1.74	3.44	9.88	1.68	1.12	0.982	1.51
$\times 3 / 16$	0.174	4.96	1.37	5.62	14.2	1.42	0.945	1.02	1.24
$\times 1 / 8$	0.116	3.48	0.956	9.93	22.9	1.06	0.706	1.05	0.895
HSS $3 \times 1 \times 3 / 16$	0.174	4.32	1.19	2.75	14.2	1.07	0.713	0.947	0.989
$\times 1 / 8$	0.116	3.05	0.840	5.62	22.9	0.817	0.545	0.987	0.728
HSS2 ${ }^{1} / 2 \times 2 \times 1 / 4$	0.233	6.26	1.74	5.58	7.73	1.33	1.06	0.874	1.37
$\times 3 / 16$	0.174	4.96	1.37	8.49	11.4	1.12	0.894	0.904	1.12
$\times 1 / 8$	0.116	3.48	0.956	14.2	18.6	0.833	0.667	0.934	0.809
HSS2 ${ }^{1 / 2 \times 11 / 2 \times 1 / 4}$	0.233	5.41	1.51	3.44	7.73	1.03	0.822	0.826	1.11
$\times 3 / 16$	0.174	4.32	1.19	5.62	11.4	0.882	0.705	0.860	0.915
$\times 1 / 8$	0.116	3.05	0.840	9.93	18.6	0.668	0.535	0.892	0.671
HSS2 ${ }^{1} / 2 \times 1 \times 3 / 16$	0.174	3.68	1.02	2.75	11.4	0.646	0.517	0.796	0.713
$\times 1 / 8$	0.116	2.63	0.724	5.62	18.6	0.503	0.403	0.834	0.532
HSS2 ${ }^{1 / 4 \times 2 \times 3 / 16 ~}$	0.174	4.64	1.28	8.49	9.93	0.859	0.764	0.819	0.952
$\times 1 / 8$	0.116	3.27	0.898	14.2	16.4	0.646	0.574	0.848	0.693
HSS2 $\times 1$ 11/2 ${ }^{3} / 16$	0.174	3.68	1.02	5.62	8.49	0.495	0.495	0.697	0.639
$\times 1 / 8$	0.116	2.63	0.724	9.93	14.2	0.383	0.383	0.728	0.475
HSS2×1×3/16	0.174	3.04	0.845	2.75	8.49	0.350	0.350	0.643	0.480
$\times 1 / 8$	0.116	2.20	0.608	5.62	14.2	0.280	0.280	0.679	0.366

Note: For width-to-thickness criteria, refer to Table 1-12A.

		Tab Re imen	e 1- ta sion	(CO पいる and		ed) SS ertie		SS31/2	-HSS2
Shape	Axis Y-Y				Workable Flat		Torsion		Surface Area
	I	S	r	Z	Depth	Width	J	C	
	in. ${ }^{4}$	in. ${ }^{3}$	in.	in. ${ }^{3}$	in.	in.	in. ${ }^{4}$	in. ${ }^{3}$	$\mathrm{ft}^{2} / \mathrm{ft}$
HSS3 ${ }^{1 / 2 \times 11 / 2 \times 1 / 4}$	0.638	0.851	0.569	1.06	23/8	-	1.79	1.88	0.767
$\times 3 / 16$	0.544	0.725	0.594	0.867	$2^{11 / 16}$	-	1.49	1.51	0.784
$\times 1 / 8$	0.411	0.548	0.619	0.630	$2^{15 / 16}$	-	1.09	1.08	0.800
HSS3 $\times 2^{1 / 2 \times 5 / 16 ~}$	2.18	1.74	0.908	2.20	-	-	4.34	3.39	0.833
$\times 1 / 4$	1.93	1.54	0.935	1.90	-	-	3.74	2.87	0.850
$\times 3 / 16$	1.59	1.27	0.963	1.52	23/16	-	3.00	2.27	0.867
$\times 1 / 8$	1.16	0.931	0.990	1.09	$2^{7 / 16}$	-	2.13	1.59	0.883
HSS $3 \times 2 \times 5 / 16$	1.24	1.24	0.725	1.58	-	-	2.87	2.60	0.750
$\times 1 / 4$	1.11	1.11	0.751	1.38	-	-	2.52	2.23	0.767
$\times 3 / 16$	0.932	0.932	0.778	1.12	23/16	-	2.05	1.78	0.784
$\times 1 / 8$	0.692	0.692	0.804	0.803	$2^{7 / 16}$	-	1.47	1.25	0.800
HSS $3 \times 11 / 2 x^{1 / 4}$	0.543	0.725	0.559	0.911	17/8	-	1.44	1.58	0.683
$\times 3 / 16$	0.467	0.622	0.584	0.752	23/16	-	1.21	1.28	0.700
$\times 1 / 8$	0.355	0.474	0.610	0.550	$2^{7 / 16}$	-	0.886	0.920	0.717
$\text { HSS } 3 \times 1 \times 3 / 16$	0.173	0.345	0.380	0.432	23/16	-	0.526	0.792	0.617
$\times^{1 / 8}$	0.138	0.276	0.405	0.325	$2^{7 / 16}$	-	0.408	0.585	0.633
HSS2 ${ }^{1} 2 \times 2 \times 1 / 4$	0.930	0.930	0.731	1.17	-	-	1.90	1.82	0.683
$\times 3 / 16$	0.786	0.786	0.758	0.956	-	-	1.55	1.46	0.700
$\times 1 / 8$	0.589	0.589	0.785	0.694	-	-	1.12	1.04	0.717
HSS2 ${ }^{1 / 2 \times 11 / 2 \times 1 / 4}$	0.449	0.599	0.546	0.764	-	-	1.10	1.29	0.600
$\times 3 / 16$	0.390	0.520	0.572	0.636	-	-	0.929	1.05	0.617
$\times 1 / 8$	0.300	0.399	0.597	0.469	-	-	0.687	0.759	0.633
HSS $2^{1 / 2 \times 1 \times 3 / 16}$	0.143	0.285	0.374	0.360	-	-	0.412	0.648	0.534
$\times 1 / 8$	0.115	0.230	0.399	0.274	-	-	0.322	0.483	0.550
HSS2 ${ }^{1 / 4 \times 2 \times 3 / 16}$	0.713	0.713	0.747	0.877	-	-	1.32	1.30	0.659
$\times 1 / 8$	0.538	0.538	0.774	0.639	-	-	0.957	0.927	0.675
HSS $2 \times 11 / 2 \times 3 / 16$	0.313	0.417	0.554	0.521	-	-	0.664	0.822	0.534
$\times 1 / 8$	0.244	0.325	0.581	0.389	-	-	0.496	0.599	0.550
HSS2 $\times 1 \times 3 / 16$	0.112	0.225	0.365	0.288	-	-	0.301	0.505	0.450
$\times 1 / 8$	0.0922	0.184	0.390	0.223	-	-	0.238	0.380	0.467
- Indicates flat depth or width is too small to establish a workable flat.									

	Table 1-12 (continued) Square HSS Dimensions and Properties										HS	S10-H	
Shape	$\begin{array}{\|c\|} \hline \text { Design } \\ \text { Wall } \\ \hline \end{array}$	Nom-		b / t	h / t	I	S	r	Z	Workable Flat	Torsion		Surface Area
	$\begin{gathered} \text { Inick- } \\ \text { ness, } \\ t \\ \hline \end{gathered}$	Wt.	A								J	C	
	in.	lb/ft	in. ${ }^{2}$			in. ${ }^{4}$	in. ${ }^{3}$	in.	in. ${ }^{3}$	in.	in. ${ }^{4}$	in. ${ }^{3}$	$\mathrm{ft}^{2} / \mathrm{ft}$
HSS10×10×3/4	0.698	89.50	24.7	11.3	11.3	347	69.4	3.75	84.7	65/8	578	119	3.13
$\times 5 / 8$	0.581	76.33	21.0	14.2	14.2	304	60.8	3.80	73.2	73/16	498	102	3.17
$\times 1 / 2$	0.465	62.46	17.2	18.5	18.5	256	51.2	3.86	60.7	$73 / 4$	412	84.2	3.20
$\times^{3} / 8$	0.349	47.90	13.2	25.7	25.7	202	40.4	3.92	47.2	85/16	320	64.8	3.23
$\times 5 / 16$	0.291	40.35	11.1	31.4	31.4	172	34.5	3.94	40.1	85/8	271	54.8	3.25
$\times^{1 / 4}$	0.233	32.63	8.96	39.9	39.9	141	28.3	3.97	32.7	87/8	220	44.4	3.27
$\times^{3 / 16}$	0.174	24.73	6.76	54.5	54.5	108	21.6	4.00	24.8	93/16	167	33.6	3.28
HSS9×9 ${ }^{5} / 8$	0.581	67.82	18.7	12.5	12.5	216	47.9	3.40	58.1	63/16	356	81.6	2.83
$\times 1 / 2$	0.465	55.66	15.3	16.4	16.4	183	40.6	3.45	48.4	$63 / 4$	296	67.4	2.87
$\times^{3} / 8$	0.349	42.79	11.8	22.8	22.8	145	32.2	3.51	37.8	75/16	231	52.1	2.90
$\times 5 / 16$	0.291	36.10	9.92	27.9	27.9	124	27.6	3.54	32.1	75/8	196	44.0	2.92
$\times 1 / 4$	0.233	29.23	8.03	35.6	35.6	102	22.7	3.56	26.2	7\%/8	159	35.8	2.93
$\times 3 / 16$	0.174	22.18	6.06	48.7	48.7	78.2	17.4	3.59	20.0	83/16	121	27.1	2.95
$\times 1 / 8$	0.116	14.96	4.09	74.6	74.6	53.5	11.9	3.62	13.6	87/16	82.0	18.3	2.97
HSS8×8×5/8	0.581	59.32	16.4	10.8	10.8	146	36.5	2.99	44.7	53/16	244	63.2	2.50
$\times 1 / 2$	0.465	48.85	13.5	14.2	14.2	125	31.2	3.04	37.5	$53 / 4$	204	52.4	2.53
$\times^{3 / 8}$	0.349	37.69	10.4	19.9	19.9	100	24.9	3.10	29.4	65/16	160	40.7	2.57
$\times 5 / 16$	0.291	31.84	8.76	24.5	24.5	85.6	21.4	3.13	25.1	65/8	136	34.5	2.58
$\times 1 / 4$	0.233	25.82	7.10	31.3	31.3	70.7	17.7	3.15	20.5	$67 / 8$	111	28.1	2.60
$\times 3 / 16$	0.174	19.63	5.37	43.0	43.0	54.4	13.6	3.18	15.7	73/16	84.5	21.3	2.62
$\times 1 / 8$	0.116	13.26	3.62	66.0	66.0	37.4	9.34	3.21	10.7	77/16	57.3	14.4	2.63
HSS7 $\times 7 \times 5 / 8$	0.581	50.81	14.0	9.05	9.05	93.4	26.7	2.58	33.1	43/16	158	47.1	2.17
$\times 1 / 2$	0.465	42.05	11.6	12.1	12.1	80.5	23.0	2.63	27.9	43/4	133	39.3	2.20
$\times 3 / 8$	0.349	32.58	8.97	17.1	17.1	65.0	18.6	2.69	22.1	55/16	105	30.7	2.23
$\times 5 / 16$	0.291	27.59	7.59	21.1	21.1	56.1	16.0	2.72	18.9	5/8	89.7	26.1	2.25
$\times^{1 / 4}$	0.233	22.42	6.17	27.0	27.0	46.5	13.3	2.75	15.5	$57 / 8$	73.5	21.3	2.27
$\times 3 / 16$	0.174	17.08	4.67	37.2	37.2	36.0	10.3	2.77	11.9	63/16	56.1	16.2	2.28
$\times 1 / 8$	0.116	11.56	3.16	57.3	57.3	24.8	7.09	2.80	8.13	67/16	38.2	11.0	2.30
HSS6×6× ${ }^{\text {/ }} 8$	0.581	42.30	11.7	7.33	7.33	55.2	18.4	2.17	23.2	$33 / 16$	94.9	33.4	1.83
$\times 1 / 2$	0.465	35.24	9.74	9.90	9.90	48.3	16.1	2.23	19.8	$33 / 4$	81.1	28.1	1.87
$\times 3 / 8$	0.349	27.48	7.58	14.2	14.2	39.5	13.2	2.28	15.8	45/16	64.6	22.1	1.90
$\times 5 / 16$	0.291	23.34	6.43	17.6	17.6	34.3	11.4	2.31	13.6	45/8	55.4	18.9	1.92
$\times^{1 / 4}$	0.233	19.02	5.24	22.8	22.8	28.6	9.54	2.34	11.2	47/8	45.6	15.4	1.93
$\times 3 / 16$	0.174	14.53	3.98	31.5	31.5	22.3	7.42	2.37	8.63	53/16	35.0	11.8	1.95
$\times 1 / 8$	0.116	9.86	2.70	48.7	48.7	15.5	5.15	2.39	5.92	57/16	23.9	8.03	1.97
Note: For width-to-thickness criteria, refer to Table 1-12A.													

Table 1-12A Width-to-Thickness Criteria for Rectangular and Square HSS				
Nominal Wall Thickness, in.	Width-to-Thickness Criteria for Rectangular and Square HSS			
	Compression	F		Shear
	Nonslender up to	Compact up to	Compact up to	$C_{12}=1.0$ up to
	Flange Width, in.	Flange Width, in.	Web Height, in.	Web Height, in.
7/8	24	22	24	24
$3 / 4$	24	20	,	1
5/8	20	16	1	1
1/2	16	12	\dagger	\dagger
$3 / 8$	12	10	20	20
5/16	10	8	18	18
$1 / 4$	8	6	14	14
3/16	6	5	10	10
1/8	4	3	7	7
Note: Width-to-thickness criteria given for $F_{y}=50 \mathrm{ksi}$.				

		Di	Table mens				es			
Shape	Design Wall Thickness, t	Nom- inal Wt.	Area, A	D / t	I	S	r	Z	Torsion	
									J	C
	in.	lb/ft	in. ${ }^{2}$		in. ${ }^{4}$	in. ${ }^{3}$	in.	in. ${ }^{3}$	in. ${ }^{4}$	in. ${ }^{3}$
HSS9.625×0.500	0.465	48.77	13.4	20.7	141	29.2	3.24	39.0	281	58.5
$\times 0.375$	0.349	37.08	10.2	27.6	110	22.8	3.28	30.0	219	45.5
$\times 0.312$	0.291	31.06	8.53	33.1	93.0	19.3	3.30	25.4	186	38.7
$\times 0.250$	0.233	25.06	6.87	41.3	75.9	15.8	3.32	20.6	152	31.5
$\times 0.188^{f}$	0.174	18.97	5.17	55.3	57.7	12.0	3.34	15.5	115	24.0
HSS8.625×0.625	0.581	53.45	14.7	14.8	119	27.7	2.85	37.7	239	55.4
$\times 0.500$	0.465	43.43	11.9	18.5	100	23.1	2.89	31.0	199	46.2
$\times 0.375$	0.349	33.07	9.07	24.7	77.8	18.0	2.93	23.9	156	36.1
$\times 0.322$	0.300	28.58	7.85	28.8	68.1	15.8	2.95	20.8	136	31.6
$\times 0.250$	0.233	22.38	6.14	37.0	54.1	12.5	2.97	16.4	108	25.1
$\times 0.188^{f}$	0.174	16.96	4.62	49.6	41.3	9.57	2.99	12.4	82.5	19.1
HSS7.625×0.375	0.349	29.06	7.98	21.8	52.9	13.9	2.58	18.5	106	27.8
$\times 0.328$	0.305	25.59	7.01	25.0	47.1	12.3	2.59	16.4	94.1	24.7
HSS7.500×0.500	0.465	37.42	10.3	16.1	63.9	17.0	2.49	23.0	128	34.1
$\times 0.375$	0.349	28.56	7.84	21.5	50.2	13.4	2.53	17.9	100	26.8
$\times 0.312$	0.291	23.97	6.59	25.8	42.9	11.4	2.55	15.1	85.8	22.9
$\times 0.250$	0.233	19.38	5.32	32.2	35.2	9.37	2.57	12.3	70.3	18.7
$\times 0.188$	0.174	14.70	4.00	43.1	26.9	7.17	2.59	9.34	53.8	14.3
HSS7.000×0.500	0.465	34.74	9.55	15.1	51.2	14.6	2.32	19.9	102	29.3
$\times 0.375$	0.349	26.56	7.29	20.1	40.4	11.6	2.35	15.5	80.9	23.1
$\times 0.312$	0.291	22.31	6.13	24.1	34.6	9.88	2.37	13.1	69.1	19.8
$\times 0.250$	0.233	18.04	4.95	30.0	28.4	8.11	2.39	10.7	56.8	16.2
$\times 0.188$	0.174	13.69	3.73	40.2	21.7	6.21	2.41	8.11	43.5	12.4
$\times 0.125^{f}$	0.116	9.19	2.51	60.3	14.9	4.25	2.43	5.50	29.7	8.49
HSS6.875×0.500	0.465	34.07	9.36	14.8	48.3	14.1	2.27	19.1	96.7	28.1
$\times 0.375$	0.349	26.06	7.16	19.7	38.2	11.1	2.31	14.9	76.4	22.2
$\times 0.312$	0.291	21.89	6.02	23.6	32.7	9.51	2.33	12.6	65.4	19.0
$\times 0.250$	0.233	17.71	4.86	29.5	26.8	7.81	2.35	10.3	53.7	15.6
$\times 0.188$	0.174	13.44	3.66	39.5	20.6	5.99	2.37	7.81	41.1	12.0
${ }^{\text {f }}$ Shape exceeds compact limit for flexure with $F_{y}=46 \mathrm{ksi}$.										

		Dim	able ens	$1-1$ Ons			ies			
Shape	Design Wall Thickness, t	Nom- inal Wt.	Area, A	D / t	I	S	r	Z	Torsion	
									J	C
	in.	lb/ft	in. ${ }^{2}$		in. ${ }^{4}$	in. ${ }^{3}$	in.	in. ${ }^{3}$	in. ${ }^{4}$	in. ${ }^{3}$
HSS2.375×0.250	0.233	5.68	1.57	10.2	0.910	0.766	0.762	1.07	1.82	1.53
$\times 0.218$	0.203	5.03	1.39	11.7	0.824	0.694	0.771	0.960	1.65	1.39
$\times 0.188$	0.174	4.40	1.20	13.6	0.733	0.617	0.781	0.845	1.47	1.23
$\times 0.154$	0.143	3.66	$\begin{aligned} & 1.00 \\ & 0.823 \end{aligned}$	16.6	0.627	0.528	0.791	0.713	1.25	1.06
$\times 0.125$	0.116	$\begin{aligned} & 3.66 \\ & 3.01 \end{aligned}$		20.5	0.527	0.443	0.800	0.592	1.05	0.887
HSS1.900×0.188	0.174	3.44	0.943	10.9	0.355	0.374	0.613	0.520	0.710	0.747
$\times 0.145$	0.135	2.72	0.749	14.1	0.293	0.309	0.626	0.421	0.586	0.617
$\times 0.120$	0.111	2.28	0.624	17.1	0.251	0.264	0.634	0.356	0.501	0.527
HSS1.660×0.140	0.130	2.27	0.625	12.8	0.184	0.222	0.543	0.305	0.368	0.444

			Ta ime	ble 1 nsion	$\mid-14$ Pip ns a	(con and	Pro	ued) pert				
Shape	Nom- inal Wt.	Dimensions		Nominal Design Wall Wall Thick- Thick- ness ness 		Area	D / t	I	S	r	J	Z
		Outside Diameter	Inside Diameter									
	lb/ft	in.	in.	in.	in.	in. ${ }^{2}$		in. ${ }^{4}$	in. ${ }^{3}$	in.	in. ${ }^{4}$	in. ${ }^{3}$
Double-Extra Strong (xx-Strong)												
Pipe 12 xx -Strong	126	12.750	10.9	1.00	0.930	35.4	13.8	625	97.6	4.20	1250	134
Pipe 10 xx -Strong	104	10.750	8.94	1.00	0.930	28.8	11.6	354	65.6	3.51	709	90.9
Pipe 8 xx-Strong	72.5	8.625	6.88	0.875	0.816	20.0	10.6	154	35.8	2.78	308	49.9
Pipe 6 xx-Strong	53.2	6.625	4.90	0.864	0.805	14.7	8.23	63.5	19.2	2.08	127	27.4
Pipe 5 xx-Strong	38.6	5.563	4.06	0.750	0.699	10.7	7.96	32.2	11.6	1.74	64.4	16.7
Pipe 4 xx -Strong	27.6	4.500	3.15	0.674	0.628	7.66	7.17	14.7	6.53	1.39	29.4	9.50
Pipe 3 xx-Strong	18.6	3.500	2.30	0.600	0.559	5.17	6.26	5.79	3.31	1.06	11.6	4.89
Pipe $2^{1 / 2 x x}$-Strong	13.7	2.875	1.77	0.552	0.514	3.83	5.59	2.78	1.94	0.854	5.56	2.91
Pipe 2 xx -Strong	9.04	2.375	1.50	0.436	0.406	2.51	5.85	1.27	1.07	0.711	2.54	1.60

Table 1-15 (continued) Double Angles

Properties

Note: For width-to-thickness criteria, refer to Table 1-7B.

[^13]

$\mathrm{X}-$ LLBB	$-X$	Table 1-15 (continued) Double Angles Properties							-X	
Shape	Area, A	Radius of Gyration								
		LLBB				SLBB				
		Separation, s, in.			r_{x}	r_{y}			r_{x}	
					Separation, s, in.					
		0	3/8	3/4		0	3/8	3/4		
	in. ${ }^{2}$	in.	in.	in.		in.	in.	in.	in.	in.
$2 \mathrm{~L} 3 \times 3 \times 1 / 2$	5.52	1.29	1.43	1.58	0.895	1.29	1.43	1.58	0.895	
$\times{ }^{7 / 16}$	4.86	1.28	1.42	1.57	0.903	1.28	1.42	1.57	0.903	
$\times^{3 / 8}$	4.22	1.27	1.41	1.55	0.910	1.27	1.41	1.55	0.910	
$\times 5 / 16$	3.56	1.26	1.39	1.54	0.918	1.26	1.39	1.54	0.918	
$\times 1 / 4$	2.88	1.25	1.38	1.52	0.926	1.25	1.38	1.52	0.926	
$\times 3 / 16$	2.18	1.24	1.37	1.51	0.933	1.24	1.37	1.51	0.933	
$2 \mathrm{~L} 3 \times 2^{1 / 2} \times{ }^{1 / 2}$	5.00	1.04	1.18	1.33	0.910	1.35	1.49	1.64	0.718	
$\times{ }^{7 / 16}$	4.44	1.02	1.16	1.32	0.917	1.34	1.48	1.63	0.724	
$\times 3 / 8$	3.86	1.01	1.15	1.30	0.924	1.32	1.46	1.61	0.731	
$\times 5 / 16$	3.26	1.00	1.14	1.29	0.932	1.31	1.45	1.60	0.739	
$\times 1 / 4$	2.64	0.991	1.12	1.27	0.940	1.30	1.44	1.58	0.746	
$\times 3 / 16$	2.00	0.980	1.11	1.25	0.947	1.29	1.42	1.57	0.753	
$2 \mathrm{~L} 3 \times 2 \times 1 / 2$	4.52	0.795	0.940	1.10	0.922	1.42	1.56	1.72	0.543	
$\times 3 / 8$	3.50	0.771	0.911	1.07	0.937	1.39	1.54	1.69	0.555	
$\times 5 / 16$	2.96	0.760	0.897	1.05	0.945	1.38	1.52	1.67	0.562	
$\times 1 / 4$	2.40	0.749	0.883	1.03	0.953	1.37	1.51	1.66	0.569	
$\times 3 / 16$	1.83	0.739	0.869	1.02	0.961	1.35	1.49	1.64	0.577	
$2 \mathrm{~L} 2^{1 / 2} \times 2^{1 / 2} \times 1 / 2$	4.52	1.09	1.23	1.39	0.735	1.09	1.23	1.39	0.735	
$\times 3 / 8$	3.46	1.07	1.21	1.36	0.749	1.07	1.21	1.36	0.749	
$\times 5 / 16$	2.92	1.05	1.19	1.34	0.756	1.05	1.19	1.34	0.756	
$\times^{1 / 4}$	2.38	1.04	1.18	1.33	0.764	1.04	1.18	1.33	0.764	
$\times 3 / 16$	1.80	1.03	1.17	1.31	0.771	1.03	1.17	1.31	0.771	
$2 \mathrm{~L} 2^{1 / 2} \times 2 \times 3 / 8$	3.10	0.815	0.957	1.11	0.766	1.13	1.27	1.42	0.574	
$\times 5 / 16$	2.64	0.804	0.943	1.10	0.774	1.12	1.26	1.41	0.581	
$\times 1 / 4$	2.14	0.794	0.930	1.08	0.782	1.10	1.24	1.39	0.589	
$\times 3 / 16$	1.64	0.784	0.916	1.07	0.790	1.09	1.23	1.38	0.597	
$2 \mathrm{~L} 2^{1 / 2 \times 1}{ }^{1 / 2} \times 1 / 4$	1.89	0.551	0.691	0.850	0.790	1.17	1.32	1.47	0.409	
$\times 3 / 16$	1.45	0.541	0.677	0.833	0.800	1.16	1.30	1.46	0.416	
$2 \mathrm{~L} 2 \times 2 \times 3 / 8$	2.74	0.865	1.01	1.17	0.591	0.865	1.01	1.17	0.591	
$\times 5 / 16$	2.32	0.853	0.996	1.15	0.598	0.853	0.996	1.15	0.598	
$\times 1 / 4$	1.89	0.842	0.982	1.14	0.605	0.842	0.982	1.14	0.605	
$x^{3} / 16$	1.44	0.831	0.967	1.12	0.612	0.831	0.967	1.12	0.612	
$\times 1 / 8$	0.982	0.818	0.951	1.10	0.620	0.818	0.951	1.10	0.620	
Note: For width-to-thickness criteria, refer to Table 1-7B.										

				able Do	$\begin{aligned} & 1- \\ & \mathrm{Pr} \\ & \text { Pr } \end{aligned}$				$e d)$											
Shape	Flexural-Torsional Properties												Single Angle Properties							
	LLBB ration, s, in.						$\begin{gathered} \hline \text { SLBB } \\ \hline \text { Separation, } s, \text { in. } \end{gathered}$													
								r_{z}												
	0		3/8		$3 / 4$									0		3/8		3/4		
	\bar{r}_{0}	H	\bar{r}_{0}	H	\bar{r}_{0}	H	\bar{r}_{0}		H	\bar{r}_{0}	H	\bar{r}_{0}	H							
	in.		in.		in.		in.	in.		in.		in. ${ }^{2}$		in.						
$2 \mathrm{~L} 3 \times 3 \times 1 / 2$	1.71	0.842	1.82	0.861	1.94	0.878	1.71	0.842	1.82	0.861	1.94	0.878	2.76	0.580						
$\times^{7 / 16}$	1.71	0.838	1.82	0.857	1.94	0.874	1.71	0.838	1.82	0.857	1.94	0.874	2.43	0.580						
$\times 3 / 8$	1.71	0.834	1.81	0.853	1.93	0.870	1.71	0.834	1.81	0.853	1.93	0.870	2.11	0.581						
$\times 5 / 16$	1.71	0.830	1.81	0.849	1.93	0.866	1.71	0.830	1.81	0.849	1.93	0.866	1.78	0.583						
$\times 1 / 4$	1.71	0.827	1.81	0.845	1.92	0.863	1.71	0.827	1.81	0.845	1.92	0.863	1.44	0.585						
$\times^{3 / 16}$	1.71	0.823	1.80	0.842	1.91	0.859	1.71	0.823	1.80	0.842	1.91	0.859	1.09	0.586						
$2 \mathrm{~L} 3 \times 2^{1 / 2} \mathrm{X}^{1 / 2} 2$	1.57	0.774	1.66	0.800	1.78	0.824	1.61	0.905	1.73	0.918	1.86	0.929	2.50	0.516						
$\times^{7 / 16}$	1.57	0.769	1.66	0.795	1.77	0.819	1.60	0.901	1.72	0.914	1.85	0.926	2.22	0.516						
$\times^{3} / 8$	1.57	0.764	1.66	0.790	1.77	0.815	1.60	0.897	1.72	0.911	1.85	0.923	1.93	0.517						
$\times 5 / 16$	1.57	0.760	1.66	0.785	1.76	0.810	1.59	0.893	1.71	0.907	1.84	0.920	1.63	0.518						
$\times 1 / 4$	1.57	0.756	1.66	0.781	1.76	0.806	1.59	0.890	1.70	0.904	1.83	0.917	1.32	0.520						
$\times 3 / 16$	1.57	0.753	1.65	0.778	1.75	0.802	1.58	0.887	1.70	0.901	1.82	0.914	1.00	0.521						
$2 \mathrm{~L} 3 \times 2 \times 1 / 2$	1.47	0.684	1.55	0.717	1.66	0.751	1.55	0.955	1.69	0.962	1.83	0.968	2.26	0.425						
$\times^{3} / 8$	1.48	0.675	1.55	0.707	1.65	0.739	1.54	0.949	1.67	0.957	1.81	0.963	1.75	0.426						
$\times 5 / 16$	1.48	0.671	1.56	0.702	1.65	0.734	1.53	0.946	1.66	0.954	1.80	0.961	1.48	0.428						
$\times 1 / 4$	1.48	0.668	1.56	0.698	1.65	0.730	1.52	0.944	1.65	0.952	1.79	0.959	1.20	0.431						
$\times^{3 / 16}$	1.49	0.666	1.55	0.695	1.64	0.726	1.52	0.941	1.64	0.950	1.78	0.957	0.917	0.435						
$2 L 2^{1 / 2} \times 2^{1 / 2} \times^{1 / 1 / 2}$	1.43	0.850	1.54	0.871	1.67	0.890	1.43	0.850	1.54	0.871	1.67	0.890	2.26	0.481						
$x^{3 / 8}$	1.42	0.839	1.53	0.861	1.65	0.881	1.42	0.839	1.53	0.861	1.65	0.881	1.73	0.481						
$\times 5 / 16$	1.42	0.834	1.53	0.856	1.65	0.876	1.42	0.834	1.53	0.856	1.65	0.876	1.46	0.481						
$\times 1 / 4$	1.42	0.829	1.52	0.852	1.64	0.872	1.42	0.829	1.52	0.852	1.64	0.872	1.19	0.482						
$\times 3 / 16$	1.42	0.825	1.52	0.847	1.63	0.868	1.42	0.825	1.52	0.847	1.63	0.868	0.901	0.482						
$2 \mathrm{~L} 2^{1} / 2 \times 2 \times 3 / 8$	1.29	0.754	1.38	0.786	1.49	0.817	1.32	0.913	1.45	0.927	1.59	0.939	1.55	0.419						
$\times 5 / 16$	1.29	0.748	1.38	0.781	1.49	0.812	1.32	0.909	1.44	0.923	1.58	0.936	1.32	0.420						
$\times 1 / 4$	1.29	0.744	1.38	0.775	1.49	0.806	1.32	0.904	1.43	0.920	1.57	0.933	1.07	0.423						
$\times 3 / 16$	1.29	0.740	1.38	0.771	1.48	0.801	1.31	0.901	1.43	0.916	1.56	0.929	0.818	0.426						
$2 \mathrm{~L} 2^{1 / 2} 2 \times 1^{11 / 2} \times 1 / 4$	1.21	0.629	1.28	0.668	1.38	0.711	1.26	0.962	1.40	0.969	1.55	0.975	0.947	0.321						
$\times 3 / 16$	1.22	0.625	1.29	0.662	1.38	0.704	1.26	0.959	1.39	0.967	1.53	0.973	0.724	0.324						
$2 \mathrm{~L} 2 \times 2 \times 3 / 8$	1.14	0.847	1.25	0.874	1.38	0.897	1.14	0.847	1.25	0.874	1.38	0.897	1.37	0.386						
$\times 5 / 16$	1.14	0.841	1.25	0.868	1.37	0.891	1.14	0.841	1.25	0.868	1.37	0.891	1.16	0.386						
$\times^{1 / 4}$	1.13	0.835	1.24	0.862	1.37	0.886	1.13	0.835	1.24	0.862	1.37	0.886	0.944	0.387						
$\times 3 / 16$	1.13	0.830	1.24	0.857	1.36	0.882	1.13	0.830	1.24	0.857	1.36	0.882	0.722	0.389						
$\times 1 / 8$	1.13	0.826	1.23	0.853	1.35	0.877	1.13	0.826	1.23	0.853	1.35	0.877	0.491	0.391						
Note: For width-to-thickness criteria, refer to Table 1-7B.																				

2C-SHAPE						ble Sh ope		S						
Shape	Area, A	Axis Y-Y												$\begin{aligned} & \text { Axis } \\ & \mathrm{X}-\mathrm{X} \end{aligned}$
		Separation, s, in.												
		0				3/8				3/4				r_{x}
		I	S	r	Z	I	S	r	Z	I	S	r	Z	
	in. ${ }^{2}$	in. ${ }^{4}$	in. ${ }^{3}$	in.	in. ${ }^{3}$	in. ${ }^{4}$	in. ${ }^{3}$	in.	in. ${ }^{3}$	in. ${ }^{4}$	in. ${ }^{3}$	in.	in. ${ }^{3}$	in.
$2 \mathrm{C} 15 \times 50$	29.4	40.7	11.0	1.18	23.5	50.5	12.9	1.31	29.0	62.4	15.3	1.46	34.5	5.24
$\times 40$	23.6	32.6	9.25	1.18	18.4	40.2	10.9	1.31	22.8	49.6	12.7	1.45	27.2	5.43
$\times 33.9$	20.0	28.5	8.38	1.20	15.8	35.1	9.78	1.33	19.5	43.1	11.4	1.47	23.3	5.61
$2 \mathrm{C} 12 \times 30$	17.6	18.2	5.75	1.02	11.9	23.3	6.94	1.15	15.2	29.6	8.36	1.30	18.5	4.29
$\times 25$	14.7	15.6	5.11	1.03	9.89	19.8	6.12	1.16	12.6	25.0	7.32	1.31	15.4	4.43
$\times 20.7$	12.2	13.6	4.64	1.06	8.49	17.2	5.51	1.19	10.8	21.7	6.55	1.34	13.0	4.61
2C10×30	17.6	15.3	5.04	0.931	11.4	20.2	6.27	1.07	14.7	26.3	7.73	1.22	18.0	3.43
$\times 25$	14.7	12.3	4.25	0.914	9.06	16.2	5.27	1.05	11.8	21.1	6.48	1.20	14.6	3.52
$\times 20$	11.7	9.91	3.62	0.918	7.11	13.0	4.44	1.05	9.32	16.9	5.43	1.20	11.5	3.67
$\times 15.3$	8.96	8.14	3.13	0.953	5.68	10.6	3.80	1.09	7.36	13.7	4.59	1.23	9.04	3.88
$2 \mathrm{C} 9 \times 20$	11.7	8.80	3.32	0.866	6.84	11.8	4.15	1.00	9.05	15.6	5.15	1.15	11.2	3.22
$\times 15$	8.80	6.86	2.76	0.882	5.17	9.10	3.41	1.02	6.82	12.0	4.19	1.17	8.48	3.40
$\times 13.4$	7.88	6.34	2.61	0.897	4.74	8.39	3.20	1.03	6.21	11.0	3.92	1.18	7.69	3.48
$2 \mathrm{C8} \times 18.75$	11.0	7.46	2.95	0.823	6.23	10.2	3.75	0.962	8.29	13.7	4.71	1.11	10.4	2.82
$\times 13.75$	8.06	5.51	2.35	0.826	4.48	7.47	2.95	0.962	5.99	10.0	3.68	1.11	7.51	2.99
$\times 11.5$	6.74	4.82	2.13	0.846	3.86	6.50	2.66	0.982	5.12	8.66	3.29	1.13	6.38	3.11
207×14.75	8.66	5.18	2.25	0.773	4.61	7.21	2.90	0.912	6.23	9.85	3.68	1.07	7.85	2.51
$\times 12.25$	7.18	4.30	1.96	0.773	3.78	5.97	2.51	0.911	5.13	8.14	3.17	1.06	6.48	2.59
$\times 9.8$	5.74	3.59	1.72	0.791	3.11	4.95	2.17	0.929	4.18	6.72	2.73	1.08	5.26	2.72
$2 \mathrm{C} 6 \times 13$	7.64	4.11	1.91	0.734	3.92	5.85	2.50	0.876	5.35	8.13	3.21	1.03	6.77	2.13
$\times 10.5$	6.14	3.26	1.60	0.728	3.08	4.63	2.08	0.867	4.24	6.43	2.67	1.02	5.39	2.22
$\times 8.2$	4.78	2.63	1.37	0.741	2.45	3.72	1.76	0.881	3.34	5.14	2.24	1.04	4.24	2.34
$2 \mathrm{C} \times \times 9$	5.28	2.45	1.30	0.682	2.52	3.59	1.73	0.824	3.51	5.09	2.25	0.982	4.50	1.84
$\times 6.7$	3.94	1.86	1.06	0.688	1.91	2.71	1.40	0.831	2.65	3.84	1.81	0.989	3.83	1.95
2C4×7.25	4.26	1.75	1.02	0.641	1.96	2.63	1.38	0.786	2.75	3.81	1.82	0.946	3.55	1.47
$\times 6.25$	3.54	1.36	0.824	0.620	1.54	2.06	1.12	0.763	2.20	3.01	1.49	0.922	2.87	1.50
$\times 5.4$	3.16	1.29	0.812	0.637	1.44	1.94	1.10	0.783	2.04	2.82	1.44	0.943	2.63	1.56
$\times 4.5$	2.76	1.25	0.789	0.673	1.36	1.86	1.05	0.820	1.88	2.66	1.36	0.981	2.40	1.63
$2 \mathrm{C} 3 \times 6$	3.52	1.33	0.833	0.614	1.60	2.06	1.15	0.764	2.26	3.03	1.54	0.927	2.92	1.09
$\times 5$	2.94	1.05	0.699	0.597	1.29	1.63	0.969	0.746	1.84	2.43	1.30	0.909	2.39	1.12
$\times 4.1$	2.40	0.842	0.597	0.591	1.05	1.32	0.827	0.741	1.50	1.97	1.10	0.905	1.95	1.18
$\times 3.5$	2.18	0.766	0.558	0.593	0.966	1.20	0.772	0.743	1.37	1.80	1.03	0.908	1.78	1.20

Table 1-17 2MC-Shapes Properties														
Shape	Area, A	Axis Y-Y												$\begin{aligned} & \text { Axis } \\ & \text { X-X } \end{aligned}$
		Separation, s, in.												
		0				3/8				3/4				r_{x}
		I	S	r	Z	I	S	r	Z	I	S	r	Z	
	in. ${ }^{2}$	in. ${ }^{4}$	in. ${ }^{3}$	in.	in. ${ }^{3}$	in. ${ }^{4}$	in. ${ }^{3}$	in.	in. ${ }^{3}$	in. ${ }^{4}$	in. ${ }^{3}$	in.	in. ${ }^{3}$	in.
2MC18×58	34.2	60.6	14.4	1.33	29.5	72.8	16.6	1.46	35.9	87.5	19.1	1.60	42.3	6.29
$\times 51.9$	30.6	55.0	13.4	1.34	26.3	65.9	15.4	1.47	32.0	79.0	17.6	1.61	37.7	6.41
$\times 45.8$	27.0	50.1	12.5	1.36	23.4	59.8	14.3	1.49	28.4	71.4	16.3	1.63	33.5	6.55
$\times 42.7$	25.2	47.8	12.1	1.38	22.1	57.0	13.8	1.51	26.8	67.9	15.7	1.64	31.6	6.64
$2 \mathrm{MC13} \mathrm{\times 50}$	29.4	60.7	13.8	1.44	28.6	72.5	15.8	1.57	34.1	86.3	18.0	1.71	39.7	4.62
$\times 40$	23.4	49.1	11.7	1.45	22.7	58.4	13.4	1.58	27.2	69.4	15.2	1.72	31.6	4.82
$\times 35$	20.6	44.3	10.9	1.47	20.2	52.6	12.3	1.60	24.1	62.3	14.0	1.74	27.9	4.95
$\times 31.8$	18.7	41.5	10.4	1.49	18.7	49.2	11.7	1.62	22.2	58.2	13.3	1.76	25.7	5.05
2MC12×50	29.4	67.2	16.2	1.51	30.9	79.8	18.5	1.65	36.4	94.5	20.9	1.79	41.9	4.28
$\times 45$	26.4	59.9	14.9	1.51	27.5	71.1	16.9	1.64	32.4	84.1	19.2	1.79	37.4	4.36
$\times 40$	23.6	53.7	13.8	1.51	24.5	63.7	15.6	1.65	29.0	75.3	17.7	1.79	33.4	4.46
$\times 35$	20.6	48.0	12.7	1.53	21.6	56.8	14.4	1.66	25.5	67.1	16.2	1.81	29.4	4.59
$\times 31$	18.2	44.0	12.0	1.55	19.7	52.1	13.5	1.69	23.1	61.4	15.2	1.83	26.5	4.71
2MC12×14.3	8.36	3.19	1.50	0.618	3.15	4.66	2.02	0.747	4.72	6.73	2.70	0.897	6.29	4.27
$2 \mathrm{MC12} \mathrm{\times 10.6}$	6.20	1.21	0.804	0.441	1.67	2.05	1.21	0.575	2.83	3.33	1.78	0.733	3.99	4.22
2MC10×41.1	24.2	60.0	13.9	1.58	26.4	70.7	15.7	1.71	30.9	83.1	17.7	1.85	35.5	3.61
$\times 33.6$	19.7	49.5	12.1	1.58	21.5	58.2	13.6	1.72	25.2	68.3	15.3	1.86	28.9	3.75
$\times 28.5$	16.7	43.5	11.0	1.61	18.7	51.1	12.3	1.75	21.9	59.8	13.8	1.89	25.0	3.89
2MC10×25	14.7	27.8	8.18	1.38	14.0	33.6	9.36	1.51	16.8	40.4	10.7	1.66	19.5	3.87
$\times 22$	12.9	25.4	7.67	1.40	12.8	30.7	8.76	1.54	15.2	36.8	10.0	1.69	17.6	3.99
2MC10×8.4 ${ }^{\text {c }}$	4.92	1.05	0.700	0.462	1.40	1.75	1.03	0.596	2.32	2.79	1.49	0.753	3.24	3.61
$\times 6.5{ }^{\text {c }}$	3.90	0.414	0.354	0.326	0.757	0.835	0.615	0.463	1.49	1.53	0.990	0.626	2.22	3.43
2MC9×25.4	14.9	29.2	8.34	1.40	14.5	35.2	9.53	1.53	17.3	42.2	10.9	1.68	20.1	3.43
$\times 23.9$	14.0	27.8	8.05	1.41	13.8	33.4	9.19	1.54	16.4	40.1	10.5	1.69	19.0	3.48
2MC8×22.8	13.4	27.7	7.91	1.44	13.5	33.2	9.01	1.58	16.0	39.7	10.2	1.72	18.6	3.09
$\times 21.4$	12.6	26.3	7.63	1.45	12.8	31.6	8.68	1.59	15.2	37.7	9.86	1.73	17.5	3.13
2MC8×20	11.7	17.1	5.66	1.21	9.88	21.2	6.61	1.34	12.1	26.2	7.70	1.49	14.3	3.04
$\times 18.7$	11.0	16.2	5.45	1.21	9.34	20.1	6.35	1.35	11.4	24.8	7.39	1.50	13.5	3.09
2MC8×8.5	5.00	2.16	1.15	0.658	2.14	3.14	1.52	0.793	3.08	4.47	1.99	0.946	4.02	3.05
2MC7×22.7	13.3	29.0	8.06	1.47	13.9	34.7	9.16	1.61	16.4	41.3	10.4	1.76	18.9	2.67
$\times 19.1$	11.2	25.1	7.27	1.50	12.1	30.0	8.25	1.64	14.2	35.7	9.34	1.78	16.3	2.77
${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=36 \mathrm{ksi}$.														

				cont OS ann rties					
W-Shape	Channel	Axis X-X				Axis Y-Y			
		y_{1}	y_{2}	Z	y_{p}	I	S	r	Z
		in.	in.	in. ${ }^{3}$	in.	in. ${ }^{4}$	in. ${ }^{3}$	in.	in. ${ }^{3}$
W36×150	MC18×42.7	21.8	14.5	738	28.0	824	91.5	3.81	146
	C15×33.9	21.1	15.1	716	25.9	584	77.9	3.28	122
W33×141	MC18×42.7	20.4	13.3	652	27.0	800	88.9	3.85	142
	C15×33.9	19.8	13.9	635	24.9	561	74.8	3.30	118
W 33×118	MC18×42.7	20.7	12.6	544	27.8	741	82.3	3.96	126
	C15×33.9	20.0	13.3	529	25.5	502	66.9	3.35	102
W30×116	MC18×42.7	18.9	11.5	492	26.1	718	79.8	3.92	124
	C15×33.9	18.3	12.1	480	23.8	479	63.8	3.29	100
W30×99	MC18×42.7	19.2	10.9	412	26.4	682	75.8	4.05	114
	C15×33.9	18.5	11.5	408	24.4	442	59.0	3.37	89.4
W27×94	C15×33.9	16.9	10.4	357	23.6	439	58.5	3.41	89.6
W 27×84	C15×33.9	17.1	10.0	316	23.9	420	56.0	3.48	83.9
W24×84	C15×33.9	15.4	9.10	286	21.6	409	54.5	3.43	83.4
	C12×20.7	14.3	10.0	275	18.5	223	37.2	2.69	58.2
W24×68	$\mathrm{C} 15 \times 33.9$	15.7	8.46	232	21.7	385	51.3	3.58	75.3
	$\mathrm{C} 12 \times 20.7$	14.5	9.49	224	19.2	199	33.2	2.76	50.1
W21×68	C15×33.9	13.9	7.59	207	19.3	379	50.6	3.56	75.1
	C12×20.7	12.9	8.49	200	17.6	194	32.3	2.72	50.0
W21×62	C15×33.9	14.1	7.33	189	19.4	372	49.6	3.63	72.5
	C12×20.7	13.0	8.26	183	18.1	186	31.1	2.77	47.3
W18×50	C15×33.9	12.5	5.92	133	16.9	354	47.3	3.79	67.3
	C12×20.7	11.5	6.76	127	16.1	169	28.2	2.85	42.2
W16×36	$\mathrm{C} 15 \times 33.9$	11.6	4.67	86.8	15.2	339	45.2	4.06	61.6
	C12×20.7	10.7	5.47	83.2	14.6	153	25.6	3.04	36.4
W14×30	C12×20.7	9.57	4.55	62.0	12.9	149	24.8	3.16	34.6
	C10×15.3	9.11	4.97	60.3	12.6	86.8	17.4	2.55	24.9
W12×26	C12×20.7	8.63	3.87	48.2	11.6	146	24.4	3.27	33.7
	C10×15.3	8.22	4.24	47.0	11.3	84.5	16.9	2.64	24.1
Note: Width-to-thickness criteria not addressed in this table.									

	Table 1-20 Shapes with p Channels Properties						
S-Shape	Channel	Total Wt.	Total Area	Axis X-X			
				I	$S_{1}=\frac{l}{y_{1}}$	$S_{2}=\frac{1}{y_{2}}$	r
		lb/ft	in. ${ }^{2}$	in. ${ }^{4}$	in. ${ }^{3}$	in. ${ }^{3}$	in.
S24×80	$\begin{aligned} & \mathrm{C} 12 \times 20.7 \\ & \mathrm{C} 10 \times 15.3 \end{aligned}$	$\begin{aligned} & 101 \\ & 95.3 \end{aligned}$	$\begin{aligned} & 29.5 \\ & 27.9 \end{aligned}$	$\begin{aligned} & 2750 \\ & 2610 \end{aligned}$	$\begin{aligned} & 191 \\ & 188 \end{aligned}$	$\begin{aligned} & 278 \\ & 252 \end{aligned}$	$\begin{aligned} & 9.66 \\ & 9.67 \end{aligned}$
S20×66	$\begin{aligned} & \mathrm{C} 12 \times 20.7 \\ & \mathrm{C} 10 \times 15.3 \end{aligned}$	$\begin{aligned} & 86.7 \\ & 81.3 \end{aligned}$	$\begin{aligned} & 25.5 \\ & 23.9 \end{aligned}$	$\begin{aligned} & 1620 \\ & 1530 \end{aligned}$	$\begin{aligned} & 132 \\ & 129 \end{aligned}$	$\begin{aligned} & 202 \\ & 181 \end{aligned}$	7.97 8.00
S15×42.9	$\begin{array}{r} \mathrm{C} 10 \times 15.3 \\ \mathrm{C} 8 \times 11.5 \end{array}$	$\begin{aligned} & 58.2 \\ & 54.4 \end{aligned}$	$\begin{aligned} & 17.1 \\ & 16.0 \end{aligned}$	615 583	65.7 64.7	105 93.9	6.00 6.04
S12×31.8	$\begin{array}{r} \mathrm{C} 10 \times 15.3 \\ \mathrm{C} 8 \times 11.5 \end{array}$	$\begin{aligned} & 47.1 \\ & 43.3 \end{aligned}$	$\begin{aligned} & 13.8 \\ & 12.7 \end{aligned}$	$\begin{aligned} & 314 \\ & 297 \end{aligned}$	40.2 39.6	71.2 63.0	$\begin{aligned} & 4.77 \\ & 4.84 \end{aligned}$
S10×25.4	$\begin{array}{r} \mathrm{C} 10 \times 15.3 \\ \mathrm{C} 8 \times 11.5 \end{array}$	$\begin{aligned} & 40.7 \\ & 36.9 \end{aligned}$	$\begin{aligned} & 11.9 \\ & 10.8 \end{aligned}$	$\begin{aligned} & 185 \\ & 175 \end{aligned}$	$\begin{aligned} & 27.5 \\ & 27.1 \end{aligned}$	$\begin{aligned} & 52.7 \\ & 46.3 \end{aligned}$	$\begin{aligned} & 3.94 \\ & 4.02 \end{aligned}$

Note: Width-to-thickness criteria not addressed in this table.

Table 1-21
 Crane Rails
 Dimensions and Properties

ASCE crane rails

ASTM profile 104

ASTM profile 171

ASTM profile 135

ASTM profile 175

$\underset{\sim}{\sim}$		Wt.	$\begin{aligned} & 0 \\ & \text { F } \\ & \text { 首 } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \dot{G} \\ & \text { Gi } \end{aligned}$	Base			Head		Web			Axis X-X				
																S	
					b	m	n	c	r	t	\boldsymbol{h}	\boldsymbol{R}		I	$\begin{aligned} & \text { 픂 } \\ & \text { 포 } \end{aligned}$	$\begin{aligned} & \hline \underset{\sim}{\ddot{0}} \\ & \text { W } \end{aligned}$	y
		lb/y	in. ${ }^{2}$	in. ${ }^{4}$	in. ${ }^{3}$	in. ${ }^{3}$	in.										
岂	$\frac{\text { 득 }}{}$	30	$31 / 8$	125/64	$31 / 8$	17/32	11/64	111/16	12	21/64	$1{ }^{23 / 32}$	12	3.00	4.10	2.55	-	
		40	$31 / 2$	171/128	$31 / 2$	5/8	7/32	$17 / 8$	12	25/64	155/64	12	3.94	6.54	3.59	3.89	1.68
		50	$37 / 8$	$123 / 32$	$37 / 8$	11/16	1/4	$21 / 8$	12	7/16	21/16	12	4.90	10.1	5.10	-	1.88
		60	41/4	1115/128	$41 / 4$	49/64	9/32	$23 / 8$	12	31/64	217/64	12	5.93	14.6	6.64	7.12	2.05
	-	70	45/8	23/64	45/8	13/16	9/32	27/16	12	33/64	25/32	12	6.81	19.7	8.19	8.87	2.22
		80	5	$2^{3 / 16}$	5	7/8	19/64	$2^{1 / 2}$	12	35/64	25/8	12	7.86	26.4	10.1	11.1	2.38
	¢ं	85			$53 / 16$	57/64	19/64	29/16	12	9/16	$2^{3 / 4}$	12	8.33	30.1	11.1	12.2	2.47
		100	$5^{3 / 4}$	$2^{65} / 128$	$5^{3 / 4}$	31/32	5/16	23/4	12	9/16	25/64	12	9.84	44.0	14.6	16.1	2.73
	$\begin{aligned} & \text { ©0 } \\ & \text { NiN } \end{aligned}$	104	5	27/16	5	11/16	1/2	$2^{1 / 2}$	12	1	27/16	31122	10.3	29.8	10.7	13.5	2.21
		135	$53 / 4$	$2^{15 / 32}$	53/16	$11 / 16$	15/32	37/16	14	$11 / 4$	23/16	12	13.3	50.8	17.3	18.1	2.81
		171	6	25/8	6	$11 / 4$	5/8	4.3	Flat	$11 / 4$	23/4	Vert.	16.8	73.4	24.5	24.4	3.01
		175	6	$2^{21 / 32}$	6	19/64	$1 / 2$	$41 / 4$	18	$11 / 2$	37/64	Vert.	17.1	70.5	23.4	23.6	2.98

					es				
Permissible Cross-Sectional Variations									
Nominal Depth, in.	A, Depth at Web Centerline, in.		B, Flange Width, in.		$T+T^{\prime}$ Flanges Out	$E^{\mathrm{a}},$ Web Off Center, in.	C, Max. Depth at any Cross Section over Theoretical Depth, in.		
	Over	Under	Over	Under					
To 12, incl.	1/8	$1 / 8$	$1 / 4$	3/16	$1 / 4$	3/16	$1 / 4$		
Over 12	1/8	$1 / 8$	$1 / 4$	3/16	5/16	$3 / 16$	$1 / 4$		
Permissible Variations in Length									
Variations from Specified Length for Lengths Given, in.									
Nominal Depth ${ }^{\text {b }}$		30 ft and Under		Over 30 ft					
		Over	Under	Over			Under		
Beams 24 in. and under		$3 / 8$	$3 / 8$	$3 / 8$ plus $1 / 16$ for each additional 5 ft or fraction thereof			3/8		
Beams over 24 in., All columns		1/2	1/2	$1 / 2$ plus $1 / 16$ for each additional 5 ft or fraction thereof			1/2		
Mill Straightness Tolerances ${ }^{\text {c }}$									
Sizes		Length		Permissible Variation in Straightness, in.					
		Camber	Sweep						
Flange width equal to or greater than 6 in.				All		$1 / 8$ in. $\times \frac{\text { (total length, } \mathrm{ft})}{10}$			
Flange width less than 6 in.		All		$1 / 8$ in. \times	$\frac{10}{10}$	$1 / 8 \text { in. } \times \frac{(\text { total length, } \mathrm{ft})}{5}$			
Certain sections with a flange width approx. equal to depth \& specified on order as columns ${ }^{\text {d }}$		45 ft and under		$1 / 8 \text { in. } \times \frac{\text { (total length, } \mathrm{ft} \text {) }}{10} \text { with } 3 / 8 \text { in. max. }$					
		Over 45 ft		$3 / 8$ in. $+\left[1 / 8\right.$ in. $\left.\times \frac{(\text { total length, } \mathrm{ft}-45)}{10}\right]$					
Other Permissible Rolling Variations									
Area and Weight		-2.5 to $+3.0 \%$ from the theoretical cross-sectional area or the specified nominal weighte							
Ends Out of Square		$1 / 64$ in., per in. of depth, or of flange width if it is greater than the depth							
a Variation of $5 / 16$ in. max. for sections over $426 \mathrm{lb} / \mathrm{tt}$. ${ }^{\mathrm{b}}$ For shapes specified in the order for use as bearing piles, the permitted variations are plus 5 in . and minus 0 in. ${ }^{\text {c }}$ The tolerances herein are taken from ASTM A6 and apply to the straightness of members received from the rolling mill, measured as illustrated in Figure 1-1. ${ }^{\text {d }}$ Applies only to W 8×31 and heavier, W10×49 and heavier, W1 2×65 and heavier, W 14×90 and heavier, HP 8×36, HP10 $\times 57$, HP12×74 and heavier, and HP14×102 and heavier. If other sections are specified on the order as columns, the tolerance will be subject to negotiation with the manufacturer. ${ }^{\mathrm{e}}$ For shapes with a nominal weight $\geq 100 \mathrm{lb} / \mathrm{tt}$, the permitted variation is $\pm 2.5 \%$ from the theoretical or specified amount.									

Fig. 1-1. Positions for measuring straightness.

*Back of square and centerline of web to be parallel when measuring "out-of-square".							
Permissible Cross-Sectional Variations							
Shape	Nominal Depth, in.	$A^{\mathrm{a}},$ Depth, in.		B, Flange Width, in.		$T+T^{\prime b}$, Flanges Out of Square, per in. of B, in.	E, Web Off Center, in
		Over	Under	Over	Under		
S shapes and M shapes	3 to 7, incl.	$3 / 32$	1/16	1/8	1/8	$1 / 32$	3/16
	Over 7 to 14, incl.	1/8	3/32	5/32	5/32		
	Over 14 to 24, incl.	3/16	1/8	3/16	3/16		
Channels	3 to 7, incl.	$3 / 32$	$1 / 16$	1/8	1/8	$1 / 32$	-
	Over 7 to 14, incl.	1/8	3/32	1/8	$5 / 32$		
	Over 14	$3 / 16$	1/8	1/8	$3 / 16$		
Permissible Variations in Length							
Shape		Variations from Specified Length for Lengths Given ${ }^{\text {c }}$, in.					
		5 to 10 ft , excl.	$\begin{gathered} 10 \text { to } 20 \mathrm{ft}, \\ \text { excl. } \end{gathered}$	$\begin{aligned} & 20 \text { to } 30 \mathrm{ft}, \\ & \text { incl. } \end{aligned}$	Over 30 to 40 ft , incl.	Over 40 to 65 ft , incl.	Over 65 ft
		1	11/2	13/4	$21 / 4$	$2^{3 / 4}$	-
Mill Straightness Tolerances ${ }^{\text {d }}$							
Camber		$1 / 8 \text { in. } \times \frac{(\text { total length, } \mathrm{ft})}{5}$					
Sweep		Due to the extreme variations in flexibility of these shapes, permitted variations for sweep are subject to negotiation between the manufacturer and purchaser for the individual sections involved.					
Other Permissible Rolling Variations							
Area and Weight		-2.5 to $+3.0 \%$ from the theoretical cross-sectional area or the specified nominal weighte					
Ends Out of Square		S-Shapes, M-Shapes and Channels: $1 / 64$ in., per in. of depth					
- Indicates that there is no requirement. ${ }^{\mathrm{a}} A$ is measured at center line of web for S -shapes and M -shapes and at back of web for channels. ${ }^{\mathrm{b}} T+T^{\prime}$ applies when flanges of channels are toed in or out. c The permitted variation under the specified length is 0 in . for all lengths. There are no requirements for lengths over 65 ft . ${ }^{d}$ The tolerances herein are taken from ASTM A6 and apply to the straightness of members received from the rolling mill, measured as illustrated in Figure 1-1. ${ }^{\mathrm{e}}$ For shapes with a nominal weight $\geq 100 \mathrm{lb} / \mathrm{ft}$, the permitted variation is $\pm 2.5 \%$ from the theoretical or specified amount.							

Table 1-25 ASTM A6 Tolerances for Angles 3 in. and Larger				
Permissible Cross-Sectional Variations				
Shape	Nominal Leg Size ${ }^{\text {a }}$, in.	B,Leg Size, in.		T, Out of Square per inch of B, in.
		Over	Under	
Angles	3 to 4, incl.	1/8	3/32	$3 / 128^{\text {b }}$
	Over 4 to 6, incl.	1/8	$1 / 8$	
	Over 6 to 8, incl.	3/16	1/8	
	Over 8 to 10, incl.	$1 / 4$	1/4	
	Over 10	1/4	3/8	
Permissible Variations in Length				
Variations Over Specified Length for Lengths Given ${ }^{\text {c }}$, in.				
5 to 10 ft , excl.	10 to 20 ft , excl.	20 to 30 ft , incl.	Over 30 to 40 ft, incl.	Over 40 to 65 ft, incl.
1	$11 / 2$	13/4	$21 / 4$	$2^{3 / 4}$
Mill Straightness Tolerances ${ }^{\text {d }}$				
Camber	$1 / 8$ in. $\times \frac{\text { (total length, ft) }}{5}$, applied to either leg			
Sweep	Due to the extreme variations in flexibility of these shapes, permitted variations for sweep are subject to negotiation between the manufacturer and purchaser for the individual sections involved.			
Other Permissible Rolling Variations				
Area and Weight	-2.5 to $+3.0 \%$ from the theoretical cross-sectional area or the specified nominal weight			
Ends Out of Square	$3 / 128$ in. per in. of leg length, or $1^{1 / 2} 2^{\circ}$. Variations based on the longer leg of unequal angle.			
a For unequal leg angles, longer leg determines classification. b $3 / 128$ in. per in. $=1^{1 / 2} 2^{\circ}$ ${ }^{\text {c }}$ The permitted variation under the specified length is 0 in. for all lengths. There are no requirements for lengths over 65 ft . ${ }^{\mathrm{d}}$ The tolerances herein are taken from ASTM A6 and apply to the straightness of members received from the rolling mill, measured as illustrated in Figure 1-1.				

				Angles	
Permissible Cross-Sectional Variations					
Nominal Leg Size ${ }^{\text {a }}$, in.	Variations in Thickness for Thicknesses Given, Over and Under, in.			B, Leg Size, Over and Under,	T, Out of Square per Inch of B,
	3/16 and Under	Over $3 / 16$ to $3 / 8$ incl.	Over 3/8	in.	in.
1 and Under	0.008	0.010	-	1/32	$3 / 128{ }^{\text {b }}$
Over 1 to 2, incl.	0.010	0.010	0.012	3/64	
Over 2 to $2^{1 / 2}$, incl.	0.012	0.015	0.015	$1 / 16$	
Over $21 / 2$ to 3 , excl.	-	-	-	$3 / 32{ }^{\text {e }}$	
Permissible Variations in Length					
Section	Variations Over Specified Length for Lengths Given ${ }^{\text {c }}$, in.				
	5 to 10 ft , excl.	$\begin{gathered} 10 \text { to } 20 \mathrm{ft}, \\ \text { excl. } \end{gathered}$	20 to 30 ft , incl.	Over 30 to 40 ft, incl.	40 to 65 ft , incl.
All bar-size angles	5/8	1	11/2	2	21/2
Mill Straightness Tolerances ${ }^{\text {d }}$					
Camber	$1 / 4$ in. in any 5 ft , or $1 / 4$ in. $\times \frac{\text { (total length, ft) }}{5}$, applied to either leg				
Sweep	Due to the extreme variations in flexibility of these shapes, permitted variations for sweep are subject to negotiation between the manufacturer and purchaser for the individual sections involved.				
Other Permissible Rolling Variations					
Ends Out of Square	$3 / 128$ in. per in. of leg length, or $1 \frac{1}{2} 2^{\circ}$. Variations based on the longer leg of unequal angle.				
- Indicates that there is no requirement. ${ }^{\text {a }}$ For unequal angles, Ionger leg determines classification. b $3 / 128$ in. per in. $=1^{1} / 2^{\circ}$ ${ }^{\text {c }}$ The permitted variation under the specified length is 0 in . for all lengths. There are no requirements for lengths over 65 ft . ${ }^{d}$ The tolerances herein are taken from ASTM A6 and apply to the straightness of members received from the rolling mill, measured as illustrated in Figure 1-1. ${ }^{e}$ Leg size $1 / 8$ in. over permitted.					

				ect	Tab ang		Pa				
Permissible Variations from Flatness (Carbon Steel Only)											
Specified Thickness, in.	Variations from Flatness for Specified Widths, in.										
	To 36, excl.	36 to 48, excl.	$\begin{gathered} 48 \text { to } \\ 60, \text { excl. } \end{gathered}$	$\begin{gathered} 60 \text { to } \\ \text { 72, excl. } \end{gathered}$	$\begin{gathered} 72 \text { to } \\ 84, \text { excl. } \end{gathered}$	$\begin{gathered} 84 \text { to } \\ 96, \text { excl. } \end{gathered}$	96 to 108, excl.	$\begin{gathered} 108 \text { to } \\ \text { 120, excl. } \end{gathered}$	120 to 144, excl.	$\begin{array}{c\|} 144 \text { to } \\ 168, \text { excl. } \end{array}$	168 and over
To $1 / 4$, excl.	9/16	$3 / 4$	15/16	11/4	13/8	11/2	15/8	13/4	17/8	-	-
$1 / 4 \text { to } 3 / 8 \text {, }$ excl.	1/2	5/8	$3 / 4$	15/16	$11 / 8$	$11 / 4$	$13 / 8$	$11 / 2$	15/8	-	-
$3 / 8$ to $1 / 2$, excl.	1/2	9/16	5/8	5/8	$3 / 4$	7/8	1	$11 / 8$	$11 / 4$	$1^{7} / 8$	21/8
$1 / 2 \text { to } 3 / 4 \text {, }$ excl.	7/16	1/2	9/16	5/8	5/8	$3 / 4$	1	1	$11 / 8$	$1^{1} / 2$	2
$\begin{gathered} \hline 3 / 4 \text { to } 1, \\ \text { excl. } \\ \hline \end{gathered}$	7/16	1/2	9/16	5/8	5/8	5/8	$3 / 4$	7/8	1	$13 / 8$	$1^{3} / 4$
$\begin{aligned} & \hline 1 \text { to } 2, \\ & \text { excl. } \end{aligned}$	$3 / 8$	1/2	1/2	9/16	9/16	5/8	5/8	5/8	1 $1 / 16$	$1^{1} / 8$	$1^{1} / 2$
$\begin{aligned} & 2 \text { to } 4, \\ & \text { excl. } \end{aligned}$	5/16	$3 / 8$	7/16	1/2	1/2	1/2	1/2	9/16	5/8	7/8	$1^{1} / 8$
4 to 6 , excl.	$3 / 8$	7/16	1/2	1/2	9/16	9/16	5/8	$3 / 4$	7/8	7/8	1
$6 \text { to } 8,$ excl.	7/16	1/2	1/2	5/8	11/16	$3 / 4$	7/8	7/8	1	1	1
Notes: 1. The longer dimension specified is considered the length, and permissible variations in flatness along the length shall not exceed the tabular amount for the specified width for plates up to 12 ft in length, or in any 12 ft for longer plates. 2. The flatness variations across the width shall not exceed the tabular amount for the specified width. 3. When the longer dimension is under 36 in., the permissible variation shall not exceed $1 / 4 \mathrm{in}$. When the longer dimension is from 36 to 72 in., inclusive, the permissible variation should not exceed 75% of the tabular amount for the specified width, but in no case less than $1 / 4$ in. 4. These variations apply to plates which have a specified minimum tensile strength of not more than 60 ksi or comparable chemistry or hardness. The limits in the table are increased 50% for plates specified to a higher minimum tensile strength or comparable chemistry or hardness. 5. For plates 8 in. and over in thickness or 120 in. and over in width, see ASTM A6 Table 13. 6 . Plates must be in a horizontal position on a flat surface when flatness is measured.											
Permissible Variations in Camber ${ }^{\text {a for Carbon Steel Sheared and Gas Cut Rectangular Plates }}$											
$\text { Maximum permissible camber, in. (all thicknesses) }=1 / 8 \text { in. } \times \frac{(\text { total length, } \mathrm{ft})}{5}$											
Permissible Variations in in Cambera for High-Strength Low-Alloy and Alloy Steel Sheared, Special-Cut, or Gas-Cut Rectangular Plates											
Specified Dimension, in.								Permitted Camber, in.			
Thickness				Width							
To 2, incl.				All				$1 / 8 \text { in. } \times \frac{\text { (total length, ft) }}{5}$			
Over 2 to 15, incl.				To 30, incl.				$3 / 16 \text { in. } \times \frac{\text { (total length, ft) }}{5}$			
				Over 30				$1 / 4 \text { in. } \times \frac{(\text { total length, } \mathrm{ft})}{5}$			
${ }^{\text {a }}$ Camber as it relates to plates is the horizontal edge curvature in the length, measured over the entire length of the plate in the flat position.											

PART 2

GENERAL DESIGN CONSIDERATIONS

SCOPE 2-4
APPLICABLE SPECIFICATIONS, CODES AND STANDARDS 2-4
Specifications, Codes and Standards for Structural Steel Buildings 2-4
Additional Requirements for Seismic Applications 2-4
Other AISC Reference Documents 2-5
OSHA REQUIREMENTS 2-6
Columns and Column Base Plates 2-6
Safety Cables 2-7
Beams and Bracing 2-7
Cantilevers 2-8
Joists 2-8
Walking/Working Surfaces 2-8
Controlling Contractor 2-8
USING THE 2016 AISC SPECIFICATION 2-9
Load and Resistance Factor Design (LRFD) 2-9
Allowable Strength Design (ASD) 2-10
DESIGN FUNDAMENTALS 2-10
Loads, Load Factors and Load Combinations 2-11
Nominal Strengths, Resistance Factors, Safety Factors and Available Strengths 2-11
Serviceability 2-11
Structural Integrity 2-12
Progressive Collapse 2-13
Required Strength, Stability, Effective Length, and Second-Order Effects 2-13
Simplified Determination of Required Strength 2-14
STABILITY BRACING 2-15
Simple-Span Beams 2-16
Beam Ends Supported on Bearing Plates 2-16
Beams and Girders Framing Continuously Over Columns 2-16
PROPERLY SPECIFYING MATERIALS 2-20
Availability 2-20
Material Specifications 2-20
Other Products 2-22
Anchor Rods 2-22
Raised-Pattern Floor Plates 2-23
Sheet and Strip 2-23
Filler Metal 2-23
Steel Headed Stud Anchors 2-23
Open-Web Steel Joists 2-23
Castellated Beams 2-23
Steel Castings and Forgings 2-23
Forged Steel Structural Hardware 2-23
Crane Rails 2-24
CONTRACT DOCUMENT INFORMATION 2-24
Design Drawings, Specifications, and Other Contract Documents 2-24
Required Information 2-25
Information Required Only When Specified 2-25
Approvals Required 2-27
Establishing Criteria for Connections 2-27
Simple Shear Connections 2-28
Moment Connections 2-29
Horizontal and Vertical Bracing Connections 2-29
Strut and Tie Connections 2-30
Truss Connections 2-30
Column Splices 2-30
CONSTRUCTABILITY 2-30
TOLERANCES 2-31
Mill Tolerances 2-31
Fabrication Tolerances 2-31
Erection Tolerances 2-31
Building Façade Tolerances 2-31
QUALITY CONTROL AND QUALITY ASSURANCE 2-34
CAMBERING, CURVING AND STRAIGHTENING 2-34
Beam Camber and Sweep 2-34
Cold Bending 2-35
Hot Bending 2-35
Truss Camber 2-35
Straightening 2-35
FIRE PROTECTION AND ENGINEERING 2-36
CORROSION PROTECTION 2-36
RENOVATION AND RETROFIT OF EXISTING STRUCTURES 2-36
THERMAL EFFECTS 2-36
Expansion and Contraction 2-36
Elevated-Temperature Service 2-38
FATIGUE AND FRACTURE CONTROL 2-38
Avoiding Brittle Fracture 2-38
Avoiding Lamellar Tearing 2-40
WIND AND SEISMIC DESIGN 2-40
Wind and Low-Seismic Applications 2-40
High-Seismic Applications 2-40
PART 2 REFERENCES 2-42
TABLES FOR THE GENERAL DESIGN AND SPECIFICATION OF MATERIALS 2-46
Table 2-1. Multipliers for Use With the Simplified Method 2-46
Table 2-2. Summary Comparison of Methods for Stability Analysis and Design 2-46
Table 2-3. AISI Standard Nomenclature for Flat-Rolled Carbon Steel 2-47
Table 2-4. Applicable ASTM Specifications for Various Structural Shapes 2-48
Table 2-5. Applicable ASTM Specifications for Plate and Bars 2-50
Table 2-6. Applicable ASTM Specifications for Various Types of Structural Fasteners $2-52$
Table 2-7. Summary of Surface Preparation Standards 2-53

SCOPE

The specification requirements and other design considerations summarized in this Part apply in general to the design and construction of steel buildings. The specifications, codes and standards listed below are referenced throughout this Manual.

APPLICABLE SPECIFICATIONS, CODES AND STANDARDS

Specifications, Codes and Standards for Structural Steel Buildings

Subject to the requirements in the applicable building code and the contract documents, the design, fabrication and erection of structural steel buildings is governed as indicated in the AISC Specification Sections A1 and B2 as follows:

1. ASCE/SEI 7: Minimum Design Loads and Associated Criteria for Buildings and Other Structures, ASCE/SEI 7-16. Available from the American Society of Civil Engineers, ASCE/SEI 7 provides the general requirements for loads, load factors and load combinations (ASCE, 2016).
2. AISC Specification: The 2016 AISC Specification for Structural Steel Buildings, ANSI/ AISC 360-16, included in Part 16 of this Manual and available at www.aisc.org, provides the general requirements for design and construction (AISC, 2016a).
3. AISC Code of Standard Practice: The 2016 AISC Code of Standard Practice for Steel Buildings and Bridges, ANSI/AISC 303-16, included in Part 16 of this Manual and available at www.aisc.org, provides the standard of custom and usage for the fabrication and erection of structural steel (AISC, 2016b).

Other referenced standards include:

1. RCSC Specification: The 2014 RCSC Specification for Structural Joints Using HighStrength Bolts, reprinted in Part 16 of this Manual with the permission of the Research Council on Structural Connections and available at www.boltcouncil.org, provides the additional requirements specific to bolted joints with high-strength bolts (RCSC, 2014).
2. AWS D1.1/D1.1M: Structural Welding Code—Steel, AWS D1.1/D1.1M:2015 (AWS, 2015). Available from the American Welding Society, AWS D1.1/D1.1M provides additional requirements specific to welded joints. Requirements for the proper specification of welds can be found in AWS A2.4: Standard Symbols for Welding, Brazing, and Nondestructive Examination (AWS, 2007). See also discussion of welding in Part 8.
3. ACI 318: Building Code Requirements for Structural Concrete and Commentary, ACI 318-14. Available from the American Concrete Institute, ACI 318 provides additional requirements for reinforced concrete, including composite design and the design of steel-to-concrete anchorage (ACI, 2014).

Various other specifications and standards from ACI, ASCE, ASME, ASNT, ASTM, AWS and SDI are also referenced in AISC Specification Section A2.

Additional Requirements for Seismic Applications

The 2016 AISC Seismic Provisions for Structural Steel Buildings, ANSI/AISC 341-16, apply as indicated in Section A1.1 of the 2016 AISC Specification and in the Scope provided
at the front of this Manual. The AISC Seismic Provisions are available at www.aisc.org (AISC, 2016c).

Other AISC Reference Documents

The following other AISC publications may be of use in the design and construction of structural steel buildings:

1. AISC Detailing for Steel Construction, Third Edition, covers the standard practices and recommendations for steel detailing, including preparation of shop and erection drawings (AISC, 2009).
2. The AISC Seismic Design Manual, Second Edition, (AISC, 2012) provides guidance on steel design in seismic applications, in accordance with the 2010 AISC Seismic Provisions for Structural Steel Buildings (AISC, 2010).
3. The AISC Design Examples is an electronic companion to this Manual and can be found at www.aisc.org/manualresources. It includes design examples outlining the application of design aids and AISC Specification provisions developed in coordination with this Manual (AISC, 2017).

The following AISC Design Guides are available at www.aisc.org for in-depth coverage of specific topics in steel design:

1. Base Plate and Anchor Rod Design, Design Guide 1 (Fisher and Kloiber, 2006)
2. Steel and Composite Beams with Web Openings, Design Guide 2 (Darwin, 1990)
3. Serviceability Design Considerations for Steel Buildings, Design Guide 3 (West et al., 2003)
4. Extended End-Plate Moment Connections-Seismic and Wind Applications, Design Guide 4 (Murray and Sumner, 2003)
5. Low- and Medium-Rise Steel Buildings, Design Guide 5 (Allison, 1991)
6. Load and Resistance Factor Design of W-Shapes Encased in Concrete, Design Guide 6 (Griffis, 1992)
7. Industrial Buildings—Roofs to Anchor Rods, Design Guide 7 (Fisher, 2004)
8. Partially Restrained Composite Connections, Design Guide 8 (Leon et al., 1996)
9. Torsional Analysis of Structural Steel Members, Design Guide 9 (Seaburg and Carter, 1997)
10. Erection Bracing of Low-Rise Structural Steel Buildings, Design Guide 10 (Fisher and West, 1997)
11. Vibrations of Steel-Framed Structural Systems Due to Human Activity, Design Guide 11 (Murray et al., 2016)
12. Modification of Existing Welded Steel Moment Frame Connections for Seismic Resistance, Design Guide 12 (Gross et al., 1999)
13. Stiffening of Wide-Flange Columns at Moment Connections: Wind and Seismic Applications, Design Guide 13 (Carter, 1999)
14. Staggered Truss Framing Systems, Design Guide 14 (Wexler and Lin, 2002)
15. Rehabilitation and Retrofit Guide-A Reference for Historic Shapes and Specifications, Design Guide 15 (Brockenbrough and Schuster, 2017)
16. Flush and Extended Multiple-Row Moment End-Plate Connections, Design Guide 16 (Murray and Shoemaker, 2002)
17. High Strength Bolts-A Primer for Structural Engineers, Design Guide 17 (Kulak, 2002)
18. Steel-Framed Open-Deck Parking Structures, Design Guide 18 (Churches et al., 2003)
19. Fire Resistance of Structural Steel Framing, Design Guide 19 (Ruddy et al., 2003)
20. Steel Plate Shear Walls, Design Guide 20 (Sabelli and Bruneau, 2006)
21. Welded Connections-A Primer for Engineers, Design Guide 21 (Miller, 2017)
22. Façade Attachments to Steel-Framed Buildings, Design Guide 22 (Parker, 2008)
23. Constructability of Structural Steel Buildings, Design Guide 23 (Ruby, 2008)
24. Hollow Structural Section Connections, Design Guide 24 (Packer et al., 2010)
25. Web-Tapered Frame Design, Design Guide 25 (Kaehler et al., 2010)
26. Design of Blast Resistant Structures, Design Guide 26 (Gilsanz et al., 2013)
27. Structural Stainless Steel, Design Guide 27 (Baddoo, 2013)
28. Stability Design of Steel Buildings, Design Guide 28 (Griffis and White, 2013)
29. Vertical Bracing Connections-Analysis and Design, Design Guide 29 (Muir and Thornton, 2014)
30. Sound Isolation and Noise Control in Steel Buildings, Design Guide 30 (Markham and Ungar, 2015)
31. Design of Castellated and Cellular Beams, Design Guide 31 (Dinehart et al., 2016)
32. Design of Steel-Plate Composite Walls, Design Guide 32 (Varma and Bhardwaj, 2016)

The following Facts for Steel Buildings are available at www.aisc.org for practical guidance on specific topics in steel design:

1. Fire, Facts for Steel Buildings 1 (Gewain et al., 2003)
2. Blast and Progressive Collapse, Facts for Steel Buildings 2 (Marchand and Alfawakhiri, 2004)
3. Earthquake and Seismic Design, Facts for Steel Buildings 3 (Hamburger, 2009)
4. Sound Isolation and Noise Control, Facts for Steel Buildings 4 (Markham and Ungar, 2016)

OSHA REQUIREMENTS

OSHA Safety and Health Standards for the Construction Industry, 29 CFR 1926 Part R Safety Standards for Steel Erection (OSHA, 2001) must be addressed in the design, detailing, fabrication and erection of steel structures. These regulations became effective on July 18, 2001.

Following is a brief summary of selected provisions and related recommendations. The full text of the regulations should be consulted and can be found at www.osha.gov. See also Barger and West (2001) for further information.

Columns and Column Base Plates

1. All column base plates must be designed and fabricated with a minimum of four anchor rods.
2. Posts (which weigh less than 300 lb) are distinguished from columns and excluded from the four-anchor-rod requirement.
3. Columns, column base plates, and their foundations must be designed to resist a minimum eccentric gravity load of 300 lb located 18 in . from the extreme outer face of the column in each direction at the top of the column shaft.
4. Column splices must be designed to meet the same load-resisting characteristics as columns.
5. Double connections through column webs or at beams that frame over the tops of columns must be designed to have at least one installed bolt remain in place to support the first beam while the second beam is being erected. Alternatively, the fabricator must supply a seat or equivalent device with a means of positive attachment to support the first beam while the second beam is being erected.

These features should be addressed in the construction documents. Items 1 through 4 are prescriptive, and alternative means such as guying are time consuming and costly. There are several methods to address the condition in item 5, as shown in Chapter 2 of AISC Detailing for Steel Construction.

Safety Cables

1. On multi-story structures, perimeter safety cables (two lines) are required at final interior and exterior perimeters of floors as soon as the deck is installed.
2. Perimeter columns must extend 48 in . above the finished floor (unless constructability does not allow) to allow the installation of perimeter safety cables.
3. Regulations prohibit field welding of attachments for installation of perimeter safety cables once the column has been erected.
4. Provision of some method of attaching the perimeter cable is required, but responsibility is not assigned either to the fabricator or to the erector. While this will be subject to normal business arrangements between the fabricator and the erector, holes for these cables are often punched or drilled in columns by the fabricator.

The primary consideration in the design of the frame based on these rules is that the position of the column splice is set with respect to the floor.

Beams and Bracing

1. Solid-web members (beams) must be connected with a minimum of two bolts or their equivalent before the crane load line is released.
2. Bracing members must be connected with a minimum of one bolt or its equivalent before the crane load line is released.

The OSHA regulations allow an alternative to these minimums, if an "equivalent as specified by the project structural engineer of record" is provided. If the project requirements do not permit the use of bolts as described in items 1 and 2, then the "equivalent" means should be provided in the construction documents. It is recommended that the "equivalent" means should utilize bolts and removable connection material, and should provide requirements for the final condition of the connection. Solutions that employ shoring or the need to hold the member on the crane should be avoided.

Cantilevers

1. The erector is responsible for the stability of cantilevers and their temporary supports until the final cantilever connection is completed. OSHA 1926.756(a)(2) requires that a competent person shall determine if more than two bolts are necessary to ensure the stability of cantilevered members. Cantilever connections must be evaluated for the loads imposed on them during erection and consideration must be made for the intermediate states of completion, including the connection of the backspan member opposing the cantilever.

Certain cantilever connections can facilitate the erector's work in this regard, such as shop attaching short cantilevers, one piece cantilever/backspan beams carried through or over the column at the cantilever and field bolted flange plates or end plate connections to the supporting member. To the extent allowed by the contract documents, the selection of details is up to the fabricator, subject to normal business relations between the fabricator and the erector.

Joists

1. Unless panelized, all joists 40 ft long and longer and their bearing members must have holes to allow for initial connections by bolting.
2. Establishment of bridging terminus points for joists is mandated according to OSHA and manufacturer guidelines.
3. A vertical stabilizer plate to receive the joist bottom chord must be provided at columns. Minimum sizes are given and the stabilizer plate must have a hole for the attachment of guying or plumbing cables.

These features should be addressed in the construction documents and shop drawings.

Walking/Working Surfaces

1. Framed metal deck openings must have structural members configured with projecting elements turned down to allow continuous decking, except where not allowed by design constraints or constructability. The openings in the metal deck are not to be cut until the hole is needed.
2. Steel headed stud anchors, threaded studs, reinforcing bars and deformed anchors that will project vertically from or horizontally across the top flange of the member are not to be attached to the top flanges of beams, joists or beam attachments until after the metal decking or other walking/working surface has been installed.

Framing at openings with down-turned elements and shop versus field attachment of anchors should be addressed in the construction documents and the shop drawings.

Controlling Contractor

1. The controlling contractor must provide adequate site access and adequate storage.
2. The controlling contractor must notify the erector of repairs or modifications to anchor rods in writing. Such modifications and repairs must be approved by the owner's designated representative for design.
3. The controlling contractor must give notice that the supporting foundations have achieved sufficient strength to allow safe steel erection.
4. The controlling contractor must either provide overhead protection or prohibit other trades from working under steel erection activities.

These provisions establish relationships among the erector, controlling contractor, and owner's representative for design that all parties need to be aware of.

USING THE 2016 AISC SPECIFICATION

The 2016 AISC Specification for Structural Steel Buildings (ANSI/AISC 360-16) continues the format established in the 2005 edition of the Specification (AISC, 2005), ANSI/AISC 360-05, which unified the design provisions formerly presented in the 1989 Specification for Structural Steel Buildings-Allowable Stress Design and Plastic Design and the 1999 Load and Resistance Factor Design Specification for Structural Steel Buildings. The 2005 Specification for Structural Steel Buildings also integrated into a single document the information previously provided in the 1993 Load and Resistance Factor Design Specification for Single-Angle Members and the 1997 Specification for the Design of Steel Hollow Structural Sections. The 2016 AISC Specification, in combination with the 2016 Seismic Provisions for Structural Steel Buildings (ANSI/AISC 341-16), brings together all of the provisions needed for the design of structural steel in buildings and other structures.

The 2016 AISC Specification continues to present two approaches for the design of structural steel members and connections. Chapter B establishes the general requirements for analysis and design. It states that "design for strength shall be performed according to the provisions for load and resistance factor design (LRFD) or to the provisions for allowable strength design (ASD)." These two approaches are equally valid for any structure for which the Specification is applicable. There is no preference stated or implied in the Specification.

The required strength of structural members and connections may be determined by elastic or inelastic analysis for the load combinations associated with LRFD and by elastic analysis for load combinations associated with ASD and as stipulated by the applicable building code. In all cases, the available strength must exceed the required strength. The AISC Specification gives provisions for determining the available strength as summarized below.

Load and Resistance Factor Design (LRFD)

The load combinations appropriate for LRFD are given in the applicable building code or, in its absence, ASCE/SEI 7 Section 2.3. For LRFD, the available strength is referred to as the design strength. All of the LRFD provisions are structured so that the design strength must equal or exceed the required strength. This is presented in AISC Specification Section B3.1 as

$$
\begin{equation*}
R_{u} \leq \phi R_{n} \tag{2-1}
\end{equation*}
$$

In this equation, R_{u} is the required strength determined by analysis for the LRFD load combinations, R_{n} is the nominal strength determined according to the AISC Specification provisions, and ϕ is the resistance factor given by the AISC Specification for a particular limit state. Throughout this Manual, tabulated values of ϕR_{n}, the design strength, are given for LRFD. These values are tabulated as blue numbers in columns with the heading LRFD.

If there is a desire to use the LRFD provisions in the form of stresses, the strength provisions can be transformed into stress provisions by factoring out the appropriate section property. In many cases, the provisions are already given directly in terms of stress.

Allowable Strength Design (ASD)

Allowable strength design is similar to what is known as allowable stress design in that they are both carried out at the same load level. Thus, the same load combinations are used. The difference is that for strength design, the primary provisions are given in terms of forces or moments rather than stresses. In every situation, these strength provisions can be transformed into stress provisions by factoring out the appropriate section property. In many cases, the provisions are already given directly in terms of stress.

The load combinations appropriate for ASD are given by the applicable building code or, in its absence, ASCE/SEI 7 Section 2.4. For ASD, the available strength is referred to as the allowable strength. All of the ASD provisions are structured so that the allowable strength must equal or exceed the required strength. This is presented in AISC Specification Section B3.2 as

$$
\begin{equation*}
R_{a} \leq \frac{R_{n}}{\Omega} \tag{2-2}
\end{equation*}
$$

In this equation, R_{a} is the required strength determined by analysis for the ASD load combinations, R_{n} is the nominal strength determined according to the AISC Specification provisions, and Ω is the safety factor given by the Specification for a particular limit state. Throughout this Manual, tabulated values of R_{n} / Ω, the allowable strength, are given for ASD. These values are tabulated as black numbers on a green background in columns with the heading ASD.

DESIGN FUNDAMENTALS

It is commonly believed that ASD is an elastic design method based entirely on a stress format without limit states and LRFD is an inelastic design method based entirely on a strength format with limit states. Traditional ASD was based on limit-states principles too, but without the use of the term. Additionally, either method can be formulated in a stress or strength basis, and both take advantage of inelastic behavior. The AISC Specification highlights how similar LRFD and ASD are in its formulation, with identical provisions throughout for LRFD and ASD.

Design according to the AISC Specification, whether it is according to LRFD or ASD, is based on limit states design principles, which define the boundaries of structural usefulness. Strength limit states relate to load carrying capability and safety. Serviceability limit states relate to performance under normal service conditions. Structures must be proportioned so that no applicable strength or serviceability limit state is exceeded.

Normally, several limit states will apply in the determination of the nominal strength of a structural member or connection. The controlling limit state is normally the one that results in the least available strength. As an example, the controlling limit state for bending of a simple beam may be yielding, local buckling, or lateral-torsional buckling for strength, and deflection or vibration for serviceability. The tabulated values may either reflect a single limit state or a combination of several limit states. This will be clearly stated in the introduction to the particular tables.

Loads, Load Factors and Load Combinations

Based on AISC Specification Sections B3.1 and B3.2, the required strength (either P_{u}, M_{u}, V_{u}, etc., for LRFD or P_{a}, M_{a}, V_{a}, etc., for ASD) is determined for the appropriate load magnitudes, load factors and load combinations given in the applicable building code. These are usually based on ASCE/SEI 7, which may be used when there is no applicable building code.

Nominal Strengths, Resistance Factors, Safety Factors and Available Strengths

The AISC Specification requires that the available strength must be greater than or equal to the required strength for any element. The available strength is a function of the nominal strength given by the Specification and the corresponding resistance factor or safety factor. As discussed earlier, the required strength can be determined either with LRFD or ASD load combinations.

The available strength for LRFD is the design strength, which is calculated as the product of the resistance factor, ϕ, and the nominal strength ($\phi P_{n}, \phi M_{n}, \phi V_{n}$, etc.). The available strength for ASD is the allowable strength, which is calculated as the quotient of the nominal strength and the corresponding safety factor, $\Omega\left(P_{n} / \Omega, M_{n} / \Omega, V_{n} / \Omega\right.$, etc.).

In LRFD, the margin of safety for the loads is contained in the load factors, and resistance factors, ϕ, to account for unavoidable variations in materials, design equations, fabrication and erection. In ASD, a single margin of safety for all of these effects is contained in the safety factor, Ω.

The resistance factors, ϕ, and safety factors, Ω, in the AISC Specification are based upon research, as discussed in the AISC Specification Commentary to Chapter B, and the experience and judgment of the AISC Committee on Specifications. In general, ϕ is less than unity and Ω is greater than unity. The higher the variability in the test data for a given nominal strength, the lower its ϕ factor and the higher its Ω factor will be. Some examples of ϕ and Ω factors for steel members are as follows:
$\phi=0.90$ for limit states involving yielding
$\phi=0.75$ for limit states involving rupture
$\Omega=1.67$ for limit states involving yielding
$\Omega=2.00$ for limit states involving rupture
The general relationship between the safety factor, Ω, and the resistance factor, ϕ, is

$$
\begin{equation*}
\Omega=\frac{1.5}{\phi} \tag{2-3}
\end{equation*}
$$

Serviceability

Serviceability requirements of the AISC Specification are found in Section B3.8 and Chapter L. The serviceability limit states should be selected appropriately for the specific application as discussed in the Specification Commentary to Chapter L. Serviceability limit states and the appropriate load combinations for checking their conformance to serviceability requirements can be found in ASCE/SEI 7 Appendix C and its Commentary. It should be noted that the load combinations in ASCE/SEI 7 Section 2.3 for LRFD and

Section 2.4 for ASD are both for strength design, and are not necessarily appropriate for consideration of serviceability.

Guidance is also available in the Commentary to the AISC Specification, both in general and for specific criteria, including camber, deflection, drift, vibrations, wind-induced motion, expansion and contraction, and connection slip. Additionally, the applicable building code may provide some further guidance or establish requirements. See also the serviceability discussions in Parts 3 through 6, AISC Design Guide 3, Serviceability Design Considerations for Steel Buildings (West et al., 2003) and AISC Design Guide 11, Vibrations of Steel-Framed Structural Systems Due to Human Activity (Murray et al., 2016).

Structural Integrity

Structural integrity as addressed in building codes and AISC Specification Section B3.9, is a set of prescriptive requirements for connections that, when met, are intended to provide an unknown, but satisfactory, level of performance of the finished structure. The term structural integrity has often been used interchangeably with progressive collapse, but these two concepts have widely varying interpretations that can influence design in a variety of ways. Progressive collapse requirements generally are intended to prevent the collapse of a structure beyond a localized area of the structure where a structural element has been compromised. Progressive collapse requirements are often mandated for government facilities, or by owners for structures which have a high probability of being subject to terrorist attack.

Structural integrity has always been one of the goals for the structural engineer in engineering design, and for the committees writing design standards. However, it has only been since the collapse of the buildings at the World Trade Center that requirements with the stated purpose of addressing structural integrity have appeared in U.S. building codes. The first building code to incorporate specific structural integrity requirements was the 2008 New York City Building Code, which was quickly followed by requirements in the 2009 International Building Code. Although the requirements of these two building codes are both prescriptive in nature, there are some differences in requirements and their application. AISC Specification Section B3.9 addresses the requirements of the 2015 International Building Code (ICC, 2015).

The 2015 International Building Code stipulates minimum integrity provisions for buildings classified as high-rise and assigned to risk categories III or IV. High-rise buildings are defined as those having an occupied floor greater than 75 ft above fire department vehicle access. The structural integrity requirements state that column splices must resist a minimum tension force and beam end connections must resist a minimum axial tension force. The nominal axial tension strength of the beam end connection must equal or exceed either the required vertical shear strength for ASD or $2 / 3$ the required vertical shear strength for LRFD. These required strengths can be reduced by 50% if the beam supports a composite deck with the prescribed steel anchors (Geschwindner and Gustafson, 2010).

The International Building Code structural integrity requirements for the axial tension capacity of the beam end connections use a nominal strength basis reflecting the intent of the code to avoid brittle rupture failures of the connection components, rather than limiting deformations or yielding of those components. AISC Specification Section B3.9 is based on this difference in limit state requirements for resistance to the prescriptive structural integrity loads, as compared to those limit states required when designing for traditional load combinations.

Progressive Collapse

Progressive collapse is defined in ASCE/SEI 7-16 (ASCE, 2016) as "the spread of an initial local failure from element to element resulting, eventually, in the collapse of an entire structure or a disproportionately large part of it."

Progressive collapse requirements often involve assessment of the structure's ability to accommodate loss of a member that has been compromised through redistribution of forces throughout the remaining structure. Design for progressive collapse poses a particularly challenging problem since it is difficult to identify the load cases to be examined or the members that may be compromised. Two main sources of requirements for evaluation of structures for progressive collapse are the Department of Defense and the General Services Administration. For facilities covered by the Department of Defense, all new and existing buildings of three stories or more must be designed to avoid progressive collapse. The specific requirements are published in United Facilities Criteria 4-023-03, Design of Buildings to Resist Progressive Collapse (DOD, 2013).

For federal facilities under the jurisdiction of the General Services Administration, threat independent guidelines have been developed. The publication "Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization Projects" (USGSA, 2003) provides an explicit process that any structural engineer could use to evaluate the progressive collapse potential of a multi-story facility.

Required Strength, Stability, Effective Length, and Second-Order Effects

As previously discussed, the AISC Specification requires that the required strength be less than or equal to the available strength in the design of every member and connection. Chapter C also requires that stability shall be provided for the structure as a whole and each of its elements. Any method that considers the influence of second-order effects, also known as P-delta effects, may be used. Thus, required strengths must be determined including second-order effects, as described in Specification Section C1. Note that Specification Section C2.1(b) permits an amplified first-order analysis as one method of second-order analysis, as provided in Appendix 8.

Second-order effects are the additional forces, moments and displacements resulting from the applied loads acting in their displaced positions as well as the changes from the undeformed to the deformed geometry of the structure. Second-order effects are obtained by considering equilibrium of the structure within its deformed geometry. There are numerous ways of accounting for these effects. The commentary to AISC Specification Chapter C provides some guidance on methods of second-order analysis and suggests several benchmark problems for checking the adequacy of analysis methods.

Since 1963, there have been provisions in the AISC Specifications to account for secondorder effects. Initially, these provisions were embedded in the interaction equations. In past ASD Specifications, second-order effects were accounted for by the term

$$
\frac{1}{1-\frac{f_{a}}{F_{e}^{\prime}}}
$$

found in the interaction equation. In past LRFD Specifications, the factors B_{1} and B_{2} from Chapter C of those specifications were used to amplify moments to account for second-order
effects. B_{1} was used to account for the second-order effects due to member curvature and B_{2} was used to account for second-order effects due to sidesway. In both Specifications, more exact methods were permitted.

AISC Specification Section C1 and Appendix 7 provide three approaches that may be followed.

- The direct analysis method is provided in Chapter C. This is the most comprehensive and, as the name suggests, most direct approach to incorporating all necessary factors in the analysis. Through the use of notional loads, reduced stiffness, and a second-order analysis, the design can be carried out with the forces and moments from the analysis and an effective length equal to the member length, $K=1.0$. Section C2 of the AISC Specification details the requirements for determination of required strengths using this method.
- The effective length method is given in AISC Specification Appendix 7, Section 7.2. In this method, all gravity-only load cases have a minimum lateral load equal to 0.2% of the story gravity load applied. A second-order analysis is carried out and the member strengths of columns and beam-columns are determined using effective lengths, determined by elastic buckling analysis, or more commonly, the alignment charts in the Commentary to the Specification when the associated assumptions are satisfied. The Specification permits $K=1.0$ when the ratio of second-order drift to first-order drift is less than or equal to 1.1 .
- The first-order analysis method is given in AISC Specification Appendix 7, Section 7.3. With this approach, second-order effects are captured through the application of an additional lateral load equal to at least 0.42% of the story gravity load applied in each load case. No further second-order analysis is necessary. The required strengths are taken as the forces and moments obtained from the analysis and the effective length factor is $K=1.0$.

When a second-order analysis is called for in the above methods, AISC Specification Section C1 allows any method that properly considers P-delta effects. One such method is amplified first-order elastic analysis provided in Specification Appendix 8. This is a modified carryover of the $B_{1}-B_{2}$ approach used in previous LRFD Specifications, which was an extension of the simple approach taken in past ASD Specifications.

The AISC Specification fully integrates the provisions for stability with the specified methods of design. For all framing systems, when using the direct analysis method, AISC Specification Section C3 provides that the effective length for flexural buckling of all members shall be taken as the unbraced length unless a smaller value is justified by rational analysis. For the effective length method, AISC Specification Appendix 7, Section 7.2.3(a) provides that in braced frames, the effective length factor, K, may be taken as 1.0 . For moment frames, Appendix 7, Section 7.2.3(b) requires that a critical buckling analysis to determine the critical buckling stress, F_{e}, be performed or effective length factors, K, be used. For the first-order analysis method, Appendix 7, Section 7.3.3 stipulates that the effective length for flexural buckling of all members shall be taken as the unbraced length unless a smaller value is justified by rational analysis. This is discussed in more detail in the Commentary to Appendix 7.

Simplified Determination of Required Strength

When a fast, conservative solution is desired, the following simplification of the effective length method can be used with the aid of Table 2-1. The features of each of the other methods of design for stability are summarized and compared in Table 2-2.

An approximate second-order analysis approach is provided in AISC Specification Appendix 8. Where the member amplification ($P-\delta$) factor is small, that is, less than B_{2}, it
is conservative to amplify the total moment and force by B_{2}. Thus, Equations A-8-1 and A-8-2 become

$$
\begin{gather*}
M_{r}=B_{1} M_{n t}+B_{2} M_{l t}=B_{2} M_{u} \tag{2-4}\\
P_{r}=P_{n t}+B_{2} P_{l t}=B_{2} P_{u} \tag{2-5}
\end{gather*}
$$

To use this simplified method, B_{1} cannot exceed B_{2}. For members not subject to transverse loading between their ends, it is very unlikely that B_{1} would be greater than 1.0. In addition, the simplified approach is not valid if the amplification factor, B_{2}, is greater than 1.5 , because with the exception of taking $B_{1}=B_{2}$, this simplified method meets the provisions of the effective length method in AISC Specification Appendix 7. It is up to the engineer to ensure that the frame is proportioned appropriately to use this simplified approach. In most designs it is not advisable to have a final structure where the second order amplification is greater than 1.5, although it is acceptable. In those cases, one should consider stiffening the structure.

Step 1: Perform a first-order elastic analysis. Gravity load cases must include a minimum lateral load at each story equal to 0.002 times the story gravity load where the story gravity load is the load introduced at that story, independent of any loads from above.

Step 2: Establish the design story drift limit and determine the lateral load that produces that drift. This is intended to be a measure of the lateral stiffness of the structure.

Step 3: Determine the ratio of the total story gravity load to the lateral load determined in Step 2. For an ASD design, this ratio must be multiplied by 1.6 before entering Table 2-1. This ratio is part of the determination of the calculation on the elastic critical buckling strength, $P_{\text {e story }}$, in AISC Specification Equation A-8-7, which includes the parameter R_{M}. R_{M} is a minimum of 0.85 for rigid frames and 1.0 for all other frames.

Step 4: Multiply all of the forces and moments from the first-order analysis by the value obtained from Table 2-1. Use the resulting forces and moments as the required strengths for the designs of all members and connections. Note that B_{2} must be computed for each story and in each principal direction.

Step 5: For all cases where the multiplier is 1.1 or less, shown shaded in Table 2-1, the effective length may be taken as the member length, $K=1.0$. For cases where the multiplier is greater than 1.1, but does not exceed 1.5 , determine the effective length factor through analysis, such as with the alignment charts of the AISC Specification Commentary. For cases where no value is shown for the multiplier, the structure must be stiffened in order to use this simplified approach. Note that the multipliers are the same value for both $R_{M}=0.85$ and 1.0 in most instances due to rounding. Where this is not the case, two values are given consistent with the two values of R_{M}, respectively.

Step 6: Ensure that the drift limit set in Step 2 is not exceeded and revise design as needed.

STABILITY BRACING

Per AISC Specification Section B3.4, at points of support, beams, girders and trusses shall be restrained against rotation about their longitudinal axis unless it can be shown that the
restraint is not required (also a basic assumption stated in AISC Specification Section F1). Additionally, stability bracing with adequate strength and stiffness must be provided consistent with that assumed at braced points in the analysis for frames, columns and beams (see AISC Specification Appendix 6). Some guidance for special cases follows.

Simple-Span Beams

In general, adequate lateral bracing is provided to the compression flange of a simple-span beam by the connections of infill beams, joists, concrete slabs, metal deck, concrete slabs on metal deck, and similar framing elements.

Beam Ends Supported on Bearing Plates

The stability of a beam end supported on a bearing plate can be provided in one of several ways (see Figure 2-1):

1. The beam end can be built into solid concrete or masonry using anchorage devices.
2. The beam top flange can be stabilized through interconnection with a floor or roof system, provided that system itself is anchored to prevent its translation relative to the beam bearing.
3. A top-flange stability connection can be provided.
4. An end-plate or transverse stiffeners located over the bearing plate extending to near the top-flange k-distance can be provided. Such stiffeners must be welded to the top of the bottom flange and to the beam web, but need not extend to or be welded to the top flange.

In each case, the beam and bearing plate must also be anchored to the support, as required. For the design of beam bearing plates, see Part 14.

In atypical framing situations, such as when very deep beams are used, the strength and stiffness requirements in AISC Specification Appendix 6 can be applied to ensure the stability of the assembly. It may also be possible to demonstrate in a limited number of cases, such as with beams with thick webs and relatively shallow depths, that the beam has been properly designed without providing the details described above. In this case, the beam and bearing plate must still be anchored to the support. In any case, it should be noted that the assembly must also meet the requirements in AISC Specification Section J10.

Beams and Girders Framing Continuously Over Columns

Roof framing is commonly configured with cantilevered beams that frame continuously over the tops of columns to support drop-in beams between the cantilevered segments (Rongoe, 1996; CISC, 1989). It is also commonly desirable to provide an assembly in which the intersection of the beam and column can be considered a braced point for the design of both the continuous cantilevering beam and the column top. The required stability can be provided in several ways (see Figures 2-2a through 2-2e):

1. When an infill beam frames into the continuous beam at the column top, the required stability normally can be provided by using connection element(s) for the infill beam that cover three-quarters or more of the T -dimension of the continuous beam. Alternatively, connection elements that cover less than three-quarters of the T-dimension of the continuous beam can be used in conjunction with partial-depth stiffeners in the beam web along with a moment connection between the column top and beam

(a) Stability provided with transverse stiffeners

(b) Stability provided with an end plate

Fig. 2-1. Beam end supported on bearing plate.
bottom to maintain alignment of the beam/column assembly. A cap plate of reasonable proportions and four bolts will normally suffice.

In either case, note that OSHA requires that, if two framing infill beams share common holes through a column web or the web of a beam that frames continuously over the top of a column, ${ }^{1}$ the beam erected first must remain attached while connecting the second.
2. When joists frame into the continuous beam or girder, the required stability normally can be provided by using bottom chord extensions connected to the column top. The resulting continuity moments must be reported to the joist supplier for their use in the design

[^14]

Fig. 2-2a. Beam framing continuously over column top, stability provided with connections of infill beams.
of the joists and bridging. Note that the continuous beam must still be checked for the concentrated force due to the column reaction per AISC Specification Section J10.
The position of the bottom chord extension relative to the column cap plate will affect the bottom chord connection detail. When the extension aligns with the cap plate, the load path and force transfer is direct. When the extension is below the column cap plate, the column must be designed to stabilize the beam bottom flange and the connection between the extension and the column must develop the continuity/ brace force. When the extension is above the column top, the beam web must have the necessary strength and stiffness to adequately brace the beam bottom/column top.
3. If connection of the joist bottom chord extensions to the column must be avoided, the required stability can be provided with a diagonal brace that satisfies the strength and stiffness requirements in AISC Specification Appendix 6. Providing a relatively shallow angle with respect to the horizontal can minimize gravity-load effects in the diagonal brace.

Fig. 2-2b. Beam framing continuously over column top, stability provided with welded joist-chord extensions at column top.

Alternatively, the required stability can be provided with stiffeners in the beam web along with a moment connection between the column top and beam bottom to maintain alignment of the beam/column assembly. A cap plate of reasonable proportions and four bolts will normally suffice.

In atypical framing situations, such as when very deep girders are used, the strength and stiffness requirements in AISC Specification Appendix 6 can be applied for both the beam and the column to ensure the stability of the assembly. It may also be possible to demonstrate in a limited number of cases, such as with continuous beams with thick webs and relatively shallow depths, that the column and beam have been properly designed without providing infill beam connections, connected joist extensions, stiffeners, or diagonal braces as described above. In this case, a properly designed moment connection is still required between the beam bottom flange and the column top. In any case, it should be noted that the assembly must also meet the requirements in AISC Specification Section J10.

Fig. 2-2c. Beam framing continuously over column top, stability provided with welded joist-chord extensions above column top.

PROPERLY SPECIFYING MATERIALS

Availability

The general availability of structural shapes, HSS and pipe can be determined by checking the AISC database of available structural steel shapes, available at www.aisc.org. Generally, where many producers are listed, it is an indication that the particular shape is commonly available. However, except for the larger shapes, when only one or two producers are listed, it is prudent to consider contacting a steel fabricator to determine availability.

Material Specifications

Applicable material specifications are as shown in the following tables:

- Structural shapes in Table 2-4

Fig. 2-2d. Beam framing continuously over column top, stability provided with transverse stiffeners, joist chord extensions located at column top not welded.

- Plate and bar products in Table 2-5
- Fastening products in Table 2-6

Preferred material specifications are indicated in black shading. The designation of preferred material specifications is based on consultations with fabricators to identify materials that are commonly used in steel construction, and reflects such factors as ready availablity, ease of ordering and delivery, and pricing. AISC recommends the use of preferred materials in structural steel designs, but the final decision is up to the designer based on project conditions. Other applicable material specifications are as shown in grey shading. The availability of grades other than the preferred material specification should be confirmed prior to their specification.

Cross-sectional dimensions and production tolerances are addressed as indicated under "Standard Mill Practices" in Part 1.

Fig. 2-2e. Beam framing continuously over column top, stability provided with stiffener plates, joist-chord extensions located above column top not welded.

Other Products

Anchor Rods

Although the AISC Specification permits other materials for use as anchor rods, ASTM F1554 is the preferred specification, since all anchor rod production requirements are together in a single specification. ASTM F1554 provides three grades, namely 36 ksi , 55 ksi and 105 ksi. All Grade 36 rods are weldable. Grade 55 rods are weldable only when they are made per Supplementary Requirement S1. The project specifications must indicate if the material is to conform to Supplementary Requirement S1. As a heat-treated material, Grade 105 rods cannot be welded. Grade 105 should be used only for limited applications that require its high strength. For more information, refer to AISC Design Guide 1, Base Plate and Anchor Rod Design (Fisher and Kloiber, 2006).

Raised-Pattern Floor Plates

ASTM A786 is the standard specification for rolled steel floor plates. As floor-plate design is seldom controlled by strength considerations, ASTM A786 "commercial grade" is commonly specified. If so, per ASTM A786-15, Section 5.1.3, "the product will be supplied 0.33% maximum carbon by heat analysis, and without specified mechanical properties." Alternatively, if a defined strength level is desired, ASTM A786 raised-pattern floor plate can be ordered to a defined plate specification, such as ASTM A36, A572 or A588; see ASTM A786 Sections 5.1.3, 7.1 and 8.

Sheet and Strip

Sheet and strip products, which are generally thinner than structural plate and bar products are produced to such ASTM specifications as A606 (see Table 2-3).

Filler Metal

The appropriate filler metal for structural steel is as summarized in AWS D1.1/D1.1M:2015 Table 3.1 for the various combinations of base metal specification and grade and electrode specification. Weld strengths in this Manual are based upon a tensile strength level of 70 ksi .

Steel Headed Stud Anchors

As specified in AWS D1.1/D1.1M:2015, Type B shear stud connectors (referred to in the AISC Specification as steel headed stud anchors) are used for the interconnection of steel and concrete elements in composite construction ($F_{u}=65 \mathrm{ksi}$).

Open-Web Steel Joists

The AISC Code of Standard Practice does not include steel joists in its definition of structural steel. Steel joists are designed and fabricated per the requirements of specifications published by the Steel Joist Institute (SJI). Refer to SJI literature for further information.

Castellated Beams

Castellated beams and cellular beams are members constructed by cutting along a staggered pattern down the web of a wide-flange member, offsetting the resulting pieces such that the deepest points of the cut are in contact, and welding the two pieces together, thereby creating a deeper member with openings along its web. For more information, refer to AISC Design Guide 31, Design of Castellated and Cellular Beams (Dinehart et al., 2016).

Steel Castings and Forgings

Steel castings are specified as ASTM A27 Grade 65-35 or ASTM A216 Grade 80-35. Steel forgings are specified as ASTM A668.

Forged Steel Structural Hardware

Forged steel structural hardware products, such as clevises, turnbuckles, eye nuts and sleeve nuts, are occasionally used in building design and construction. These products are generally forged according to ASTM A668 Class A requirements. ASTM A29 Grade 1035 material is commonly used in the manufacture of clevises and turnbuckles. ASTM A29

Grade 1030 material is commonly used in the manufacture of steel eye nuts and steel eye bolts. ASTM A29 Grade 1018 material is commonly used in the manufacture of sleeve nuts. Other products, such as steel rod ends, steel yoke ends and pins, cotter pins, and coupling nuts are commonly provided generically as "carbon steel."

The dimensional and strength characteristics of these devices are fully described in the literature provided by their manufacturer. Note that manufacturers usually provide strength characteristics in terms of a "safe working load" with a safety factor as high as 5, assuming that the product will be used in rigging or similar applications subject to dynamic loading. The manufacturer's safe working load may be overly conservative for permanent installations and similar applications subject to static loading only.

If desired, the published safe working load can be converted into an available strength with reliability consistent with that of other statically loaded structural materials. In this case, the nominal strength, R_{n}, is determined as:

$$
\begin{equation*}
R_{n}=(\text { safe working load }) \times(\text { manufacturer's safety factor }) \tag{2-6}
\end{equation*}
$$

and the available strength, ϕR_{n} or R_{n} / Ω, is determined using

$$
\phi=0.50(\mathrm{LRFD}) \quad \Omega=3.00(\mathrm{ASD})
$$

Crane Rails

Crane rails are furnished to ASTM A759, ASTM A1, and/or manufacturer's specifications and tolerances.

Most manufacturers chamfer the top and sides of the crane-rail head at the ends unless specified otherwise to reduce chipping of the running surfaces. Often, crane rails are ordered as end-hardened, which improves the resistance of the crane-rail ends to impact that occurs as the moving wheel contacts it during crane operation. Alternatively, the entire rail can be ordered as heat-treated. When maximum wheel loading or controlled cooling is needed, refer to manufacturers' catalogs. Purchase orders for crane rails should be noted "for crane service."

Light $40-\mathrm{lb}$ rails are available in 30 -ft lengths, $60-\mathrm{lb}$ rails in 30 -, 33 - or $39-\mathrm{ft}$ lengths, standard rails in 33 - or $39-\mathrm{ft}$ lengths and crane rails up to 80 ft . Consult manufacturer for availability of other lengths. Rails should be arranged so that joints on opposite sides of the crane runway will be staggered with respect to each other and with due consideration to the wheelbase of the crane. Rail joints should not occur at crane girder splices. Odd lengths that must be included to complete a run or obtain the necessary stagger should be not less than 10 ft long. Rails are furnished with standard drilling in both standard and odd lengths unless stipulated otherwise on the order.

CONTRACT DOCUMENT INFORMATION

Design Drawings, Specifications, and Other Contract Documents

CASE Document 962D, A Guideline Addressing Coordination and Completeness of Structural Construction Documents (CASE, 2013), provides comprehensive guidance on the preparation of structural design drawings.

Most provisions in the AISC Specification, RCSC Specification, AWS D1.1/D1.1M, and the AISC Code of Standard Practice are written in mandatory language. Some provisions require the communication of information in the contract documents, some provisions are invoked only when specified in the contract documents, and some provisions require the approval of the owner's designated representative for design if they are to be used. Following is a summary of these provisions in the AISC Specification, RCSC Specification, AISC Code of Standard Practice and AWS D1.1/D1.1M.

Required Information

The following communication of information is required in the contract documents:

1. Required drawing information, per AISC Code of Standard Practice Sections 3.1 and 3.1.1 through 3.1.6. and RCSC Specification Section 1.6 (bolting products and joint type)
2. Drawing numbers and revision numbers, per AISC Code of Standard Practice Sections 3.1 and 3.5
3. Structural system description, per AISC Code of Standard Practice Section 7.10.1
4. Installation schedule for nonstructural steel elements in the structural system, per AISC Code of Standard Practice Section 7.10.2
5. Project schedule, per AISC Code of Standard Practice Section 9.5.1
6. Complete information regarding base metal specification designation and the location, type, size and extent of all welds, per AWS D1.1/D1.1M clauses 1.4.1 and 2.3.4

Depending on the option(s) selected for connections (see AISC Code of Standard Practice Section 3.1.1), the information identified as required by AWS may not be fully available until this information is established as part of the connection work delegated to the fabricator.

Information Required Only When Specified

The following provisions are invoked only when specified in the contract documents:

1. Special material notch-toughness requirements, per AISC Specification Section A3.1c and Section A3.1d
2. Special connections requiring pretensioned or slip-critical bolted connections, per AISC Specification Section J3.1
3. Bolted joint requirements, per AISC Specification Section J3.1 and RCSC Specification Section 1.6
4. Special cambering considerations, per AISC Code of Standard Practice Sections 3.1 and 3.1.5
5. Special contours and finishing requirements for thermal cutting, per AISC Specification Sections M2.2 and M2.3, respectively
6. Corrosion protection requirements, if any, per AISC Specification Section M3 and AISC Code of Standard Practice Sections 6.5, 6.5.2 and 6.5.3
7. Responsibility for field touch-up painting, if painting is specified, per AISC Specification Section M4.6 and AISC Code of Standard Practice Section 6.5.4
8. Special quality control and inspection requirements, per AISC Specification Chapter N and AISC Code of Standard Practice Sections 8.1.3, 8.2 and 8.3
9. Evaluation procedures, per AISC Specification Section B7
10. Fatigue requirements, if any, per AISC Specification Section B3.11
11. Tolerance requirements other than those specified in the AISC Code of Standard Practice, per Code of Standard Practice Section 1.10
12. Designation of each connection as Option 1,2 or 3, and identification of requirements for substantiating connection information, if any, per AISC Code of Standard Practice Section 3.1.1
13. Specific instructions to address items differently, if any, from requirements in the AISC Code of Standard Practice, per Code of Standard Practice Section 1.1
14. Submittal schedule for shop and erection drawings, per AISC Code of Standard Practice Section 4.2.3
15. Mill order timing, special mill testing, and special mill tolerances, per AISC Code of Standard Practice Sections 5.1, 5.1.1 and 5.1.4, respectively
16. Removal of backing bars and runoff tabs, per AISC Code of Standard Practice Section 6.3.2
17. Special erection mark requirements, per AISC Code of Standard Practice Section 6.6.1
18. Special delivery and erection sequences, per AISC Code of Standard Practice Sections 6.7.1 and 7.1, respectively
19. Special field splice requirements, per AISC Code of Standard Practice Section 6.7.4
20. Specials loads to be considered during erection, per AISC Code of Standard Practice Section 7.10.3
21. Special safety protection treatments, per AISC Code of Standard Practice Section 7.11.1
22. Identification of adjustable items, per AISC Code of Standard Practice Section 7.13.1.3
23. Cuts, alterations and holes for other trades, per AISC Code of Standard Practice Section 7.15
24. Revisions to the contract, per AISC Code of Standard Practice Section 9.3
25. Special terms of payment, per AISC Code of Standard Practice Section 9.6
26. Identification of architecturally exposed structural steel, per AISC Code of Standard Practice Section 10
27. Welding code (AWS D1.1/D1.1M) requirements that are applicable only when specified, per AWS D1.1/D1.1M clause 1.4.1
28. All additional nondestructive testing that is not specifically addressed in the welding code, per AWS D1.1/D1.1M clause 1.4.1
29. Requirements for inspection including verification inspection (see also AISC Specification Chapter N and AISC Code of Standard Practice Section 8), per AWS D1.1/ D1.1M clauses 1.4.1 and 2.3.5.6
30. Weld acceptance criteria other than that specified in AWS D1.1/D1.1M clause 6, per AWS D1.1/D1.1.M clause 1.4.1
31. Charpy V-notch toughness criteria for weld metal, base metal, and/or heat affected zones (see also AISC Specification Sections A3.1 and J2.6), per AWS D1.1/D1.1M clauses 1.4.1 and 2.3.2
32. For "nontubular" applications, whether the structure is statically or cyclically loaded, per AWS D1.1/D1.1M clause 1.4.1
33. All additional requirements that are not specifically addressed in the welding code, per AWS D1.1/D1.1M clause 1.4.1
34. For original equipment manufacturer applications (see AWS D1.1/D1.1M clause 1.3.4), the responsibilities of the parties involved, per AWS D1.1/D1.1M clause 1.4.1
35. Designation of any welds that are required to be performed in the field, per AWS D1.1/D1.1M clause 2.3.1
36. Designation of joints where a specific assembly order, welding sequence, welding technique or other special precautions are required, per AWS D1.1/D1.1M clause 2.3.3
37. Details for special groove details, per AWS D1.1/D1.1M clause 2.3.5.5

Note: AWS D1.1/D1.1M also provides shop drawing requirements in clause 2.3.5.

Approvals Required

The following provisions require the approval of the owner's designated representative for design if they are to be used:

1. Bolted-joint-related approvals per RCSC Specification Commentary Section 1.6
2. Use of electronic or other copies of the design drawings by the fabricator, per AISC Code of Standard Practice Section 4.3
3. Use of stock materials not conforming to a specified ASTM specification, per AISC Code of Standard Practice Section 5.2.3
4. Correction of errors, per AISC Code of Standard Practice Section 7.14
5. Inspector-recommended deviations from contract documents, per AISC Code of Standard Practice Section 8.5.6
6. Contract price adjustment, per AISC Code of Standard Practice Section 9.4.2

Establishing Criteria for Connections

AISC Code of Standard Practice Section 3.1.1 provides the following three methods for the establishment of connection requirements.

In the first method, the complete design of all connections is shown in the structural design drawings. In this case, AISC Code of Standard Practice Commentary Section 3.1.1 provides a summary of the information that must be included in the structural design drawings. This method has the advantage that there is no need to provide connection loads, since the connections are completely designed in the structural design drawings. Additionally, it favors greater accuracy in the bidding process, since the connections are fully described in the contract documents.

In the second method, the fabricator is allowed to select or complete the connections while preparing the shop and erection drawings, using the information provided by the owner's designated representative for design per AISC Code of Standard Practice Section 3.1.1. In this case, AISC Code of Standard Practice Commentary Section 3.1.1 clarifies the intention that connections that can be selected or completed by the fabricator include those for which tables appear in the contract documents or this Manual. Other connections should be shown in detail in the structural design drawings.

In the third method, connections are designated in the contract documents to be designed by a licensed professional engineer working for the fabricator. The AISC Code of Standard Practice sets forth detailed provisions that, in the absence of contract provisions to the contrary, serve as the basis of the relationships among the parties. One feature of these
provisions is that the fabricator is required to provide representative examples of connection design documentation early in the process, and the owner's designated representative for design is obliged is to review these submittals for conformity with the requirements of the contract documents. These early submittals are required in an attempt to avoid additional costs and/or delays as the approval process proceeds through subsequent shop drawings with connections developed from the original representative samples.

Methods one and two have the advantage that the fabricator's standard connections normally can be used, which often leads to project economy. However, the loads or other connection design criteria must be provided in the structural design drawings. Design loads and required strengths for connections should be provided in the structural design drawings and the design method used in the design of the frame (ASD or LRFD) must be indicated on the drawings.

In all three methods, the resulting shop and erection drawings must be submitted to the owner's designated representative for design for review and approval. As stated in the AISC Code of Standard Practice Section 4.4.1, the approval of shop and erection drawings constitutes "confirmation that the fabricator has correctly interpreted the contract documents" and that the reviewer has "reviewed and approved the connection details shown in the approval documents." Following is additional guidance for the communication of connection criteria to the connection designer.

Simple Shear Connections

The full force envelope should be given for each simple shear connection. Because of the potential for overestimation and underestimation inherent in approximate methods (Thornton, 1995), actual beam end reactions should be indicated on the design drawings. The most effective method to communicate this information is to place a numeric value at each end of each span in the framing plans.

In the past, beam end reactions were sometimes specified as a percentage of the uniform load tabulated in Part 3. This practice can result in either over- or under-specification of connection reactions and should not be used. The inappropriateness of this practice is illustrated in the following examples.

Overestimation:

1. When beams are selected for serviceability considerations or for shape repetition, the uniform load tables will often result in heavier connections than would be required by the actual design loads.
2. When beams have relatively short spans, the uniform load tables will often result in heavier connections than would be required by the actual design loads. If not addressed with the accurate load, many times the heavier connections will require extension of the connection below the bottom flange of the supported member, requiring that the flange on one or both sides of the web to be cut and chipped, a costly process.

Underestimation:

1. When beams support other framing beams or other concentrated loads occur on girders supporting beams, the end reactions can be higher than 50% of the total uniform load.
2. For composite beams, the end reactions can be higher than 50% of the total uniform load. The percentage requirement can be increased for this condition, but the resulting approach is still subject to the above considerations.

Moment Connections

The full force envelope should be given for each moment connection. If the owner's designated representative for design can select the governing load combination, its effect alone should be provided. Otherwise, the effects of all appropriate load combinations should be indicated. Additionally, the maximum moment imbalance should also be given for use in the check of panel-zone web shear.

Because of the potential for overestimation-and underestimation-inherent in approximate methods, it is recommended that the actual beam end reactions (moment, shear and other reactions, if any) be indicated in the structural design drawings. The most effective method to do so may be by tabulation for each joint and load combination.

Although not recommended, beam end reactions are sometimes specified by more general criteria, such as by function of the beam strength. It should be noted, however, that there are several situations in which this approach is not appropriate. For example:

1. When beams are selected for serviceability considerations or for shape repetition, this approach will often result in heavier connections than would be required by the actual design loads.
2. When the column(s) or other members that frame at the joint could not resist the forces and moments determined from the criteria so specified, this approach will often result in heavier connections than would be required by the actual design loads.

In some cases, the structural analysis may require that the actual connections be configured to match the assumptions used in the model. For example, it may be appropriate to release weak-axis moments in a beam-column joint where only strong-axis beam moment strength is required. Such requirements should be indicated in the structural design drawings.

Horizontal and Vertical Bracing Connections

The full force envelope should be given for each bracing-member end connection. If the owner's designated representative for design can select the governing load combination for the connection, its effect alone should be provided. Otherwise, the effects of all appropriate load combinations should be indicated in tabular form. This approach will allow a clear understanding of all of the forces on any given joint.

Because of the potential for overestimation-and underestimation-inherent in approximate methods, it is recommended that the actual reactions at the bracing member end (axial force and other reactions, if any) be indicated in the structural design drawings. It is also recommended that transfer forces, if any, be so indicated. The most effective method to do so may be by tabulation for each bracing member end and load combination.

Although not recommended, bracing member end reactions can be specified by more general criteria, such as by maximum member forces (tension or compression) or as a function of the member strength. It should be noted, however, that there are several situations in which such approaches are not appropriate. For example:

1. The specification of maximum member forces does not permit a check of the member forces at a joint if there are different load combinations governing the member designs at that joint. Nor does it reflect the possibility of load reversal as it may influence the design.
2. The specification of a percentage of member strength may not properly account for the interaction of forces at a joint or the transfer force through the joint. Additionally, it may not allow for a cross check of all forces at a joint.

In either case, this approach will often result in heavier connections than would be required by the actual design loads.

Bracing connections may involve the interaction of gravity and lateral loads on the frame. In some cases, such as V - and inverted V-bracing (also known as Chevron bracing), gravity loads alone may govern design of the braces and their connections. Thus, clarity in the specification of loads and reactions is critical to properly consider the potential interaction of gravity and lateral loads at floors and roofs.

Strut and Tie Connections

Floor and roof members in braced bays and adjacent bays may function as struts or ties in addition to carrying gravity loads. Therefore the recommendations for simple shear connections and bracing connections above apply in combination.

Truss Connections

The recommendations for horizontal and vertical bracing connections above also apply in general to bracing connections with the following additional comments.

Note that it is not necessary to specify a minimum connection strength as a percent of the member strength as a default. However, when trusses are shop assembled or field assembled on the ground for subsequent erection, consideration should be given to the loads that will be induced during handling, shipping and erection.

Column Splices

Column splices may resist moments, shears and tensions in addition to gravity forces. Typical column splices are discussed in Part 14. As in the case of the other connections discussed above, unless the column splices are fully designed in the construction documents, forces and moments for the splice designs should be provided in the construction documents. Since column splices are located away from the girder/column joint and moments vary in the height of the column, an accurate assessment of the forces and moments at the column splices will usually significantly reduce their cost and complexity.

CONSTRUCTABILITY

Constructability is a relatively new word for a well established idea. The design, detailing, fabrication and erection of structural steel is a process which in the end needs to result in a safe and economical steel frame. Building codes and the AISC Specification address strength and structural integrity. Constructability addresses the need for global economy in the fabricated and erected steel frame. Constructability must be "designed in," influencing decision-making at all steps of the design process, from framing system selection, though member design, to connection selection and design. Constructability demands attention to detail and requires the designer to think ahead to the fabrication and erection of the steel frame. The goal is to design a steel frame that is relatively easy to detail, fabricate and erect. AISC provides guidance to the design community through its many publications and presentations, including Design Guide 23, Constructability of Structural Steel Buildings (Ruby, 2008).

Constructability focuses on such issues as framing layout, the number of pieces in an area of framing, three-dimensional connection geometry, swinging-in clearances, access to bolts, and access to welds. It involves the acknowledgement that numerous, seemingly small
decisions can have an effect on the overall economy of the final erected steel frame. Fabricators and erectors have the knowledge that can assist in the design of constructible steel frames. Designers should seek their counsel.

TOLERANCES

The effects of mill, fabrication and erection tolerances all require consideration in the design and construction of structural steel buildings. However, the accumulation of the mill tolerances and fabrication tolerances shall not cause the erection tolerances to be exceeded, per AISC Code of Standard Practice Section 7.12.

Mill Tolerances

Mill tolerances are those variations that could be present in the product as-delivered from the rolling mill. These tolerances are given as follows:

1. For structural shapes and plates, see ASTM A6.
2. For HSS, see ASTM A500 (or other applicable ASTM specification for HSS).
3. For pipe, see ASTM A53.

A summary of standard mill practices is also given in Part 1.

Fabrication Tolerances

Fabrication tolerances are generally provided in AISC Specification Section M2 and AISC Code of Standard Practice Section 6.4. Additional requirements that govern fabrication are as follows:

1. Compression joint fit-up, per AISC Specification Section M4.4
2. Roughness limits for finished surfaces, per AISC Code of Standard Practice Section 6.2.2
3. Straightness of projecting elements of connection materials, per AISC Code of Standard Practice Section 6.3.1
4. Finishing requirements at locations of removal of run-off tabs and similar devices, per AISC Code of Standard Practice Section 6.3.2

Erection Tolerances

Erection tolerances are generally provided in AISC Specification Section M4 and AISC Code of Standard Practice Section 7.13. Note that the tolerances specified therein are predicated upon the proper installation of the following items by the owner's designated representative for construction:

1. Building lines and benchmarks, per AISC Code of Standard Practice Section 7.4
2. Anchorage devices, per AISC Code of Standard Practice Section 7.5
3. Bearing devices, per AISC Code of Standard Practice Section 7.6
4. Grout, per AISC Code of Standard Practice Section 7.7

Building Façade Tolerances

The preceding mill, fabrication and erection tolerances can be maintained with standard equipment and workmanship. However, the accumulated tolerances for the structural steel and the building façade must be accounted for in the design so that the two systems
can be properly mated in the field. In the steel frame, this is normally accomplished by specifying adjustable connections in the contract documents, per AISC Code of Standard Practice Section 7.13.1.3. This section has three subsections. Subsection (a) addresses the vertical position of the adjustable items, subsection (b) addresses the horizontal position of the adjustable items, and subsection (c) addresses alignment of adjustable items at abutting ends.

The required adjustability normally can be determined from the range of adjustment in the building façade anchor connections, tolerances for the erection of the building façade, and the accumulation of mill, fabrication and erection tolerances at the mid-span point of the spandrel beam. The actual locations of the column bases, the actual slope of the columns, and the actual sweep of the spandrel beam all affect the accumulation of tolerances in the structural steel at this critical location. These conditions must be reflected in details that will allow successful erection of the steel frame and the façade, if each of these systems is properly constructed within its permitted tolerance envelope.

Figures 2-3(a), 2-4(a) and 2-5(a) illustrate details that are not recommended because they do not provide for adjustment. Figures 2-3(b), 2-4(b) and 2-5(b) illustrate recommended alternative details that do provide for adjustability. Note that diagonal structural and stability bracing elements have been omitted in these details to improve the clarity of presentation regarding adjustability. Also, note that all elements beyond the slab edge are normally not structural steel, per AISC Code of Standard Practice Section 2.2, and are shown for the purposes of illustration only.

The bolted details in Figures 2-4(b) and 2-5(b) can be used to provide field adjustability with slotted holes as shown. Further adjustability can be provided in these details, if necessary, by removing the bolts and clamping the connection elements for field welding. Alternatively, when the slab edge angle or plate in Figure 2-4(b) is shown as field welded and identified as adjustable in the contract documents, it can be provided to within a horizontal tolerance of $\pm^{3 / 8}$ in., per AISC Code of Standard Practice Section 7.13.1.3. However, if the item was not shown as field welded and identified as adjustable in the contract documents, it would likely be attached in the shop or attached in the field to facilitate the concrete pour and not be suitable to provide for the necessary adjustment. The details in Figures 2-3(b) and 2-4(b) do not readily permit vertical adjustment of the adjustable material. However, the vertical position tolerance of $\pm^{3} / 8$ in. is less than the tolerance for the position of the spandrel member itself, see AISC Code of Standard Practice Section 7.13.1.2(b). The manufacturing tolerance for camber in the spandrel member is set by ASTM A6, as summarized in Table 1-22. The ASTM A6 limit for camber is $1 / 8 \mathrm{in}$. per 10 ft of length, thus, in most situations the vertical position tolerance in AISC Code of Standard Practice Section 7.13.1.3(b) should be achieved indirectly. In general, spandrel members should not be cambered. Deflection of spandrel members should be controlled by member stiffness. Figure 2-5(b) shows a detail in which both horizontal and vertical adjustment can be achieved.

With adjustable connections specified in design and provided in fabrication, actions taken on the job site will allow for a successful façade installation. Per the AISC Code of Standard Practice definition of established column line (see Code of Standard Practice Glossary), proper placement of this line by the owner's designated representative for construction based upon the actual column-center locations will assure that all subcontractors are working from the same information. When sufficient adjustment cannot be accommodated within
the adjustable connections provided, a common solution is to allow the building façade to deviate (or drift) from the theoretical location to follow the as-built locations of the structural steel framing and concrete floor slabs. A survey of the as-built locations of these elements can be used to adjust the placement of the building façade accordingly. In this case, the adjustable connections can serve to ensure that no abrupt changes occur in the façade. Building façade tolerances and other related issues are presented in detail in AISC Design Guide 22, Façade Attachments to Steel-Framed Buildings (Parker, 2008).

(a) Without adjustment (not recommended)

(b) With adjustment (recommended)

Fig. 2-3. Attaching cold-formed steel façade systems to structural steel framing.

(a) Without adjustment (not recommended)

(b) With adjustment (recommended)

Fig. 2-4. Attaching curtain wall façade systems to structural steel framing.

Fig. 2-5. Attaching masonry façade systems to structural steel framing.

QUALITY CONTROL AND QUALITY ASSURANCE

AISC Specification Chapter N addresses quality control and assurance. This chapter distinguishes between quality control, which is the responsibility of the fabricator and erector, and quality assurance, which is the responsibility of the owner, usually through third party inspectors. The new provisions bring together requirements from diverse sources of quality control (QC) and quality assurance (QA), so that plans for QC and QA can be established on a project-specific basis. Chapter N provides tabulated lists of inspection tasks for both QC and QA. As in the case of the AISC Seismic Provisions, these tasks are characterized as either "observe" or "perform." Tasks identified as "observe" are general and random. Tasks identified as "perform" are specific to the final acceptance of an item in the work. The characterization of tasks as observe and perform is a substitute for the distinction between periodic and continuous inspection used in other codes and standards, such as the International Building Code.

CAMBERING, CURVING AND STRAIGHTENING

Beam Camber and Sweep

Camber denotes a curve in the vertical plane. Sweep denotes a curve in the horizontal plane. Camber and sweep occur naturally in members as received from the mill. The deviation of the member from straight must be within the mill tolerances specified in ASTM A6/A6M.

When required by the contract documents, cambering and curving to a specified amount can be provided by the fabricator per AISC Code of Standard Practice Sections 6.4.2 and 6.4.4, either by cold bending or by hot bending.

Cambering and curving induce residual stresses similar to those that develop in rolled structural shapes as elements of the shape cool from the rolling temperature at different rates. These residual stresses do not affect the available strength of structural members, because the effect of residual stresses is considered in the provisions of the AISC Specification.

Cold Bending

The inelastic deformations required in common cold bending operations, such as for beam cambering, normally fall well short of the strain-hardening range. Specific limitations on cold-bending capabilities should be obtained from those that provide the service and from Cold Bending of Wide-Flange Shapes for Construction (Bjorhovde, 2006). However, the following general guidelines may be useful in the absence of other information:

1. The minimum radius for camber induced by cold bending in members up to a nominal depth of 30 in . is between 10 and 14 times the depth of the member. Deeper members may require a larger minimum radius.
2. A minimum length of 25 ft is commonly practical due to manufacturing/fabrication equipment.

When curvatures and the resulting inelastic deformations are significant and corrective measures are required, the effects of cold work on the strength and ductility of the structural steels largely can be eliminated by thermal stress relief or annealing.

Hot Bending

The controlled application of heat can be used in the shop and field to provide camber or curvature. The member is rapidly heated in selected areas that tend to expand, but are restrained by the adjacent cooler areas, causing inelastic deformations in the heated areas and a change in the shape of the cooled member.

The mechanical properties of steels are largely unaffected by such heating operations, provided the maximum temperature does not exceed the temperature limitations given in AISC Specification Section M2.1. Temperature-indicating crayons or other suitable means should be used during the heating process to ensure proper regulation of the temperature.

Heat curving induces residual stresses that are similar to those that develop in hot-rolled structural shapes as they cool from the rolling temperature because all parts of the shape do not cool at the same rate.

Truss Camber

Camber is provided in trusses, when required, by the fabricator per AISC Code of Standard Practice Section 6.4.5, by geometric relocation of panel points and adjustment of member lengths based upon the camber requirements as specified in the contract documents.

Straightening

All structural shapes are straightened at the mill after rolling, either by rotary or gag straightening, to meet the aforementioned mill tolerances. Similar processes and/or the controlled
application of heat can be used in the shop or field to straighten a curved or distorted member. These processes are normally applied in a manner similar to those used to induce camber and curvature and described above.

FIRE PROTECTION AND ENGINEERING

Provisions for structural design for fire conditions are found in AISC Specification Appendix 4. Complete coverage of fire protection and engineering for steel structures is included in AISC Design Guide 19, Fire Resistance of Structural Steel Framing (Ruddy et al., 2003).

CORROSION PROTECTION

In building structures, corrosion protection is not required for steel that will be enclosed by building finish, coated with a contact-type fireproofing, or in contact with concrete. When enclosed, the steel is trapped in a controlled environment and the products required for corrosion are quickly exhausted, as indicated in AISC Specification Commentary Section M3. A similar situation exists when steel is fireproofed or in contact with concrete. Accordingly, shop primer or paint is not required unless specified in the contract documents, per AISC Specification Section M3.1. Per AISC Code of Standard Practice Section 6.5, steel that is to remain unpainted need only be cleaned of heavy deposits of oil and grease by appropriate means after fabrication.

Corrosion protection is required, however, in exterior exposed applications. Likewise, steel must be protected from corrosion in aggressively corrosive applications, such as a paper processing plant, a structure with oceanfront exposure, or when temperature changes can cause condensation. Corrosion should also be considered when connecting steel to dissimilar metals.

When surface preparation other than the cleaning described above is required, an appropriate grade of cleaning should be specified in the contract documents according to the Society for Protective Coatings (SSPC). A summary of the SSPC surface preparation standards (SSPC, 2014) is provided in Table 2-7. SSPC-SP 2 is the normal grade of cleaning when cleaning is required.

For further information, refer to the publications of SSPC, the American Galvanizers Association (AGA), and the National Association of Corrosion Engineers International (NACE). For corrosion protection of fasteners, see Part 7.

RENOVATION AND RETROFIT OF EXISTING STRUCTURES

The provisions in AISC Specification Section B7 govern the evaluation of existing structures. Historical data on available steel grades and hot-rolled structural shapes, including dimensions and properties, is available in AISC Design Guide 15, Rehabilitation and Retrofit Guide-A Reference for Historic Shapes and Specifications (Brockenbrough and Schuster, 2017), and the companion database of historic shape properties from 1873 to 1999 available at www.aisc.org/manualresources. See also Ricker (1988) and Tide (1990).

THERMAL EFFECTS

Expansion and Contraction

The average coefficient of expansion, ε, for structural steel between $70^{\circ} \mathrm{F}$ and $100^{\circ} \mathrm{F}$ is 0.0000065 for each ${ }^{\circ} \mathrm{F}$ (Camp et al., 1951). This value is a reasonable approximation of the
coefficient of thermal expansion for temperatures less than $70^{\circ} \mathrm{F}$. For temperatures from 100 to $1,200^{\circ} \mathrm{F}$, the change in length per unit length per ${ }^{\circ} \mathrm{F}, \varepsilon$, is:

$$
\begin{equation*}
\varepsilon=(6.1+0.0019 t) 10^{-6} \tag{2-7}
\end{equation*}
$$

where t is the initial temperature in ${ }^{\circ} \mathrm{F}$. The coefficients of expansion for other building materials can be found in Table 17-11.

Although buildings are typically constructed of flexible materials, expansion joints are often required in roofs and the supporting structure when horizontal dimensions are large. The maximum distance between expansion joints is dependent upon many variables, including ambient temperature during construction and the expected temperature range during the lifetime of the building.

Figure 2-6 (Federal Construction Council, 1974) provides guidance based on design temperature change for maximum spacing of structural expansion joints in beam-and-column-framed buildings with pinned column bases and heated interiors. The report includes data for numerous cities and gives five modification factors to be applied as appropriate:

1. If the building will be heated only and will have pinned column bases, use the maximum spacing as specified.
2. If the building will be air conditioned as well as heated, increase the maximum spacing by 15% provided the environmental control system will run continuously.
3. If the building will be unheated, decrease the maximum spacing by 33%.

Fig. 2-6. Recommended maximum expansion joint spacing.
4. If the building will have fixed column bases, decrease the maximum spacing by 15%.
5. If the building will have substantially greater stiffness against lateral displacement in one of the plan dimensions, decrease the maximum spacing by 25%.

When more than one of these design conditions prevail in a building, the percentile factor to be applied is the algebraic sum of the adjustment factors of all the various applicable conditions. Most building codes include restrictions on location and maximum spacing of fire walls, which often become default locations for expansion joints.

The most effective expansion joint is a double line of columns that provides a complete and positive separation. Alternatively, low-friction sliding elements can be used. Such systems, however, are seldom totally friction-free and will induce some level of inherent restraint to movement.

Elevated-Temperature Service

For applications involving short-duration loading at elevated temperature, the variations in yield strength, tensile strength, and modulus of elasticity are given in AISC Design Guide 19, Fire Resistance of Structural Steel Framing (Ruddy et al., 2003). For applications involving long-duration loading at elevated temperatures, the effects of creep must also be considered. For further information, see Brockenbrough and Merritt (2011).

FATIGUE AND FRACTURE CONTROL

Avoiding Brittle Fracture

By definition, brittle fracture occurs by cleavage at a stress level below the yield strength. Generally, a brittle fracture can occur when there is a sufficiently adverse combination of tensile stress, temperature, strain rate and geometrical discontinuity (notch). The exact combination of these conditions and other factors that will cause brittle fracture cannot be readily calculated. Consequently, the best guide in selecting steel material that is appropriate for a given application is experience.

The steels listed in AISC Specification Section A3.1a, have been successfully used in a great number of applications, including buildings, bridges, transmission towers and transportation equipment, even at the lowest atmospheric temperatures encountered in the United States. Nonetheless, it is desirable to minimize the conditions that tend to cause brittle fracture: triaxial state-of-stress, increased strain rate, strain aging, stress risers, welding residual stresses, areas of reduced notch toughness, and low-temperature service.

1. Triaxial state-of-stress: While shear stresses are always present in a uniaxial or biaxial state-of-stress, the maximum shear stress approaches zero as the principal stresses approach a common value in a triaxial state-of-stress. A triaxial state-of-stress can also result from uniaxial loading when notches or geometrical discontinuities are present. A triaxial state-of-stress will cause the yield stress of the material to increase above its nominal value, resulting in brittle fracture by cleavage, rather than ductile shear deformations. As a result, in the absence of critical-size notches, the maximum stress is limited by the yield stress of the nearby unaffected material. Triaxial stress conditions should be avoided, when possible.
2. Increased strain rate: Gravity loads, wind loads and seismic loads have essentially similar strain rates. Impact loads, such as those associated with heavy cranes, and blast
loads normally have increased strain rates, which tend to increase the possibility of brittle fracture. Note, however, that a rapid strain rate or impact load is not a required condition for the occurrence of brittle fracture.
3. Strain aging: Cold working of steel and the strain aging that normally results generally increases the likelihood of brittle fracture, usually due to a reduction in ductility and notch toughness. The effects of cold work and strain aging can be minimized by selecting a generous forming radius to eliminate or minimize strain hardening.
4. Stress risers: Fabrication operations, such as flame cutting and welding, may induce geometric conditions or discontinuities that are crack-like in nature, creating stress risers. Intersecting welds from multiple directions should be avoided with properly sized weld access holes to minimize the interaction of these various stress fields. Such conditions should be avoided, when possible, or removed or repaired when they occur.
5. Welding residual stresses: In the as-welded condition, residual stresses near the yield strength of the material will be present in any weldment. Residual stresses and the possible accompanying distortions can be minimized through controlled welding procedures and fabrication methods, including the proper positioning of the components of the joint prior to welding, the selection of welding sequences that will minimize distortions, the use of preheat as appropriate, the deposition of a minimum volume of weld metal with a minimum number of passes for the design condition, and proper control of interpass temperatures and cooling rates. In fracture-sensitive applications, notchtoughness should be specified for both the base metal and the filler metal.
6. Areas of reduced notch toughness: Such areas can be found in the core areas of heavy shapes and plates and the k-area of rotary-straightened W-shapes. Accordingly, AISC Specification Sections A3.1c and Section A3.1d include special requirements for material notch toughness.
7. Low-temperature service: While steel yield strength, tensile strength, modulus of elasticity, and fatigue strength increase as temperature decreases, ductility and toughness decrease. Furthermore, there is a temperature below which steel subjected to tensile stress may fracture by cleavage, with little or no plastic deformation, rather than by shear, which is usually preceded by considerable inelastic deformation. Note that cleavage and shear are used in the metallurgical sense to denote different fracture mechanisms.

When notch-toughness is important, Charpy V-notch testing can be specified to ensure a certain level of energy absorption at a given temperature, such as $15 \mathrm{ft}-\mathrm{lb}$ at $70^{\circ} \mathrm{F}$. Note that the appropriate test temperature may be higher than the lowest operating temperature depending upon the rate of loading. Although it is primarily intended for bridge-related applications, the information in ASTM A709 Section 10 (including Tables 9 and 10) may be useful in determining the proper level of notch toughness that should be specified.

In many cases, weld metal notch toughness exceeds that of the base metal. Filler metals can be selected to meet a desired minimum notch-toughness value. For each welding process, electrodes exist that have no specified notch toughness requirements. Such electrodes should not be assumed to possess any minimum notch-toughness value. When notch toughness is necessary for a given application, the desired value or an appropriate electrode should be specified in the contract documents.

For further information, refer to Fisher et al. (1998), Barsom and Rolfe (1999), and Rolfe (1977).

Avoiding Lamellar Tearing

Although lamellar tearing is less common today, the restraint against solidified weld deposit contraction inherent in some joint configurations can impose a tensile strain high enough to cause separation or tearing on planes parallel to the rolled surface of the element being joined. The incidence of this phenomenon can be reduced or eliminated through greater understanding by designers, detailers and fabricators of the inherent directionality of rolled steel, the importance of strains associated with solidified weld deposit contraction in the presence of high restraint (rather than externally applied design forces), and the need to adopt appropriate joint and welding details and procedures with proper weld metal for through-thickness connections.

Dexter and Melendrez (2000) demonstrate that W-shapes are not susceptible to lamellar tearing or other through-thickness failures when welded tee joints are made to the flanges at locations away from member ends. When needed for other conditions, special production practices can be specified for steel plates to assist in reducing the incidence of lamellar tearing by enhancing through-thickness ductility. For further information, refer to ASTM A770. However, it must be recognized that it is more important and effective to properly design, detail and fabricate to avoid highly restrained joints. AISC (1973) provides guidelines that minimize potential problems.

WIND AND SEISMIC DESIGN

In general, nearly all building design and construction can be classified into one of two categories: wind and low-seismic applications, and high-seismic applications. For additional discussion regarding seismic design and the applicability of the AISC Seismic Provisions, see the Scope statement at the front of this manual.

Wind and Low-Seismic Applications

Wind and low-seismic applications are those in which the AISC Seismic Provisions are not applicable. Such buildings are designed to meet the provisions in the AISC Specification based upon the code-specified forces distributed throughout the framing assuming a nominally elastic structural response. The resulting systems have normal levels of ductility. It is important to note that the applicable building code includes seismic design requirements even if the AISC Seismic Provisions are not applicable. See the AISC Seismic Design Manual for additional discussion.

High-Seismic Applications

High-seismic applications are those in which the building is designed to meet the provisions in both the AISC Seismic Provisions and the AISC Specification. Note that it does not matter if wind or earthquake controls in this case. High-seismic design and construction will generally cost more than wind and low-seismic design and construction, as the resulting systems are designed to have high levels of ductility.

High-seismic lateral framing systems are configured to be capable of withstanding strong ground motions as they undergo controlled ductile deformations to dissipate energy. Consider the following three examples:

1. Special Concentrically Braced Frames (SCBF)—SCBF are generally configured so that any inelasticity will occur by tension yielding and/or compression buckling in the braces. The connections of the braces to the columns and beams and between the columns and beams themselves must then be proportioned to remain nominally elastic as they undergo these deformations.
2. Eccentrically Braced Frames (EBF)—EBF are generally configured so that any inelasticity will occur by shear yielding and/or flexural yielding in the link. The beam outside the link, connections, braces and columns must then be proportioned to remain nominally elastic as they undergo these deformations.
3. Special Moment Frames (SMF)—SMF are generally configured so that any inelasticity will occur by flexural yielding in the girders near, but away from, the connection of the girders to the columns. The connections of the girders to the columns and the columns themselves must then be proportioned to remain nominally elastic as they undergo these deformations. Intermediate moment frames (IMF) and ordinary moment frames (OMF) are also configured to provide improved seismic performance, although successively lower than that for SMF.

The code-specified base accelerations used to calculate the seismic forces are not necessarily maximums, but rather, they represent the intensity of ground motions that have been selected by the code-writing authorities as reasonable for design purposes. Accordingly, the requirements in both the AISC Seismic Provisions and the AISC Specification must be met so that the resulting frames can then undergo controlled deformations in a ductile, welldistributed manner.

The design provisions for high-seismic systems are also intended to result in distributed deformations throughout the frame, rather than the formation of story mechanisms, so as to increase the level of available energy dissipation and corresponding level of ground motion that can be withstood.

The member sizes in high-seismic frames will be larger than those in wind and lowseismic frames. The connections will also be much more robust so they can transmit the member-strength-driven force demands. Net sections will often require special attention so as to avoid having fracture limit states control. Special material requirements, design considerations and construction practices must be followed. For further information on the design and construction of high-seismic systems, see the AISC Seismic Provisions.

PART 2 REFERENCES

Much of the material referenced in the Steel Construction Manual may be found at www.aisc.org.

ACI (2014), Building Code Requirements for Structural Concrete, ACI 318-14, American Concrete Institute, Farmington Hills, MI.
Allison, H. (1991), Low- and Medium-Rise Steel Buildings, Design Guide 5, AISC, Chicago, IL.
AISC (1973), "Commentary on Highly Restrained Welded Connections," Engineering Journal, Vol. 10, No. 3, American Institute of Steel Construction, pp. 61-73.
AISC (2005), Specification for Structural Steel Buildings, ANSI/AISC 360-05, American Institute of Steel Construction, Chicago, IL.
AISC (2009), Detailing for Steel Construction, 3rd Ed., American Institute of Steel Construction, Chicago, IL.
AISC (2010), Seismic Provisions for Structural Steel Buildings, ANSI/AISC 341-10, American Institute of Steel Construction, Chicago, IL.
AISC (2012), Seismic Design Manual, 2nd Ed., American Institute of Steel Construction, Chicago, IL.
AISC (2016a), Specification for Structural Steel Buildings, ANSI/AISC 360-16, American Institute of Steel Construction, Chicago, IL.
AISC (2016b), Code of Standard Practice for Structural Steel Buildings, ANSI/AISC 303-16, American Institute of Steel Construction, Chicago, IL.
AISC (2016c), Seismic Provisions for Structural Buildings, ANSI/AISC 341-16, American Institute of Steel Construction, Chicago, IL.
AISC (2017), Design Examples, V15.0, American Institute of Steel Construction, Chicago, IL.
ASCE (2016), Minimum Design Loads and Associated Criteria for Buildings and Other Structures, ASCE/SEI 7-16, American Society of Civil Engineers, Reston, VA.
AWS (2007), Standard Symbols for Welding, Brazing, and Nondestructive Examination, AWS A2.4, American Welding Society, Miami, FL.
AWS (2015), Structural Welding Code—Steel, AWS D1.1/D1.1M:2015, American Welding Society, Miami, FL.
Baddoo, N. (2013), Structural Stainless Steel, Design Guide 27, AISC, Chicago, IL.
Barger, B.L. and West, M.A. (2001), "New OSHA Erection Rules: How They Affect Engineers, Fabricators and Contractors," Modern Steel Construction, May, AISC, Chicago, IL.
Barsom, J.A. and Rolfe, S.T. (1999), Fracture and Fatigue Control in Structures: Applications of Fracture Mechanics, 3rd Edition, ASTM, West Conshohocken, PA.
Bjorhovde, R, (2006), "Cold Bending of Wide-Flange Shapes for Construction," Engineering Journal, AISC, Vol. 43, No. 4, pp. 271-286.
Brockenbrough, R.L. and Merritt, F.S. (2011), Structural Steel Designer's Handbook, 5th Edition, McGraw-Hill, New York, NY.
Brockenbrough, R.L. and Schuster, J. (2017), Rehabilitation and Retrofit Guide-A Reference for Historic Shapes and Specifications, Design Guide 15, 2nd Ed., AISC, Chicago, IL.
Camp, J.M., Francis, C.B. and McGannon H.E. (1951), The Making, Shaping and Treating of Steel, 6th Edition, U.S. Steel, Pittsburgh, PA.
Carter, C.J. (1999), Stiffening of Wide-Flange Columns at Moment Connections: Wind and Seismic Applications, Design Guide 13, AISC, Chicago, IL.

CASE (2013), A Guideline Addressing Coordination and Completeness of Structural Construction Documents, Document 962D, Council of American Structural Engineers.
Churches, C.H., Troup, E.W.J. and Angeloff, C. (2003), Steel-Framed Open-Deck Parking Structures, Design Guide 18, AISC, Chicago, IL.
CISC (1989), Roof Framing with Cantilever (Gerber) Girders \& Open Web Joists, Canadian Institute of Steel Construction, Willowdale, Ontario, Canada.
Darwin, D. (1990), Steel and Composite Beams with Web Openings, Design Guide 2, AISC, Chicago, IL.
Dexter, R.J. and Melendrez, M.I. (2000), "Through-Thickness Properties of Column Flanges in Welded Moment Connections," Journal of Structural Engineering, ASCE, Vol. 126, No. 1, pp. 24-31.
Dinehart, D.W., Coulson, J. and Fares, S.S. (2016), Design of Castellated and Cellular Beams, Design Guide 31, AISC, Chicago, IL.
DOD (2013), Design of Buildings to Resist Progressive Collapse, UFC 4-023-03, July.
Federal Construction Council (1974), Technical Report No. 65 Expansion Joints in Buildings, National Research Council, Washington, DC.
Fisher, J.M. and West, M.A. (1997), Erection Bracing of Low-Rise Structural Steel Buildings, Design Guide 10, AISC, Chicago, IL.
Fisher, J.M. (2004), Industrial Buildings-Roofs to Anchor Rods, Design Guide 7, 2nd Ed., AISC, Chicago, IL.
Fisher, J.M. and Kloiber, L.A. (2006), Base Plate and Anchor Rod Design, Design Guide 1, 2nd Ed., AISC, Chicago, IL.
Fisher, J.W., Kulak, G.L. and Smith, I.F.C. (1998), A Fatigue Primer for Structural Engineers, NSBA/AISC, Chicago, IL.
Geschwindner, L.F. and Gustafson, K. (2010), "Single-Plate Shear Connection Design to Meet Structural Integrity Requirements," Engineering Journal, AISC, Vol. 47, No. 3, pp. 189-202.
Gewain, R.G., Iwankiw, N.R. and Alfawakhiri, F. (2003), Fire, Facts for Steel Buildings 1, AISC, Chicago, IL.
Gilsanz, R., Hamburger, R., Barker, D., Smith, J. and Rahimian, A. (2013), Design of Blast Resistant Structures, Design Guide 26, AISC, Chicago, IL.
Griffis, L.G. (1992), Load and Resistance Factor Design of W-Shapes Encased in Concrete, Design Guide 6, AISC, Chicago, IL.
Griffis, L.G. and White, D.W. (2013), Stability Design of Steel Buildings, Design Guide 28, AISC, Chicago, IL.
Gross, J.L., Engelhardt, M.D., Uang, C.M., Kasai, K. and Iwankiw, N.R. (1999), Modification of Existing Welded Steel Moment Frame Connections for Seismic Resistance, Design Guide 12, AISC, Chicago, IL.
Hamburger, R.O. (2009), Earthquakes and Seismic Design, Facts for Steel Buildings 3, AISC, Chicago, IL.
ICC (2015), International Building Code, International Code Council, Falls Church, VA.
Kaehler, R.C., White, D.W. and Kim, Y.K. (2010), Web-Tapered Frame Design, Design Guide 25, AISC, Chicago, IL.
Kulak, G.L. (2002), High Strength Bolts-A Primer for Structural Engineers, Design Guide 17, AISC, Chicago, IL.
Leon, R.T., Hoffman, J.J. and Staeger, T. (1996), Partially Restrained Composite Connections, Design Guide 8, AISC, Chicago, IL.

Marchand, K.A. and Alfawakhiri, F. (2004), Blast and Progressive Collapse, Facts for Steel Buildings 2, AISC, Chicago, IL.
Markham, B. and Ungar, E. (2015), Sound Isolation and Noise Control in Steel Buildings, Design Guide 30, AISC, Chicago, IL.
Markham, B. and Ungar, E. (2016), Sound Isolation and Noise Control, Facts for Steel Buildings 4, AISC, Chicago, IL.
Miller, D.K. (2017), Welded Connections-A Primer for Engineers, Design Guide 21, 2nd Ed., AISC, Chicago, IL.
Muir, L.S. and Thornton, W.A. (2014), Vertical Bracing Connections-Analysis and Design, Design Guide 29, AISC, Chicago, IL.
Murray, T.M. and Sumner, E.A. (2003), Extended End-Plate Moment Connections-Seismic and Wind Applications, Design Guide 4, 2nd Ed., AISC, Chicago, IL.
Murray, T.M., Allen, D.E. and Ungar, E.E. (2016), Vibrations of Steel-Framed Structural Systems Due to Human Activity, Design Guide 11, 2nd Ed., AISC, Chicago, IL.
Murray, T.M. and Shoemaker, W.L. (2002), Flush and Extended Multiple-Row Moment End-Plate Connections, Design Guide 16, AISC, Chicago, IL.
OSHA (2001), Safety and Health Standards for the Construction Industry, 29 CFR 1926 Part R Safety Standards for Steel Erection, Occupational Safety and Health Administration, Washington, DC.
Packer, J., Sherman, D. and Leece, M. (2010), Hollow Structural Section Connections, Design Guide 24, AISC, Chicago, IL.
Parker, J.C. (2008), Façade Attachments to Steel-Framed Buildings, Design Guide 22, AISC, Chicago, IL.
RCSC (2014), Specification for Structural Joints Using High-Strength Bolts, Research Council on Structural Connections, Chicago, IL.
Ricker, D.T. (1988), "Field Welding to Existing Structures," Engineering Journal, AISC, Vol. 25, No. 1, pp. 1-16.
Rolfe, S.T. (1977), "Fracture and Fatigue Control in Steel Structures," Engineering Journal, AISC, Vol. 14, No. 1, pp. 2-15.
Rongoe, J. (1996), "Design Guidelines for Continuous Beams Supporting Steel Joist Roof Structures," Proceedings of the AISC National Steel Construction Conference, pp. 23.1-23.44, AISC, Chicago, IL.
Ruby, D.I. (2008), Constructability of Structural Steel Buildings, Design Guide 23, AISC, Chicago, IL.
Ruddy, J.L., Marlo, J.P., Ioannides, S.A and Alfawakhiri, F. (2003), Fire Resistance of Structural Steel Framing, Design Guide 19, AISC, Chicago, IL.
Sabelli, R. and Bruneau, M. (2006), Steel Plate Shear Walls, Design Guide 20, AISC, Chicago, IL.
Seaburg, P.A. and Carter, C.J. (1997), Torsional Analysis of Structural Steel Members, Design Guide 9, AISC, Chicago, IL.
SSPC (2014), Systems and Specifications: SSPC Painting Manual, Volume II, The Society for Protective Coatings, Pittsburgh, PA.
Thornton, W.A. (1995), "Connections: Art, Science, and Information in the Quest for Economy and Safety," Engineering Journal, AISC, Vol 32, No. 4, pp. 132-144.
Tide, R.H.R. (1990), "Reinforcing Steel Members and the Effects of Welding," Engineering Journal, AISC, Vol. 27, No. 4, pp. 129-131.

USGSA (2003), "Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization Projects," U.S. General Services Administration, Washington, DC.
Varma, A.H. and Bhardwaj, S. (2016), Design of Steel-Plate Composite Walls, Design Guide 32, AISC, Chicago, IL.
West, M.A., Fisher, J.M. and Griffis, L.G. (2003), Serviceability Design Considerations for Steel Buildings, Design Guide 3, 2nd Ed., AISC, Chicago, IL.
Wexler, N. and Lin, F.B. (2002), Staggered Truss Framing Systems, Design Guide 14, AISC, Chicago, IL.

					ble 2 or ed						
Design Story Drift Limit	Load Ratio from Step 3 (times 1.6 for ASD, 1.0 for LRFD)										
	0	5	10	20	30	40	50	60	80	100	120
H/100	1	1.1	1.1	1.3	1.5/1.4	When ratio exceeds 1.5 , simplified method					
H/200	1	1	1.1	1.1	1.2	1.3	1.4/1.3	1.5/1.4		quires	stiffer
H/300	1	1	1	1.1	1.1	1.2	1.2	1.3	1.5/1.4		cture.
H/400	1	1	1	1.1	1.1	1.1	1.2	1.2	1.3	1.4/1.3	1.5
H/500	1	1	1	1	1.1	1.1	1.1	1.2	1.2	1.3	1.4
Note: Where two values are provided, the value in bold is the value associated with $R_{M}=0.85$. Interpolation between values in this table may produce an incorrect result.											

Table 2-2

Summary Comparison of Methods for Stability Analysis and Design

	Direct Analysis Method	Effective Length Method	First-Order Analysis Method
Limitations on Use ${ }^{\text {a }}$	None	$\Delta_{2 n d} / \Delta_{1 s t} \leq 1.5$	$\begin{gathered} \Delta_{2 n d} / \Delta_{1 s t} \leq 1.5 \\ \alpha P_{r} / P_{y} \leq 0.5 \end{gathered}$
Analysis Type	Second-order elastic ${ }^{\text {b }}$		First-order elastic
Geometry of Structure	All three methods use the undeformed geometry in the analysis.		
Minimum or Additional Lateral Loads Required in the Analysis	$\begin{aligned} & \text { Minimum; }{ }^{\text {c }} \\ & 0.2 \% \text { of the story } \\ & \text { gravity load } \end{aligned}$	$\begin{aligned} & \text { Minimum; } \\ & 0.2 \% \text { of the story } \\ & \text { gravity load } \end{aligned}$	Additive; at least 0.42% of the story gravity load
Member Stiffnesses Used in the Analysis	Reduced $E A$ and $E I$	Nominal $E A$ and $E I$	
Design of Columns	$K=1$ for all frames	$K=1$ for braced frames. For moment frames, determine K from sidesway buckling analysis.	$K=1$ for all frames ${ }^{\text {e }}$
Specification Reference for Method	Chapter C	Appendix 7, Section 7.2	Appendix 7, Section 7.3
${ }^{\text {a }} \Delta_{2 n d} / \Delta_{1 s t}$ is the ratio of second-order drift to first-order drift, which can be taken to be equal to B_{2} calculated per Appendix 8. $\Delta_{2 n d} / \Delta_{1 s t}$ is determined using LRFD load combinations or a multiple of 1.6 times ASD load combinations. ${ }^{\text {b }}$ Either a general second-order analysis method or second-order analysis by amplified first-order analysis (the " $B_{1}-B_{2}$ method" described in Appendix 8) can be used. c This notional load is additive if $\Delta_{2 n d} / \Delta_{1 s t}>1.5$. ${ }^{d} K=1$ is permitted for moment frames when $\Delta_{2 n d} / \Delta_{1 s t} \leq 1.1$. ${ }^{\text {e }}$ An additional amplification for member curvature effects is required for columns in moment frames.			

Table 2-3 AISI Standard Nomenclature for Flat-Rolled Carbon Steel						
Thickness, in.	Width, in.					
	To $31 / 2$ incl.	$\begin{gathered} \text { Over } 31 / 2 \\ \text { To } 6 \end{gathered}$	$\begin{gathered} \text { Over } 6 \\ \text { To } 8 \end{gathered}$	$\begin{gathered} \text { Over } 8 \\ \text { To } 12 \end{gathered}$	$\begin{gathered} \text { Over } 12 \\ \text { To } 48 \end{gathered}$	Over 48
0.2300 \& thicker 0.2299 to 0.2031 0.2030 to 0.1800 0.1799 to 0.0449 0.0448 to 0.0344 0.0343 to 0.0255 0.0254 \& thinner	Bar	Bar	Bar	Plate	Plate	Plate
	Bar	Bar	Strip	Strip	Sheet	Plate
	Strip	Strip	Strip	Strip	Sheet	Plate
	Strip	Strip	Strip	Strip	Sheet	Sheet
	Strip	Strip				
	Strip	Hot-rolled sheet and strip not generally produced in these widths and thicknesses				

		App fo	ical	Table ole lous	2	(¢	nue ra)	at					
Steel Type	ASTM Designation		F_{y} Yield Stress ${ }^{\text {a }}$ (ksi)	$\begin{array}{\|c\|} \hline F_{u} \\ \text { Tensile } \\ \text { Stress } \\ \text { (ksi) } \\ \hline \end{array}$	Applicable Shape Series										
												HSS			
			W		M	S	HP	C	MC	L	+	믈	을		
Corrosion Resistant HighStrength Low-Alloy	A588			50	70										
	A847 ${ }^{\text {k }}$			50	70										
	A1065 ${ }^{\text {k }}$	Gr. 50W	50	70											
= Preferred material specification. = Other applicable material specification, the availability of which should be confirmed prior to specification. = Material specification does not apply.															
${ }^{\text {a }}$ Minimum, unless a range is shown. ${ }^{\text {b }}$ For wide-flange shapes with flange thicknesses over 3 in., only the minimum of 58 ksi applies. ${ }^{\text {c }}$ For shapes with a flange or leg thickness less than or equal to $1 / 2 \mathrm{in}$. only. To improve weldability, a maximum carbon equivalent can be specified (per ASTM A529 Supplementary Requirement S78). If desired, maximum tensile stress of 90 ksi can be specified (per ASTM A529 Supplementary Requirement S79). ${ }^{\text {d }}$ For shape profiles with a flange width of 6 in. or greater. ${ }^{\text {e }}$ For shapes with a flange thickness less than or equal to 2 in. only. f ASTM A618 can also be specified as corrosion-resistant; see ASTM A618. ${ }^{9}$ Minimum applies for walls nominally $3 / 4$ in. thick and under. For wall thickness over $3 / 4 \mathrm{in}$., $F_{y}=46 \mathrm{ksi}$ and $F_{u}=67 \mathrm{ksi}$. ${ }^{\text {h }}$ If desired, maximum yield stress of 65 ksi and maximum yield-to-tensile strength ratio of 0.85 can be specified (per ASTM A913 Supplementary Requirement S75). A maximum yield-to-tensile strength ratio of 0.85 and carbon equivalent formula are included as mandatory, and some variation is allowed, including for shapes tested with coupons cut from the web; see ASTM A992. If desired, maximum tensile stress of 90 ksi can be specified (per ASTM A992 Supplementary Requirement S79). The grades of ASTM A1065 may not be interchanged without approval of the purchaser. ${ }^{k}$ This specification is not a prequalified base metal per AWS D1.1/D1.1M:2015.															

Applicable ASTM Specifications															
for Plates and Bars															
	ASTM Designation		F_{y} Yield Stress ${ }^{\text {a }}$ (ksi)	$\begin{gathered} F_{u} \\ \text { Tensile } \\ \text { Stress }^{\mathrm{a}} \\ \mathbf{(k s i)}^{2} \end{gathered}$	Plates and Bars, in.										
Steel Type			to 0.75 incl.		$\begin{array}{\|c\|} \hline \text { over } \\ 0.75 \text { to } \\ 1.25 \\ \text { incl. } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { over } \\ 1.25 \\ \text { to } 1.5 \\ \text { incl. } \end{array}$	over 1.5 to 2 incl.	over 2 to 2.5 incl.	over 2.5 to 4 incl.	over 4 to 5 incl.	over 5to 6 incl.	over 6 to 8 incl.	$\begin{gathered} \text { over } \\ 8 \end{gathered}$		
Carbon	A36			32	58-80										
			36	58-80											
	A283 ${ }^{\text {e }}$	Gr. C	30	55-75					d						
		Gr. D	33	60-80					d						
	A529	Gr. 50	50	65-100		b	b	b	b	b					
		Gr. 55	55	70-100		c	c	c	${ }^{\circ}$	c					
	A709	Gr. 36	36	58-80											
HighStrength LowAlloy	A572	Gr. 42	42	60											
		Gr. 50	50	65											
		Gr. 55	55	70											
		Gr. 60	60	75											
		Gr. 65	65	80											
	A709	Gr. 50	50	65											
	A1043 ${ }^{\text {e }}$	Gr. 36	36-52	58											
		Gr. 50	50-65	65											
	A1066 ${ }^{\text {e }}$	Gr. 50	50	65											
		Gr. 60	60	75											
		Gr. 65	65	80						f					
		Gr. 70	70	85											
		Gr. 80	80	90		9									
Corrosion Resistant HighStrength Low-Alloy	A242 ${ }^{\text {e }}$		42	63											
			46	67											
			50	70											
	A588		$42^{\text {e }}$	63											
			$46^{\text {e }}$	67											
			50	70											
= Preferred material specification. = Other applicable material specification, the availability of which should be confirmed prior to specification. = Material specification does not apply.															
Footnotes on facing page.															

		Appl				5 (C									
Steel Type	ASTM Designation		$\begin{gathered} F_{y} \\ \text { Yield } \\ \text { Stress }{ }^{\text {a }} \\ \text { (ksi) } \end{gathered}$	F_{u} Tensile Stress ${ }^{\text {a }}$ (ksi)	Plates and Bars, in.										
			$\begin{gathered} \text { to } \\ 0.75 \\ \text { incl. } \end{gathered}$		$\begin{array}{\|c\|} \hline \text { over } \\ 0.75 \text { to } \\ 1.25 \\ \text { incl. } \end{array}$	over 1.25 to 1.5 incl.	over 1.5 to 2 incl.	$\begin{gathered} \text { over } \\ 2 \text { to } \\ 2.5 \\ \text { incl. } \end{gathered}$	$\begin{gathered} \text { over } \\ 2.5 \\ \text { to4 } \\ \text { incl. } \end{gathered}$	over 4 to 5 incl.	over 5 to 6 incl.	over 6 to 8 incl.	$\begin{gathered} \text { over } \\ 8 \end{gathered}$		
Quenched and Tempered Alloy	A514 ${ }^{\text {e }}$			90	100-130										
			100	110-130											
Corrosion Resistant Quenched and Tempered Low-Alloy	A709	Gr. 50W	50	70											
		Gr. HPS 50W	50	70											
		Gr. HPS 70W	70	85-110											
		Gr. HPS 100We	90	100-130											
			100	110-130											
= Preferred material specification. = Other applicable material specification, the availability of which should be confirmed prior to specification. \square = Material specification does not apply.															
${ }^{\text {a }}$ Minimum, unless a range is shown. b Applicable for plates to 1 in. thickness and bars to $31 / 2$ in. thickness. ${ }^{\text {c }}$ Applicable for plates to 1 in. thickness and bars to 3 in. thickness. d Thickness is not limited to 2 in. in ASTM A283 and thicker plates may be obtained but availability should be confirmed. e This specification is not a prequalified base metal per AWS D1.1/D1.1M:2015. f Applicable for plates to 3 in. thickness. ${ }^{9}$ Applicable for plates to 1 in. thickness.															

ASTM Designation			F_{u} Tensile Stress ${ }^{\text {a }}$ (ksi)	Diameter Range (in.)	Bolts			$\begin{aligned} & 0 \\ & \frac{0}{3} \end{aligned}$	Washers				Anchor Rods			
		HighStrength			0 0 0 응 응 E 0											
		⿹ㅡㅁ 읓 0 0.0							$\frac{\cdot ㄷ ㅡ ㄴ ~}{\text { a }}$		잉					
	Gr. A325 ${ }^{\text {d }}$		-	120	0.5 to 1.5											
	Gr. F1852 ${ }^{\text {d }}$		-	120	0.5 to 1.25											
$\stackrel{\Gamma}{4}$	Gr. A490 ${ }^{\text {d }}$	-	150	0.5 to 1.5												
	Gr. F2280 ${ }^{\text {d }}$	-	150	0.5 to 1.25												
F3111		-	200	1 to 1.25 incl.												
F3043		-	200	1 to 1.25 incl.												
A194 Gr. 2H		-	-	0.25 to 4												
A563		-	-	0.25 to 4												
F436		-	-	0.25 to $4^{\text {b }}$												
F844		-	-	any												
F959		-	-	0.5 to 1.5												
A36		36	58-80	to 10												
A193 Gr. B7		105	125	2.5 and under												
		95	115	over 2.5 to 4												
		75	100	over 4 to 7												
A307 Gr. A		-	60	0.25 to 4												
A354	Gr. BC	109	125	0.25 to 2.5 incl.	e							e				
		99	115	over 2.5 to 4 incl.	e							e				
	Gr. BD	130	150	0.25 to 2.5 incl.	e							e				
		115	140	2.5 to 4 incl.	e							e				
A449 ${ }^{\text {d }}$		92	120	0.25 to 1 incl.	e							e				
		81	105	over 1 to 1.5 incl.	e							e				
		58	90	over 1.5 to 3 incl.	e							e				
A572	Gr. 42	42	60	to 6												
	Gr. 50	50	65	to $4^{\text {c }}$												
	2 Gr. 55	55	70	to 2												
	Gr. 60	60	75	to 3.5												
	Gr. 65	65	80	to 1.25												
A588		50	70	4 and under												
		46	67	over 4 to 5 incl.												
		42	63	over 5 to 8 incl.												
F1554	Gr. 36	36	58-80	0.25 to 4												
	4 Gr. 55	55	75-95	0.25 to 4												
	Gr. 105	105	125-150	0.25 to 3												
= Preferred material specification. = Other applicable material specification, the availability of which should be confirmed prior to specification. = Material specification does not apply.																
- Indicates that a value is not specified in the material specification. ${ }^{\text {a }}$ Minimum, unless a range is shown. ${ }^{\text {b }}$ Diameter range is 2 in. to 12 in. for beveled and extra thick washers. ${ }^{\text {c }}$ ASTM A572 permits rod diameters up to 11 in., but practicality of threading should be confirmed before specification. ${ }^{d}$ When atmospheric corrosion resistance is desired, Type 3 can be specified. e See AISC Specification Section J3.1 for limitations on use of ASTM A449, A354 Gr. BC and A354 Gr. BD.																

Table 2-7 Summary of Surface Preparation Standards		
SSPC Standard No.	Title	Description
SSPC-SP 1	Solvent Cleaning	Removal of all visible oil, grease, dirt, soil, salts and contaminants by cleaning with solvent, vapor, alkali, emulsion or steam.
SSPC-SP 2	Hand-Tool Cleaning	Removal of loose rust, loose mill scale, and loose paint by hand chipping, scraping, sanding and wire brushing.
SSPC-SP 3	Power-Tool Cleaning	Removal of all loose rust, loose mill scale, and loose paint by power tool chipping, descaling, sanding, wire brushing, and grinding.
SSPC-SP $5 /$ NACE No. 1^{*}	White Metal Blast Cleaning	Removal of all visible rust, mill scale, paint and foreign matter by blast cleaning by wheel or nozzle (dry or wet) using sand, grit or shot; for very corrosive atmospheres where high cost of cleaning is warranted.
SSPC-SP 6 / NACE No. 3^{*}	Commercial Blast Cleaning	Removal of all visible rust, mill scale, paint and foreign matter by blast cleaning; staining is permitted on no more than 33% of each $9 \mathrm{in} .^{2}$ area of the cleaned surface; for conditions where a thoroughly cleaned surface is required.
SSPC-SP $7 /$ NACE No. 4*	Brush-Off Blast Cleaning	Blast cleaning of all except tightly adhering residues of mill scale, rust and coatings while uniformly roughening the surface.
SSPC-SP 8	Pickling	Complete removal of rust and mill scale by acid pickling, duplex pickling or electrolytic pickling.
SSPC-SP $10 /$ NACE No. 2*	Near-White Blast Cleaning	Removal of all visible rust, mill scale, paint and foreign matter by blast cleaning; staining is permitted on no more than 5% of each $9 \mathrm{in} .^{2}$ area of the cleaned surface; for high humidity, chemical atmosphere, marine, or other corrosive environments.
SSPC-SP 11	Power-Tool Cleaning to Bare Metal	Complete removal of all visible oil, grease, coatings, rust, corrosion products, mill scale, and other foreign matter by power tools, with resultant minimum surface profile of 1 mil; trace amounts of coating and corrosion products may remain in the bottom of pits if the substrate was pitted prior to cleaning.
SSPC-SP 14/ NACE No. 8*	Industrial Blast Cleaning	Between SP 7 (brush-off) and SP 6 (commercial); the intent is to remove as much coating as possible; tightly adhering contaminants can remain on no more than 10% of each $9 \mathrm{in} .^{2}$ area of the cleaned surface.
SSPC-SP 15	Commercial-Grade Power-Tool Cleaning	Between SP 3 and SP 11; complete removal of all visible oil, grease, dirt, rust, coating, mill scale, corrosion products, and other foreign matter by power tools with resultant minimum surface profile of 1 mil; random staining is limited to no more than 33% of each 9 in. ${ }^{2}$ of surface; trace amounts of coating and corrosion products may remain in the bottom of pits if the substrate was pitted prior to cleaning.
SSPC-SP 16	Brush-Off Blast Cleaning of Coated and Uncoated Galvanized Steel, Stainless Steel, and Non-Ferrous Metals	Requirements for removing loose contaminants and coating from coated and uncoated galvanized steel, stainless steels, and non-ferrous metals; cleaned surface is free of all visible oil, grease, dirt, dust, metal oxides (corrosion products), and other foreign matter; requires a minimum $19 \mu \mathrm{~m}$ (0.75 mil) profile on bare metal substrate.

* Standards are issued as joint standards by SSPC and NACE International.

Table 2-7 (continued) Summary of Surface Preparation Standards

SSPC Standard No.	Title	Description
SSPC-SP WJ-1/ NACE WJ-1*	Waterjet Cleaning of Metals-Clean to Bare Substrate	When viewed without magnification, the metal surface shall have a matte (dull, mottled) finish and shall be free of all visible oil, grease, dirt, rust, and other corrosion products, previous coatings, mill scale, and foreign matter.
SSPC-SP WJ-2/ NACE WJ-2*	Waterjet Cleaning of Metals-Very Thorough Cleaning	When viewed without magnification, the metal surface shall have a matte (dull, mottled) finish and shall be free of all visible oil, grease, dirt, rust, and other corrosion products, except for randomly dispersed stains of rust and other corrosion products, tightly adherent thin coatings, and other tightly adherent foreign matter. The staining or tightly adherent matter shall be limited to no more than 5% of each 9 in. ${ }^{2}$ area of the cleaned surface.
SSPC-SP WJ-3/ NACE WJ-3*	Waterjet Cleaning of MetalsThorough Cleaning	When viewed without magnification, the metal surface shall have a matte (dull, mottled) finish and shall be free of all visible oil, grease, dirt, rust, and other corrosion products, except for randomly dispersed stains of rust and other corrosion products, tightly adherent thin coatings, and other tightly adherent foreign matter. The staining or tightly adherent matter shall be limited to no more than 5% of each 9 in. ${ }^{2}$ area of the cleaned surface.
SSPC-SP WJ-4/ NACE WJ-4*	Waterjet Cleaning of MetalsLight Cleaning	When viewed without magnification, the metal surface shall be free of all visible oil, grease, dirt, dust, loose mill scale, loose rust and other corrosion products, and loose coating. Any residual material shall be tightly adhered to the metal substrate and may consist of randomly dispersed stains of rust and other corrosion products or previously applied coating, tightly adherent thin coatings, and other tightly adherent foreign matter.
SSPC-PA17	Conformance to Profile/Surface Roughness/Peak Count Requirements	A procedure suitable for shop or field use for determining compliance with specified profile ranges on a steel substrate.

* Standards are issued as joint standards by SSPC and NACE International.

PART 3

DESIGN OF FLEXURAL MEMBERS

SCOPE 3-4
SECTION PROPERTIES AND AREAS 3-4
For Flexure 3-4
For Shear 3-4
FLEXURAL STRENGTH 3-4
Braced, Compact Flexural Members 3-4
Unbraced Flexural Members 3-4
Noncompact or Slender Cross Sections 3-4
Available Flexural Strength for Minor Axis Bending 3-4
Use of Table 6-2 for Flexural Design of Beams 3-6
LOCAL BUCKLING 3-6
Determining the Width-to-Thickness Ratios of the Cross Section 3-6
Classification of Cross Sections 3-6
LATERAL-TORSIONAL BUCKLING 3-6
Classification of Spans for Flexure 3-6
Consideration of Moment Gradient 3-7
AVAILABLE SHEAR STRENGTH 3-7
STEEL W-SHAPE COMPOSITE BEAMS 3-7
Concrete Slab Effective Width 3-7
Steel Anchors 3-7
Available Flexural Strength for Positive Moment 3-8
Shored and Unshored Construction 3-8
Available Shear Strength 3-8
OTHER SPECIFICATION REQUIREMENTS AND DESIGN CONSIDERATIONS 3-8
Special Requirements for Heavy Shapes and Plates 3-8
Serviceability 3-8
DESIGN TABLE DISCUSSION 3-9
Flexural Design Tables 3-9
W-Shape Selection Tables 3-9
Maximum Total Uniform Load Tables 3-11
Plots of Available Flexural Strength vs. Unbraced Length 3-11
Available Flexural Strength of HSS 3-12
Strength of Other Flexural Members 3-12
Composite Beam Selection Tables 3-13
Beam Diagrams and Formulas 3-16
PART 3 REFERENCES 3-17
DESIGN TABLES 3-18
Flexural Design Tables 3-18
Table 3-1. Values of C_{b} for Simply Supported Beams 3-18
W-Shape Selection Tables 3-19
Table 3-2. W-Shapes-Selection by Z_{x} 3-19
Table 3-3. W-Shapes-Selection by I_{x} 3-28
Table 3-4. W-Shapes-Selection by Z_{y} 3-30
Table 3-5. W-Shapes-Selection by I_{y} 3-33
Maximum Total Uniform Load Tables 3-35
Table 3-6. W-Shapes-Maximum Total Uniform Load 3-35
Table 3-7. S-Shapes-Maximum Total Uniform Load 3-74
Table 3-8. C-Shapes-Maximum Total Uniform Load 3-79
Table 3-9. MC-Shapes-Maximum Total Uniform Load 3-85
Plots of Available Flexural Strength vs. Unbraced Length 3-92
Table 3-10. W-Shapes-Plots of Available Moment vs. Unbraced Length 3-92
Table 3-11. Channels-Plots of Available Moment vs. Unbraced Length 3-128
Available Flexural Strength of HSS 3-136
Table 3-12. Rectangular HSS—Available Flexural Strength 3-136
Table 3-13. Square HSS—Available Flexural Strength 3-140
Table 3-14. Round HSS—Available Flexural Strength 3-141
Table 3-15. Pipe—Available Flexural Strength 3-143
Strength of Other Flexural Members 3-144
Tables 3-16 and 3-17. Available Shear Stress 3-144
Table 3-18. Floor Plates 3-150
Composite Beam Selection Tables 3-152
Table 3-19. Composite W-Shapes 3-152
Table 3-20. Lower-Bound Elastic Moment of Inertia 3-186
Table 3-21. Nominal Horizontal Shear Strength for One Steel Headed Stud Anchor, Q_{n} 3-203
Beam Diagrams and Formulas 3-204
Table 3-22a. Concentrated Load Equivalents 3-205
Table 3-22b. Cantilevered Beams 3-206
Table 3-22c. Continuous Beams 3-207
Table 3-23. Shears, Moments and Deflections 3-208

SCOPE

The specification requirements and other design considerations summarized in this Part apply to the design of flexural members subject to uniaxial flexure without axial forces or torsion. For the design of members subject to biaxial flexure and/or flexure in combination with axial tension or compression and/or torsion, see Part 6.

SECTION PROPERTIES AND AREAS

For Flexure

Flexural design properties are based upon the full cross section with no reduction for bolt holes.

For Shear

For shear, the area is determined per AISC Specification Chapter G.

FLEXURAL STRENGTH

The nominal flexural strength of W -shapes is illustrated as a function of the unbraced length, L_{b}, in Figure 3-1. The available strength is determined as ϕM_{n} or M_{n} / Ω, which must equal or exceed the required strength (bending moment), M_{u} or M_{a}, respectively. The available flexural strength, ϕM_{n} or M_{n} / Ω, is determined per AISC Specification Chapter F. Table User Note F1.1 outlines the sections of Chapter F and the corresponding limit states applicable to each member type.

Braced, Compact Flexural Members

When flexural members are braced ($L_{b} \leq L_{p}$) and compact ($\lambda \leq \lambda_{p}$), yielding must be considered in the nominal moment strength of the member, in accordance with the requirements of AISC Specification Chapter F.

Unbraced Flexural Members

When flexural members are unbraced ($L_{b}>L_{p}$), have flange width-to-thickness ratios such that $\lambda>\lambda_{p}$, or have web width-to-thickness ratios such that $\lambda>\lambda_{p}$, lateral-torsional buckling and elastic buckling effects must be considered in the calculation of the nominal moment strength of the member.

Noncompact or Slender Cross Sections

For flexural members that have width-to-thickness ratios such that $\lambda>\lambda_{p}$, local buckling must be considered in the calculation of the nominal moment strength of the member.

Available Flexural Strength for Minor Axis Bending

The design of flexural members subject to minor axis bending is similar to that for major axis bending, except that lateral-torsional buckling and web local buckling do not apply. See AISC Specification Section F6.

$$
\begin{gather*}
L_{p}=1.76 r_{y} \sqrt{\frac{E}{F_{y}}} \tag{Spec.Eq.F2-5}\\
L_{r}=1.95 r_{t s} \frac{E}{0.7 F_{y}} \sqrt{\frac{J c}{S_{x} h_{o}}+\sqrt{\left(\frac{J c}{S_{x} h_{o}}\right)^{2}+6.76\left(\frac{0.7 F_{y}}{E}\right)^{2}}} \\
M_{r}=0.7 F_{y} S_{x} \tag{3-1}
\end{gather*}
$$

(Spec. Eq. F2-6)

For cross sections with noncompact flanges:

$$
\begin{array}{r}
M_{p}^{\prime}=M_{n}=M_{p}-\left(M_{p}-0.7 F_{y} S_{x}\right)\left(\frac{\lambda-\lambda_{p f}}{\lambda_{f f}-\lambda_{p f}}\right) \\
L_{p}^{\prime}=L_{p}+\left(L_{r}-L_{p}\right) \frac{\left(M_{p}-M_{p}^{\prime}\right)}{\left(M_{p}-M_{r}\right)} \tag{3-2}
\end{array}
$$

Fig. 3-1. General available flexural strength of beams.

Use of Table 6-2 for Flexural Design of Beams

Table 6-2 may be used for flexural design of beams bent about either the major or minor axis. This table includes all W-shapes, not just those most commonly used as beams. Compact and noncompact section criteria from AISC Specification Chapter B have been incorporated in the development of the table. Therefore, no check of the width-to-thickness ratio of the compression elements of the cross section is necessary.

Available strengths from Table 6-2 may be used for flexural design of beams bent about their major axis over a range of unbraced lengths including $L_{b}>L_{r}$. The table already accounts for comparison of the unbraced lengths relative to L_{p} and L_{r} for the shapes listed in the table. The table also lists available strengths for bending about the minor axis. See the discussion in Part 6 for more information on use of Table 6-2 for design for flexure.

LOCAL BUCKLING

Determining the Width-to-Thickness Ratios of the Cross Section

Flexural members are classified for flexure on the basis of the width-to-thickness ratios of the various elements of the cross section. The width-to-thickness ratio, λ, is determined for each element of the cross section per AISC Specification Section B4.1. Limiting width-tothickness ratios for various values of F_{y} may be found in Table 6-1b.

Classification of Cross Sections

Cross sections are classified as follows:

- Flexural members are compact (the plastic moment can be reached without local buckling) when λ is equal to or less than λ_{p} and the flange(s) are continuously connected to the web(s).
- Flexural members are noncompact (local buckling will occur, but only after initial yielding) when λ exceeds λ_{p} but is equal to or less than λ_{r}.
- Flexural members are slender-element cross sections (local buckling will occur prior to yielding) when λ exceeds λ_{r}.

The values of λ_{p} and λ_{r} are determined per AISC Specification Section B4.1.

LATERAL-TORSIONAL BUCKLING

Classification of Spans for Flexure

Flexural members bent about their major axis are classified on the basis of the length between braced points, L_{b}. Braced points are points at which support resistance against lateraltorsional buckling is provided per AISC Specification Appendix 6, Section 6.3. Classifications are determined as follows:

- If $L_{b} \leq L_{p}$, flexural member is not subject to lateral-torsional buckling.
- If $L_{p}<L_{b} \leq L_{r}$, flexural member is subject to inelastic lateral-torsional buckling.
- If $L_{b}>L_{r}$, flexural member is subject to elastic lateral-torsional buckling.

The values of L_{p} and L_{r} are determined per AISC Specification Chapter F. These values are presented in Tables 3-2, 3-6, 3-7, 3-8, 3-9, 3-10, 3-11 and 6-2. Note that for cross sections
with noncompact flanges, the value given for L_{p} in these tables is L_{p}^{\prime} as given in Equation 3-2 of Figure 3-1. In Tables 3-10 and 3-11, L_{p} is defined by \cdot and L_{r} by \circ.

Lateral-torsional buckling does not apply to flexural members bent about their minor axis or round HSS bent about any axis, per AISC Specification Sections F6, F7 and F8.

Consideration of Moment Gradient

When $L_{b}>L_{p}$, the moment gradient between braced points can be considered in the determination of the available strength using the lateral-torsional buckling modification factor, C_{b}, herein referred to as the LTB modification factor. In the case of a uniform moment between braced points causing single-curvature of the member, $C_{b}=1.0$. This represents the worst case and C_{b} can be conservatively taken equal to 1.0 for use with the maximum moment between braced points in most designs. See AISC Specification Commentary Section F1 for further discussion. A nonuniform moment gradient between braced points can be considered using C_{b} calculated as given in AISC Specification Equation F1-1. Exceptions are provided as follows:

1. As an alternative, when the moment diagram between braced points is a straight line, C_{b} can be calculated as given in AISC Specification Commentary Equation C-F1-1.
2. For cantilevers or overhangs where warping is prevented at the support and where the free end is unbraced, $C_{b}=1.0$ per AISC Specification Section F1.
3. For tees with the stem in compression, $C_{b}=1.0$ as recommended in AISC Specification Commentary Section F9.

AVAILABLE SHEAR STRENGTH

For flexural members, the available shear strength, ϕV_{n} or V_{n} / Ω, which must equal or exceed the required strength, V_{u} or V_{a}, respectively, is determined in accordance with AISC Specification Chapter G. Values of ϕV_{n} and V_{n} / Ω can be found in Tables 3-2, 3-6, 3-7, 3-8, 3-9, 3-16, 3-17 and 6-2.

STEEL W-SHAPE COMPOSITE BEAMS

The following pertains to W -shapes that act compositely with concrete slabs in regions of positive moment. For composite flexural members in regions of negative moment, see AISC Specification Chapter I. For further information on composite design and construction, see Viest et al. (1997).

Concrete Slab Effective Width

The effective width of a concrete slab acting compositely with a steel beam is determined per AISC Specification Section I3.1a.

Steel Anchors

Material, placement and spacing requirements for steel anchors are given in AISC Specification Chapter I. The nominal shear strength, Q_{n}, of one steel headed stud anchor is determined per AISC Specification Section I8.2a and is tabulated for common design conditions in Table 3-21. The horizontal shear strength, V^{\prime}, at the steel-concrete interface will be the least of the concrete crushing strength, steel section tensile yield strength, or the shear
strength of the steel anchors. Table 3-21 considers only the limit state of shear strength of a steel headed stud anchor.

Available Flexural Strength for Positive Moment

The available flexural strength of a composite beam subject to positive moment is determined per AISC Specification Section I3.2a assuming a uniform compressive stress of $0.85 f_{c}^{\prime}$ and zero tensile strength in the concrete, and a uniform stress of F_{y} in the tension area (and compression area, if any) of the steel section. The position of the plastic neutral axis (PNA) can then be determined by static equilibrium.

Per AISC Specification Section I3.2d, enough steel anchors must be provided between a point of maximum moment and the nearest point of zero moment to transfer the total horizontal shear force, V^{\prime}, between the steel beam and concrete slab, where V^{\prime} is determined per AISC Specification Section I3.2d.1.

Shored and Unshored Construction

The available flexural strength is identical for both shored and unshored construction. In unshored construction, issues such as lateral support during construction and constructionload deflection may require consideration.

Available Shear Strength

Per AISC Specification Section I4, the available shear strength for composite beams is determined in accordance with Chapter G.

OTHER SPECIFICATION REQUIREMENTS AND DESIGN CONSIDERATIONS

The following other specification requirements and design considerations apply to the design of flexural members.

Special Requirements for Heavy Shapes and Plates

For beams with complete-joint-penetration groove welded joints and made from heavy shapes with a flange thickness exceeding 2 in., see AISC Specification Section A3.1c.

For built-up sections consisting of plates with a thickness exceeding 2 in., see AISC Specification Section A3.1d.

Serviceability

Serviceability requirements, per AISC Specification Chapter L, should be appropriate for the application. This includes an appropriate limit on the deflection of the flexural member and the vibration characteristics of the system of which the flexural member is a part. See also AISC Design Guide 3, Serviceability Design Considerations for Steel Buildings (West et al., 2003), AISC Design Guide 5, Low- and Medium-Rise Steel Buildings (Allison, 1991), and AISC Design Guide 11, Vibrations of Steel-Framed Structural Systems Due to Human Activity (Murray et al., 2016).

The maximum vertical deflection, Δ, can be calculated using the equations given in Tables 3-22 and 3-23. Alternatively, for common cases of simple-span beams and I-shaped members and channels, the following equation can be used:

$$
\begin{equation*}
\Delta=M L^{2} /\left(C_{1} I_{x}\right) \tag{3-3}
\end{equation*}
$$

where
$C_{1}=$ loading constant (see Figure 3-2), which includes the numerical constants appropriate for the given loading pattern, $E(29,000 \mathrm{ksi})$, and a ft-to-in. conversion factor of $1,728 \mathrm{in}^{3} / \mathrm{ft}^{3}$
$I_{x}=$ moment of inertia, in. ${ }^{4}$
$L=$ span length, ft
$M=$ maximum service-load moment, kip-ft

DESIGN TABLE DISCUSSION

Flexural Design Tables

Tabulated values account for element slenderness effects.

Table 3-1. Values of \boldsymbol{C}_{b} for Simply Supported Beams

Values of the LTB modification factor, C_{b}, are given for various loading conditions on simply supported beams in Table 3-1.

W-Shape Selection Tables

Table 3-2. W-Shapes-Selection by $\boldsymbol{Z}_{\boldsymbol{X}}$

W -shapes are sorted in descending order by major axis flexural strength and then grouped in ascending order by weight with the lightest W -shape in each range in bold. Major axis

Fig. 3-2. Loading constants for use in determining simple beam deflections.
available strengths in flexure and shear are given for W-shapes with $F_{y}=50 \mathrm{ksi}$ (ASTM A992). C_{b} is taken as unity.

For compact W-shapes, when $L_{b} \leq L_{p}$, the major axis available flexural strength, $\phi_{b} M_{p x}$ or $M_{p x} / \Omega_{b}$, can be determined using the tabulated strength values. When $L_{p}<L_{b} \leq L_{r}$, linearly interpolate between the available strength at L_{p} and the available strength at L_{r} as follows:

LRFD	ASD
$\begin{align*} \phi_{b} M_{n} & =C_{b}\left[\phi_{b} M_{p x}-\phi_{b} B F\left(L_{b}-L_{p}\right)\right] \tag{3-4b}\\ & \leq \phi_{b} M_{p x} \tag{3-4a} \end{align*}$	$\begin{aligned} \frac{M_{n}}{\Omega_{b}} & =C_{b}\left[\frac{M_{p x}}{\Omega_{b}}-\frac{B F}{\Omega_{b}}\left(L_{b}-L_{p}\right)\right] \\ & \leq \frac{M_{p x}}{\Omega_{b}} \end{aligned}$

where

$$
\begin{align*}
B F= & \frac{\left(M_{p x}-M_{r x}\right)}{\left(L_{r}-L_{p}\right)} \\
L_{p} & =\text { for compact sections, see Figure 3-1, AISC Specification Equation F2-5 } \\
& =\text { for noncompact sections, } L_{p}=L_{p}^{\prime}, \text { see Figure 3-1, Equation 3-2 } \\
L_{r} & =\text { see Figure 3-1, AISC Specification Equation F2-6 } \\
M_{p x}= & F_{y} Z_{x} \text { for compact sections } \\
& =M_{p}^{\prime} \text { as given in Figure 3-1, from AISC Specification Equation F3-1, for noncom- } \\
& \text { pact sections } \\
M_{r x}= & M_{r}=0.7 F_{y} S_{x} \tag{3-1}\\
\phi_{b} & =0.90 \\
\Omega_{b} & =1.67
\end{align*}
$$

When $L_{b}>L_{r}$, see Table 3-10.
The major axis available shear strength, $\phi_{v} V_{n x}$ or $V_{n x} / \Omega_{v}$, can be determined using the tabulated value.

Table 3-3. W-Shapes—Selection by $\boldsymbol{I}_{\boldsymbol{x}}$

W-shapes are sorted in descending order by major axis moment of inertia, I_{x}, and then grouped in ascending order by weight with the lightest W-shape in each range in bold.

Table 3-4. W-Shapes-Selection by $\boldsymbol{Z}_{\boldsymbol{y}}$

W-shapes are sorted in descending order by minor axis flexural strength and then grouped in ascending order by weight with the lightest W -shape in each range in bold. Minor axis available strengths in flexure are given for W-shapes with $F_{y}=50 \mathrm{ksi}$ (ASTM A992).

The minor axis available shear strength must be checked independently.

Table 3-5. W-Shapes-Selection by $\boldsymbol{I}_{\boldsymbol{y}}$

W-shapes are sorted in descending order by minor axis moment of inertia, I_{y}, and then grouped in ascending order by weight with the lightest W-shape in each range in bold.

Maximum Total Uniform Load Tables

Table 3-6. W-Shapes-Maximum Total Uniform Load

Maximum total uniform loads on braced ($L_{b} \leq L_{p}$) simple-span beams bent about the major axis are given for W -shapes with $F_{y}=50 \mathrm{ksi}$ (ASTM A992). These tables include W -shapes that are most commonly used in flexure. The uniform load constant, $\phi_{b} W_{c}$ or W_{c} / Ω_{b} (kip-ft), divided by the span length, L (ft), provides the maximum total uniform load (kips) for a braced simple-span beam bent about the major axis. This is based on the available flexural strength as discussed for Table 3-2. Values are provided up to an arbitrary span-to-depth ratio of 30 .

The major axis available shear strength, $\phi_{\nu} V_{n}$ or V_{n} / Ω_{v}, can be determined using the tabulated value. Above the heavy horizontal line in the tables, the maximum total uniform load is limited by the major axis available shear strength.

The tabulated values can also be used for braced simple-span beams with equal concentrated loads spaced as shown in Table 3-22a if the concentrated loads are first converted to an equivalent uniform load.

Table 3-7. S-Shapes—Maximum Total Uniform Load

Table 3-7 is similar to Table 3-6, except it covers S-shapes with $F_{y}=36 \mathrm{ksi}$ (ASTM A36).

Table 3-8. C-Shapes—Maximum Total Uniform Load

Table 3-8 is similar to Table 3-6, except it covers C-shapes with $F_{y}=36 \mathrm{ksi}$ (ASTM A36).

Table 3-9. MC-Shapes-Maximum Total Uniform Load

Table 3-9 is similar to Table 3-6, except it covers MC-shapes with $F_{y}=36 \mathrm{ksi}$ (ASTM A36).

Plots of Available Flexural Strength vs. Unbraced Length

Table 3-10. W-Shapes-Plots of Available Moment vs. Unbraced Length

The major axis available flexural strength, $\phi_{b} M_{n}$ or M_{n} / Ω_{b}, is plotted as a function of the unbraced length, L_{b}, for W-shapes with $F_{y}=50 \mathrm{ksi}$ (ASTM A992). The plots show the available strength for an unbraced length, L_{b}. The moment demand due to all applicable load combinations on that segment may not exceed the strength shown for L_{b}. C_{b} is taken as unity.

When the plotted curve is solid, the W-shape for that curve is the lightest cross section for a given combination of available flexural strength and unbraced length. When the plotted curve is dashed, a lighter W -shape than that for the plotted curve exists. The plotted curves are arbitrarily terminated at a span-to-depth ratio of 30 in most cases.
L_{p} is indicated in each curve by a solid $\operatorname{dot}(\bullet) . L_{r}$ is indicated in each curve by an open $\operatorname{dot}(\circ)$.

Table 3-11. C- and MC-Shapes-Plots of Available Moment vs. Unbraced Length

Table 3-11 is similar to Table 3-10, except it covers C- and MC-shapes with $F_{y}=36 \mathrm{ksi}$ (ASTM A36).

Available Flexural Strength of HSS

Table 3-12. Rectangular HSS—Available Flexural Strength

The available flexural strength is tabulated for rectangular HSS with $F_{y}=50 \mathrm{ksi}$ (ASTM A500 Grade C) as determined by AISC Specification Section F7.

Table 3-13. Square HSS—Available Flexural Strength

Table 3-13 is similar to Table 3-12, except it covers square HSS with $F_{y}=50 \mathrm{ksi}$ (ASTM A500 Grade C).

Table 3-14. Round HSS—Available Flexural Strength

Table 3-14 is similar to Table 3-12, except it covers round HSS with $F_{y}=46 \mathrm{ksi}$ (ASTM A500 Grade C) and the available flexural strength is determined from AISC Specification Section F8.

Table 3-15. Pipe—Available Flexural Strength

Table 3-15 is similar to Table 3-14, except it covers HSS produced to a Pipe specification with $F_{y}=35 \mathrm{ksi}$ (ASTM A53 Grade B).

Strength of Other Flexural Members

Tables 3-16 and 3-17. Available Shear Stress

The available shear stress for plate girders is plotted as a function of a / h and h / t_{w} in Tables 3-16 (for $F_{y}=36 \mathrm{ksi}$) and 3-17 (for $F_{y}=50 \mathrm{ksi}$). In Table 3-16a and Table 3-17a, tension field action is not included. In parts b and c of each table, tension field action is considered. Available strength obtained from Tables 3-16b, 3-16c, 3-17b or 3-17c (tension field action included) may be less than the available strength obtained from Table 3-16a or 3-17a (tension field action not included). In such cases, the larger strength may be used.

Table 3-18. Floor Plates

The recommended maximum uniformly distributed loads are given in Table 3-18 based upon simple-span bending between supports. Table 3-18a is for deflection-controlled applications and should be used with the appropriate serviceability load combinations. The tabulated values correspond to a maximum deflection of $L / 100$. Table 3-18b is for flexural-strength-controlled applications and should be used with LRFD or ASD load combinations. The tabulated values correspond to a maximum bending stress of 24 ksi in LRFD and 16 ksi in ASD.

Composite Beam Selection Tables

Table 3-19. Composite W-Shapes

The available flexural strength is tabulated for W-shapes with $F_{y}=50 \mathrm{ksi}$ (ASTM A992). The values tabulated are independent of the specific concrete flange properties allowing the designer to select an appropriate combination of concrete strength and slab geometry.

The location of the plastic neutral axis (PNA) is uniquely determined by the horizontal shear force, ΣQ_{n}, at the interface between the steel section and the concrete slab. With the knowledge of the location of the PNA and the distance to the centroid of the concrete flange force, ΣQ_{n}, the available flexural strength can be computed.

Available flexural strengths are tabulated for PNA locations at the seven locations shown. Five of these PNA locations are in the beam flange. The seventh PNA location is computed at the point where ΣQ_{n} equals $0.25 F_{y} A_{s}$, and the sixth PNA location is halfway between the location of ΣQ_{n} at point five and point seven. A minimum degree of composite action of 25% has traditionally been used in the design of composite beams. This traditional minimum value alone may not provide enough ductility (slip capacity) at the beam/concrete interface. AISC Specification Commentary Section I3.2d provides guidance for consideration of ductility.

Table 3-19 can be used to design a composite beam by entering with a required flexural strength and determining the corresponding required ΣQ_{n}. Alternatively, Table 3-19 can be used to check the flexural strength of a composite beam by selecting a valid value of ΣQ_{n}, using Table 3-21. With the effective width of the concrete flange, b, determined per AISC Specification Section I3.1a, the appropriate value of the distance from concrete flange force to beam top flange, $Y 2$, can be determined as

$$
\begin{equation*}
Y 2=Y_{c o n}-\frac{a}{2} \tag{3-6}
\end{equation*}
$$

where
$Y_{\text {con }}=$ distance from top of steel beam to top of concrete, in.

$$
\begin{equation*}
a=\frac{\Sigma Q_{n}}{0.85 f_{c}^{\prime} b} \tag{3-7}
\end{equation*}
$$

and the available flexural strength, $\phi_{b} M_{n}$ or M_{n} / Ω_{b}, can then be determined from Table 3-19. Values for the distance from the PNA to the beam top flange, $Y 1$, are also tabulated for convenience. The parameters $Y 1$ and $Y 2$ are illustrated in Figure 3-3. Note that the model of the steel beam used in the calculation of the available strength assumes that
$A_{s}=$ cross-sectional area of the steel section, in. ${ }^{2}$
$A_{f}=$ flange area, in. ${ }^{2}=b_{f} t_{f}$
$A_{w}=$ web area, in. ${ }^{2}=(d-2 k) t_{w}$
$K_{\text {area }}=\left(A_{s}-2 A_{f}-A_{w}\right) / 2$, in. ${ }^{2}$
$K_{d e p}=k-t_{f}$, in.

(a)

(b)

$Y 1=$ Distance from top of steel flange to any of the seven tabulated PNA locations
$\Sigma Q_{n}($ at point 6$)=\frac{\Sigma Q_{n}(\text { at point } 5)+\Sigma Q_{n}(\text { at point } 7)}{2}$
$\Sigma Q_{n}($ at point 7$)=0.25 F_{y} A_{s}$

(c)

Fig. 3-3. Strength design models for composite beams.

Table 3-20. Lower-Bound Elastic Moment of Inertia

The lower-bound elastic moment of inertia of a composite beam can be used to calculate deflection. If calculated deflections using the lower-bound moment of inertia are acceptable, a more complete elastic analysis of the composite section can be avoided. The lower-bound elastic moment of inertia is based upon the area of the beam and an equivalent concrete area equal to $\Sigma Q_{n} / F_{y}$ as illustrated in Figure 3-4, where $F_{y}=50 \mathrm{ksi}$. The analysis includes only the horizontal shear force transferred by the steel anchors supplied. Thus, only the portion of the concrete flange used to balance ΣQ_{n} is included in the determination of the lowerbound moment of inertia.

The lower bound moment of inertia, therefore, is the moment of inertia of the cross section at the required strength level. This is smaller than the corresponding moment of inertia at the service load where deflection is calculated. The value for the lower bound moment of inertia can be calculated as illustrated in AISC Specification Commentary Section I3.2.

Table 3-21. Nominal Horizontal Shear Strength for One Steel Headed Stud Anchor, $\mathbf{Q}_{\boldsymbol{n}}$

The nominal shear strength of steel headed stud anchors is given in Table 3-21, in accordance with AISC Specification Chapter I. Nominal horizontal shear strength values are presented based upon the position of the steel anchor, profile of the deck, and orientation of the deck relative to the steel anchor. See AISC Specification Commentary Figure C-I8.1.

Fig. 3-4. Deflection design model for composite beams.

Beam Diagrams and Formulas

Table 3-22a. Concentrated Load Equivalents

Concentrated load equivalents are given in Table 3-22a for beams with various support conditions and loading characteristics.

Table 3-22b. Cantilevered Beams

Coefficients are provided in Table 3-22b for cantilevered beams with various support conditions and loading characteristics.

Table 3-22c. Continuous Beams

Coefficients are provided in Table 3-22c for continuous beams with various support conditions and loading characteristics.

Table 3-23. Shears, Moments and Deflections

Shears, moments and deflections are given in Table 3-23 for beams with various support conditions and loading characteristics.

PART 3 REFERENCES

Allison, H.R. (1991), Low- and Medium-Rise Steel Buildings, Design Guide 5, AISC, Chicago, IL.
Murray, T.M., Allen, D.E., Ungar, E.E. and Davis, D.B. (2016), Vibrations of Steel-Framed Structural Systems Due to Human Activity, Design Guide 11, 2nd Ed., AISC, Chicago, IL.
Viest, I.M., Colaco, J.P., Furlong, R.W., Griffis, L.G., Leon, R.T. and Wyllie, L.A., Jr. (1997), Composite Construction: Design for Buildings, McGraw-Hill, New York, NY.
West, M.A., Fisher, J.M. and Griffis, L.G. (2003), Serviceability Design Considerations for Steel Buildings, Design Guide 3, 2nd Ed., AISC, Chicago, IL.

Table 3-1
 Values of $\boldsymbol{C}_{\boldsymbol{b}}$ for Simply Supported Beams

Load	Lateral Bracing Along Span	C_{b}
	None Load at midpoint	$\underset{1}{1.32}$
	At load point	$\underset{1.67}{ }{ }^{1.67}$
	None Loads at third points	$\underset{1.14}{1}+$
	At load points Loads symmetrically placed	$\underset{1.67}{ } *_{1.00} *_{1.67} \uparrow$
	None Loads at quarter points	$\cdots \quad 1 \quad 1 \quad 1$
	At load points Loads at quarter points	$*_{1.67} * *_{1.11} *{ }_{1.11} *_{1.67}$
	None	
	At midpoint	
	At third points	
	At quarter points	
	At fifth points	

Note: Lateral bracing must always be provided at points of support per AISC Specification Chapter F.

$F_{y}=50 \mathrm{ksi}$															
Shape	Z_{X}	$M_{p x} / \Omega_{b}$	${ }_{\phi b} M_{p x}$	$M_{r x} / \Omega_{b}$	$\phi_{b} M_{r x}$	$B F / \Omega_{b}$	$\phi_{b} B F$	L_{p}	L_{r}	I_{X}	$V_{n x} / \Omega_{v}$	$\phi_{v} V_{n x}$			
		kip-ft	kip-ft	kip-ft	kip-ft	kips	kips				kips	kips			
	in. ${ }^{3}$	ASD	LRFD	ASD	LRFD	ASD	LRFD	ft	ft	in. ${ }^{4}$	ASD	LRFD			
W $36 \times 925{ }^{\text {h }}$	4130	10300	15500	5920	8900	47.6	71.7	15.0	107	73000	2600	3900			
W $36 \times 853^{\text {h }}$	3920	9780	14700	5680	8530	48.3	72.7	15.1	100	70000	2170	3260			
W36 $\times 802^{\text {h }}$	3660	9130	13700	5310	7980	48.0	71.9	14.9	94.5	64800	2030	3040			
W $36 \times 723^{\text {h }}$	3270	8160	12300	4790	7190	47.6	72.2	14.7	85.5	57300	1810	2720			
W40×655 ${ }^{\text {h }}$	3080	7680	11600	4520	6800	56.1	85.3	13.6	69.9	56500	1720	2580			
W36 $\times 652^{\text {h }}$	2910	7260	10900	4300	6460	46.8	70.3	14.5	77.7	50600	1620	2430			
W $40 \times 593{ }^{\text {h }}$	2760	6890	10400	4090	6140	55.4	84.4	13.4	63.9	50400	1540	2310			
W $36 \times 529^{\text {h }}$	2330	5810	8740	3480	5220	46.4	70.1	14.1	64.3	39600	1280	1920			
W40×503 ${ }^{\text {h }}$	2320	5790	8700	3460	5200	55.3	83.1	13.1	55.2	41600	1300	1950			
W $36 \times 487^{\text {h }}$	2130	5310	7990	3200	4800	46.0	69.5	14.0	59.9	36000	1180	1770			
W14×873 ${ }^{\text {h }}$	2030	5060	7610	2670	4020	7.67	11.5	17.3	329	18100	1860	2790			
W $40 \times 431^{\text {h }}$	1960	4890	7350	2950	4440	53.6	80.4	12.9	49.1	34800	1110	1660			
W $36 \times 441^{\text {h }}$	1910	4770	7160	2880	4330	45.3	67.9	13.8	55.5	32100	1060	1590			
W $27 \times 539^{\text {h }}$	1890	4720	7090	2740	4120	26.2	39.3	12.9	88.5	25600	1280	1920			
W14×808 ${ }^{\text {h }}$	1830	4570	6860	2430	3650	7.33	11.0	17.1	309	15900	1710	2560			
W40×397 ${ }^{\text {h }}$	1800	4490	6750	2720	4100	52.4	78.4	12.9	46.7	32000	1000	1500			
W $40 \times 39{ }^{\text {h }}$	1710	4270	6410	2510	3780	60.8	90.8	9.33	38.3	29900	1180	1770			
W $36 \times 395^{\text {h }}$	1710	4270	6410	2600	3910	44.9	67.2	13.7	50.9	28500	937	1410			
W40 $\times 372^{\text {h }}$	1680	4190	6300	2550	3830	51.7	77.9	12.7	44.4	29600	942	1410			
W $14 \times 730^{\text {h }}$	1660	4140	6230	2240	3360	7.35	11.1	16.6	275	14300	1380	2060			
W40 $\mathbf{3 6 2}^{\text {h }}$	1640	4090	6150	2480	3730	51.4	77.3	12.7	44.0	28900	909	1360			
W44×335	1620	4040	6080	2460	3700	59.4	89.5	12.3	38.9	31100	906	1360			
W $33 \times 387^{\text {h }}$	1560	3890	5850	2360	3540	38.3	57.8	13.3	53.3	24300	907	1360			
W $36 \times 361^{\text {h }}$	1550	3870	5810	2360	3540	43.6	65.6	13.6	48.2	25700	851	1280			
W $14 \times 665^{\text {h }}$	1480	3690	5550	2010	3020	7.10	10.7	16.3	253	12400	1220	1830			
W40×324	1460	3640	5480	2240	3360	49.0	74.1	12.6	41.2	25600	804	1210			
W $30 \times 391^{\text {h }}$	1450	3620	5440	2180	3280	31.4	47.2	13.0	58.8	20700	903	1350			
W $40 \times 331^{\text {h }}$	1430	3570	5360	2110	3180	59.1	88.2	9.08	33.8	24700	996	1490			
W $33 \times 354^{\text {h }}$	1420	3540	5330	2170	3260	37.4	56.6	13.2	49.8	22000	826	1240			
ASD	LRFD	${ }^{\mathrm{h}}$ Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.													
$\begin{aligned} & \Omega_{b}=1.67 \\ & \Omega_{v}=1.50 \end{aligned}$	$\begin{aligned} & \phi_{b}=0.90 \\ & \phi_{v}=1.00 \end{aligned}$														

$F_{y}=50 \mathrm{ksi}$															
Shape	Z_{X}	$M_{p x} / \Omega_{b} \mid$	${ }_{\phi b} M_{p x}$	$M_{r x} / \Omega_{b}$	$\phi_{b} M_{r x}$	$B F / \Omega_{b}$	$\phi_{b} B F$	L_{p}	L_{r}	I_{X}	$V_{n x} / \Omega_{v}$	$\phi_{v} V_{n x}$			
		kip-ft	kip-ft	kip-ft	kip-ft	kips	kips				kips	kips			
	in. ${ }^{3}$	ASD	LRFD	ASD	LRFD	ASD	LRFD	ft	ft	in. ${ }^{4}$	ASD	LRFD			
W40×215	964	2410	3620	1500	2250	39.4	59.3	12.5	35.6	16700	507	761			
W36×231	963	2400	3610	1490	2240	35.7	53.7	13.1	38.6	15600	555	832			
W 30×261	943	2350	3540	1450	2180	29.1	44.0	12.5	43.4	13100	588	882			
W 33×241	940	2350	3530	1450	2180	33.5	50.2	12.8	39.7	14200	568	852			
W36×232	936	2340	3510	1410	2120	44.8	67.0	9.25	30.0	15000	646	968			
W27×281	936	2340	3510	1420	2140	24.8	36.9	12.0	49.1	11900	621	932			
W $14 \times 455^{\text {h }}$	936	2340	3510	1320	1980	6.24	9.36	15.5	179	7190	768	1150			
W $24 \times 306^{\text {h }}$	922	2300	3460	1380	2070	19.7	29.8	11.3	57.9	10700	683	1020			
W40×211	906	2260	3400	1370	2060	48.6	73.1	8.87	27.2	15500	591	887			
W40×199	869	2170	3260	1340	2020	37.6	56.1	12.2	34.3	14900	503	755			
W $14 \times 426^{\text {h }}$	869	2170	3260	1230	1850	6.16	9.23	15.3	168	6600	703	1050			
W 33×221	857	2140	3210	1330	1990	31.8	47.8	12.7	38.2	12900	525	788			
W27×258	852	2130	3200	1300	1960	24.4	36.5	11.9	45.9	10800	568	853			
W30×235	847	2110	3180	1310	1960	28.0	42.7	12.4	41.0	11700	520	779			
W $24 \times 279^{\text {h }}$	835	2080	3130	1250	1880	19.7	29.6	11.2	53.4	9600	619	929			
W 36×210	833	2080	3120	1260	1890	42.3	63.4	9.11	28.5	13200	609	914			
W $14 \times 398{ }^{\text {h }}$	801	2000	3000	1150	1720	5.95	8.96	15.2	158	6000	648	972			
W40×183	774	1930	2900	1180	1770	44.1	66.5	8.80	25.8	13200	507	761			
W 33×201	773	1930	2900	1200	1800	30.3	45.6	12.6	36.7	11600	482	723			
W27×235	772	1930	2900	1180	1780	24.1	36.0	11.8	42.9	9700	522	784			
W 36×194	767	1910	2880	1160	1740	40.4	61.4	9.04	27.6	12100	558	838			
W18 $\times 311^{\text {h }}$	754	1880	2830	1090	1640	11.2	16.8	10.4	81.1	6970	678	1020			
W 30×211	751	1870	2820	1160	1750	26.9	40.5	12.3	38.7	10300	479	718			
W $21 \times 275^{\text {h }}$	749	1870	2810	1110	1670	14.7	22.1	10.9	62.5	7690	588	882			
W24×250	744	1860	2790	1120	1690	19.7	29.3	11.1	48.7	8490	547	821			
W $14 \times 370^{\text {h }}$	736	1840	2760	1060	1590	5.87	8.80	15.1	148	5440	594	891			
W36×182	718	1790	2690	1090	1640	38.9	58.4	9.01	27.0	11300	526	790			
W27×217	711	1770	2670	1100	1650	23.0	35.1	11.7	40.8	8910	471	707			
ASD	LRFD	${ }^{\mathrm{h}}$ Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.													
$\begin{aligned} & \Omega_{b}=1.67 \\ & \Omega_{v}=1.50 \end{aligned}$	$\begin{aligned} & \phi_{b}=0.90 \\ & \phi_{v}=1.00 \end{aligned}$														

Table 3-2 (continued) W-Shapes Selection by \boldsymbol{Z}_{X}															
Shape	Z_{X}	$M_{p x} / \Omega_{b} \mid$	${ }_{\phi b} M_{p x}$	$M_{r x} / \Omega_{b} \mid$	${ }_{\phi} M^{\prime} M_{r x}$	$B F / \Omega_{b}$	${ }_{\phi b} B F$	L_{p}	L_{r}	I_{X}	$V_{n x} / \Omega_{v}$	$\phi_{v} V_{n x}$			
		kip-ft	kip-ft	kip-ft	kip-ft	kips	kips				kips	kips			
	in. ${ }^{3}$	ASD	LRFD	ASD	LRFD	ASD	LRFD	ft	ft	in. ${ }^{4}$	ASD	LRFD			
W33×130	467	1170	1750	709	1070	29.3	43.1	8.44	24.2	6710	384	576			
W27×146	464	1160	1740	723	1090	19.9	29.5	11.3	33.3	5660	332	497			
W18×192	442	1100	1660	664	998	10.6	16.1	9.85	51.0	3870	392	588			
W30×132	437	1090	1640	664	998	26.9	40.5	7.95	23.8	5770	373	559			
W14×233	436	1090	1640	655	984	5.40	8.15	14.5	95.0	3010	342	514			
W21×166	432	1080	1620	664	998	14.2	21.2	10.6	39.9	4280	338	506			
W12×252 ${ }^{\text {h }}$	428	1070	1610	617	927	4.43	6.68	11.8	114	2720	431	647			
W 24×146	418	1040	1570	648	974	17.0	25.8	10.6	33.7	4580	321	482			
W33 $\times 118^{\text {v }}$	415	1040	1560	627	942	27.2	40.6	8.19	23.4	5900	325	489			
W30×124	408	1020	1530	620	932	26.1	39.0	7.88	23.2	5360	353	530			
W18×175	398	993	1490	601	903	10.6	15.8	9.75	46.9	3450	356	534			
W27×129	395	986	1480	603	906	23.4	35.0	7.81	24.2	4760	337	505			
W14×211	390	973	1460	590	887	5.30	7.94	14.4	86.6	2660	308	462			
W12×230 ${ }^{\text {h }}$	386	963	1450	561	843	4.31	6.51	11.7	105	2420	390	584			
W30 $\times 116$	378	943	1420	575	864	24.8	37.4	7.74	22.6	4930	339	509			
W21×147	373	931	1400	575	864	13.7	20.7	10.4	36.3	3630	318	477			
W24×131	370	923	1390	575	864	16.3	24.6	10.5	31.9	4020	296	445			
W18×158	356	888	1340	541	814	10.5	15.9	9.68	42.8	3060	319	479			
W14×193	355	886	1330	541	814	5.30	7.93	14.3	79.4	2400	276	414			
W12×210	348	868	1310	510	767	4.25	6.45	11.6	95.8	2140	347	520			
W30×108	346	863	1300	522	785	23.5	35.5	7.59	22.1	4470	325	487			
W27×114	343	856	1290	522	785	21.7	32.8	7.70	23.1	4080	311	467			
W 21×132	333	831	1250	515	774	13.2	19.9	10.3	34.2	3220	283	425			
W24×117	327	816	1230	508	764	15.4	23.3	10.4	30.4	3540	267	401			
W18×143	322	803	1210	493	740	10.3	15.7	9.61	39.6	2750	285	427			
W14×176	320	798	1200	491	738	5.20	7.83	14.2	73.2	2140	252	378			
W30 $\times 99$	312	778	1170	470	706	22.2	33.4	7.42	21.3	3990	309	463			
W12×190	311	776	1170	459	690	4.18	6.33	11.5	87.3	1890	305	458			
W21×122	307	766	1150	477	717	12.9	19.3	10.3	32.7	2960	260	391			
W27×102	305	761	1140	466	701	20.1	29.8	7.59	22.3	3620	279	419			
W18×130	290	724	1090	447	672	10.2	15.4	9.54	36.6	2460	259	388			
W24×104	289	721	1080	451	677	14.3	21.3	10.3	29.2	3100	241	362			
W14×159	287	716	1080	444	667	5.17	7.85	14.1	66.7	1900	224	335			
ASD	LRFD	${ }^{\mathrm{h}}$ Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c. ${ }^{v}$ Shape does not meet the h / t_{w} limit for shear in AISC Specification Section G2.1(a) with $F_{y}=50 \mathrm{ksi}$; therefore, $\phi_{v}=0.90$ and $\Omega_{v}=1.67$.													
$\begin{aligned} & \Omega_{b}=1.67 \\ & \Omega_{v}=1.50 \end{aligned}$	$\begin{aligned} & \phi_{b}=0.90 \\ & \phi_{v}=1.00 \end{aligned}$														

Table 3-2 (continued) W-Shapes Selection by \boldsymbol{Z}_{X}																	
Shape	Z_{X}	$M_{p x} / \Omega_{b} \mid$	${ }_{\phi} M_{p x}$	$M_{r x} / \Omega_{b}$	${ }_{\phi b} M_{r x}$	$B F / \Omega_{b}$	$\phi_{b} B F$	L_{p}	L_{r}	I_{X}	$\begin{array}{\|c\|} \hline V_{n x} / \Omega_{v} \\ \hline \text { kips } \\ \hline \end{array}$	$\frac{\phi_{v} V_{n x}}{\text { kips }}$					
		kip-ft	kip-ft	kip-ft	kip-ft	kips	kips										
	in. ${ }^{3}$	ASD	LRFD	ASD	LRFD	ASD	LRFD	ft	f	in. ${ }^{4}$	ASD	LRFD					
W $30 \times 9{ }^{\text {V }}$	283	706	1060	428	643	20.6	30.8	7.38	20.9	3610	249	374					
W 24×103	280	699	1050	428	643	18.2	27.4	7.03	21.9	3000	270	404					
W 21×111	279	696	1050	435	654	12.4	18.9	10.2	31.2	2670	237	355					
W27×94	278	694	1040	424	638	19.1	28.5	7.49	21.6	3270	264	395					
W12×170	275	686	1030	410	617	4.11	6.15	11.4	78.5	1650	269	403					
W18×119	262	654	983	403	606	10.1	15.2	9.50	34.3	2190	249	373					
W14×145	260	649	975	405	609	5.13	7.69	14.1	61.7	1710	201	302					
W24×94	254	634	953	388	583	17.3	26.0	6.99	21.2	2700	250	375					
W21×101	253	631	949	396	596	11.8	17.7	10.2	30.1	2420	214	321					
W27×84	244	609	915	372	559	17.6	26.4	7.31	20.8	2850	246	368					
W12×152	243	606	911	365	549	4.06	6.10	11.3	70.6	1430	238	358					
W14×132	234	584	878	365	549	5.15	7.74	13.3	55.8	1530	190	284					
W18×106	230	574	863	356	536	9.73	14.6	9.40	31.8	1910	221	331					
W24×84	224	559	840	342	515	16.2	24.2	6.89	20.3	2370	227	340					
W 21×93	221	551	829	335	504	14.6	22.0	6.50	21.3	2070	251	376					
W12×136	214	534	803	325	488	4.02	6.06	11.2	63.2	1240	212	318					
W14×120	212	529	795	332	499	5.09	7.65	13.2	51.9	1380	171	257					
W18×97	211	526	791	328	494	9.41	14.1	9.36	30.4	1750	199	299					
W24×76	200	499	750	307	462	15.1	22.6	6.78	19.5	2100	210	315					
W16×100	198	494	743	306	459	7.86	11.9	8.87	32.8	1490	199	298					
W21×83	196	489	735	299	449	13.8	20.8	6.46	20.2	1830	220	331					
W14×109	192	479	720	302	454	5.01	7.54	13.2	48.5	1240	150	225					
W18×86	186	464	698	290	436	9.01	13.6	9.29	28.6	1530	177	265					
W12×120	186	464	698	285	428	3.94	5.95	11.1	56.5	1070	186	279					
W24×68	177	442	664	269	404	14.1	21.2	6.61	18.9	1830	197	295					
W16×89	175	437	656	271	407	7.76	11.6	8.80	30.2	1300	176	265					
W14×99	173	430	646	274	412	4.91	7.36	13.5	45.3	1110	138	207					
W 21×73	172	429	645	264	396	12.9	19.4	6.39	19.2	1600	193	289					
W12×106	164	409	615	253	381	3.93	5.89	11.0	50.7	933	157	236					
W18×76	163	407	611	255	383	8.50	12.8	9.22	27.1	1330	155	232					
W21×68	160	399	600	245	368	12.5	18.8	6.36	18.7	1480	181	272					
W14×90 ${ }^{\text {f }}$	157	382	574	250	375	4.82	7.26	15.1	42.5	999	123	185					
ASD	LRFD	${ }^{\text {f }}$ Shape exceeds compact limit for flexure with $F_{y}=50 \mathrm{ksi}$; tabulated values have been adjusted accordingly. ${ }^{v}$ Shape does not meet the h / t_{w} limit for shear in AISC Specification Section G2.1(a) with $F_{y}=50 \mathrm{ksi}$; therefore, $\phi_{v}=0.90$ and $\Omega_{v}=1.67$.															
$\begin{aligned} & \Omega_{b}=1.67 \\ & \Omega_{v}=1.50 \end{aligned}$	$\begin{aligned} & \phi_{\boldsymbol{b}}=0.90 \\ & \phi_{\boldsymbol{v}}=1.00 \end{aligned}$																

Table 3-2 (continued) W-Shapes Selection by \boldsymbol{Z}_{X}															
Shape	Z_{X}	$M_{p x} / \Omega_{b} \mid$	${ }_{\phi b} M_{p x}$	$M_{r x} / \Omega_{b}$	${ }_{\phi} M^{\prime} M_{r x}$	$B F / \Omega_{b}$	$\phi_{b} B F$	L_{p}	L_{r}	$I_{\text {X }}$	$V_{n x} / \Omega_{v}$	$\phi_{V} V_{n x}$			
		kip-ft	kip-ft	kip-ft	kip-ft	kips	kips				kips	kips			
	in. ${ }^{3}$	ASD	LRFD	ASD	LRFD	ASD	LRFD	ft	ft	in. ${ }^{4}$	ASD	LRFD			
W24x62	153	382	574	229	344	16.1	24.1	4.87	14.4	1550	204	306			
W16×77	150	374	563	234	352	7.34	11.1	8.72	27.8	1110	150	225			
W12×96	147	367	551	229	344	3.85	5.78	10.9	46.7	833	140	210			
W10×112	147	367	551	220	331	2.69	4.03	9.47	64.1	716	172	258			
W18×71	146	364	548	222	333	10.4	15.8	6.00	19.6	1170	183	275			
W21×62	144	359	540	222	333	11.6	17.5	6.25	18.1	1330	168	252			
W14×82	139	347	521	215	323	5.40	8.10	8.76	33.2	881	146	219			
W24×55 ${ }^{\text {v }}$	134	334	503	199	299	14.7	22.2	4.73	13.9	1350	167	252			
W18×65	133	332	499	204	307	9.98	15.0	5.97	18.8	1070	166	248			
W12×87	132	329	495	206	310	3.81	5.73	10.8	43.1	740	129	193			
W16×67	130	324	488	204	307	6.89	10.4	8.69	26.1	954	129	193			
W10×100	130	324	488	196	294	2.64	4.00	9.36	57.9	623	151	226			
W 21×57	129	322	484	194	291	13.4	20.3	4.77	14.3	1170	171	256			
W21×55	126	314	473	192	289	10.8	16.3	6.11	17.4	1140	156	234			
W14×74	126	314	473	196	294	5.31	8.05	8.76	31.0	795	128	192			
W18×60	123	307	461	189	284	9.62	14.4	5.93	18.2	984	151	227			
W12×79	119	297	446	187	281	3.78	5.67	10.8	39.9	662	117	175			
W14×68	115	287	431	180	270	5.19	7.81	8.69	29.3	722	116	174			
W10×88	113	282	424	172	259	2.62	3.94	9.29	51.2	534	131	196			
W18×55	112	279	420	172	258	9.15	13.8	5.90	17.6	890	141	212			
W21×50	110	274	413	165	248	12.1	18.3	4.59	13.6	984	158	237			
W12×72	108	269	405	170	256	3.69	5.56	10.7	37.5	597	106	159			
W21×48 ${ }^{\text {f }}$	107	265	398	162	244	9.89	14.8	6.09	16.5	959	144	216			
W16×57	105	262	394	161	242	7.98	12.0	5.65	18.3	758	141	212			
W14×61	102	254	383	161	242	4.93	7.48	8.65	27.5	640	104	156			
W18×50	101	252	379	155	233	8.76	13.2	5.83	16.9	800	128	192			
W10×77	97.6	244	366	150	225	2.60	3.90	9.18	45.3	455	112	169			
W12×65	96.8	237	356	154	231	3.58	5.39	11.9	35.1	533	94.4	142			
ASD	LRFD	${ }^{\text {f }}$ Shape exceeds compact limit for flexure with $F_{y}=50 \mathrm{ksi}$; tabulated values have been adjusted accordingly. ${ }^{v}$ Shape does not meet the h / t_{w} limit for shear in AISC Specification Section G2.1(a) with $F_{y}=50 \mathrm{ksi}$; therefore, $\phi_{v}=0.90$ and $\Omega_{v}=1.67$.													
$\begin{aligned} & \Omega_{b}=1.67 \\ & \Omega_{v}=1.50 \end{aligned}$	$\begin{aligned} & \phi_{b}=0.90 \\ & \phi_{v}=1.00 \end{aligned}$														

$F_{y}=50 \mathrm{ksi}$															
Shape	Z_{X}	$M_{p x} / \Omega_{b}$	${ }_{\phi b} M_{p x}$	$M_{r x} / \Omega_{b}$	$\phi_{b} M_{r x}$	$B F / \Omega_{b}$	$\phi_{b} B F$	L_{p}	L_{r}	I_{X}	$V_{n x} / \Omega_{v}$	$\phi_{v} V_{n x}$			
		kip-ft	kip-ft	kip-ft	kip-ft	kips	kips				kips	kips			
	in. ${ }^{3}$	ASD	LRFD	ASD	LRFD	ASD	LRFD	ft	ft	in. ${ }^{4}$	ASD	LRFD			
W14×26	40.2	100	151	61.7	92.7	5.33	8.11	3.81	11.0	245	70.9	106			
W8×40	39.8	99.3	149	62.0	93.2	1.64	2.46	7.21	29.9	146	59.4	89.1			
W10×33	38.8	96.8	146	61.1	91.9	2.39	3.62	6.85	21.8	171	56.4	84.7			
W12×26	37.2	92.8	140	58.3	87.7	3.61	5.46	5.33	14.9	204	56.1	84.2			
W10×30	36.6	91.3	137	56.6	85.1	3.08	4.61	4.84	16.1	170	63.0	94.5			
W8×35	34.7	86.6	130	54.5	81.9	1.62	2.43	7.17	27.0	127	50.3	75.5			
W14×22	33.2	82.8	125	50.6	76.1	4.78	7.27	3.67	10.4	199	63.0	94.5			
W10×26	31.3	78.1	117	48.7	73.2	2.91	4.34	4.80	14.9	144	53.6	80.3			
W8 $\times 31^{\text {f }}$	30.4	75.8	114	48.0	72.2	1.58	2.37	7.18	24.8	110	45.6	68.4			
W12×22	29.3	73.1	110	44.4	66.7	4.68	7.06	3.00	9.13	156	64.0	95.9			
W8×28	27.2	67.9	102	42.4	63.8	1.67	2.50	5.72	21.0	98.0	45.9	68.9			
W10×22	26.0	64.9	97.5	40.5	60.9	2.68	4.02	4.70	13.8	118	49.0	73.4			
W12×19	24.7	61.6	92.6	37.2	55.9	4.27	6.43	2.90	8.61	130	57.3	86.0			
W8×24	23.1	57.6	86.6	36.5	54.9	1.60	2.40	5.69	18.9	82.7	38.9	58.3			
W10×19	21.6	53.9	81.0	32.8	49.4	3.18	4.76	3.09	9.73	96.3	51.0	76.5			
W8×21	20.4	50.9	76.5	31.8	47.8	1.85	2.77	4.45	14.8	75.3	41.4	62.1			
W12×16	20.1	50.1	75.4	29.9	44.9	3.80	5.73	2.73	8.05	103	52.8	79.2			
W10×17	18.7	46.7	70.1	28.3	42.5	2.98	4.47	2.98	9.16	81.9	48.5	72.7			
W12×14 ${ }^{\text {v }}$	17.4	43.4	65.3	26.0	39.1	3.43	5.17	2.66	7.73	88.6	42.8	64.3			
W8×18	17.0	42.4	63.8	26.5	39.9	1.74	2.61	4.34	13.5	61.9	37.4	56.2			
W10×15	16.0	39.9	60.0	24.1	36.2	2.75	4.14	2.86	8.61	68.9	46.0	68.9			
W8×15	13.6	33.9	51.0	20.6	31.0	1.90	2.85	3.09	10.1	48.0	39.7	59.6			
W10×12 ${ }^{\text {f }}$	12.6	31.2	46.9	19.0	28.6	2.36	3.53	2.87	8.05	53.8	37.5	56.3			
W8×13	11.4	28.4	42.8	17.3	26.0	1.76	2.67	2.98	9.27	39.6	36.8	55.1			
W8 $\times 10^{\text {f }}$	8.87	21.9	32.9	13.6	20.5	1.54	2.30	3.14	8.52	30.8	26.8	40.2			
ASD	LRFD	${ }^{\text {f }}$ Shape exceeds compact limit for flexure with $F_{y}=50 \mathrm{ksi}$; tabulated values have been adjusted accordingly. ${ }^{v}$ Shape does not meet the h / t_{w} limit for shear in AISC Specification Section G2.1(a) with $F_{y}=50 \mathrm{ksi}$; therefore, $\phi_{v}=0.90$ and $\Omega_{v}=1.67$.													
$\begin{aligned} & \Omega_{b}=1.67 \\ & \Omega_{v}=1.50 \end{aligned}$	$\begin{aligned} & \phi_{b}=0.90 \\ & \phi_{v}=1.00 \end{aligned}$														

Table 3-4 (continued) W-Shapes Selection by $\boldsymbol{Z}_{\boldsymbol{y}}$												
Shape	Z_{y}	$\begin{array}{\|c\|c} \hline M_{n y} / \Omega_{b} & \phi_{b} M_{n y} \\ \hline \text { kip-ft } & \text { kip-ft } \end{array}$		Shape	Z_{y}	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	Shape	Z_{y}	$M_{n y} / \Omega_{b}$ $\phi_{b} M_{n y}$		
				kip-ft		kip-ft	kip-ft			kip-ft		
	in. ${ }^{3}$	ASD	LRFD		in. ${ }^{3}$	ASD	LRFD		in. ${ }^{3}$	ASD	LRFD	
W14×159	146	364	548		W14×109	92.7	231	348	W12×87	60.4	151	227
W12×190	143	357	536	W21×147	92.6	231	347	W36×135	59.7	149	224	
W40×278	140	348	523	W36×182	90.7	226	340	W 33×130	59.5	148	223	
W30×191	138	344	518	W40×183	88.3	220	331	W30×132	58.4	146	219	
W40×199	137	342	514	W18×143	85.4	213	320	W 27×129	57.6	144	216	
W 36×256	137	342	514	W12×120	85.4	213	320	W18×97	55.3	138	207	
W 24×207	137	342	514	W 33×169	84.4	211	317	W16×100	54.9	137	206	
W 27×194	136	339	510	W 36×170	83.8	209	314	W12×79	54.3	135	204	
W 21×201	133	332	499	W14×99 ${ }^{\text {f }}$	83.6	207	311	$W 12 \times 79$ $W 30 \times 124$	54.3 54.0	135 135	204	
W14×145	133	332	499	W21×132	82.3	205	309	W10×88	53.1	132	199	
W40×264	132	329	495	W 24×131	81.5	203	306	W 33×118	51.3	128	192	
W18×211	132	329	495	W36×160	77.3	193	290	W 27×114	49.3	123	185	
W 24×192	126	314	473	W18×130	76.7	191	288	W30×116	49.2	123	185	
W12×170	126	314	473	W40×167	76.0	190	285		49.2	123		
W 30×173	123	307	461	W21×122	75.6	189	283	W12×72	49.2	123	$\begin{aligned} & 185 \\ & 182 \end{aligned}$	
W36×232	122	304	458	W14×90 ${ }^{\text {f }}$	75.6	181	273	W16x86	48.4	120	182	
W 27×178	122	304	458	W12×106	75.1	187	282	W10×77	45.9	115	172	
W 21×182	119	297	446	W 33×152	73.9	184	277	W14×82	44.8	112	168	
W18×192	119	297	446	W24×117	71.4	178	268	W12 $65^{\text {f }}$	44.8	107	168	
W40×235	118	294	443	W 36×150	71.4 70.9	177	266	W12×65 ${ }^{\text {f }}$	44.1	107	161	
W 24×176	115	287	431	W10×112	70.9 69.2	173	266	W30×108	43.9	110	165	
W14×132	113	282	424	W18×119	69.2 69.1	172	259	W 27×102	43.4	108	163	
W 12×152	111	277	416	W 21×111	68.2	170	256	W18×76	42.2	105	158	
W 27×161	109	272	409	W 30×148	68.0	170	255	W 24×103	41.5	104	156	
W 21×166	108	269	405	W12×96	67.5	168	253	W16×77	41.1	103	154	
W 36×210	107	267	401	W 33×141	66.9	167	251	W14×74	40.5	101	152	
W18×175	106	264	398	W24×104	62.4	156	234	W10×68	40.1	100	150	
W40×211	105	262	394	W40×149	62.2	155	233	W27×94	38.8	96.8	146	
W24×162	105	262	394	W 21×101	61.7	154	231	W 30×99 W 24×94	38.6 37.5	96.3	145	
W14×120	102	254	383	$\mathrm{W} 10 \times 100$	61.0	152	229	W24×94 W14×68	37.5 36.9	93.6 92.1	141 138	
W12×136	98.0	245	368	W18×106	60.5	151	227	W16×67	35.5	88.6	133	
W 36×194	97.7	244	366									
W 27×146	97.7	244	366									
W18×158	94.8	237	356									
W 24×146	93.2	233	350									
ASD		FD	${ }^{f}$ Shape	ceeds compa	limit	flexure w	with $F_{y}=$	ksi; tabula	alues	ave been	adjusted	
$\begin{aligned} & \Omega_{b}=1.67 \\ & \Omega_{v}=1.50 \end{aligned}$		$\begin{aligned} & =0.90 \\ & =1.00 \end{aligned}$										

			Tab V-S ec	$\begin{aligned} & 3-5 \\ & \text { apes } \\ & \text { n by } I_{y} \end{aligned}$			y
Shape	I_{y}	Shape	I_{y}	Shape	$1{ }^{\prime}$	Shape	I_{y}
	in. ${ }^{4}$						
W14×873 ${ }^{\text {h }}$	6170	W14×283 ${ }^{\text {h }}$	1440	W14×193	931	W14×132	548
		W $40 \times 372^{\text {h }}$	1420	W 40×249	926	W 21×201	542
W14×808 ${ }^{\text {n }}$	5550	W36×330	1420	W 44×262	923	W 24×192	530
W36×925 ${ }^{\text {n }}$	4940	W $30 \times 357^{\text {h }}$	1390	W $24 \times 306^{\text {h }}$	919	W36×256	528
W14×730 ${ }^{\text {h }}$	4720	W $40 \times 362^{\text {h }}$	1380	W 27×258	859	W 40×278	521
W $36 \times 853^{\text {h }}$	4600	W $27 \times 368^{\text {h }}$	1310	W 30×235	855	W12×170	517
W $36 \times 802^{\text {h }}$	4210	W36×302	1300	W 33×221	840	W 27×161	497
W14×665 ${ }^{\text {h }}$	4170	W33×318	1290	W14×176	838	W14×120	495
W36×723 ${ }^{\text {h }}$	3700	W14×257	1290	W $12 \times 252^{\text {h }}$	828	W 40×264	493
W14×605 ${ }^{\text {h }}$	3680	W $30 \times 326^{\text {h }}$	1240	W $24 \times 279^{\text {h }}$	823	W18×211	493
		W40×324	1220	W $40 \times 392^{\text {h }}$	803	W 21×182	483
W14×550 ${ }^{\text {h }}$	3250	W44×335	1200	W44×230	796	W 24×176	479
W $36 \times 652^{\text {h }}$	3230	W36×282	1200	W 40×215	803	W 36×232	468
$\begin{aligned} & W 14 \times 500^{h} \\ & W 40 \times 655^{h} \end{aligned}$	2880	W12×336 ${ }^{\text {h }}$	1190	W18×311 ${ }^{\text {h }}$	795	W12×152	454
		W $27 \times 336^{\text {h }}$	1180	W $21 \times 275^{\text {h }}$	787	W14×109	
	2870	W33×291	1160	W27×235	769	W14×109 W 40×235	447 444
W $14 \times 455^{\text {h }}$	2560	W $24 \times 370^{\text {h }}$	1160	W 30×211	757	W 40×235 W 27×146	444 443
W $40 \times 593^{\text {h }}$	2520	W14×233	1150	W 33×201	749	W 27×162	443 443
W $36 \times 529^{\text {h }}$	2490	W30×292	1100	W14×159	748	W18×192	440
W14×426 ${ }^{\text {h }}$	2360	W40×297	1090	W $12 \times 230^{\text {h }}$	742	W 21×166	435
W $36 \times 487^{\text {h }}$	2250	W36×262	1090	W 24×250	724	W 36×210	411
	2170	W $27 \times 307^{\text {h }}$	1050	W27×217	704	W14×99	402
W27×539 ${ }^{\text {h }}$	2110	W $12 \times 305^{\text {h }}$	1050	W18×283 ${ }^{\text {h }}$	704	W12×136	398
W $40 \times 503^{\text {h }}$	2040	W44×290	1040	W 21×248	699	W 24×146	391
W $36 \times 441^{\text {h }}$	1990	W40×277	1040	W40×199	695	W18×175	391
	1990	W 33×263	1040	W14×145	677	W 40×211	390
W14×370 ${ }^{\text {h }}$	1990	W24×335 ${ }^{\text {h }}$	1030	W 30×191	673	W 21×147	376
W14×342 ${ }^{\text {h }}$	1810	W14×211	1030	W12×210	664	W36×194	375
W $36 \times 395^{\text {h }}$	1750	W36×247	1010	W 24×229	651		
W $40 \times 431^{\text {h }}$	1690	W30×261	959	W40×331 ${ }^{\text {h }}$	644		
W $33 \times 387^{\text {h }}$	1620	W 27×281	953	W40 $\times 327^{\text {h }}$	640		
	1610	W36×231	940	W18×258 ${ }^{\text {h }}$	628		
$\mathrm{W} 36 \times 361^{\mathrm{h}}$		W $12 \times 279^{\text {h }}$	937	W27×194	619		
W30×391	1550	W 33×241	933	W 21×223	614		
$\mathrm{W} 40 \times 397^{\mathrm{h}}$	1540			W 30×173	598		
W $33 \times 354^{\text {h }}$	1460			W12×190	589		
				W24×207	578		
				W40×294	562		
				W18×234 ${ }^{\text {h }}$	558		
				W27×178	555		

$F_{y}=50 \mathrm{ksi}$		Table 3-6 Maximum Total Uniform Load, kips W-Shapes						W44	44
Shape		W44×							
		335		290		262		230	
Design		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
$\begin{aligned} & \pm \\ & \text { 튿 } \\ & \text { م } \end{aligned}$	$\begin{aligned} & 17 \\ & 18 \\ & 19 \\ & 20 \end{aligned}$	$\begin{aligned} & \hline 1810 \\ & \hline 1800 \\ & 1700 \\ & 1620 \end{aligned}$	$\begin{aligned} & \hline 2720 \\ & \hline 2700 \\ & 2560 \\ & 2430 \end{aligned}$	$\begin{aligned} & 1510 \\ & \hline 1480 \\ & 1410 \end{aligned}$	2260	$\begin{aligned} & 1360 \\ & \hline 1330 \\ & 1270 \end{aligned}$	2040	1090	1640
	$\begin{aligned} & 21 \\ & 22 \\ & 23 \\ & 24 \\ & 25 \end{aligned}$	$\begin{aligned} & 1540 \\ & 1470 \\ & 1410 \\ & 1350 \\ & 1290 \end{aligned}$	$\begin{aligned} & 2310 \\ & 2210 \\ & 2110 \\ & 2030 \\ & 1940 \end{aligned}$	$\begin{aligned} & 1340 \\ & 1280 \\ & 1220 \\ & 1170 \\ & 1130 \end{aligned}$	$\begin{aligned} & 2010 \\ & 1920 \\ & 1840 \\ & 1760 \\ & 1690 \end{aligned}$	$\begin{aligned} & 1210 \\ & 1150 \\ & 1100 \\ & 1060 \\ & 1010 \end{aligned}$	$\begin{aligned} & 1810 \\ & 1730 \\ & 1660 \\ & 1590 \\ & 1520 \end{aligned}$	$\begin{array}{r} 1050 \\ 998 \\ 955 \\ 915 \\ 878 \end{array}$	$\begin{aligned} & 1570 \\ & 1500 \\ & 1430 \\ & 1380 \\ & 1320 \end{aligned}$
	$\begin{aligned} & 26 \\ & 27 \\ & 28 \\ & 29 \\ & 30 \end{aligned}$	$\begin{aligned} & 1240 \\ & 1200 \\ & 1150 \\ & 1120 \\ & 1080 \end{aligned}$	$\begin{aligned} & 1870 \\ & 1800 \\ & 1740 \\ & 1680 \\ & 1620 \end{aligned}$	$\begin{array}{r} 1080 \\ 1040 \\ 1010 \\ 970 \\ 938 \end{array}$	$\begin{aligned} & 1630 \\ & 1570 \\ & 1510 \\ & 1460 \\ & 1410 \end{aligned}$	$\begin{aligned} & 975 \\ & 939 \\ & 905 \\ & 874 \\ & 845 \end{aligned}$	$\begin{aligned} & 1470 \\ & 1410 \\ & 1360 \\ & 1310 \\ & 1270 \end{aligned}$	$\begin{aligned} & 844 \\ & 813 \\ & 784 \\ & 757 \\ & 732 \end{aligned}$	$\begin{aligned} & 1270 \\ & 1220 \\ & 1180 \\ & 1140 \\ & 1100 \end{aligned}$
	$\begin{aligned} & 32 \\ & 34 \\ & 36 \\ & 38 \\ & 40 \end{aligned}$	$\begin{array}{r} 1010 \\ 951 \\ 898 \\ 851 \\ 808 \end{array}$	$\begin{aligned} & 1520 \\ & 1430 \\ & 1350 \\ & 1280 \\ & 1220 \end{aligned}$	$\begin{aligned} & 879 \\ & 828 \\ & 782 \\ & 741 \\ & 704 \end{aligned}$	$\begin{aligned} & 1320 \\ & 1240 \\ & 1180 \\ & 1110 \\ & 1060 \end{aligned}$	$\begin{aligned} & 792 \\ & 746 \\ & 704 \\ & 667 \\ & 634 \end{aligned}$	$\begin{array}{r} 1190 \\ 1120 \\ 1060 \\ 1000 \\ 953 \end{array}$	$\begin{aligned} & 686 \\ & 646 \\ & 610 \\ & 578 \\ & 549 \end{aligned}$	$\begin{array}{r} 1030 \\ 971 \\ 917 \\ 868 \\ 825 \end{array}$
	$\begin{aligned} & 42 \\ & 44 \\ & 46 \\ & 48 \\ & 50 \end{aligned}$	$\begin{aligned} & 770 \\ & 735 \\ & 703 \\ & 674 \\ & 647 \end{aligned}$	$\begin{array}{r} 1160 \\ 1100 \\ 1060 \\ 1010 \\ 972 \end{array}$	$\begin{aligned} & 670 \\ & 640 \\ & 612 \\ & 586 \\ & 563 \end{aligned}$	$\begin{array}{r} 1010 \\ 961 \\ 920 \\ 881 \\ 846 \end{array}$	$\begin{aligned} & 604 \\ & 576 \\ & 551 \\ & 528 \\ & 507 \end{aligned}$	$\begin{aligned} & 907 \\ & 866 \\ & 828 \\ & 794 \\ & 762 \end{aligned}$	$\begin{aligned} & 523 \\ & 499 \\ & 477 \\ & 457 \\ & 439 \end{aligned}$	$\begin{aligned} & 786 \\ & 750 \\ & 717 \\ & 688 \\ & 660 \end{aligned}$
	$\begin{aligned} & 52 \\ & 54 \\ & 56 \\ & 58 \\ & 60 \end{aligned}$	$\begin{aligned} & 622 \\ & 599 \\ & 577 \\ & 558 \\ & 539 \end{aligned}$	$\begin{aligned} & 935 \\ & 900 \\ & 868 \\ & 838 \\ & 810 \end{aligned}$	$\begin{aligned} & 541 \\ & 521 \\ & 503 \\ & 485 \\ & 469 \end{aligned}$	$\begin{aligned} & 813 \\ & 783 \\ & 755 \\ & 729 \\ & 705 \end{aligned}$	$\begin{aligned} & 487 \\ & 469 \\ & 453 \\ & 437 \\ & 422 \end{aligned}$	$\begin{aligned} & 733 \\ & 706 \\ & 680 \\ & 657 \\ & 635 \end{aligned}$	$\begin{aligned} & 422 \\ & 407 \\ & 392 \\ & 379 \\ & 366 \end{aligned}$	$\begin{aligned} & 635 \\ & 611 \\ & 589 \\ & 569 \\ & 550 \end{aligned}$
	$\begin{aligned} & 62 \\ & 64 \\ & 66 \\ & 68 \\ & 70 \end{aligned}$	$\begin{aligned} & 522 \\ & 505 \\ & 490 \\ & 476 \\ & 462 \end{aligned}$	$\begin{aligned} & 784 \\ & 759 \\ & 736 \\ & 715 \\ & 694 \end{aligned}$	$\begin{aligned} & 454 \\ & 440 \\ & 426 \\ & 414 \\ & 402 \end{aligned}$	$\begin{aligned} & 682 \\ & 661 \\ & 641 \\ & 622 \\ & 604 \end{aligned}$	$\begin{aligned} & 409 \\ & 396 \\ & 384 \\ & 373 \\ & 362 \end{aligned}$	$\begin{aligned} & 615 \\ & 595 \\ & 577 \\ & 560 \\ & 544 \end{aligned}$	$\begin{aligned} & 354 \\ & 343 \\ & 333 \\ & 323 \\ & 314 \end{aligned}$	$\begin{aligned} & 532 \\ & 516 \\ & 500 \\ & 485 \\ & 471 \end{aligned}$
	72	449	675	391	588	352	529	305	458
				am Prop					
W_{c} / Ω_{b} M_{p} / Ω_{b} M_{r} / Ω_{b} $B F / \Omega_{b}$ V_{n} / Ω_{v}	$\phi_{b} W_{c}$, kip-ft $\phi_{b} M_{p}$, kip-ft $\phi_{b} M_{r}$, kip-ft ${ }_{\phi b} B F$, kips $\phi_{v} V_{n}$, kips	$\begin{gathered} \hline 32300 \\ 4040 \\ 2460 \\ 59.4 \\ 906 \end{gathered}$	$\begin{gathered} \hline 48600 \\ 6080 \\ 3700 \\ 89.5 \\ 1360 \end{gathered}$	$\begin{gathered} 28100 \\ 3520 \\ 2170 \\ 54.9 \\ 754 \end{gathered}$	$\begin{gathered} \hline 42300 \\ 5290 \\ 3260 \\ 82.5 \\ 1130 \end{gathered}$	$\begin{gathered} 25300 \\ 3170 \\ 1940 \\ 52.6 \\ 680 \end{gathered}$	$\begin{gathered} \hline 38100 \\ 4760 \\ 2910 \\ 79.1 \\ 1020 \end{gathered}$	$\begin{gathered} 22000 \\ 2740 \\ 1700 \\ 46.8 \\ 547 \end{gathered}$	$\begin{gathered} \hline 33000 \\ 4130 \\ 2550 \\ 71.2 \\ 822 \end{gathered}$
$\begin{gathered} \text { ASD } \\ \\ \Omega_{b}=1.67 \\ \Omega_{v}=1.50 \end{gathered}$	LRFD $\begin{aligned} & \phi_{b}=0.90 \\ & \phi_{v}=1.00 \end{aligned}$	${ }^{v}$ Shape d $F_{y}=50$ Notes: For Av	not meet therefore ams later ble streng	$\begin{aligned} & h / t_{\text {w }} \text { lim } \\ & =0.90 \\ & \text { unsuppo } \\ & \text { abulated } \end{aligned}$	shear in $\Omega_{v}=1.6$, see Tab ve heavy	SC Speci -10. is limited	ion Sectio available	hear stre	

$F_{y}=50 \mathrm{ksi}$		Table 3-6 (continued) Maximum Total niform Load, kips W-Shapes								W40			
Shape		W40×											
		215		211		199		183		167		149*	
Design		ASD	LRFD										
$\begin{aligned} & \ddagger \\ & \text { 末口 } \\ & \text { Wi } \end{aligned}$	13									1000	1510	865	1300
	14									988	1490	853	1280
	15			1180	1770			1010	1520	922	1390	796	1200
	16			1130	1700			966	1450	865	1300	746	1120
	17			1060	1600	1010	1510	909	1370	814	1220	702	1060
	18			1000	1510	964	1450	858	1290	768	1160	663	997
	19	1010	1520	952	1430	913	1370	813	1220	728	1090	628	944
	20	962	1450	904	1360	867	1300	772	1160	692	1040	597	897
	21	916	1380	861	1290	826	1240	736	1110	659	990	568	854
	22	875	1310	822	1240	788	1190	702	1060	629	945	543	815
	23	837	1260	786	1180	754	1130	672	1010	601	904	519	780
	24	802	1210	753	1130	723	1090	644	968	576	866	497	748
	25	770	1160	723	1090	694	1040	618	929	553	832	477	718
	26	740	1110	696	1050	667	1000	594	893	532	800	459	690
	27	713	1070	670	1010	642	966	572	860	512	770	442	664
	28	687	1030	646	971	619	931	552	829	494	743	426	641
	29	664	997	624	937	598	899	533	801	477	717	412	619
	30	641	964	603	906	578	869	515	774	461	693	398	598
	32	601	904	565	849	542	815	483	726	432	650	373	561
	34	566	851	532	799	510	767	454	683	407	611	351	528
	36	534	803	502	755	482	724	429	645	384	578	332	498
	38	506	761	476	715	456	686	407	611	364	547	314	472
	40	481	723	452	680	434	652	386	581	346	520	298	449
	42	458	689	431	647	413	621	368	553	329	495	284	427
	44	437	657	411	618	394	593	351	528	314	473	271	408
	46	418	629	393	591	377	567	336	505	301	452	259	390
	48	401	603	377	566	361	543	322	484	288	433	249	374
	50	385	578	362	544	347	521	309	464	277	416	239	359
	52	370	556	348	523	334	501	297	447	266	400	230	345
	54	356	536	335	503	321	483	286	430	256	385	221	332
	56	344	516	323	485	310	466	276	415	247	371	213	320
	58	332	499	312	469	299	449	266	400	238	358	206	309
	60	321	482	301	453	289	435	257	387	231	347	199	299
		310	466	292		280				223			
	64	301	452	283	425	271	407	241	363	216	325	187	280
	66	292	438	274	412	263	395	234	352	210	315	181	272
	68	283	425	266	400	255	383	227	341	203	306	176	264
	70	275	413	258	388	248	372	221	332	198	297	171	256
	72	267	402	251	378	241	362	215	323	192	289	166	249
Beam Properties													
W_{c} / Ω_{b}	$\phi_{b} W_{c}$, kip-ft	19200	28900	18100	27200	17300	26100	15400	23200	13800	20800	11900	17900
M_{p} / Ω_{b}	${ }_{\phi} M_{p}$, kip-ft	2410	3620	2260	3400	2170	3260	1930	2900	1730	2600	1490	2240
M_{r} / Ω_{b}	$\phi_{b} M_{r}, \mathbf{k i p}$-ft	1500	2250	1370	2060	1340	2020	1180	1770	1050	1580	896	1350
$B F / \Omega_{b}$	$\phi_{\phi} B F$, kips	39.4	59.3	48.6	73.1	37.6	56.1	44.1	66.5	41.7	62.5	38.3	57.4
V_{n} / Ω_{v}	$\phi_{V} V_{n}$, kips	507	761	591	887	503	755	507	761	502	753	432	650
$\begin{aligned} & Z_{X}, \text { in. }{ }^{3} \\ & L_{p}, \mathrm{ft} \\ & L_{r}, \mathrm{ft} \end{aligned}$		$\begin{gathered} \hline 964 \\ 12.5 \\ 35.6 \end{gathered}$		$\begin{gathered} 906 \\ 8.87 \\ 27.2 \end{gathered}$		$\begin{gathered} \hline 869 \\ 12.2 \\ 34.3 \end{gathered}$		$\begin{gathered} \hline 774 \\ 8.80 \\ 25.8 \\ \hline \end{gathered}$		$\begin{gathered} \hline 693 \\ 8.48 \\ 24.8 \\ \hline \end{gathered}$		$\begin{gathered} 598 \\ 8.09 \\ 23.6 \\ \hline \end{gathered}$	
ASD	LRFD	${ }^{v}$ Shape does not meet the h / t_{w} limit for shear in AISC Specification Section G2.1(a) with $F_{y}=50 \mathrm{ksi}$; therefore, $\phi_{v}=0.90$ and $\Omega_{v}=1.67$. Notes: For beams laterally unsupported, see Table 3-10. Available strength tabulated above heavy line is limited by available shear strength.											
$\begin{aligned} & \Omega_{b}=1.67 \\ & \Omega_{v}=1.50 \end{aligned}$	$\begin{aligned} \phi_{b} & =0.90 \\ \phi_{v} & =1.00 \end{aligned}$												

W36	Table 3-6 (continued) Maximum Total niform Load, kips W-Shapes														
Shape		W36×													
		925 ${ }^{\text {h }}$		853 ${ }^{\text {h }}$		802 ${ }^{\text {h }}$		723 ${ }^{\text {h }}$							
Design		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD						
$\begin{aligned} & \pm \\ & \text { Ē } \\ & \text { 픙 } \end{aligned}$	15	5210	7810												
	16 17 18	5150 4850 4580	$\begin{aligned} & 7740 \\ & 7290 \end{aligned}$												
	18	4580	6880	4340	6520	4060	6080	3630	5440						
	19	4340 4120	6520 6200	4120	$\begin{aligned} & \hline 6190 \\ & 5880 \end{aligned}$	$\begin{aligned} & 3840 \\ & 3650 \end{aligned}$	$\begin{aligned} & 5780 \\ & 5490 \end{aligned}$	$\begin{aligned} & 3440 \\ & 3260 \end{aligned}$	$\begin{aligned} & 5160 \\ & 4910 \end{aligned}$						
	21	3930	5900	3730	5600	3480	5230	3110	4670						
	22	3750	5630	3560	5350	3320	4990	2970	4460						
	23	3580	5390	3400	5110	3180	4770	2840	4270						
	24	3430	5160	3260	4900	3040	4580	2720	4090						
	25	3300	4960	3130	4700	2920	4390	2610	3920						
	26	3170	4770	3010	4520	2810	4220	2510	3770						
	27	3050	4590	2900	4360	2710	4070	2420	3630						
	28	2940	4430	2790	4200	2610	3920	2330	3500						
	29	2840	4270	2700	4060	2520	3790	2250	3380						
	30	2750	4130	2610	3920	2440	3660	2180	3270						
	32	2580	3870	2450	3680	2280	3430	2040	3070						
	34	2420	3640	2300	3460	2150	3230	1920	2890						
	36	2290	3440	2170	3270	2030	3050	1810	2730						
	38	2170	3260	2060	3090	1920	2890	1720	2580						
	40	2060	3100	1960	2940	1830	2750	1630	2450						
	42	1960	2950	1860	2800	1740	2610	1550	2340						
	44	1870	2820	1780	2670	1660	2500	1480	2230						
	46	1790	2690	1700	2560	1590	2390	1420	2130						
	48	1720	2580	1630	2450	1520	2290	1360	2040						
	50	1650	2480	1560	2350	1460	2200	1310	1960						
	52	1590	2380	1500	2260	1400	2110	1260	1890						
	54	1530	2290	1450	2180	1350	2030	1210	1820						
	56	1470	2210	1400	2100	1300	1960	1170	1750						
	58	1420	2140	1350	2030	1260	1890	1130	1690						
	60	1370	2070	1300	1960	1220	1830	1090	1640						
	62	1330	2000	1260	1900	1180	1770	1050	1580						
	64	1290	1940	1220	1840	1140	1720	1020	1530						
	66	1250	1880	1190	1780	1110	1660	989	1490						
	68	1210	1820	1150	1730	1070	1610	960	1440						
	70	1180	1770	1120	1680	1040	1570	932	1400						
	72	1140	1720	1090	1630	1010	1530	907	1360						
Beam Properties															
W_{c} / Ω_{b}	$\phi_{b} W_{C}$, kip-ft	82400	124000	78200	118000	73100	110000	65300	98100						
M_{p} / Ω_{b}	$\phi_{b} M_{p}$, kip-ft	10300	15500	9780	14700	9130	13700	8160	12300						
M_{r} / Ω_{b}	$\phi_{b} M_{r}$, kip-ft	5920	8900	5680	8530	5310	7980	4790	7190						
$B F / \Omega_{b}$	$\phi_{b} B F$, kips	47.6	71.7	48.3	72.7	48.0	71.9	47.6	72.2						
V_{n} / Ω_{v}	$\phi_{V} V_{n}, \mathbf{k i p s}$	2600	3900	2170	3260	2030	3040	1810	2720						
$\begin{aligned} & Z_{x}, \text { in. }{ }^{3} \\ & L_{p}, \mathrm{ft} \\ & L_{r}, \mathrm{ft} \end{aligned}$		$\begin{gathered} \hline 4130 \\ 15.0 \\ 107 \end{gathered}$		$\begin{gathered} 3920 \\ 15.1 \\ 100 \end{gathered}$		$\begin{array}{r} 3660 \\ 14.9 \\ 94.5 \end{array}$		$\begin{array}{r} 3270 \\ 14.7 \\ 85.5 \end{array}$							
ASD	LRFD	${ }^{\mathrm{h}}$ Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c. Notes: For beams laterally unsupported, see Table 3-10. Available strength tabulated above heavy line is limited by available shear strength.													
$\Omega_{b}=1.67$	$\phi_{b}=0.90$														
$\Omega_{b}=1.67$ $\Omega_{v}=1.50$	${ }^{\phi_{b}}=0.00$														

$F_{y}=50 \mathrm{ksi}$		Table 3-6 (continued) Maximum Total niform Load, kips W-Shapes										W36											
Shape		W36×																					
		652 ${ }^{\text {h }}$		529 ${ }^{\text {h }}$		487 ${ }^{\text {h }}$		441 ${ }^{\text {h }}$		395 ${ }^{\text {h }}$		361 ${ }^{\text {h }}$											
Design		ASD	LRFD																				
$\begin{aligned} & \pm \\ & \text { \#̄ } \\ & \text { \% } \end{aligned}$	17	3240	4860	2560	3840	2360	3540	2110	3170	1870	2810	1700	2550										
	18	3230	4850																				
	19	3060	4590	$\begin{aligned} & 2450 \\ & 2330 \end{aligned}$		2240	3360	2010	3020	1800	2700	1630	2450										
	20	2900	4370			2130	3200	1910	2870	1710	2570	1550	2330										
	21	2770	4160	2210	3330	2020	3040	1820	2730	1630	2440	1470	2210										
	22	2640	3970	2110	3180	1930	2900	1730	2600	1550	2330	1410	2110										
	23	2530	3800	2020	3040	1850	2780	1660	2490	1480	2230	1350	2020										
	24	2420	3640	$\begin{aligned} & 1940 \\ & 1860 \end{aligned}$		1770	2660	1590	2390	1420	2140	1290	1940										
	25	2320	3490			1700	2560	1520	2290	1370	2050	1240	1860										
	26	2230	3360	$\begin{aligned} & 1860 \\ & 1790 \end{aligned}$	2690	1640	2460	1470	2200	1310	1970	1190	1790										
	27	2150	3230	1720	2590	1570	2370	1410	2120	1260	1900	1150	1720										
	28	2070	3120	1660	2500	1520	2280	1360	2050	1220	1830	1100	1660										
	29	2000	3010	$\begin{aligned} & 1600 \\ & 1550 \end{aligned}$	$\begin{aligned} & 2410 \\ & 2330 \end{aligned}$	1470	2200	1310	1980	1180	1770	1070	1600										
	30	1940	2910			1420	2130	1270	1910	1140	1710	1030	1550										
	32	1820	2730	1450	2180	1330	2000	1190	1790	1070	1600	967	1450										
	34	1710	2570	$\begin{aligned} & 1370 \\ & 1290 \end{aligned}$	2060	1250	1880	1120	1690	1000	1510	910	1370										
	36	1610	2430		1940	1180	1780	1060	1590	948	1430	859	1290										
	38	1530	2300	$\begin{aligned} & 1290 \\ & 1220 \end{aligned}$	1840	1120	1680	1000	1510	898	1350	814	1220										
	40	1450	2180	1160	1750	1060	1600	953	1430	853	1280	773	1160										
	42	1380	2080	1110	1660	1010	1520	908	1360	813	1220	737	1110										
	44	1320	1980	1060	1590	966	1450	866	1300	776	1170	703	1060										
	46	1260	1900	1010	1520	924	1390	829	1250	742	1120	673	1010										
	48	1210	1820	$\begin{array}{r} 969 \\ 930 \end{array}$	$\begin{aligned} & 1460 \\ & 1400 \end{aligned}$	886	1330	794	1190	711	1070	645	969										
	50	1160	1750			850	1280	762	1150	683	1030	619	930										
	52	1120	1680	894	1340	818	1230	733	1100	656	987	595	894										
	54	1080	1620	8611290		787	1180	706	1060	632	950	573	861										
	56	1040	1560	830	1250	759	1140	681	1020	609	916	552	830										
	58	1000	1510	$\begin{aligned} & 802 \\ & 775 \end{aligned}$	$\begin{aligned} & 1210 \\ & 1170 \end{aligned}$	733	1100	657	988	588	884	533	802										
	60	968	1460			709	1070	635	955	569	855	516	775										
	62	937	1410	$\begin{aligned} & 750 \\ & 727 \\ & 705 \\ & 684 \\ & 664 \\ & 646 \end{aligned}$	$\begin{array}{r} 1130 \\ 1090 \\ 1060 \\ 1030 \\ 999 \\ 971 \end{array}$	686	1030	615	924	551	827	499	750										
	64	908	1360			664	998	596	895	533	802	483	727										
	66	880	1320			644	968	578	868	517	777	469	705										
	68	854	1280			625	940	561	843	502	754	455	684										
	70	830	1250			607	913	545	819	488	733	442	664										
	72	807	1210			590	888	529	796	474	713	430	646										
Beam Properties																							
W_{c} / Ω_{b}	$\phi_{b} W_{C}$, kip-ft	58100	87300	46500	69900	42500	63900	38100	57300	34100	51300	30900	46500										
M_{p} / Ω_{b}	${ }_{\phi}{ }^{\prime} M_{p}$, kip-ft	7260	10900	5810	8740	5310	7990	4770	7160	4270	6410	3870	5810										
M_{r} / Ω_{b}	$\phi_{\phi} M_{r}$, kip-ft	4300	6460	3480	5220	3200	4800	2880	4330	2600	3910	2360	3540										
$B F / \Omega_{b}$	$\phi_{b} B F$, kips	46.8	70.3	46.4	70.1	46.0	69.5	45.3	67.9	44.9	67.2	43.6	65.6										
V_{n} / Ω_{v}	$\phi_{V} V_{n}, \mathrm{kips}$	1620	2430	1280	1920	1180	1770	1060	1590	937	1410	851	1280										
$\begin{aligned} & Z_{X}, \text { in. }{ }^{3} \\ & L_{p}, \mathrm{ft} \\ & L_{r}, \mathrm{ft} \end{aligned}$		$\begin{gathered} 2910 \\ 14.5 \\ 77.7 \end{gathered}$		2330 14.1 64.3		$\begin{array}{r} \hline 2130 \\ 14.0 \\ 59.9 \end{array}$		$\begin{gathered} 1910 \\ 13.8 \\ 55.5 \end{gathered}$		$\begin{gathered} 1710 \\ 13.7 \\ 50.9 \end{gathered}$		$\begin{gathered} 1550 \\ 13.6 \\ 48.2 \end{gathered}$											
ASD	LRFD	${ }^{\mathrm{h}}$ Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c. Notes: For beams laterally unsupported, see Table 3-10. Available strength tabulated above heavy line is limited by available shear strength.																					
$\begin{aligned} & \Omega_{b}=1.67 \\ & \Omega_{v}=1.50 \end{aligned}$	$\begin{aligned} & \phi_{b}=0.90 \\ & \phi_{v}=1.00 \end{aligned}$																						

$F_{y}=50 \mathrm{ksi}$		Table 3-6 (continued) Maximum Total Uniform Load, kips W-Shapes										W36	
Shape		W36×											
		256		232		210		194		182		170	
Design		ASD	LRFD										
$\begin{aligned} & \pm \\ & \text { İ } \\ & \text { İD } \end{aligned}$	13					1220	1830	1120	1680	1050	1580	985	1480
	14	1440	2150	1290	1940	1190	1790	1090	1640	1020	1540	952	1430
	15	1380	2080	1250	1870	1110	1670	1020	1530	955	1440	889	1340
	16	1300	1950	1170	1760	1040	1560	957	1440	896	1350	833	1250
	17	1220	1840	1100	1650	978	1470	901	1350	843	1270	784	1180
	18	1150	1730	1040	1560	924	1390	851	1280	796	1200	741	1110
	19	1090	1640	983	1480	875	1320	806	1210	754	1130	702	1050
	20	1040	1560	934	1400	831	1250	765	1150	717	1080	667	1000
	21	988	1490	890	1340	792	1190	729	1100	682	1030	635	954
	22	944	1420	849	1280	756	1140	696	1050	651	979	606	911
	23	903	1360	812	1220	723	1090	666	1000	623	937	580	871
	24	865	1300	778	1170	693	1040	638	959	597	898	556	835
	25	830	1250	747	1120	665	1000	612	920	573	862	533	802
	26	798	1200	719	1080	639	961	589	885	551	828	513	771
	27	769	1160	692	1040	616	926	567	852	531	798	494	742
	28	741	1110	667	1000	594	893	547	822	512	769	476	716
	29	716	1080	644	968	573	862	528	793	494	743	460	691
	30	692	1040	623	936	554	833	510	767	478	718	444	668
	32	649	975	584	878	520	781	478	719	448	673	417	626
	34	611	918	549	826	489	735	450	677	422	634	392	589
	36	577	867	519	780	462	694	425	639	398	598	370	557
	38	546	821	492	739	438	658	403	606	377	567	351	527
	40	519	780	467	702	416	625	383	575	358	539	333	501
	42	494	743	445	669		595	365	548	341	513	317	477
	44	472	709	425	638	378	568	348	523	326	490	303	455
	46	451	678	406	610	361	543	333	500	312	468	290	436
	48	432	650	389	585	346	521	319	479	299	449	278	418
	50	415	624	374	562	333	500	306	460	287	431	267	401
	52	399	600	359	540	320	481	294	443	276	414	256	385
	54	384	578	346	520	308	463	284	426	265	399	247	371
	56	371	557	334	501	297	446	273	411	256	385	238	358
	58	358	538	322	484	287	431	264	397	247	371	230	346
	60	346	520	311	468	277	417	255	384	239	359	222	334
	62	335	503	301	453	268	403	247	371	231	347	215	323
	64	324	488	292	439	260	390	239	360	224	337	208	313
	66	315	473	283	425	252	379	232	349	217	326	202	304
	68	305	459	275	413	245	368	225	338	211	317	196	295
	70	297	446	267	401	238	357	219	329	205	308	190	286
	72	288	433	259	390	231	347	213	320	199	299	185	278
Beam Properties													
W_{c} / Ω_{b}	$\phi_{b} W_{C}$, kip-ft	20800	31200	18700	28100	16600	25000	15300	23000	14300	21500	13300	20000
M_{p} / Ω_{b}	${ }_{\phi_{b}} M_{p}$, kip-ft	2590	3900	2340	3510	2080	3120	1910	2880	1790	2690	1670	2510
M_{r} / Ω_{b}	$\phi_{b} M_{r}$, kip-ft	1560	2350	1410	2120	1260	1890	1160	1740	1090	1640	1010	
$B F / \Omega_{b}$	$\phi_{b} B F$, kips	46.5	70.0	44.8	67.0	42.3	63.4	40.4	61.4	38.9	58.4	37.8	56.1
V_{n} / Ω_{v}	${ }_{\phi} V_{V} V^{\prime}$, kips	718	1080	646	968	609	914	558	838	526	790	492	738
$\begin{aligned} & Z_{x}, \text { in. } \\ & L_{p}, \mathrm{ft} \\ & L_{r}, \mathrm{ft} \end{aligned}$		$\begin{gathered} 1040 \\ 9.36 \\ 31.5 \end{gathered}$		$\begin{gathered} 936 \\ 9.25 \\ 30.0 \end{gathered}$		$\begin{gathered} 833 \\ 9.11 \\ 28.5 \end{gathered}$		$\begin{gathered} 767 \\ 9.04 \\ 27.6 \end{gathered}$		$\begin{gathered} 718 \\ 9.01 \\ 27.0 \end{gathered}$		$\begin{gathered} \hline 668 \\ 8.94 \\ 26.4 \\ \hline \end{gathered}$	
ASD	LRFD	Notes: For beams laterally unsupported, see Table 3-10. Available strength tabulated above heavy line is limited by available shear strength.											
$\begin{aligned} & \Omega_{b}=1.67 \\ & \Omega_{v}=1.50 \end{aligned}$	$\begin{aligned} & \phi_{b}=0.90 \\ & \phi_{v}=1.00 \end{aligned}$												

W36-W33		Table 3-6 (contin Maximum Uniform Load W-Shapes						nued) otal , kip	ps		$F_{y}=$	50	ksi										
Shape								W33×															
		160		150		135*		387 ${ }^{\text {h }}$		35	$54^{\text {h }}$	31	8										
Design		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD										
	12			898	1350																		
	13	936	1400	892	1340	767	1150																
	14	890	1340	828	1250	726	1090																
	15	830	1250	773	1160	677	1020																
	16	778 733	1170 1100	725	1090 1030	635 598	954 898	1810	2720	1650	2480	1460	2200										
	18	692	1040	644	968	564	848	1730	2600	1570	2370	1410	2120										
	19	656	985	610	917	535	804	1640	2460	1490	2240	1330	2010										
	20	623	936	580	872	508	764	1560	2340	1420	2130	1270	1910										
	21	593	891	552	830	484	727	1480	2230	1350	2030	1210	1810										
	22	566	851	527	792	462	694	1420	2130	1290	1940	1150	1730										
	23	542	814	504	758	442	664	1350	2030	1230	1850	1100	1660										
	24	519	780	483	726	423	636	1300	1950	1180	1780	1060	1590										
	25	498	749	464	697	406	611	1250	1870	1130	1700	1010	1520										
	26	479	720	446	670	391	587	1200	1800	1090	1640	975	1470										
	27	461	693	430	646	376	566	1150	1730	1050	1580	939	1410										
	28	445	669	414	623	363	545	1110	1670	1010	1520	905	1360										
	29	429	646	400	601	350	527	1070	1610	977	1470	874	1310										
	30	415	624	387	581	339	509	1040	1560	945	1420	845	1270										
	32	389	585	362	545	317	477	973	1460	886	1330	792	1190										
	34	366	551	341	513	299	449	916	1380	834	1250	746	1120										
	36	346	520	322	484	282	424	865	1300	787	1180	704	1060										
	38	328	493	305	459	267	402	819	1230	746	1120	667	1000										
	40	311	468	290	436	254	382	778	1170	709	1070	634	953										
	42	297	446	276	415	242	364	741	1110	675	1010	604	907										
	44	283	425	264	396	231	347	708	1060	644	968	576	866										
	46	271	407	252	379	221	332	677	1020	616	926	551	828										
	48	259	390	242	363	212	318	649	975	590	888	528	794										
	50	249	374	232	349	203	305	623	936	567	852	507	762										
	52	240	360	223	335	195	294	599	900	545	819	487											
	54	231	347	215	323	188	283	577	867	525	789	469	706										
	56	222	334	207	311	181	273	556	836	506	761	453	680										
	58	215	323	200	301	175	263	537	807	489	734	437	657										
	60	208	312	193	291	169	255	519	780	472	710	422	635										
	62	201	302	187	281	164	246	502	755	457	687	409	615										
	64	195	293	181	272	159	239	487	731	443	666	396	595										
	66	189	284	176	264	154	231	472	709	429	645	384	577										
	68	183	275	171	256	149	225	458	688	417	626	373	560										
	70	178	267	166	249	145	218	445	669	405	609	362	544										
	72	173	260	161	242	141	212	432	650	394	592	352	529										
Beam Properties																							
W_{c} / Ω_{b}	$\phi_{b} W_{C}$, kip-ft	12500	18700	11600	17400	10200	15300	31100	46800	28300	42600	25300	38100										
M_{p} / Ω_{b}	${ }_{\phi_{b}} M_{p}$, kip-ft	1560	2340	1450	2180	1270	1910	3890	5850	3540	5330	3170	4760										
M_{r} / Ω_{b}	$\phi_{b} M_{r}$, kip-ft	947	1420	880	1320	767	1150	2360	3540	2170	3260	1940	2910										
$B F / \Omega_{b}$	$\phi_{b} B F$, kips	36.1	54.2	34.4	51.9	31.7	47.8	38.3	57.8	37.4	56.6	36.8	55.4										
V_{n} / Ω_{v}	$\phi_{v} V_{n}$, kips	468	702	449	673	384	577	907	1360	826	1240	732	1100										
$\begin{aligned} & Z_{X}, \mathrm{in}^{3}{ }^{3} \\ & L_{p}, \mathrm{ft} \\ & L_{r}, \mathrm{ft} \end{aligned}$		$\begin{gathered} \hline 624 \\ 8.83 \\ 25.8 \end{gathered}$		$\begin{gathered} \hline 581 \\ 8.72 \\ 25.3 \end{gathered}$		$\begin{gathered} 509 \\ 8.41 \\ 24.3 \\ \hline \end{gathered}$		$\begin{array}{r} \hline 1560 \\ 13.3 \\ 53.3 \\ \hline \end{array}$		$\begin{array}{r} \hline 1420 \\ 13.2 \\ 49.8 \end{array}$		$\begin{array}{r} \hline 1270 \\ 13.1 \\ 46.5 \\ \hline \end{array}$											
ASD	LRFD	${ }^{\mathrm{h}}$ Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c. ${ }^{v}$ Shape does not meet the h / t_{w} limit for shear in AISC Specification Section G2.1(a) with $F_{y}=50 \mathrm{ksi}$; therefore, $\phi_{v}=0.90$ and $\Omega_{v}=1.67$. Notes: For beams laterally unsupported, see Table 3-10. Available strength tabulated above heavy line is limited by available shear strength.																					
$\begin{aligned} & \Omega_{b}=1.67 \\ & \Omega_{v}=1.50 \end{aligned}$	$\begin{aligned} \phi_{b} & =0.90 \\ \phi_{v} & =1.00 \end{aligned}$																						

$F_{y}=50 \mathrm{ksi}$		Table 3-6 (continued) Maximum Total niform Load, kips W-Shapes										W33											
Shape		W33×																					
		291		263		241		221		201		169											
Design		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD										
	13 14 15											906 897 837	$\begin{aligned} & \hline 1360 \\ & \hline 1350 \\ & 1260 \end{aligned}$										
	16					1140	1700	1050	1580	964	1450	785	1180										
	17	1340	2000	1200	1800	1100	1660	1010	1510	908	1360	739	1110										
	18	1290	1930	1150	1730	1040	1570	950	1430	857	1290	697	1050										
	19	1220	1830	1090	1640	987	1480	900	1350	812	1220	661	993										
	20	1160	1740	1040	1560	938	1410	855	1290	771	1160	628	944										
	21	1100	1660	988	1490	893	1340	815	1220	735	1100	598	899										
	22	1050	1580	944	1420	853	1280	778	1170	701	1050	571	858										
	23	1010	1510	903	1360	816	1230	744	1120	671	1010	546	820										
	24	965	1450	865	1300	782	1180	713	1070	643	966	523	786										
	25	926	1390	830	1250	750	1130	684	1030	617	928	502	755										
	26	891	1340	798	1200	722	1080	658	989	593	892	483	726										
	27	858	1290	769	1160	695	1040	634	952	571	859	465	699										
	28	827	1240	741	1110	670	1010	611	918	551	828	448	674										
	29	798	1200	716	1080	647	972	590	887	532	800	433	651										
	30	772	1160	692	1040	625	940	570	857	514	773	418	629										
	32	724	1090	649	975	586	881	535	803	482	725	392	590										
	34	681	1020	611	918	552	829	503	756	454	682	369	555										
	36	643	967	577	867	521	783	475	714	429	644	349	524										
	38	609	916	546	821	494	742	450	677	406	610	330	497										
	40	579	870	519	780	469	705	428	643	386	580	314	472										
	42	551	829	494	743	447	671	407	612	367	552	299	449										
	44	526	791	472	709	426	641	389	584	351	527	285	429										
	46	503	757	451	678	408	613	372	559	335	504	273	410										
	48	482	725	432	650	391	588	356	536	321	483	262	393										
	50	463	696	415	624	375	564	342	514	309	464	251	377										
	52	445	669	399	600	361	542	329	494	297	446	241	363										
	54	429	644	384	578	347	522	317	476	286	429	232	349										
	56	413	621	371	557	335	504	305	459	276	414	224	337										
	58	399	600	358	538	323	486	295	443	266	400	216	325										
	60	386	580	346	520	313	470	285	429	257	387	209	315										
							455			249	374												
	64	362	544	324	488	293	441	267	402	241	362	196	295										
	66	351	527	315	473	284	427	259	390	234	351	190	286										
	68	340	512	305	459	276	415	252	378	227	341	185	278										
	70	331	497	297	446	268	403	244	367	220	331	179	270										
	72	322	483	288	433	261	392	238	357	214	322	174	262										
Beam Properties																							
W_{c} / Ω_{b}	$\phi_{b} W_{C}, \mathbf{k i p}-\mathbf{f t}$	23200	34800	20800	31200	18800	28200	17100	25700	15400	23200	12600	18900										
M_{p} / Ω_{b}	${ }_{\phi}{ }^{\prime} M_{p}$, kip-ft	2890	4350	2590	3900	2350	3530	2140	3210	1930	2900	1570	2360										
M_{r} / Ω_{b}	$\phi_{\phi} M_{r}$, kip-ft	1780	2680	1610	2410	1450	2180	1330	1990	1200	1800	959	1440										
$B F / \Omega_{b}$	$\phi_{b} B F$, kips	36.0	54.2	34.1	51.9	33.2	50.2	31.8	47.8	30.3	45.6	34.2	51.5										
V_{n} / Ω_{v}	${ }_{\phi}{ }_{\mathbf{V}} \mathrm{V}_{n}$, kips	668	1000	600	900	568	852	525	788	482	723	453	679										
$\begin{aligned} & Z_{X}, \text { in. }{ }^{3} \\ & L_{p}, \mathrm{ft} \\ & L_{r}, \mathrm{ft} \end{aligned}$		$\begin{array}{r} 1160 \\ 13.0 \\ 43.8 \end{array}$		$\begin{array}{r} \hline 1040 \\ 12.9 \\ 41.6 \end{array}$		$\begin{gathered} \hline 940 \\ 12.8 \\ 39.7 \end{gathered}$		$\begin{gathered} \hline 857 \\ 12.7 \\ 38.2 \end{gathered}$		$\begin{gathered} \hline 773 \\ 12.6 \\ 36.7 \end{gathered}$		$\begin{gathered} \hline 629 \\ 8.83 \\ 26.7 \end{gathered}$											
ASD	LRFD	Notes: For beams laterally unsupported, see Table 3-10. Available strength tabulated above heavy line is li																					
$\begin{aligned} & \Omega_{b}=1.67 \\ & \Omega_{v}=1.50 \end{aligned}$	$\begin{aligned} & \phi_{b}=0.90 \\ & \phi_{v}=1.00 \end{aligned}$																						

W33-W30		Table 3-6 (continued) Maximum Total niform Load, kips W-Shapes									$F_{y}=$	50 k	ksi										
Shape		W33×								W30×													
		152		141		130		$118{ }^{v}$		391 ${ }^{\text {h }}$		357 ${ }^{\text {h }}$											
Design		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD										
$\begin{aligned} & \pm \\ & \text { 長 } \\ & \text { in } \end{aligned}$	12			806	1210	768	1150	650	977														
	13	851	1280	789	1190	717	1080	637	958														
	14	797	1200	733	1100	666	1000	592	889														
	15	744	1120	684	1030	621	934	552	830														
	16	697	1050	641	964	583	876	518	778	1810	2710	1630	2440										
	17	656	986	603	907	548	824	487	732	1700	2560	1550	2330										
	18	620	932	570	857	518	778	460	692	1610	2420	1460	2200										
	19	587	883	540	812	491	737	436	655	1520	2290	1390	2080										
	20	558	839	513	771	466	701	414	623	1450	2180	1320	1980										
	21	531	799	489	734	444	667	394	593	1380	2070	1250	1890										
	22	507	762	466	701	424	637	377	566	1320	1980	1200	1800										
	23	485	729	446	670	405	609	360	541	1260	1890	1150	1720										
	24	465	699	427	643	388	584	345	519	1210	1810	1100	1650										
	25	446	671	410	617	373	560	331	498	1160	1740	1050	1580										
	26	429	645	395	593	359	539	319	479	1110	1670	1010	1520										
	27	413	621	380	571	345	519	307	461	1070	1610	976	1470										
	28	398	599	366	551	333	500	296	445	1030	1550	941	1410										
	29	385	578	354	532	321	483	286	429	998	1500	909	1370										
	30	372	559	342	514	311	467	276	415	965	1450	878	1320										
	32	349	524	321	482	291	438	259	389	904	1360	823	1240										
	34	328	493	302	454	274	412	244	366	851	1280	775	1160										
	36	310	466	285	428	259	389	230	346	804	1210	732	1100										
	38	294	441	270	406	245	369	218	328	762	1140	693	1040										
	40	279	419	256	386	233	350	207	311	724	1090	659	990										
	42	266	399	244	367	222	334	197	296	689	1040	627	943										
	44	254	381	233	350	212	318	188	283	658	989	599	900										
	46	243	365	223	335	203	305	180	271	629	946	573	861										
	48	232	349	214	321	194	292	173	259	603	906	549	825										
	50	223	335	205	308	186	280	166	249	579	870	527	792										
	52	215	323	197	297	179	269	159	239	557	837	507	762										
	54	207	311	190	286	173	259	153	231	536	806	488	733										
	56	199	299	183	275	166	250	148	222	517	777	470	707										
	58	192	289	177	266	161	242	143	215	499	750	454	683										
	60	186	280	171	257	155	234	138	208	482	725	439	660										
	62	180	270	165	249	150	226	134	201	467	702	425	639										
	64	174	262	160	241	146	219	129	195	452	680	412	619										
	66	169	254	155	234	141	212	126	189	439	659	399	600										
	68	164	247	151	227	137	206	122	183	426	640	387	582										
	70	159	240	147	220	133	200	118	178	413	621	376	566										
	72	155	233	142	214	129	195	115	173	402	604	366	550										
Beam Properties																							
W_{c} / Ω_{b}	$\phi_{b} W_{C}$, kip-ft	11200	16800	10300	15400	9320	14000	8280	12500	28900	43500	26300	39600										
M_{p} / Ω_{b}	${ }_{\phi} M^{\prime} M_{p}$, kip-ft	1390	2100	1280	1930	1170	1750	1040	1560	3620	5440	3290	4950										
M_{r} / Ω_{b}	$\phi_{b} M_{r}$, kip-ft	851	1280	782	1180	709	1070	627	942	2180	3280	1990	2990										
$B F / \Omega_{b}$	$\phi_{b} B F$, kips	31.7	48.3	30.3	45.7	29.3	43.1	27.2	40.6	31.4	47.2	31.3	47.2										
V_{n} / Ω_{v}	$\phi_{v} V_{n}, \mathrm{kips}$	425	638	403	604	384	576	325	489	903	1350	813	1220										
$\begin{aligned} & Z_{x}, \mathrm{in}^{3}{ }^{3} \\ & L_{p}, \mathrm{ft} \\ & L_{r}, \mathrm{ft} \end{aligned}$		$\begin{gathered} 559 \\ 8.72 \end{gathered}$$25.7$		$\begin{gathered} 514 \\ 8.58 \\ 25.0 \\ \hline \end{gathered}$		$\begin{gathered} 467 \\ 8.44 \\ 24.2 \\ \hline \end{gathered}$		$\begin{gathered} 415 \\ 8.19 \\ 23.4 \end{gathered}$		$\begin{array}{r} 1450 \\ 13.0 \\ 58.8 \\ \hline \end{array}$		$\begin{array}{r} 1320 \\ 12.9 \\ 54.4 \\ \hline \end{array}$											
ASD	LRFD	${ }^{\mathrm{h}}$ Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c. ${ }^{v}$ Shape does not meet the h / t_{w} limit for shear in AISC Specification Section G2.1(a) with $F_{y}=50 \mathrm{ksi}$; therefore, $\phi_{v}=0.90$ and $\Omega_{V}=1.67$. Notes: For beams laterally unsupported, see Table 3-10. Available strength tabulated above heavy line is limited by available shear strength.																					
$\begin{aligned} & \Omega_{b}=1.67 \\ & \Omega_{v}=1.50 \end{aligned}$	$\begin{aligned} \phi_{b} & =0.90 \\ \phi_{v} & =1.00 \end{aligned}$																						

Table 3-6 (continue Maximum Tota Uniform Load,													
Shape		W27×											
		281		258		235		217		194		178	
Design		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	14			1140	1710	1040	1570			843	1260	806	1210
	15	1240	1860	1130	1700	1030	1540	943	1410	840	1260	758	1140
	16	1170	1760	1060	1600	963	1450	887	1330	787	1180	711	1070
	17	1100	1650	1000	1500	906	1360	835	1250	741	1110	669	1010
	18	1040	1560	945	1420	856	1290	788	1190	700	1050	632	950
	19	983	1480	895	1350	811	1220	747	1120	663	996	599	900
	20	934	1400	850	1280	770	1160	710	1070	630	947	569	855
	21	890	1340	810	1220	734	1100	676	1020	600	901	542	814
	22	849	1280	773	1160	700	1050	645	970	572	860	517	777
	23	812	1220	739	1110	670	1010	617	927	548	823	495	743
	24	778	1170	709	1070	642	965	591	889	525	789	474	713
	25	747	1120	680	1020	616	926	568	853	504	757	455	684
	26	719	1080	654	983	593	891	546	820	484	728	438	658
	27	692	1040	630	947	571	858	526	790	466	701	421	633
	28	667	1000	607	913	550	827	507	762	450	676	406	611
	29	644	968	586	881	531	799	489	736	434	653	392	590
	30	623	936	567	852	514	772	473	711	420	631	379	570
	32	584	878	531	799	482	724	443	667	394	592	356	534
	34	549	826	500	752	453	681	417	627	370	557	335	503
	36	519	780	472	710	428	643	394	593	350	526	316	475
	38	492	739	448	673	406	609	373	561	331	498	299	450
	40	467	702	425	639	385	579	355	533	315	473	284	428
	42	445	669	405	609	367	551	338	508	300	451	271	407
	44	425	638	386	581	350	526	323	485	286	430	259	389
	46	406	610	370	556	335	503	309	464	274	412	247	372
	48	389	585	354	533	321	483	296	444	262	394	237	356
	50	374	562	340	511	308	463	284	427	252	379	228	342
	52	359	540	327	492	296	445	273	410	242	364	219	329
	54	346	520	315	473	285	429	263	395	233	351	211	317
	56	334	501	304	456	275	414	253	381	225	338	203	305
	58	322	484	293	441	266	399	245	368	217	326	196	295
	60	311	468	283	426	257	386	237	356	210	316	190	285
	62	301	453	274	412	249	374	229	344	203	305	184	276
	64	292	439	266	399	241	362	222	333	197	296	178	267
	66	283	425	258	387	233	351	215	323	191	287	172	259
	68	275	413	250	376	227	341	209	314	185	278	167	251
	70	267	401	243	365	220	331	203	305	180	270		
	72	259	390	236	355								
Beam Properties													
W_{c} / Ω_{b}	$\phi_{b} W_{C}$, kip-ft	18700	28100	17000	25600	15400	23200	14200	21300	12600	18900	11400	17100
M_{p} / Ω_{b}	${ }_{\phi}{ }^{\prime} M_{p}$, kip-ft	2340	3510	2130	3200	1930	2900	1770	2670	1570	2370	1420	2140
M_{r} / Ω_{b}	$\phi_{\phi} M_{r}$, kip-ft	1420	2140	1300	1960	1180	1780	1100	1650	976	1470	882	1330
$B F / \Omega_{b}$	${ }_{\phi}{ }_{b} B F$, kips	24.8	36.9	24.4	36.5	24.1	36.0	23.0	35.1	22.3	33.8	21.6	32.5
V_{n} / Ω_{v}	$\phi_{v} V_{n}$, kips	621	932	568	853	522	784	471	707	422	632	403	605
$\begin{aligned} & Z_{x,}, \mathrm{in}^{3} \\ & L_{p}, \mathrm{ft} \\ & L_{r}, \mathrm{ft} \end{aligned}$		$\begin{gathered} 936 \\ 12.0 \\ 49.1 \end{gathered}$		$\begin{gathered} 852 \\ 11.9 \\ 45.9 \end{gathered}$		$\begin{gathered} \hline 772 \\ 11.8 \\ 42.9 \end{gathered}$		$\begin{array}{r} \hline 711 \\ 11.7 \\ 40.8 \end{array}$		$\begin{gathered} \hline 631 \\ 11.6 \\ 38.2 \end{gathered}$		$\begin{gathered} \hline 570 \\ 11.5 \\ 36.4 \end{gathered}$	
ASD	LRFD	Notes: For beams laterally unsupported, see Table 3-10. Available strength tabulated above heavy line is limited by available s											
$\begin{aligned} & \Omega_{b}=1.67 \\ & \Omega_{v}=1.50 \end{aligned}$	$\begin{aligned} & \phi_{b}=0.90 \\ & \phi_{v}=1.00 \end{aligned}$												

$F_{y}=50 \mathrm{ksi}$		Table 3-6 (continued) Maximum Total niform Load, kips W-Shapes										$\frac{\square}{\text { W2 }}$											
Shape		W27×																					
		161		146		129		114		102		94											
Design		ASD	LRFD	ASD LRFD		ASD	LRFD	ASD	LRFD	ASD LRFD		$\begin{array}{l\|l} \hline \text { ASD } & \text { LRFD } \end{array}$											
	10									558	837	527	791										
	11					673	1010	622	934	553	832	504	758										
	12					657	988	571	858	507	763	462	695										
	13			663	995	606	912	527	792	468	704	427	642										
	14	729	1090	662	994	563	846	489	735	435	654	396	596										
	15	685	1030	617	928	526	790	456	686	406	610	370	556										
	16	642	966	579	870	493	741	428	643	380	572	347	521										
	17	605	909	545	819	464	697	403	605	358	538	326	491										
	18	571	858	515	773	438	658	380	572	338	508	308	463										
	19	541	813	487	733	415	624	360	542	320	482	292	439										
	20	514	773	463	696	394	593	342	515	304	458	277	417										
	21	489	736	441	663	375	564	326	490	290	436	264	397										
	22	467	702	421	633	358	539	311	468	277	416	252	379										
	23	447	672	403	605	343	515	298	447	265	398	241	363										
	24	428	644	386	580	329	494	285	429	254	381	231	348										
	25	411	618	370	557	315	474	274	412	244	366	222	334										
	26	395	594	356	535	303	456	263	396	234	352	213	321										
	27	381	572	343	516	292	439	254	381	225	339	206	309										
	28	367	552	331	497	282	423	245	368	217	327	198	298										
	29	354	533	319	480	272	409	236	355	210	316	191	288										
	30	343	515	309	464	263	395	228	343	203	305	185	278										
	32	321	483	289	435	246	370	214	322	190	286	173	261										
	34	302	454	272	409	232	349	201	303	179	269	163	245										
	36	286	429	257	387	219	329	190	286	169	254	154	232										
	38	271	407	244	366	207	312	180	271	160	241	146	219										
	40	257	386	232	348	197	296	171	257	152	229	139	209										
	42	245	368	221	331	188	282	163	245	145	218	132	199										
	44	234	351	210	316	179	269	156	234	138	208	126	190										
	46	223	336	201	303	171	258	149	224	132	199	121	181										
	48	214	322	193	290	164	247	143	214	127	191	116	174										
	50	206	309	185	278	158	237	137	206	122	183	111	167										
	52	198	297	178	268	152	228	132	198	117	176	107	160										
	54	190	286	172	258	146	219	127	191	113	169	103	154										
	56	184	276	165	249	141	212	122	184	109	163	99.1	149										
	58	177	266	160	240	136	204	118	177	105	158	95.7	144										
	60	171	258	154	232	131	198	114	172	101	153	92.5	139										
	62	166	249	149	225	127	191	110	166	98.2	148	89.5	135										
	64	161	241	145	218	123	185	107	161	95.1	143	86.7	130										
	66	156	234	140	211	119	180	104	156	92.2	139	84.1	126										
	68	151	227	136	205	116	174	101	151														
Beam Properties																							
W_{c} / Ω_{b}	$\phi_{b} W_{C}, \mathbf{k i p}-\mathbf{f t}$	10300	15500	9260	13900	7880	11900	6850	10300	6090	9150	5550	8340										
M_{p} / Ω_{b}	${ }_{\phi_{b}} M_{p}$, kip-ft	1280	1930	1160	1740	986	1480	856	1290	761	1140	694	1040										
M_{r} / Ω_{b}	$\phi_{\phi} M_{r}$, kip-ft	800	1200	723	1090	603	906	522	785	466	701	424	638										
$B F / \Omega_{b}$	$\phi_{b} B F$, kips	20.6	31.3	19.9	29.5	23.4	35.0	21.7	32.8	20.1	29.8	19.1	28.5										
V_{n} / Ω_{v}	$\phi_{v} V_{n}, \mathrm{kips}$	364	546	332	497	337	505	311	467	279	419	264	395										
$\begin{aligned} & Z_{X}, \text { in. }{ }^{3} \\ & L_{p}, \mathrm{ft} \\ & L_{r}, \mathrm{ft} \end{aligned}$		$\begin{gathered} \hline 515 \\ 11.4 \\ 34.7 \end{gathered}$		$\begin{gathered} \hline 464 \\ 11.3 \\ 33.3 \end{gathered}$		$\begin{gathered} 395 \\ 7.81 \\ 24.2 \end{gathered}$		$\begin{gathered} 343 \\ 7.70 \\ 23.1 \end{gathered}$		$\begin{gathered} 305 \\ 7.59 \\ 22.3 \end{gathered}$		$\begin{gathered} 278 \\ 7.49 \\ 21.6 \end{gathered}$											
ASD LRFD		Notes: For beams laterally unsupported, see Table 3-10. Available strength tabulated above heavy line is limited by available shear strength.																					
$\begin{aligned} & \Omega_{b}=1.67 \\ & \Omega_{v}=1.50 \end{aligned}$	$\begin{aligned} \phi_{b} & =0.90 \\ \phi_{v} & =1.00 \end{aligned}$																						

W27-W24		W27×		Tabl Ma nifo	3-6 axim orm W-S	6 (c nUM LO Sha	ontin ad, pes	nued) otal , kip	ps		F_{y}	50	ksi										
Shape				W24×																			
		84		370 ${ }^{\text {h }}$		335 ${ }^{\text {h }}$		30	$6^{\text {h }}$	27	$9^{\text {h }}$		50										
Design		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD										
$\begin{aligned} & \pm \\ & \text { 言 } \\ & \text { 無 } \end{aligned}$	9	491	737																				
	10	487	732																				
	11	443 406	$\begin{aligned} & 665 \\ & 610 \end{aligned}$																				
	13	375	563	1700	2550	1520	2280	1370	2050	1240	1860	1090	1640										
	14	348	523	1610	2420	1450	2190	1310	1980	1190	1790	1060	1590										
	15	325	488	1500	2260	1360	2040	1230	1840	1110	1670	990	1490										
	16	304	458	1410	2120	1270	1910	1150	1730	1040	1570	928	1400										
	17	286	431	1330	1990	1200	1800	1080	1630	980	1470	874	1310										
	18	271	407	1250	1880	1130	1700	1020	1540	926	1390	825	1240										
	19	256	385	1190	1780	1070	1610	969	1460	877	1320	782	1170										
	20	244	366	1130	1700	1020	1530	920	1380	833	1250	743	1120										
	21	232	349	1070	1610	969	1460	876	1320	794	1190	707	1060										
	22	221	333	1030	1540	925	1390	837	1260	758	1140	675	1010										
	23	212	318	981	1470	885	1330	800	1200	725	1090	646	970										
	24	203	305	940	1410	848	1280	767	1150	694	1040	619	930										
	25	195	293	902	1360	814	1220	736	1110	667	1000	594	893										
	26	187	282	867	1300	783	1180	708	1060	641	963	571	858										
	27	180	271	835	1260	754	1130	682	1020	617	928	550	827										
	28	174	261	806	1210	727	1090	657	988	595	895	530	797										
	29	168	252	778	1170	702	1060	635	954	575	864	512	770										
	30	162	244	752	1130	679	1020	613	922	556	835	495	744										
	32	152	229	705	1060	636	956	575	864	521	783	464	698										
	34	143	215	663	997	599	900	541	814	490	737	437	656										
	36	135	203	627	942	566	850	511	768	463	696	413	620										
	38	128	193	594	892	536	805	484	728	439	659	391	587										
	40	122	183	564	848	509	765	460	692	417	626	371	558										
	42	116 111	174	537 513	807 770	485	729 695	438 418	659	397 379	596	354 338	531										
	44	111 106	166 159	513 490	770 737	463 443	695 665	418 400	629	379 362	569 545	338 323	507 485										
	48	101	153	470	706	424	638	383	576	347	522	309	465										
	50	97.4	146	451	678	407	612	368	553	333	501	297	446										
	52	93.7	141	434	652	392	588	354	532	321	482	286	429										
	54	90.2	136	418	628	377	567	341	512	309	464	275	413										
	56	87.0	131	403	605	364	546	329	494	298	447	265	399										
	58	84.0	126	389	584	351	528	317	477	287	432	256	385										
	60	81.2	122	376	565	339	510	307	461	278	418	248	372										
	62	78.6	118	364	547	328	494	297	446	269	404	240											
	64	76.1	114	352	530	318	478	288	432	260	391	232	349										
	66	73.8	111	342	514	308	464	279	419	253	380												
	68			332	499	299	450																
Beam Properties																							
W_{c} / Ω_{b}	$\phi_{b} W_{c}$, kip-ft	4870	7320	22600	33900	20400	30600	18400	27700	16700	25100	14900	22300										
M_{p} / Ω_{b}	${ }_{\phi b} M_{p}$, kip-ft	609	915	2820	4240	2540	3830	2300	3460	2080	3130	1860	2790										
M_{r} / Ω_{b}	$\phi_{b} M_{r}, \mathbf{k i p}$-ft	372	559	1670	2510	1510	2270	1380	2070	1250	1880	1120	1690										
$B F / \Omega_{b}$	$\phi_{b} B F$, kips	17.6	26.4	20.0	30.0	19.9	30.2	19.7	29.8	19.7	29.6	19.7	29.3										
V_{n} / Ω_{v}	$\phi_{V} V_{n}, \mathrm{kips}$	246	368	851	1280	759	1140	683	1020	619	929	547	821										
$\begin{aligned} & Z_{X_{1}, \text { in. }}{ }^{3}, \\ & L_{p}, \mathrm{ft} \\ & L_{r}, \mathrm{ft} \end{aligned}$		$\begin{gathered} 244 \\ 7.31 \\ 20.8 \end{gathered}$		$\begin{gathered} \hline 1130 \\ 11.6 \\ 69.2 \end{gathered}$		$\begin{gathered} \hline 1020 \\ 11.4 \\ 63.1 \end{gathered}$		$\begin{gathered} 922 \\ 11.3 \\ 57.9 \end{gathered}$		$\begin{gathered} \hline 835 \\ 11.2 \\ 53.4 \end{gathered}$		$\begin{gathered} \hline 744 \\ 11.1 \\ 48.7 \end{gathered}$											
ASD	LRFD	${ }^{\mathrm{h}}$ Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c. Notes: For beams laterally unsupported, see Table 3-10. Available strength tabulated above heavy line is limited by available shear strength.																					
$\begin{aligned} & \Omega_{b}=1.67 \\ & \Omega_{v}=1.50 \end{aligned}$	$\begin{aligned} & \phi_{b}=0.90 \\ & \phi_{v}=1.00 \end{aligned}$																						

$F_{y}=50 \mathrm{ksi}$		Table 3-6 (continued) Maximum Total Uniform Load, kips W-Shapes										W24	
Shape		W24×											
		229		207		192		176		162		146	
Design		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	13	998	1500	894	1340	826	1240	756	1130	705	1060	642	963
	14	962	1450	864	1300	797	1200	729	1100	667	1000	596	896
	15	898	1350	806	1210	744	1120	680	1020	623	936	556	836
	16	842	1270	756	1140	697	1050	637	958	584	878	521	784
	17	793	1190	712	1070	656	986	600	902	549	826	491	738
	18	749	1130	672	1010	620	932	567	852	519	780	464	697
	19	709	1070	637	957	587	883	537	807	492	739	439	660
	20	674	1010	605	909	558	839	510	767	467	702	417	627
	21	642	964	576	866	531	799	486	730	445	669	397	597
	22	612	920	550	826	507	762	464	697	425	638	379	570
	23	586	880	526	790	485	729	443	667	406	610	363	545
	24	561	844	504	758	465	699	425	639	389	585	348	523
	25	539	810	484	727	446	671	408	613	374	562	334	502
	26	518	779	465	699	429	645	392	590	359	540	321	482
	27	499	750	448	673	413	621	378	568	346	520	309	464
	28	481	723	432	649	398	599	364	548	334	501	298	448
	29	465	698	417	627	385	578	352	529	322	484	288	432
	30	449	675	403	606	372	559	340	511	311	468	278	418
	32	421	633	378	568	349	524	319	479	292	439	261	392
	34	396	596	356	535	328	493	300	451	275	413	245	369
	36	374	563	336	505	310	466	283	426	259	390	232	348
	38	355	533	318	478	294	441	268	403	246	369	220	330
	40	337	506	302	455	279	419	255	383	234	351	209	314
	42	321	482	288	433	266	399	243	365	222	334	199	299
	44	306	460	275	413	254	381	232	348	212	319	190	285
	46	293	440	263	395	243	365	222	333	203	305	181	273
	48	281	422	252	379	232	349	212	319	195	293	174	261
	50	269	405	242	364	223	335	204	307	187	281	167	251
	52	259	389	233	350	215	323	196	295	180	270	160	241
	54	250	375	224	337	207	311	189	284	173	260	155	232
	56	241	362	216	325	199	299	182	274	167	251	149	224
	58	232	349	209	313	192	289	176	264	161	242	144	216
	60	225	338	202	303	186	280	170	256	156	234	139	209
	62	$\begin{aligned} & 217 \\ & 211 \end{aligned}$	$\begin{aligned} & 327 \\ & 316 \end{aligned}$	$\begin{aligned} & 195 \\ & 189 \end{aligned}$	$\begin{aligned} & 293 \\ & 284 \end{aligned}$	180	270	165	247	151	226		
Beam Properties													
W_{c} / Ω_{b}	$\phi_{b} W_{C}$, kip-ft	13500	20300	12100	18200	11200	16800	10200	15300	9340	14000	8340	12500
M_{p} / Ω_{b}	${ }_{\phi}{ }^{\prime} M_{p}$, kip-ft	1680	2530	1510	2270	1390	2100	1270	1920	1170	1760	1040	1570
M_{r} / Ω_{b}	$\phi_{\phi} M_{r}$, kip-ft	1030	1540	927	1390	858	1290	786	1180	723	1090	648	974
$B F / \Omega_{b}$	${ }_{\phi b} B F$, kips	19.0	28.9	18.9	28.6	18.4	28.0	18.1	27.7	17.9	26.8	17.0	25.8
V_{n} / Ω_{v}	$\phi_{V} V_{n}, \mathrm{kips}$	499	749	447	671	413	620	378	567	353	529	321	482
$\begin{aligned} & Z_{X_{k}, ~ i n . ~} \\ & L_{p}, \mathrm{ft} \\ & L_{r}, \mathrm{ft} \end{aligned}$		$\begin{gathered} \hline 675 \\ 11.0 \\ 45.2 \end{gathered}$		$\begin{gathered} \hline 606 \\ 10.9 \\ 41.7 \end{gathered}$		$\begin{gathered} \hline 559 \\ 10.8 \\ 39.7 \end{gathered}$		$\begin{gathered} \hline 511 \\ 10.7 \\ 37.4 \end{gathered}$		$\begin{gathered} \hline 468 \\ 10.8 \\ 35.8 \end{gathered}$		$\begin{gathered} \hline 418 \\ 10.6 \\ 33.7 \end{gathered}$	
ASD	LRFD	Notes: For beams laterally unsupported, see Table 3-10. Available strength tabulated above heavy line is limited by available shear strength.											
$\begin{aligned} & \Omega_{b}=1.67 \\ & \Omega_{v}=1.50 \end{aligned}$	$\begin{aligned} & \phi_{b}=0.90 \\ & \phi_{v}=1.00 \end{aligned}$												

W21 Table 3-6 (continue Maximum Tot Uniform Load, W-Shapes																			
Shape		W21×																	
		275 ${ }^{\text {h }}$		248		223		201		182									
Design		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD								
	12	1180	1760	1040	1560	936	1400	837	1260	754	1130								
	13	1150	1730	1030	1550	923	1390	814	1220	731	1100								
	14	1070	1610	957	1440	857	1290	756	1140	679	1020								
	15	997	1500	893	1340	800	1200	705	1060	633	952								
	16	934	1400	837	1260	750	1130	661	994	594	893								
	17	879	1320	788	1180	706	1060	622	935	559	840								
	18	831	1250	744	1120	666	1000	588	883	528	793								
	19	787	1180	705	1060	631	949	557	837	500	752								
	20	748	1120	670	1010	600	902	529	795	475	714								
	21	712	1070	638	959	571	859	504	757	452	680								
	22	680	1020	609	915	545	820	481	723	432	649								
	23	650	977	582	875	522	784	460	691	413	621								
	24	623	936	558	839	500	751	441	663	396	595								
	25	598	899	536	805	480	721	423	636	380	571								
	26	575	864	515	774	461	693	407	612	365	549								
	27	554	832	496	746	444	668	392	589	352	529								
	28	534	803	478	719	428	644	378	568	339	510								
	29	516	775	462	694	414	622	365	548	328	492								
	30	498	749	446	671	400	601	353	530	317	476								
	32	467	702	419	629	375	563	331	497	297	446								
	34	440	661	394	592	353	530	311	468	279	420								
	36	415	624	372	559	333	501	294	442	264	397								
	38	393	591	352	530	316	474	278	418	250	376								
	40	374	562	335	503	300	451	264	398	238	357								
	42	356	535	319	479	286	429	252	379	226	340								
	44	340	511	304	458	273	410	240	361	216	325								
	46	325	488	291	438	261	392	230	346	207	310								
	48	311	468	279	419	250	376	220	331	198	298								
	50	299	449	268	403	240	361	212	318	190	286								
	52	288	432	258	387	231	347	203	306	183	275								
	54	277	416	248	373	222	334	196	294	176	264								
	56	267	401	239	359	214	322	189	284	170	255								
	58 60	258 249	$\begin{aligned} & 387 \\ & 375 \end{aligned}$	231	347	207	311												
Beam Properties																			
W_{c} / Ω_{b}	$\phi_{b} W_{G}$, kip-ft	15000	22500	13400	20100	12000	18000	10600	15900	9500	14300								
M_{p} / Ω_{b}	${ }_{\phi}{ }^{\prime} M_{p}$, kip-ft	1870	2810	1670	2520	1500	2250	1320	1990	1190	1790								
M_{r} / Ω_{b}	$\phi_{b} M_{r}, \mathbf{k i p}$-ft	1110	1670	1010	1510	908	1370	805	1210	728	1090								
$B F / \Omega_{b}$	$\phi_{b} B F, \mathrm{kips}$	14.7	22.1	14.3	21.9	14.5	21.6	14.5	22.0	14.4	21.8								
V_{n} / Ω_{v}	$\phi_{V} V_{n}$, kips	588	882	521	782	468	702	419	628	377	565								
$\begin{aligned} & Z_{X}, \text { in. }{ }^{3} \\ & L_{p}, \mathrm{ft} \\ & L_{r}, \mathrm{ft} \end{aligned}$		$\begin{gathered} 749 \\ 10.9 \\ 62.5 \end{gathered}$		$\begin{gathered} \hline 671 \\ 10.9 \\ 57.1 \end{gathered}$		$\begin{gathered} \hline 601 \\ 10.7 \\ 51.4 \end{gathered}$		$\begin{gathered} \hline 530 \\ 10.7 \\ 46.2 \end{gathered}$		$\begin{gathered} \hline 476 \\ 10.6 \\ 42.7 \end{gathered}$									
ASD	LRFD	${ }^{\mathrm{h}}$ Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c. Notes: For beams laterally unsupported, see Table 3-10. Available strength tabulated above heavy line is limited by available shear strength.																	
$\begin{aligned} & \Omega_{b}=1.67 \\ & \Omega_{v}=1.50 \end{aligned}$	$\begin{aligned} \phi_{b} & =0.90 \\ \phi_{v} & =1.00 \end{aligned}$																		

$F_{y}=50 \mathrm{ksi}$		Table 3-6 (continued) Maximum Total Uniform Load, kips W-Shapes										W21	
		W21×											
Shape		166		147		132		122		111		101	
Design		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
$\begin{aligned} & \ddagger \\ & \text { IN } \\ & \text { Non } \end{aligned}$	11			636	955	567	850	521	781	473	710	428	642
	12	675	1010	620	933	554	833	511	768	464	698	421	633
	13	663	997	573	861	511	768	471	708	428	644	388	584
	14	616	926	532	799	475	714	438	658	398	598	361	542
	15	575	864	496	746	443	666	409	614	371	558	337	506
	16	539	810	465	699	415	624	383	576	348	523	316	474
	17	507	762	438	658	391	588	360	542	328	492	297	446
	18	479	720	414	622	369	555	340	512	309	465	281	422
	19	454	682	392	589	350	526	323	485	293	441	266	399
	20	431	648	372	560	332	500	306	461	278	419	252	380
	21	411	617	355	533	317	476	292	439	265	399	240	361
	22	392	589	338	509	302	454	279	419	253	380	230	345
	23	375	563	324	487	289	434	266	400	242	364	220	330
	24	359	540	310	466	277	416	255	384	232	349	210	316
	25	345	518	298	448	266	400	245	368	223	335	202	304
	26	332	498	286	430	256	384	236	354	214	322	194	292
	27	319	480	276	414	246	370	227	341	206	310	187	281
	28	308	463	266	400	237	357	219	329	199	299	180	271
	29	297	447	257	386	229	344	211	318	192	289	174	262
	30	287	432	248	373	222	333	204	307	186	279	168	253
	32	269	405	233	350	208	312	191	288	174	262	158	237
	34	254	381	219	329	195	294	180	271	164	246	149	223
	36	240	360	207	311	185	278	170	256	155	233	140	211
	38	227	341	196	294	175	263	161	242	147	220	133	200
	40	216	324	186	280	166	250	153	230	139	209	126	190
	42	205	309	177	266	158	238	146	219	133	199	120	181
	44	196	295	169	254	151	227	139	209	127	190	115	173
	46	187	282	162	243	144	217	133	200	121	182	110	165
	48	180	270	155	233	138	208	128	192	116	174	105	158
	50	172	259	149	224	133	200	123	184	111	167	101	152
	52	166	249	143	215	128	192	118	177	107	161	97.1	146
	54 56	160 154	240	138	207	123	185	113	171				
Beam Properties													
W_{c} / Ω_{b}	$\phi_{b} W_{c}$, kip-ft	8620	13000	7450	11200	6650	9990	6130	9210	5570	8370	5050	7590
M_{p} / Ω_{b}	${ }_{\phi} M_{p}$, kip-ft	1080	1620	931	1400	831	1250	766	1150	696	1050	631	949
M_{r} / Ω_{b}	$\phi_{b} M_{r}, \mathbf{k i p}$-ft	664	998	575	864	515	774	477	717	435	654	396	596
$B F / \Omega_{b}$	$\phi_{b} B F$, kips	14.2	21.2	13.7	20.7	13.2	19.9	12.9	19.3	12.4	18.9	11.8	17.7
V_{n} / Ω_{v}	$\phi_{V} V_{n}, \mathrm{kips}$	338	506	318	477	283	425	260	391	237	355	214	321
$\begin{aligned} & Z_{X_{k}, \mathrm{in}^{3}} \\ & L_{p}, \mathrm{ft} \\ & L_{r}, \mathrm{ft} \end{aligned}$		$\begin{gathered} 432 \\ 10.6 \\ 39.9 \end{gathered}$		$\begin{gathered} 373 \\ 10.4 \\ 36.3 \end{gathered}$		$\begin{gathered} 333 \\ 10.3 \\ 34.2 \end{gathered}$		$\begin{gathered} 307 \\ 10.3 \\ 32.7 \end{gathered}$		$\begin{gathered} 279 \\ 10.2 \\ 31.2 \end{gathered}$		$\begin{gathered} 253 \\ 10.2 \\ 30.1 \end{gathered}$	
ASD	LRFD	Notes: For beams laterally unsupported, see Table 3-10. Available strength tabulated above heavy line is limited by available shear strength.											
$\begin{aligned} & \Omega_{b}=1.67 \\ & \Omega_{v}=1.50 \end{aligned}$	$\begin{aligned} & \phi_{b}=0.90 \\ & \phi_{v}=1.00 \end{aligned}$												

Maximum Uniform Load,											
Shape		W21×									
		93		83		73		68		62	
Design		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	8	501	752	441	661	386	579	363	544	336	504
	9	490	737	435	653	381	573	355	533	319	480
	10	441	663	391	588	343	516	319	480	287	432
	11	401	603	356	535	312	469	290	436	261	393
	12	368	553	326	490	286	430	266	400	240	360
	13	339	510	301	452	264	397	246	369	221	332
	14	315	474	279	420	245	369	228	343	205	309
	15	294	442	261	392	229	344	213	320	192	288
	16	276	414	245	368	215	323	200	300	180	270
	17	259	390	230	346	202	304	188	282	169	254
	18	245	368	217	327	191	287	177	267	160	240
	19	232	349	206	309	181	272	168	253	151	227
	20	221	332	196	294	172	258	160	240	144	216
	21	210	316	186	280	163	246	152	229	137	206
	22	201	301	178	267	156	235	145	218	131	196
	23	192	288	170	256	149	224	139	209	125	188
	24	184	276	163	245	143	215	133	200	120	180
	25	176	265	156	235	137	206	128	192	115	173
	26	170	255	150	226	132	198	123	185	111	166
	27	163	246	145	218	127	191	118	178	106	160
	28	158	237	140	210	123	184	114	171	103	154
	29	152	229	135	203	118	178	110	166	99.1	149
	30	147	221	130	196	114	172	106	160	95.8	144
	32	138	207	122	184	107	161	99.8	150	89.8	135
	34	130	195	115	173	101	152	93.9	141	84.5	127
	36	123	184	109	163	95.4	143	88.7	133	79.8	120
	38	116	174	103	155	90.3	136	84.0	126	75.6	114
	40	110	166	97.8	147	85.8	129	79.8	120	71.9	108
	42	105	158	93.1	140	81.7	123	76.0	114	68.4	103
	44	100	151	88.9	134	78.0	117	72.6	109	65.3	98.2
	46	95.9	144	85.0	128	74.6	112	69.4	104	62.5	93.9
	48	91.9	138	81.5	122	71.5	108	66.5	100	59.9	90.0
	50	88.2	133	78.2	118	68.7	103	63.9	96.0	57.5	86.4
	$\begin{aligned} & 52 \\ & 54 \end{aligned}$	$\begin{aligned} & 84.8 \\ & 81.7 \end{aligned}$	$\begin{aligned} & 128 \\ & 123 \end{aligned}$	75.2	113	66.0	99.2	61.4	92.3	55.3	83.1
Beam Properties											
W_{c} / Ω_{b}	$\phi_{b} W_{c}$, kip-ft	4410	6630	3910	5880	3430	5160	3190	4800	2870	4320
M_{p} / Ω_{b}	${ }_{\phi_{b}} M_{p}$, kip-ft	551	829	489	735	429	645	399	600	359	540
M_{r} / Ω_{b}	$\phi_{\phi} M_{r}$, kip-ft	335	504	299	449	264	396	245	368	222	333
$B F / \Omega_{b}$	$\phi_{b} B F$, kips	14.6	22.0	13.8	20.8	12.9	19.4	12.5	18.8	11.6	17.5
V_{n} / Ω_{v}	$\phi_{V} V_{n}$, kips	251	376	220	331	193	289	181	272	168	252
$\begin{aligned} & Z_{X}, \text { in. }^{3} \\ & L_{p}, \mathrm{ft} \\ & L_{r}, \mathrm{ft} \end{aligned}$		$\begin{gathered} 221 \\ 6.50 \\ 21.3 \end{gathered}$		$\begin{gathered} 196 \\ 6.46 \\ 20.2 \end{gathered}$		$\begin{gathered} 172 \\ 6.39 \\ 19.2 \end{gathered}$		$\begin{gathered} 160 \\ 6.36 \\ 18.7 \end{gathered}$		$\begin{gathered} 144 \\ 6.25 \\ 18.1 \end{gathered}$	
ASD	LRFD	Notes: For beams laterally unsupported, see Table 3-10. Available strength tabulated above heavy line is limited by available shear strength.									
$\begin{aligned} & \Omega_{b}=1.67 \\ & \Omega_{v}=1.50 \end{aligned}$	$\begin{aligned} & \phi_{b}=0.90 \\ & \phi_{v}=1.00 \end{aligned}$										

$F_{y}=50 \mathrm{ksi}$		Table 3-6 (continued) Maximum Total Uniform Load, kips W-Shapes								W21						
Shape		W21×														
		57		55		50		$48^{\text {f }}$		44						
Design		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD					
	6			312	468	316	474	288	433	290	435					
	7	342	513			314	471			272	409					
	8	322	484			274	413	265	398		358					
	9	286	430	279	420	244	367	235	354	212	318					
	10	257	387	251	378	220	330	212	318	190	286					
	11	234	352	229	344	200	300	193	289	173	260					
	12	215	323	210	315	183	275	176	265	159	239					
	13	198	298	193	291	169	254	163	245	146	220					
	14	184	276	180	270	157	236	151	227	136	204					
	15	172	258	168	252	146	220	141	212	127	191					
	16	161	242	157	236	137	206	132	199	119	179					
	17	151	228	148	222	129	194	125	187	112	168					
	18	143	215	140	210	122	183	118	177	106	159					
	19	136	204	132	199189	116	174	111	168	100	151					
	20	129	194	126		110	165	106	159	95.2	143					
	21	123	184	120	180	105	157	101	152	90.7	136					
	22	117	176	114	172	99.8	150	96.3	145	86.6	130					
	23	112	168	109	164	95.5	143	92.1	138	82.8	124					
	24	107	161	105	158	91.5	138	88.2	133	79.3	119					
	25	103	155	101	151	87.8	132	84.7	127	76.2	114					
	26	99.0	149	96.7	145	84.4	127	81.5	122	73.2	110					
	27	95.4	143	93.1	140135	81.3	122	78.4	118	70.5	106					
	28	92.0	138	89.8		78.4	118	75.6	114	68.0	102					
	29	88.8	133	$\begin{aligned} & 86.7 \\ & 83.8 \end{aligned}$	130	75.7	114	73.0	110	65.7	98.7					
	30	85.8	129		126	73.2	110	70.6	106	63.5	95.4					
	32	80.5	121	$\begin{aligned} & 83.8 \\ & 78.6 \end{aligned}$		68.6	103	66.2	99.5	59.5	89.4					
	34	75.7	114	$\begin{aligned} & 78.6 \\ & 74.0 \\ & 69.9 \\ & 66.2 \\ & 62.9 \end{aligned}$	$\begin{gathered} 118 \\ 111 \\ 105 \\ 99.5 \\ 94.5 \end{gathered}$	64.6	97.1	62.3	93.6	56.0	84.2					
	36	71.5	108			61.0	91.7	58.8	88.4	52.9	79.5					
	38	67.8	102			57.8	86.8	55.7	83.8	50.1	75.3					
	40	64.4	96.8			54.9	82.5	52.9	79.6	47.6	71.6					
	42	61.3	92.1	$\begin{aligned} & 59.9 \\ & 57.2 \\ & 54.7 \\ & 52.4 \\ & 50.3 \\ & 48.4 \end{aligned}$	$\begin{aligned} & 90.0 \\ & 85.9 \\ & 82.2 \\ & 78.8 \\ & 75.6 \\ & 72.7 \end{aligned}$	52.3	78.6	50.4	75.8	45.3	68.1					
	44	58.5	88.0			49.9	75.0	48.1	72.3	43.3	65.0					
	46	56.0	84.1			47.7	71.7	46.0	69.2	41.4	62.2					
	48	53.6	80.6			45.7	68.8	44.1	66.3	39.7	59.6					
	50	51.5	77.4			43.9	66.0	42.4	63.7	38.1	57.2					
	52	49.5	74.4			42.2	63.5									
Beam Properties																
W_{c} / Ω_{b}	$\phi_{b} W_{C}$, kip-ft	2570	3870	2510	3780	2200	3300	2120	3180	1900	2860					
M_{p} / Ω_{b}	$\phi_{\phi} M_{p}$, kip-ft	322	484	314	473	274	413	265	398	238	358					
M_{r} / Ω_{b}	$\phi_{b} M_{r}$, kip-ft	194	291	192	289	165	248	162	244	143	214					
$B F / \Omega_{b}$	$\phi_{b} B F$, kips	13.4	20.3	10.8	16.3	12.1	18.3	9.89	14.8	11.1	16.8					
V_{n} / Ω_{v}	$\phi_{V} V_{n}$, kips	171	256	156	234	158	237	144	216	145	217					
$\begin{aligned} & Z_{X}, \text { in. }{ }^{3} \\ & L_{p}, \mathrm{ft} \\ & L_{r}, \mathrm{ft} \end{aligned}$		129	77	126	11		59	107 6 16			$\begin{aligned} & 4 \\ & 45 \end{aligned}$					
ASD	LRFD	${ }^{\mathrm{f}}$ Shape does not meet compact limit for flexure with $F_{y}=50$ ksi; tabulated values have been adjusted accordingly. Notes: For beams laterally unsupported, see Table 3-10. Available strength tabulated above heavy line is limited by available shear strength.														
$\begin{aligned} & \Omega_{b}=1.67 \\ & \Omega_{v}=1.50 \end{aligned}$	$\begin{aligned} & \phi_{b}=0.90 \\ & \phi_{v}=1.00 \end{aligned}$															

$F_{y}=50 \mathrm{ksi}$		Table 3-6 (continued) Maximum Total Uniform Load, kips W-Shapes										W18	
Shape		W18×											
		175		158		143		130		119		106	
Design		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	10									498	747	441	662
	11	712	1070	638	957	569	854	517	776	475	715	417	627
	12	662	995	592	890	536	805	482	725	436	655	383	575
	13	611	918	547	822	494	743	445	669	402	605	353	531
	14	567	853	508	763	459	690	413	621	374	561	328	493
	15	530	796	474	712	428	644	386	580	349	524	306	460
	16	497	746	444	668	402	604	362	544	327	491	287	431
	17	467	702	418	628	378	568	340	512	308	462	270	406
	18	441	663	395	593	357	537	322	483	291	437	255	383
	19	418	628	374	562	338	508	305	458	275	414	242	363
	20	397	597	355	534	321	483	289	435	261	393	230	345
	21	378	569	338	509	306	460	276	414	249	374	219	329
	22	361	543	323	485	292	439	263	395	238	357	209	314
	23	345	519	309	464	279	420	252	378	227	342	200	300
	24	331	498	296	445	268	403	241	363	218	328	191	288
	25	318	478	284	427	257	386	232	348	209	314	184	276
	26	306	459	273	411	247	372	223	335	201	302	177	265
	27	294	442	263	396	238	358	214	322	194	291	170	256
	28	284	426	254	381	230	345	207	311	187	281	164	246
	29	274	412	245	368	222	333	200	300	180	271	158	238
	30	265	398	237	356	214	322	193	290	174	262	153	230
	31	256	385	229	345	207	312	187	281	169	254	148	223
	32	248	373	222	334	201	302	181	272	163	246	143	216
	33	241	362	215	324	195	293	175	264	158	238	139	209
	34	234	351	209	314	189	284	170	256	154	231	135	203
	35	227	341	203	305	184	276	165	249	149	225	131	197
	36	221	332	197	297	179	268	161	242	145	218	128	192
	37	215	323	192	289	174	261	156	235	141	212	124	186
	38	209	314	187	281	169	254	152	229	138	207	121	182
	39	204	306	182	274	165	248	148	223	134	202	118	177
	40	199	299	178	267	161	242	145	218	131	197	115	173
	42	189	284	169	254	153	230	138	207	125	187	109	164
	44	181	271	161	243	146	220	132	198	119	179	104	157
	46	173	260	154	232	140	210	126	189	114	171	99.8	150
	48	166	249	148	223	134	201	121	181				
	50	159	239										
Beam Properties													
W_{c} / Ω_{b}	$\phi_{b} W_{C}$, kip-ft	7940	11900	7110	10700	6430	9660	5790	8700	5230	7860	4590	6900
M_{p} / Ω_{b}	${ }_{\phi}{ }^{\prime} M_{p}$, kip-ft	993	1490	888	1340	803	1210	724	1090	654	983	574	863
M_{r} / Ω_{b}	$\phi_{b} M_{r}$, kip-ft	601	903	541	814	493	740	447	672	403	606	356	536
$B F / \Omega_{b}$	$\phi_{b} B F$, kips	10.6	15.8	10.5	15.9	10.3	15.7	10.2	15.4	10.1	15.2	9.73	14.6
V_{n} / Ω_{v}	$\phi_{V} V_{n}, \mathrm{kips}$	356	534	319	479	285	427	259	388	249	373	221	331
$\begin{aligned} & Z_{X}, \mathrm{in}^{3}{ }^{3} \\ & L_{p}, \mathrm{ft} \\ & L_{r}, \mathrm{ft} \end{aligned}$		$\begin{gathered} 398 \\ 9.75 \\ 46.9 \end{gathered}$		$\begin{gathered} 356 \\ 9.68 \\ 42.8 \end{gathered}$		$\begin{gathered} 322 \\ 9.61 \\ 39.6 \end{gathered}$		$\begin{gathered} \hline 290 \\ 9.54 \\ 36.6 \end{gathered}$		$\begin{gathered} 262 \\ 9.50 \\ 34.3 \end{gathered}$		$\begin{gathered} 230 \\ 9.40 \\ 31.8 \end{gathered}$	
ASD	LRFD	Notes: For beams laterally unsupported, see Table 3-10. Available strength tabulated above heavy line is limited by available shear strength.											
$\begin{aligned} & \Omega_{b}=1.67 \\ & \Omega_{v}=1.50 \end{aligned}$	$\begin{aligned} & \phi_{b}=0.90 \\ & \phi_{v}=1.00 \end{aligned}$												

$F_{y}=50 \mathrm{ksi}$		Table 3-6 (continued) Maximum Total niform Load, kips W-Shapes								W18-W16					
Shape		W18×										W16×			
		55		50		46		40		35					
Design		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD		
	6					261	391	226	338	212	319				
	7	282	424	256	383	259	389	224	336	190	285				
	8	279	420	252	379	226	340	196	294	166	249				
	9	248	373	224	337	201	302	174	261	147	222	398	597		
	10	224	336	202	303	181	272	156	235	133	200	395	594		
	11	203	305	183	275	165	247	142	214	121	181	359	540		
	12	186	280	168	253	151	227	130	196	111	166	329	495		
	13	172	258	155	233	139	209	120	181	102	153	304	457		
	14	160	240	144	216	129	194	112	168	94.8	143	282	424		
	15	149	224	134	202	121	181	104	157	88.5	133	263	396		
	16	140	210	126	189	113	170	97.8	147	83.0	125	247	371		
	17	132	198	119	178	106	160	92.1	138	78.1	117	232	349		
	18	124	187	112	168	101	151	86.9	131	73.7	111	220	330		
	19	118	177	106	159	95.3	143	82.4	124	69.9	105	208	313		
	20	112	168	101	152	90.5	136	78.2	118	66.4	99.8	198	297		
	21	106	160	96.0	144	86.2	130	74.5	112	63.2	95.0	188	283		
	22	102	153	91.6	138	82.3	124	71.1	107	60.3	90.7	180	270		
	23	97.2	146	87.7	132	78.7	118	68.0	102	57.7	86.7	172	258		
	24	93.1	140	84.0	126	75.4	113	65.2	98.0	55.3	83.1	165	248		
	25	89.4	134	80.6	121	72.4	109	62.6	94.1	53.1	79.8	158	238		
	26	86.0	129	77.5	117	69.6	105	60.2	90.5	51.1	76.7	152	228		
	27	82.8	124	74.7	112	67.1	101	58.0	87.1	49.2	73.9	146	220		
	28	79.8	120	72.0	108	64.7	97.2	55.9	84.0	47.4	71.3	141	212		
	29	77.1	116	69.5	104	62.4	93.8	54.0	81.1	45.8	68.8	136	205		
	30	74.5	112	67.2	101	60.3	90.7	52.2	78.4	44.2	66.5	132	198		
	31	72.1	108	65.0	97.7	58.4	87.8	50.5	75.9	42.8	64.4	127	192		
	32	69.9	105	63.0	94.7	56.6	85.0	48.9	73.5	41.5	62.3	124	186		
	33	67.7	102	61.1	91.8	54.9	82.5	47.4	71.3	40.2	60.5	120	180		
	34	65.8	98.8	59.3	89.1	53.2	80.0	46.0	69.2	39.0	58.7	116	175		
	35	63.9	96.0	57.6	86.6	51.7	77.7	44.7	67.2	37.9	57.0	113	170		
	36	62.1	93.3	56.0	84.2	50.3	75.6	43.5	65.3	36.9	55.4	110	165		
	37	60.4	90.8	54.5	81.9	48.9	73.5	42.3	63.6	35.9	53.9	107	161		
	38	58.8	88.4	53.1	79.7	47.6	71.6	41.2	61.9	34.9	52.5	104	156		
	39	57.3	86.2	51.7	77.7	46.4	69.8	40.1	60.3	34.0	51.2	101	152		
	40	55.9	84.0	50.4	75.8	45.3	68.0	39.1	58.8	33.2	49.9	98.8	149		
	42	$\begin{aligned} & 53.2 \\ & 50.8 \end{aligned}$	$\begin{aligned} & 80.0 \\ & 76.4 \end{aligned}$	$\begin{aligned} & 48.0 \\ & 15.8 \end{aligned}$	$\begin{aligned} & 72.1 \\ & 68.9 \end{aligned}$	$\begin{aligned} & 43.1 \\ & 41.1 \end{aligned}$	$\begin{aligned} & 64.8 \\ & 61.8 \end{aligned}$	$\begin{aligned} & 37.3 \\ & 35.6 \end{aligned}$	$\begin{aligned} & 56.0 \\ & 53.5 \end{aligned}$	$\begin{aligned} & 31.6 \\ & 30.2 \end{aligned}$	$\begin{aligned} & 47.5 \\ & 45.3 \end{aligned}$	94.1	141		
Beam Properties															
W_{c} / Ω_{b}	$\phi_{b} W_{c}$, kip-ft	2240	3360	2020	3030	1810	2720	1560	2350	1330	2000	3950	5940		
M_{p} / Ω_{b}	${ }_{\phi_{b}} M_{p}$, kip-ft	279	420	252	379	226	340	196	294	166	249	494	743		
M_{r} / Ω_{b}	$\phi_{b} M_{\text {r }}$, kip-ft	172	258	155	233	138	207	119	180	101	151	306	459		
$B F / \Omega_{b}$	$\phi_{b} B F$, kips	9.15	13.8	8.76	13.2	9.63	14.6	8.94	13.2	8.14	12.3	7.86	11.9		
V_{n} / Ω_{v}	${ }_{\phi}{ }_{\mathbf{v}} \mathrm{V}_{n}$, kips	141	212	128	192	130	195	113	169	106	159	199	298		
$\begin{aligned} & Z_{X}, \mathrm{in}^{3}{ }^{3} \\ & L_{p}, \mathrm{ft} \\ & L_{r}, \mathrm{ft} \end{aligned}$		$\begin{gathered} 112 \\ 5.90 \\ 17.6 \end{gathered}$		$\begin{gathered} 101 \\ 5.83 \\ 16.9 \end{gathered}$		$\begin{gathered} 90.7 \\ 4.56 \\ 13.7 \end{gathered}$		$\begin{gathered} 78.4 \\ 4.49 \\ 13.1 \end{gathered}$		$\begin{gathered} \hline 66.5 \\ 4.31 \\ 12.3 \end{gathered}$		$\begin{gathered} \hline 198 \\ 8.87 \\ 32.8 \end{gathered}$			
ASD	LRFD	Notes: For beams laterally unsupported, see Table 3-10. Available strength tabulated above heavy line is limited by available shear strength.													
$\begin{aligned} & \Omega_{b}=1.67 \\ & \Omega_{v}=1.50 \end{aligned}$	$\begin{aligned} & \phi_{b}=0.90 \\ & \phi_{v}=1.00 \end{aligned}$														

$F_{y}=50 \mathrm{ksi}$		Table 3-6 (continued) Maximum Total Uniform Load, kips W-Shapes																	
Shape		W16×																	
		45		40		36		31		26^{v}									
Design		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD								
	6					188	281	175	262	141	212								
	7	222	333	195	293	182	274	154	231	126	189								
	8	205	309	182	274	160	240	135	203	110	166								
	9	183	274	162	243	142	213	120	180	98.0	147								
	10	164	247	146	219	128	192	108	162	88.2	133								
	11	149	224	132	199	116	175	98.0	147	80.2	121								
	12	137	206	121	183	106	160	89.8	135	73.5	111								
	13	126	190	112	168	98.3	148	82.9	125	67.9	102								
	14	117	176	104	156	91.2	137	77.0	116	63.0	94.7								
	15	110	165	97.1	146	85.2	128	71.9	108	58.8	88.4								
	16	103	154	91.1	137	79.8	120	67.4	101	55.1	82.9								
	17	96.6	145	85.7	129	75.1	113	63.4	95.3	51.9	78.0								
	18	91.3	137	80.9	122	71.0	107	59.9	90.0	49.0	73.7								
	19	86.5	130	76.7	115	67.2	101	56.7	85.3	46.4	69.8								
	20	82.1	123	72.9	110	63.9	96.0	53.9	81.0	44.1	66.3								
	21	78.2	118	69.4	104	60.8	91.4	51.3	77.1	42.0	63.1								
	22	74.7	112	66.2	99.5	58.1	87.3	49.0	73.6	40.1	60.3								
	23	71.4	107	63.4	95.2	55.5	83.5	46.9	70.4	38.4	57.7								
	24	68.4	103	60.7	91.3	53.2	80.0	44.9	67.5	36.8	55.3								
	25	65.7	98.8	58.3	87.6	51.1	76.8	43.1	64.8	35.3	53.0								
	26	63.2	95.0	56.0	84.2	49.1	73.8	41.5	62.3	33.9	51.0								
	27	60.8	91.4	54.0	81.1	47.3	71.1	39.9	60.0	32.7	49.1								
	28	58.7	88.2	52.0	78.2	45.6	68.6	38.5	57.9	31.5	47.4								
	29	56.6	85.1	50.2	75.5	44.0	66.2	37.2	55.9	30.4	45.7								
	30	54.8	82.3	48.6	73.0	42.6	64.0	35.9	54.0	29.4	44.2								
	31	53.0	79.6	47.0	70.6	41.2	61.9	34.8	52.3	28.5	42.8								
	32	51.3	77.2	45.5	68.4	39.9	60.0	33.7	50.6	27.6	41.4								
	33	49.8	74.8	44.2	66.4	38.7	58.2	32.7	49.1	26.7	40.2								
	34	48.3	72.6	42.9	64.4	37.6	56.5	31.7	47.6	25.9	39.0								
	35	46.9	70.5	41.6	62.6	36.5	54.9	30.8	46.3	25.2	37.9								
	36	45.6	68.6	40.5	60.8	35.5	53.3	29.9	45.0	24.5	36.8								
	37	44.4	66.7	39.4	59.2	34.5	51.9	29.1	43.8	23.8	35.8								
	38	43.2	65.0	38.3	57.6	33.6	50.5	28.4	42.6	23.2	34.9								
	39	42.1	63.3	37.4	56.2	32.8	49.2	27.6	41.5	22.6	34.0								
	40	41.1	61.7	36.4	54.8														
Beam Properties																			
W_{c} / Ω_{b}	$\phi_{b} W_{C}$, kip-ft	1640	2470	1460	2190	1280	1920	1080	1620	882	1330								
M_{p} / Ω_{b}	${ }_{\phi} M_{p}$, kip-ft	205	309	182	274	160	240	135	203	110	166								
M_{r} / Ω_{b}	$\phi_{\phi} M_{r}$, kip-ft	127	191	113	170	98.7	148	82.4	124	67.1	101								
$B F / \Omega_{b}$	$\phi_{b} B F$, kips	7.12	10.8	6.67	10.0	6.24	9.36	6.86	10.3	5.93	8.98								
V_{n} / Ω_{v}	$\phi_{V} V_{n}$, kips	111	167	97.6	146	93.8	141	87.5	131	70.5	106								
$\begin{aligned} & Z_{X}, \text { in. }{ }^{3} \\ & L_{p}, \mathrm{ft} \\ & L_{r}, \mathrm{ft} \end{aligned}$		$\begin{gathered} 82.3 \\ 5.55 \\ 16.5 \end{gathered}$		$\begin{gathered} 13.0 \\ 5.55 \\ 15.9 \end{gathered}$		$\begin{gathered} \hline 64.0 \\ 5.37 \\ 15.2 \\ \hline \end{gathered}$		$\begin{gathered} 54.0 \\ 4.13 \\ 11.8 \\ \hline \end{gathered}$		$\begin{gathered} 44.2 \\ 3.96 \\ 11.2 \\ \hline \end{gathered}$									
ASD LRFD		${ }^{v}$ Shape does not meet the h / t_{w} limit for shear in AISC Specification Section G2.1(a) with $F_{y}=50$ ksi; therefore, $\phi_{v}=0.90$ and $\Omega_{v}=1.67$. Notes: For beams laterally unsupported, see Table 3-10. Available strength tabulated above heavy line is limited by available shear strength.																	
$\Omega_{b}=1.67$	$\phi_{b}=0.90$																		
$\Omega_{v}=1.50$	$\phi_{v}=1.00$																		

W14		Table 3-6 (continued) Maximum Total niform Load, kips W-Shapes											
Shape		W14×											
		82		74		68		61		53		48	
Design		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	8									206	309	188	282
	9	292	438	256	383	232	349	209	313	193	290	174	261
	10	277	417	251	378	230	345	204	306	174	261	156	235
	11	252	379	229	344	209	314	185	278	158	238	142	214
	12	231	348	210	315	191	288	170	255	145	218	130	196
	13	213	321	193	291	177	265	157	235	134	201	120	181
	14	198	298	180	270	164	246	145	219	124	187	112	168
	15	185	278	168	252	153	230	136	204	116	174	104	157
	16	173	261	157	236	143	216	127	191	109	163	97.8	147
	17	163	245	148	222	135	203	120	180	102	154	92.1	138
	18	154	232	140	210	128	192	113	170	96.6	145	86.9	131
	19	146	219	132	199	121	182	107	161	91.5	138	82.4	124
	20	139	209	126	189	115	173	102	153	86.9	131	78.2	118
	21	132	199	120	180	109	164	96.9	146	82.8	124	74.5	112
	22	126	190	114	172	104	157	92.5	139	79.0	119	71.1	107
	23	121	181	109	164	99.8	150	88.5	133	75.6	114	68.0	102
	24	116	174	105	158	95.6	144	84.8	128	72.4	109	65.2	98.0
	25	111	167	101	151	91.8	138	81.4	122	69.5	105	62.6	94.1
	26	107	160	96.7	145	88.3	133	78.3	118	66.9	101	60.2	90.5
	27	103	154	93.1	140	85.0	128	75.4	113	64.4	96.8	58.0	87.1
	28	99.1	149	89.8	135	82.0	123	72.7	109	62.1	93.3	55.9	84.0
	29	95.7	144	86.7	130	79.2	119	70.2	106	59.9	90.1	54.0	81.1
	30	92.5	139	83.8	126	76.5	115	67.9	102	58.0	87.1	52.2	78.4
	31	89.5	135	81.1	122	74.0	111	65.7	98.7	56.1	84.3	50.5	75.9
	32	86.7	130	78.6	118	71.7	108	63.6	95.6	54.3	81.7	48.9	73.5
	33	84.1	126	76.2	115	69.6	105	61.7	92.7	52.7	79.2	47.4	71.3
	34	81.6	123	74.0	111	67.5	101	59.9	90.0	51.1	76.9	46.0	69.2
	35	79.3	119	71.9	108	65.6	98.6						
Beam Properties													
W_{c} / Ω_{b}	$\phi_{b} W_{c}$, kip-ft	2770	4170	2510	3780	2300	3450	2040	3060	1740	2610	1560	2350
M_{p} / Ω_{b}	${ }_{\phi} M_{p}$, kip-ft	347	521	314	473	287	431	254	383	217	327	196	294
M_{r} / Ω_{b}	$\phi_{b} M_{r}$, kip-ft	215	323	196	294	180	270	161	242	136	204	123	184
$B F / \Omega_{b}$	$\phi_{b} B F$, kips	5.40	8.10	5.31	8.05	5.19	7.81	4.93	7.48	5.22	7.93	5.09	7.67
V_{n} / Ω_{v}	$\phi_{V} V_{n}$, kips	146	219	128	192	116	174	104	156	103	154	93.8	141
$\begin{aligned} & Z_{x}, \text { in. } \\ & L_{p}, \mathrm{ft} \\ & L_{r}, \mathrm{ft} \\ & \hline \end{aligned}$		$\begin{gathered} 139 \\ 8.76 \\ 33.2 \end{gathered}$		$\begin{gathered} \hline 126 \\ 8.76 \\ 31.0 \end{gathered}$		$\begin{gathered} \hline 115 \\ 8.69 \\ 29.3 \end{gathered}$		$\begin{gathered} \hline 102 \\ 8.65 \\ 27.5 \\ \hline \end{gathered}$		$\begin{gathered} \hline 87.1 \\ 6.78 \\ 22.3 \\ \hline \end{gathered}$		$\begin{gathered} 78.4 \\ 6.75 \\ 21.1 \end{gathered}$	
ASD	LRFD	Notes: For beams laterally unsupported, see Table 3-10. Available strength tabulated above heavy line is limited by available shear strength.											
$\begin{aligned} & \Omega_{b}=1.67 \\ & \Omega_{v}=1.50 \end{aligned}$	$\begin{aligned} & \phi_{b}=0.90 \\ & \phi_{v}=1.00 \end{aligned}$												

W12		Table 3-6 (continued) Maximum Total niform Load, kips W-Shapes											
Shape		W12×											
		58		53		50		45		40		35	
Design		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
末	6											150	225
	7					181	271	162	243			146	219
	8					179	270	160	241	140	211	128	192
	9	176	264	167	250	159	240	142	214	126	190	114	171
	10	172	259	155	234	144	216	128	193	114	171	102	154
	11	157	236	141	212	130	196	116	175	103	155	92.9	140
	12	144	216	130	195	120	180	107	161	94.8	143	85.2	128
	13	133	199	120	180	110	166	98.6	148	87.5	132	78.6	118
	14	123	185	111	167	103	154	91.5	138	81.3	122	73.0	110
	15	115	173	104	156	95.7	144	85.4	128	75.8	114	68.1	102
	16	108	162	97.2	146	89.7	135	80.1	120	71.1	107	63.9	96.0
	17	101	152	91.5	137	84.4	127	75.4	113	66.9	101	60.1	90.4
	18	95.8	144	86.4	130	79.7	120	71.2	107	63.2	95.0	56.8	85.3
	19	90.8	136	81.8	123	75.5	114	67.4	101	59.9	90.0	53.8	80.8
	20	86.2	130	77.7	117	71.8	108	64.1	96.3	56.9	85.5	51.1	76.8
	21	82.1	123	74.0	111	68.3	103	61.0	91.7	54.2	81.4	48.7	73.1
	22	78.4	118	70.7	106	65.2	98.0	58.2	87.5	51.7	77.7	46.5	69.8
	23	75.0	113	67.6	102	62.4	93.8	55.7	83.7	49.5	74.3	44.4	66.8
	24	71.9	108	64.8	97.4	59.8	89.9	53.4	80.3	47.4	71.3	42.6	64.0
	25	69.0	104	62.2	93.5	57.4	86.3	51.3	77.0	45.5	68.4	40.9	61.4
	26	66.3	99.7	59.8	89.9	55.2	83.0	49.3	74.1	43.8	65.8	39.3	59.1
	27	63.9	96.0	57.6	86.6	53.2	79.9	47.5	71.3	42.1	63.3	37.9	56.9
	28	61.6	92.6	55.5	83.5	51.3	77.0	45.8	68.8	40.6	61.1	36.5	54.9
	29	59.5	89.4	53.6	80.6	49.5	74.4	44.2	66.4	39.2	59.0	35.2	53.0
	30	57.5	86.4	51.8	77.9	47.8	71.9	42.7	64.2			34.1	51.2
	31											33.0	49.5
Beam Properties													
W_{c} / Ω_{b}	$\phi_{b} W_{C}$, kip-ft	1720	2590	1550	2340	1440	2160	1280	1930	1140	1710	1020	1540
M_{p} / Ω_{b}	${ }_{\phi}{ }^{\prime} M_{p}$, kip-ft	216	324	194	292	179	270	160	241	142	214	128	192
M_{r} / Ω_{b}	$\phi_{b} M_{r}$, kip-ft	136	205	123	185	112	169	101	151	89.9	135	79.6	
$B F / \Omega_{b}$	$\phi_{b} B F$, kips	3.82	5.69	3.65	5.50	3.97	5.98	3.80	5.80	3.66	5.54	4.34	6.45
V_{n} / Ω_{v}	$\phi_{v} V_{n}, \mathrm{kips}$	87.8	132	83.5	125	90.3	135	81.1	122	70.2	105	75.0	113
$\begin{aligned} & Z_{x}, \text { in. }{ }^{3} \\ & L_{p}, \mathrm{ft} \\ & L_{r}, \mathrm{ft} \\ & \hline \end{aligned}$		$\begin{array}{r}86.4 \\ 89 \\ 29.8 \\ \hline\end{array}$	8. 87	28	. 76	71 6 23	$\begin{aligned} & .9 \\ & .92 \\ & .8 \end{aligned}$	$\begin{array}{r}64 \\ 6 \\ 22 \\ \hline\end{array}$	$\begin{aligned} & .2 \\ & .89 \\ & .4 \end{aligned}$	$\begin{array}{r}6 \\ 21 . \\ \hline\end{array}$	$\begin{aligned} & .0 \\ & .85 \\ & .1 \end{aligned}$		$\begin{aligned} & .2 \\ & .44 \\ & 6 \end{aligned}$
ASD	LRFD	Notes: For beams laterally unsupported, see Table 3-10. Available strength tabulated above heavy line is limited by available shear strength.											
$\begin{aligned} & \Omega_{b}=1.67 \\ & \Omega_{v}=1.50 \end{aligned}$	$\begin{aligned} & \phi_{b}=0.90 \\ & \phi_{v}=1.00 \end{aligned}$												

MC13-MC		Table 3-9 Maxim Uniform MC						ued otal	OS	$F_{y}=36 \mathrm{ksi}$							
		MC12×															
		35	31.8		50		45		40		35						
Design						ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
$\begin{aligned} & \ddagger \\ & \text { 末 } \\ & \text { IN } \end{aligned}$	3					259	390	220	331	183	275						
	4	150	226	126	190	203	305	187	281	171	258	144	217				
	5	134	201	125	187	162	244	149	225	137	206	124	187				
	6	111	167	104	156	135	203	125	187	114	172	103	156				
	7	95.5	143	89.1	134	116	174	107	160	97.9	147	88.7	133				
	8	83.5	126	78.0	117	101	153	93.4	140	85.7	129	77.6	117				
	9	74.3	112	69.3	104	90.2	136	83.0	125	76.2	114	69.0	104				
	10	66.8	100	62.4	93.7	81.2	122	74.7	112	68.6	103	62.1	93.3				
	11	60.8	91.3	56.7	85.2	73.8	111	67.9	102	62.3	93.7	56.4	84.8				
	12	55.7	83.7	52.0	78.1	67.7	102	62.3	93.6	57.1	85.9	51.7	77.8				
	13	51.4	77.3	48.0	72.1	62.5	93.9	57.5	86.4	52.7	79.3	47.8	71.8				
	14	47.7	71.7	44.6	67.0	58.0	87.2	53.4	80.2	49.0	73.6	44.3	66.7				
	15	44.6	67.0	41.6	62.5	54.1	81.4	49.8	74.9	45.7	68.7	41.4	62.2				
	16	41.8	62.8	39.0	58.6	50.7	76.3	46.7	70.2	42.8	64.4	38.8	58.3				
	17	39.3	59.1	36.7	55.1	47.8	71.8	44.0	66.1	40.3	60.6	36.5	54.9				
	18	37.1	55.8	34.7	52.1	45.1	67.8	41.5	62.4	38.1	57.2	34.5	51.8				
	19	35.2	52.9	32.8	49.3	42.7	64.2	39.3	59.1	36.1	54.2	32.7	49.1				
	20	33.4	50.2	31.2	46.9	40.6	61.0	37.4	56.2	34.3	51.5	31.0	46.7				
	21	31.8	47.8	29.7	44.6	38.7	58.1	35.6	53.5	32.6	49.1	29.6	44.4				
	22	30.4	45.7	28.4	42.6	36.9	55.5	34.0	51.1	31.2	46.8	28.2	42.4				
	23	29.1	43.7	27.1	40.8	35.3	53.1	32.5	48.8	29.8	44.8	27.0	40.6				
	24	27.8	41.9	26.0	39.1	33.8	50.9	31.1	46.8	28.6	42.9	25.9	38.9				
	25	26.7	40.2	24.9	37.5	32.5	48.8	29.9	44.9	27.4	41.2	24.8	37.3				
	26	25.7	38.6	24.0	36.1	31.2	46.9	28.7	43.2	26.4	39.6	23.9	35.9				
	27	24.8	37.2	23.1	34.7	30.1	45.2	27.7	41.6	25.4	38.2	23.0	34.6				
	28	23.9	35.9	22.3	33.5	29.0	43.6	26.7	40.1	24.5	36.8	22.2	33.3				
	29	23.0	34.6	21.5	32.3	28.0	42.1	25.8	38.7	23.6	35.5	21.4	32.2				
	30	22.3	33.5	20.8	31.2	27.1	40.7	24.9	37.4	22.9	34.3	20.7	31.1				
	32	20.9	31.4	19.5	29.3												
Beam Properties																	
W_{c} / Ω_{b}	$\phi_{b} W_{c}, \mathbf{k i p}$-ft	668	1000	624	937	812	1220	747	1120	686	1030	621	933				
M_{p} / Ω_{b}	${ }_{\phi_{b}} M_{p}$, kip-ft	83.5	126	78.0	117	101	153	93.4	140	85.7	129	77.6	117				
M_{r} / Ω_{b}	$\phi_{\phi} M_{r}$, kip-ft	48.8	73.3	46.1	69.4	56.5	84.9	52.7	79.2	49.0	73.7	45.3	68.0				
$B F / \Omega_{b}$	$\phi_{\phi} B F$, kips	2.34	3.55	2.31	3.44	1.65	2.53	1.77	2.65	1.87	2.82	1.92	2.92				
V_{n} / Ω_{v}	$\phi_{V} V_{n}, \mathrm{kips}$	75.2	113	63.1	94.8	130	195	110	166	91.6	138	72.2	108				
$\begin{aligned} & Z_{x}, \text { in. }^{3} \\ & L_{p}, \mathrm{ft} \\ & L_{r}, \mathrm{ft} \end{aligned}$		$\begin{gathered} \hline 46.5 \\ 4.54 \\ 19.4 \end{gathered}$		$\begin{gathered} 1 \\ \hline 43.4 \\ 4.58 \\ 18.4 \end{gathered}$		$\begin{gathered} \hline 56.5 \\ 4.54 \\ 31.5 \end{gathered}$		$\begin{gathered} \hline 52.0 \\ 4.54 \\ 27.5 \end{gathered}$		$\begin{gathered} 17.7 \\ 4.58 \\ 24.2 \\ \hline \end{gathered}$		$\begin{gathered} \hline 43.2 \\ 4.62 \\ 21.4 \end{gathered}$					
ASD	LRFD	Notes: For beams laterally unsupported, see Table 3-11. Available strength tabulated above heavy line is limited by available shear strength.															
$\begin{aligned} & \Omega_{b}=1.67 \\ & \Omega_{v}=1.67 \end{aligned}$	$\begin{aligned} & \phi_{b}=0.90 \\ & \phi_{v}=0.90 \end{aligned}$																

American Institute of Steel Construction

American Institute of Steel Construction

American Institute of Steel Construction

American Institute of Steel Construction

American Institute of Steel Construction

American Institute of Steel Construction

American Institute of Steel Construction

American Institute of Steel Construction

American Institute of Steel Construction
Available Moment, $M_{n} / \Omega_{b}\left(4 \mathrm{kip}\right.$-ft increments) and $\phi_{b} M_{\boldsymbol{n}}$ ($\mathbf{6} \mathrm{kip}$-ft increments), kip-ft

$=50$ $C_{b}=1$	
$\boldsymbol{M}_{\boldsymbol{n}} / \Omega_{\boldsymbol{b}}$	$\phi_{\boldsymbol{b}} M_{\boldsymbol{n}}$
kip-ft	kip-ft
ASD	LRFD

Table 3-10 (continued)
W-Shapes

Available Moment vs. Unbraced Length

American Institute of Steel Construction

American Institute of Steel Construction
Available Moment, $\boldsymbol{M}_{\boldsymbol{n}} / \Omega_{\boldsymbol{b}}$ (2 kip-ft increments) and $\phi_{b} \boldsymbol{M}_{\boldsymbol{n}}$ (3 kip-ft increments), kip-ft

Available Moment, $\boldsymbol{M}_{n} / \Omega_{b}$ (2 kip-ft increments) and $\phi_{b} M_{n}$ ($\mathbf{3}$ kip-ft increments), kip-ft

Available Moment, M_{n} / Ω_{b} ($\mathbf{2}$ kip-ft increments) and $\phi_{b} M_{\boldsymbol{n}}$ ($\mathbf{3}$ kip-ft increments), kip-ft

Available Moment, M_{n} / Ω_{b} ($\mathbf{2}$ kip-ft increments) and $\phi_{b} M_{\boldsymbol{n}}$ ($\mathbf{3}$ kip-ft increments), kip-ft

Available Moment, M_{n} / Ω_{b} ($\mathbf{2}$ kip-ft increments) and $\phi_{b} M_{n}(3$ kip-ft increments), kip-ft

Available Moment, M_{n} / Ω_{b} ($\mathbf{2}$ kip-ft increments) and $\phi_{b} M_{\boldsymbol{n}}(\mathbf{3}$ kip-ft increments), kip-ft

American Institute of Steel Construction
Available Moment, M_{n} / Ω_{b} ($\mathbf{2}$ kip-ft increments) and $\phi_{b} M_{\boldsymbol{n}}$ ($\mathbf{3}$ kip-ft increments), kip-ft

Available Moment, $\boldsymbol{M}_{\boldsymbol{n}} / \Omega_{\boldsymbol{b}}$ (2 kip-ft increments) and $\phi_{\boldsymbol{b}} \boldsymbol{M}_{\boldsymbol{n}}$ (3 kip-ft increments), kip-ft

Available Moment, M_{n} / Ω_{b} ($\mathbf{2}$ kip-ft increments) and $\phi_{b} M_{n}(3$ kip-ft increments), kip-ft

Available Moment, M_{n} / Ω_{b} (2 kip-ft increments) and $\phi_{b} M_{n}$ (3 kip-ft increments), kip-ft

Available Moment, M_{n} / Ω_{b} (2 kip-ft increments) and $\phi_{b} M_{n}$ (3 kip-ft increments), kip-ft

American Institute of Steel Construction
Available Moment, M_{n} / Ω_{b} (2 kip-ft increments) and $\phi_{b} M_{n}$ (3 kip-ft increments), kip-ft

Available Moment, $M_{n} / \Omega_{b}\left(1 \mathrm{kip}-\mathrm{ft}\right.$ increments) and $\phi_{b} M_{n}(1.5 \mathrm{kip}-\mathrm{ft}$ increments), kip-ft

Available Moment, $M_{n} / \Omega_{b}\left(1 \mathrm{kip}-\mathrm{ft}\right.$ increments) and $\phi_{b} M_{n}(1.5 \mathrm{kip}-\mathrm{ft}$ increments), kip-ft

Available Moment, $\boldsymbol{M}_{\boldsymbol{n}} / \Omega_{b}$ ($\mathbf{1}$ kip-ft increments) and $\phi_{b} \boldsymbol{M}_{\boldsymbol{n}}$ (1.5 kip-ft increments), kip-ft

Available Moment, $M_{n} / \Omega_{b}\left(1 \mathrm{kip}-\mathrm{ft}\right.$ increments) and $\phi_{b} M_{n}(1.5 \mathrm{kip}-\mathrm{ft}$ increments), kip-ft

Available Moment, $\boldsymbol{M}_{\boldsymbol{n}} / \boldsymbol{\Omega}_{\boldsymbol{b}}$ ($\mathbf{1}$ kip-ft increments) and $\phi_{b} \boldsymbol{M}_{\boldsymbol{n}}$ ($\mathbf{1 . 5}$ kip-ft increments), kip-ft

Available Moment, $\boldsymbol{M}_{\boldsymbol{n}} / \Omega_{b}$ (1 kip-ft increments) and $\phi_{b} M_{\boldsymbol{n}}(1.5 \mathrm{kip}-\mathrm{ft}$ increments), kip-ft

Available Moment, $\boldsymbol{M}_{\boldsymbol{n}} / \boldsymbol{\Omega}_{\boldsymbol{b}}$ ($\mathbf{1}$ kip-ft increments) and $\phi_{\boldsymbol{b}} \boldsymbol{M}_{\boldsymbol{n}}$ (1.5 kip-ft increments), kip-ft

Available Moment, $M_{n} / \Omega_{b}\left(1\right.$ kip-ft increments) and $\phi_{b} M_{n}(1.5$ kip-ft increments), kip-ft

Available Moment, M_{n} / Ω_{b} (1 kip-ft increments) and $\phi_{b} M_{n}(1.5$ kip-ft increments), kip-ft

Available Moment, M_{n} / Ω_{b} (2 kip-ft increments) and $\phi_{b} M_{n}$ (3 kip-ft increments), kip-ft

Available Moment, $\boldsymbol{M}_{\boldsymbol{n}} / \Omega_{b}\left(1 \mathrm{kip}-\mathrm{ft}\right.$ increments) and $\phi_{b} M_{\boldsymbol{n}}(1.5 \mathrm{kip}-\mathrm{ft}$ increments), kip-ft

American Institute of Steel Construction
Available Moment, $M_{n} / \Omega_{b}\left(1\right.$ kip-ft increments) and $\phi_{b} M_{n}(1.5$ kip-ft increments), kip-ft

Available Moment, $\boldsymbol{M}_{\boldsymbol{n}} / \Omega_{\boldsymbol{b}}$ ($\mathbf{0} .5$ kip-ft increments) and $\phi_{\boldsymbol{b}} \boldsymbol{M}_{\boldsymbol{n}}$ (0.75 kip-ft increments), kip-ft

American Institute of Steel Construction
Available Moment, M_{n} / Ω_{b} (0.5 kip -ft increments) and $\phi_{b} M_{\boldsymbol{n}}(\mathbf{0} .75 \mathrm{kip}$-ft increments), kip-ft

Available Moment, $\boldsymbol{M}_{\boldsymbol{n}} / \Omega_{\boldsymbol{b}}$ ($\mathbf{0} .5 \mathrm{kip}$-ft increments) and $\phi_{\boldsymbol{b}} \boldsymbol{M}_{\boldsymbol{n}}$ ($\mathbf{0} .75 \mathrm{kip}$-ft increments), kip-ft

Available Moment, $\boldsymbol{M}_{\boldsymbol{n}} / \Omega_{b}$ (0.5 kip -ft increments) and $\phi_{b} \boldsymbol{M}_{\boldsymbol{n}}(\mathbf{0} .75 \mathrm{kip}$-ft increments), kip-ft

American Institute of Steel Construction
Available Moment, $\boldsymbol{M}_{\boldsymbol{n}} / \Omega_{\boldsymbol{b}}$ ($\mathbf{0 . 5} \mathbf{~ k i p - f t ~ i n c r e m e n t s) ~ a n d ~} \phi_{\boldsymbol{b}} \boldsymbol{M}_{\boldsymbol{n}}$ ($\mathbf{0} .75$ kip-ft increments), kip-ft

American Institute of Steel Construction

	Table 3-18a d Pattern Floor flection-Controlled Applications mmended Maximum Distributed Service Load, $\mathrm{lb} / \mathrm{ft}^{2}$						
Plate thickness t, in.	Theoretical weight, lb/ft ${ }^{2}$	Span, ft					$\begin{gathered} \text { Moment of } \\ \text { inertia per ft } \\ \text { of width, } \\ \text { in. } 4 \text { ft } \end{gathered}$
1/8	6.15	89.5	37.8	19.3	11.2	7.05	0.00195
3/16	8.70	302	127	65.3	37.8	23.8	0.00659
$1 / 4$	11.3	716	302	155	89.5	56.4	0.0156
5/16	13.8	1400	590	302	175	110	0.0305
$3 / 8$	16.4	2420	1020	522	302	190	0.0527
$1 / 2$	21.5	5730	2420	1240	716	451	0.125
5/8	26.6	11200	4720	2420	1400	881	0.244
$3 / 4$	31.7	19300	8160	4180	2420	1520	0.422
7/8	36.8	30700	13000	6630	3840	2420	0.670
1	41.9	45800	19300	9900	5730	3610	1.00
11/4	52.1	89500	37800	19300	11200	7050	1.95
11/2	62.3	155000	65300	33400	19300	12200	3.38
$1^{3 / 4}$	72.5	246000	104000	53100	30700	19300	5.36
2	82.7	367000	155000	79200	45800	28900	8.00
Plate thickness \boldsymbol{t},	Theoretical weight,			Span, ft			Moment of inertia per ft
	$\mathrm{lb} / \mathrm{ft}^{2}$	4	4.5	5	6	7	in. $4 / \mathrm{ft}$
3/16	8.70	15.9	11.2	8.16	4.72	2.97	0.00659
$1 / 4$	11.3	37.8	26.5	19.3	11.2	7.05	0.0156
5/16	13.8	73.8	51.8	37.8	21.9	13.8	0.0305
$3 / 8$	16.4	127	89.5	65.3	37.8	23.8	0.0527
$1 / 2$	21.5	302	212	155	89.5	56.4	0.125
5/8	26.6	590	414	302	175	110	0.244
$3 / 4$	31.7	1020	716	522	302	190	0.422
7/8	36.8	1620	1140	829	480	302	0.670
1	41.9	2420	1700	1240	716	451	1.00
11/4	52.1	4720	3320	2420	1400	881	1.95
11/2	62.3	8160	5730	4180	2420	1520	3.38
$1^{3 / 4}$	72.5	13000	9100	6630	3840	2420	5.36
2	82.7	19300	13600	9900	5730	3610	8.00
Note: Material conforms to ASTM A786.							

Raised Pattern Floor Pla Flexural-Strength-Contro Applications Recommended Maximum Uniformly Distributed Load, lb/ft²												
Plate thickness t, in. Theoretical weight, $\mathrm{lb} / \mathrm{ft}^{2}$		Span, ft										Plastic section modulus per ft of width, in. $3 / \mathrm{ft}$
		1.5		2		2.5		3		3.5		
Design		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	
1/8	6.15	222	333	125	188	79.8	120	55.4	83.3	40.7	61.2	0.0469
3/16	8.70	499	750	281	422	180	270	125	188	91.7	138	0.105
$1 / 4$	11.3	887	1330	499	750	319	480	222	333	163	245	0.188
5/16	13.8	1390	2080	780	1170	499	750	347	521	255	383	0.293
$3 / 8$	16.4	2000	3000	1120	1690	719	1080	499	750	367	551	0.422
1/2	21.5	3550	5330	2000	3000	1280	1920	887	1330	652	980	0.750
5/8	26.6	5540	8330	3120	4690	2000	3000	1390	2080	1020	1530	1.17
$3 / 4$	31.7	7980	12000	4490	6750	2870	4320	2000	3000	1470	2200	1.69
7/8	36.8	10900	16300	6110	9190	3910	5880	2720	4080	2000	3000	2.30
1	41.9	14200	21300	7980	12000	5110	7680	3550	5330	2610	3920	3.00
$11 / 4$	52.1	22200	33300	12500	18800	7980	12000	5540	8330	4070	6120	4.69
11/2	62.3	31900	48000	18000	27000	11500	17300	7980	12000	5870	8820	6.75
$13 / 4$	72.5	43500	65300	24500	36800	15600	23500	10900	16300	7980	12000	9.19
2	82.7	56800	85300	31900	48000	20400	30700	14200	21300	10400	15700	12.0
Plate thickness	Theoretical weight, lb/ft ${ }^{2}$	Span, ft										Plastic section modulus per ft of width, in. ${ }^{3} / \mathrm{ft}$
t,		4		4.5		5		6		7		
Design		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	
3/16	8.70	70.2	105	55.4	83.3	44.9	67.5	31.2	46.9	22.9	34.4	0.105
$1 / 4$	11.3	125	188	98.6	148	79.8	120	55.4	83.3	40.7	61.2	0.188
5/16	13.8	195	293	154	231	125	188	86.6	130	63.6	95.7	0.293
$3 / 8$	16.4	281	422	222	333	180	270	125	188	91.7	138	0.422
1/2	21.5	499	750	394	593	319	480	222	333	163	245	0.750
$5 / 8$	26.6	780	1170	616	926	499	750	347	521	255	383	1.17
$3 / 4$	31.7	1120	1690	887	1330	719	1080	499	750	367	551	1.69
7/8	36.8	1530	2300	1210	1810	978	1470	679	1020	499	750	2.30
1	41.9	2000	3000	1580	2370	1280	1920	887	1330	652	980	3.00
$11 / 4$	52.1	3120	4690	2460	3700	2000	3000	1390	2080	1020	1530	4.69
$11 / 2$	62.3	4490	6750	3550	5330	2870	4320	2000	3000	1470	2200	6.75
13/4	72.5	6110	9190	4830	7260	3910	5880	2720	4080	2000	3000	9.19
2	82.7	7980	12000	6310	9480	5110	7680	3550	5330	2610	3920	12.0
Note: Material conforms to ASTM A786												

											F_{y}	50				
Shape	M_{p} / Ω_{b}	${ }_{\phi} M_{p}$	PNAC	$Y 1^{\text {a }}$	$\sum \boldsymbol{Q}_{\boldsymbol{n}}{ }^{\text {d }}$	$Y 2^{\text {b }}$, in.										
	kip-ft					2		2.5		3		3.5				
	ASD	LRFD		in.	kip	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD			
W40×297	3320	4990	TFL	0	4370	4770	7170	4880	7330	4990	7500	5100	7660			
			2	0.413	3710	4700	7060	4790	7200	4880	7340	4980	7480			
			3	0.825	3060	4610	6930	4690	7050	4770	7160	4840	7280			
			4	1.24	2410	4510	6790	4570	6880	4630	6970	4700	7060			
			BFL	1.65	1760	4400	6620	4450	6680	4490	6750	4530	6820			
			6	4.58	1420	4320	6490	4360	6550	4390	6600	4430	6650			
			7	8.17	1090	4180	6280	4210	6320	4240	6370	4260	6410			
W40×294	3170	4760	TFL	0	4310	4770	7180	4880	7340	4990	7500	5100	7660			
			2	0.483	3730	4710	7080	4800	7220	4900	7360	4990	7500			
			3	0.965	3150	4630	6960	4710	7080	4790	7200	4870	7320			
			4	1.45	2570	4540	6820	4600	6920	4670	7010	4730	7110			
			BFL	1.93	1990	4430	6660	4480	6740	4530	6810	4580	6880			
			6	5.71	1540	4300	6470	4340	6520	4380	6580	4420	6640			
			7	10.0	1080	4080	6130	4110	6170	4130	6210	4160	6250			
W40×278	2970	4460	TFL	0	4120	4540	6820	4640	6970	4740	7130	4850	7280			
			2	0.453	3570	4480	6730	4570	6860	4660	7000	4750	7130			
			3	0.905	3030	4410	6620	4480	6730	4560	6850	4630	6960			
			4	1.36	2490	4320	6490	4380	6590	4440	6680	4510	6770			
			BFL	1.81	1940	4220	6350	4270	6420	4320	6490	4370	6570			
			6	5.67	1490	4100	6160	4130	6210	4170	6270	4210	6320			
			7	10.1	1030	3870	5820	3900	5860	3920	5900	3950	5930			
W40×277	3120	4690	TFL	0	4080	4440	6680	4540	6830	4650	6980	4750	7140			
			2	0.395	3450	4370	6580	4460	6700	4550	6830	4630	6960			
			3	0.790	2830	4290	6450	4360	6560	4440	6670	4510	6770			
			4	1.19	2200	4200	6310	4260	6400	4310	6480	4370	6560			
			BFL	1.58	1580	4100	6160	4130	6210	4170	6270	4210	6330			
			6	4.20	1300	4030	6060	4060	6110	4090	6150	4130	6200			
			7	7.58	1020	3920	5890	3940	5930	3970	5970	4000	6010			
W40×264	2820	4240	TFL	0	3870	4250	6390	4350	6530	4440	6680	4540	6820			
			2	0.433	3360	4190	6300	4280	6430	4360	6550	4440	6680			
			3	0.865	2840	4120	6200	4190	6300	4270	6410	4340	6520			
			4	1.30	2330	4040	6080	4100	6170	4160	6250	4220	6340			
			BFL	1.73	1810	3950	5940	4000	6010	4040	6080	4090	6150			
			6	5.53	1390	3840	5770	3870	5820	3910	5870	3940	5930			
			7	9.92	968	3630	5460	3660	5500	3680	5540	3710	5570			
	LRFD	a $Y 1=$ distance from top of the steel beam to plastic neutral axis b $\mathrm{Y} 2=$ distance from top of the steel beam to concrete flange force														
ASD																
$\Omega_{b}=1.67$	$\phi_{b}=0.90$	${ }^{\text {c }}$ See Figure 3-3(c) for PNA locations. d Ductility (slip capacity) of the shear connection at the beam/concrete interface may control minimum ΣQ_{n} requirements per AISC Specification Section 13.2d.														

$F_{y}=50 \mathrm{ksi}$			Table 3-19 (continued) Composite W-Shapes Available Strength in Flexure, kip-ft										140	
Shape	Y2 ${ }^{\text {b }}$, in.													
	4		4.5		5		5.5		6		6.5		7	
	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
W40×297	5210	7820	5310	7990	5420	8150	5530	8320	5640	8480	5750	8640	5860	8810
	5070	7620	5160	7760	5250	7900	5350	8040	5440	8180	5530	8310	5620	8450
	4920	7390	5000	7510	5070	7620	5150	7740	5220	7850	5300	7970	5380	8080
	4760	7150	4820	7240	4880	7330	4940	7420	5000	7510	5060	7600	5120	7690
	4580	6880	4620	6950	4670	7010	4710	7080	4750	7140	4800	7210	4840	7280
	4460	6710	4500	6760	4530	6810	4570	6870	4600	6920	4640	6970	4670	7030
	4290	6450	4320	6490	4340	6530	4370	6570	4400	6610	4430	6650	4450	6690
W40×294	5200	7820	5310	7980	5420	8150	5530	8310	5630	8470	5740	8630	5850	8790
	5080	7640	5180	7780	5270	7920	5360	8060	5450	8200	5550	8340	5640	8480
	4950	7430	5020	7550	5100	7670	5180	7790	5260	7910	5340	8020	5420	8140
	4800	7210	4860	7300	4920	7400	4990	7500	5050	7590	5120	7690	5180	7790
	4630	6960	4680	7030	4730	7110	4780	7180	4830	7260	4880	7330	4930	7410
	4460	6700	4490	6760	4530	6810	4570	6870	4610	6930	4650	6990	4690	7040
	4190	6290	4210	6330	4240	6370	4270	6410	4290	6450	4320	6500	4350	6540
W40×278	4950	7440	5050	7590	5150	7750	5260	7900	5360	8060	5460	8210	5560	8360
	4830	7270	4920	7400	5010	7530	5100	7670	5190	7800	5280	7940	5370	8070
	4710	7080	4780	7190	4860	7300	4930	7420	5010	7530	5090	7640	5160	7760
	4570	6870	4630	6960	4690	7050	4750	7150	4820	7240	4880	7330	4940	7430
	4420	6640	4470	6710	4510	6780	4560	6860	4610	6930	4660	7000	4710	7080
	4250	6380	4280	6440	4320	6490	4360	6550	4390	6600	4430	6660	4470	6720
	3970	5970	4000	6010	4030	6050	4050	6090	4080	6130	4100	6170	4130	6200
W40×277	4850	7290	4950	7440	5050	7590	5150	7750	5260	7900	5360	8050	5460	8210
	4720	7090	4810	7220	4890	7350	4980	7480	5060	7610	5150	7740	5240	7870
	4580	6880	4650	6980	4720	7090	4790	7200	4860	7300	4930	7410	5000	7510
	4420	6640	4480	6730	4530	6810	4590	6890	4640	6970	4700	7060	4750	7140
	4250	6390	4290	6450	4330	6510	4370	6570	4410	6630	4450	6690	4490	6750
	4160	6250	4190	6300	4220	6350	4260	6400	4290	6450	4320	6500	4350	6540
	4020	6040	4050	6080	4070	6120	4100	6160	4120	6200	4150	6230	4170	6270
W40×264	4630	6970	4730	7110	4830	7260	4920	7400	5020	7550	5120	7690	5210	7840
	4530	6800	4610	6930	4690	7060	4780	7180	4860	7310	4950	7430	5030	7560
	4410	6620	4480	6730	4550	6840	4620	6940	4690	7050	4760	7160	4830	7260
	4280	6430	4330	6520	4390	6600	4450	6690	4510	6780	4570	6860	4630	6950
	4130	6210	4180	6280	4230	6350	4270	6420	4320	6490	4360	6550	4410	6620
	3980	5980	4010	6030	4050	6080	4080	6140	4120	6190	4150	6240	4190	6290
	3730	5610	3760	5640	3780	5680	3800	5720	3830	5750	3850	5790	3880	5830
ASD	LRFD	${ }^{\text {b }} \mathrm{Y} 2=$ distance from top of the steel beam to concrete flange force												
$\Omega_{b}=1.67$	$\phi_{b}=0.90$													

$F_{y}=50 \mathrm{ksi}$			Table 3-19 (continued) Composite W-Shapes Available Strength in Flexure, kip-ft										140	
Shape	Y2 ${ }^{\text {b }}$, in.													
	4		4.5		5		5.5		6		6.5		7	
	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
W40×249	94350	6530	4440	6670	4530	6810	4620	6950	4710	7080	4800	7220	4900	7360
	4230	6360	4310	6470	4380	6590	4460	6710	4540	6820	4620	6940	4700	7060
	4100	6170	4170	6260	4230	6360	4290	6450	4360	6550	4420	6640	4480	6740
	3970	5960	4020	6030	4060	6110	4110	6180	4160	6260	4210	6330	4260	6410
	3820	5740	3850	5790	3890	5850	3930	5900	3960	5950	4000	6010	4030	6060
	3740	5610	3770	5660	3790	5700	3820	5750	3850	5790	3880	5840	3910	5880
	3610	5430	3630	5460	3660	5500	3680	5530	3700	5560	3730	5600	3750	5630
W40×235	54110	6180	4200	6310	4280	6440	4370	6570	4460	6700	4540	6830	4630	6960
	4010	6030	4090	6140	4160	6260	4240	6370	4310	6480	4390	6590	4460	6700
	3910	5870	3970	5960	4030	6060	4090	6150	4160	6250	4220	6340	4280	6440
	3790	5690	3840	5770	3890	5850	3940	5920	3990	6000	4040	6080	4090	6150
	3660	5500	3700	5560	3740	5620	3780	5680	3820	5740	3860	5800	3900	5860
	3540	5310	3570	5360	3600	5410	3630	5450	3660	5500	3690	5540	3720	5590
	3330	5010	3360	5040	3380	5080	3400	5110	3420	5140	3440	5170	3460	5210
W40×215	53720	5600	3800	5720	3880	5830	3960	5950	4040	6070	4120	6190	4200	6310
	3620	5450	3690	5550	3760	5650	3820	5750	3890	5850	3960	5950	4030	6050
	3520	5280	3570	5370	3630	5450	3680	5530	3740	5620	3790	5700	3850	5780
	3400	5110	3440	5180	3490	5240	3530	5310	3570	5370	3620	5440	3660	5500
	3280	4930	3310	4980	3340	5020	3370	5070	3400	5120	3440	5160	3470	5210
	3210	4820	3230	4860	3260	4900	3280	4940	3310	4970	3340	5010	3360	5050
	3100	4660	3120	4690	3140	4720	3160	4750	3180	4780	3200	4810	3220	4840
W40×211	13670	5520	3750	5640	3830	5750	3900	5870	3980	5980	4060	6100	4140	6220
	3580	5390	3650	5490	3720	5590	3790	5690	3850	5790	3920	5890	3990	5990
	3490	5250	3550	5330	3600	5420	3660	5500	3720	5590	3770	5670	3830	5760
	3390	5090	3430	5160	3480	5230	3530	5300	3570	5370	3620	5440	3660	5510
	3280	4930	3310	4980	3350	5030	3390	5090	3420	5140	3460	5200	3490	5250
	3160	4760	3190	4800	3220	4840	3250	4880	3270	4920	3300	4960	3330	5000
	2980	4480	3000	4510	3020	4540	3040	4570	3060	4600	3080	4630	3100	4660
W40×199	- 3430	5150	3500	5260	3570	5370	3650	5480	3720	5590	3790	5700	3870	5810
	3340	5020	3400	5110	3460	5210	3530	5300	3590	5400	3650	5490	3720	5580
	3250	4880	3300	4960	3350	5030	3400	5110	3450	5190	3510	5270	3560	5350
	3150	4730	3190	4790	3230	4860	3270	4920	3310	4980	3360	5040	3400	5110
	3040	4570	3070	4620	3110	4670	3140	4710	3170	4760	3200	4810	3230	4850
	2960	4450	2990	4490	3010	4530	3040	4560	3060	4600	3090	4640	3110	4670
	2830	4260	2850	4280	2870	4310	2890	4340	2910	4370	2920	4390	2940	4420
ASD	LRFD	${ }^{\text {b }} \mathrm{Y} 2=$ distance from top of the steel beam to concrete flange force												
$\Omega_{b}=1.67$	$\phi_{b}=0.90$													

			Co Ava	Tabl MP ilabl	$\begin{aligned} & 3-1 \\ & \text { OSi } \\ & \text { Str } \end{aligned}$								
Shape	M_{p} / Ω_{b}	${ }_{\phi} M_{p}$	PNAC	$Y 1^{\text {a }}$	$\sum \boldsymbol{Q}_{\boldsymbol{n}}{ }^{\text {d }}$	$Y 2^{\text {b }}$, in.							
	kip-ft					2		2.5		3		3.5	
	ASD	LRFD		in.	kip	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
W40×183	1930	2900	TFL	0	2670	2860	4300	2930	4400	2990	4500	3060	4600
			2	0.300	2310	2820	4240	2880	4330	2940	4410	2990	4500
			3	0.600	1960	2780	4180	2830	4250	2880	4320	2920	4400
			4	0.900	1600	2730	4100	2770	4160	2810	4220	2850	4280
			BFL	1.20	1250	2680	4020	2710	4070	2740	4110	2770	4160
			6	4.77	958	2610	3920	2630	3950	2650	3990	2680	4030
			7	9.25	666	2480	3720	2490	3750	2510	3770	2530	3800
W40×167	1730	2600	TFL	0	2470	2620	3940	2680	4030	2740	4120	2800	4220
			2	0.258	2160	2590	3890	2640	3970	2700	4050	2750	4130
			3	0.515	1860	2550	3840	2600	3900	2640	3970	2690	4040
			4	0.773	1550	2510	3770	2550	3830	2590	3890	2630	3950
			BFL	1.03	1250	2470	3710	2490	3760	2530	3800	2560	3850
			6	4.95	933	2390	3600	2420	3630	2440	3670	2460	3700
			7	9.82	616	2240	3370	2260	3400	2280	3420	2290	3440
W40×149	1490	2240	TFL	0	2190	2310	3470	2360	3550	2420	3630	2470	3710
			2	0.208	1950	2280	3430	2330	3500	2380	3570	2430	3650
			3	0.415	1700	2250	3380	2290	3450	2340	3510	2380	3580
			4	0.623	1460	2220	3340	2260	3390	2290	3450	2330	3500
			BFL	0.830	1210	2190	3290	2220	3330	2250	3380	2280	3420
			6	5.15	879	2110	3170	2130	3200	2150	3240	2180	3270
			7	10.4	548	1950	2930	1960	2950	1980	2970	1990	2990
W36×302	3190	4800	TFL	0	4450	4590	6890	4700	7060	4810	7230	4920	7390
			2	0.420	3750	4510	6780	4600	6920	4700	7060	4790	7200
			3	0.840	3050	4420	6640	4490	6750	4570	6870	4640	6980
			4	1.26	2350	4310	6480	4370	6570	4430	6650	4490	6740
			BFL	1.68	1640	4190	6290	4230	6360	4270	6420	4310	6480
			6	4.06	1380	4120	6200	4160	6250	4190	6300	4230	6350
			7	6.88	1110	4030	6050	4050	6090	4080	6130	4110	6170
W36×282	2970	4460	TFL	0	4150	4250	6390	4350	6540	4460	6700	4560	6850
			2	0.393	3490	4180	6280	4270	6410	4350	6540	4440	6670
			3	0.785	2840	4090	6150	4170	6260	4240	6370	4310	6470
			4	1.18	2190	4000	6010	4050	6090	4110	6170	4160	6260
			BFL	1.57	1540	3890	5840	3930	5900	3970	5960	4000	6020
			6	4.00	1290	3830	5760	3860	5800	3890	5850	3930	5900
			7	6.84	1040	3740	5620	3760	5660	3790	5690	3810	5730
ASD	LRFD	a $Y 1=$ distance from top of the steel beam to plastic neutral axis b $Y 2=$ distance from top of the steel beam to concrete flange force											
$\Omega_{b}=1.67$	$\phi_{b}=0.90$	c See Figure 3-3(c) for PNA locations. d Ductility (slip capacity) of the shear connection at the beam/concrete interface may control minimum ΣQ_{n} requirements per AISC Specification Section I3.2d.											

$F_{y}=50 \mathrm{ksi}$			Table 3-19 (continued) Composite W-Shapes Available Strength in Flexure, kip-ft									N4O		
Shape	Y2 ${ }^{\text {b }}$, in.													
	4		4.5		5		5.5		6		6.5		7	
	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
W40×183	3130	4700	3190	4800	3260	4900	3320	5000	3390	5100	3460	5200	3520	5300
	3050	4590	3110	4670	3170	4760	3220	4850	3280	4930	3340	5020	3400	5110
	2970	4470	3020	4540	3070	4620	3120	4690	3170	4760	3220	4840	3270	4910
	2890	4340	2930	4400	2970	4460	3010	4520	3050	4580	3090	4640	3130	4700
	2800	4210	2830	4260	2860	4300	2890	4350	2920	4400	2960	4440	2990	4490
	2700	4060	2730	4100	2750	4130	2770	4170	2800	4200	2820	4240	2850	4280
	2540	3820	2560	3850	2580	3870	2590	3900	2610	3920	2630	3950	2640	3970
W40×167	-2870	4310	2930	4400	2990	4490	3050	4580	3110	4680	3170	4770	3240	4860
	2800	4210	2860	4290	2910	4380	2970	4460	3020	4540	3070	4620	3130	4700
	2740	4110	2780	4180	2830	4250	2880	4320	2920	4390	2970	4460	3020	4530
	2670	4010	2710	4070	2740	4120	2780	4180	2820	4240	2860	4300	2900	4360
	2590	3900	2620	3940	2650	3990	2690	4040	2720	4080	2750	4130	2780	4180
	2490	3740	2510	3770	2530	3810	2560	3840	2580	3880	2600	3910	2630	3950
	2310	3470	2320	3490	2340	3510	2350	3540	2370	3560	2380	3580	2400	3600
W40×149	- 2520	3790	2580	3880	2630	3960	2690	4040	2740	4120	2800	4200	2850	4290
	2470	3720	2520	3790	2570	3860	2620	3940	2670	4010	2720	4080	2770	4160
	2420	3640	2460	3700	2510	3770	2550	3830	2590	3890	2630	3960	2680	4020
	2370	3560	2400	3610	2440	3670	2480	3720	2510	3780	2550	3830	2580	3880
	2310	3470	2340	3520	2370	3560	2400	3610	2430	3650	2460	3700	2490	3740
	2200	3300	2220	3340	2240	3370	2260	3400	2290	3430	2310	3470	2330	3500
	2000	3010	2020	3030	2030	3050	2040	3070	2060	3090	2070	3110	2090	3130
W36×302	25030	7560	5140	7730	5250	7890	5360	8060	5470	8230	5580	8390	5700	8560
	4880	7340	4980	7480	5070	7620	5160	7760	5260	7900	5350	8040	5440	8180
	4720	7090	4800	7210	4870	7320	4950	7440	5020	7550	5100	7670	5180	7780
	4540	6830	4600	6920	4660	7010	4720	7090	4780	7180	4840	7270	4900	7360
	4350	6540	4390	6600	4430	6660	4470	6730	4520	6790	4560	6850	4600	6910
	4260	6410	4300	6460	4330	6510	4370	6560	4400	6610	4430	6670	4470	6720
	4140	6220	4160	6260	4190	6300	4220	6340	4250	6380	4270	6420	4300	6470
W36×282	24660	7010	4770	7170	4870	7320	4970	7480	5080	7630	5180	7790	5280	7940
	4530	6810	4610	6940	4700	7070	4790	7200	4880	7330	4960	7460	5050	7590
	4380	6580	4450	6690	4520	6790	4590	6900	4660	7010	4730	7110	4800	7220
	4220	6340	4270	6420	4330	6500	4380	6580	4440	6670	4490	6750	4540	6830
	4040	6080	4080	6130	4120	6190	4160	6250	4200	6310	4230	6360	4270	6420
	3960	5950	3990	6000	4020	6050	4050	6090	4090	6140	4120	6190	4150	6240
	3840	5770	3870	5810	3890	5850	3920	5890	3940	5930	3970	5970	4000	6010
ASD	LRFD	${ }^{\text {b }} \mathrm{Y} 2=$ distance from top of the steel beam to concrete flange force												
$\Omega_{b}=1.67$	$\phi_{b}=0.90$													

$F_{y}=50 \mathrm{ksi}$			Table 3-19 (continued) Composite W-Shapes Available Strength in Flexure, kip-ft										36	
Shape	Y2 ${ }^{\text {b }}$, in.													
	4		4.5		5		5.5		6		6.5		7	
	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
W36×262	24320	6500	4420	6640	4520	6790	4610	6930	4710	7080	4810	7220	4900	7370
	4200	6310	4280	6430	4360	6560	4440	6680	4530	6800	4610	6920	4690	7050
	4060	6110	4130	6210	4200	6310	4260	6410	4330	6510	4400	6610	4460	6710
	3920	5890	3970	5970	4020	6040	4070	6120	4120	6200	4180	6280	4230	6350
	3760	5650	3800	5710	3830	5760	3870	5820	3910	5870	3940	5930	3980	5980
	3680	5530	3710	5570	3740	5620	3770	5670	3800	5710	3830	5760	3860	5800
	3560	5350	3580	5390	3610	5420	3630	5460	3660	5490	3680	5530	3700	5570
W36×256	- 4260	6410	4360	6550	4450	6690	4550	6830	4640	6970	4730	7120	4830	7260
	4150	6240	4230	6360	4320	6490	4400	6610	4480	6730	4560	6850	4640	6970
	4030	6060	4100	6160	4170	6260	4230	6360	4300	6470	4370	6570	4440	6670
	3900	5860	3950	5940	4010	6020	4060	6100	4120	6190	4170	6270	4220	6350
	3750	5640	3790	5700	3830	5760	3880	5830	3920	5890	3960	5950	4000	6010
	3620	5440	3650	5490	3690	5540	3720	5590	3750	5640	3780	5690	3820	5740
	3420	5150	3450	5180	3470	5220	3500	5250	3520	5290	3540	5320	3570	5360
W36×247	4040	6080	4130	6210	4220	6350	4310	6480	4400	6620	4500	6760	4590	6890
	3930	5900	4000	6020	4080	6130	4160	6250	4230	6360	4310	6480	4390	6590
	3800	5710	3860	5810	3930	5900	3990	6000	4050	6090	4110	6180	4180	6280
	3670	5510	3720	5580	3760	5660	3810	5730	3860	5800	3910	5880	3960	5950
	3520	5300	3560	5350	3590	5400	3630	5450	3660	5510	3700	5560	3730	5610
	3440	5170	3470	5220	3500	5260	3530	5300	3560	5350	3590	5390	3620	5430
	3330	5000	3350	5030	3370	5070	3390	5100	3420	5140	3440	5170	3460	5200
W36×232	23830	5750	3910	5880	4000	6010	4080	6130	4170	6260	4250	6390	4330	6520
	3730	5600	3800	5710	3870	5820	3950	5930	4020	6040	4090	6150	4160	6260
	3620	5440	3680	5530	3740	5620	3800	5710	3860	5800	3920	5900	3980	5990
	3500	5260	3550	5330	3600	5410	3650	5480	3700	5560	3750	5630	3800	5710
	3370	5070	3410	5120	3450	5180	3480	5240	3520	5290	3560	5350	3600	5410
	3260	4890	3290	4940	3310	4980	3340	5030	3370	5070	3400	5110	3430	5160
	3080	4630	3100	4660	3120	4690	3140	4720	3160	4750	3180	4790	3210	4820
W36×231	13790	5690	3870	5820	3960	5950	4040	6070	4130	6200	4210	6330	4300	6460
	3680	5530	3750	5640	3820	5750	3890	5850	3970	5960	4040	6070	4110	6180
	3560	5350	3620	5440	3680	5530	3740	5620	3800	5710	3860	5800	3920	5890
	3440	5170	3480	5240	3530	5310	3580	5380	3620	5440	3670	5510	3720	5580
	3310	4970	3340	5020	3370	5070	3410	5120	3440	5170	3470	5220	3500	5270
	3230	4850	3260	4890	3280	4930	3310	4980	3340	5020	3360	5060	3390	5100
	3120	4680	3140	4720	3160	4750	3180	4780	3200	4810	3220	4840	3240	4880
ASD	LRFD	${ }^{\text {b }} \mathrm{Y} 2=$ distance from top of the steel beam to concrete flange force												
$\Omega_{b}=1.67$	$\phi_{b}=0.90$													

$F_{y}=50 \mathrm{ksi}$			Table 3-19 (continued) Composite W-Shapes Available Strength in Flexure, kip-ft										36	
Shape	Y2 ${ }^{\text {b }}$, in.													
	4		4.5		5		5.5		6		6.5		7	
	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
W36×210	- 3450	5190	3530	5300	3610	5420	3680	5540	3760	5650	3840	5770	3920	5880
	3370	5060	3430	5160	3500	5260	3570	5360	3630	5460	3700	5560	3770	5660
	3270	4920	3330	5000	3390	5090	3440	5170	3500	5260	3550	5340	3610	5430
	3170	4770	3220	4840	3260	4910	3310	4980	3360	5040	3400	5110	3450	5180
	3060	4610	3100	4660	3140	4710	3170	4770	3210	4820	3240	4880	3280	4930
	2950	4430	2970	4470	3000	4510	3030	4550	3060	4590	3080	4640	3110	4680
	2760	4160	2780	4180	2800	4210	2820	4240	2840	4270	2860	4300	2880	4330
W36×194	43160	4760	3240	4860	3310	4970	3380	5080	3450	5180	3520	5290	3590	5400
	3090	4640	3150	4730	3210	4820	3270	4910	3330	5010	3390	5100	3450	5190
	3000	4510	3050	4590	3100	4670	3160	4740	3210	4820	3260	4900	3310	4980
	2910	4370	2950	4440	2990	4500	3040	4560	3080	4630	3120	4690	3160	4760
	2810	4230	2840	4280	2880	4330	2910	4380	2940	4430	2980	4480	3010	4530
	2710	4070	2730	4100	2760	4140	2780	4180	2810	4220	2830	4260	2860	4300
	2540	3810	2560	3840	2570	3870	2590	3900	2610	3920	2630	3950	2640	3980
W36×182	2960	4450	3030	4550	3100	4650	3160	4750	3230	4850	3300	4950	3360	5060
	2890	4340	2950	4430	3000	4520	3060	4600	3120	4690	3180	4780	3240	4860
	2810	4220	2860	4300	2910	4370	2960	4440	3010	4520	3050	4590	3110	4660
	2720	4100	2760	4160	2810	4220	2850	4280	2890	4340	2930	4400	2970	4460
	2630	3960	2670	4010	2700	4050	2730	4100	2760	4150	2790	4190	2820	4240
	2530	3810	2560	3850	2580	3880	2610	3920	2630	3950	2650	3990	2680	4030
	2380	3570	2390	3600	2410	3620	2430	3650	2440	3670	2460	3700	2480	3720
W36×170	- 2760	4140	2820	4240	2880	4330	2940	4430	3010	4520	3070	4610	3130	4710
	2690	4040	2740	4120	2800	4200	2850	4290	2910	4370	2960	4450	3010	4530
	2620	3930	2660	4000	2710	4070	2750	4140	2800	4210	2850	4280	2890	4350
	2540	3820	2580	3870	2610	3930	2650	3990	2690	4040	2730	4100	2770	4160
	2460	3690	2490	3740	2520	3780	2550	3830	2580	3870	2600	3910	2630	3960
	2360	3550	2390	3580	2410	3620	2430	3650	2450	3690	2480	3720	2500	3750
	2210	3320	2230	3350	2240	3370	2260	3400	2270	3420	2290	3440	2310	3470
W36×160	- 2580	3880	2640	3970	2700	4050	2760	4140	2810	4230	2870	4320	2930	4410
	2520	3780	2570	3860	2620	3940	2670	4010	2720	4090	2770	4170	2820	4240
	2450	3680	2490	3750	2540	3810	2580	3880	2620	3940	2670	4010	2710	4070
	2380	3580	2410	3630	2450	3680	2490	3740	2520	3790	2560	3840	2590	3900
	2300	3460	2330	3510	2360	3550	2390	3590	2420	3630	2450	3680	2470	3720
	2210	3330	2230	3360	2260	3390	2280	3420	2300	3450	2320	3490	2340	3520
	2070	3110	2080	3130	2100	3150	2110	3170	2130	3190	2140	3220	2150	3240
ASD	LRFD	${ }^{\text {b }} \mathrm{Y} 2=$ distance from top of the steel beam to concrete flange force												
$\Omega_{b}=1.67$	$\phi_{b}=0.90$													

			Table 3-19 (continued) Composite W-Shapes Available Strength in Flexure, kip-ft													
Shape	M_{p} / Ω_{b}	$\phi_{b} M_{p}$	PNA ${ }^{\text {c }}$	Y1a	$\sum \mathbf{O}_{n}{ }^{\text {d }}$	Y2b, in.										
						2		2.5		3		3.5				
	ASD	LRFD		in.	kip	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD			
W36×150	1450	2180	TFL	0	2220	2210	3310	2260	3400	2320	3480	2370	3560			
			2	0.235	1930	2180	3270	2220	3340	2270	3410	2320	3490			
			3	0.470	1650	2140	3220	2180	3280	2220	3340	2270	3410			
			4	0.705	1370	2110	3160	2140	3220	2170	3270	2210	3320			
			BFL	0.940	1090	2070	3110	2090	3150	2120	3190	2150	3230			
			6	4.82	820	2000	3010	2020	3040	2040	3070	2060	3100			
			7	9.09	554	1880	2830	1900	2850	1910	2870	1930	2890			
W36×135	1270	1910	TFL	0	2000	1970	2960	2020	3040	2070	3110	2120	3190			
			2	0.198	1760	1950	2930	1990	2990	2030	3060	2080	3120			
			3	0.395	1520	1920	2880	1960	2940	2000	3000	2030	3060			
			4	0.593	1280	1890	2840	1920	2890	1950	2940	1990	2980			
			BFL	0.790	1050	1860	2790	1880	2830	1910	2870	1940	2910			
			6	4.92	773	1790	2700	1810	2720	1830	2750	1850	2780			
			7	9.49	499	1670	2510	1680	2530	1690	2540	1710	2560			
W 33×221	2140	3210	TFL	0	3270	3090	4640	3170	4760	3250	4890	3330	5010			
			2	0.320	2760	3030	4560	3100	4660	3170	4770	3240	4870			
			3	0.640	2250	2970	4460	3030	4550	3080	4630	3140	4720			
			4	0.960	1750	2900	4360	2940	4420	2990	4490	3030	4560			
			BFL	1.28	1240	2820	4240	2850	4290	2880	4330	2910	4380			
			6	3.67	1030	2770	4170	2800	4210	2830	4250	2850	4290			
			7	6.42	816	2700	4060	2720	4090	2740	4120	2760	4150			
W33×201	1930	2900	TFL	0	2960	2780	4180	2850	4290	2930	4400	3000	4510			
			2	0.288	2500	2730	4110	2790	4200	2860	4290	2920	4390			
			3	0.575	2050	2680	4020	2730	4100	2780	4180	2830	4250			
			4	0.863	1600	2620	3930	2660	3990	2700	4050	2740	4110			
			BFL	1.15	1150	2550	3830	2580	3870	2600	3920	2630	3960			
			6	3.65	944	2500	3760	2530	3800	2550	3830	2570	3870			
			7	6.52	739	2430	3650	2450	3680	2470	3710	2490	3740			
W33×169	1570	2360	TFL	0	2480	2330	3510	2400	3600	2460	3690	2520	3790			
			2	0.305	2120	2300	3450	2350	3530	2400	3610	2460	3690			
			3	0.610	1770	2250	3390	2300	3450	2340	3520	2390	3590			
			4	0.915	1420	2210	3310	2240	3370	2280	3420	2310	3470			
			BFL	1.22	1070	2150	3230	2180	3270	2200	3310	2230	3350			
			6	4.28	845	2100	3150	2120	3190	2140	3220	2160	3250			
			7	7.66	619	2010	3020	2020	3040	2040	3070	2060	3090			
	LRFD	a $Y 1=$ distance from top of the steel beam to plastic neutral axis														
ASD																
$\Omega_{b}=1.67$	$\phi_{b}=0.90$	${ }^{\text {c }}$ See Figure 3-3(c) for PNA locations. d Ductility (slip capacity) of the shear connection at the beam/concrete interface may control minimum ΣQ_{n} requirements per AISC Specification Section I3.2d.														

$F_{y}=50 \mathrm{ksi}$			Table 3-19 (continued) Composite W-Shapes Available Strength in Flexure, kip-ft											
Shape	Y2 ${ }^{\text {b }}$, in.													
	4		4.5		5		5.5		6		6.5		7	
	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
W36×150	02430	3650	2480	3730	2540	3810	2590	3900	2650	3980	2700	4060	2760	4140
	2370	3560	2420	3630	2460	3700	2510	3780	2560	3850	2610	3920	2660	3990
	2310	3470	2350	3530	2390	3590	2430	3650	2470	3710	2510	3780	2550	3840
	2240	3370	2280	3420	2310	3470	2340	3520	2380	3580	2410	3630	2450	3680
	2170	3270	2200	3310	2230	3350	2260	3390	2280	3430	2310	3470	2340	3510
	2080	3130	2100	3160	2130	3200	2150	3230	2170	3260	2190	3290	2210	3320
	1940	2910	1950	2940	1970	2960	1980	2980	1990	3000	2010	3020	2020	3040
W36×135	52170	3260	2220	3340	2270	3410	2320	3490	2370	3560	2420	3640	2470	3710
	2120	3190	2170	3250	2210	3320	2250	3390	2300	3450	2340	3520	2380	3580
	2070	3110	2110	3170	2150	3230	2180	3280	2220	3340	2260	3400	2300	3450
	2020	3030	2050	3080	2080	3130	2110	3180	2150	3220	2180	3270	2210	3320
	1960	2950	1990	2990	2010	3030	2040	3070	2070	3110	2090	3150	2120	3190
	1870	2810	1890	2840	1910	2870	1930	2900	1950	2930	1970	2960	1990	2990
	1720	2580	1730	2600	1740	2620	1750	2640	1770	2660	1780	2670	1790	2690
W 33×221	1 3410	5130	3490	5250	3580	5380	3660	5500	3740	5620	3820	5740	3900	5860
	3310	4970	3380	5080	3450	5180	3510	5280	3580	5390	3650	5490	3720	5590
	3200	4800	3250	4890	3310	4970	3360	5060	3420	5140	3480	5220	3530	5310
	3070	4620	3120	4690	3160	4750	3210	4820	3250	4880	3290	4950	3340	5010
	2940	4430	2980	4470	3010	4520	3040	4570	3070	4610	3100	4660	3130	4710
	2880	4320	2900	4360	2930	4400	2950	4440	2980	4480	3010	4520	3030	4560
	2780	4180	2800	4210	2820	4240	2840	4270	2860	4300	2880	4330	2900	4360
W33×201	13070	4620	3150	4730	3220	4840	3300	4950	3370	5060	3440	5170	3520	5290
	2980	4480	3040	4570	3110	4670	3170	4760	3230	4860	3290	4950	3360	5040
	2880	4330	2930	4410	2980	4480	3030	4560	3090	4640	3140	4720	3190	4790
	2770	4170	2810	4230	2850	4290	2890	4350	2930	4410	2970	4470	3010	4530
	2660	4000	2690	4040	2720	4090	2750	4130	2780	4170	2810	4220	2830	4260
	2600	3900	2620	3940	2640	3980	2670	4010	2690	4050	2720	4080	2740	4120
	2500	3760	2520	3790	2540	3820	2560	3850	2580	3880	2600	3900	2620	3930
W 33×169	92580	3880	2640	3970	2700	4070	2770	4160	2830	4250	2890	4340	2950	4440
	2510	3770	2560	3850	2610	3930	2670	4010	2720	4090	2770	4170	2830	4250
	2430	3650	2470	3720	2520	3790	2560	3850	2610	3920	2650	3990	2700	4050
	2350	3530	2380	3580	2420	3630	2450	3690	2490	3740	2520	3790	2560	3850
	2260	3390	2290	3430	2310	3470	2340	3510	2370	3550	2390	3600	2420	3640
	2180	3280	2200	3310	2230	3350	2250	3380	2270	3410	2290	3440	2310	3470
	2070	3110	2090	3140	2100	3160	2120	3180	2130	3210	2150	3230	2160	3250
ASD	LRFD	${ }^{\text {b }} \mathrm{Y} 2=$ distance from top of the steel beam to concrete flange force												
$\Omega_{b}=1.67$	$\phi_{b}=0.90$													

			Table 3-19 (continued) Composite W-Shapes Available Strength in Flexure, kip-ft										
Shape	M_{p} / Ω_{b}	${ }_{\Delta b} M_{p}$	PNAC	$Y 1^{a}$	$\sum \boldsymbol{Q}_{\boldsymbol{n}}{ }^{\text {d }}$	Y2 ${ }^{\text {b }}$, in.							
	kip-ft					2		2.5		3		3.5	
	ASD	LRFD		in.	kip	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
W33×152	1390	2100	TFL	0	2250	2100	3160	2160	3240	2210	3330	2270	3410
			2	0.265	1940	2070	3110	2120	3180	2160	3250	2210	3330
			3	0.530	1630	2030	3050	2070	3110	2110	3170	2150	3240
			4	0.795	1320	1990	2990	2020	3040	2060	3090	2090	3140
			BFL	1.06	1020	1950	2920	1970	2960	2000	3000	2020	3040
			6	4.34	788	1890	2850	1910	2870	1930	2900	1950	2930
			7	7.91	561	1800	2710	1820	2730	1830	2750	1840	2770
W 33×141	1280	1930	TFL	0	2080	1930	2900	1980	2980	2030	3060	2090	3140
			2	0.240	1800	1900	2860	1950	2930	1990	2990	2040	3060
			3	0.480	1520	1870	2810	1910	2870	1950	2920	1980	2980
			4	0.720	1250	1830	2760	1860	2800	1900	2850	1930	2900
			BFL	0.960	971	1790	2700	1820	2730	1840	2770	1870	2810
			6	4.34	745	1740	2620	1760	2650	1780	2680	1800	2700
			7	8.08	519	1650	2480	1660	2500	1680	2520	1690	2540
W 33×130	1170	1750	TFL	0	1920	1770	2660	1820	2740	1870	2810	1920	2880
			2	0.214	1670	1750	2630	1790	2690	1830	2750	1870	2810
			3	0.428	1420	1720	2580	1750	2640	1790	2690	1820	2740
			4	0.641	1180	1690	2540	1720	2580	1750	2620	1780	2670
			BFL	0.855	932	1650	2490	1680	2520	1700	2560	1720	2590
			6	4.39	705	1600	2410	1620	2440	1640	2460	1660	2490
			7	8.30	479	1510	2270	1520	2290	1530	2300	1540	2320
W 33×118	1040	1560	TFL	0	1740	1600	2400	1640	2470	1680	2530	1730	2600
			2	0.185	1520	1580	2370	1610	2420	1650	2480	1690	2540
			3	0.370	1310	1550	2330	1580	2380	1620	2430	1650	2480
			4	0.555	1100	1520	2290	1550	2330	1580	2370	1610	2420
			BFL	0.740	884	1500	2250	1520	2280	1540	2320	1560	2350
			6	4.47	659	1450	2170	1460	2200	1480	2220	1500	2250
			7	8.56	434	1350	2030	1360	2050	1370	2060	1380	2080
W30×116	943	1420	TFL	0	1710	1450	2180	1490	2240	1540	2310	1580	2370
			2	0.213	1490	1430	2150	1460	2200	1500	2260	1540	2310
			3	0.425	1260	1400	2110	1430	2150	1460	2200	1500	2250
			4	0.638	1040	1370	2060	1400	2100	1430	2140	1450	2180
			BFL	0.850	818	1340	2020	1360	2050	1380	2080	1400	2110
			6	3.98	623	1300	1960	1320	1980	1330	2000	1350	2030
			7	7.43	428	1230	1840	1240	1860	1250	1870	1260	1890
ASD	LRFD	a $Y 1=$ distance from top of the steel beam to plastic neutral axis b $\mathrm{Y} 2=$ distance from top of the steel beam to concrete flange force											
ASD ${ }^{\text {a }}$, 1.67	$\phi_{b}=0.90$	c See Figure 3-3(c) for PNA locations. d Ductility (slip capacity) of the shear connection at the beam/concrete interface may control minimum ΣQ_{n} requirements per AISC Specification Section I3.2d.											

$F_{y}=50 \mathrm{ksi}$			Table 3-19 (continued) Composite W-Shapes Available Strength in Flexure, kip-ft									N33		
Shape	Y2b, in.													
	4		4.5		5		5.5		6		6.5		7	
	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
W 33×152	22320	3490	2380	3580	2440	3660	2490	3750	2550	3830	2600	3910	2660	4000
	2260	3400	2310	3470	2360	3540	2410	3620	2450	3690	2500	3760	2550	3830
	2190	3300	2230	3360	2280	3420	2320	3480	2360	3540	2400	3600	2440	3660
	2120	3190	2160	3240	2190	3290	2220	3340	2250	3390	2290	3440	2320	3490
	2050	3080	2070	3110	2100	3150	2120	3190	2150	3230	2170	3270	2200	3310
	1970	2960	1990	2990	2010	3020	2030	3050	2050	3080	2070	3110	2090	3140
	1860	2790	1870	2810	1890	2830	1900	2850	1910	2880	1930	2900	1940	2920
W 33×141	12140	3210	2190	3290	2240	3370	2290	3450	2350	3520	2400	3600	2450	3680
	2080	3130	2130	3200	2170	3260	2220	3330	2260	3400	2310	3470	2350	3530
	2020	3040	2060	3100	2100	3150	2140	3210	2170	3270	2210	3320	2250	3380
	1960	2940	1990	2990	2020	3040	2050	3080	2080	3130	2110	3180	2140	3220
	1890	2840	1920	2880	1940	2920	1960	2950	1990	2990	2010	3020	2040	3060
	1820	2730	1840	2760	1850	2790	1870	2820	1890	2840	1910	2870	1930	2900
	1700	2560	1720	2580	1730	2600	1740	2620	1750	2640	1770	2660	1780	2680
W 33×130	- 1960	2950	2010	3020	2060	3100	2110	3170	2150	3240	2200	3310	2250	3380
	1910	2880	1960	2940	2000	3000	2040	3060	2080	3130	2120	3190	2160	3250
	1860	2800	1900	2850	1930	2900	1970	2960	2000	3010	2040	3060	2070	3120
	1800	2710	1830	2760	1860	2800	1890	2850	1920	2890	1950	2930	1980	2980
	1750	2630	1770	2660	1790	2690	1820	2730	1840	2760	1860	2800	1890	2830
	1670	2510	1690	2540	1710	2570	1730	2590	1740	2620	1760	2650	1780	2670
	1560	2340	1570	2360	1580	2370	1590	2390	1600	2410	1620	2430	1630	2450
W 33×118	81770	2660	1810	2730	1860	2790	1900	2860	1940	2920	1990	2990	2030	3050
	1730	2600	1760	2650	1800	2710	1840	2770	1880	2820	1920	2880	1950	2940
	1680	2530	1710	2580	1750	2630	1780	2670	1810	2720	1850	2770	1880	2820
	1630	2460	1660	2500	1690	2540	1720	2580	1740	2620	1770	2660	1800	2700
	1580	2380	1610	2420	1630	2450	1650	2480	1670	2510	1700	2550	1720	2580
	1510	2270	1530	2300	1550	2320	1560	2350	1580	2370	1590	2400	1610	2420
	1390	2100	1410	2110	1420	2130	1430	2140	1440	2160	1450	2180	1460	2190
W30×116	611620	2440	1660	2500	1710	2570	1750	2630	1790	2690	1830	2760	1880	2820
	1580	2370	1610	2420	1650	2480	1690	2540	1720	2590	1760	2650	1800	2700
	1530	2300	1560	2340	1590	2390	1620	2440	1650	2490	1680	2530	1720	2580
	1480	2220	1500	2260	1530	2300	1550	2340	1580	2380	1610	2410	1630	2450
	1420	2140	1440	2170	1470	2200	1490	2230	1510	2260	1530	2290	1550	2320
	1360	2050	1380	2070	1390	2100	1410	2120	1430	2140	1440	2170	1460	2190
	1270	1910	1280	1920	1290	1940	1300	1950	1310	1970	1320	1990	1330	2000
ASD	LRFD	${ }^{\text {b }} \mathrm{Y} 2=$ distance from top of the steel beam to concrete flange force												
$\Omega_{b}=1.67$	$\phi_{b}=0.90$													

			Table 3-19 (continued) Composite W-Shapes Available Strength in Flexure, kip-ft										
Shape	M_{p} / Ω_{b}	${ }_{\Delta b} M_{p}$	PNAC	$Y 1^{a}$	$\sum \boldsymbol{Q}_{\boldsymbol{n}}{ }^{\text {d }}$	Y2 ${ }^{\text {b }}$, in.							
	kip-ft					2		2.5		3		3.5	
	ASD	LRFD		in.	kip	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
W30×108	863	1300	TFL	0	1590	1340	2010	1380	2070	1420	2130	1460	2190
			2	0.190	1390	1320	1980	1350	2030	1380	2080	1420	2130
			3	0.380	1190	1290	1940	1320	1990	1350	2030	1380	2080
			4	0.570	987	1270	1910	1290	1940	1320	1980	1340	2020
			BFL	0.760	787	1240	1870	1260	1900	1280	1930	1300	1960
			6	4.04	592	1200	1800	1210	1830	1230	1850	1240	1870
			7	7.63	396	1120	1690	1130	1700	1140	1720	1150	1730
W30×99	778	1170	TFL	0	1450	1220	1830	1260	1890	1290	1940	1330	2000
			2	0.168	1270	1200	1800	1230	1850	1260	1900	1300	1950
			3	0.335	1100	1180	1780	1210	1820	1240	1860	1260	1900
			4	0.503	922	1160	1740	1180	1780	1210	1810	1230	1850
			BFL	0.670	747	1140	1710	1160	1740	1170	1770	1190	1790
			6	4.19	555	1100	1650	1110	1670	1120	1690	1140	1710
			7	7.88	363	1020	1530	1030	1540	1040	1560	1050	1570
W30×90	706	1060	TFL	0	1320	1100	1650	1130	1700	1160	1750	1200	1800
			2	0.153	1160	1080	1630	1110	1670	1140	1710	1170	1760
			3	0.305	998	1070	1600	1090	1640	1110	1680	1140	1710
			4	0.458	839	1050	1570	1070	1600	1090	1640	1110	1670
			BFL	0.610	681	1030	1540	1040	1570	1060	1590	1080	1620
			6	4.01	505	989	1490	1000	1510	1010	1530	1030	1540
			7	7.76	329	920	1380	928	1400	937	1410	945	1420
W27×102	761	1140	TFL	0	1500	1160	1750	1200	1810	1240	1860	1280	1920
			2	0.208	1290	1140	1720	1170	1770	1210	1810	1240	1860
			3	0.415	1090	1120	1680	1150	1720	1170	1760	1200	1800
			4	0.623	878	1090	1640	1110	1670	1140	1710	1160	1740
			BFL	0.830	670	1060	1600	1080	1620	1100	1650	1110	1670
			6	3.40	523	1030	1550	1050	1570	1060	1590	1070	1610
			7	6.27	375	984	1480	993	1490	1000	1510	1010	1520
W27×94	694	1040	TFL	0	1380	1060	1600	1100	1650	1130	1700	1170	1750
			2	0.186	1190	1040	1570	1070	1610	1100	1660	1130	1700
			3	0.373	1010	1020	1540	1050	1580	1070	1610	1100	1650
			4	0.559	821	1000	1500	1020	1530	1040	1570	1060	1600
			BFL	0.745	635	976	1470	992	1490	1010	1510	1020	1540
			6	3.45	490	947	1420	959	1440	971	1460	983	1480
			7	6.41	345	897	1350	905	1360	914	1370	922	1390
ASD	LRFD	a $Y 1=$ distance from top of the steel beam to plastic neutral axis b $Y 2=$ distance from top of the steel beam to concrete flange force											
ASD ${ }^{\text {a }}$, 1.67	$\phi_{b}=0.90$	c See Figure 3-3(c) for PNA locations. d Ductility (slip capacity) of the shear connection at the beam/concrete interface may control minimum ΣQ_{n} requirements per AISC Specification Section I3.2d.											

$F_{y}=50 \mathrm{ksi}$			Table 3-19 (continued) Composite W-Shapes Available Strength in Flexure, kip-ft									N30		
Shape	Y2 ${ }^{\text {b }}$, in.													
	4		4.5		5		5.5		6		6.5		7	
	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
W30×108	81490	2250	1530	2310	1570	2370	1610	2430	1650	2480	1690	2540	1730	2600
	1450	2190	1490	2240	1520	2290	1560	2340	1590	2390	1630	2450	1660	2500
	1410	2120	1440	2170	1470	2210	1500	2260	1530	2300	1560	2340	1590	2390
	1370	2050	1390	2090	1420	2130	1440	2170	1470	2200	1490	2240	1510	2280
	1320	1980	1340	2010	1360	2040	1380	2070	1400	2100	1420	2130	1440	2160
	1260	1890	1270	1910	1290	1940	1300	1960	1320	1980	1330	2000	1350	2030
	1160	1750	1170	1760	1180	1780	1190	1790	1200	1810	1210	1820	1220	1840
W30×99	1360	2050	1400	2100	1440	2160	1470	2210	1510	2270	1540	2320	1580	2380
	1330	2000	1360	2040	1390	2090	1420	2140	1460	2190	1490	2230	1520	2280
	1290	1940	1320	1980	1350	2020	1370	2060	1400	2100	1430	2150	1460	2190
	1250	1880	1270	1920	1300	1950	1320	1990	1340	2020	1370	2050	1390	2090
	1210	1820	1230	1850	1250	1880	1270	1910	1290	1930	1300	1960	1320	1990
	1150	1730	1160	1750	1180	1770	1190	1790	1210	1810	1220	1830	1230	1850
	1050	1590	1060	1600	1070	1610	1080	1630	1090	1640	1100	1650	1110	1670
W30×90	1230	1850	1260	1900	1300	1950	1330	2000	1360	2050	1390	2100	1430	2150
	1200	1800	1230	1840	1260	1890	1280	1930	1310	1970	1340	2020	1370	2060
	1160	1750	1190	1790	1210	1830	1240	1860	1260	1900	1290	1940	1310	1970
	1130	1700	1150	1730	1170	1760	1190	1790	1210	1820	1230	1860	1260	1890
	1090	1640	1110	1670	1130	1700	1150	1720	1160	1750	1180	1770	1200	1800
	1040	1560	1050	1580	1070	1600	1080	1620	1090	1640	1100	1660	1120	1680
	953	1430	961	1440	969	1460	978	1470	986	1480	994	1490	1000	1510
W27×102	21310	1970	1350	2030	1390	2090	1430	2140	1460	2200	1500	2260	1540	2310
	1270	1910	1300	1960	1340	2010	1370	2060	1400	2100	1430	2150	1460	2200
	1230	1840	1250	1880	1280	1930	1310	1970	1340	2010	1360	2050	1390	2090
	1180	1770	1200	1810	1220	1840	1250	1870	1270	1900	1290	1940	1310	1970
	1130	1700	1150	1720	1160	1750	1180	1770	1200	1800	1210	1830	1230	1850
	1090	1630	1100	1650	1110	1670	1130	1690	1140	1710	1150	1730	1160	1750
	1020	1540	1030	1550	1040	1560	1050	1580	1060	1590	1070	1610	1080	1620
W27×94	1200	1810	1240	1860	1270	1910	1300	1960	1340	2010	1370	2060	1410	2120
	1160	1750	1190	1790	1220	1840	1250	1880	1280	1930	1310	1970	1340	2020
	1120	1690	1150	1730	1170	1760	1200	1800	1220	1840	1250	1880	1270	1920
	1080	1630	1110	1660	1120	1690	1140	1720	1160	1750	1180	1780	1210	1810
	1040	1560	1050	1590	1070	1610	1090	1630	1100	1660	1120	1680	1130	1700
	996	1500	1010	1510	1020	1530	1030	1550	1040	1570	1060	1590	1070	1610
	931	1400	940	1410	948	1430	957	1440	965	1450	974	1460	983	1480
ASD	LRFD	${ }^{\text {b }} \mathrm{Y} 2=$ distance from top of the steel beam to concrete flange force												
$\Omega_{b}=1.67$	$\phi_{b}=0.90$													

			Table 3-19 (continued) Composite W-Shapes Available Strength in Flexure, kip-ft										
Shape	M_{p} / Ω_{b}	$\phi_{b} M_{p}$	PNAC	$Y 1^{\text {a }}$	$\sum \boldsymbol{Q}_{n}{ }^{\text {d }}$	$\boldsymbol{Y 2}{ }^{\text {b }}$, in.							
	kip-ft					2		2.5		3		3.5	
	ASD	LRFD		in.	kip	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
W27×84	609	915	TFL	0	1240	946	1420	977	1470	1010	1510	1040	1560
			2	0.160	1080	929	1400	956	1440	983	1480	1010	1520
			3	0.320	915	911	1370	934	1400	957	1440	980	1470
			4	0.480	755	892	1340	911	1370	930	1400	949	1430
			BFL	0.640	595	872	1310	887	1330	902	1360	916	1380
			6	3.53	452	843	1270	855	1280	866	1300	877	1320
			7	6.64	309	793	1190	800	1200	808	1210	816	1230
W24×94	634	953	TFL	0	1390	978	1470	1010	1520	1050	1570	1080	1630
			2	0.219	1190	957	1440	987	1480	1020	1530	1050	1570
			3	0.438	988	934	1400	959	1440	983	1480	1010	1510
			4	0.656	790	909	1370	928	1400	948	1430	968	1450
			BFL	0.875	591	881	1320	896	1350	911	1370	926	1390
			6	3.05	469	858	1290	869	1310	881	1320	893	1340
			7	5.43	346	819	1230	828	1240	837	1260	845	1270
W24×84	559	840	TFL	0	1240	866	1300	897	1350	927	1390	958	1440
			2	0.193	1060	848	1270	874	1310	901	1350	927	1390
			3	0.385	888	828	1240	850	1280	872	1310	894	1340
			4	0.578	714	806	1210	824	1240	842	1270	860	1290
			BFL	0.770	540	783	1180	797	1200	810	1220	824	1240
			6	3.02	425	761	1140	772	1160	782	1180	793	1190
			7	5.48	309	725	1090	733	1100	740	1110	748	1120
W24×76	499	750	TFL	0	1120	780	1170	808	1210	836	1260	863	1300
			2	0.170	967	764	1150	788	1180	812	1220	836	1260
			3	0.340	814	747	1120	767	1150	787	1180	807	1210
			4	0.510	662	728	1090	745	1120	761	1140	778	1170
			BFL	0.680	509	708	1060	721	1080	734	1100	746	1120
			6	2.99	394	687	1030	697	1050	707	1060	716	1080
			7	5.59	280	651	979	658	989	665	1000	672	1010
W24×68	442	664	TFL	0	1010	695	1040	720	1080	745	1120	770	1160
			2	0.146	874	681	1020	703	1060	725	1090	746	1120
			3	0.293	743	666	1000	685	1030	704	1060	722	1090
			4	0.439	611	651	978	666	1000	681	1020	697	1050
			BFL	0.585	480	635	954	647	972	658	990	670	1010
			6	3.04	366	613	922	623	936	632	949	641	963
			7	5.80	251	577	867	583	876	589	886	595	895
ASD	LRFD	a $Y 1=$ distance from top of the steel beam to plastic neutral axis b $\mathrm{Y} 2=$ distance from top of the steel beam to concrete flange force											
ASD $\Omega_{b}=1.67$	$\phi_{b}=0.90$	${ }^{\text {c }}$ See Figure 3-3(c) for PNA locations. d Ductility (slip capacity) of the shear connection at the beam/concrete interface may control minimum ΣQ_{n} requirements per AISC Specification Section I3.2d.											

$F_{y}=50 \mathrm{ksi}$ Available Strength kip-ft														
Shape	Y2b, in.													
	4		4.5		5		5.5		6		6.5		7	
	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
W21×57	606	911	627	943	648	974	669	1010	690	1040	710	1070	731	1100
	585	879	603	906	621	933	639	960	657	988	675	1020	694	1040
	562	845	577	868	593	891	609	915	624	938	640	961	655	985
	539	809	551	829	564	848	577	867	590	887	603	906	616	925
	514	773	524	788	535	804	545	819	555	834	565	850	575	865
	486	730	493	742	501	753	509	765	517	776	524	788	532	800
	445	669	450	677	455	684	461	692	466	700	471	708	476	716
W 21×55	582	875	602	905	622	936	643	966	663	996	683	1030	703	1060
	560	842	578	868	595	895	613	921	630	948	648	974	665	1000
	538	808	553	831	568	853	582	875	597	898	612	920	627	942
	515	774	527	792	539	810	551	828	563	847	576	865	588	883
	491	738	500	752	510	766	519	781	529	795	538	809	548	823
	466	701	474	712	481	723	488	734	496	745	503	756	510	767
	432	649	437	656	442	664	447	672	452	679	457	687	462	695
W 21×50	528	794	546	821	565	849	583	876	601	904	620	932	638	959
	510	767	527	791	543	816	559	840	575	864	591	889	607	913
	492	740	506	761	520	782	534	803	548	824	562	845	576	866
	473	711	485	729	497	747	509	764	520	782	532	800	544	818
	454	682	463	696	473	711	483	725	492	740	502	754	512	769
	425	639	433	650	440	661	447	671	454	682	461	693	468	704
	384	577	389	584	393	591	398	598	402	605	407	612	412	619
W 21×48	503	756	521	783	538	809	556	835	573	862	591	888	609	915
	485	729	501	753	516	776	532	799	547	822	562	845	578	868
	467	702	480	722	494	742	507	762	520	782	533	802	547	821
	449	674	460	691	471	707	482	724	493	741	504	757	515	774
	429	645	438	659	447	672	456	685	465	699	474	712	483	725
	405	609	412	619	418	629	425	639	432	649	438	659	445	669
	369	555	374	562	378	568	383	575	387	582	391	588	396	595
W 21×44	465	700	482	724	498	748	514	773	530	797	547	821	563	846
	451	677	465	699	479	721	494	742	508	764	523	785	537	807
	435	654	448	673	461	692	473	711	486	730	498	749	511	768
	420	631	431	647	441	663	452	679	463	696	474	712	484	728
	404	607	413	620	422	634	431	647	440	661	448	674	457	687
	377	566	383	576	390	586	396	595	403	605	409	615	416	625
	336	505	340	511	344	518	348	524	352	530	357	536	361	542
ASD	LRFD	b Y2 = distance from top of the steel beam to concrete flange force												
$\Omega_{b}=1.67$	$\phi_{b}=0.90$													

	V18		Ava	Tabl MP ilabl				ue Sha Fle			F_{y}	50	
Shape	M_{p} / Ω_{b}	$\phi_{b} M_{p}$	PNAC	$Y 1^{\text {a }}$	$\sum \mathbf{O}_{n}{ }^{\text {d }}$	$\boldsymbol{Y 2}{ }^{\text {b }}$, in.							
	kip-ft					2		2.5		3		3.5	
	ASD	LRFD		in.	kip	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
W18×60	307	461	TFL	0	880	487	733	509	766	531	799	553	832
			2	0.174	749	474	712	492	740	511	768	530	796
			3	0.348	617	459	690	474	713	490	736	505	759
			4	0.521	486	443	666	455	684	467	702	479	720
			BFL	0.695	355	426	640	435	653	444	667	452	680
			6	2.18	287	414	623	422	634	429	644	436	655
			7	3.80	220	398	598	403	606	409	614	414	623
W18×55	279	420	TFL	0	810	447	671	467	702	487	732	507	762
			2	0.158	691	434	653	452	679	469	705	486	731
			3	0.315	573	421	633	435	654	450	676	464	697
			4	0.473	454	407	612	418	629	430	646	441	663
			BFL	0.630	336	392	589	400	602	409	614	417	627
			6	2.15	269	381	572	387	582	394	592	401	603
			7	3.86	203	364	547	369	555	374	563	379	570
W18×50	252	379	TFL	0	735	403	606	422	634	440	662	458	689
			2	0.143	628	392	590	408	613	424	637	439	660
			3	0.285	521	381	572	394	592	407	611	420	631
			4	0.428	414	368	553	378	569	389	584	399	600
			BFL	0.570	308	355	533	362	545	370	556	378	568
			6	2.08	246	345	518	351	527	357	537	363	546
			7	3.82	184	329	495	334	502	339	509	343	516
W18×46	226	340	TFL	0	675	372	559	389	585	406	610	423	635
			2	0.151	583	363	545	377	567	392	589	406	611
			3	0.303	492	353	530	365	548	377	567	389	585
			4	0.454	400	342	513	352	528	362	543	372	558
			BFL	0.605	308	330	496	338	508	345	519	353	531
			6	2.42	239	318	478	324	487	330	496	336	505
			7	4.36	169	299	450	303	456	308	462	312	469
W18×40	196	294	TFL	0	590	322	485	337	507	352	529	367	551
			2	0.131	511	314	472	327	491	340	511	352	530
			3	0.263	432	306	459	316	475	327	492	338	508
			4	0.394	353	296	445	305	459	314	472	323	485
			BFL	0.525	274	287	431	294	441	300	451	307	462
			6	2.26	211	276	415	282	423	287	431	292	439
			7	4.27	148	260	390	263	396	267	401	271	407
ASD	LRFD												
$\Omega_{b}=1.67$	$\phi_{b}=0.90$	${ }^{\text {c }}$ See Figure 3-3(c) for PNA locations. d Ductility (slip capacity) of the shear connection at the beam/concrete interface may control minimum ΣQ_{n} requirements per AISC Specification Section I3.2d.											

$F_{y}=50 \mathrm{ksi}$ Available Strength kip-ft														
Shape	$Y 2^{\text {b }}$, in.													
	4		4.5		5		5.5		6		6.5		7	
	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
W18×60	575	865	597	898	619	931	641	964	663	997	685	1030	707	1060
	548	824	567	852	586	880	605	909	623	937	642	965	661	993
	521	782	536	805	551	829	567	852	582	875	598	898	613	921
	491	739	504	757	516	775	528	793	540	812	552	830	564	848
	461	693	470	707	479	720	488	733	497	747	506	760	514	773
	443	666	450	677	457	688	465	698	472	709	479	720	486	731
	420	631	425	639	431	647	436	656	442	664	447	672	453	680
W18×55	527	793	548	823	568	854	588	884	608	914	629	945	649	975
	503	756	521	782	538	808	555	834	572	860	590	886	607	912
	478	719	493	740	507	762	521	783	535	805	550	826	564	848
	452	680	464	697	475	714	486	731	498	748	509	765	520	782
	425	639	434	652	442	664	450	677	459	690	467	702	476	715
	408	613	414	623	421	633	428	643	434	653	441	663	448	673
	384	578	389	585	395	593	400	601	405	608	410	616	415	623
W18×50	477	717	495	744	513	772	532	799	550	827	568	854	587	882
	455	684	471	708	486	731	502	755	518	778	533	802	549	825
	433	650	446	670	459	689	472	709	485	728	498	748	511	767
	409	615	420	631	430	646	440	662	451	677	461	693	471	708
	385	579	393	591	401	602	408	614	416	625	424	637	431	649
	369	555	375	564	381	573	388	583	394	592	400	601	406	610
	348	523	352	530	357	537	362	543	366	550	371	557	375	564
W18×46	440	661	456	686	473	711	490	737	507	762	524	787	541	813
	421	633	435	655	450	676	465	698	479	720	494	742	508	764
	402	604	414	622	426	640	438	659	451	677	463	696	475	714
	382	573	392	588	402	603	412	618	421	633	431	648	441	663
	361	542	369	554	376	565	384	577	392	589	399	600	407	612
	342	514	348	523	354	532	360	541	366	550	372	559	378	568
	316	475	320	481	325	488	329	494	333	500	337	507	341	513
W18×40	381	573	396	595	411	617	425	639	440	662	455	684	470	706
	365	549	378	568	391	587	403	606	416	626	429	645	442	664
	349	524	359	540	370	556	381	573	392	589	403	605	413	621
	332	498	340	512	349	525	358	538	367	551	376	565	384	578
	314	472	321	482	328	493	335	503	341	513	348	523	355	534
	297	447	303	455	308	463	313	471	318	479	324	486	329	494
	274	412	278	418	282	424	286	429	289	435	293	440	297	446
ASD	LRFD	${ }^{\text {b }} \mathrm{Y} 2=$ distance from top of the steel beam to concrete flange force												
$\Omega_{b}=1.67$	$\phi_{b}=0.90$													

			Composite W-Shapes Available Strength in Flexure, kip-ft										
Shape	M_{p} / Ω_{b}	$\phi_{b} M_{p}$	PNA ${ }^{\text {c }}$	$Y 1^{a}$	$\sum \boldsymbol{O}_{\boldsymbol{n}}{ }^{\text {d }}$	$Y 2^{\text {b }}$, in.							
		-ft				2		2.5		3		3.5	
	ASD	LRFD		in.	kip	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
W18×35	166	249	TFL	0	515	279	419	292	438	305	458	317	477
			2	0.106	451	272	409	284	426	295	443	306	460
			3	0.213	388	265	399	275	413	285	428	294	443
			4	0.319	324	258	388	266	400	274	412	282	425
			BFL	0.425	260	251	377	257	387	264	396	270	406
			6	2.37	194	240	360	245	368	250	375	254	382
			7	4.56	129	222	334	225	338	228	343	232	348
W16×45	205	309	TFL	0	665	333	501	350	526	367	551	383	576
			2	0.141	566	323	486	337	507	351	528	366	549
			3	0.283	466	312	469	324	487	336	504	347	522
			4	0.424	367	301	452	310	466	319	479	328	493
			BFL	0.565	267	288	433	295	443	302	453	308	463
			6	1.77	217	280	421	286	430	291	438	297	446
			7	3.23	166	269	404	273	411	277	417	281	423
W16×40	182	274	TFL	0	590	294	443	309	465	324	487	339	509
			2	0.126	502	285	429	298	448	310	466	323	485
			3	0.253	413	276	414	286	430	296	445	307	461
			4	0.379	325	265	399	274	411	282	423	290	436
			BFL	0.505	237	255	383	261	392	267	401	272	409
			6	1.70	192	248	373	253	380	258	387	262	394
			7	3.16	148	238	358	242	363	246	369	249	375
W16×36	160	240	TFL	0	530	263	396	276	415	290	435	303	455
			2	0.108	455	255	384	267	401	278	418	289	435
			3	0.215	380	247	372	257	386	266	400	276	414
			4	0.323	305	239	359	246	370	254	382	262	393
			BFL	0.430	229	230	346	236	354	241	363	247	371
			6	1.82	181	223	334	227	341	232	348	236	355
			7	3.46	133	211	318	215	323	218	328	221	333
W16×31	135	203	TFL	0	457	227	341	238	358	249	375	261	392
			2	0.110	396	220	331	230	346	240	361	250	376
			3	0.220	335	214	321	222	334	231	347	239	359
			4	0.330	274	207	311	214	321	221	332	227	342
			BFL	0.440	213	200	300	205	308	210	316	216	324
			6	2.00	164	192	289	196	295	200	301	204	307
			7	3.80	114	180	270	183	275	186	279	188	283
ASD	LRFD	a $Y 1=$ distance from top of the steel beam to plastic neutral axis											
$\Omega_{b}=1.67$	$\phi_{b}=0.90$	${ }^{\text {c }}$ See Figure 3-3(c) for PNA locations. d Ductility (slip capacity) of the shear connection at the beam/concrete interface may control minimum ΣQ_{n} requirements per AISC Specification Section I3.2d.											

$F_{y}=50 \mathrm{ksi}$ Available Strength kip-ft														
Shape	$Y 2^{\text {b }}$, in.													
	4		4.5		5		5.5		6		6.5		7	
	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
W18×35	330	496	343	516	356	535	369	554	382	574	394	593	407	612
	317	477	329	494	340	511	351	528	362	545	374	562	385	578
	304	457	314	472	323	486	333	501	343	515	352	530	362	544
	291	437	299	449	307	461	315	473	323	485	331	497	339	510
	277	416	283	426	290	435	296	445	303	455	309	465	316	474
	259	390	264	397	269	404	274	411	279	419	283	426	288	433
	235	353	238	358	241	363	244	367	248	372	251	377	254	382
W16×45	400	601	416	626	433	651	450	676	466	701	483	726	499	751
	380	571	394	592	408	613	422	634	436	655	450	677	464	698
	359	539	370	557	382	574	394	592	405	609	417	627	429	644
	337	507	346	521	355	534	365	548	374	562	383	576	392	589
	315	473	322	483	328	493	335	503	342	513	348	523	355	533
	302	454	307	462	313	470	318	478	324	486	329	495	334	503
	286	429	290	436	294	442	298	448	302	454	306	460	310	467
W16×40	353	531	368	553	383	575	397	597	412	620	427	642	442	664
	335	504	348	523	360	542	373	561	385	579	398	598	410	617
	317	476	327	492	338	507	348	523	358	538	368	554	379	569
	298	448	306	460	314	472	322	484	330	496	338	509	347	521
	278	418	284	427	290	436	296	445	302	454	308	463	314	472
	267	401	272	409	277	416	282	423	286	430	291	438	296	445
	253	380	257	386	260	391	264	397	268	402	271	408	275	413
W16×36	316	475	329	495	342	515	356	535	369	555	382	574	395	594
	301	452	312	469	324	486	335	503	346	520	358	537	369	555
	285	429	295	443	304	457	314	471	323	486	333	500	342	514
	269	405	277	416	284	428	292	439	300	450	307	462	315	473
	253	380	259	389	264	397	270	406	276	414	281	423	287	432
	241	362	245	368	250	375	254	382	259	389	263	396	268	402
	225	338	228	343	231	348	235	353	238	358	241	363	245	367
W16×31	272	409	284	426	295	443	306	460	318	478	329	495	341	512
	260	391	270	405	280	420	290	435	299	450	309	465	319	480
	247	372	256	384	264	397	272	409	281	422	289	434	297	447
	234	352	241	362	248	373	255	383	262	393	268	404	275	414
	221	332	226	340	232	348	237	356	242	364	248	372	253	380
	208	313	212	319	216	325	221	332	225	338	229	344	233	350
	191	287	194	292	197	296	200	300	203	304	205	309	208	313
ASD	LRFD	${ }^{\text {b }} \mathrm{Y} 2 \mathrm{l}$ distance from top of the steel beam to concrete flange force												
$\Omega_{b}=1.67$	$\phi_{b}=0.90$													

			Table 3-19 (continued) Composite W-Shapes Available Strength in Flexure, kip-ft													
Shape	M_{p} / Ω_{b}	$\phi_{b} M_{p}$	PNA ${ }^{\text {c }}$	$\boldsymbol{Y} 1^{\text {a }}$	$\sum \mathbf{Q}_{n}{ }^{\text {d }}$	Y2 ${ }^{\text {b }}$, in.										
	kip-ft					2		2.5		3		3.5				
	ASD	LRFD		in.	kip	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD			
W16×26	110	166	TFL	0	384	189	284	198	298	208	312	217	327			
			2	0.0863	337	184	276	192	289	201	302	209	314			
			3	0.173	289	179	269	186	280	193	291	201	301			
			4	0.259	242	174	261	180	270	186	279	192	288			
			BFL	0.345	194	168	253	173	260	178	267	183	275			
			6	2.05	145	161	241	164	247	168	252	171	258			
			7	4.01	96.0	148	223	151	226	153	230	155	234			
W14×38	153	231	TFL	0	560	253	380	267	401	281	422	295	443			
			2	0.129	473	244	367	256	384	268	402	279	420			
			3	0.258	386	234	352	244	367	254	381	263	396			
			4	0.386	299	224	337	232	348	239	360	247	371			
			BFL	0.515	211	214	321	219	329	224	337	229	345			
			6	1.38	176	209	313	213	320	217	327	222	333			
			7	2.53	140	201	303	205	308	208	313	212	319			
W14×34	136	205	TFL	0	500	225	338	237	356	250	375	262	394			
			2	0.114	423	217	326	227	342	238	357	248	373			
			3	0.228	346	208	313	217	326	226	339	234	352			
			4	0.341	270	200	300	206	310	213	320	220	330			
			BFL	0.455	193	190	286	195	293	200	301	205	308			
			6	1.42	159	186	279	190	285	193	291	197	297			
			7	2.61	125	179	269	182	273	185	278	188	283			
W14×30	118	177	TFL	0	443	197	295	208	312	219	329	230	345			
			2	0.0963	378	190	285	199	300	209	314	218	328			
			3	0.193	313	183	275	191	287	199	298	206	310			
			4	0.289	248	176	264	182	273	188	283	194	292			
			BFL	0.385	183	168	253	173	260	177	266	182	273			
			6	1.46	147	163	245	167	250	170	256	174	261			
			7	2.80	111	156	234	158	238	161	242	164	246			
W14×26	100	151	TFL	0	385	172	258	181	273	191	287	201	301			
			2	0.105	332	166	250	175	262	183	275	191	287			
			3	0.210	279	161	241	168	252	175	262	182	273			
			4	0.315	226	155	232	160	241	166	249	172	258			
			BFL	0.420	173	148	223	153	230	157	236	161	243			
			6	1.67	135	143	215	146	220	149	225	153	230			
			7	3.18	96.1	134	202	137	205	139	209	141	213			
	LRFD	a $Y 1=$ distance from top of the steel beam to plastic neutral axis														
ASD																
$\Omega_{b}=1.67$	$\phi_{b}=0.90$	${ }^{\text {c }}$ See Figure 3-3(c) for PNA locations. d Ductility (slip capacity) of the shear connection at the beam/concrete interface may control minimum ΣQ_{n} requirements per AISC Specification Section I3.2d.														

			Table 3-19 (continued) Composite W-Shapes Available Strength in Flexure, kip-ft										
Shape	M_{p} / Ω_{b}	$\phi_{b} M_{p}$	PNAC	$Y 1^{\text {a }}$	$\sum \boldsymbol{a}_{n}{ }^{\text {d }}$	$Y 2^{\text {b }}$, in.							
	kip-ft					2		2.5		3		3.5	
	ASD	LRFD		in.	kip	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
W14×22	82.8	125	TFL	0	325	143	215	151	228	159	240	168	252
			2	0.0838	283	139	209	146	220	153	230	160	241
			3	0.168	241	135	202	141	211	147	220	153	229
			4	0.251	199	130	195	135	203	140	210	145	218
			BFL	0.335	157	125	188	129	194	133	200	137	206
			6	1.67	119	120	180	123	184	126	189	129	193
			7	3.32	81.1	111	167	113	170	115	173	117	176
W12×30	108	162	TFL	0	440	179	269	190	285	201	302	212	318
			2	0.110	368	171	258	181	271	190	285	199	299
			3	0.220	296	164	246	171	257	178	268	186	279
			4	0.330	224	155	234	161	242	167	251	172	259
			BFL	0.440	153	147	221	151	227	155	232	158	238
			6	1.10	131	144	216	147	221	151	226	154	231
			7	1.92	110	140	211	143	215	146	219	149	223
W12×26	92.8	140	TFL	0	383	155	232	164	247	174	261	183	275
			2	0.0950	321	148	223	156	235	164	247	172	259
			3	0.190	259	142	213	148	223	155	232	161	242
			4	0.285	198	135	203	140	210	145	217	150	225
			BFL	0.380	136	128	192	131	197	134	202	138	207
			6	1.07	116	125	188	128	192	131	197	134	201
			7	1.94	95.6	121	183	124	186	126	190	129	193
W12×22	73.1	110	TFL	0	324	132	198	140	210	148	222	156	234
			2	0.106	281	127	191	134	202	141	213	148	223
			3	0.213	238	123	185	129	193	135	202	141	211
			4	0.319	196	118	177	123	185	128	192	133	199
			BFL	0.425	153	113	170	117	175	120	181	124	187
			6	1.66	117	107	162	110	166	113	170	116	175
			7	3.03	81.0	99.8	150	102	153	104	156	106	159
W12×19	61.6	92.6	TFL	0	279	113	169	120	180	126	190	133	201
			2	0.0875	243	109	164	115	173	121	182	127	191
			3	0.175	208	105	158	110	166	116	174	121	182
			4	0.263	173	101	152	106	159	110	165	114	172
			BFL	0.350	138	97.3	146	101	151	104	157	108	162
			6	1.68	104	92.3	139	94.9	143	97.4	146	100	150
			7	3.14	69.6	84.7	127	86.4	130	88.2	133	89.9	135
ASD	LRFD	a $Y 1=$ distance from top of the steel beam to plastic neutral axis											
ASD $\Omega_{b}=1.67$	$\phi_{b}=0.90$	${ }^{\text {c }}$ See Figure 3-3(c) for PNA locations. d Ductility (slip capacity) of the shear connection at the beam/concrete interface may control minimum ΣQ_{n} requirements per AISC Specification Section I3.2d.											

$F_{y}=50 \mathrm{ksi}$ Available Strength kip-ft														
Shape	Y2b, in.													
	4		4.5		5		5.5		6		6.5		7	
	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
W14×22	176	264	184	276	192	288	200	301	208	313	216	325	224	337
	167	251	174	262	181	273	188	283	195	294	203	304	210	315
	159	238	165	247	171	256	177	266	183	275	189	284	195	293
	150	225	155	233	160	240	165	248	170	255	175	262	180	270
	141	212	145	218	149	223	153	229	157	235	160	241	164	247
	132	198	135	202	138	207	140	211	143	216	146	220	149	225
	119	179	121	182	123	185	125	188	127	191	129	194	131	198
W12×30	223	335	234	351	245	368	255	384	266	400	277	417	288	433
	208	313	217	327	226	340	236	354	245	368	254	382	263	396
	193	290	201	301	208	313	215	324	223	335	230	346	237	357
	178	267	183	276	189	284	195	293	200	301	206	309	211	318
	162	244	166	250	170	255	174	261	177	267	181	272	185	278
	157	236	160	241	164	246	167	251	170	256	173	261	177	266
	151	227	154	232	157	236	160	240	162	244	165	248	168	252
W12×26	193	290	202	304	212	318	221	333	231	347	240	361	250	376
	180	271	188	283	196	295	204	307	212	319	220	331	228	343
	168	252	174	262	181	271	187	281	193	291	200	300	206	310
	155	232	160	240	164	247	169	255	174	262	179	269	184	277
	141	212	145	217	148	222	151	228	155	233	158	238	162	243
	137	205	139	210	142	214	145	218	148	223	151	227	154	231
	131	197	133	200	136	204	138	208	141	211	143	215	145	218
W12×22	164	247	172	259	180	271	188	283	196	295	205	307	213	320
	155	234	162	244	169	255	176	265	183	276	191	286	198	297
	147	220	152	229	158	238	164	247	170	256	176	265	182	274
	137	207	142	214	147	221	152	229	157	236	162	243	167	251
	128	193	132	198	136	204	140	210	143	215	147	221	151	227
	119	179	122	183	125	188	128	192	131	197	134	201	137	205
	108	162	110	165	112	168	114	171	116	174	118	177	120	180
W12×19	140	211	147	221	154	232	161	242	168	253	175	263	182	274
	133	200	139	209	145	219	151	228	158	237	164	246	170	255
	126	189	131	197	136	205	142	213	147	221	152	228	157	236
	119	178	123	185	127	191	132	198	136	204	140	211	145	217
	111	167	115	172	118	177	121	183	125	188	128	193	132	198
	103	154	105	158	108	162	110	166	113	170	116	174	118	178
	91.7	138	93.4	140	95.1	143	96.9	146	98.6	148	100	151	102	153
ASD	LRFD													
$\Omega_{b}=1.67$	$\phi_{b}=0.90$	b Y2 = distance from top of the steel beam to concrete flange force												

			Table 3-19 (continued) omposite W-Shapes ailable Strength in Flexure,kip-ft										
Shape	M_{p} / Ω_{b}	$\phi_{b} M_{p}$	PNA ${ }^{\text {c }}$	$\boldsymbol{Y} 1^{\text {a }}$	$\sum \boldsymbol{O}_{\boldsymbol{n}}{ }^{\text {d }}$	$Y 2^{\text {b }}$, in.							
		-ft				2		2.5		3		3.5	
	ASD	LRFD		in.	kip	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
W12×16	50.1	75.4	TFL	0	236	94.0	141	99.9	150	106	159	112	168
			2	0.0663	209	91.3	137	96.5	145	102	153	107	161
			3	0.133	183	88.6	133	93.1	140	97.7	147	102	154
			4	0.199	156	85.7	129	89.6	135	93.5	141	97.4	146
			BFL	0.265	130	82.8	124	86.0	129	89.2	134	92.5	139
			6	1.71	94.3	77.6	117	79.9	120	82.3	124	84.6	127
			7	3.32	58.9	69.6	105	71.1	107	72.5	109	74.0	111
W12×14	43.4	65.3	TFL	0	208	82.5	124	87.7	132	92.9	140	98.1	147
			2	0.0563	186	80.3	121	84.9	128	89.5	135	94.2	142
			3	0.113	163	77.9	117	82.0	123	86.1	129	90.2	135
			4	0.169	141	75.5	114	79.1	119	82.6	124	86.1	129
			BFL	0.225	119	73.1	110	76.1	114	79.0	119	82.0	123
			6	1.68	85.3	68.3	103	70.4	106	72.6	109	74.7	112
			7	3.35	52.0	60.8	91.4	62.1	93.3	63.4	95.3	64.7	97.2
W10×26	78.1	117	TFL	0	381	136	204	145	218	155	233	164	247
			2	0.110	317	129	194	137	206	145	218	153	230
			3	0.220	254	122	184	129	193	135	203	141	213
			4	0.330	190	115	173	120	180	125	187	129	195
			BFL	0.440	127	108	162	111	167	114	171	117	176
			6	0.886	111	106	159	108	163	111	167	114	171
			7	1.49	95.1	103	155	105	158	108	162	110	166
W10×22	64.9	97.5	TFL	0	325	115	173	123	185	131	197	139	209
			2	0.0900	273	110	165	116	175	123	185	130	196
			3	0.180	221	104	157	110	165	115	173	121	181
			4	0.270	169	98.4	148	103	154	107	161	111	167
			BFL	0.360	118	92.5	139	95.4	143	98.3	148	101	152
			6	0.962	99.3	90.1	135	92.5	139	95.0	143	97.5	147
			7	1.72	81.1	87.0	131	89.1	134	91.1	137	93.1	140
W10×19	53.9	81.0	TFL	0	281	99.6	150	107	160	114	171	121	181
			2	0.0988	241	95.5	144	102	153	108	162	114	171
			3	0.198	202	91.2	137	96.3	145	101	152	106	160
			4	0.296	162	86.8	130	90.8	137	94.9	143	98.9	149
			BFL	0.395	122	82.1	123	85.2	128	88.2	133	91.3	137
			6	1.25	96.2	78.5	118	80.9	122	83.3	125	85.8	129
			7	2.29	70.3	73.7	111	75.4	113	77.2	116	78.9	119
ASD	LRFD	a $Y 1=$ distance from top of the steel beam to plastic neutral axis											
$\Omega_{b}=1.67$	$\phi_{b}=0.90$	c See Figure 3-3(c) for PNA locations. d Ductility (slip capacity) of the shear connection at the beam/concrete interface may control min ΣQ_{n} requirements per AISC Specification Section I3.2d.											

$F_{y}=50 \mathrm{ksi}$			Table 3-19 (continued) Composite W-Shapes Available Strength in Flexure, kip-ft										W10	
Shape	$Y 2^{\text {b }}$, in.													
	4		4.5		5		5.5		6		6.5		7	
	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
W12×16	118	177	123	185	129	194	135	203	141	212	147	221	153	230
	112	169	117	176	123	184	128	192	133	200	138	208	143	216
	107	161	111	167	116	174	120	181	125	188	130	195	134	202
	101	152	105	158	109	164	113	170	117	176	121	182	125	187
	95.7	144	99.0	149	102	154	105	158	109	163	112	168	115	173
	87.0	131	89.4	134	91.7	138	94.1	141	96.4	145	98.8	148	101	152
	75.5	113	77.0	116	78.4	118	79.9	120	81.4	122	82.8	125	84.3	127
W12×14	103	155	108	163	114	171	119	179	124	186	129	194	134	202
	98.8	148	103	155	108	162	113	169	117	176	122	183	127	190
	94.2	142	98.3	148	102	154	106	160	111	166	115	172	119	178
	89.6	135	93.1	140	96.7	145	100	151	104	156	107	161	111	166
	85.0	128	87.9	132	90.9	137	93.9	141	96.8	146	99.8	150	103	154
	76.8	115	79.0	119	81.1	122	83.2	125	85.3	128	87.5	131	89.6	135
	66.0	99.2	67.3	101	68.6	103	69.9	105	71.2	107	72.5	109	73.8	111
W10×26	174	261	183	275	193	290	202	304	212	318	221	332	231	347
	161	242	169	254	177	266	185	277	193	289	200	301	208	313
	148	222	154	232	160	241	167	251	173	260	179	270	186	279
	134	202	139	209	144	216	148	223	153	230	158	237	163	244
	120	181	123	186	127	190	130	195	133	200	136	205	139	209
	117	175	119	179	122	184	125	188	128	192	130	196	133	200
	113	169	115	173	117	176	120	180	122	183	124	187	127	191
W10×22	147	221	155	234	164	246	172	258	180	270	188	282	196	294
	137	206	144	216	151	226	157	236	164	247	171	257	178	267
	126	190	132	198	137	206	143	215	148	223	154	231	159	239
	115	173	120	180	124	186	128	192	132	199	136	205	141	211
	104	157	107	161	110	165	113	170	116	174	119	179	122	183
	100	150	102	154	105	158	107	161	110	165	112	169	115	173
	95.1	143	97.1	146	99.2	149	101	152	103	155	105	158	107	161
W10×19	128	192	135	202	142	213	149	223	156	234	163	244	170	255
	120	180	126	189	132	198	138	207	144	216	150	225	156	234
	111	167	116	175	121	183	126	190	132	198	137	205	142	213
	103	155	107	161	111	167	115	173	119	179	123	185	127	191
	94.3	142	97.4	146	100	151	103	156	107	160	110	165	113	169
	88.2	132	90.6	136	93.0	140	95.4	143	97.8	147	100	151	103	154
	80.7	121	82.4	124	84.2	127	85.9	129	87.7	132	89.4	134	91.2	137
ASD	LRFD													
$\Omega_{b}=1.67$	$\phi_{b}=0.90$	${ }^{\text {b }} \mathrm{Y} 2=$ distance from top of the steel beam to concrete flange force												

Table 3-20
 $I_{L B}$
 W40
 Lower-Bound Elastic Moment of
 $F_{y}=50 \mathrm{ksi}$ Inertia, $I_{L B}$, for Plastic Composite Sections, in. ${ }^{4}$

Shape ${ }^{\text {d }}$	PNA ${ }^{\text {c }}$	$Y 1^{\text {a }}$	$\sum \mathbf{Q}_{n}$	Y2 ${ }^{\text {b }}$, in.										
		in.	kip	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7
$\begin{gathered} W 40 \times 297 \\ (23200) \end{gathered}$	TFL	0	4370	44100	45100	46100	47100	48100	49200	50300	51400	52500	53600	54800
	2	0.413	3710	42400	43300	44200	45200	46100	47100	48100	49100	50100	51200	52200
	3	0.825	3060	40500	41300	42100	42900	43800	44600	45500	46400	47300	48300	49200
	4	1.24	2410	38100	38800	39500	40200	40900	41700	42500	43200	44000	44800	45700
	BFL	1.65	1760	35200	35800	36400	36900	37500	38100	38800	39400	40000	40700	41400
	6	4.58	1420	33500	34000	34400	34900	35400	36000	36500	37000	37600	38100	38700
	7	8.17	1090	31600	32000	32300	32800	33200	33600	34000	34500	34900	35400	35800
$\begin{gathered} \text { W40×294 } \\ (21900) \end{gathered}$	TFL	0	4310	43100	44100	45100	46100	47100	48200	49300	50400	51500	52600	53800
	2	0.483	3730	41600	42500	43400	44400	45300	46300	47300	48300	49400	50400	51500
	3	0.965	3150	39800	40700	41500	42300	43200	44100	45000	45900	46900	47800	48800
	4	1.45	2570	37800	38500	39200	40000	40800	41500	42300	43200	44000	44900	45700
	BFL	1.93	1990	35300	35900	36600	37200	37800	38500	39200	39900	40600	41300	42000
	6	5.71	1540	33100	33600	34100	34600	35200	35700	36300	36900	37500	38100	38700
	7	10.0	1080	30400	30800	31200	31600	32000	32400	32900	33300	33800	34200	34700
$\begin{gathered} \text { W40×278 } \\ (20500) \end{gathered}$	TFL	0	4120	40600	41500	42500	43400	44400	45400	46400	47500	48500	49600	50700
	2	0.453	3570	39200	40000	40900	41800	42700	43600	44600	45600	46500	47600	48600
	3	0.905	3030	37500	38300	39100	39900	40800	41600	42500	43400	44300	45200	46100
	4	1.36	2490	35700	36300	37100	37800	38500	39300	40000	40800	41600	42500	43300
	BFL	1.81	1940	33400	34000	34600	35200	35800	36500	37100	37800	38500	39200	39900
	6	5.67	1490	31200	31700	32200	32700	33200	33700	34300	34800	35400	36000	36600
	7	10.1	1030	28500	28900	29300	29700	30100	30500	30900	31300	31700	32200	32600
$\begin{aligned} & \text { W40×277 } \\ & (21900) \end{aligned}$	TFL	0	4080	41400	42300	43200	44100	45100	46100	47100	48100	49100	50200	51300
	2	0.395	3450	39700	40600	41400	42300	43200	44100	45000	45900	46900	47800	48800
	3	0.790	2830	37800	38600	39300	40100	40900	41700	42500	43400	44200	45100	46000
	4	1.19	2200	35500	36200	36800	37500	38200	38800	39500	40300	41000	41700	42500
	BFL	1.58	1580	32800	33300	33800	34300	34900	35400	36000	36500	37100	37700	38300
	6	4.20	1300	31300	31700	32200	32600	33100	33600	34100	34600	35100	35600	36100
	7	7.58	1020	29700	30100	30400	30800	31200	31600	32000	32400	32800	33200	33700
$\begin{gathered} \text { W } 40 \times 264 \\ (19400) \end{gathered}$	TFL	0	3870	38100	39000	39900	40800	41700	42600	43600	44600	45600	46600	47600
	2	0.433	3360	36800	37600	38400	39300	40100	41000	41900	42800	43700	44700	45600
	3	0.865	2840	35300	36000	36700	37500	38300	39100	39900	40700	41500	42400	43300
	4	1.30	2330	33500	34100	34800	35500	36200	36900	37600	38300	39100	39800	40600
	BFL	1.73	1810	31300	31900	32400	33000	33600	34200	34800	35400	36100	36700	37400
	6	5.53	1390	29300	29800	30200	30700	31200	31700	32200	32700	33200	33800	34300
	7	9.92	968	26900	27200	27600	28000	28300	28700	29100	29500	29900	30300	30700

[^15]
Table 3-20 (continued) Lower-Bound Elastic Moment of Inertia, $I_{L B}$, for Plastic Composite Sections, in. ${ }^{4}$

Shape ${ }^{\text {d }}$	PNA ${ }^{\text {c }}$	$Y 1^{\text {a }}$	Σa_{n}	$Y 2^{\text {b }}$, in.										
		in.	kip	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7
$\begin{gathered} \hline \text { W40×249 } \\ (19600) \end{gathered}$	TFL	0	3680	36900	37700	38500	39400	40300	41100	42000	43000	43900	44800	4580
	2	0.355	3110	35500	36200	37000	37700	38500	39300	40200	41000	41900	42700	4360
	3	0.710	2550	33800	34400	35100	35800	36500	37200	38000	38700	39500	40300	41100
	4	1.07	1990	31800	32300	32900	33500	34100	34700	35400	36000	36700	37300	38000
	BFL	1.42	1430	29300	29700	30200	30700	31200	31700	32200	32700	33200	33700	34300
	6	4.03	1180	28000	28400	28800	29200	29600	30100	30500	30900	31400	31900	3230
	7	7.45	919	26500	26800	27200	27500	27900	28200	28600	28900	29300	29700	30100
$\begin{gathered} \mathrm{W} 40 \times 235 \\ (17400) \end{gathered}$	TFL	0	3460	33900	34700	35500	36300	37100	37900	38800	39600	40500	41400	42300
	2	0.395	2980	32700	33400	34100	34800	35600	36400	37200	38000	38800	39600	40500
	3	0.790	2510	31300	31900	32600	33300	33900	34600	35400	36100	36800	37600	38400
	4	1.19	2040	29600	30200	30800	31400	32000	32600	33200	33900	34500	35200	35900
	BFL	1.58	1570	27700	28200	28700	29200	29700	30200	30700	31300	31800	32400	33000
	6	5.16	1220	26000	26400	26800	27200	27700	28100	28500	29000	29400	29900	30400
	7	9.44	864	24000	24300	24600	24900	25300	25600	25900	26300	26600	27000	27400
W40×215 (16700)	TFL	0	3180	31400	32100	32800	33500	34200	35000	35800	36600	37400	38200	39000
	2	0.305	2690	30200	30800	31400	32100	32800	33500	34200	34900	35600	36400	37200
	3	0.610	2210	28700	29300	29900	30500	31100	31700	32300	33000	33600	34300	35000
	4	0.915	1730	27100	27500	28000	28500	29100	29600	30100	30700	31300	31800	32400
	BFL	1.22	1250	25000	25400	25800	26200	26600	27000	27500	27900	28400	28800	29300
	6	3.80	1020	23800	24200	24500	24900	25200	25600	26000	26300	26700	27100	27500
	7	7.29	794	22600	22800	23100	23400	23700	24000	24300	24600	25000	25300	25600
$\begin{gathered} \mathrm{W} 40 \times 211 \\ (15500) \end{gathered}$	TFL	0	3110	30100	30800	31500	32200	33000	33700	34500	35200	36000	36800	37700
	2	0.355	2690	29100	29700	30400	31000	31700	32400	33100	33800	34500	35300	36100
	3	0.710	2270	27800	28400	29000	29600	30200	30900	31500	32200	32800	33500	34200
	4	1.07	1850	26400	26900	27400	28000	28500	29100	29600	30200	30800	31400	32000
	BFL	1.42	1430	24700	25200	25600	26000	26500	27000	27400	27900	28400	28900	29500
	6	5.00	1100	23100	23500	23900	24200	24600	25000	25400	25800	26200	26700	27100
	7	9.35	776	21300	21600	21900	22200	22500	22800	23100	23400	23700	24000	2440
W40×199 (14900)	TFL		2940	28300	28900	29600	30300	30900	31600	32300	33100	33800	34500	35300
	2	0.268	2520	27300	27900	28500	29100	29700	30300	31000	31700	32300	33000	33700
	3	0.535	2090	26000	26600	27100	27700	28200	28800	29400	30000	30600	31200	31900
	4	0.803	1670	24600	25100	25500	26000	26500	27000	27500	28100	28600	29100	29700
	BFL	1.07	1250	22900	23300	23700	24100	24500	24900	25300	25700	26200	26600	27100
	6	4.09	992	21700	22000	22300	22600	23000	23300	23700	24100	24400	24800	25200
	7	8.04	735	20300	20500	20800	21000	21300	21600	21900	22200	22500	22800	2310

[^16]
Table 3-20 (continued) Lower-Bound Elastic Moment of $F_{y}=50 \mathrm{ksi}$ Inertia, $I_{L B}$, for Plastic Composite Sections, in. ${ }^{4}$

Shape ${ }^{\text {d }}$	PNA ${ }^{\text {c }}$	$Y 1^{\text {a }}$	$\Sigma \mathbf{Q}_{\boldsymbol{n}}$	$Y 2{ }^{\text {b }}$, in.										
		in.	kip	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7
$\begin{aligned} & \text { W40×183 } \\ & (13200) \end{aligned}$	TFL	0	2670	25500	26100	26700	27300	27900	28600	29200	29900	30500	31200	31900
	2	0.300	2310	24600	25200	25700	26300	26900	27500	28100	28700	29300	29900	30600
	3	0.600	1960	23600	24100	24600	25100	25700	26200	26800	27300	27900	28500	29100
	4	0.900	1600	22400	22900	23300	23800	24200	24700	25200	25700	26200	26700	27200
	BFL	1.20	1250	21100	21400	21800	22200	22600	23000	23400	23800	24300	24700	25200
	6	4.77	958	19700	20000	20300	20700	21000	21300	21700	22000	22400	22700	23100
	7	9.25	666	18100	18400	18600	18800	19100	19300	19600	19900	20100	20400	20700
$\begin{gathered} \text { W40×167 } \\ (11600) \end{gathered}$	TFL	0	2470	22800	23300	23900	24400	25000	25600	26200	26800	27400	28000	28700
	2	0.258	2160	22000	22500	23000	23600	24100	24600	25200	25800	26300	26900	27500
	3	0.515	1860	21200	21700	22100	22600	23100	23600	24100	24600	25200	25700	26300
	4	0.773	1550	20200	20600	21100	21500	21900	22400	22800	23300	23800	24300	24800
	BFL	1.03	1250	19100	19500	19800	20200	20600	21000	21400	21800	22200	22600	23100
	6	4.95	933	17700	18000	18300	18600	18900	19300	19600	19900	20300	20600	21000
	7	9.82	616	16100	16300	16500	16700	17000	17200	17400	17700	17900	18200	18400
$\begin{gathered} \text { W40×149 } \\ (9800) \end{gathered}$	TFL	0	2190	19600	20000	20500	21000	21500	22000	22500	23100	23600	24200	24700
	2	0.208	1950	19000	19400	19900	20300	20800	21300	21800	22300	22800	23300	23900
	3	0.415	1700	18300	18700	19100	19600	20000	20500	20900	21400	21900	22300	22800
	4	0.623	1460	17600	18000	18400	18700	19100	19600	20000	20400	20800	21300	21700
	BFL	0.830	1210	16700	17100	17400	17800	18100	18500	18900	19200	19600	20000	20400
	6	5.15	879	15400	15700	15900	16200	16500	16800	17100	17400	17700	18000	18300
	7	10.4	548	13700	13900	14100	14300	14500	14700	14900	15100	15300	15500	15800
$\begin{gathered} \text { W36×302 } \\ (21100) \end{gathered}$	TFL	0	4450	40100	41000	42000	42900	43900	44900	46000	47100	48100	49200	50400
	2	0.420	3750	38500	39300	40200	41100	42000	42900	43900	44800	45800	46800	47900
	3	0.840	3050	36500	37300	38100	38900	39700	40500	41300	42200	43100	44000	44900
	4	1.26	2350	34200	34900	35500	36200	36900	37600	38300	39000	39800	40600	41300
	BFL	1.68	1640	31300	31800	32300	32900	33400	33900	34500	35100	35700	36300	36900
	6	4.06	1380	30100	30500	31000	31400	31900	32400	32900	33400	33900	34400	35000
	7	6.88	1110	28700	29000	29400	29800	30200	30600	31000	31500	31900	32300	32800
$\begin{gathered} \text { W36×282 } \\ (19600) \end{gathered}$	TFL	0	4150	37100	38000	38900	39800	40700	41600	42600	43600	44600	45600	46700
	2	0.393	3490	35600	36400	37200	38000	38900	39700	40600	41500	42400	43400	44300
	3	0.785	2840	33800	34500	35300	36000	36700	37500	38300	39100	39900	40800	41600
	4	1.18	2190	31700	32300	32900	33500	34200	34800	35500	36200	36900	37600	38300
	BFL	1.57	1540	29100	29600	30000	30500	31000	31500	32100	32600	33100	33700	34300
	6	4.00	1290	27900	28300	28700	29200	29600	30100	30500	31000	31500	31900	32400
	7	6.84	1040	26600	27000	27300	27700	28100	28400	28800	29200	29600	30000	30500

[^17]
Table 3-20 (continued)
 Lower-Bound Elastic Moment of Inertia, $I_{L B}$, for Plastic Composite Sections, in. ${ }^{4}$

 $F_{y}=50 \mathrm{ksi}$

 $F_{y}=50 \mathrm{ksi}$}| Σa_{n} | $Y 2^{\text {b }}$, in. | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| kip | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | 5.5 | 6 | 6.5 | 7 |

		in.	kip	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7
$\begin{gathered} \hline \text { W36×262 } \\ (17900) \end{gathered}$	TFL	0	3860	34000	34800	35700	36500	37400	38200	39100	40000	41000	41900	42900
	2	0.360	3260	32700	33400	34200	34900	35700	36500	37300	38200	39000	39900	40800
	3	0.720	2660	31100	31700	32400	33100	33800	34500	35200	36000	36700	37500	38300
	4	1.08	2070	29200	29700	30300	30900	31500	32100	32700	33400	34000	34700	35400
	BFL	1.44	1470	26800	27200	27700	28200	28600	29100	29600	30100	30600	31200	31700
	6	3.96	1220	25700	26000	26400	26800	27200	27700	28100	28500	29000	29400	29900
	7	6.96	965	24400	24700	25000	25300	25700	26000	26400	26800	27100	27500	27900
$\begin{gathered} \text { W36×256 } \\ (16800) \end{gathered}$	TFL	0	3770	32900	33700	34500	35400	36200	37100	38000	38900	39800	40700	41700
	2	0.433	3240	31700	32500	33200	34000	34700	35500	36400	37200	38000	38900	39800
	3	0.865	2710	30300	31000	31600	32300	33000	33800	34500	35300	36000	36800	37600
	4	1.30	2180	28600	29200	29800	30400	31000	31700	32300	33000	33600	34300	35000
	BFL	1.73	1650	26600	27100	27600	28100	28600	29100	29700	30200	30800	31400	32000
	6	5.18	1300	25100	25500	25900	26300	26800	27200	27700	28100	28600	29100	29600
	7	8.90	941	23300	23600	23900	24200	24600	24900	25300	25600	26000	26400	26700
$\begin{gathered} \text { W36×247 } \\ (16700) \end{gathered}$	TFL	0	3630	31700	32500	33200	34000	34800	35600	36500	37300	38200	39100	40000
	2	0.338	3070	30500	31200	31900	32600	33300	34100	34800	35600	36400	37200	38100
	3	0.675	2510	29000	29600	30200	30900	31500	32200	32900	33600	34300	35000	35800
	4	1.01	1950	27200	27700	28300	28800	29400	29900	30500	31100	31700	32400	33000
	BFL	1.35	1400	25100	25500	25900	26300	26800	27200	27700	28200	28700	29200	29700
	6	3.95	1150	23900	24300	24700	25000	25400	25800	26200	26600	27100	27500	27900
	7	7.02	906	22700	23000	23300	23600	23900	24300	24600	24900	25300	25700	26000
$\begin{gathered} \text { W36×232 } \\ (15000) \end{gathered}$	TFL	0	3400	29400	30100	30800	31500	32300	33100	33900	34700	35500	36300	37200
	2	0.393	2930	28300	28900	29600	30300	31000	31700	32500	33200	34000	34800	35500
	3	0.785	2450	27000	27600	28200	28800	29500	30100	30800	31500	32200	32900	33600
	4	1.18	1980	25600	26100	26600	27200	27700	28300	28900	29500	30100	30700	31300
	BFL	1.57	1500	23800	24200	24700	25100	25600	26100	26500	27000	27500	28100	28600
	6	5.04	1180	22400	22800	23100	23500	23900	24300	24700	25100	25600	26000	26400
	7	8.78	850	20700	21000	21300	21600	21900	22200	22500	22900	23200	23500	23900
$\begin{gathered} \text { W36×231 } \\ (15600) \end{gathered}$	TFL	0	3410	29600	30300	31000	31700	32500	33200	34000	34800	35700	36500	37300
	2	0.315	2890	28400	29100	29700	30400	31100	31800	32500	33200	34000	34800	35500
	3	0.630	2370	27100	27600	28200	28800	29400	30100	30700	31400	32000	32700	33400
	4	0.945	1850	25400	25900	26400	26900	27500	28000	28600	29100	29700	30300	30900
	BFL	1.26	1330	23400	23800	24200	24700	25100	25500	25900	26400	26900	27300	27800
	6	3.88	1090	22400	22700	23100	23400	23800	24100	24500	24900	25300	25700	26100
	7	7.03	853	21200	21500	21800	22100	22400	22700	23000	23300	23600	24000	24300

[^18]\section*{Table 3-20 (continued) Lower-Bound Elastic Moment of Inertia, $I_{L B}$, for Plastic
 $F_{y}=50 \mathrm{ksi}$

Composite Sections, in. ${ }^{4}$

}
Composite Sections, in. ${ }^{4}$

}W36

Shape ${ }^{\text {d }}$	PNA ${ }^{\text {c }}$	$Y 1^{\text {a }}$	$\sum \mathbf{Q}_{\boldsymbol{n}}$	Y2 ${ }^{\text {b }}$, in.										
		in.	kip	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7
$\begin{gathered} \text { W36×210 } \\ (13200) \end{gathered}$	TFL	0	3100	26000	26700	27300	28000	28700	29400	30100	30800	31600	32300	33100
	2	0.340	2680	25100	25700	26300	26900	27500	28200	28900	29500	30200	30900	31700
	3	0.680	2270	24000	24600	25100	25700	26300	26900	27500	28100	28700	29400	30000
	4	1.02	1850	22800	23300	23800	24300	24800	25300	25800	26400	26900	27500	28100
	BFL	1.36	1440	21300	21700	22200	22600	23000	23500	23900	24400	24900	25300	25800
	6	5.04	1100	19900	20300	20600	20900	21300	21700	22000	22400	22800	23200	23600
	7	9.03	774	18300	18600	18800	19100	19400	19700	20000	20200	20500	20800	21200
$\begin{gathered} \text { W36×194 } \\ (12100) \end{gathered}$	TFL	0	2850	23800	24400	25000	25600	26200	26900	27500	28200	28900	29600	30300
	2	0.315	2470	23000	23500	24100	24600	25200	25800	26400	27000	27700	28300	29000
	3	0.630	2090	22000	22500	23000	23500	24000	24600	25100	25700	26300	26900	27500
	4	0.945	1710	20900	21300	21800	22200	22700	23200	23700	24200	24700	25200	25700
	BFL	1.26	1330	19500	19900	20300	20700	21100	21500	21900	22300	22800	23200	23700
	6	4.93	1020	18300	18600	18900	19200	19500	19900	20200	20600	20900	21300	21700
	7	8.94	713	16800	17000	17300	17500	17700	18000	18300	18500	18800	19100	19400
$\begin{gathered} \text { W } 36 \times 182 \\ (11300) \end{gathered}$	TFL	0	2680	22200	22700	23300	23900	24400	25000	25700	26300	26900	27600	28300
	2	0.295	2320	21400	21900	22400	23000	23500	24100	24600	25200	25800	26400	27000
	3	0.590	1970	20500	21000	21500	21900	22400	22900	23500	24000	24500	25100	25700
	4	0.885	1610	19500	19900	20300	20700	21200	21600	22100	22600	23000	23500	24000
	BFL	1.18	1250	18200	18600	18900	19300	19700	20000	20400	20800	21200	21700	22100
	6	4.89	961	17000	17300	17600	17900	18200	18600	18900	19200	19600	19900	20200
	7	8.91	670	15700	15900	16100	16300	16600	16800	17000	17300	17600	17800	18100
$\begin{aligned} & \text { W } 36 \times 170 \\ & (10500) \end{aligned}$	TFL	0	2500	20600	21100	21600	22200	22700	23300	23800	24400	25000	25600	26300
	2	0.275	2170	19900	20400	20800	21300	21800	22400	22900	23400	24000	24600	25100
	3	0.550	1840	19100	19500	19900	20400	20900	21300	21800	22300	22800	23300	23900
	4	0.825	1510	18100	18500	18900	19300	19700	20100	20500	21000	21400	21900	22400
	BFL	1.10	1180	17000	17300	17600	18000	18300	18700	19100	19400	19800	20200	20600
	6	4.83	903	15900	16100	16400	16700	17000	17300	17600	17900	18200	18500	18900
	7	8.91	625	14500	14700	15000	15200	15400	15600	15800	16100	16300	16600	16800
$\begin{gathered} \text { W36×160 } \\ (9760) \end{gathered}$	TFL	0	2350	19200	19600	20100	20600	21100	21700	22200	22700	23300	23900	24400
	2	0.255	2040	18500	18900	19400	19900	20300	20800	21300	21800	22300	22900	23400
	3	0.510	1740	17800	18200	18600	19000	19400	19900	20300	20800	21300	21800	22300
	4	0.765	1430	16900	17200	17600	18000	18400	18800	19200	19600	20000	20400	20900
	BFL	1.02	1130	15900	16200	16500	16800	17100	17500	17800	18200	18600	18900	19300
	6	4.82	857	14800	15000	15300	15600	15800	16100	16400	16700	17000	17300	17600
	7	8.96	588	13500	13700	13900	14100	14300	14500	14700	15000	15200	15400	15600

[^19]

Shape ${ }^{\text {d }}$	PNA ${ }^{\text {c }}$	$Y 1^{\text {a }}$	$\sum \mathbf{a}_{\boldsymbol{n}}$	$Y 2^{\text {b }}$, in.										
		in.	kip	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7
$\begin{gathered} \text { W36×150 } \\ (9040) \end{gathered}$	TFL	0	2220	17900	18300	18800	19200	19700	20200	20700	21200	21800	22300	22800
	2	0.235	1930	17200	17700	18100	18500	19000	19400	19900	20400	20900	21400	21900
	3	0.470	1650	16600	16900	17300	17700	18200	18600	19000	19400	19900	20300	20800
	4	0.705	1370	15800	16100	16500	16800	17200	17600	18000	18300	18800	19200	19600
	BFL	0.940	1090	14900	15200	15500	15800	16100	16400	16700	17100	17400	17800	18100
	6	4.82	820	13800	14000	14300	14500	14800	15100	15300	15600	15900	16200	16500
	7	9.09	554	12600	12700	12900	13100	13300	13500	13700	13900	14100	14300	14600
$\begin{gathered} \text { W36×135 } \\ (7800) \end{gathered}$	TFL	0	2000	15600	16000	16400	16900	17300	17700	18200	18600	19100	19600	20100
	2	0.198	1760	15100	15500	15900	16300	16700	17100	17500	18000	18400	18800	19300
	3	0.395	1520	14600	14900	15300	15600	16000	16400	16800	17200	17600	18000	18400
	4	0.593	1280	13900	14200	14500	14900	15200	15600	15900	16300	16600	17000	17400
	BFL	0.790	1050	13200	13500	13800	14000	14300	14600	15000	15300	15600	15900	16300
	6	4.92	773	12200	12400	12600	12900	13100	13300	13600	13800	14100	14400	14700
	7	9.49	499	10900	11100	11300	11400	11600	11800	11900	12100	12300	12500	12700
$\begin{gathered} \text { W33×221 } \\ (12900) \end{gathered}$	TFL	0	3270	24600	25300	25900	26600	27200	27900	28600	29400	30100	30900	31600
	2	0.320	2760	23600	24200	24800	25400	26000	26700	27300	28000	28700	29300	30100
	3	0.640	2250	22500	23000	23500	24000	24600	25200	25700	26300	26900	27500	28200
	4	0.960	1750	21100	21500	22000	22400	22900	23400	23900	24400	24900	25400	26000
	BFL	1.28	1240	19400	19700	20100	20400	20800	21200	21600	22000	22400	22800	23200
	6	3.67	1030	18500	18800	19100	19400	19800	20100	20400	20800	21100	21500	21900
	7	6.42	816	17600	17800	18100	18400	18600	18900	19200	19500	19800	20100	20400
$\begin{gathered} \text { W33×201 } \\ (11600) \end{gathered}$	TFL	0	2960	22100	22700	23300	23800	24500	25100	25700	26400	27000	27700	28400
	2	0.288	2500	21200	21700	22300	22800	23400	23900	24500	25100	25700	26400	27000
	3	0.575	2050	20200	20700	21100	21600	22100	22600	23200	23700	24200	24800	25400
	4	0.863	1600	19000	19400	19800	20200	20600	21100	21500	22000	22400	22900	23400
	BFL	1.15	1150	17500	17800	18100	18500	18800	19100	19500	19900	20200	20600	21000
	6	3.65	944	16700	17000	17200	17500	17800	18100	18400	18700	19100	19400	19700
	7	6.52	739	15800	16000	16300	16500	16700	17000	17200	17500	17800	18000	18300
$\begin{gathered} \text { W } 33 \times 169 \\ (9290) \end{gathered}$	TFL	0	2480	18100	18600	19100	19600	20100	20600	21200	21700	22300	22900	23400
	2	0.305	2120	17400	17900	18300	18800	19300	19700	20200	20700	21300	21800	22300
	3	0.610	1770	16700	17100	17500	17900	18300	18700	19200	19600	20100	20600	21100
	4	0.915	1420	15700	16100	16400	16800	17200	17600	17900	18300	18800	19200	19600
	BFL	1.22	1070	14600	14900	15200	15500	15800	16100	16500	16800	17100	17500	17800
	6	4.28	845	13800	14000	14300	14500	14800	15100	15300	15600	15900	16200	16500
	7	7.66	619	12800	13000	13200	13400	13600	13800	14000	14300	14500	14700	14900

[^20]
L. W33-W30

Table 3-20 (continued) Lower-Bound Elastic Moment of $F_{y}=50 \mathrm{ksi}$ Inertia, $I_{L B}$, for Plastic Composite Sections, in. ${ }^{4}$

Shape ${ }^{\text {d }}$	PNA ${ }^{\text {c }}$	$Y 1^{\text {a }}$	$\Sigma \boldsymbol{Q}_{n}$	$Y 2^{\text {b }}$, in.										
		in.	kip	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7
$\begin{gathered} \text { W } 33 \times 152 \\ (8160) \end{gathered}$	TFL	0	2250	16100	16500	16900	17400	17800	18300	18800	19300	19800	20300	20800
	2	0.265	1940	15500	15900	16300	16700	17100	17600	18000	18500	18900	19400	19900
	3	0.530	1630	14800	15200	15500	15900	16300	16700	17100	17500	17900	18400	18800
	4	0.795	1320	14000	14300	14600	15000	15300	15700	16000	16400	16800	17100	17500
	BFL	1.06	1020	13100	13400	13600	13900	14200	14500	14800	15100	15400	15700	16100
	6	4.34	788	12300	12500	12700	12900	13200	13400	13700	13900	14200	14500	14700
	7	7.91	561	11300	11500	11700	11800	12000	12200	12400	12600	12800	13000	13200
$\begin{gathered} \text { W33×141 } \\ (7450) \end{gathered}$	TFL	0	2080	14700	15100	15500	15900	16300	16700	17200	17600	18100	18600	19100
	2	0.240	1800	14200	14500	14900	15300	15700	16100	16500	16900	17300	17800	18200
	3	0.480	1520	13600	13900	14200	14600	14900	15300	15700	16100	16500	16900	17300
	4	0.720	1250	12900	13200	13500	13800	14100	14400	14800	15100	15500	15800	16200
	BFL	0.960	971	12100	12300	12600	12800	13100	13400	13700	13900	14200	14500	14800
	6	4.34	745	11300	11500	11700	11900	12100	12400	12600	12800	13100	13300	13600
	7	8.08	519	10300	10500	10700	10800	11000	11200	11300	11500	11700	11900	12100
$\begin{gathered} \text { W } 33 \times 130 \\ (6710) \end{gathered}$	TFL	0	1920	13300	13700	14000	14400	14800	15200	15600	16000	16500	16900	17300
	2	0.214	1670	12800	13200	13500	13900	14200	14600	15000	15400	15800	16200	16600
	3	0.428	1420	12300	12600	12900	13300	13600	13900	14300	14600	15000	15400	15800
	4	0.641	1180	11700	12000	12300	12600	12900	13200	13500	13800	14100	14500	14800
	BFL	0.855	932	11000	11300	11500	11800	12000	12300	12500	12800	13100	13400	13700
	6	4.39	705	10300	10500	10600	10900	11100	11300	11500	11700	12000	12200	12400
	7	8.30	479	9350	9490	9640	9790	9950	10100	10300	10400	10600	10800	11000
$\begin{gathered} \text { W33×118 } \\ (5900) \end{gathered}$	TFL	0	1740	11800	12100	12500	12800	13200	13500	13900	14300	14700	15100	15500
	2	0.185	1520	11400	11700	12000	12300	12700	13000	13400	13700	14100	14400	14800
	3	0.370	1310	11000	11300	11500	11800	12100	12500	12800	13100	13400	13800	14100
	4	0.555	1100	10500	10700	11000	11300	11500	11800	12100	12400	12700	13000	13300
	BFL	0.740	884	9890	10100	10300	10600	10800	11000	11300	11500	11800	12100	12300
	6	4.47	659	9150	9330	9510	9700	9890	10100	10300	10500	10700	10900	11200
	7	8.56	434	8260	8390	8530	8660	8800	8950	9090	9250	9400	9560	9720
$\begin{gathered} \text { W30×116 } \\ (4930) \end{gathered}$	TFL	0	1710	9870	10200	10500	10800	11100	11400	11800	12100	12500	12800	13200
	2	0.213	1490	9530	9810	10100	10400	10700	11000	11300	11600	12000	12300	12600
	3	0.425	1260	9120	9370	9630	9900	10200	10400	10700	11000	11300	11600	12000
	4	0.638	1040	8670	8890	9120	9360	9600	9850	10100	10400	10600	10900	11200
	BFL	0.850	818	8130	8320	8520	8720	8920	9140	9360	9580	9810	10000	10300
	6	3.98	623	7570	7730	7890	8060	8230	8400	8580	8770	8960	9150	9350
	7	7.43	428	6910	7030	7150	7270	7400	7530	7670	7810	7950	8090	8240

[^21]

Table 3-20 (continued) Lower-Bound Elastic Moment of $F_{y}=50 \mathrm{ksi}$ Inertia, $I_{L B}$, for Plastic Composite Sections, in. ${ }^{4}$

Shape ${ }^{\text {d }}$	PNA ${ }^{\text {c }}$	$Y 1^{\text {a }}$	$\sum \mathbf{Q}_{\boldsymbol{n}}$	$Y 2^{\text {b }}$, in.										
		in.	kip	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7
W27×84	TFL	0	1240	5770	5960	6160	6360	6580	6790	7020	7250	7480	7730	7970
(2850)	2	0.160	1080	5570	5740	5930	6120	6320	6520	6730	6940	7160	7390	7620
	3	0.320	915	5330	5490	5660	5830	6010	6200	6390	6590	6790	6990	7200
	4	0.480	755	5060	5200	5360	5510	5670	5840	6010	6180	6360	6540	6730
	BFL	0.640	595	4740	4870	5000	5130	5270	5410	5550	5700	5860	6010	6180
	6	3.53	452	4410	4510	4620	4730	4840	4960	5080	5200	5330	5460	5590
	7	6.64	309	4010	4090	4170	4250	4340	4430	4510	4610	4700	4800	4900
$\begin{gathered} \text { W24×94 } \\ (2700) \end{gathered}$	TFL	0	1390	5480	5680	5880	6100	6320	6550	6780	7020	7270	7530	7790
	2	0.219	1190	5260	5450	5640	5840	6040	6250	6470	6690	6920	7150	7390
	3	0.438	988	5010	5180	5350	5520	5710	5900	6090	6290	6500	6710	6930
	4	0.656	790	4710	4860	5010	5160	5320	5490	5660	5830	6010	6200	6390
	BFL	0.875	591	4360	4480	4600	4730	4860	5000	5140	5280	5430	5580	5740
	6	3.05	469	4100	4200	4310	4420	4530	4640	4760	4880	5010	5140	5270
	7	5.43	346	3810	3890	3970	4060	4140	4230	4330	4420	4520	4630	4730
$\begin{gathered} \text { W24×84 } \\ (2370) \end{gathered}$	TFL	0	1240	4810	4990	5170	5360	5560	5760	5970	6180	6400	6630	6860
	2	0.193	1060	4620	4790	4950	5130	5310	5490	5690	5880	6090	6300	6510
	3	0.385	888	4410	4560	4710	4870	5030	5200	5370	5550	5740	5930	6120
	4	0.578	714	4160	4290	4420	4560	4700	4850	5000	5160	5320	5480	5650
	BFL	0.770	540	3850	3960	4070	4190	4310	4430	4550	4680	4820	4960	5100
	6	3.02	425	3620	3710	3800	3900	4000	4100	4210	4320	4430	4550	4660
	7	5.48	309	3350	3420	3490	3570	3640	3720	3810	3890	3980	4070	4160
$\begin{gathered} \text { W24×76 } \\ (2100) \end{gathered}$	TFL	0	1120	4280	4440	4600	4770	4950	5130	5320	5510	5710	5910	6120
	2	0.170	967	4120	4270	4420	4580	4740	4910	5080	5260	5440	5630	5830
	3	0.340	814	3930	4070	4210	4350	4500	4650	4810	4970	5140	5310	5490
	4	0.510	662	3720	3840	3960	4090	4220	4350	4490	4630	4780	4930	5090
	BFL	0.680	509	3460	3560	3660	3770	3880	3990	4110	4230	4360	4480	4610
	6	2.99	394	3230	3320	3400	3490	3580	3680	3770	3880	3980	4080	4190
	7	5.59	280	2970	3040	3100	3170	3240	3310	3390	3460	3540	3630	3710
$\begin{gathered} \text { W24×68 } \\ (1830) \end{gathered}$	TFL	0	1010	3760	3900	4050	4200	4360	4520	4690	4860	5040	5220	5410
	2	0.146	874	3620	3760	3890	4030	4180	4330	4480	4640	4810	4980	5150
	3	0.293	743	3470	3590	3710	3840	3980	4110	4260	4400	4550	4710	4870
	4	0.439	611	3290	3390	3510	3620	3740	3860	3990	4120	4250	4390	4530
	BFL	0.585	480	3080	3170	3260	3360	3460	3570	3670	3790	3900	4020	4140
	6	3.04	366	2860	2930	3010	3090	3180	3260	3350	3450	3540	3640	3740
	7	5.80	251	2600	2660	2720	2780	2840	2900	2970	3040	3110	3180	3260

[^22]| $F_{y}=50 \mathrm{ksi}$ | Table 3-20 (continued) | |
| :---: | :---: | :---: |
| | Lower-Bound | |
| | Elastic Moment of | $1 L B$ |
| | Inertia, ILB, for Plastic Composite Sections, in. 4 | W24-W21 |

Shape ${ }^{\text {d }}$	PNA ${ }^{\text {c }}$	$Y 1^{\text {a }}$	$\sum \boldsymbol{Q}_{\boldsymbol{n}}$	$Y 2{ }^{\text {b }}$, in.										
		in.	kip	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7
$\begin{gathered} \text { W24×62 } \\ (1550) \end{gathered}$	TFL	0	910	3300	3420	3560	3690	3840	3980	4130	4290	4450	4610	4780
	2	0.148	806	3190	3310	3440	3560	3700	3840	3980	4120	4270	4430	4590
	3	0.295	702	3070	3180	3300	3420	3540	3670	3800	3940	4080	4220	4370
	4	0.443	598	2930	3040	3140	3250	3360	3480	3600	3720	3850	3980	4110
	BFL	0.590	495	2780	2870	2960	3060	3160	3260	3370	3480	3590	3710	3830
	6	3.45	361	2540	2610	2690	2770	2850	2930	3020	3110	3200	3290	3390
	7	6.56	228	2250	2300	2350	2410	2470	2520	2590	2650	2710	2780	2850
$\begin{gathered} \text { W24×55 } \\ (1350) \end{gathered}$	TFL	0	810	2890	3010	3120	3250	3370	3500	3640	3770	3920	4060	4210
	2	0.126	721	2800	2910	3020	3140	3250	3380	3500	3630	3770	3900	4050
	3	0.253	633	2700	2800	2910	3010	3120	3240	3360	3480	3600	3730	3860
	4	0.379	544	2590	2680	2780	2870	2970	3080	3190	3300	3410	3530	3650
	BFL	0.505	456	2460	2540	2630	2720	2810	2900	3000	3100	3200	3300	3410
	6	3.46	329	2240	2310	2370	2450	2520	2590	2670	2750	2830	2920	3000
	7	6.67	203	1970	2010	2060	2110	2160	2210	2270	2320	2380	2440	2500
$\begin{gathered} \text { W21×73 } \\ (1600) \end{gathered}$	TFL	0	1080	3310	3450	3590	3740	3900	4060	4220	4390	4570	4750	4940
	2	0.185	921	3170	3300	3430	3570	3710	3860	4010	4170	4330	4500	4670
	3	0.370	768	3020	3140	3260	3380	3510	3640	3780	3920	4070	4220	4380
	4	0.555	614	2840	2940	3050	3150	3270	3380	3500	3630	3750	3890	4020
	BFL	0.740	461	2620	2710	2790	2880	2980	3070	3170	3270	3380	3490	3600
	6	2.58	365	2470	2540	2610	2680	2760	2840	2930	3010	3100	3190	3290
	7	4.69	269	2280	2340	2400	2460	2520	2580	2650	2720	2790	2860	2930
$\begin{gathered} \text { W21×68 } \\ (1480) \end{gathered}$	TFL	0	1000	3060	3180	3320	3450	3600	3750	3900	4060	4220	4390	4560
	2	0.171	858	2930	3050	3180	3300	3440	3570	3710	3860	4010	4160	4320
	3	0.343	717	2800	2900	3010	3130	3250	3370	3500	3630	3770	3910	4050
	4	0.514	575	2630	2720	2820	2920	3030	3130	3250	3360	3480	3600	3730
	BFL	0.685	434	2430	2510	2590	2670	2760	2850	2940	3040	3140	3240	3340
	6	2.60	342	2280	2350	2420	2490	2560	2630	2710	2790	2880	2960	3050
	7	4.74	250	2110	2160	2210	2270	2330	2390	2450	2510	2580	2640	2710
$\begin{gathered} \text { W21×62 } \\ (1330) \end{gathered}$	TFL	0	915	2760	2880	3000	3120	3250	3390	3530	3670	3820	3970	4130
	2	0.154	788	2650	2760	2870	2990	3110	3240	3360	3500	3640	3780	3920
	3	0.308	662	2530	2630	2730	2840	2950	3060	3180	3300	3420	3550	3680
	4	0.461	535	2390	2470	2560	2650	2750	2850	2950	3060	3170	3280	3400
	BFL	0.615	408	2210	2280	2360	2440	2520	2600	2690	2770	2870	2960	3060
	6	2.54	318	2070	2130	2190	2260	2320	2390	2460	2540	2610	2690	2780
	7	4.78	229	1900	1950	2000	2050	2100	2150	2210	2270	2330	2390	2450

[^23]

Table 3-20 (continued) Lower-Bound $F_{y}=50 \mathrm{ksi}$ Elastic Moment of Inertia, $I_{L B}$, for Plastic Composite Sections, in. 4

Shape ${ }^{\text {d }}$	PNA ${ }^{\text {c }}$	$Y 1^{\text {a }}$	$\sum \boldsymbol{Q}_{\boldsymbol{n}}$	Y2 ${ }^{\text {b }}$, in.										
		in.	kip	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7
W18×60 (984)	TFL	0	880	2070	2170	2270	2380	2490	2610	2730	2860	2990	3130	3270
	2	0.174	749	1980	2070	2170	2270	2370	2480	2590	2710	2830	2950	3080
	3	0.348	617	1880	1960	2050	2140	2230	2330	2430	2530	2640	2750	2860
	4	0.521	486	1760	1830	1900	1980	2060	2140	2230	2320	2410	2510	2610
	BFL	0.695	355	1610	1660	1720	1790	1850	1920	1990	2060	2140	2220	2300
	6	2.18	287	1520	1570	1620	1670	1730	1780	1840	1910	1970	2040	2110
	7	3.80	220	1420	1460	1500	1540	1590	1640	1680	1730	1790	1840	1900
W18×55 (890)	TFL	0	810	1880	1970	2070	2170	2270	2380	2490	2600	2720	2850	2980
	2	0.158	691	1800	1880	1970	2060	2160	2260	2360	2470	2580	2690	2810
	3	0.315	573	1710	1790	1860	1950	2030	2120	2210	2310	2410	2510	2620
	4	0.473	454	1600	1670	1730	1810	1880	1960	2040	2120	2210	2300	2390
	BFL	0.630	336	1470	1520	1580	1640	1700	1760	1830	1900	1970	2040	2110
	6	2.15	269	1380	1430	1480	1530	1580	1630	1690	1750	1800	1870	1930
	7	3.86	203	1290	1320	1360	1400	1440	1490	1530	1580	1630	1670	1730
W18×50 (800)	TFL	0	735	1690	1770	1860	1950	2040	2140	2240	2350	2450	2570	2680
	2	0.143	628	1620	1700	1780	1860	1940	2030	2130	2220	2320	2430	2530
	3	0.285	521	1540	1610	1680	1750	1830	1910	2000	2080	2170	2260	2360
	4	0.428	414	1440	1500	1560	1630	1700	1770	1840	1910	1990	2070	2160
	BFL	0.570	308	1330	1370	1430	1480	1530	1590	1650	1710	1780	1840	1910
	6	2.08	246	1250	1290	1330	1380	1420	1470	1520	1580	1630	1690	1740
	7	3.82	184	1160	1190	1220	1260	1300	1340	1380	1420	1460	1510	1550
W18×46 (712)	TFL	0	675	1540	1610	1690	1780	1860	1950	2040	2140	2240	2340	2450
	2	0.151	583	1480	1550	1620	1700	1780	1860	1950	2040	2130	2220	2320
	3	0.303	492	1410	1470	1540	1610	1680	1760	1840	1920	2000	2090	2180
	4	0.454	400	1330	1380	1440	1500	1570	1630	1700	1780	1850	1930	2010
	BFL	0.605	308	1230	1280	1330	1380	1430	1490	1550	1610	1670	1730	1800
	6	2.42	239	1140	1180	1220	1270	1310	1360	1410	1460	1510	1570	1620
	7	4.36	169	1040	1070	1100	1140	1170	1210	1250	1280	1320	1370	1410
$\begin{gathered} \text { W18×40 } \\ (612) \end{gathered}$	TFL	0	590	1320	1390	1450	1530	1600	1680	1760	1840	1930	2020	2110
	2	0.131	511	1270	1330	1390	1460	1530	1600	1680	1760	1840	1920	2010
	3	0.263	432	1210	1270	1320	1390	1450	1510	1580	1650	1730	1800	1880
	4	0.394	353	1140	1190	1240	1300	1350	1410	1470	1530	1600	1670	1740
	BFL	0.525	274	1060	1100	1150	1190	1240	1290	1340	1390	1450	1510	1560
	6	2.26	211	985	1020	1060	1090	1130	1170	1220	1260	1310	1350	1400
	7	4.27	148	896	922	950	979	1010	1040	1070	1110	1140	1180	1210

[^24]
Table 3-20 (continued) Lower-Bound Elastic Moment of Inertia, $I_{L B}$, for Plastic Composite Sections, in. ${ }^{4}$

Shape ${ }^{\text {d }}$	PNA ${ }^{\text {c }}$	Y1 ${ }^{\text {a }}$	Σa_{n}	$Y 2^{\text {b }}$, in.										
		in.	kip	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7
W18×35 (510)	TFL	0	515	1120	1170	1230	1300	1360	1430	1500	1570	1650	1720	1800
	2	0.106	451	1080	1130	1190	1240	1300	1370	1430	1500	1570	1640	1720
	3	0.213	388	1030	1080	1130	1190	1240	1300	1360	1420	1490	1550	1620
	4	0.319	324	978	1020	1070	1120	1170	1220	1270	1330	1390	1450	1510
	BFL	0.425	260	917	955	995	1040	1080	1130	1170	1220	1270	1320	1380
	6	2.37	194	842	873	906	940	975	1010	1050	1090	1130	1170	1220
	7	4.56	129	753	776	800	825	851	878	906	935	965	996	1030
W16×45 (586)	TFL	0	665	1260	1330	1400	1470	1550	1630	1720	1810	1900	1990	2090
	2	0.141	566	1200	1270	1330	1400	1470	1550	1630	1710	1790	1880	1970
	3	0.283	466	1140	1200	1260	1320	1380	1450	1520	1590	1670	1750	1830
	4	0.424	367	1060	1110	1160	1220	1270	1330	1390	1450	1520	1590	1660
	BFL	0.565	267	971	1010	1050	1090	1140	1190	1230	1290	1340	1390	1450
	6	1.77	217	917	950	986	1020	1060	1100	1140	1190	1230	1280	1330
	7	3.23	166	854	882	910	940	972	1000	1040	1070	1110	1150	1190
W16×40 (518)	TFL	0	590	1110	1170	1230	1300	1370	1440	1520	1590	1670	1760	1850
	2	0.126	502	1060	1120	1170	1240	1300	1370	1430	1510	1580	1660	1740
	3	0.253	413	1000	1050	1110	1160	1220	1280	1340	1400	1470	1540	1610
	,	0.379	325	937	980	1030	1070	1120	1170	1230	1280	1340	1400	1460
	BFL	0.505	237	856	891	927	965	1000	1050	1090	1130	1180	1230	1280
	6	1.70	192	808	837	869	901	935	971	1010	1050	1090	1130	1170
	7	3.16	148	755	779	804	831	859	888	918	949	982	1020	1050
W16×36 (448)	TFL	0	530	973	1030	1080	1140	1200	1270	1340	1410	1480	1550	1630
	2	0.108	455	933	983	1040	1090	1150	1210	1270	1330	1400	1470	1540
	3	0.215	380	886	931	979	1030	1080	1130	1190	1250	1310	1370	1440
	4	0.323	305	831	871	912	956	1000	1050	1100	1150	1200	1260	1310
	BFL	0.430	229	765	797	831	867	905	944	984	1030	1070	1120	1160
	6	1.82	181	715	743	772	802	833	866	901	936	973	1010	1050
	7	3.46	133	659	680	703	727	752	778	805	833	862	892	923
W16×31 (375)	TFL	0	457	827	874	923	974	1030	1080	1140	1200	1260	1330	1400
	2	0.110	396	795	838	884	931	981	1030	1090	1140	1200	1260	1320
	3	0.220	335	758	797	838	882	927	974	1020	1070	1130	1180	1240
	4	0.330	274	714	749	786	824	864	906	949	995	1040	1090	1140
	BFL	0.440	213	663	692	723	756	790	825	862	900	940	982	1020
	6	2.00	164	614	639	664	691	720	749	780	812	845	879	914
	7	3.80	114	556	574	594	614	636	658	681	705	730	756	783

[^25]| $F_{y}=50 \mathrm{ksi}$ | Table 3-20 (continued) | |
| :---: | :---: | :---: |
| | Lower-Bound | |
| | Elastic Moment of | $L B$ |
| | Composite Sections, in. ${ }^{4}$ | W16-W14 |

Shape ${ }^{\text {d }}$	PNA ${ }^{\text {c }}$	$Y 1^{\text {a }}$	$\Sigma \mathbf{Q}_{\boldsymbol{n}}$	$Y 2^{\text {b }}$, in.										
		in.	kip	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7
W16×26 (301)	TFL	0	384	674	712	753	796	840	887	935	985	1040	1090	1150
	2	0.0863	337	649	686	724	763	805	849	894	941	990	1040	1090
	3	0.173	289	621	654	689	726	764	804	846	889	934	980	1030
	4	0.259	242	589	619	651	683	718	754	791	830	871	912	956
	BFL	0.345	194	551	577	604	633	663	694	727	760	795	832	869
	6	2.05	145	505	527	549	572	597	622	649	676	705	734	765
	7	4.01	96.0	450	466	482	499	517	535	555	575	596	617	640
W14×38 (385)	TFL	0	560	844	896	951	1010	1070	1130	1200	1270	1340	1410	1490
	2	0.129	473	805	853	903	956	1010	1070	1130	1190	1260	1330	1400
	3	0.258	386	759	802	847	894	943	995	1050	1100	1160	1220	1290
	4	0.386	299	704	741	779	819	861	905	951	999	1050	1100	1150
	BFL	0.515	211	636	665	695	726	759	794	830	868	907	948	990
	6	1.38	176	604	629	656	683	712	742	774	807	841	877	914
	7	2.53	140	568	589	611	634	659	684	710	738	766	796	827
W14×34 (340)	TFL	0	500	745	791	840	891	945	1000	1060	1120	1190	1250	1320
	2	0.114	423	711	754	798	845	895	946	1000	1060	1110	1180	1240
	3	0.228	346	671	709	749	791	835	881	929	979	1030	1090	1140
	4	0.341	270	624	656	691	727	764	804	845	888	933	979	1030
	BFL	0.455	193	566	591	618	647	677	708	741	775	811	848	886
	6	1.42	159	535	558	581	606	632	659	687	717	748	780	813
	7	2.61	125	502	521	540	561	582	605	628	653	678	705	732
W14×30(291)	TFL	0	443	642	682	725	770	817	866	918	972	1030	1090	1150
	2	0.0963	378	614	651	691	732	775	821	868	918	969	1020	1080
	3	0.193	313	581	615	650	688	727	767	810	855	901	949	999
	4	0.289	248	543	572	603	635	669	704	741	780	820	862	905
	BFL	0.385	183	496	520	545	571	599	627	658	689	722	756	791
	6	1.46	147	466	486	507	530	553	578	604	630	658	687	717
	7	2.80	111	432	448	465	483	502	522	542	564	586	610	634
W14×26(245)	TFL	0	385	553	589	626	665	706	749	794	841	890	941	994
	2	0.105	332	530	563	598	634	672	712	754	797	843	890	938
	3	0.210	279	504	534	565	598	633	669	707	746	787	830	874
	4	0.315	226	473	499	527	556	586	618	652	686	722	760	799
	BFL	0.420	173	436	458	481	506	531	558	586	615	645	677	709
	6	1.67	135	405	423	443	463	485	507	530	555	580	607	634
	7	3.18	96.1	368	382	397	413	429	447	465	483	503	523	544

[^26]

BEAM DIAGRAMS AND FORMULAS

The following variable definitions apply to Tables 3-22 and 3-23.
$E \quad=$ Modulus of elasticity of steel $=29,000 \mathrm{ksi}$
$I \quad=$ Moment of inertia of beam, in. ${ }^{4}$
$L \quad=$ Total length of beam between reaction points, ft
$M_{\max }=$ Maximum moment, kip-in.
$M_{1} \quad=$ Maximum moment in left section of beam, kip-in.
$M_{2}=$ Maximum moment in right section of beam, kip-in.
$M_{3}=$ Maximum positive moment in beam with combined end moment conditions, kip-in.
$M_{x}=$ Moment at distance x from end of beam, kip-in.
$P \quad=$ Concentrated load, kips
$P_{1} \quad=$ Concentrated load nearest left reaction, kips
$P_{2} \quad=$ Concentrated load nearest right reaction, and of different magnitude than P_{1}, kips
$R \quad=$ End beam reaction for any condition of symmetrical loading, kips
$R_{1} \quad=$ Left end beam reaction, kips
$R_{2} \quad=$ Right end or intermediate beam reaction, kips
$R_{3}=$ Right end beam reaction, kips
$V=$ Maximum vertical shear for any condition of symmetrical loading, kips
$V_{1} \quad=$ Maximum vertical shear in left section of beam, kips
$V_{2}=$ Vertical shear at right reaction point, or to left of intermediate reaction point of beam, kips
$V_{3}=$ Vertical shear at right reaction point, or to right of intermediate reaction point of beam, kips
$V_{x} \quad=$ Vertical shear at distance x from end of beam, kips
W = Total load on beam, kips
$a \quad=$ Measured distance along beam, in.
$b \quad=$ Measured distance along beam which may be greater or less than a, in.
$l=$ Total length of beam between reaction points, in.
$w \quad=$ Uniformly distributed load per unit of length, kip/in.
$w_{1}=$ Uniformly distributed load per unit of length nearest left reaction, kip/in.
$w_{2}=$ Uniformly distributed load per unit of length nearest right reaction and of different magnitude than w_{1}, kip/in.
$x \quad=$ Any distance measured along beam from left reaction, in.
$x_{1} \quad=$ Any distance measured along overhang section of beam from nearest reaction point, in.
$\Delta_{\max }=$ Maximum deflection, in.
$\Delta_{a}=$ Deflection at point of load, in.
$\Delta_{x}=$ Deflection at any point x distance from left reaction, in.
$\Delta_{x 1}=$ Deflection of overhang section of beam at any distance from nearest reaction point, in.

	Conc		ble 3-22a Load	quivalen			
n	Loading	Coeff.	Simple Beam	Beam Fixed One End, Supported at Other	Beam Fixed Both Ends		
			\triangle -		身		
∞		a	0.125	0.070	0.042		
		b	-	0.125	0.083		
		c	0.500	0.375	-		
		d	-	0.625	0.500		
		e	0.013	0.005	0.003		
		f	1.000	1.000	0.667		
		g	1.000	0.415	0.300		
2	$\begin{aligned} & P \\ & 1 \end{aligned}$	a	0.250	0.156	0.125		
		b	-	0.188	0.125		
		c	0.500	0.313	-		
		d	-	0.688	0.500		
		e	0.021	0.009	0.005		
		f	2.000	1.500	1.000		
		g	0.800	0.477	0.400		
3		a	0.333	0.222	0.111		
		b	-	0.333	0.222		
		c	1.000	0.667	-		
		d	-	1.333	1.000		
		e	0.036	0.015	0.008		
		f	2.667	2.667	1.778		
		g	1.022	0.438	0.333		
4	$\begin{array}{lll} P & P & P \\ 1 & 1 & 1 \end{array}$	a	0.500	0.266	0.188		
		b	-	0.469	0.313		
		c	1.500	1.031	-		
		d	-	1.969	1.500		
		e	0.050	0.021	0.010		
		f	4.000	3.750	2.500		
		g	0.950	0.428	0.320		
5	$\begin{aligned} & P P P P \\ & \end{aligned}$	a	0.600	0.360	0.200		
		b	-	0.600	0.400		
		c	2.000	1.400	-		
		d	-	2.600	2.000		
		e	0.063	0.027	0.013		
		f	4.800	4.800	3.200		
		g	1.008	0.424	0.312		
Maximum positive moment (kip-ft): aPL Maximum negative moment (kip-ft): bPL Pinned end reaction (kips): cP Fixed end reaction (kips): $\mathrm{d} P$ Maximum deflection (in.): $\mathrm{ePl}{ }^{3} / E /$			Equivalent simple span uniform load (kips): $f P$ Deflection coefficient for equivalent simple span uniform load: g Number of equal load spaces: n Span of beam (ft): L Span of beam (in.): l				

Table 3-22b Cantilevered Beams Beam Diagrams and FormulasEqual Loads, Equally Spaced						
No.	pans	System				
	,	∞	2	3	4	5
	an		$\begin{array}{lll} & \frac{P}{2} & P \\ & \frac{p}{2} \\ & \\ & \square & \end{array}$	$\begin{array}{lllll}\frac{P}{2} & P & P & \frac{P}{2} \\ 1 & 1 & 1 & \\ \\ & \nabla & \downarrow & \end{array}$	$\frac{P}{2} P P P \frac{P}{2}$ $\downarrow \downarrow \downarrow \downarrow$	$\frac{P}{2} P P P P \frac{p}{2}$ $1 \downarrow 11$
	$\begin{aligned} & M_{1} \\ & M_{2} \\ & M_{3} \\ & M_{4} \\ & M_{5} \end{aligned}$	$0.086 \times P L$ $0.096 \times P L$ $0.063 \times P L$ $0.039 P L$ $0.051 \times P L$	$0.167 \times P L$ $0.188 \times P L$ $0.125 \times P L$ $0.083 \times P L$ $0.104 \times P L$	$0.250 \times P L$ $0.278 \times P L$ $0.167 \times P L$ $0.083 \times P L$ $0.139 \times P L$	$0.333 \times P L$ $0.35 \times P L$ $0.250 \times P L$ $0.167 \times P L$ $0.208 \times P L$	$\begin{aligned} & 0.429 \times P L \\ & 0.480 \times P L \\ & 0.30 \times P L \\ & 0.171 \times P L \\ & 0.249 \times P L \end{aligned}$
	A B B D D E G G H	$\begin{aligned} & 0.414 \times P \\ & 1.172 \times P \\ & 0.438 \times P \\ & 1.063 \times P \\ & 1.086 \times P \\ & 1.109 \times P \\ & 0.977 \times P \\ & 1.000 \times P \end{aligned}$	$\begin{aligned} & 0.833 \times P \\ & 2.333 \times P \\ & 0.875 \times P \\ & 2.125 \times P \\ & 2.167 \times P \\ & 2.208 \times P \\ & 1.958 \times P \\ & 2.000 \times P \end{aligned}$	$\begin{aligned} & 1.250 \times P \\ & 3.50 \times P \\ & 1.333 \times P \\ & 3.167 \times P \\ & 3.250 \times P \\ & 3.333 \times P \\ & 2.91 \times P \\ & 3.000 \times P \end{aligned}$	$\begin{aligned} & 1.667 \times P \\ & 4.667 \times P \\ & 1.750 \times P \\ & 4.250 \times P \\ & 4.333 \times P \\ & 4.417 \times P \\ & 3.917 \times P \\ & 4.000 \times P \end{aligned}$	$\begin{aligned} & 2.071 \times P \\ & 5.85 \times P \\ & 2.200 \times P \\ & 5.30 \times P \\ & 5.429 \times P \\ & 5.557 \times P \\ & 4.87 \times P \\ & 5.800 \times P \end{aligned}$
	$\begin{aligned} & a \\ & b \\ & c \\ & c \\ & d \\ & e \end{aligned}$	$\begin{aligned} & 0.172 \times L \\ & 0.125 \times L \\ & 0.220 \times L \\ & 0.204 \times L \\ & 0.157 \times L \\ & 0.147 \times L \end{aligned}$	$\begin{aligned} & 0.250 \times L \\ & 0.200 \times L \\ & 0.333 \times L \\ & 0.308 \times L \\ & 0.273 \times L \\ & 0.250 \times L \end{aligned}$	$\begin{aligned} & 0.200 \times L \\ & 0.143 \times L \\ & 0.250 \times L \\ & 0.231 \times L \\ & 0.182 \times L \\ & 0.167 \times L \end{aligned}$	$\begin{aligned} & 0.182 \times L \\ & 0.143 \times L \\ & 0.222 \times L \\ & 0.211 \times L \\ & 0.176 \times L \\ & 0.167 \times L \end{aligned}$	$0.176 \times L$ $0.130 \times L$ $0.229 \times L$ $0.203 \times L$ $0.160 \times L$ $0.150 \times L$

Table 3-23
 Shears, Moments and Deflections

2. SIMPLE BEAM - LOAD INCREASING UNIFORMLY TO ONE END

3. SIMPLE BEAM — LOAD INCREASING UNIFORMLY TO CENTER

Table 3-23 (continued) Shears, Moments and Deflections

4. SIMPLE BEAM — UNIFORM LOAD PARTIALLY DISTRIBUTED
5. SIMPLE BEAM — UNIFORM LOAD PARTIALLY DISTRIBUTED AT ONE END

6. SIMPLE BEAM — UNIFORM LOAD PARTIALLY DISTRIBUTED AT EACH END

Table 3-23 (continued) Shears, Moments and Deflections

8. SIMPLE BEAM - CONCENTRATED LOAD AT ANY POINT

$R_{2}=V_{2}\left(=V_{\max }\right.$ when $\left.a>b\right) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots=\frac{P a}{l}$
$M_{\text {max }}$ (at point of load) $=\frac{P a b}{l}$
$M_{x} \quad($ when $x<a) \ldots$
$\Delta_{\max }\left[\right.$ at $x=\sqrt{\frac{a(a+2 b)}{3}}$, when $\left.a>b\right] \ldots \ldots \ldots \ldots \ldots \ldots=\frac{P a b(a+2 b) \sqrt{3 a(a+2 b)}}{27 E I I}$
$\Delta_{a} \quad$ (at point of load) $=\frac{{P a^{2}}^{2}}{3 E I l}$
$\Delta_{x} \quad($ when $x<a)$
$=\frac{P b x}{6 E I I}\left(l^{2}-b^{2}-x^{2}\right)$
9. SIMPLE BEAM - TWO EQUAL CONCENTRATED LOADS SYMMETRICALLY PLACED
Total Equiv. Uniform Load $=\frac{8 P a}{l}$
$R=V$.. $=P a$

Table 3-23 (continued) Shears, Moments and Deflections

10. SIMPLE BEAM - TWO EQUAL CONCENTRATED LOADS UNSYMMETRICALLY PLACED

11. SIMPLE BEAM - TWO UNEQUAL CONCENTRATED LOADS UNSYMMETRICALLY PLACED

$R_{1}=V_{1}$ \qquad $=\frac{P_{1}(l-a)+P_{2} b}{l}$
$R_{2}=V_{2}$
$=\frac{P_{1} a+P_{2}(l-b)}{l}$

$V_{x} \quad[$ when $a<x<(l-b)]$
$=R_{1}-P_{1}$
$M_{1} \quad\left(=M_{\max }\right.$ when $\left.R_{1}<P_{1}\right)$ \qquad $=R_{1} a$
$M_{2} \quad\left(=M_{\max }\right.$ when $\left.R_{2}<P_{2}\right)$
$=R_{2} b$

$M_{\mathrm{x}} \quad($ when $x<a)$ \qquad

$$
=R_{1} x
$$

$M_{\mathrm{x}} \quad[$ when $a<x<(l-b)]$
$=R_{1} x-P_{1}(x-a)$
12. BEAM FIXED AT ONE END, SUPPORTED AT OTHER — UNIFORMLY DISTRIBUTED LOAD

Table 3-23 (continued) Shears, Moments and Deflections

13. BEAM FIXED AT ONE END, SUPPORTED AT OTHER — CONCENTRATED LOAD AT CENTER

14. BEAM FIXED AT ONE END, SUPPORTED AT THE OTHER - CONCENTRATED LOAD AT ANY POINT

Table 3-23 (continued) Shears, Moments and Deflections

16. BEAM FIXED AT BOTH ENDS - CONCENTRATED LOAD AT CENTER

	Total Equiv. Uniform Load \qquad $=P$ $R=V$. \qquad $=\frac{P}{2}$ $M_{\text {max }}$ (at center and ends) \qquad $=\frac{P l}{8}$ $\Lambda_{\max } \text { (at center) ... }=\frac{P l^{3}}{192 E I}$ $\Delta_{x} \quad\left(\right.$ when $\left.x<\frac{1}{2}\right) \ldots \ldots \ldots . ~=~ P x^{2} ~(38 E I-4 x)$
17. BEAM FIXED AT BOTH ENDS	- CONCENTRATED LOAD AT ANY POINT

Table 3-23 (continued) Shears, Moments and Deflections

18. CANTILEVERED BEAM — LOAD INCREASING UNIFORMLY TO FIXED END
19. CANTILEVERED BEAM — UNIFORMLY DISTRIBUTED LOAD
Total Equiv. Uniform Load $=4 \mathrm{wl}$

$R=V$.. $=w I$

$M_{\text {max }}$ (at fixed end)
$=\frac{w l^{2}}{2}$

$\Delta_{\text {max }}$ (at free end)
$=\frac{w l^{4}}{8 E I}$
Δ_{x}
$=\frac{w}{24 E I}\left(x^{4}-4 l^{3} x+3 l^{4}\right)$
20. BEAM FIXED AT ONE END, FREE TO DEFLECT VERTICALLY BUT NOT ROTATE AT OTHER - UNIFORMLY DISTRIBUTED LOAD

Table 3-23 (continued) Shears, Moments and Deflections

21. CANTILEVERED BEAM - CONCENTRATED LOAD AT ANY POINT

22. CANTILEVERED BEAM - CONCENTRATED LOAD AT FREE END

23. BEAM FIXED AT ONE END, FREE TO DEFLECT VERTICALLY BUT NOT ROTATE AT OTHER CONCENTRATED LOAD AT DEFLECTED END

Table 3-23 (continued) Shears, Moments and Deflections

24. BEAM OVERHANGING ONE SUPPORT — UNIFORMLY DISTRIBUTED LOAD

NOTE: For a negative value of Δ_{x}, deflection is upward.
25. BEAM OVERHANGING ONE SUPPORT — UNIFORMLY DISTRIBUTED LOAD ON OVERHANG

$$
\begin{aligned}
& R_{1}=V_{1} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots a^{2} \\
& R_{2}=V_{1}+V_{2} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots=\frac{w a}{2 l}(2 l+a) \\
& V_{2} \quad \text {... }=\text { = } \\
& V_{x_{1}} \quad(\text { for overhang }) \ldots \ldots=w\left(a-x_{1}\right) \\
& M_{\text {max }}\left(\text { at } R_{2}\right) \\
& =\frac{w a^{2}}{2} \\
& M_{x} \quad \text { (between supports) } \\
& =\frac{w a^{2} x}{2 l} \\
& M_{x_{1}} \quad \text { (for overhang) } \\
& =\frac{w}{2}\left(a-x_{1}\right)^{2} \\
& \text { Moment } M_{\text {max }} \\
& \Delta_{\max }\left(\text { between supports at } x=\frac{l}{\sqrt{3}}\right)=\frac{w a^{2} l^{2}}{18 \sqrt{3} E I}=0.0321 \frac{w a^{2} l^{2}}{E I} \\
& \left.\Delta_{\text {max }} \text { (for overhang at } x_{1}=a\right) \ldots . .=\frac{w a^{3}}{24 E I}(4 l+3 a) \\
& \Delta_{x} \quad \text { (between supports) } \\
& =\frac{w a^{2} x}{12 E I l}\left(l^{2}-x^{2}\right) \\
& \Delta_{x_{1}} \quad \text { (for overhang) } \\
& =\frac{w x_{1}}{24 E l}\left(4 a^{2} l+6 a^{2} x_{1}-4 a x_{1}^{2}+x_{1}^{3}\right)
\end{aligned}
$$

Table 3-23 (continued) Shears, Moments and Deflections

26. BEAM OVERHANGING ONE SUPPORT — CONCENTRATED LOAD AT END OF OVERHANG

27. BEAM OVERHANGING ONE SUPPORT - CONCENTRATED LOAD AT ANY POINT BETWEEN SUPPORTS

Table 3-23 (continued) Shears, Moments and Deflections

29. CONTINUOUS BEAM - TWO EQUAL SPANS — UNIFORM LOAD ON ONE SPAN

30. CONTINUOUS BEAM - TWO EQUAL SPANS - CONCENTRATED LOAD AT CENTER OF ONE SPAN

Total Equiv. Uniform Load $=\frac{13}{8} P$
$R_{1}=V_{1} \ldots$

$R_{3}=V_{2} \ldots$

$M_{\max }$ (at point of load) $=\frac{13}{64} \mathrm{Pl}$

$\Delta_{\max }\left(\right.$ at $0.480 l$ from $\left.R_{i}\right) \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .$.
31. CONTINUOUS BEAM - TWO EQUAL SPANS - CONCENTRATED LOAD AT ANY POINT
$R_{1}=V_{1}$ \qquad $=\frac{P b}{4 l^{3}}\left[4 l^{2}-a(l+a)\right]$
$R_{2}=V_{2}+V_{3}$
$=\frac{P a}{2 l^{3}}\left[2 l^{2}+b(l+a)\right]$
$R_{3}=V_{3}$
$=\frac{P a b}{4 l^{3}}(l+a)$
V_{2}
$=\frac{P a}{4 l^{3}}\left[4 l^{2}+b(l+a)\right]$
$M_{\text {max }}$ (at point of load)
$=\frac{P a b}{4 l^{3}}\left[4 l^{2}-a(l+a)\right]$
$M_{1} \quad$ (at support R_{2})
$=\frac{P a b}{4 l^{2}}(l+a)$

Table 3-23 (continued)
 Shears, Moments and Deflections

32. BEAM - UNIFORMLY DISTRIBUTED LOAD AND VARIABLE END MOMENTS

33. BEAM - CONCENTRATED LOAD AT CENTER AND VARIABLE END MOMENTS

Table 3-23 (continued) Shears, Moments and Deflections

34. SIMPLE BEAM — LOAD INCREASING UNIFORMLY FROM CENTER
35. SIMPLE BEAM - CONCENTRATED MOMENT AT END

Δ_{x}
$=\frac{M}{6 E I}\left(3 x^{2}-\frac{x^{3}}{l}-21 x\right)$

36. SIMPLE BEAM — CONCENTRATED MOMENT AT ANY POINT

Table 3-23 (continued) Shears, Moments and Deflections

43. SIMPLE BEAM - ONE CONCENTRATED MOVING LOAD

$$
\begin{aligned}
& M_{\max }\left(\text { at point of load, when } x=\frac{l}{2}\right) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots=\frac{P l}{4}
\end{aligned}
$$

44. SIMPLE BEAM - TWO EQUAL CONCENTRATED MOVING LOADS

$M_{\max }\left\{\begin{array}{l}{\left[\begin{array}{l}\text { when } a<(2-\sqrt{2}) l=0.586 l \\ \text { under load } 1 \text { at } x=\frac{1}{2}\left(l-\frac{a}{2}\right)\end{array}\right] \ldots \ldots \ldots \ldots \ldots=\frac{P}{2 l}\left(l-\frac{a}{2}\right)^{2}} \\ {\left[\begin{array}{l}\text { when } a>(2-\sqrt{2}) l=0.586 l \\ \text { with one load at center of span (Case 43) }\end{array}\right] \ldots \ldots . .=\frac{P l}{4}}\end{array}\right.$
45. SIMPLE BEAM - TWO UNEQUAL CONCENTRATED MOVING LOADS

GENERAL RULES FOR SIMPLE BEAMS CARRYING MOVING CONCENTRATED LOADS

The maximum shear due to moving concentrated loads occurs at one support when one of the loads is at that support. With several moving loads, the location that will produce maximum shear must be determined by trial.
The maximum bending moment produced by moving concentrated loads occurs under one of the loads when that load is as far from one support as the center of gravity of all the moving loads on the beam is from the other support.

In the accompanying diagram, the maximum bending moment occurs under load P_{1} when $x=b$. It should also be noted that this condition occurs when the centerline of the span is midway between the center of gravity of loads and the nearest concentrated load.

PART 4
 DESIGN OF COMPRESSION MEMBERS

SCOPE 4-3
AVAILABLE COMPRESSIVE STRENGTH 4-3
Use of Table 6-2 for Design of Compression Members 4-3
LOCAL BUCKLING 4-3
Determining the Width-to-Thickness Ratios of the Cross Section 4-3
Determining the Slenderness of the Cross Section 4-3
EFFECTIVE LENGTH AND COLUMN SLENDERNESS 4-3
COMPOSITE COMPRESSION MEMBERS 4-4
DESIGN TABLE DISCUSSION 4-4
Steel Compression-Member Selection Tables 4-4
PART 4 REFERENCES 4-11
STEEL COMPRESSION MEMBER SELECTION TABLES 4-12
Table 4-1a. Available Strength in Axial Compression, kips- W-Shapes, $F_{y}=50 \mathrm{ksi}$ 4-12
Table 4-1b. Available Strength in Axial Compression, kips- W-Shapes, $F_{y}=65 \mathrm{ksi}$ $4-25$
Table 4-1c. Available Strength in Axial Compression, kips- W-Shapes, $F_{y}=70 \mathrm{ksi}$ 4-33
Table 4-2. Available Strength in Axial Compression, kips-HP-Shapes 4-41
Table 4-3. Available Strength in Axial Compression, kips—Rectangular HSS 4-45
Table 4-4. Available Strength in Axial Compression, kips-Square HSS 4-69
Table 4-5. Available Strength in Axial Compression, kips——Round HSS 4-85
Table 4-6. Available Strength in Axial Compression, kips-Pipe 4-102
Table 4-7. Available Strength in Axial Compression, kips- Concentrically Loaded WT-Shapes 4-106
Table 4-8. Available Strength in Axial Compression, kips- Double Angles-Equal Legs 4-139
Table 4-9. Available Strength in Axial Compression, kips- Double Angles-LLBB 4-150
Table 4-10. Available Strength in Axial Compression, kips- Double Angles-SLBB 4-165
Table 4-11. Available Strength in Axial Compression, kips- Concentrically Loaded Single Angles 4-180
Table 4-12. Available Strength in Axial Compression, kips- Eccentrically Loaded Single Angles 4-204
MISCELLANEOUS DESIGN TABLES 4-228
Table 4-13. Stiffness Reduction Factor 4-228
Table 4-14. Available Critical Stress for Compression Members 4-229

SCOPE

The specification requirements and other design considerations summarized in this Part apply to the design of members subject to axial compression. For the design of members subject to combined axial compression and flexure, see Part 6.

AVAILABLE COMPRESSIVE STRENGTH

The available strength of compression members, $\phi_{c} P_{n}$ or P_{n} / Ω_{c}, which must equal or exceed the required strength, P_{u} or P_{a}, respectively, is determined according to AISC Specification Chapter E.

Use of Table 6-2 for Design of Compression Members

Table 6-2 may be used for design of compression members. This table includes all W-shapes, not just those most commonly used as columns. See Part 6 for additional information on using Table 6-2 for design of compression members.

LOCAL BUCKLING

Determining the Width-to-Thickness Ratios of the Cross Section

Steel compression members are classified on the basis of the width-to-thickness ratios of the various elements of the cross section. The width-to-thickness ratio is calculated for each element of the cross section per AISC Specification Section B4. Limiting width-to-thickness ratios for various values of F_{y} of members subjected to axial compression are presented in Table 6-1a.

Determining the Slenderness of the Cross Section

When the width-to-thickness ratios of all compression elements are less than or equal to λ_{r}, the cross section is nonslender, and the gross area, A_{g}, is used to determine the nominal compressive strength, P_{n}; thus, there is no reduction in strength for element slenderness. When the width-to-thickness ratio of any compression element is greater than λ_{r}, the cross section is slender and A_{e} may be less than A_{g}. The effective area used to calculate the nominal compressive strength, P_{n}, is a function of λ_{r} and the critical stress, $F_{c r}$.

EFFECTIVE LENGTH AND COLUMN SLENDERNESS

Columns are designed for their slenderness, L_{c} / r, per AISC Specification Section E2. The effective length, L_{c}, is equal to the effective length factor, K, multiplied by L, the physical length between braced points (see AISC Specification Appendix 6).

When a stability analysis is performed using the direct analysis method per AISC Specification Chapter C, $K=1$.

When a stability analysis is performed using the first-order analysis method in AISC Specification Appendix 7, Section 7.3, $K=1$.

When a stability analysis is performed using the effective length method in AISC Specification Appendix 7, Section 7.2, the following applies:
$K=1$ for columns braced at each end and whose flexural stiffnesses are not considered to contribute to lateral stability and resistance to lateral loads.
$K=1$ for all columns when the ratio of maximum second-order drift to first-order drift in all stories is less than 1.1.
K shall be determined from a sidesway buckling analysis for all columns whose flexural stiffnesses are considered to contribute to lateral stability and resistance to lateral loads. Guidance on the proper determination of the value of K is given in AISC Specification Commentary to Appendix 7, Section 7.2.

As indicated in the User Note in AISC Specification Section E2, compression member slenderness, L_{c} / r, should preferably be limited to a maximum of 200 . Note that this recommendation does not apply to members that are primarily tension members but subject to incidental compression under other load combinations.

Additional information is available in the SSRC Guide to Stability Design Criteria for Metal Structures (Ziemian, 2010).

COMPOSITE COMPRESSION MEMBERS

For the design of encased composite and filled composite compression members, see AISC Specification Section I2. See also AISC Design Guide 6, Load and Resistance Factor Design of W-Shapes Encased in Concrete (Griffis, 1992). For further information on composite design and construction, see also Viest et al. (1997).

For the design of filled composite compression members, see AISC Specification Section I2 and the design tables provided in Part IV of the AISC Design Examples document found at www.aisc.org/manualresources.

DESIGN TABLE DISCUSSION

Steel Compression-Member Selection Tables

Tabulated values account for element slenderness effects.

Table 4-1. Available Strength in Axial Compression-W-Shapes

Available strengths in axial compression are given for W-shapes in Tables 4-1a, 4-1b and 4-1c. The tables reflect $F_{y}=50 \mathrm{ksi}$ (ASTM A992 and ASTM A913 where applicable), $F_{y}=65 \mathrm{ksi}$ (ASTM A913) and $F_{y}=70 \mathrm{ksi}$ (ASTM A913), respectively. These tables include W-shapes that are most commonly used in axial compression, and do not reflect the complete range of sections available in the relevant F_{y}. Available strengths in axial compression for all W-shapes, including those not shown in Table 4-1, are presented in Table 6-2 for $F_{y}=50 \mathrm{ksi}$.

The tabulated values are given for the effective length with respect to the y-axis, $L_{c y}$. However, the effective length with respect to the x-axis, $L_{c x}$, must also be investigated. To determine the available strength in axial compression, the table should be entered at the larger of $L_{c y}$ and $L_{c y}$ eq , where

$$
\begin{equation*}
L_{c y e q}=\frac{L_{c x}}{\frac{r_{x}}{r_{y}}} \tag{4-1}
\end{equation*}
$$

Where the torsional unbraced length and the flexural unbraced lengths are equal, torsional buckling generally does not control. However, where the torsional unbraced length is larger than the flexural unbraced length, AISC Specification Section E4 may control the design of W-shape columns. For further information, see Liu et al. (2013).

Values of the ratio r_{x} / r_{y} and other properties useful in the design of W -shape compression members are listed at the bottom of Table 4-1.

Variables $P_{w o}, P_{w i}, P_{w b}$ and $P_{f b}$ shown in Table 4-1 can be used to determine the strength of W-shapes without stiffeners to resist concentrated forces applied normal to the face(s) of the flange(s). In these tables it is assumed that the concentrated forces act far enough away from the member ends that end effects are not considered (end effects are addressed in Part 9). When $P_{r} \leq \phi R_{n}$ or R_{n} / Ω, column web stiffeners are not required. Figures 4-1, 4-2 and 4-3 illustrate the limit states and the applicable variables for each.

Web Local Yielding

The variables $P_{w o}$ and $P_{w i}$ can be used in the calculation of the available web local yielding strength for the column as follows:

LRFD	ASD		
$\phi R_{n}=P_{w o}+P_{w i} l_{b}$	$(4-2 \mathrm{a})$	$R_{n} / \Omega=P_{w o}+P_{w i} l_{b}$	$(4-2 \mathrm{~b})$

where
$R_{n}=F_{y w} t_{w}\left(5 k+l_{b}\right)=5 F_{y w} t_{w} k+F_{y w} t_{w} l_{b}$, kips (AISC Specification Equation J10-2)
$P_{w o}=\phi 5 F_{y w} t_{w} k$ for LRFD and $5 F_{y w} t_{w} k / \Omega$ for ASD, kips
$P_{w i}=\phi F_{y w} t_{w}$ for LRFD and $F_{y w} t_{w} / \Omega$ for ASD, kip/in.
$k=$ distance from outer face of flange to the web toe of fillet, in.
$l_{b}=$ length of bearing, in.
$t_{w}=$ thickness of web, in.
$\phi=1.00$
$\Omega=1.50$

Web Compression Buckling

The variable $P_{w b}$ is the available web compression buckling strength for the column as follows:

LRFD	ASD		
$\phi R_{n}=P_{w b}$	$(4-3 \mathrm{a})$	$R_{n} / \Omega=P_{w b}$	(4-3b)

where
$R_{n}=\frac{24 t_{w}^{3} \sqrt{E F_{y w}}}{h} Q_{f}$ (AISC Specification Equation J10-8)
$P_{w b}=\frac{\phi 24 t_{w}^{3} \sqrt{E F_{y w}}}{h} Q_{f}$ for LRFD and $\frac{24 t_{w}^{3} \sqrt{E F_{y w}}}{\Omega h} Q_{f}$ for ASD, kips
$Q_{f}=1.0$ for W-shapes
$F_{y w}=$ specified minimum yield stress of the web, ksi
$h=$ clear distance between flanges less the fillet or corner radius for rolled shapes, in.
$\phi=0.90$
$\Omega=1.67$

Flange Local Bending

The variable $P_{f b}$ is the available flange local bending strength for the column as follows:

LRFD	ASD		
$\phi R_{n}=P_{f b}$	$(4-4 \mathrm{a})$	$R_{n} / \Omega=P_{f b}$	$(4-4 \mathrm{~b})$

Fig. 4-1. Illustration of web local yielding limit state
(AISC Specification Section J10.2).
where

$$
\begin{aligned}
& R_{n}=6.25 F_{y f} t_{f}^{2}, \text { kips (AISC Specification Equation J10-1) } \\
& P_{f b}=\phi 6.25 F_{y f} t_{f}^{2} \text { for LRFD and } 6.25 F_{y f} t_{f}^{2} / \Omega \text { for ASD, kips } \\
& \phi=0.90 \\
& \Omega=1.67
\end{aligned}
$$

Table 4-2. Available Strength in Axial Compression-HP-Shapes

Table 4-2 is similar to Table 4-1, except it covers HP-shapes with $F_{y}=50 \mathrm{ksi}$ (ASTM A572 Grade 50).

Table 4-3. Available Strength in Axial CompressionRectangular HSS

Available strengths in axial compression are given for rectangular HSS with $F_{y}=50 \mathrm{ksi}$ (ASTM A500 Grade C). The tabulated values are given for the effective length with respect to the y-axis, $L_{c y}$. However, the effective length with respect to the x-axis, $L_{c x}$, must also be

Fig. 4-2. Illustration of web compression buckling limit state (AISC Specification Section J10.5).

Fig. 4-3. Illustration of flange local bending limit state (AISC Specification Section J10.1).
investigated. To determine the available strength in axial compression, the table should be entered at the larger of $L_{c y}$ and $L_{c y ~ e q}$, where

$$
\begin{equation*}
L_{c y e q}=\frac{L_{c x}}{\frac{r_{x}}{r_{y}}} \tag{4-1}
\end{equation*}
$$

Values of the ratio r_{x} / r_{y} and other properties useful in the design of rectangular HSS compression members are listed at the bottom of Table 4-3.

Table 4-4. Available Strength in Axial CompressionSquare HSS

Table 4-4 is similar to Table 4-3, except that it covers square HSS.

Table 4-5. Available Strength in Axial CompressionRound HSS

Available strengths in axial compression are given for round HSS with $F_{y}=46 \mathrm{ksi}$ (ASTM A500 Grade C). To determine the available strength in axial compression, the table should be entered at L_{c}. Other properties useful in the design of compression members are listed at the bottom of the available column strength tables.

Table 4-6. Available Strength in Axial Compression-Pipe
Table 4-6 is similar to Table 4-5, except it covers pipe with $F_{y}=35 \mathrm{ksi}$ (ASTM A53 Grade B).

Table 4-7. Available Strength in Axial CompressionConcentrically Loaded WT-Shapes

Available strengths in axial compression, including the limit state of flexural-torsional buckling with $C_{w}=0$ according to the User Note in AISC Specification Section E4, are given for concentrically loaded WT-shapes with $F_{y}=50 \mathrm{ksi}$ (ASTM A992). Separate tabulated values are given for the effective lengths with respect to the x - and y-axes, $L_{c x}$ and $L_{c y}$, respectively. For the flexural-torsional buckling effective length, use the tabulated values for the y-axis. Other properties useful in the design of concentrically loaded WT-shape compression members are listed at the bottom of Table 4-7.

Table 4-8. Available Strength in Axial CompressionDouble Angles-Equal Legs

Available strengths in axial compression, including the limit state of flexural-torsional buckling with $C_{w}=0$ according to the User Note in AISC Specification Section E4, are given for equal-leg double angles with $F_{y}=36 \mathrm{ksi}$ (ASTM A36), assuming $3 / 8$-in. separation between the angles for 2 L 2 through 2 L 8 members and $3 / 4-\mathrm{in}$. separation between the angles for 2 L 10 and 2L12 members. These values can be used conservatively when a larger separation is provided. Alternatively, the value of $L_{c y}$ can be multiplied by the ratio of the tabulated r_{y} to r_{y} for the actual separation.

Separate tabulated values are given for the effective lengths with respect to the x - and y axes, $L_{c x}$ and $L_{c y}$, respectively. For the flexural-torsional buckling effective length, use the tabulated values for the y-axis. For buckling about the x-axis, the available strength is not
affected by the number of intermediate connectors. However, for buckling about the y-axis, the effects of shear deformations of the intermediate connectors must be considered. The tabulated values for $L_{c y}$ have been adjusted for the shear deformations in accordance with AISC Specification Equations E6-2a and E6-2b, which is applicable for intermediate shear connectors that are welded or connected by means of pretensioned bolts with Class A or B faying surfaces. The number of intermediate connectors is given in the table and the line of demarcation between the required connector values is dashed. Intermediate connectors are selected such that the available compression buckling strength about the y-axis is equal to or greater than 90% of that for compression buckling of the two angles as a unit. If fewer connectors or snug-tightened bolted intermediate connectors are used, the available strength must be recalculated per AISC Specification Section E6. Per AISC Specification Section E6.2, the slenderness of the individual components of the built-up member based upon the distance between intermediate connectors, a, must not exceed three-quarters of the controlling slenderness of the overall built-up compression member.

Other properties useful in the design of double-angle compression members are listed at the bottom of Table 4-8.

Table 4-9. Available Strength in Axial CompressionDouble Angles-LLBB

Table 4-9 is the same as Table 4-8, except that it provides available strengths in axial compression for double angles with long legs back-to-back.

Table 4-10. Available Strength in Axial CompressionDouble Angles-SLBB

Table 4-10 is the same as Table 4-8, except that it provides available strengths in axial compression for double angles with short legs back-to-back.

Table 4-11. Available Strength in Axial CompressionConcentrically Loaded Single Angles

Available strengths in axial compression are given for single angles, loaded through the centroid of the cross section, with $F_{y}=36 \mathrm{ksi}$ (ASTM A36) based upon the effective length with respect to the z-axis, $L_{c z}$.

Eccentrically loaded single angles may be assumed to be loaded through the centroid when the requirements of AISC Specification Section E5 are met. In these cases, the eccentricity and end restraint are accounted for through a modified slenderness. Table 4-11 can then be entered using an effective length based on the modified slenderness ratio times the radius of gyration about the z-axis, r_{z}.

Table 4-12. Available Strength in Axial CompressionEccentrically Loaded Single Angles

Available strengths in axial compression are given for eccentrically loaded single angles with $F_{y}=36 \mathrm{ksi}$ (ASTM A36).

The long leg of the angle is assumed to be attached to a gusset plate with a thickness of $1.5 t$. The tabulated values assume a load placed at the mid-width of the long leg of the angle at a distance of $0.75 t$ from the face of this leg.

Effective length, L_{c}, is assumed to be the same on all axes $\left(r_{x}, r_{y}, r_{z}\right.$ and $\left.r_{w}\right)$. Table 4-12 considers the combined bending stresses at the heel and the tips of the angle (points A, B and C in Figure 4-4) produced by axial compression plus biaxial bending moments about the principal w - and z-axes using AISC Specification Equation H2-1. Points A and C are assumed at the angle mid-thickness at distances b and d (respectively) from the heel.

Note that for some sections, such as $\mathrm{L} 3^{1} / 2 \times 3 \times 5 / 16$, the calculated available strength can increase slightly as the unbraced length increases from zero, and then decrease as the unbraced length further increases.

Table 4-13. Stiffness Reduction Factor

The stiffness reduction factor, τ_{b}, is the ratio of the tangent modulus, E_{T}, to the elastic modulus, E. The equations for computing τ_{b} are provided in AISC Specification Section C2.3. Table 4-13 provides values of τ_{b} for materials with a specified minimum yield strength of $35 \mathrm{ksi}, 36 \mathrm{ksi}, 46 \mathrm{ksi}, 50 \mathrm{ksi}, 65 \mathrm{ksi}$ and 70 ksi.

When a stability analysis is performed using the direct analysis method in AISC Specification Chapter C, that procedure requires consideration of residual stresses and their adverse effects on column stiffness through the use of a reduced effective stiffness of $0.80 E I \tau_{b}$.

When a stability analysis is performed using the effective length method in AISC Specification Appendix 7, Section 7.2, that procedure requires determination of the effective length factor, K. A common method of determining K is through the use of alignment charts provided in the AISC Specification Commentary.

When column buckling occurs in the inelastic range, residual stresses will reduce the effective stiffness of columns and the alignment charts usually give conservative results. For more accurate solutions, inelastic K-factors can be determined from the alignment chart by using τ_{b} times the elastic modulus of the columns in the equation for G as discussed in AISC Specification Appendix 7 Commentary.

Table 4-14. Available Critical Stress for Compression Members

Table 4-14 provides the available critical stress for various ratios of L_{c} / r, for materials with a specified minimum yield strength of $35 \mathrm{ksi}, 36 \mathrm{ksi}, 46 \mathrm{ksi}, 50 \mathrm{ksi}, 65 \mathrm{ksi}$ and 70 ksi .

Fig. 4-4. Eccentrically loaded single angle.

PART 4 REFERENCES

Griffis, L.G. (1992), Load and Resistance Factor Design of W-Shapes Encased in Concrete, Design Guide 6, AISC, Chicago, IL.
Liu, D., Davis, B., Arber, L. and Sabelli, R. (2013), "Torsional and Constrained-Axis FlexuralTorsional Buckling Tables for Steel W-Shapes in Compression," Engineering Journal, AISC, Vol. 50, No. 4, pp. 205-247.
Viest, I.M., Colaco, J.P., Furlong, R.W., Griffis, L.G., Leon, R.T. and Wyllie, L.A. (1997), Composite Construction Design for Buildings, ASCE, New York, NY.
Ziemian, R.D. (ed.) (2010), Guide to Stability Design Criteria for Metal Structures, 6th Ed., John Wiley and Sons, Hoboken, NJ.

W14			Tab able omp W-S	4-1 Stre ress hape			$F_{y}=50 \mathrm{ksi}$	
Shape	W14×							
lb/ft	873 ${ }^{\text {h }}$		808 ${ }^{\text {h }}$		730 ${ }^{\text {h }}$		665 ${ }^{\text {h }}$	
Design	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	${ }_{c} P_{n}$
	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	7690	11600	7130	10700	6440	9670	5870	8820
	7300	11000	6750	10100	6070	9130	5530	8310
	7220	10900	6680	10000	6010	9030	5470	8220
	7140	10700	6600	9920	5940	8920	5400	8110
	7060	10600	6520	9800	5860	8810	5330	8010
	6970	10500	6440	9680	5780	8690	5250	7890
	6880	10300	6350	9540	5690	8560	5170	7770
	6780	10200	6250	9400	5610	8430	5090	7650
	6680	10000	6160	9250	5510	8290	5000	7520
	6570	9870	6050	9100	5420	8140	4910	7380
	6460	9700	5950	8940	5320	7990	4820	7240
	6220	9350	5730	8610	5110	7670	4620	6950
	5980	8980	5490	8260	4890	7340	4420	6640
	5720	8600	5250	7890	4660	7000	4200	6320
	5460	8200	5000	7520	4420	6650	3990	5990
	5190	7790	4750	7130	4180	6290	3760	5660
	4910	7380	4490	6750	3940	5930	3540	5320
	4630	6970	4230	6360	3700	5560	3320	4990
	4360	6550	3970	5970	3460	5200	3100	4650
	4080	6140	3710	5580	3220	4850	2880	4330
	3810	5730	3460	5200	2990	4500	2670	4010
	3550	5340	3210	4830	2770	4160	2460	3690
	3290	4950	2970	4470	2550	3830	2260	3390
	3040	4570	2740	4120	2330	3510	2060	3100
	2800	4200	2520	3780	2140	3220	1900	2850
	2580	3870	2320	3480	1970	2970	1750	2630
Properties								
$P_{\text {wo }}$, kips $P_{\text {wi }}$, kip/in. $P_{w b}$, kips $P_{f b}$, kips	4010	6010	3560	5340	2820	4230	2410	3620
	131	197	125	187	102	154	94.3	142
	93000	140000	79600	120000	44000	66100	34400	51700
	5680	8540	4910	7370	4510	6780	3820	5750
$\begin{aligned} & L_{p}, \mathrm{ft} \\ & L_{r}, \mathrm{ft} \end{aligned}$	17.3		17.1		16.6		16.3	
A_{g}, in. 2	257		238		215		196	
I_{x}, in. ${ }^{4}$	18100		15900		14300		12400	
l_{y}, in. ${ }^{4}$	6170		5550		4720		4170	
r_{y}, in.	4.90		4.83		4.69		4.62	
r_{x} / r_{y}	1.71		1.69		1.74		1.73	
$P_{e x} L_{c}^{2} / 10^{4}, \mathrm{k}-\mathrm{in} .{ }^{2}$	518000		455000		409000		355000	
$P_{e y} L_{C}^{2} / 10^{4}, \mathrm{k}$-in. ${ }^{2}$	177000		159000		135000		119000	
ASD	LRFD		${ }^{\mathrm{h}}$ Flange thickness is greater than 2 in . Special requirements may apply per AISC Specification Section A3.1c.					
$\Omega_{c}=1.67$	$\phi_{C}=0.90$							

			Available Strength in Axial Compression, kips												
Shape		W14×													
lb/ft		426 ${ }^{\text {h }}$		398 ${ }^{\text {h }}$		$370^{\text {h }}$		342 ${ }^{\text {h }}$		$311^{\text {h }}$		283 ${ }^{\text {h }}$			
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$		
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD		
	0	3740	5620	3500	5260	3260	4900	3020	4540	2740	4110	2490	3750		
	11	3500	5260	3270	4920	3040	4570	2820	4230	2550	3830	2320	3480		
	12	3450	5190	3230	4850	3000	4510	2780	4180	2510	3770	2290	3440		
	13	3410	5120	3180	4780	2960	4450	2740	4120	2470	3720	2250	3380		
	14	3350	5040	3130	4710	2910	4380	2700	4050	2430	3660	2210	3330		
	15	3300	4960	3080	4630	2870	4310	2650	3980	2390	3600	2180	3270		
	16	3240	4870	3030	4550	2810	4230	2600	3910	2350	3530	2140	3210		
	17	3180	4790	2970	4470	2760	4150	2550	3840	2300	3460	2090	3150		
	18	3120	4690	2920	4380	2710	4070	2500	3760	2260	3390	2050	3080		
	19	3060	4600	2850	4290	2650	3980	2450	3680	2210	3320	2000	3010		
	20	2990	4500	2790	4200	2590	3890	2390	3600	2160	3240	1960	2940		
Effective length, $L_{c}(\mathrm{ft})$, with respect to	22	2860	4290	2660	4000	2470	3710	2280	3420	2050	3080	1860	2800		
	24	2710	4080	2530	3800	2340	3520	2160	3240	1940	2920	1760	2640		
	26	2560	3850	2390	3590	2210	3320	2040	3060	1830	2750	1660	2490		
	28	2410	3630	2250	3380	2080	3120	1910	2870	1710	2580	1550	2330		
	30	2260	3400	2100	3160	1940	2920	1790	2680	1600	2400	1450	2170		
	32	2110	3170	1960	2950	1810	2720	1660	2500	1490	2230	1340	2020		
	34	1960	2950	1820	2730	1670	2520	1540	2310	1370	2060	1240	1860		
	36	1810	2730	1680	2530	1540	2320	1420	2130	1260	1900	1140	1710		
	38	1670	2510	1550	2320	1420	2130	1300	1950	1160	1740	1040	1560		
	40	1530	2300	1410	2130	1300	1950	1180	1780	1050	1580	945	1420		
	42	1390	2090	1290	1930	1180	1770	1070	1610	954	1430	857	1290		
	44	1270	1910	1170	1760	1070	1610	979	1470	869	1310	781	1170		
	46	1160	1750	1070	1610	980	1470	896	1350	795	1200	715	1070		
	48	1070	1600	985	1480	900	1350	823	1240	730	1100	656	986		
	50	983	1480	907	1360	830	1250	758	1140	673	1010	605	909		
Properties															
$P_{\text {wo }}$, kips $P_{w i}$, kip/in. $P_{w b}$, kips $P_{f b}$, kips		1140	1710	1010	1520	902	1350	788	1180	672	1010	574	861		
		62.7	94.0	59.0	88.5	55.3	83.0	51.3	77.0	47.0	70.5	43.0	64.5		
		10100	15100	8420	12700	6920	10400	5540	8320	4250	6390	3260	4900		
		1730	2600	1520	2280	1320	1990	1140	1720	956	1440	802	1210		
$L_{p}, \mathrm{ft}$$L_{r}, \mathrm{ft}$		$\begin{gathered} 15.3 \\ 168 \\ \hline \end{gathered}$		$\begin{aligned} & 15.2 \\ & 158 \\ & \hline \end{aligned}$		15.1		15.0		14.8		14.7			
		148	138		125		114								
$\begin{aligned} & A_{g}, \text { in. }{ }^{2} \\ & I_{x}, \text { in. } \\ & I_{y}, \text { in. } \\ & r_{y}, \text { in. } \\ & r_{x} / r_{y} \\ & P_{e x} L_{c}{ }^{2} / 10^{4}, \text { k-in. }{ }^{2} \\ & P_{e y} L_{c}^{2} / 10^{4}, \text { k-in. }{ }^{2} \end{aligned}$				125	117		109		101		91.4		83.3		
		6600				6000		5440		4900		4330		3840	
		2360		2170		1990		1810		1610		1440			
			4.34		4.31		4.27		4.24		4.20		4.17		
			1.67		1.66		1.66		1.65		1.64		1.63		
		18900		17200		15600		14000	0	124000		1100			
		6750		6210		5700		5180		46100		412			
ASD		LRFD		${ }^{n}$ Flange thickness is greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.											
$\Omega_{C}=1.67$		$\phi_{C}=0.90$													

$F_{y}=50$						$\begin{aligned} & 4-1 \\ & \text { ble } \\ & \text { mp } \\ & \text { w-s } \end{aligned}$		onti ren SSi pes	nue gt On					W14							
Shape		W14×																			
lb/ft		82		74		68		61		53		48		$43^{\text {c }}$							
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$						
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD						
Effective length, $L_{c}(\mathrm{ft})$, with respect to least radius of gyration, r_{y}	0	719	1080	653	981	599	900	536	805	467	702	422	634	374	562						
	6	676	1020	614	922	562	845	503	756	421	633	380	572	339	510						
	7	661	993	600	902	550	826	492	739	406	610	366	551	327	491						
	8	644	968	585	879	536	805	479	720	389	585	351	527	312	470						
	9	626	940	568	854	520	782	465	699	371	557	334	502	297	447						
	10	606	910	550	827	503	756	450	676	351	528	316	475	281	422						
	11	584	878	531	797	485	729	433	651	331	497	298	447	264	397						
	12	562	844	510	767	466	701	416	626	310	465	279	419	247	371						
	13	538	809	489	735	446	671	398	599	288	433	259	390	229	345						
	14	514	772	467	701	426	640	380	571	267	401	240	360	212	318						
	15	489	735	444	667	405	608	361	543	246	369	221	331	194	292						
	16	464	697	421	633	384	577	342	514	225	338	202	303	177	267						
	17	438	659	398	598	362	544	323	485	205	308	183	276	161	242						
	18	413	620	375	563	341	512	304	456	185	278	166	249	145	218						
	19	387	582	352	529	320	480	285	428	166	250	149	224	130	196						
	20	362	545	329	495	299	449	266	399	150	226	134	202	117	177						
	22	314	472	285	428	258	388	229	345	124	186	111	167	97.1	146						
	24	267	402	243	365	219	330	195	293	104	157	93.2	140	81.6	123						
	26	228	343	207	311	187	281	166	249	88.8	133	79.4	119	69.5	104						
	28	197	295	179	268	161	242	143	215	76.6	115	68.5	103	59.9	90.1						
	30	171	257	156	234	140	211	125	187	66.7	100	59.7	89.7	52.2	78.5						
	32	150	226	137	205	123	185	110	165	58.6	88.1										
	34	133	200	121	182	109	164	97.0	146												
	36	119	179	108	162	97.5	147	86.5	130												
	38	107	160	96.9	146	87.5	131	77.7	117												
	40	96.3	145	87.5	131	79.0	119	70.1	105												
Properties																					
$P_{\text {wo }}$, kips $P_{w i}$, kip/in. $P_{w b}$, kips $P_{f b}$, kips		123	185	104	155	90.6	136	77.5	116	77.1	116	67.4	101	56.9	85.4						
		17.0	25.5	15.0	22.5	13.8	20.8	12.5	18.8	12.3	18.5	11.3	17.0	10.2	15.3						
		201	302	138	207	108	163	80.1	120	76.7	115	59.5	89.5	43.0	64.7						
		137	206	115	173	97.0	146	77.8	117	81.5	123	66.2	99.6	52.6	79.0						
$\begin{aligned} & L_{p}, \mathrm{ft} \\ & L_{r}, \mathrm{ft} \end{aligned}$		$\begin{gathered} 8.76 \\ 33.2 \end{gathered}$		$\begin{gathered} 8.76 \\ 31.0 \\ \hline \end{gathered}$		$\begin{gathered} 8.69 \\ 29.3 \\ \hline \end{gathered}$		$\begin{gathered} 8.65 \\ 27.5 \\ \hline \end{gathered}$		6.7822.3		6.75		6.68							
			1.1				20.0														
A_{g}, in. 2				24.0				21.8		20.0		17.9		15.6		14.1		12.6			
l_{x}, in. ${ }^{4}$		881		795		722		640		541		484		428							
l_{y}, in. ${ }^{4}$		148		134		121		107		57.7		51.4		45.2							
r_{y}, in.		2.48		2.48		2.46		2.45		1.92		1.91		1.89							
$\begin{aligned} & r_{x} / r_{y} \\ & P_{e x} L_{c}^{2} / 10^{4}, \text { k-in. }{ }^{2} \end{aligned}$			2.44		2.44		2.44		2.44		3.07		3.06		3.08						
		25200		22800		20700		18300		15500		13900		12300							
$P_{e y} L_{c}{ }^{2} / 10^{4}, \mathrm{k}-\mathrm{in} .{ }^{2}$		4240		3840		3460		3060		1650		1470		1290							
ASD		LRFD		${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$; tabulated values have been adjusted accordingly. Note: Heavy line indicates L_{c} / r_{y} equal to or greater than 200.																	
$\Omega_{c}=$		$\phi_{c}=0.90$																			

W12				ble ilab Co	-1a	cont tre eSS apes	nue gt On,			$=5$	
Shape		W12×									
lb/ft		96		87		79		72		65	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} \boldsymbol{P}_{\boldsymbol{n}}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	844	1270	766	1150	695	1040	632	949	572	859
	6	811	1220	736	1110	667	1000	606	911	549	825
	7	800	1200	726	1090	657	988	597	898	540	812
	8	787	1180	714	1070	646	971	587	883	531	798
	9	772	1160	700	1050	634	953	576	866	521	783
	10	756	1140	685	1030	620	932	564	847	510	766
	11	739	1110	670	1010	606	910	550	827	497	747
	12	720	1080	653	981	590	887	536	806	484	728
	13	701	1050	635	954	574	862	521	783	470	707
	14	680	1020	616	925	556	836	505	759	456	685
	15	659	990	596	896	538	809	489	735	441	663
	16	637	957	576	865	520	781	472	709	426	640
	17	614	923	555	834	501	753	455	683	410	616
	18	591	888	534	802	481	723	437	656	393	591
	19	567	852	512	770	462	694	419	629	377	567
	20	543	816	490	737	442	664	401	602	360	542
	22	495	744	446	671	402	604	364	547	327	492
	24	447	672	403	605	362	544	328	493	294	442
	26	401	602	360	541	323	486	292	440	262	394
	28	356	535	319	480	286	430	259	389	231	348
	30	312	469	280	421	250	376	226	340	202	304
	32	274	413	246	370	220	331	199	299	178	267
	34	243	365	218	327	195	293	176	265	157	236
	36	217	326	194	292	174	261	157	236	140	211
	38	195	293	174	262	156	234	141	212	126	189
	40	176	264	157	237	141	212	127	191	114	171
Properties											
$P_{\text {wo }}$, kips $P_{\text {wi }}$, kip/in. $P_{w b}$, kips $P_{f b}$, kips		138	206	121	182	104	156	91.0	137	78.0	117
		18.3	27.5	17.2	25.8	15.7	23.5	14.3	21.5	13.0	19.5
		296	445	243	365	185	278	142	213	106	159
		152	228	123	185	101	152	84.0	126	68.5	103
L_{p}, ft		10.9		10.8		10.8		10.7		11.9	
L_{r}, ft		46.7		43.1		39.9		37.5		35.1	
A_{g}, in. ${ }^{2}$		28.2		25.6		23.2		21.1		19.1	
I_{x}, in. ${ }^{4}$		833		740		662		597		533	
l_{y}, in. ${ }^{4}$		270		241		216		195		174	
r_{y}, in.		3.09		3.07		3.05		3.04		3.02	
r_{x} / r_{y}		$\begin{aligned} & 1.76 \\ & 23800 \end{aligned}$		1.75		1.75		1.75		1.75	
$P_{e x} L_{C}{ }^{2} / 1$	k-in. ${ }^{2}$			21200		18900		17100		15300	
$P_{e y} L_{C}{ }^{2} / 1$	k-in. ${ }^{2}$	$\begin{array}{r} 23800 \\ 7730 \end{array}$		6900		6180		5580		4980	
ASD		LRFD									
$\Omega_{c}=1.67$		$\phi_{C}=0.90$									

$F_{y}=50 \mathrm{ksi}$																	
		W12×															
lb/ft		58		53		50		45		40							
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$						
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD						
	0	509	765	467	702	437	657	392	589	350	526						
	6	479	720	439	660	396	595	355	534	317	476						
	7	469	705	429	646	382	574	342	515	305	459						
	8	457	687	419	629	367	551	329	494	293	440						
	9	445	668	407	611	350	526	313	471	279	420						
	10	431	647	394	592	332	500	297	447	265	398						
	11	416	625	380	571	314	472	281	422	250	375						
	12	400	601	365	549	295	443	263	396	234	352						
	13	384	577	350	526	275	413	246	369	218	328						
	14	367	551	334	502	255	384	228	343	202	304						
	15	349	525	318	478	236	355	210	316	187	281						
Effective length, $L_{c}(\mathrm{ft})$, with respect to	16	332	499	301	453	217	326	193	290	171	257						
	17	314	472	285	428	198	298	176	265	156	235						
	18	296	445	268	403	180	270	160	240	142	213						
	19	278	418	252	378	162	244	144	216	127	191						
	20	261	392	235	354	146	220	130	195	115	173						
	22	227	341	204	307	121	182	107	161	95.0	143						
	24	194	292	174	261	102	153	90.3	136	79.8	120						
	26	165	249	148	223	86.6	130	76.9	116	68.0	102						
	28	143	214	128	192	74.7	112	66.3	99.7	58.6	88.1						
	30	124	187	111	167	65.0	97.8	57.8	86.8	51.1	76.8						
	32	109	164	97.8	147	57.2	85.9	50.8	76.3	44.9	67.5						
	34	96.7	145	86.6	130												
	36	86.3	130	77.3	116												
	38	77.4	116	69.4	104												
	40	69.9	105	62.6	94.1												
Properties																	
$P_{\text {wo }}$, kips $P_{w i}$, kip/in. $P_{w b}$, kips $P_{f b}$, kips		74.4	112	67.9	102	70.3	105	60.3	90.5	50.2	75.2						
		12.0	18.0	11.5	17.3	12.3	18.5	11.2	16.8	9.83	14.8						
		83.1	125	73.3	110	88.4	133	65.6	98.6	44.8	67.4						
		76.6	115	61.9	93.0	76.6	115	61.9	93.0	49.6	74.6						
$\begin{aligned} & L_{p}, \mathrm{ft} \\ & L_{r}, \mathrm{ft} \end{aligned}$		$\begin{array}{r} 8.87 \\ 29.8 \\ \hline \end{array}$		$\begin{gathered} 8.76 \\ 28.2 \end{gathered}$		$\begin{gathered} 6.92 \\ 23.8 \end{gathered}$		$\begin{gathered} 6.89 \\ 22.4 \end{gathered}$		$\begin{gathered} 6.85 \\ 21.1 \end{gathered}$							
A_{g}, in. ${ }^{2}$ I_{x}, in. ${ }^{4}$ I_{y}, in. ${ }^{4}$ r_{y}, in. $r_{x} I_{y}$ $P_{e x} L_{c}{ }^{2} / 10^{4}$, k-in. ${ }^{2}$ $P_{e y} L_{c}{ }^{2} / 10^{4}, \mathrm{k}$-in. ${ }^{2}$		17.0		15.6		14.6		13.1		11.7							
		47		425		391		348		307							
		107		95.8		56.3		50.0		44.1							
		2.51		2.48		1.96		1.95		1.94							
		2.10		2.11		2.64		2.64		2.64							
		13600		12200		11200		9960		8790							
		3060		2740		1610		1430		1260							
ASD		LRFD		Note: Heavy line indicates L_{c} / r_{y} equal to or greater than 200.													
$\Omega_{C}=1.67$		$\phi_{C}=0.90$															

W10		Available Strength in Axial Compression, kips											
		W10×											
lb/ft		112		100		88		77		68		60	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	985	1480	877	1320	778	1170	680	1020	596	895	530	796
	6	934	1400	831	1250	737	1110	643	966	563	846	500	752
	7	917	1380	815	1230	722	1090	630	946	552	829	490	737
	8	897	1350	797	1200	706	1060	615	925	539	810	479	719
	9	875	1310	777	1170	688	1030	599	900	525	789	466	700
	10	851	1280	755	1130	669	1000	582	874	509	765	452	679
	11	825	1240	732	1100	647	973	563	846	493	741	437	657
	12	798	1200	707	1060	625	940	543	816	475	714	421	633
	13	769	1160	681	1020	602	905	522	785	457	687	405	608
	14	739	1110	654	983	578	868	501	753	438	658	388	583
	15	708	1060	626	941	553	831	479	720	419	629	370	556
	16	677	1020	598	898	527	792	456	686	399	599	352	530
	17	645	969	569	855	501	754	433	651	379	569	334	502
	18	613	921	540	811	475	714	410	617	358	539	316	475
	19	580	872	511	767	449	675	387	582	338	508	298	448
	20	548	824	482	724	423	636	365	548	318	478	280	421
	22	485	728	425	638	373	560	320	481	279	419	245	368
	24	423	636	370	556	324	487	277	417	241	363	212	318
	26	365	548	318	478	278	417	237	356	206	310	181	271
	28	315	473	274	412	239	360	204	307	178	267	156	234
	30	274	412	239	359	209	313	178	267	155	233	136	204
			362	210	315	183	276	156	235	136	205	119	179
	34	213	321	186	279	162	244	139	208	121	181	106	159
	36	190	286	166	249	145	218	124	186	108	162	94.2	142
	38	171	257	149	224	130	195	111	167	96.5	145	84.5	127
	40	154	232	134	202	117	176	100	150	87.1	131	76.3	115
Properties													
$P_{\text {wo }}$, kips $P_{\text {wi }}$, kip/in. $P_{w b}$, kips $P_{f b}$, kips L_{p}, ft L_{r}, ft		$\begin{array}{\|c} \hline 220 \\ 25.2 \\ 949 \\ 292 \\ \hline \end{array}$	330 37.8 1430 439	$\begin{array}{\|c\|} \hline 184 \\ 22.7 \\ 690 \\ 235 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 275 \\ 34.0 \\ 1040 \\ 353 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 150 \\ 20.2 \\ 487 \\ 183 \\ \hline \end{array}$	$\begin{gathered} \hline 225 \\ 30.3 \\ 732 \\ 276 \\ \hline \end{gathered}$	121 17.7 328 142	$\begin{gathered} \hline 182 \\ 26.5 \\ 494 \\ 213 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 99.5 \\ 15.7 \\ 229 \\ 111 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 149 \\ 23.5 \\ 344 \\ 167 \\ \hline \end{array}$	$\begin{gathered} \hline 82.6 \\ 14.0 \\ 163 \\ 86.5 \\ \hline \end{gathered}$	21.0 245 130
			9.47		9.36		9.29		9.18		9.15		9.08
			64.1		57.9		51.2		45.3		40.6		36.6
			32.9		29.3		26.0		22.7		19.9		17.7
			716	62			34		455		394		341
			236	20	7		79		154		34		16
			2.68		2.65		2.63		2.60		2.59		2.57
			1.74		1.74		1.73		1.73		1.71		1.71
		2050	500	1780		153			000	113			60
		675	50	5920		5120		4410		3840		3320	
ASD		LRFD											
$\Omega_{c}=1.67$		$\phi_{C}=0.90$											

$F_{y}=50$				ble ilab Co	$-1 a$ le npr V-Sh	cont tren eSS apes		in kip									
Shape		W10×															
lb/ft		54		49		45		39		33							
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$						
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD						
	0	473	711	431	648	398	598	344	517	291	437						
	6	446	671	407	611	363	545	313	470	263	395						
	7	437	657	398	598	350	527	302	454	253	381						
	8	427	642	388	584	337	507	290	436	243	365						
	9	415	624	378	568	322	485	277	416	232	348						
	10	403	605	366	550	307	461	263	396	220	330						
	11	389	585	354	532	291	437	249	374	207	311						
	12	375	564	341	512	274	411	234	352	194	292						
	13	361	542	327	492	256	385	219	329	181	272						
	14	345	519	313	471	239	359	203	306	168	253						
	15	330	495	299	449	222	333	188	283	155	233						
	16	314	471	284	427	204	307	173	260	142	214						
	17	297	447	269	404	188	282	158	238	130	195						
	18	281	422	254	382	171	257	144	217	117	177						
	19	265	398	239	360	155	234	130	196	106	159						
	20	249	374	224	337	140	211	118	177	95.4	143						
	22	217	327	196	294	116	174	97.2	146	78.8	118						
	24	188	282	168	253	97.4	146	81.7	123	66.2	99.5						
	26	160	240	143	216	83.0	125	69.6	105	56.4	84.8						
	28	138	207	124	186	71.5	108	60.0	90.2	48.7	73.1						
	30	120	180	108	162	62.3	93.7	52.3	78.6	42.4	63.7						
	32	106	159	94.7	142	54.8	82.3	46.0	69.1	37.3	56.0						
	34	93.5	141	83.9	126												
	36	83.4	125	74.8	112												
	38	74.8	112	67.2	101												
	40	67.6	102	60.6	91.1												
Properties																	
$P_{\text {wo }}$, kips $P_{w i}$, kip/in. $P_{w b}$, kips $P_{f b}$, kips		69.1	104	60.1	90.1	65.3	98.0	54.1	81.1	45.2	67.8						
		12.3	18.5	11.3	17.0	11.7	17.5	10.5	15.8	9.67	14.5						
		112	168	86.6	130	94.2	142	68.7	103	53.7	80.7						
		70.8	106	58.7	88.2	71.9	108	52.6	79.0	35.4	53.2						
$\begin{aligned} & L_{p}, \mathrm{ft} \\ & L_{r}, \mathrm{ft} \end{aligned}$		9.0433.6		58.7 88.2 31.6		$\begin{array}{r} 7.10 \\ 26.9 \\ \hline \end{array}$		52.6 6.99 24.2		$\begin{array}{r} 6.85 \\ 21.8 \\ \hline \end{array}$							
A_{g}, in. ${ }^{2}$ I_{x}, in. ${ }^{4}$ I_{y}, in. ${ }^{4}$ r_{y}, in. r_{x} / r_{y} $P_{e x} L_{c}{ }^{2} / 10^{4}$, k-in. ${ }^{2}$ $P_{e y} L_{c}{ }^{2} / 10^{4}, \mathrm{k}$-in. ${ }^{2}$		15.8		14.4		13.3		11.5		9.71							
		303		272		248		209		171							
		103		93.4		53.4		45.0		36.6							
		2.56		2.54		2.01		1.98		1.94							
		1.71		1.71		2.15		2.16		2.16							
		8670		7790		7100		5980		4890							
		2950		2670		1530		1290		1050							
ASD		LRFD		Note: Heavy line indicates L_{c} / r_{y} equal to or greater than 200.													
$\Omega_{c}=1.67$		$\phi_{C}=0.90$															

			Available Strength in Axial Compression, kips										
Shape		W14×											
lb/ft		257		233		211		193		176		159	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	2940	4420	2670	4010	2410	3630	2210	3320	2020	3030	1820	2730
	6	2860	4300	2590	3890	2340	3520	2150	3220	1960	2940	1760	2650
	7	2830	4250	2560	3850	2320	3480	2120	3190	1930	2910	1740	2620
	8	2800	4200	2530	3800	2290	3440	2100	3150	1910	2870	1720	2590
	9	2760	4140	2500	3750	2260	3390	2070	3110	1880	2830	1700	2550
	10	2720	4080	2460	3690	2220	3340	2030	3060	1850	2780	1670	2510
	11	2670	4010	2420	3630	2180	3280	2000	3000	1820	2740	1640	2460
	12	2620	3940	2370	3560	2140	3220	1960	2950	1780	2680	1610	2420
	13	2570	3860	2320	3490	2100	3150	1920	2890	1750	2630	1570	2360
	14	2510	3780	2270	3420	2050	3080	1880	2820	1710	2570	1540	2310
	15	2460	3690	2220	3340	2000	3010	1830	2750	1670	2500	1500	2250
	16	2400	3600	2160	3250	1950	2940	1790	2680	1620	2440	1460	2190
	17	2330	3510	2110	3170	1900	2860	1740	2610	1580	2370	1420	2130
	18	2270	3410	2050	3080	1850	2780	1690	2540	1530	2300	1380	2070
	19	2200	3310	1990	2990	1790	2690	1640	2460	1490	2230	1330	2010
	20	2130	3210	1930	2890	1730	2610	1580	2380	1440	2160	1290	1940
	22	2000	3000	1800	2700	1620	2430	1480	2220	1340	2010	1200	1810
	24	1850	2790	1670	2510	1500	2250	1370	2050	1240	1860	1110	1670
	26	1710	2570	1540	2310	1380	2070	1260	1890	1140	1710	1020	1530
	28	1570	2360	1410	2120	1260	1900	1150	1730	1040	1560	929	1400
	30	1430	2150	1280	1930	1150	1720	1040	1570	941	1410	842	1270
	32	1290	1940	1160	1740	1040	1560	941	1410	847	1270	757	1140
	34	1160	1750	1040	1560	927	1390	841	1260	756	1140	675	1010
	36	1040	1560	927	1390	827	1240	750	1130	674	1010	602	905
	38	932	1400	832	1250	742	1120	673	1010	605	909	540	812
	40	841	1260	751	1130	670	1010	608	914	546	821	487	733
Properties													
$P_{\text {wo }}$, kips $P_{\text {wi }}$, kip/in. $P_{w b}$, kips $P_{f b}$, kips		637	955	538	807	459	688	393	590	343	515	289	433
		51.1	76.7	46.4	69.6	42.5	63.7	38.6	57.9	36.0	54.0	32.3	48.4
		2830	4250	2110	3170	1630	2460	1220	1840	992	1490	716	1080
		869	1310	720	1080	592	890	504	758	417	627	344	518
$\begin{aligned} & L_{p}, \mathrm{ft} \\ & L_{r}, \mathrm{ft} \end{aligned}$		12.8		12.7		12.6		12.5		12.5		12.4	
		80.7		73.5		67.2		61.8		57.1		52.4	
$\begin{aligned} & A_{g}, \text { in. }{ }^{2} \\ & I_{x}, \text { in. }{ }^{4} \\ & I_{y}, \text { in. } \\ & r_{y}, \text { in. } \\ & r_{x} / r_{y} \\ & P_{e x} L_{c}{ }^{2} / 10^{4}, \text { k-in. }{ }^{2} \\ & P_{e y} L_{c}^{2} / 10^{4}, \text { k-in. }{ }^{2} \end{aligned}$		75.6		68.5		62.0		56.8		51.8		46.7	
		3400		3010		2660		2400		2140		1900	
		1290		1150		1030		931		838		748	
			4.13		4.10		4.07		4.05		4.02		4.00
			1.62		1.62		1.61		1.60		1.60		1.60
		9730		8620		76100		687		61300		544	
		3690		3290		2950		266		2400		214	
ASD		LRFD		Note: Confirm ASTM A913 material availability before specifying, as discussed in Part 2.									
$\Omega_{c}=1.67$		$\phi_{C}=0.90$											

W14			Tab Avai Axial	$4-1$ ble omp W-S	(con Stre ress hapes		ips	$F_{y}=$	ksi
Shape		W14×							
lb/ft		605 ${ }^{\text {h }}$		$550{ }^{\text {h }}$		$500^{\text {h }}$		455 ${ }^{\text {h }}$	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	7460	11200	6790	10200	6160	9260	5620	8440
	11	6850	10300	6220	9340	5630	8460	5120	7690
	12	6730	10100	6110	9190	5530	8310	5030	7560
	13	6620	9940	6000	9020	5430	8160	4930	7410
	14	6490	9750	5880	8840	5320	7990	4830	7260
	15	6360	9550	5760	8660	5200	7820	4730	7100
	16	6220	9350	5630	8460	5080	7640	4610	6930
	17	6070	9130	5500	8260	4960	7450	4500	6760
	18	5920	8900	5360	8050	4830	7260	4380	6580
	19	5770	8670	5220	7840	4700	7060	4260	6400
	20	5610	8430	5070	7620	4560	6860	4130	6210
	22	5290	7950	4770	7160	4280	6440	3870	5820
	24	4950	7440	4460	6700	4000	6010	3610	5420
	26	4610	6930	4140	6230	3710	5570	3340	5020
	28	4270	6420	3830	5750	3420	5140	3080	4620
	30	3930	5910	3520	5290	3130	4710	2810	4230
	32	3600	5410	3210	4830	2860	4290	2560	3840
	34	3280	4920	2920	4380	2590	3890	2310	3470
	36	2970	4460	2630	3950	2320	3490	2070	3110
	38	2660	4000	2360	3550	2090	3130	1860	2790
	40	2400	3610	2130	3200	1880	2830	1680	2520
	42	2180	3280	1930	2900	1710	2570	1520	2290
	44	1990	2990	1760	2650	1560	2340	1390	2080
	46	1820	2730	1610	2420	1420	2140	1270	1910
	48	1670	2510	1480	2220	1310	1960	1160	1750
	50	1540	2310	1360	2050	1200	1810	1070	1610
Properties									
$P_{\text {wo }}$, kips $P_{\text {wi }}$, kip/in. $P_{w b}$, kips $P_{f b}$, kips		2890	4330	2450	3680	2100	3140	1800	2690
		121	182	111	167	102	153	94.3	141
		31500	47400	24200	36400	18800	28300	14800	22200
		4530	6810	3820	5750	3210	4820	2700	4060
$L_{p}, \mathrm{ft}$$L_{r}, \mathrm{ft}$		13.6		13.4			140	13.1	
$\begin{array}{\|l\|} \hline A_{g}, \text { in. }{ }^{2} \\ I_{x}, \text { in. }{ }^{4} \\ I_{y}, \text { in. }{ }^{4} \\ r_{y}, \text { in. } \\ r_{x} / r_{y} \\ P_{e x} L_{c}{ }^{2} / 10^{4}, \text { k-in. }{ }^{2}{ }^{2}{ }^{2}{ }^{2} 10^{4}, \text { k-in. }{ }^{2} \\ P_{e y} L_{c}^{2} / 1 \end{array}$		178		162		147		134	
		10800		9430		8210		7190	
		3680		3250		2880		2560	
		4.55		4.49		4.43		4.38	
		1.71		1.70		1.69		1.67	
		309000		270000		235000		206000	
		105000		93000		82400		73300	
ASD		LRFD ${ }^{\text {n }}$ Fla		${ }^{\mathrm{h}}$ Flange thickness is greater than 2 in . Special requirements may apply per AISC Specification Section A3.1c.					
$\Omega_{C}=1.67$		$\phi_{C}=0.90$		Note: Confirm ASTM A913 material availability before specifying, as discussed in Part 2.					

W12			Tab vail al	$4-1$ ble omp W-S	(cont Stre CSS apes	nued) gth n,	ips	$F_{y}=70 \mathrm{ksi}$							
Shape		W12×													
lb/ft		230 ${ }^{\text {h }}$		210		190		170							
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$						
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD						
Effective length, $L_{\boldsymbol{c}}(\mathrm{ft})$, with respect to least radius of gyration, $\boldsymbol{r}_{\boldsymbol{y}}$	0	2840	4270	2590	3890	2350	3530	2100	3150						
	6	2700	4060	2470	3710	2230	3360	1990	2990						
	7	2660	3990	2420	3640	2190	3290	1950	2940						
	8	2600	3910	2370	3570	2150	3230	1910	2880						
	9	2540	3820	2320	3480	2100	3150	1870	2810						
	10	2480	3730	2260	3390	2040	3070	1820	2730						
	11	2410	3620	2190	3300	1980	2980	1760	2650						
	12	2340	3510	2130	3200	1920	2890	1710	2570						
	13	2260	3400	2050	3090	1850	2790	1650	2480						
	14	2180	3280	1980	2980	1790	2680	1590	2380						
	15	2100	3150	1900	2860	1710	2580	1520	2290						
	16	2010	3020	1820	2740	1640	2470	1460	2190						
	17	1920	2890	1740	2620	1570	2360	1390	2090						
	18	1840	2760	1660	2500	1490	2240	1320	1990						
	19	1750	2620	1580	2370	1420	2130	1250	1890						
	20	1660	2490	1500	2250	1340	2020	1190	1780						
	22	1480	2220	1330	2010	1190	1800	1050	1580						
	24	1310	1970	1180	1770	1050	1580	924	1390						
	26	1140	1720	1030	1540	913	1370	800	1200						
	28	988	1480	885	1330	788	1180	690	1040						
	30	860	1290	771	1160	686	1030	601	904						
	32	756	1140	678	1020	603	906	528	794						
	34	670	1010	600	902	534	803	468	704						
	36	597	898	535	805	476	716	418	628						
	38	536	806	481	722	428	643	375	563						
	40	484	727	434	652	386	580	338	508						
Properties															
$P_{\text {wo }}$, kips $P_{w i}$, kip/in. $P_{w b}$, kips $P_{f b}$, kips L_{p}, ft L_{r}, ft		804	1210	688	1030	576	864	484	726						
		60.2	90.3	55.1	82.6	49.5	74.2	44.8	67.2						
		4510	6770	3460	5210	2510	3780	1870	2810						
		1120	1690	946	1420	793	1190	638	958						
		$\begin{gathered} 9.88 \\ 75.0 \end{gathered}$		$\begin{gathered} 9.79 \\ 68.7 \end{gathered}$		$\begin{gathered} 9.70 \\ 62.7 \end{gathered}$		$\begin{gathered} 9.61 \\ 56.5 \end{gathered}$							
		67.7		61.8		56.0		50.0							
A_{g}, in. ${ }^{2}$															
I_{x}, in. ${ }^{4}$		2420		2140		1890		1650							
l_{y}, in. ${ }^{4}$		742		664		589		517							
r_{y}, in.		3.31		3.28		3.25		3.22							
		1.80		1.80		1.79		1.78							
$P_{e x} L_{c}{ }^{2} / 1$	k-in. ${ }^{2}$	69300		61300		54100		47200							
$P_{e y} L_{c}{ }^{2} / 1$	k-in. ${ }^{2}$	21200		19000		16900		14800							
ASD		LRFD	${ }^{\mathrm{h}}$ Flange thickness is greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c. Note: Confirm ASTM A913 material availability before specifying, as discussed in Part 2.												
$\Omega_{C}=$		$\phi_{C}=0.90$													

Table 4-1c (continued) Available Strength in Axial Compression, kips W-Shapes											
		W12×									
lb/ft		152		136		120		106			
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	${ }_{\phi} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	${ }_{\phi c} P_{n}$		
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD		
	0	1870	2820	1670	2510	1480	2220	1310	1970		
	6	1780	2670	1590	2380	1400	2100	1240	1860		
	7	1750	2620	1560	2340	1370	2060	1210	1820		
	8	1710	2570	1520	2290	1340	2010	1190	1780		
	9	1670	2500	1480	2230	1310	1960	1160	1740		
	10	1620	2440	1440	2170	1270	1910	1120	1690		
	11	1570	2360	1400	2100	1230	1850	1090	1630		
	12	1520	2290	1350	2030	1190	1790	1050	1580		
	13	1470	2200	1300	1960	1140	1720	1010	1520		
	14	1410	2120	1250	1880	1100	1650	970	1460		
	15	1350	2030	1200	1800	1050	1580	928	1390		
	16	1290	1940	1150	1720	1000	1510	885	1330		
	17	1230	1850	1090	1640	955	1440	842	1270		
	18	1170	1760	1040	1560	906	1360	798	1200		
	19	1110	1670	982	1480	857	1290	754	1130		
	20	1050	1580	927	1390	808	1210	711	1070		
	22	929	1400	819	1230	712	1070	625	940		
	24	813	1220	715	1070	620	932	544	817		
	26	702	1060	615	925	532	800	466	700		
	28	606	910	530	797	459	690	402	604		
	30	528	793	462	695	400	601	350	526		
	32	464	697	406	610	352	528	308	462		
	34	411	617	360	541	311	468	272	410		
	36	366	551	321	482	278	417	243	365		
	38	329	494	288	433	249	375	218	328		
	40	297	446	260	391	225	338	197	296		
Properties											
$\begin{array}{\|l} \hline P_{w o}, \text { kips } \\ P_{w i}, \text { kip/in. } \\ P_{w b}, \text { kips } \\ P_{f b}, \text { kips } \end{array}$		406	609	341	512	282	422	226	339		
		40.6	60.9	36.9	55.3	33.1	49.7	28.5	42.7		
		1380	2080	1040	1560	753	1130	479	720		
		513	772	409	615	323	485	257	386		
L_{p}, ftL_{r}, ft		$\begin{gathered} 9.52 \\ 51.0 \end{gathered}$		9.43		9.34		9.28			
		45.8	41.3		37.3						
				44.7		39.9		35.2		31.2	
		1430		1240		1070		933			
		454		398		345		301			
		3.19		3.16		3.13		3.11			
		40900									
		35500	30600		26700						
		13000	11400		9870		8620				
ASD				LRFD		Note: Confirm ASTM A913 material availability before specifying, as discussed in Part 2.					
$\Omega_{c}=1.67$		$\phi_{c}=0.90$									

W12				able	-1c	cont trel ass apes	nued gth on,						
Shape		W12×											
lb/ft		96		87		79		72		65			
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$		
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD		
	0	1180	1780	1070	1610	972	1460	884	1330	801	1200		
	6	1120	1680	1010	1520	919	1380	835	1260	755	1140		
	7	1100	1650	994	1490	900	1350	818	1230	740	1110		
	8	1070	1610	971	1460	879	1320	799	1200	722	1090		
	9	1040	1570	945	1420	855	1290	777	1170	702	1060		
	10	1010	1520	918	1380	830	1250	754	1130	681	1020		
	11	981	1470	888	1330	803	1210	729	1100	658	990		
	12	946	1420	857	1290	774	1160	703	1060	634	953		
	13	911	1370	824	1240	744	1120	675	1020	609	916		
	14	873	1310	790	1190	713	1070	647	972	583	877		
	15	835	1260	755	1130	681	1020	618	928	557	836		
	16	796	1200	719	1080	648	974	588	884	529	796		
	17	757	1140	683	1030	615	925	558	838	502	754		
	18	717	1080	646	972	582	875	528	793	474	713		
	19	677	1020	610	917	549	825	497	747	447	671		
	20	637	958	574	863	516	775	467	702	419	630		
	22	560	842	503	757	452	679	409	614	366	550		
	24	486	730	436	655	390	587	353	530	316	474		
	26	416	625	373	560	333	501	301	453	269	404		
	28	358	539	321	483	287	432	260	390	232	349		
	30	312	469	280	421	250	376	226	340	202	304		
	32	274	413	246	370	220	331	199	299	178	267		
	34	243	365	218	327	195	293	176	265	157	236		
	36	217	326	194	292	174	261	157	236	140	211		
	38	195	293	174	262	156	234	141	212	126	189		
	40	176	264	157	237	141	212	127	191	114	171		
Properties													
$P_{\text {wo }}$, kips $P_{\text {wi }}$, kip/in. $P_{w b}$, kips $P_{f b}$, kips		193	289	169	254	146	219	127	191	109	164		
		25.7	38.5	24.0	36.1	21.9	32.9	20.1	30.1	18.2	27.3		
		350	526	287	432	219	328	168	252	125	188		
		212	319	172 92.16 32.3		142	213	118	177	95.9	144		
$\begin{aligned} & L_{p}, \mathrm{ft} \\ & L_{r}, \mathrm{ft} \end{aligned}$		$\begin{gathered} 9.22 \\ 34.7 \end{gathered}$				9.92		11.0		12.2			
		30.3	28.8		27.3								
A_{g}, in. ${ }^{2}$				28.2	25.6		23.2		21.1		19.1		
l_{x}, in. ${ }^{4}$		833				740		662		597		533	
l_{y}, in. ${ }^{4}$		270		241		216		195		174			
r_{y}, in.		3.09		3.07		3.05		3.04		3.02			
r_{x} / r_{y}		1.76		1.75		1.75		1.75		1.75			
$P_{\text {ex }} L_{C}{ }^{2} /$	k-in. ${ }^{2}$	23800		21200		18900		17100		15300			
$P_{e y} L_{C}{ }^{2} / 1$	k-in. ${ }^{2}$	7730		6900		6180		5580		4980			
ASD		LRFD		Note: Confirm ASTM A913 material availability before specifying, as discussed in Part 2.									
$\Omega_{C}=1.67$		$\phi_{C}=0.90$											

$F_{y}=50 \mathrm{ks}$		Table 4-2 ble Strength in mpression, kips HP-Shapes											
		HP18×											
lb/ft		204		181		157		135					
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$				
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD				
	0	1800	2710	1590	2390	1380	2080	1190	1800				
	6	1770	2650	1560	2340	1350	2040	1170	1760				
	7	1750	2630	1550	2330	1340	2020	1160	1740				
	8	1740	2610	1540	2310	1330	2000	1150	1730				
	9	1720	2590	1520	2290	1320	1980	1140	1710				
	10	1700	2560	1500	2260	1300	1960	1130	1690				
	11	1680	2530	1490	2230	1290	1940	1110	1670				
	12	1660	2500	1470	2200	1270	1910	1100	1650				
	13	1640	2460	1450	2170	1250	1880	1080	1620				
	14	1610	2420	1420	2140	1230	1850	1060	1600				
	15	1590	2380	1400	2100	1210	1820	1050	1570				
	16	1560	2340	1370	2070	1190	1790	1030	1540				
	17	1530	2300	1350	2030	1170	1760	1010	1510				
	18	1500	2250	1320	1990	1150	1720	985	1480				
	19	1470	2210	1290	1950	1120	1680	964	1450				
	20	1440	2160	1270	1900	1100	1650	942	1420				
	22	1370	2060	1210	1810	1040	1570	896	1350				
	24	1300	1950	1140	1720	989	1490	848	1280				
	26	1230	1850	1080	1620	933	1400	800	1200				
	28	1160	1740	1010	1530	876	1320	750	1130				
	30	1080	1630	950	1430	819	1230	700	1050				
	32	1010	1520	884	1330	761	1140	650	977				
	34	936	1410	820	1230	705	1060	601	904				
	36	865	1300	756	1140	650	977	553	831				
	38	795	1190	695	1040	596	896	507	761				
	40	728	1090	635	954	544	818	461	693				
Properties													
$P_{\text {wo }}$, kips $P_{\text {wi }}$, kip/in. $P_{w b}$, kips $P_{f b}$, kips L_{p}, ft L_{r}, ft		435	653	363	545	297	446	241	362				
		37.7	56.5	33.3	50.0	29.0	43.5	25.0	37.5				
		1830	2740	1270	1910	840	1260	535	804				
		239	359	187	281	142	213	105	158				
		$\begin{aligned} & 15.2 \\ & 67.8 \end{aligned}$		$\begin{aligned} & 15.1 \\ & 61.3 \end{aligned}$		$\begin{aligned} & 18.1 \\ & 55.8 \end{aligned}$		21.4					
		50.5											
$\begin{aligned} & A_{g}, \text { in. }{ }^{2} \\ & x_{x}, \text { in }{ }^{4} \\ & l_{y}, n^{4}{ }^{4} \\ & y_{y}, \text { in. } \\ & r_{x} / r_{y} \\ & P_{e x} L_{C}{ }^{2} / 100^{4}, \text { k-in. } .^{2} \\ & P_{e y} L_{c}^{2} / 100^{4}, \text { k-in. }{ }^{2} \end{aligned}$				60.2		53.2		46.2		39.9			
		3480		3020		2570		2200					
		1120		974		833		706					
		4.31		4.28		4.25		4.21					
		$99600{ }^{1.76}$		86400									
		73600	63000										
		32100			23800		20200						
ASD				LRFD									
$\Omega_{C}=1.67$		$\phi_{C}=0.90$											

HP16		Available Strength in Axial Compression, kips																			
Shape		HP16×																			
lb/ft		183		162		141		121		101		$88^{\text {c }}$									
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{C} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$								
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD								
	0	1620	2430	1430	2150	1250	1880	1070	1610	895	1350	753	1130								
	6	1580	2370	1390	2090	1220	1830	1040	1570	871	1310	736	1110								
	7	1570	2350	1380	2070	1200	1810	1030	1550	862	1300	730	1100								
	8	1550	2330	1360	2050	1190	1790	1020	1540	852	1280	723	1090								
	9	1530	2300	1350	2020	1180	1770	1010	1520	841	1260	715	1070								
	10	1510	2270	1330	2000	1160	1740	995	1490	829	1250	706	1060								
	11	1490	2240	1310	1970	1140	1720	979	1470	816	1230	697	1050								
	12	1470	2200	1290	1930	1120	1690	962	1450	802	1210	687	1030								
	13	1440	2160	1260	1900	1100	1660	944	1420	787	1180	676	1020								
	14	1410	2120	1240	1860	1080	1630	926	1390	771	1160	663	997								
	15	1390	2080	1210	1820	1060	1590	906	1360	754	1130	648	975								
	16	1360	2040	1190	1780	1030	1560	885	1330	736	1110	633	951								
	17	1320	1990	1160	1740	1010	1520	863	1300	718	1080	617	927								
	18	1290	1940	1130	1700	985	1480	841	1260	699	1050	600	902								
	19	1260	1890	1100	1650	958	1440	818	1230	679	1020	583	877								
	20	1230	1840	1070	1610	931	1400	794	1190	659	991	566	851								
	22	1160	1740	1010	1510	876	1320	746	1120	618	929	530	797								
	24	1080	1630	942	1420	819	1230	696	1050	576	866	494	742								
	26	1010	1520	877	1320	761	1140	646	971	534	802	457	686								
	28	939	1410	811	1220	703	1060	596	896	491	739	420	631								
	30	866	1300	746	1120	645	970	546	821	450	676	384	577								
	32	794	1190	682	1030	589	886	498	748	409	615	348	524								
	34	725	1090	620	932	535	804	451	678	370	556	314	473								
	36	657	988	561	843	482	725	405	609	331	498	281	423								
	38	592	889	503	756	433	651	364	547	297	447	253	380								
	40	534	803	454	682	391	587	328	494	268	404	228	343								
Properties																					
$P_{\text {wo }}$, kips $P_{w i}$, kip/in. $P_{w b}$, kips $P_{f b}$, kips		435	653	363	545	300	451	241	362	189	283	155	232								
		37.7	56.5	33.3	50.0	29.2	43.8	25.0	37.5	20.8	31.3	18.0	27.0								
		2100	3160	1450	2190	974	1460	612	920	356	535	229	345								
		239	359	187	281	143	215	105	158	73.1	110	54.6	82.0								
L_{p}, ft		13.6		13.5		13.4		16.7		20.2		22.9									
L_{r}, ft		67.6		60.2		54.5		48.6		43.6		40.6									
$\begin{array}{\|l\|} \hline A_{g}, \text { in. }{ }^{2} \\ I_{x}, \text { in. }{ }^{4} \\ I_{y}, \text { in. } \\ r_{y}, \text { in. } \\ r_{x} / r_{y} \\ P_{e x} L_{c}{ }^{2} / 10^{4}, \text { k-in. }{ }^{2} \\ P_{e y} L_{c}^{2} / 10^{4}, \text { k-in. }{ }^{2} \\ \hline \end{array}$		54.1		47.7		41.7		35.8		29.9		25.8									
		2510		2190		1870		1590		1300		1110									
		818		697		599		504		412		349									
		3.89		3.82		3.79		3.75		3.71		3.68									
		1.75		62700		1.77		1.78		1.78		1.78									
		$\begin{aligned} & 71800 \\ & 23400 \end{aligned}$				$\begin{aligned} & 53500 \\ & 17100 \end{aligned}$		$\begin{aligned} & 45500 \\ & 14400 \end{aligned}$		$\begin{aligned} & 37200 \\ & 11800 \end{aligned}$		31800 9990									
		$\begin{aligned} & 62700 \\ & 19900 \end{aligned}$																			
ASD				LRFD		${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$; tabulated values have been adjusted accordingly.															
$\Omega_{C}=1.67$		$\phi_{C}=0.90$																			

$F_{y}=50 \mathrm{ksi}$ Available Strength in Axial Compression, kips HP-Shapes													
Shape		HP14×								HP12×			
lb/ft		117		102		89		$73^{\text {c }}$		89		84	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	1030	1550	901	1350	781	1170	625	940	775	1170	737	1110
	6	1000	1500	875	1310	758	1140	610	917	742	1120	705	1060
	7	990	1490	865	1300	750	1130	604	908	731	1100	694	1040
	8	977	1470	855	1280	740	1110	598	899	717	1080	681	1020
	9	964	1450	843	1270	730	1100	591	888	703	1060	667	1000
	10	949	1430	829	1250	718	1080	583	876	687	1030	652	980
	11	933	1400	815	1220	705	1060	574	863	669	1010	636	955
	12	916	1380	800	1200	692	1040	565	849	651	978	618	929
	13	897	1350	783	1180	677	1020	554	832	631	949	599	901
	14	878	1320	766	1150	662	995	541	813	611	918	580	872
	15	857	1290	748	1120	646	971	527	793	590	886	560	842
	16	836	1260	729	1100	629	946	514	772	568	853	539	810
	17	813	1220	709	1070	612	920	499	750	545	820	518	779
	18	790	1190	689	1030	594	893	484	728	523	785	496	746
	19	767	1150	668	1000	576	866	469	705	500	751	474	713
3	20	743	1120	646	972	557	838	453	681	476	716	452	680
E	22	694	1040	603	906	519	780	422	634	430	646	408	614
	24	643	967	558	839	480	722	389	585	384	578	365	549
듳	26	593	891	514	772	441	663	357	537	340	512	323	486
	28	543	816	470	706	403	606	325	489	298	448	283	425
	30	494	742	427	641	365	549	294	442	260	390	247	371
	32	446	671	385	579	329	494	264	397	228	343	217	326
	34	400	602	344	518	294	441	235	354	202	304	192	289
	36	357	537	307	462	262	394	210	316	180	271	171	257
	38	320	482	276	414	235	353	188	283	162	243	154	231
	40	289	435	249	374	212	319	170	256	146	220	139	208
Properties													
		201	302	162	243	134	201	100	150	158	238	158	236
$P_{\text {wo }}$, kips $P_{w i}$, kip/in. $P_{\text {w }}$ kips		26.8	40.3	23.5	35.3	20.5	30.8	16.8	25.3	24.0	36.0	22.8	34.3
		790	1190	531	798	354	532	195	294	660	991	572	859
$P_{f b}$, kips		121	182	93.0	140	70.8	106	47.7	71.7	97.0	146	87.8	132
L_{p}, ft		12.9		15.6		17.8		21.2		10.4		10.4	
L_{r}, ft		50.5		45.7		41.7		37.6		42.8		41.3	
A_{g}, in. 2		34.4		30.1		26.1		21.4		25.9		24.6	
l_{x}, in. ${ }^{4}$		1220		1050		904		729		693		650	
l_{y}, in. ${ }^{4}$		443		380		326		261		224		213	
r_{y}, in.			3.59	3.56		3.53		3.49		2.94		2.94	
r_{x} / r_{y}		1.66		1.66		1.67			1.67		1.76		1.75
$P_{e x} L_{c}{ }^{2} / 10^{4}, \mathrm{k}-\mathrm{in} .{ }^{2}$		34900		30100		25900		20900		19800		18600	
$P_{e y} L_{C}{ }^{2} / 1$	-in. ${ }^{2}$	12700		10900		9330		7470		6410		6100	
ASD		LRFD		${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$; tabulated values have been adjusted accordingly.									
$\Omega_{C}=1.67$		$\phi_{C}=0.90$											

HP12-HP8		Table 4-2 (continued) Available Strength in Axial Compression, kips HP-Shapes													
		HP12×						HP10 \times				HP8×			
lb/ft		74		63		$53^{\text {c }}$		57		42		36			
Design		P_{n} / Ω_{c}	$\phi_{C} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$		
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD		
	0	653	981	551	828	460	692	500	751	371	558	317	477		
	6	624	938	526	791	443	666	469	706	348	523	287	432		
	7	614	923	518	778	436	655	459	690	340	511	277	416		
	8	603	906	508	763	427	642	447	672	331	497	266	400		
	9	591	888	497	747	418	628	434	652	321	482	254	381		
	10	577	867	485	729	408	613	420	631	310	465	241	362		
	11	562	845	472	710	397	597	404	608	298	448	227	341		
	12	546	821	459	690	386	579	388	584	286	430	213	320		
	13	530	796	445	668	373	561	372	559	273	411	199	299		
	14	512	770	430	646	361	542	355	533	260	391	184	277		
	15	494	743	414	622	347	522	337	506	247	371	170	256		
	16	476	715	398	598	334	502	319	480	233	351	156	235		
	17	457	687	382	574	320	481	301	453	220	330	143	214		
	18	437	658	365	549	306	460	283	426	206	310	129	194		
	19	418	628	348	524	292	438	265	399	193	290	117	175		
	20	398	599	332	498	277	417	248	373	180	270	105	158		
	22	359	540	298	448	249	374	214	322	154	232	86.9	131		
	24	320	482	265	399	221	332	182	273	131	196	73.0	110		
	26	283	426	234	351	194	292	155	233	111	167	62.2	93.5		
	28	247	372	203	305	169	254	133	201	95.9	144	53.7	80.7		
	30	216	324	177	266	147	221	116	175	83.5	126	46.7	70.3		
	32	189	285	156	234	129	194	102	154	73.4	110	41.1	61.8		
	34	168	252	138	207	114	172	90.5	136	65.0	97.7				
	36	150	225	123	185	102	153	80.7	121	58.0	87.2				
	38	134	202	110	166	91.6	138	72.5	109	52.1	78.2				
	40	121	182	99.6	150	82.7	124	65.4	98.3	47.0	70.6				
Properties															
$P_{\text {wo }}$, kips $P_{w i}$, kip/in. $P_{w b}$, kips $P_{f b}$, kips		132	198	107	161	81.9	123	118	177	78.2	117	83.8	126		
		20.2	30.3	17.2	25.8	14.5	21.8	18.8	28.3	13.8	20.8	14.8	22.3		
		393	591	243	365	147	221	397	597	158	237	241	363		
		69.6	105	49.6	74.6	35.4	53.2	59.7	89.8	33.0	49.6	37.1	55.7		
$L_{p}, \mathrm{ft}$$L_{r}, \mathrm{ft}$		$\begin{aligned} & 11.9 \\ & 37.9 \end{aligned}$		$\begin{aligned} & 14.4 \\ & 34.0 \end{aligned}$		16.6		8.65		12.3		6.90			
		31.1				34.8		8.3		27.3					
				21.8569		18.4		15.5		16.7		12.4		10.6	
		472153				393		294		210		119			
		186	127		101		71.7		40.3						
		2.92			2.86		2.45		2.41		1.95				
			1.75	2.881.76			1.76		1.71		1.71		1.72		
		16300	13500		11200		8410		6010		3410				
		5320	4380		3630		2890		2050		1150				
ASD				LRFD		${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50$ ksi; tabulated values have been adjusted accordingly.									
$\Omega_{C}=1.67$		$\phi_{c}=0.90$		Note: Heavy line indicates $K L / r_{y}$ equal to or greater than 200.											

$F_{y}=50 \mathrm{ksi}$			Table 4-3 le Strength in mpression, kips tangular HSS									$0-\mathrm{HS}$	
Shape		HSS20 $\times 12 \times$								HSS16 $\times 12 \times$			
		5/8		$1 / 2^{\text {c }}$		$3 / 8{ }^{\text {c }}$		$5 / 16^{\text {c }}$		5/8		1/2	
		0.581		0.465		0.349		0.291		0.581		0.465	
		127.37		103.30		78.52		65.87		110.36		89.68	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	1050	1570	792	1190	528	794	397	597	907	1360	737	1110
	6	1030	1550	783	1180	522	785	393	591	892	1340	725	1090
	7	1030	1540	779	1170	520	782	392	589	887	1330	721	1080
	8	1020	1530	775	1170	518	778	391	587	881	1320	716	1080
	9	1010	1520	771	1160	515	774	389	584	874	1310	710	1070
	10	1000	1510	766	1150	511	769	387	582	867	1300	704	1060
	11	994	1490	760	1140	508	764	385	578	858	1290	698	1050
	12	985	1480	755	1130	504	758	383	575	849	1280	691	1040
	13	974	1460	748	1120	500	752	380	571	840	1260	683	1030
	14	963	1450	741	1110	496	745	377	567	829	1250	675	1010
	15	951	1430	734	1100	491	738	375	563	819	1230	666	1000
	16	938	1410	727	1090	486	731	371	558	807	1210	657	988
	17	925	1390	718	1080	481	723	368	553	795	1190	647	973
	18	911	1370	710	1070	475	715	365	548	782	1180	637	958
	19	896	1350	701	1050	470	706	361	543	769	1160	627	942
	20	881	1320	692	1040	464	697	358	537	756	1140	616	926
	21	866	1300	682	1030	458	688	354	532	742	1110	605	909
$\frac{5}{3}$	22	850	1280	672	1010	451	678	350	526	727	1090	594	892
	23	833	1250	662	995	445	668	346	519	712	1070	582	874
$\underset{\mathrm{U}}{\mathbf{E}}$	24	816	1230	652	980	438	658	341	513	697	1050	570	856
	25	799	1200	641	963	431	648	336	505	682	1020	557	838
	26	782	1180	630	947	424	637	331	497	666	1000	545	819
	27	764	1150	619	930	416	626	325	489	650	977	532	800
	28	746	1120	607	912	409	615	319	480	634	953	519	780
	29	728	1090	594	892	401	603	314	471	618	928	506	761
	30	710	1070	579	870	394	592	308	462	601	904	493	741
	32	672	1010	550	826	378	568	296	444	568	854	467	701
	34	635	955	520	781	362	544	283	426	535	804	440	661
	36	598	898	490	736	346	520	271	407	502	754	413	621
	38	561	843	460	692	329	495	258	388	469	705	387	582
	40	524	788	431	647	313	470	245	369	437	656	361	542
Properties													
A_{g}, in. 2		35.0		28.3		21.5		18.1		30.3		24.6	
I_{x}, in. ${ }^{4}$		1880		1550		1200		1010		1090		904	
l_{y}, in. ${ }^{4}$		851		705		547		464		700		581	
r_{y}, in.		4.93		4.99		5.04		5.07		4.80		4.86	
r_{x} / r_{y}		1.49		1.48		1.48		1.48		1.25		1.25	
ASD		LRFD		${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50$ ksi; tabulated values have been adjusted accordingly.									
$\Omega_{c}=1.67$		$\phi_{C}=0.90$											

		Table 4-3 (continued) vailable Strength in Compression, kips Rectangular HSS											
Shape		HSS16×12×				HSS16 $\times 8 \times$							
		$3 / 8{ }^{\text {c }}$		$5 / 16{ }^{\text {c }}$		5/8		1/2		$3 / 8{ }^{\text {c }}$		$5 / 16{ }^{\text {c }}$	
$t_{\text {des, }}$, in.		0.349		0.291		0.581		0.465		0.349		0.291	
		68.31		57.36		93.34		76.07		58.10		48.86	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	512	770	386	580	769	1160	626	940	432	649	332	499
	6	506	760	382	574	743	1120	605	909	421	632	324	486
	7	504	757	381	572	733	1100	597	897	417	626	321	482
	8	501	753	379	570	722	1090	589	885	412	619	317	477
	9	498	748	377	567	710	1070	579	870	407	612	314	471
	10	495	743	375	564	697	1050	569	855	402	604	309	465
	11	491	738	373	561	683	1030	557	838	396	594	305	458
	12	487	732	371	557	668	1000	545	820	389	585	300	451
	13	483	725	368	553	652	979	532	800	382	574	295	443
	14	478	718	365	549	634	954	519	780	375	563	289	435
	15	473	711	362	545	617	927	505	759	367	551	283	426
	16	468	703	359	540	598	899	490	736	359	539	277	417
	17	462	695	356	535	579	870	475	714	350	526	271	407
	18	457	687	352	530	559	841	459	690	341	513	264	397
	19	451	678	349	524	539	811	443	666	332	499	257	387
	20	445	668	345	518	519	780	427	642	323	485	250	376
	21	438	658	341	512	498	749	411	617	313	471	243	366
	22	431	648	337	506	478	718	394	592	304	456	236	355
	23	425	638	332	499	457	687	378	567	293	441	229	343
	24	418	628	328	492	436	656	361	543	281	422	221	332
	25	410	617	322	484	416	625	344	518	268	403	213	321
	26	403	606	316	475	395	594	328	493	256	385	206	309
	27	395	594	311	467	375	564	312	469	244	366	198	298
	28	388	583	305	458	356	534	296	445	232	348	190	286
	29	380	571	299	449	336	505	280	421	220	330	183	275
	30	372	559	292	440	317	477	265	398	208	313	175	263
	32	356	534	280	421	280	421	235	353	185	278	158	237
	34	338	508	267	402	248	373	208	313	164	247	140	210
	36	318	478	255	383	221	333	186	279	146	220	125	188
	38	298	448	242	363	199	299	167	250	131	197	112	168
	40	278	418	229	344	179	269	150	226	119	178	101	152
Properties													
$\begin{array}{\|l} \hline A_{g}, \text { in. }{ }^{2} \\ I_{x}, \text { in. }{ }^{4} \\ l_{y}, \text { in. } \\ r_{y}, \text { in. } \\ r_{x} / r_{y} \\ \hline \end{array}$		18 702 452 4 1	7	$\begin{gathered} 15.7 \\ 595 \\ 384 \\ 4.94 \\ 1.24 \end{gathered}$		$\begin{gathered} \hline 25.7 \\ 815 \\ 274 \\ 3.27 \\ 1.72 \end{gathered}$		20. 679 230 3. 1.	$.9$ $.32$ 72	16.0 531 181 3.3 1.	37 71	13 451 155 3 1	40 71
ASD		LRFD		${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50$ ksi; tabulated values have been adjusted accordingly.									
$\Omega_{C}=1.67$		$\phi_{C}=0.90$											

HSS12-HSS10			Table 4-3 (continued) vailable Strength in Compression, kips Rectangular HSS												
Shape		HSS $12 \times 6 \times$								HSS10 $\times 8 \times$					
		3/8		$5 / 16^{\text {c }}$		$1 / 4^{\text {c }}$		$3 / 16^{\text {c }}$		5/8		1/2			
		0.349		0.291		0.233		0.174		0.581		0.465			
		42.79		36.10		29.23		22.18		67.82		55.66			
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	${ }_{\phi} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$								
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD		
	0	353	531	282	424	205	308	134	202	560	841	458	688		
	6	332	500	269	405	196	295	128	193	538	809	441	663		
	7	325	489	265	398	193	290	126	190	530	797	435	653		
	8	317	476	260	390	189	284	124	186	522	784	428	643		
	9	308	463	254	382	185	278	121	183	512	770	420	631		
	10	298	448	248	372	181	272	119	178	501	754	412	619		
	11	288	432	241	362	176	265	116	174	490	736	403	605		
	12	277	416	234	351	171	257	112	169	478	718	393	590		
	13	265	399	224	337	166	249	109	164	465	698	382	575		
	14	253	381	215	323	160	241	105	158	451	678	372	558		
	15	241	362	205	307	154	232	102	153	437	657	360	541		
	16	229	344	194	292	148	223	97.9	147	422	635	349	524		
	17	216	325	184	276	142	214	94.0	141	407	612	336	506		
	18	204	306	174	261	136	204	90.1	135	392	589	324	487		
	19	191	288	163	245	130	195	86.1	129	376	565	312	468		
	20	179	269	153	230	123	185	82.1	123	360	541	299	449		
	21	167	251	143	215	117	176	78.0	117	344	517	286	430		
	22	155	233	133	200	109	164	74.0	111	328	493	273	411		
	23	144	216	124	186	101	152	70.0	105	312	470	260	391		
	24	133	199	114	172	93.9	141	66.1	99.3	297	446	248	372		
	25	122	184	105	158	86.5	130	62.1	93.3	281	422	235	353		
	26	113	170	97.3	146	80.0	120	58.4	87.7	266	399	223	334		
	27	105	157	90.2	136	74.2	111	55.0	82.7	251	377	210	316		
	28	97.4	146	83.9	126	69.0	104	52.0	78.1	236	354	198	298		
	29	90.8	136	78.2	118	64.3	96.6	49.2	73.9	221	333	187	280		
	30	84.9	128	73.1	110	60.1	90.3	46.4	69.8	207	311	175	263		
	32	74.6	112	64.2	96.5	52.8	79.4	40.8	61.3	182	274	154	231		
	34	66.1	99.3	56.9	85.5	46.8	70.3	36.1	54.3	161	242	136	205		
	36	58.9	88.6	50.7	76.3	41.7	62.7	32.2	48.5	144	216	121	183		
	38	52.9	79.5	45.5	68.4	37.4	56.3	28.9	43.5	129	194	109	164		
	40	47.7	71.7	41.1	61.8	33.8	50.8	26.1	39.2	116	175	98.4	148		
Properties															
A_{g}, in. ${ }^{2}$		$\begin{array}{r} 11.8 \\ 215 \end{array}$		$\begin{gathered} 9.92 \\ 184 \\ 62.8 \\ 2.52 \\ 1.71 \end{gathered}$		$\begin{gathered} 8.03 \\ 151 \\ 51.9 \\ 2.54 \\ 1.71 \end{gathered}$		6.06		18.7		15.3			
I_{x}, in. ${ }^{4}$				116	253		214								
l_{y}, in. ${ }^{4}$		72.9				40.0	178		151						
$r_{y} \text {, in. }$		2.49				2.57	3.09		3.14						
r_{x} / r_{y}		1.72				1.7	70		19	1.19					
ASD		LRFD				${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50$ ksi; tabulated values have been adjusted accordingly.									
$\Omega_{C}=1.67$		$\phi_{C}=0.90$													

$F_{y}=50 \mathrm{ksi}$			Table 4-3 (continued) Available Strength in xial Compression, kips Rectangular HSS									HSS9	
Shape		HSS9 $\times 5 \times$											
		5/8		1/2		3/8		5/16		$1 / 4{ }^{\text {c }}$		$3 / 16{ }^{\text {c }}$	
$t_{\text {des, }}$ in.		0.581		0.465		0.349		0.291		0.233		0.174	
		50.81		42.05		32.58		27.59		22.42		17.08	
Design		P_{n} / Ω_{c}	${ }_{\phi c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$								
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	419	630	347	522	269	404	227	342	181	272	120	180
	6	378	568	315	473	245	368	208	312	169	253	112	168
	7	364	548	304	457	237	356	201	302	164	246	109	164
	8	349	525	292	439	228	343	194	291	158	238	106	160
	9	333	500	279	419	218	328	186	279	152	228	103	155
	10	315	473	265	398	208	313	177	266	145	218	99.4	149
	11	297	446	250	376	197	296	168	252	138	207	95.5	144
	12	278	418	235	353	186	279	158	238	130	196	91.5	138
	13	259	389	220	330	174	262	149	224	122	184	87.3	131
	14	239	360	204	307	163	245	139	209	115	172	83.0	125
	15	220	331	189	284	151	227	129	194	107	161	78.5	118
	16	202	303	173	261	140	210	120	180	99.1	149	74.0	111
	17	184	276	159	238	128	193	110	166	91.4	137	69.5	104
	18	166	250	144	217	117	176	101	152	84.0	126	64.5	97.0
	19	149	224	130	196	107	160	92.0	138	76.7	115	59.1	88.8
	20	135	202	117	177	96.5	145	83.2	125	69.7	105	53.7	80.8
	21	122	184	107	160	87.5	131	75.5	113	63.2	95.0	48.7	73.3
	22	111	167	97.1	146	79.7	120	68.8	103	57.6	86.5	44.4	66.8
	23	102	153	88.8	134	72.9	110	62.9	94.6	52.7	79.2	40.6	61.1
	24	93.5	141	81.6	123	67.0	101	57.8	86.9	48.4	72.7	37.3	56.1
	25	86.2	130	75.2	113	61.7	92.8	53.3	80.1	44.6	67.0	34.4	51.7
	26	79.7	120	69.5	104	57.1	85.8	49.3	74.0	41.2	62.0	31.8	47.8
	27	73.9	111	64.5	96.9	52.9	79.5	45.7	68.6	38.2	57.4	29.5	44.3
	28	68.7	103	59.9	90.1	49.2	74.0	42.5	63.8	35.5	53.4	27.4	41.2
	29	64.1	96.3	55.9	84.0	45.9	69.0	39.6	59.5	33.1	49.8	25.6	38.4
	30	59.9	90.0	52.2	78.5	42.9	64.4	37.0	55.6	31.0	46.5	23.9	35.9
	32	52.6	79.1	45.9	69.0	37.7	56.6	32.5	48.9	27.2	40.9	21.0	31.6
	34							28.8	43.3	24.1	36.2	18.6	27.9
Properties													
$\begin{aligned} & \hline A_{g}, \text { in. }^{2} \\ & l_{x}, \text { in. } \\ & l_{y}, \text { in. }{ }^{4} \\ & r_{y}, \text { in. } \\ & r_{x} / r_{y} \\ & \hline \end{aligned}$		14.0 133 52. 1.92 1.	0 0 	11 115 45 1 1	2	8 92 36 2 1 1	8	7 79 32 2 1 1	. 59	6. 66 26. 2. 1.	$\begin{aligned} & 17 \\ & 1 \\ & 6 \\ & 08 \\ & 57 \end{aligned}$	4.67 51. 20.7 2.1 1.58	$\begin{aligned} & 67 \\ & 1 \\ & 7 \\ & 10 \\ & 58 \\ & \hline \end{aligned}$
ASD		LRFD		${ }^{\mathrm{c}}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$; tabulated values have been adjusted accordingly. Note: Heavy line indicates L_{c} / r_{y} equal to or greater than 200.									
$\Omega_{C}=1.67$		$\phi_{C}=0.90$											

Axial Compression,											
Shape		HSS8 $\times 4 \times$						HSS7 $\times 5 \times$			
		1/4		$3 / 16{ }^{\text {c }}$		$1 / 8{ }^{\text {c }}$		1/2		3/8	
		0.233		0.174		0.116		0.465		0.349	
		19.02		14.53		9.86		35.24		27.48	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	157	236	107	161	60.0	90.1	292	438	227	341
	6	137	205	96.8	146	54.2	81.5	263	395	206	309
	7	130	196	93.3	140	52.3	78.6	253	380	199	299
	8	123	185	89.3	134	50.2	75.4	242	364	191	287
	9	115	173	85.0	128	47.9	71.9	231	347	182	274
	10	107	161	80.4	121	45.4	68.2	219	328	173	260
	11	98.8	149	75.7	114	42.8	64.4	206	309	163	246
	12	90.5	136	70.1	105	40.2	60.4	192	289	154	231
	13	82.3	124	63.9	96.1	37.5	56.3	179	269	143	216
	14	74.2	112	57.9	87.0	34.8	52.3	166	249	133	200
	15	66.4	99.8	52.0	78.1	32.1	48.2	152	229	123	185
	16	58.9	88.5	46.3	69.7	29.4	44.2	139	209	113	170
	17	52.2	78.4	41.1	61.7	26.8	40.2	127	190	104	156
	18	46.5	69.9	36.6	55.0	24.5	36.8	114	172	94.2	142
	19	41.8	62.8	32.9	49.4	22.5	33.8	103	154	85.1	128
	20	37.7	56.6	29.7	44.6	20.6	31.0	92.7	139	76.8	115
	21	34.2	51.4	26.9	40.4	18.7	28.1	84.1	126	69.6	105
	22	31.1	46.8	24.5	36.8	17.0	25.6	76.6	115	63.4	95.4
	23	28.5	42.8	22.4	33.7	15.6	23.4	70.1	105	58.0	87.2
	24	26.2	39.3	20.6	31.0	14.3	21.5	64.4	96.8	53.3	80.1
	25	24.1	36.2	19.0	28.5	13.2	19.8	59.3	89.2	49.1	73.8
	26	22.3	33.5	17.6	26.4	12.2	18.3	54.9	82.5	45.4	68.3
	27	20.7	31.1	16.3	24.5	11.3	17.0	50.9	76.5	42.1	63.3
	28			15.1	22.7	10.5	15.8	47.3	71.1	39.2	58.9
	29							44.1	66.3	36.5	54.9
	30							41.2	61.9	34.1	51.3
	32									30.0	45.1
Properties											
A_{g}, in. ${ }^{.}$ I_{x}, in. ${ }^{4}$ l_{y}, in. ${ }^{4}$ r_{y}, in. r_{x} / r_{y}		$\begin{array}{r} 42 \\ 14 \\ 1 \\ 1 \end{array}$			88	2 22 7 1 1	70	9 60 35 1 1		7 49 29 1	
$\Omega_{c}=1.67$		LRFD	D	${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$; tabulated values have been adjusted accordingly. Note: Heavy line indicates L_{c} / r_{y} equal to or greater than 200.							

$F_{y}=50 \mathrm{ksi}$			Table 4-3 (continued) Available Strength in xial Compression, kips Rectangular HSS										
Shape		HSS7 $\times 5 \times$								$\frac{H S S 7 \times 4 \times}{1 / 2}$			
		5/16		1/4		$3 / 16{ }^{\text {c }}$		$1 / 8{ }^{\text {c }}$					
		0.291		0.233		0.174		0.116		0.465			
		23.34		19.02		14.53		9.86		31.84			
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$		
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD		
	0	193	289	157	236	115	173	62.6	94.1	264	396		
	6	175	263	143	215	107	161	59.2	88.9	224	337		
	7	169	254	138	208	104	156	58.0	87.1	212	318		
	8	162	244	133	200	101	152	56.6	85.1	198	297		
	9	155	233	127	191	97.3	146	55.1	82.8	183	275		
	10	148	222	121	182	92.8	139	53.4	80.3	168	253		
	11	140	210	115	173	88.0	132	51.6	77.6	153	230		
	12	131	197	108	163	83.1	125	49.7	74.7	138	207		
	13	123	185	101	152	78.0	117	47.3	71.1	123	185		
	14	114	172	94.6	142	72.9	110	44.8	67.4	109	164		
	15	106	159	87.8	132	67.8	102	42.3	63.6	95.7	144		
	16	97.5	146	81.0	122	62.7	94.3	39.8	59.8	84.1	126		
	17	89.3	134	74.4	112	57.8	86.8	37.3	56.0	74.5	112		
	18	81.3	122	68.0	102	52.9	79.5	34.7	52.2	66.4	99.9		
	19	73.6	111	61.8	92.9	48.2	72.5	32.3	48.5	59.6	89.6		
	20	66.4	99.9	55.8	83.9	43.6	65.6	29.8	44.8	53.8	80.9		
	21	60.3	90.6	50.6	76.1	39.6	59.5	27.4	41.2	48.8	73.4		
	22	54.9	82.5	46.1	69.3	36.1	54.2	25.0	37.5	44.5	66.8		
	23	50.2	75.5	42.2	63.4	33.0	49.6	22.8	34.3	40.7	61.2		
	24	46.1	69.4	38.7	58.2	30.3	45.6	21.0	31.5	37.4	56.2		
	25	42.5	63.9	35.7	53.7	27.9	42.0	19.3	29.0	34.4	51.8		
	26	39.3	59.1	33.0	49.6	25.8	38.8	17.9	26.8				
	27	36.5	54.8	30.6	46.0	23.9	36.0	16.6	24.9				
	28	33.9	51.0	28.5	42.8	22.3	33.5	15.4	23.2				
	29	31.6	47.5	26.5	39.9	20.8	31.2	14.4	21.6				
	30	29.5	44.4	24.8	37.3	19.4	29.2	13.4	20.2				
	32	26.0	39.0	21.8	32.8	17.0	25.6	11.8	17.7				
	34					15.1	22.7	10.4	15.7				
Properties													
A_{g}, in. ${ }^{2}$		6.43		$\begin{gathered} 5.24 \\ 35.9 \end{gathered}$		3.98		2.70		8.81			
I_{x}, in. ${ }^{4}$				27.9	19.3		50.7						
l_{y}, in. ${ }^{4}$		25.5				21.3		16.6		11.6		20.7	
r_{y}, in.		1.99		2.02		2.05		2.07		1.53			
r_{x} / r_{y}		1.30		1.30		2.051.29		1.29		1.57			
ASD		LRFD		${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$; tabulated values have been adjusted accordingly. Note: Heavy line indicates L_{c} / r_{y} equal to or greater than 200.									
$\Omega_{c}=1.67$		$\phi_{C}=0.90$											

HSS7		Table 4-3 (continued) vailable Strength in Compression, kips Rectangular HSS									
Shape		HSS7 $\times 4 \times$									
		3/8		5/16		1/4		$3 / 16^{\text {c }}$		$1 / 8{ }^{\text {c }}$	
$t_{\text {des, }}$, in.		0.349		0.291		0.233		0.174		0.116	
lb/ft		24.93		21.21		17.32		13.25		9.01	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	206	310	175	263	143	215	105	157	58.9	88.5
	6	177	266	151	227	124	186	93.6	141	53.1	79.8
	7	168	252	144	216	118	177	90.0	135	51.1	76.9
	8	157	236	135	203	111	167	85.1	128	49.0	73.6
	9	146	220	126	189	104	156	79.8	120	46.6	70.1
	10	135	203	117	175	96.6	145	74.2	111	44.1	66.3
	11	124	186	107	161	88.9	134	68.4	103	41.5	62.4
	12	112	169	97.6	147	81.3	122	62.7	94.2	38.8	58.4
	13	101	152	88.2	133	73.7	111	57.0	85.6	36.1	54.3
	14	90.1	135	79.0	119	66.3	99.7	51.4	77.2	33.4	50.2
	15	79.7	120	70.2	106	59.2	89.0	46.0	69.1	30.7	46.1
	16	70.0	105	61.8	92.9	52.3	78.6	40.8	61.3	28.0	42.1
	17	62.0	93.2	54.8	82.3	46.3	69.6	36.1	54.3	25.4	38.1
	18	55.3	83.2	48.9	73.4	41.3	62.1	32.2	48.4	22.6	34.0
	19	49.7	74.6	43.8	65.9	37.1	55.8	28.9	43.5	20.3	30.5
	20	44.8	67.4	39.6	59.5	33.5	50.3	26.1	39.2	18.3	27.6
	21	40.7	61.1	35.9	53.9	30.4	45.6	23.7	35.6	16.6	25.0
	22	37.0	55.7	32.7	49.2	27.7	41.6	21.6	32.4	15.2	22.8
	23	33.9	50.9	29.9	45.0	25.3	38.0	19.7	29.7	13.9	20.8
	24	31.1	46.8	27.5	41.3	23.2	34.9	18.1	27.2	12.7	19.1
	25	28.7	43.1	25.3	38.1	21.4	32.2	16.7	25.1	11.7	17.6
	26	26.5	39.9	23.4	35.2	19.8	29.8	15.4	23.2	10.8	16.3
	27					18.4	27.6	14.3	21.5	10.1	15.1
	28									9.35	14.1
	Properties										
A_{g}, in. ${ }^{2}$		6.88418		5.85		4.77		3.63		2.46	
I_{x}, in. ${ }^{4}$				36.5		30.5		23.8		16.6	
l_{y}, in. ${ }^{4}$		17.3		15.2		12.8		10.0		7.03	
r_{y}, in.		1.58		1.61		1.64		1.66		1.69	
r_{x} / r_{y}		1.56		1.55		1.54		1.54		1.53	
ASD		LRFD		${ }^{\mathrm{c}}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$; tabulated values have been adjusted accordingly. Note: Heavy line indicates L_{c} / r_{y} equal to or greater than 200 .							
$\Omega_{C}=1.67$		$\phi_{c}=0.90$									

$F_{y}=50 \mathrm{ksi}$							ont tre SSS lar	nued ngt 10n ISS									
Shape		HSS6 $\times 5 \times$															
		1/2		3/8		5/16		1/4		3/16		$1 / 8{ }^{\text {c }}$					
$t_{\text {des, }}$, in.		0.465		0.349		0.291		0.233		0.174		0.116					
		31.84		24.93		21.21		17.32		13.25		9.01					
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$				
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD				
	0	264	396	206	310	175	263	143	215	109	163	61.3	92.1				
	1	263	395	205	309	175	263	142	214	108	163	61.2	92.0				
	2	261	392	204	306	173	260	141	212	108	162	60.9	91.5				
	3	257	386	201	302	171	257	139	210	106	160	60.4	90.7				
	4	251	378	197	296	168	252	137	206	104	157	59.7	89.7				
	5	245	368	192	288	163	246	134	201	102	153	58.8	88.4				
	6	237	356	186	279	159	238	130	195	98.9	149	57.7	86.8				
	7	228	342	179	269	153	230	125	188	95.7	144	56.5	84.9				
	8	218	327	172	258	147	220	120	181	92.0	138	55.1	82.8				
	9	207	311	163	246	140	210	115	173	88.0	132	53.5	80.4				
	10	195	293	155	233	133	200	109	164	83.7	126	51.8	77.9				
	11	183	275	146	219	125	188	103	155	79.3	119	50.0	75.1				
	12	171	257	137	205	118	177	97.0	146	74.7	112	47.9	71.9				
	13	159	238	127	191	110	165	90.7	136	70.0	105	45.4	68.3				
	14	146	220	118	177	102	153	84.4	127	65.2	98.0	42.9	64.5				
	15	134	201	108	163	93.9	141	78.0	117	60.5	90.9	40.3	60.6				
	16	122	183	99.2	149	86.2	130	71.8	108	55.8	83.8	37.8	56.8				
	17	110	166	90.2	136	78.7	118	65.7	98.8	51.2	76.9	35.2	52.9				
	18	99.3	149	81.6	123	71.4	107	59.8	89.9	46.7	70.2	32.2	48.4				
	19	89.1	134	73.3	110	64.3	96.7	54.1	81.3	42.4	63.7	29.3	44.0				
	20	80.4	121	66.2	99.5	58.0	87.2	48.8	73.3	38.3	57.5	26.5	39.8				
	21	72.9	110	60.0	90.2	52.7	79.1	44.3	66.5	34.7	52.2	24.0	36.1				
	22	66.4	99.9	54.7	82.2	48.0	72.1	40.3	60.6	31.6	47.5	21.9	32.9				
	23	60.8	91.4	50.0	75.2	43.9	66.0	36.9	55.5	28.9	43.5	20.0	30.1				
	24	55.8	83.9	46.0	69.1	40.3	60.6	33.9	50.9	26.6	39.9	18.4	27.6				
	25	51.5	77.3	42.4	63.7	37.2	55.8	31.2	46.9	24.5	36.8	16.9	25.4				
	26	47.6	71.5	39.2	58.9	34.3	51.6	28.9	43.4	22.6	34.0	15.7	23.5				
	27	44.1	66.3	36.3	54.6	31.9	47.9	26.8	40.2	21.0	31.6	14.5	21.8				
	28	41.0	61.6	33.8	50.8	29.6	44.5	24.9	37.4	19.5	29.3	13.5	20.3				
	29	38.2	57.5	31.5	47.3	27.6	41.5	23.2	34.9	18.2	27.4	12.6	18.9				
	30	35.7	53.7	29.4	44.2	25.8	38.8	21.7	32.6	17.0	25.6	11.8	17.7				
Properties																	
A_{g}, in. ${ }^{2}$				$\begin{gathered} 6.88 \\ 33.9 \\ 25.5 \\ 1.92 \\ 1.16 \end{gathered}$		$\begin{gathered} 5.85 \\ 29.6 \\ 22.3 \\ 1.95 \\ 1.15 \end{gathered}$		4.77		3.63		2.46					
I_{x}, in. ${ }^{4}$		41.1				24.		19.314.6		13.4							
l_{y}, in. ${ }^{4}$		30.8				18.7	10.2										
r_{y}, in.		1.87				1.98	2.01		2.03								
r_{x} / r_{y}		1.16				1.15	1.15		1.15								
ASD		LRFD		${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50$ ksi; tabulated values have been adjusted accordingly.													
$\Omega_{C}=1.67$		$\phi_{C}=0.90$															

				Tab vai al	ble 4 lab Com Rect		cont tre ESS ular	nued ngt $10 n$ HS			F_{y}		
Shape		HSS6 $\times 4 \times$											
		1/2		3/8		5/16		1/4		3/16		$1 / 8^{\text {c }}$	
		0.465		0.349		0.291		0.233		0.174		0.116	
		28.43		22.37		19.08		15.62		11.97		8.16	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	236	355	185	278	157	237	129	193	98.2	148	57.9	87.0
	1	235	353	184	277	157	236	128	193	97.8	147	57.7	86.7
	2	232	348	182	273	155	233	127	190	96.7	145	57.2	85.9
	3	226	340	178	267	152	228	124	187	94.8	142	56.3	84.6
	4	219	329	173	259	147	221	121	181	92.2	139	55.1	82.8
	5	210	315	166	249	142	213	116	175	88.9	134	53.6	80.6
	6	199	300	158	238	135	203	111	167	85.1	128	51.9	77.9
	7	188	282	149	224	128	193	106	159	80.9	122	49.8	74.9
	8	175	263	140	210	120	181	99.3	149	76.2	115	47.6	71.5
	9	161	243	130	195	112	168	92.6	139	71.2	107	45.2	67.9
	10	148	222	119	179	103	155	85.8	129	66.1	99.3	42.6	64.1
	11	134	201	109	164	94.5	142	78.8	118	60.8	91.4	39.9	60.0
	12	120	181	98.4	148	85.8	129	71.7	108	55.5	83.4	37.2	55.9
	13	107	161	88.2	133	77.2	116	64.8	97.4	50.3	75.5	34.4	51.8
	14	94.3	142	78.4	118	68.9	104	58.1	87.3	45.2	67.9	31.6	47.5
	15	82.3	124	68.9	104	60.9	91.6	51.6	77.6	40.3	60.5	28.3	42.5
	16	72.3	109	60.5	91.0	53.5	80.5	45.4	68.3	35.5	53.4	25.1	37.7
	17	64.0	96.2	53.6	80.6	47.4	71.3	40.3	60.5	31.5	47.3	22.2	33.4
	18	57.1	85.9	47.8	71.9	42.3	63.6	35.9	54.0	28.1	42.2	19.8	29.8
	19	51.3	77.1	42.9	64.5	38.0	57.1	32.2	48.4	25.2	37.9	17.8	26.7
	20	46.3	69.5	38.7	58.2	34.3	51.5	29.1	43.7	22.7	34.2	16.0	24.1
	21	42.0	63.1	35.1	52.8	31.1	46.7	26.4	39.7	20.6	31.0	14.5	21.9
	22	38.2	57.5	32.0	48.1	28.3	42.6	24.0	36.1	18.8	28.2	13.3	19.9
	23	35.0	52.6	29.3	44.0	25.9	38.9	22.0	33.1	17.2	25.8	12.1	18.2
	24	32.1	48.3	26.9	40.4	23.8	35.8	20.2	30.4	15.8	23.7	11.1	16.7
	25	29.6	44.5	24.8	37.3	21.9	33.0	18.6	28.0	14.6	21.9	10.3	15.4
	26					20.3	30.5	17.2	25.9	13.5	20.2	9.49	14.3
	27									12.5	18.8	8.80	13.2
Properties													
A_{g}, in. ${ }^{2}$			88		. 18		26		30	. 2	8		
I_{x}, in. ${ }^{4}$		34.		28.		24		20		16.		,	
l_{y}, in. ${ }^{4}$		17.		14.		13		11		8.7	76		
r_{y}, in.			50		. 55		58		61	1.6	63		
r_{x} / r_{y}			39		. 38		37		37		37		
ASD		LRFD		${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$; tabulated values have been adjusted accordingly. Note: Heavy line indicates L_{c} / r_{y} equal to or greater than 200.									
$\Omega_{c}=1.67$		$\phi_{C}=0.90$											

HSS5		Available Strength in Axial Compression, kips Rectangular HSS											
Shape		HSS5 $\times 4 \times$											
								1/4		,			
$t_{\text {des, }}$, in.		0.465		0.349		0.291		0.233		0.174		0.116	
		25.03		19.82		16.96		13.91		10.70		7.31	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	208	313	164	247	140	211	115	173	87.7	132	56.4	84.8
	1	207	311	163	245	139	210	114	172	87.4	131	56.2	84.5
	2	204	307	161	242	138	207	113	170	86.3	130	55.7	83.6
	3	199	299	157	237	135	202	111	166	84.5	127	54.7	82.3
	4	192	289	153	229	131	196	107	161	82.1	123	53.5	80.4
	5	184	276	146	220	125	188	103	155	79.2	119	51.9	78.0
	6	174	262	139	209	119	179	98.6	148	75.7	114	50.1	75.2
	7	163	246	131	197	113	169	93.3	140	71.7	108	48.0	72.1
	8	152	228	123	184	105	159	87.5	131	67.4	101	45.6	68.6
	9	139	210	113	170	97.8	147	81.3	122	62.9	94.5	43.1	64.8
	10	127	191	104	156	89.9	135	75.0	113	58.1	87.4	40.1	60.3
	11	114	172	94.5	142	81.9	123	68.6	103	53.3	80.2	36.9	55.4
	12	102	154	85.1	128	73.9	111	62.2	93.4	48.5	72.9	33.6	50.5
	13	90.3	136	76.0	114	66.2	99.5	55.9	84.0	43.8	65.8	30.4	45.7
	14	78.9	119	67.2	101	58.7	88.2	49.8	74.8	39.2	58.9	27.3	41.0
	15	68.7	103	58.7	88.3	51.5	77.4	43.9	66.0	34.8	52.3	24.3	36.5
	16	60.4	90.8	51.6	77.6	45.3	68.0	38.6	58.0	30.6	46.0	21.4	32.2
	17	53.5	80.4	45.7	68.7	40.1	60.3	34.2	51.4	27.1	40.7	19.0	28.5
	18	47.7	71.7	40.8	61.3	35.8	53.7	30.5	45.8	24.2	36.3	16.9	25.4
	19	42.8	64.4	36.6	55.0	32.1	48.2	27.4	41.1	21.7	32.6	15.2	22.8
	20	38.7	58.1	33.0	49.7	29.0	43.5	24.7	37.1	19.6	29.4	13.7	20.6
	21	35.1	52.7	30.0	45.0	26.3	39.5	22.4	33.7	17.8	26.7	12.4	18.7
	22	31.9	48.0	27.3	41.0	23.9	36.0	20.4	30.7	16.2	24.3	11.3	17.0
	23	29.2	43.9	25.0	37.5	21.9	32.9	18.7	28.1	14.8	22.2	10.4	15.6
	24	26.8	40.4	22.9	34.5	20.1	30.2	17.2	25.8	13.6	20.4	9.51	14.3
	25			21.1	31.8	18.5	27.9	15.8	23.8	12.5	18.8	8.77	13.2
	26							14.6	22.0	11.6	17.4	8.10	12.2
	27											7.52	11.3
Properties													
A_{g}, in. 2			95		48		68	3.8	84	2.9	93		
I_{x}, in. ${ }^{4}$		21.		17.		15		13.		10.6			
l_{y}, in. ${ }^{4}$		14.		12.		11		9.	46	7.	48		
r_{y}, in.			46		52		. 54	1.5	57	1.6	60		
r_{x} / r_{y}			20		19		19		19		19		
ASD		LRFD		${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$; tabulated values have been adjusted accordingly. Note: Heavy line indicates L_{c} / r_{y} equal to or greater than 200.									
$\Omega_{c}=$		$\phi_{C}=0.90$											

$F_{y}=50 \mathrm{ksi}$			Table 4-3 (continued) vailable Strength in Compression, kips Rectangular HSS									+	
Shape		HSS5 $\times 3 \times$											
		1/2		3/8		5/16		1/4		3/16		$1 / 8{ }^{\text {c }}$	
$t_{\text {des, }}$ in.		0.465		0.349		0.291		0.233		0.174		0.116	
lb/ft		21.63		17.27		14.83		12.21		9.42		6.46	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	180	271	143	215	123	184	101	152	77.2	116	49.5	74.4
	1	179	269	142	213	122	183	100	151	76.7	115	49.2	74.0
	2	174	261	139	208	119	179	97.9	147	75.1	113	48.5	72.8
	3	166	250	133	200	115	172	94.4	142	72.5	109	47.2	70.9
	4	156	235	126	189	109	163	89.6	135	69.0	104	45.4	68.3
	5	144	217	117	176	101	152	83.8	126	64.7	97.3	43.3	65.0
	6	131	197	107	161	93.1	140	77.2	116	59.9	90.0	40.8	61.3
	7	117	175	96.2	145	84.2	127	70.1	105	54.6	82.1	38.0	57.1
	8	102	154	85.2	128	75.0	113	62.7	94.2	49.1	73.8	34.4	51.7
	9	87.9	132	74.2	112	65.8	99.0	55.2	83.0	43.6	65.5	30.7	46.1
	10	74.3	112	63.7	95.7	56.9	85.5	48.0	72.1	38.1	57.2	27.0	40.6
	11	61.7	92.7	53.6	80.5	48.4	72.7	41.0	61.7	32.8	49.3	23.4	35.2
	12	51.8	77.9	45.0	67.7	40.7	61.1	34.6	52.0	27.8	41.8	20.0	30.1
	13	44.2	66.4	38.4	57.7	34.7	52.1	29.5	44.3	23.7	35.6	17.1	25.7
	14	38.1	57.2	33.1	49.7	29.9	44.9	25.4	38.2	20.5	30.7	14.7	22.1
	15	33.2	49.9	28.8	43.3	26.0	39.1	22.1	33.3	17.8	26.8	12.8	19.3
	16	29.2	43.8	25.3	38.1	22.9	34.4	19.5	29.2	15.7	23.5	11.3	16.9
	17	25.8	38.8	22.4	33.7	20.3	30.5	17.2	25.9	13.9	20.8	9.99	15.0
	18	23.0	34.6	20.0	30.1	18.1	27.2	15.4	23.1	12.4	18.6	8.91	13.4
	19			18.0	27.0	16.2	24.4	13.8	20.7	11.1	16.7	8.00	12.0
	20									10.0	15.1	7.22	10.8
Properties													
A_{g}, in. ${ }^{2}$			02			4.10		3.37		2.58		1.77	
l_{x}, in. ${ }^{4}$		16.4				12.6		10.7		8.53		6.03	
l_{y}, in. ${ }^{4}$		7.18		6.25		5.60		4.81		3.85		2.75	
r_{y}, in.		1.09		1.14		1.17		1.19		1.22		1.25	
r_{x} / r_{y}		1.51		1.51		1.50		1.50		1.49		1.48	
ASD		LRFD		${ }^{\mathrm{c}}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$; tabulated values have been adjusted accordingly. Note: Heavy line indicates L_{c} / r_{y} equal to or greater than 200.									
$\Omega_{c}=1.67$		$\phi_{C}=0.90$											

$F_{y}=50 \mathrm{ksi}$			Table 4-4 le Strength in mpression, kips Square HSS									-HS	
Shape		HSS16 $\times 16 \times$						HSS $14 \times 14 \times$					
		1/2		3/8 ${ }^{\text {c }}$		$5 / 16{ }^{\text {c }}$		5/8		1/2		$3 / 8{ }^{\text {c }}$	
		0.465		0.349		0.291		0.581		0.465		0.349	
		103.30		78.52		65.87		110.36		89.68		68.31	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	847	1270	549	825	403	606	907	1360	737	1110	527	792
	6	839	1260	546	820	401	603	896	1350	727	1090	522	785
	7	836	1260	544	818	400	601	892	1340	724	1090	521	783
	8	833	1250	543	816	399	600	887	1330	720	1080	519	780
	9	829	1250	541	814	398	598	881	1320	716	1080	517	777
	10	825	1240	540	811	397	596	875	1320	711	1070	515	773
	11	821	1230	538	808	395	594	869	1310	706	1060	512	770
	12	816	1230	536	805	394	592	862	1300	700	1050	509	765
	13	810	1220	533	802	392	590	854	1280	694	1040	506	761
	14	805	1210	531	798	391	587	846	1270	688	1030	503	756
	15	798	1200	528	794	389	585	837	1260	681	1020	500	751
	16	792	1190	526	790	387	582	828	1240	674	1010	496	746
	17	785	1180	523	786	385	578	819	1230	666	1000	492	740
	18	778	1170	520	781	383	575	808	1220	658	989	488	734
	19	770	1160	516	776	380	572	798	1200	649	976	484	727
	20	762	1150	513	771	378	568	787	1180	640	963	480	721
	21	754	1130	509	765	375	564	775	1170	631	949	475	714
	22	746	1120	506	760	373	560	764	1150	622	935	470	707
	23	737	1110	502	754	370	556	752	1130	612	920	465	699
	24	728	1090	498	748	367	552	739	1110	602	905	460	691
	25	718	1080	493	742	364	548	726	1090	592	890	452	680
	26	709	1070	489	735	361	543	713	1070	582	874	444	668
	27	699	1050	485	729	358	538	700	1050	571	858	436	656
	28	689	1040	480	722	355	534	686	1030	560	842	428	644
	29	678	1020	475	715	352	529	673	1010	549	825	420	631
	30	668	1000	471	707	348	523	659	990	538	808	412	619
	32	646	971	460	692	341	513	630	947	515	774	395	593
	34	624	938	450	676	334	502	601	904	492	739	377	567
	36	601	904	439	660	326	490	572	860	468	704	360	540
	38	578	869	428	643	318	478	543	816	445	668	342	514
	40	555	834	416	625	310	466	513	772	421	633	324	487
Properties													
A_{g}, in. $I_{x}=I_{y}$, $r_{x}=r_{y},$		$\begin{array}{r} 28 \\ 1130 \\ 6 \end{array}$	31	$\begin{gathered} 21.5 \\ 873 \\ 6.37 \end{gathered}$		$\begin{gathered} 18.1 \\ 739 \\ 6.39 \end{gathered}$		$\begin{gathered} 30.3 \\ 897 \\ 5.44 \\ \hline \end{gathered}$		$\begin{gathered} \hline 24.6 \\ 743 \\ 5.49 \\ \hline \end{gathered}$		$\begin{gathered} 18.7 \\ 577 \\ 5.55 \end{gathered}$	
ASD		LRFD		${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$; tabulated values have been adjusted accordingly.									
Ω_{c}		$\phi_{c}=0.90$											

HSS14-HSS12			Table 4-4 (continued) Available Strength in Axial Compression, kips 12 Square HSS										
Shape		HSS14×14×		HSS12×12×									
		$5 / 16^{6}$		5/8		1/2		$3 / 8$		$5 / 16^{\text {c }}$		$1 / 4{ }^{\text {c }}$	
		0.291		0.581		0.465		0.349		0.291		0.233	
		57.36		93.34		76.07		58.10		48.86		39.43	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	388	584	769	1160	626	940	479	720	372	559	253	380
	6	385	579	756	1140	615	924	471	708	368	552	250	376
	7	384	577	751	1130	611	919	468	704	366	550	249	375
	8	383	576	746	1120	607	912	465	699	364	548	248	373
	9	382	573	739	1110	602	905	461	693	362	545	247	371
	10	380	571	732	1100	596	896	457	687	360	541	246	369
	11	378	568	725	1090	590	887	453	680	358	538	244	367
	12	376	566	717	1080	584	878	448	673	355	534	242	364
	13	374	563	708	1060	577	867	442	665	352	530	241	362
	14	372	559	699	1050	569	856	437	657	349	525	239	359
	15	370	556	689	1040	562	844	431	648	346	520	237	356
	16	367	552	678	1020	553	832	425	638	343	515	235	353
	17	365	548	667	1000	545	819	418	628	339	510	232	349
	18	362	544	656	986	535	805	411	618	335	504	230	346
	19	359	539	644	968	526	791	404	608	331	498	227	342
	20	356	535	632	949	516	776	397	596	327	492	225	338
	21	353	530	619	930	506	761	389	585	323	485	222	334
	22	349	525	606	911	496	745	381	573	319	479	219	330
	23	346	520	593	891	485	729	373	561	314	472	216	325
	24	342	514	579	870	474	713	365	549	307	461	213	321
	25	338	509	565	850	463	696	357	537	300	451	210	316
	26	335	503	551	829	452	680	349	524	293	440	207	311
	27	331	497	537	807	441	662	340	511	286	430	204	306
	28	327	491	523	786	429	645	331	498	279	419	200	301
	29	322	484	508	764	418	628	322	485	271	408	197	296
	30	318	478	494	742	406	610	314	471	264	397	194	291
	32	309	465	464	698	382	575	296	445	249	375	186	280
	34	300	451	435	654	359	540	278	418	234	352	179	269
	36	291	437	406	610	336	504	260	391	220	330	171	257
	38	281	422	377	567	313	470	243	365	205	308	163	246
	40	271	407	349	525	290	436	226	339	191	287	155	233
Properties													
$\begin{aligned} & A_{g}, \text { in. }{ }^{2} \\ & x_{1}=I_{y}, \text { in. }{ }^{4} \\ & r_{x}=r_{y}, \text { in. } \end{aligned}$		$\begin{gathered} \hline 15.7 \\ 490 \\ 5.58 \end{gathered}$		$\begin{gathered} 25.7 \\ 548 \\ 4.62 \end{gathered}$		$\begin{gathered} \hline 20.9 \\ 457 \\ 4.68 \end{gathered}$		$\begin{gathered} \hline 16.0 \\ 357 \\ 4.73 \end{gathered}$		$\begin{gathered} 13.4 \\ 304 \\ 4.76 \end{gathered}$		$\begin{gathered} 10.8 \\ 248 \\ 4.79 \end{gathered}$	
ASD		LRFD		${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$; tabulated values have been adjusted accordingly.									
$\Omega_{C}=1.67$		$\phi_{C}=0.90$											

$F_{y}=50 \mathrm{ksi}$			Table 4-4 (continued) Available Strength in Axial Compression, kips Square HSS								HSS1	-HSS			
Shape		$\frac{H S S 12 \times 12 \times}{3 / 16^{6}}$		HSS10 $\times 10 \times$											
		5/8	1/2		$3 / 8$		5/16		$1 / 4^{\text {c }}$						
						0.581		0.465		0.349		0.291		0.233	
		29.84		76.33		62.46		47.90		40.35		32.63			
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$		
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD		
	0	149	225	629	945	515	774	395	594	332	499	241	362		
	6	148	223	612	921	502	755	386	580	324	487	237	357		
	7	148	222	607	912	497	748	382	574	321	483	236	354		
	8	147	221	600	902	492	740	378	569	318	478	234	352		
	9	146	220	593	891	486	731	374	562	315	473	232	349		
	10	146	219	585	879	480	721	369	555	311	467	231	346		
	11	145	217	576	865	473	711	364	547	306	460	228	343		
	12	144	216	566	851	465	699	358	538	301	453	226	340		
	13	143	215	556	835	457	687	352	529	296	445	223	336		
	14	142	213	545	819	448	674	346	519	291	437	221	332		
	15	141	211	534	802	439	660	339	509	285	429	218	327		
	16	139	210	522	784	430	646	332	498	279	420	215	323		
	17	138	208	509	765	420	631	324	487	273	411	212	318		
	18	137	206	496	746	410	616	317	476	267	401	208	313		
	19	136	204	483	726	399	600	309	464	260	391	205	308		
	20	134	202	470	706	388	583	300	452	253	381	201	302		
	21	133	199	456	685	377	567	292	439	246	370	197	297		
	22	131	197	442	664	366	550	284	426	239	360	193	291		
	23	129	195	428	643	354	533	275	413	232	349	188	283		
	24	128	192	413	621	343	515	266	400	225	338	183	274		
	25	126	190	399	599	331	498	258	387	218	327	177	266		
	26	124	187	384	577	319	480	249	374	210	316	171	257		
	27	123	184	370	555	308	462	240	360	203	305	165	248		
	28	121	181	355	534	296	445	231	347	195	293	159	239		
	29	119	179	341	512	284	427	222	334	188	282	153	230		
	30	117	176	326	490	273	410	213	321	180	271	147	221		
	32	113	170	298	448	250	375	196	294	166	249	135	203		
	34	109	163	271	407	228	342	179	269	152	228	124	186		
	36	105	157	244	367	206	310	163	244	138	207	113	170		
	38	100	151	219	329	185	278	147	220	125	187	102	153		
	40	95.9	144	198	297	167	251	132	199	112	169	92.1	138		
Properties															
$\begin{aligned} & A_{g}, \text { in. } \\ & I_{1}=I_{y}, \\ & r_{x}=r_{y}, \end{aligned}$		$\begin{array}{r} 189 \\ 4 . \end{array}$	15	$\begin{gathered} 21.0 \\ 304 \\ 3.80 \end{gathered}$		$\begin{gathered} 17.2 \\ 256 \\ 3.86 \end{gathered}$		$\begin{gathered} \hline 13.2 \\ 202 \\ 3.92 \end{gathered}$		$\begin{gathered} \hline 11.1 \\ 172 \\ 3.94 \end{gathered}$		$\begin{gathered} 8.96 \\ 141 \\ 3.97 \end{gathered}$			
ASD		LRFD		${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$; tabulated values have been adjusted accordingly.											
$\Omega_{c}=1.67$		$\phi_{c}=0.90$													

Axial Comp													
Shape		HSS10 $\times 10 \times$		HSS9 $\times 9 \times$									
		$3 / 16{ }^{\text {c }}$		5/8		1/2		3/8		5/16		$1 / 4^{\text {c }}$	
$t_{\text {des, }}$ in.		0.174		0.581		0.465		0.349		0.291		0.233	
		24.73		67.82		55.66		42.79		36.10		29.23	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	145	218	560	841	458	688	353	531	297	446	233	350
	6	143	215	542	814	444	667	343	515	288	433	228	342
	7	142	213	535	805	439	659	339	509	285	428	226	340
	8	141	212	528	794	433	651	334	503	281	423	224	337
	9	140	211	520	782	426	641	330	495	277	417	222	334
	10	139	209	511	768	419	630	324	488	273	410	220	330
	11	138	207	501	754	412	619	319	479	268	403	217	326
	12	137	205	491	738	403	606	312	470	263	396	213	321
	13	135	203	480	721	394	593	306	460	258	387	209	314
	14	134	201	468	704	385	579	299	449	252	379	204	307
	15	132	199	456	686	375	564	291	438	246	370	199	300
	16	130	196	443	666	365	549	284	427	240	360	194	292
	17	129	193	430	647	355	533	276	415	233	350	189	284
	18	127	191	417	626	344	517	268	403	226	340	184	276
	19	125	188	403	606	333	500	260	390	219	330	178	268
	20	123	185	389	585	322	483	251	377	212	319	172	259
	21	121	182	375	563	310	466	242	364	205	308	167	251
	22	119	178	360	542	299	449	234	351	198	297	161	242
	23	116	175	346	520	287	431	225	338	190	286	155	233
	24	114	172	331	498	275	414	216	325	183	275	149	224
	25	112	168	317	476	264	396	207	311	176	264	143	215
	26	109	164	302	455	252	379	198	298	168	253	137	206
	27	107	161	288	433	240	361	189	285	161	242	131	197
	28	105	157	274	412	229	344	181	272	154	231	125	188
	29	102	153	260	391	218	327	172	259	147	220	120	180
	30	99.4	149	247	371	207	311	164	246	139	210	114	171
	32	94.2	142	220	331	185	278	147	221	126	189	103	154
	34	88.8	134	195	293	164	247	131	197	112	169	91.9	138
	36	83.4	125	174	262	147	220	117	176	100	150	82.0	123
	38	78.0	117	156	235	132	198	105	158	89.9	135	73.6	111
	40	70.6	106	141	212	119	179	94.8	143	81.1	122	66.4	99.8
Properties													
$\begin{aligned} & \hline A_{g}, \text { in. }^{2} \\ & I_{x}=I_{y}, \\ & r_{x}=r_{y}, \\ & \hline \end{aligned}$		$\begin{array}{r} 6 . \\ 108 \\ 4 . \end{array}$	76	$\begin{gathered} 18.7 \\ 216 \\ 3.40 \end{gathered}$		$\begin{gathered} 15.3 \\ 183 \\ 3.45 \end{gathered}$		$\begin{gathered} \hline 11.8 \\ 145 \\ 3.51 \\ \hline \end{gathered}$		$\begin{gathered} 9.92 \\ 124 \\ 3.54 \end{gathered}$		$\begin{gathered} 8.03 \\ 102 \\ 3.56 \end{gathered}$	
ASD		LRFD		${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50$ ksi; tabulated values have been adjusted accordingly.									
Ω_{c}		$\phi_{c}=0.90$											

$F_{y}=50 \mathrm{ksi}$			Table 4-4 (continued) Available Strength in Axial Compression, kips Square HSS								HSS9-HSS8		
Shape		HSS9 $\times 9 \times$				HSS8 $\times 8 \times$							
		$3 / 16^{\text {c }}$		$1 / 8{ }^{\text {c }}$		5/8		1/2		3/8		5/16	
		0.174		0.116		0.581		0.465		0.349		0.291	
		22.18		14.96		59.32		48.85		37.69		31.84	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	141	213	68.0	102	491	738	404	607	311	468	262	394
	6	139	209	66.8	100	471	707	388	583	299	450	252	379
	7	138	207	66.4	99.8	463	697	382	575	295	444	249	374
	8	137	206	65.9	99.1	455	684	376	565	290	436	245	368
	9	136	204	65.4	98.3	446	671	369	554	285	428	240	361
	10	134	202	64.8	97.4	436	656	361	542	279	419	236	354
	11	133	200	64.2	96.5	426	640	352	529	273	410	230	346
	12	131	197	63.5	95.4	414	623	343	516	266	400	225	338
	13	130	195	62.8	94.3	402	605	333	501	259	389	219	329
	14	128	192	62.0	93.1	390	586	323	486	251	378	212	319
	15	126	189	61.1	91.8	377	566	313	470	243	366	206	310
	16	124	186	60.2	90.5	363	546	302	454	235	354	199	299
	17	122	183	59.3	89.1	349	525	291	437	227	341	192	289
	18	119	179	58.3	87.6	335	504	279	420	218	328	185	278
	19	117	176	57.3	86.1	321	482	268	403	210	315	178	267
	20	115	172	56.2	84.5	307	461	256	385	201	302	171	256
	21	112	169	55.1	82.8	292	439	245	368	192	289	163	245
	22	110	165	54.0	81.1	278	417	233	350	183	275	156	234
	23	107	161	52.8	79.4	263	396	221	333	174	262	149	223
	24	104	157	51.6	77.6	249	374	210	315	166	249	141	212
	25	101	152	50.4	75.8	235	353	198	298	157	236	134	201
	26	98.6	148	49.2	73.9	221	333	187	281	148	223	127	191
	27	95.8	144	47.9	72.0	208	313	176	265	140	211	120	180
	28	92.9	140	46.6	70.1	195	293	165	249	132	198	113	170
	29	89.9	135	45.3	68.1	182	274	155	233	124	186	106	160
	30	87.0	131	44.0	66.2	170	256	145	217	116	174	99.5	150
	32	78.6	118	41.4	62.2	149	225	127	191	102	153	87.5	131
	34	70.5	106	38.7	58.2	132	199	113	169	90.2	136	77.5	116
	36	62.9	94.5	36.0	54.1	118	177	100	151	80.5	121	69.1	104
	38	56.5	84.9	33.6	50.4	106	159	90.2	136	72.2	109	62.0	93.2
	40	51.0	76.6	31.4	47.2	95.6	144	81.4	122	65.2	98.0	56.0	84.1
Properties													
$\begin{aligned} & A_{g}, \text { in. } \\ & I_{x}, l_{y}, \\ & r_{x}=r_{y}, \end{aligned}$		3.	206	$\begin{gathered} 4.09 \\ 53.5 \\ 3.62 \\ \hline \end{gathered}$		$\begin{gathered} \hline 16.4 \\ 146 \\ 2.99 \end{gathered}$		$\begin{gathered} \hline 13.5 \\ 125 \\ 3.04 \end{gathered}$		$\begin{gathered} \hline 10.4 \\ 100 \\ 3.10 \end{gathered}$		$\begin{gathered} \hline 8.76 \\ 85.6 \\ 3.13 \end{gathered}$	
ASD		LRFD		${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$; tabulated values have been adjusted accordingly.									
$\Omega_{c}=1.67$		$\phi_{c}=0.90$											

HSS8-HSS7													
Shape		HSS8 $\times 8 \times$						HSS7 $\times 7 \times$					
		1/4		$3 / 16{ }^{\text {c }}$		$1 / 8{ }^{\text {c }}$		5/8		1/2		3/8	
		0.233		0.174		0.116		0.581		0.465		0.349	
		25.82		19.63		13.26		50.81		42.05		32.58	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	213	319	137	206	66.6	100	419	630	347	522	269	404
	6	205	308	134	201	65.2	98.0	396	595	329	494	255	383
	7	202	303	133	199	64.7	97.2	388	583	322	484	250	376
	8	199	299	131	197	64.1	96.3	379	569	315	474	245	368
	9	195	293	130	195	63.4	95.3	369	554	307	461	239	359
	10	191	287	128	193	62.7	94.2	358	538	298	448	232	349
	11	187	281	126	190	61.9	93.0	346	520	289	434	225	338
	12	182	274	124	187	61.0	91.7	334	502	279	419	218	327
	13	178	267	122	184	60.1	90.3	321	482	269	404	210	316
	14	173	260	120	180	59.1	88.8	307	462	258	387	202	303
	15	167	252	118	177	58.0	87.2	294	441	247	371	194	291
	16	162	243	115	173	56.9	85.6	280	420	235	354	185	278
	17	156	235	112	169	55.8	83.8	265	399	224	336	176	265
	18	151	227	110	165	54.6	82.0	251	377	212	319	168	252
	19	145	218	107	160	53.3	80.1	237	356	200	301	159	239
	20	139	209	104	156	52.0	78.2	223	335	189	284	150	226
	21	133	200	101	151	50.7	76.2	209	314	177	267	141	212
	22	127	191	97.1	146	49.3	74.2	195	293	166	250	133	200
	23	121	182	92.7	139	47.9	72.1	182	273	155	233	124	187
	24	115	173	88.3	133	46.5	69.9	169	253	145	217	116	175
	25	110	165	83.9	126	45.1	67.8	156	234	134	201	108	163
	26	104	156	79.5	120	43.6	65.6	144	216	124	186	100	151
	27	98.1	147	75.3	113	42.2	63.4	133	201	115	173	92.9	140
	28	92.5	139	71.1	107	40.7	61.1	124	186	107	161	86.4	130
	29	87.1	131	67.0	101	39.2	58.9	116	174	99.6	150	80.6	121
	30	81.7	123	63.0	94.7	37.7	56.6	108	162	93.1	140	75.3	113
	32	71.8	108	55.4	83.2	34.6	52.0	95.0	143	81.8	123	66.2	99.4
	34	63.6	95.6	49.0	73.7	31.9	48.0	84.1	126	72.4	109	58.6	88.1
	36	56.7	85.3	43.7	65.7	29.5	44.4	75.1	113	64.6	97.1	52.3	78.6
	38	50.9	76.5	39.3	59.0	27.0	40.5	67.4	101	58.0	87.2	46.9	70.5
	40	46.0	69.1	35.4	53.2	24.3	36.6	60.8	91.4	52.3	78.7	42.3	63.6
Properties													
$\begin{aligned} & \hline A_{g}, \text { in. }^{2} \\ & I_{x}=I_{y}, \\ & r_{x}=r_{y}, \\ & \hline \end{aligned}$		70	10 7	$\begin{gathered} 5.37 \\ 54.4 \\ 3.18 \end{gathered}$		$\begin{gathered} 3.62 \\ 37.4 \\ 3.21 \end{gathered}$		$\begin{gathered} 14.0 \\ 93.4 \\ 2.58 \\ \hline \end{gathered}$		$\begin{gathered} 11.6 \\ 80.5 \\ 2.63 \end{gathered}$		$\begin{gathered} 8.97 \\ 65.0 \\ 2.69 \end{gathered}$	
ASD		LRFD		${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$; tabulated values have been adjusted accordingly.									
Ω_{c}		$\phi_{c}=0.90$											

	50	Table 4-4 (continued) Available Strength in Axial Compression, kips Square HSS									HSS	7-HS	
Shape		HSS7 $\times 7 \times$								HSS6 $\times 6 \times$			
		5/16		$1 / 4$		3/16 ${ }^{\text {c }}$		$1 / 8^{\text {c }}$		5/8		1/2	
		0.291		0.233		0.174		0.116		0.581		0.465	
		27.59		22.42		17.08		11.56		42.30		35.24	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	${ }_{\phi} P_{n}$	P_{n} / Ω_{c}	${ }_{\phi} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	227	342	185	278	132	198	65.1	97.9	350	526	292	438
	6	216	324	176	264	127	191	63.2	95.0	323	486	270	406
	7	212	319	173	259	126	189	62.6	94.0	314	472	263	395
	8	207	312	169	254	124	186	61.8	92.9	304	456	255	383
	9	203	304	165	248	122	183	60.9	91.6	292	439	246	369
	10	197	296	161	242	120	180	60.0	90.1	280	421	236	355
	11	191	288	156	235	117	176	58.9	88.6	267	402	226	339
	12	185	278	151	227	115	172	57.8	86.9	254	382	215	323
	13	179	269	146	219	111	167	56.6	85.1	240	361	204	306
	14	172	258	141	211	107	161	55.4	83.2	226	340	193	289
	15	165	248	135	203	103	154	54.0	81.2	212	318	181	272
	16	158	237	129	194	98.4	148	52.6	79.1	198	297	170	255
	17	151	226	124	186	94.0	141	51.2	76.9	184	276	158	238
	18	143	215	118	177	89.6	135	49.7	74.6	170	255	147	221
	19	136	204	112	168	85.2	128	48.1	72.3	156	235	136	204
	20	129	193	106	159	80.8	121	46.5	69.9	143	215	125	188
	21	121	182	100	150	76.3	115	44.9	67.5	130	196	115	172
	22	114	172	94.2	142	72.0	108	43.2	65.0	119	179	104	157
	23	107	161	88.4	133	67.7	102	41.5	62.4	109	163	95.6	144
	24	100	150	82.8	125	63.4	95.3	39.8	59.9	99.8	150	87.8	132
	25	93.4	140	77.4	116	59.3	89.1	38.1	57.3	92.0	138	80.9	122
	26	86.7	130	72.0	108	55.3	83.1	36.4	54.7	85.1	128	74.8	112
	27	80.4	121	66.8	100	51.3	77.1	34.6	52.0	78.9	119	69.4	104
	28	74.8	112	62.1	93.4	47.7	71.7	32.9	49.5	73.4	110	64.5	96.9
	29	69.7	105	57.9	87.0	44.5	66.8	30.7	46.2	68.4	103	60.1	90.4
	30	65.1	97.9	54.1	81.3	41.6	62.5	28.7	43.2	63.9	96.0	56.2	84.4
	32	57.2	86.0	47.6	71.5	36.5	54.9	25.3	38.0	56.2	84.4	49.4	74.2
	34	50.7	76.2	42.1	63.3	32.4	48.6	22.4	33.6	49.7	74.8	43.7	65.7
	36	45.2	68.0	37.6	56.5	28.9	43.4	20.0	30.0	44.4	66.7	39.0	58.6
	38	40.6	61.0	33.7	50.7	25.9	38.9	17.9	26.9				
	40	36.6	55.1	30.4	45.8	23.4	35.1	16.2	24.3				
Properties													
$\begin{aligned} & A_{g}, \text { in. } \\ & x_{x}=r_{y,}, \\ & r_{x}=r_{y}, \end{aligned}$		56.1	59 12 72	$\begin{gathered} \hline 6.17 \\ 46.5 \\ 2.75 \end{gathered}$		$\begin{gathered} 4.67 \\ 36.0 \\ 2.77 \end{gathered}$		$\begin{gathered} \hline 3.16 \\ 24.8 \\ 2.80 \end{gathered}$		$\begin{gathered} \hline 11.7 \\ 55.2 \\ 2.17 \end{gathered}$		$\begin{gathered} \hline 9.74 \\ 48.3 \\ 2.23 \end{gathered}$	
ASD		LRF		${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50$ ksi; tabulated values have been adjusted accordingly. Note: Heavy line indicates L_{c} / r_{y} equal to or greater than 200.									
$\Omega_{c}=1.67$		$\phi_{c}=0.90$											

	SS				$4-4$ le Mp					$=5$	
Shape		HSS6 $\times 6 \times$									
		$3 / 8$		5/16		$1 / 4$		3/16		$1 / 8{ }^{\text {c }}$	
$t_{\text {des, }}$, in.		0.349		0.291		0.233		0.174		0.116	
		27.48		23.34		19.02		14.53		9.86	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	227	341	193	289	157	236	119	179	63.1	94.8
	6	211	317	179	270	146	220	111	167	60.5	90.9
	7	206	309	175	263	143	215	109	163	59.6	89.5
	8	199	300	170	255	139	208	106	159	58.5	87.9
	9	193	289	164	247	134	202	102	154	57.3	86.2
	10	185	279	158	238	129	195	98.8	148	56.1	84.3
	11	178	267	152	228	124	187	95.0	143	54.7	82.2
	12	170	255	145	218	119	179	91.0	137	53.2	80.0
	13	161	242	138	207	113	170	86.8	130	51.6	77.6
	14	153	229	131	197	108	162	82.5	124	50.0	75.1
	15	144	216	123	186	102	153	78.2	117	48.2	72.5
	16	135	203	116	175	95.9	144	73.7	111	46.4	69.8
	17	126	190	109	164	90.0	135	69.3	104	44.5	67.0
	18	118	177	102	153	84.1	126	64.9	97.6	42.6	64.1
	19	109	164	94.4	142	78.4	118	60.6	91.0	40.7	61.1
	20	101	152	87.4	131	72.7	109	56.3	84.6	38.7	58.1
	21	92.9	140	80.6	121	67.2	101	52.1	78.4	35.9	53.9
	22	85.0	128	74.0	111	61.9	93.0	48.1	72.3	33.1	49.8
	23	77.8	117	67.7	102	56.6	85.1	44.1	66.3	30.4	45.7
	24	71.4	107	62.2	93.5	52.0	78.1	40.5	60.9	27.9	42.0
	25	65.8	98.9	57.3	86.1	47.9	72.0	37.3	56.1	25.8	38.7
	26	60.8	91.4	53.0	79.6	44.3	66.6	34.5	51.9	23.8	35.8
	27	56.4	84.8	49.1	73.8	41.1	61.7	32.0	48.1	22.1	33.2
	28	52.5	78.8	45.7	68.7	38.2	57.4	29.8	44.7	20.5	30.9
	29	48.9	73.5	42.6	64.0	35.6	53.5	27.7	41.7	19.1	28.8
	30	45.7	68.7	39.8	59.8	33.3	50.0	25.9	39.0	17.9	26.9
	32	40.2	60.4	35.0	52.6	29.2	44.0	22.8	34.2	15.7	23.6
	34	35.6	53.5	31.0	46.6	25.9	38.9	20.2	30.3	13.9	20.9
	36	31.7	47.7	27.6	41.5	23.1	34.7	18.0	27.1	12.4	18.7
	38	28.5	42.8	24.8	37.3	20.7	31.2	16.2	24.3	11.1	16.8
Properties											
$\begin{array}{\|l} \hline A_{g}, \text { in. }^{2} \\ I_{x}=I_{y}, \\ r_{x}=r_{y}, \\ \hline \end{array}$		7 39 2	. 58	$\begin{gathered} 6.43 \\ 34.3 \\ 2.31 \end{gathered}$							
ASD		LRFD		${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$; tabulated values have been adjusted accordingly.							
$\Omega_{C}=1.67$		$\phi_{C}=0.90$									

HSS5-HSS41⁄2			Table 4-4 (continued) vailable Strength in al Compression, kips Square HSS										
Shape		HSS5 $\times 5 \times$										HSS4 $1 / 2 \times 41 / 2 \times$	
		3/8		5/16		1/4		3/16		$1 / 8{ }^{\text {c }}$		1/2	
		0.349		0.291		0.233		0.174		0.116		0.465	
		22.37		19.08		15.62		11.97		8.16		25.03	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	185	278	157	237	129	193	98.2	148	59.8	89.9	208	313
	1	184	277	157	236	128	193	97.9	147	59.7	89.7	207	311
	2	183	275	156	234	127	191	97.1	146	59.4	89.2	205	308
	3	180	271	153	231	126	189	95.8	144	58.8	88.4	201	302
	4	176	265	150	226	123	185	94.0	141	58.1	87.3	195	293
	5	172	258	146	220	120	180	91.7	138	57.2	86.0	188	283
	6	166	250	142	213	116	175	89.0	134	56.1	84.3	180	270
	7	160	240	137	205	112	168	85.9	129	54.8	82.3	171	256
	8	153	229	131	196	107	161	82.4	124	53.3	80.1	160	241
	9	145	218	124	187	102	154	78.7	118	51.7	77.7	150	225
	10	137	206	118	177	97.0	146	74.7	112	49.9	75.1	139	208
	11	129	193	111	166	91.5	137	70.5	106	48.0	72.2	127	191
	12	120	180	103	156	85.7	129	66.2	99.5	45.5	68.4	116	174
	13	111	167	96.2	145	79.8	120	61.8	92.9	42.6	64.0	105	157
	14	103	154	88.9	134	74.0	111	57.4	86.3	39.6	59.6	93.9	141
	15	94.0	141	81.7	123	68.2	102	53.0	79.7	36.7	55.2	83.4	125
	16	85.6	129	74.6	112	62.4	93.8	48.7	73.2	33.8	50.8	73.5	110
	17	75.5	116	67.8	102	56.9	85.5	44.5	66.8	31.0	46.5	65.1	97.8
	18	69.6	105	61.2	91.9	51.5	77.4	40.4	60.7	28.2	42.4	58.0	87.2
	19	62.5	93.9	54.9	82.5	46.3	69.6	36.4	54.8	25.5	38.4	52.1	78.3
	20	56.4	84.8	49.6	74.5	41.8	62.8	32.9	49.4	23.0	34.6	47.0	70.7
	21	51.2	76.9	44.9	67.6	37.9	57.0	29.8	44.8	20.9	31.4	42.6	64.1
	22	46.6	70.0	41.0	61.5	34.5	51.9	27.2	40.8	19.0	28.6	38.9	58.4
	23	42.6	64.1	37.5	56.3	31.6	47.5	24.9	37.4	17.4	26.2	35.5	53.4
	24	39.2	58.9	34.4	51.7	29.0	43.6	22.8	34.3	16.0	24.1	32.6	49.1
	25	36.1	54.2	31.7	47.7	26.7	40.2	21.0	31.6	14.7	22.2	30.1	45.2
	26	33.4	50.2	29.3	44.1	24.7	37.2	19.5	29.2	13.6	20.5	27.8	41.8
	27	30.9	46.5	27.2	40.9	22.9	34.5	18.0	27.1	12.6	19.0		
	28	28.8	43.2	25.3	38.0	21.3	32.1	16.8	25.2	11.8	17.7		
	29	26.8	40.3	23.6	35.4	19.9	29.9	15.6	23.5	11.0	16.5		
Properties													
$\begin{aligned} & \hline A_{g}, \text { in. }^{2} \\ & I_{x}=I_{y}, \text { in. }{ }^{4} \\ & r_{x}=r_{y}, \text { in. } . \\ & \hline \end{aligned}$		$\begin{gathered} 6.18 \\ 21.7 \\ 1.87 \\ \hline \end{gathered}$		$\begin{gathered} 5.26 \\ 19.0 \\ 1.90 \\ \hline \end{gathered}$		$\begin{gathered} 4.30 \\ 16.0 \\ 1.93 \\ \hline \end{gathered}$		$\begin{gathered} 3.28 \\ 12.6 \\ 1.96 \end{gathered}$		$\begin{aligned} & 2.23 \\ & 8.80 \\ & 1.99 \end{aligned}$		$\begin{gathered} 6.95 \\ 18.1 \\ 1.61 \\ \hline \end{gathered}$	
		LRFD		${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50$ ksi; tabulated values have been adjusted accordingly. Note: Heavy line indicates L_{c} / r_{y} equal to or greater than 200.									
Ω_{c}		$\phi_{C}=0.90$											

$F_{y}=50 \mathrm{ksi}$			Table 4-4 (continued) vailable Strength in al Compression, kips Square HSS								HSS41⁄2-HSS4				
Shape		HSS $41 / 2 \times 41 / 2 \times$										$\frac{H S S 4 \times 4 \times}{1 / 9}$			
		3/8		5/16		1/4		3/16		$1 / 8^{\text {c }}$					
		0.349		0.291		0.233		0.174		0.116		0.465			
		19.82		16.96		13.91		10.70		7.31		21.63			
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$		
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD		
	0	164	247	140	211	115	173	87.7	132	57.7	86.8	180	271		
	1	163	246	140	210	115	172	87.4	131	57.6	86.6	179	269		
	2	162	243	138	208	113	170	86.5	130	57.2	86.0	176	265		
	3	159	238	136	204	111	167	85.1	128	56.6	85.0	172	258		
	4	154	232	132	199	109	163	83.0	125	55.6	83.6	166	249		
	5	149	224	128	192	105	158	80.5	121	54.5	81.9	158	237		
	6	143	215	123	185	101	152	77.5	117	53.1	79.8	149	224		
	7	136	205	117	176	96.8	145	74.1	111	50.9	76.5	139	209		
	8	129	194	111	167	91.8	138	70.4	106	48.4	72.8	128	193		
	9	121	182	104	157	86.5	130	66.4	99.8	45.7	68.8	117	176		
	10	112	169	97.3	146	80.9	122	62.2	93.5	43.0	64.6	106	160		
	11	104	156	90.2	136	75.1	113	57.9	87.0	40.1	60.2	95.0	143		
	12	95.3	143	82.9	125	69.3	104	53.5	80.4	37.1	55.8	84.1	126		
	13	86.7	130	75.7	114	63.4	95.4	49.1	73.7	34.1	51.3	73.6	111		
	14	78.3	118	68.6	103	57.7	86.7	44.7	67.2	31.2	46.9	63.7	95.8		
	15	70.2	105	61.7	92.8	52.1	78.3	40.5	60.8	28.4	42.6	55.5	83.5		
	16	62.3	93.7	55.1	82.9	46.7	70.2	36.4	54.7	25.6	38.4	48.8	73.3		
	17	55.2	83.0	48.8	73.4	41.5	62.4	32.4	48.7	22.9	34.4	43.2	65.0		
	18	49.2	74.0	43.6	65.5	37.0	55.6	28.9	43.4	20.4	30.7	38.6	58.0		
	19	44.2	66.4	39.1	58.8	33.2	49.9	25.9	39.0	18.3	27.5	34.6	52.0		
	20	39.9	59.9	35.3	53.0	30.0	45.1	23.4	35.2	16.5	24.9	31.2	46.9		
	21	36.2	54.4	32.0	48.1	27.2	40.9	21.2	31.9	15.0	22.5	28.3	42.6		
	22	33.0	49.5	29.2	43.8	24.8	37.3	19.4	29.1	13.7	20.5	25.8	38.8		
	23	30.2	45.3	26.7	40.1	22.7	34.1	17.7	26.6	12.5	18.8	23.6	35.5		
	24	27.7	41.6	24.5	36.8	20.8	31.3	16.3	24.4	11.5	17.3				
	25	25.5	38.4	22.6	34.0	19.2	28.8	15.0	22.5	10.6	15.9				
	26	23.6	35.5	20.9	31.4	17.7	26.7	13.9	20.8	9.78	14.7				
	27	21.9	32.9	19.4	29.1	16.5	24.7	12.8	19.3	9.07	13.6				
	28			18.0	27.1	15.3	23.0	11.9	18.0	8.44	12.7				
	29							11.1	16.7	7.86	11.8				
Properties															
$\begin{aligned} & A_{g}, \text { in. }^{2} \\ & I_{x}=I_{y}, \text { in. } .^{4} \\ & r_{x}=r_{y}, \text { in. } \\ & \hline \end{aligned}$		$\begin{gathered} 5.48 \\ 15.3 \\ 1.67 \end{gathered}$		$\begin{gathered} \hline 4.68 \\ 13.5 \\ 1.70 \end{gathered}$		$\begin{gathered} 3.84 \\ 11.4 \\ 1.73 \end{gathered}$		$\begin{aligned} & 2.93 \\ & 9.02 \\ & 1.75 \end{aligned}$		$\begin{aligned} & 2.00 \\ & 6.35 \\ & 1.78 \end{aligned}$		$\begin{gathered} 6.02 \\ 11.9 \\ 1.41 \end{gathered}$			
ASD		LRFD		${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50$ ksi; tabulated values have been adjusted accordingly. Note: Heavy line indicates L_{c} / r_{y} equal to or greater than 200.											
$\Omega_{C}=1.67$		$\phi_{C}=0.90$													

Axial Compression											
Shape		HSS4×4×									
		3/8		5/16		1/4		3/16		1/8	
$t_{\text {des, }}$, in.		0.349		0.291		0.233		0.174		0.116	
		17.27		14.83		12.21		9.42		6.46	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	143	215	123	184	101	152	77.2	116	53.0	79.6
	1	142	214	122	184	100	151	76.9	116	52.8	79.3
	2	140	211	120	181	99.1	149	75.9	114	52.1	78.3
	3	137	206	118	177	96.8	146	74.3	112	51.0	76.7
	4	132	199	114	171	93.8	141	72.0	108	49.5	74.5
	5	127	190	109	164	90.0	135	69.2	104	47.7	71.7
	6	120	180	103	156	85.6	129	66.0	99.2	45.5	68.4
	7	113	169	97.3	146	80.7	121	62.3	93.7	43.1	64.8
	8	105	157	90.6	136	75.4	113	58.4	87.7	40.5	60.8
	9	96.4	145	83.6	126	69.8	105	54.2	81.4	37.7	56.6
	10	87.9	132	76.4	115	64.0	96.1	49.8	74.9	34.8	52.2
	11	79.4	119	69.2	104	58.1	87.4	45.5	68.3	31.8	47.8
	12	71.0	107	62.0	93.2	52.3	78.7	41.1	61.8	28.9	43.4
	13	62.8	94.4	55.1	82.8	46.7	70.2	36.8	55.4	26.0	39.1
	14	55.0	82.7	48.5	72.8	41.3	62.1	32.7	49.2	23.2	34.8
	15	47.9	72.0	42.2	63.5	36.1	54.3	28.8	43.2	20.5	30.8
	16	42.1	63.3	37.1	55.8	31.7	47.7	25.3	38.0	18.0	27.1
	17	37.3	56.1	32.9	49.4	28.1	42.3	22.4	33.6	16.0	24.0
	18	33.3	50.0	29.3	44.1	25.1	37.7	20.0	30.0	14.2	21.4
	19	29.9	44.9	26.3	39.6	22.5	33.8	17.9	26.9	12.8	19.2
	20	27.0	40.5	23.8	35.7	20.3	30.5	16.2	24.3	11.5	17.3
	21	24.4	36.7	21.5	32.4	18.4	27.7	14.7	22.1	10.5	15.7
	22	22.3	33.5	19.6	29.5	16.8	25.2	13.4	20.1	9.53	14.3
	23	20.4	30.6	18.0	27.0	15.4	23.1	12.2	18.4	8.72	13.1
	24	18.7	28.1	16.5	24.8	14.1	21.2	11.2	16.9	8.01	12.0
	25					13.0	19.5	10.4	15.6	7.38	11.1
	26									6.82	10.3
Properties											
$\begin{aligned} & A_{g}, \text { in. }^{2} \\ & I_{x}=I_{y}, \text { in. }{ }^{4} \\ & r_{x}=r_{y}, \text { in. } \end{aligned}$		$\begin{gathered} 4.78 \\ 10.3 \\ 1.47 \end{gathered}$		$\begin{aligned} & 4.10 \\ & 9.14 \\ & 1.49 \end{aligned}$		$\begin{aligned} & 3.37 \\ & 7.80 \\ & 1.52 \end{aligned}$		$\begin{aligned} & 2.58 \\ & 6.21 \\ & 1.55 \end{aligned}$		$\begin{aligned} & 1.77 \\ & 4.40 \\ & 1.58 \end{aligned}$	
		LRFD		Note: Heavy line indicates L_{c} / r_{y} equal to or greater than 200.							
Ω_{c}		$\phi_{c}=0.90$									

HSS21/4-HSS2					$4-4$ le mp qua	ont tre SS HS				$=5$	
Shape		HSS2 $1 / 4 \times 21 / 4 \times$				HSS2 $\times 2 \times$					
		3/16		1/8		1/4		3/16		1/8	
$t_{\text {des, }}$, in.		0.174		0.116		0.233		0.174		0.116	
		4.96		3.48		5.41		4.32		3.05	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	41.0	61.6	28.6	43.0	45.2	67.9	35.6	53.5	25.1	37.8
	1	40.4	60.7	28.2	42.4	44.3	66.5	34.9	52.5	24.7	37.1
	2	38.6	58.0	27.0	40.7	41.5	62.4	32.9	49.5	23.4	35.1
	3	35.8	53.8	25.2	37.9	37.3	56.1	29.9	44.9	21.4	32.1
	4	32.2	48.4	22.8	34.3	32.2	48.4	26.0	39.1	18.8	28.3
	5	28.1	42.3	20.1	30.2	26.6	40.0	21.8	32.8	16.0	24.0
	6	23.8	35.8	17.2	25.9	21.0	31.6	17.6	26.4	13.1	19.6
	7	19.6	29.4	14.3	21.5	15.9	24.0	13.6	20.5	10.3	15.5
	8	15.6	23.4	11.6	17.4	12.2	18.3	10.4	15.7	7.93	11.9
	9	12.3	18.5	9.18	13.8	9.64	14.5	8.24	12.4	6.27	9.42
	10	9.97	15.0	7.43	11.2	7.81	11.7	6.67	10.0	5.08	7.63
	11	8.24	12.4	6.14	9.23	6.46	9.70	5.52	8.29	4.20	6.31
	12	6.92	10.4	5.16	7.76			4.63	6.97	3.53	5.30
	$\begin{aligned} & 13 \\ & 14 \end{aligned}$	5.90	8.87	$\begin{aligned} & 4.40 \\ & 3.79 \end{aligned}$	$\begin{aligned} & 6.61 \\ & 5.70 \end{aligned}$						
Properties											
$\begin{aligned} & A_{g}, \text { in. }^{2} \\ & I_{x}=I_{y}, \text { in. }{ }^{4} \\ & r_{x}=r_{y}, \text { in. } \end{aligned}$		$\begin{aligned} & 1.37 \\ & 0.953 \\ & 0.835 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.956 \\ & 0.712 \\ & 0.863 \end{aligned}$		$\begin{aligned} & 1.51 \\ & 0.747 \\ & 0.704 \end{aligned}$		$\begin{aligned} & 1.19 \\ & 0.641 \\ & 0.733 \end{aligned}$		$\begin{aligned} & 0.840 \\ & 0.486 \\ & 0.761 \end{aligned}$	
		LRFD		Note: Heavy line indicates L_{c} / r_{y} equal to or greater than 200.							
Ω_{c}		$\phi_{c}=0.90$									

$F_{y}=46 \mathrm{ksi}$ Axial Compressio													
Shape		HSS20.000 \times				HSS18.000 \times				HSS16.000 \times			
		0.500		0.375		0.500		0.375		0.625		0.500	
$t_{\text {des, }}$, in.		0.465		0.349		0.465		0.349		0.581		0.465	
lb/ft		104.00		78.67		93.54		70.66		103.00		82.85	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	785	1180	592	890	705	1060	534	803	774	1160	625	940
	6	779	1170	588	884	699	1050	530	796	765	1150	618	929
	7	777	1170	586	881	696	1050	528	793	762	1140	615	925
	8	775	1160	585	879	694	1040	526	790	758	1140	613	921
	9	772	1160	583	876	691	1040	524	787	754	1130	609	916
	10	769	1160	580	872	688	1030	521	783	749	1130	605	910
	11	766	1150	578	869	684	1030	519	779	744	1120	601	904
	12	762	1150	575	865	680	1020	516	775	739	1110	597	897
	13	759	1140	572	860	676	1020	512	770	733	1100	592	890
	14	754	1130	569	856	671	1010	509	765	726	1090	587	882
	15	750	1130	566	851	666	1000	505	759	719	1080	582	874
	16	745	1120	563	846	661	994	501	754	712	1070	576	866
	17	740	1110	559	840	656	985	497	747	705	1060	570	856
	18	735	1100	555	834	650	977	493	741	697	1050	563	847
	19	730	1100	551	828	644	968	488	734	688	1030	557	837
	20	724	1090	547	821	638	958	484	727	680	1020	550	826
	21	718	1080	542	815	631	948	479	720	671	1010	543	816
	22	712	1070	537	808	624	938	474	712	661	994	535	804
	23	705	1060	533	801	617	928	468	704	652	980	528	793
	24	698	1050	528	793	610	917	463	696	642	965	520	781
	25	692	1040	522	785	602	905	457	688	632	950	511	769
	26	684	1030	517	777	595	894	452	679	621	934	503	756
	27	677	1020	512	769	587	882	446	670	611	918	495	743
	28	670	1010	506	761	579	870	440	661	600	902	486	730
	29	662	995	500	752	570	857	433	652	589	885	477	717
	30	654	983	494	743	562	845	427	642	578	868	468	704
	32	638	959	482	725	545	819	414	623	555	834	450	676
	34	621	933	470	706	527	792	401	602	532	799	431	648
	36	604	907	457	686	509	765	387	582	508	764	412	620
	38	586	880	443	666	490	737	373	561	484	728	393	591
	40	567	853	430	646	471	708	359	539	460	692	374	562
Properties													
$\begin{aligned} & \hline A_{g}, \text { in. }^{2} \\ & I, \text { in. }{ }^{4} \\ & r, \text { in. } \\ & \hline \end{aligned}$		$\begin{gathered} 28.5 \\ 1360 \\ 6.91 \end{gathered}$		$\begin{gathered} 21.5 \\ 1040 \\ 6.95 \end{gathered}$		$\begin{gathered} 25.6 \\ 985 \\ 6.20 \end{gathered}$		$\begin{gathered} 19.4 \\ 754 \\ 6.24 \end{gathered}$		$\begin{gathered} 28.1 \\ 838 \\ 5.46 \end{gathered}$		$\begin{gathered} 22.7 \\ 685 \\ 5.49 \end{gathered}$	
ASD		LRFD											
$\Omega_{c}=1.67$		$\phi_{c}=0.90$											

HSS16.000HSS14.000			Table 4-5 (continued) vailable Strength in al Compression, kips Round HSS										
Shape		HSS16.000 \times								HSS14.000 \times			
		0.438		0.375		0.312		0.250		0.625		0.500	
$t_{\text {des, }}$, in.		0.407		0.349		0.291		0.233		0.581		0.465	
		72.87		62.64		52.32		42.09		89.36		72.16	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{C} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	548	824	474	712	397	596	317	476	675	1010	545	820
	6	542	814	468	704	392	589	313	471	665	999	537	807
	7	540	811	466	701	391	587	312	469	661	993	534	803
	8	537	807	464	698	389	584	311	467	657	987	531	798
	9	534	803	462	694	387	581	309	464	652	980	527	792
	10	531	798	459	690	384	578	307	462	646	972	523	786
	11	527	793	456	685	382	574	305	459	641	963	518	779
	12	524	787	453	680	379	570	303	455	634	953	513	771
	13	519	781	449	675	376	565	301	452	628	943	508	763
	14	515	774	445	669	373	561	298	448	620	932	502	755
	15	510	767	441	663	370	555	295	444	613	921	496	745
	16	505	759	437	657	366	550	293	440	605	909	490	736
	17	500	751	432	650	362	544	290	435	596	896	483	726
	18	494	743	428	643	358	538	286	430	587	883	476	715
	19	489	734	423	635	354	532	283	426	578	869	468	704
	20	482	725	417	627	350	526	280	420	568	854	461	692
	21	476	716	412	619	345	519	276	415	558	839	453	680
	22	470	706	406	611	341	512	272	410	548	824	445	668
	23	463	696	401	602	336	505	269	404	538	808	436	656
	24	456	686	395	593	331	497	265	398	527	792	428	643
	25	449	675	389	584	326	490	261	392	516	776	419	630
	26	442	664	382	575	321	482	257	386	505	759	410	616
	27	434	653	376	565	315	474	252	379	493	742	401	603
	28	427	642	370	555	310	466	248	373	482	724	392	589
	29	419	630	363	546	304	458	244	366	470	707	382	575
	30	411	618	356	535	299	449	239	360	459	689	373	561
	32	395	594	343	515	287	432	230	346	435	653	354	532
	34	379	570	329	494	276	414	221	332	411	617	335	503
	36	363	545	314	472	264	397	212	318	387	581	316	474
	38	346	520	300	451	252	379	202	304	363	546	296	446
	40	329	494	285	429	240	360	193	289	340	510	278	417
Properties													
$\begin{array}{\|l} \hline A_{g}, \text { in. }^{2} \\ I, \text { in. }{ }^{4} \\ r, \text { in. } \\ \hline \end{array}$		$\begin{gathered} 19.9 \\ 606 \\ 5.51 \end{gathered}$		$\begin{gathered} 17.2 \\ 526 \\ 5.53 \\ \hline \end{gathered}$		$\begin{gathered} 14.4 \\ 443 \\ 5.55 \\ \hline \end{gathered}$		$\begin{gathered} \hline 11.5 \\ 359 \\ 5.58 \\ \hline \end{gathered}$		$\begin{gathered} 24.5 \\ 552 \\ 4.75 \end{gathered}$		$\begin{gathered} 19.8 \\ 453 \\ 4.79 \\ \hline \end{gathered}$	
ASD		LRFD											
Ω_{c}		$\phi_{C}=0.90$											

$F_{y}=46 \mathrm{ksi}$										OS		$\begin{aligned} & 14.000 \\ & 312.75 \end{aligned}$	
Shape								HSS12.750 \times					
		0.375		0.312		0.250		0.500		0.3	75		50
$t_{\text {des }}$ in.		0.349		0.291		0.233		0.465		0.349		0.233	
lb/ft		54.62		45.65		36.75		65.48		49.61		33.41	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	${ }_{\phi c} P_{n}$	P_{n} / Ω_{c}	${ }_{\phi} P_{\text {P }}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	413	621	344	517	278	418	493	741	375	563	252	379
	6	407	612	339	510	274	412	484	728	368	553	248	373
	7	405	608	337	507	273	410	481	723	365	549	246	370
	8	402	605	335	504	271	407	477	717	363	545	244	367
		400	600	333	501	269	405	473	711	360	541	242	364
	10	396	596	330	497	267	401	468	704	356	535	240	361
	11	393	591	328	492	265	398	463	697	353	530	238	357
	12	389	585	324	488	262	394	458	688	348	524	235	353
	13	385	579	321	483	260	390	452	680	344	517	232	349
	14	381	572	318	477	257	386	446	670	339	510	229	344
	15	376	566	314	472	254	381	439	660	335	503	226	339
	16	372	558	310	466	251	377	432	650	329	495	222	334
	17	366	551	306	459	247	372	425	639	324	487	219	329
	18	361	543	301	453	244	366	418	628	318	478	215	323
	19	356	535	297	446	240	361	410	616	312	470	211	317
	20	350	526	292	439	236	355	402	604	306	460	207	311
	21	344	517	287	432	232	349	393	591	300	451	203	305
	22	338	508	282	424	228	343	385	578	294	441	199	299
	23	332	499	277	416	224	337	376	565	287	432	194	292
	24	325	489	272	408	220	330	367	552	280	422	190	285
	25	319	479	266	400	216	324	358	538	274	411	185	279
	26	312	469	261	392	211	317	349	524	267	401	181	272
	27	305	459	255	383	207	310	339	510	260	390	176	265
	28	298	448	249	375	202	304	330	496	253	380	171	258
	29	291	438	244	366	197	297	321	482	245	369	167	250
	30	284	427	238	357	193	290	311	467	238	358	162	243
	32	270	406	226	339	183	275	292	439	224	337	152	229
	34	256	384	214	321	174	261	273	410	210	315	143	214
	36	241	363	202	303	164	246	254	382	195	294	133	200
	38	227	341	190	286	154	232	235	354	181	272	124	186
	40	213	320	178	268	145	218	217	327	168	252	115	172
Properties													
$\begin{array}{\|l\|} \hline A_{g}, \text { in. }{ }^{2} \\ I, \text { in. } \\ r, \text { in. } \end{array}$		$\begin{array}{r} 15 . \\ 349 \\ 4 . \end{array}$	83	$\begin{array}{r} 12 . \\ 295 \\ 4 . \end{array}$	85	$\begin{array}{r} 10 . \\ 239 \end{array}$	87	17 339 4	35	13 262 4	39	$\begin{array}{r} 180 \\ 4 . \end{array}$	$.43$
ASD		LRFD											
$\Omega_{c}=1.67$		$\phi_{c}=0.90$											

HSS10.750HSS10.000						-5 e npr ound	onti tre SSS HSS					46	
Shape		HSS10.750 \times						HSS10.000 \times					
		0.500		0.375		0.250		0.625		0.500		0.375	
$t_{\text {des, }}$, in.		0.465		0.349		0.233		0.581		0.465		0.349	
		54.79		41.59		28.06		62.64		50.78		38.58	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	${ }_{\phi} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	413	621	314	472	212	319	474	712	383	575	292	439
	6	402	605	306	460	207	311	459	690	371	558	283	426
	7	399	599	303	456	205	308	454	682	367	552	280	421
	8	394	593	300	451	203	305	448	674	363	545	277	416
	9	389	585	296	445	200	301	442	664	357	537	273	410
	10	384	577	292	439	198	297	434	653	352	529	269	404
	11	378	568	288	433	195	293	427	641	346	519	264	397
	12	372	559	283	426	192	288	418	628	339	509	259	389
	13	365	549	278	418	188	283	409	615	332	499	254	381
	14	358	538	273	410	185	278	400	601	324	487	248	373
	15	351	527	267	402	181	272	390	586	316	476	242	364
	16	343	515	261	393	177	266	379	570	308	463	236	355
	17	334	503	255	384	173	260	369	554	300	450	230	345
	18	326	490	249	374	169	254	358	537	291	437	223	335
	19	317	477	243	365	165	248	346	520	282	424	216	325
	20	308	464	236	355	160	241	335	503	273	410	209	314
	21	299	450	229	344	156	234	323	486	263	396	202	304
	22	290	436	222	334	151	227	311	468	254	382	195	293
	23	281	422	215	323	146	220	299	450	244	367	188	282
	24	271	408	208	313	142	213	287	432	235	353	181	272
	25	262	393	201	302	137	206	275	414	225	339	173	261
	26	252	379	194	291	132	199	263	396	216	324	166	250
	27	242	364	186	280	127	191	252	378	206	310	159	239
	28	233	350	179	269	123	184	240	360	197	296	152	228
	29	223	336	172	259	118	177	228	343	188	282	145	218
	30	214	322	165	248	113	170	217	326	179	268	138	207
	32	195	294	151	227	104	156	195	293	161	242	124	187
	34	177	267	137	206	94.4	142	173	260	143	216	111	167
	36	160	241	124	187	85.6	129	155	232	128	192	99.3	149
	38	144	216	112	168	77.0	116	139	208	115	173	89.1	134
	40	130	195	101	151	69.5	104	125	188	104	156	80.4	121
Properties													
$\begin{aligned} & A_{g}, \text { in. }^{2} \\ & I, \text { in. }{ }^{4} \\ & r, \text { in. } \end{aligned}$		$\begin{gathered} 15.0 \\ 199 \\ 3.64 \end{gathered}$		$\begin{gathered} 11.4 \\ 154 \\ 3.68 \\ \hline \end{gathered}$		$\begin{gathered} 7.70 \\ 106 \\ 3.72 \\ \hline \end{gathered}$		$\begin{gathered} 17.2 \\ 191 \\ 3.34 \\ \hline \end{gathered}$		$\begin{gathered} 13.9 \\ 159 \\ 3.38 \end{gathered}$		$\begin{gathered} 10.6 \\ 123 \\ 3.41 \end{gathered}$	
ASD		LRFD											
Ω_{c}		$\phi_{C}=0.90$											

$F_{y}=46 \mathrm{ksi}$			Table 4-5 (conti Available Stre Axial Compress Round HSS HSS10.000×						d)	DS	$\begin{aligned} & \text { HSS } \\ & \text { HS } \end{aligned}$	$\begin{aligned} & 10.000 \\ & \mathbf{S 9 . 6 2 5} \end{aligned}$			
Shape								HSS9.625 \times							
		0.312		0.250		0.188		0.500		0.3			12		
$t_{\text {dess }}$ in.		0.291		0.233		0.174		0.465		0.349		0.291			
		32.31		26.06		19.72		48.77		37.08		31.06			
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	${ }_{\phi} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$		
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD		
	0	245	368	197	296	148	222	369	555	281	422	235	353		
	6	237	357	191	287	144	216	357	537	272	409	228	342		
	7	235	353	189	284	142	214	353	530	269	404	225	338		
	8	232	349	187	281	140	211	348	523	265	399	222	334		
	9	229	344	184	277	139	208	343	515	261	393	219	329		
	10	225	339	182	273	136	205	337	506	257	386	215	323		
	11	221	333	178	268	134	202	330	496	252	379	211	317		
	12	217	327	175	263	132	198	323	486	247	371	207	311		
	13	213	320	172	258	129	194	316	475	241	363	202	304		
	14	208	313	168	252	126	190	308	463	236	354	197	297		
	15	203	305	164	246	123	186	300	451	229	345	192	289		
	16	198	298	160	240	120	181	291	438	223	335	187	281		
	17	193	290	156	234	117	176	283	425	217	326	182	273		
	18	187	282	151	227	114	171	274	411	210	315	176	265		
	19	182	273	147	221	111	166	265	398	203	305	170	256		
	20	176	264	142	214	107	161	255	384	196	295	165	247		
	21	170	256	138	207	104	156	246	369	189	284	159	239		
	22	164	247	133	200	100	151	236	355	182	273	153	230		
	23	158	238	128	192	96.6	145	227	340	174	262	147	221		
	24	152	229	123	185	93.1	140	217	326	167	251	141	212		
	25	146	220	118	178	89.5	134	207	312	160	241	135	203		
	26	140	211	114	171	85.9	129	198	297	153	230	129	194		
	27	134	202	109	164	82.3	124	188	283	146	219	123	185		
	28	128	193	104	156	78.7	118	179	269	139	208	117	176		
	29	122	184	99.3	149	75.2	113	170	255	132	198	111	167		
	30	117	175	94.7	142	71.7	108	161	242	125	188	106	159		
	32	105	158	85.6	129	64.9	97.5	143	216	112	168	94.5	142		
	34	94.3	142	76.8	115	58.4	87.7	127	191	99.1	149	83.9	126		
	36	84.1	126	68.5	103	52.1	78.3	113	170	88.4	133	74.8	112		
	38	75.5	114	61.5	92.5	46.7	70.2	102	153	79.3	119	67.1	101		
	40	68.2	102	55.5	83.4	42.2	63.4	91.8	138	71.6	108	60.6	91.1		
Properties															
A_{g}, in. ${ }^{2}$			88		15		37	13		10.			53		
I, in. ${ }^{4}$		105		85		64		141		110		$\begin{gathered} 93.0 \\ 3.30 \end{gathered}$			
			43	3.45		3.47		3.24		3.28					
ASD		LRFD													
$\Omega_{c}=1.67$		$\phi_{c}=0.90$													

HSS9.625HSS8. 625 Table 4-5 (continued) Available Strength Axial Compression, Round HSS													
Shape		HSS9.625×				HSS8.625×							
		0.250		0.188		0.625		0.500		0.375		0.322	
$t_{\text {des }}$, in.		0.233		0.174		0.581		0.465		0.349		0.300	
lb/ft		25.06		18.97		53.45		43.43		33.07		28.58	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	189	284	142	214	405	609	328	493	250	375	216	325
	6	183	276	138	207	388	583	314	473	240	361	208	312
	7	181	272	136	205	382	574	310	465	236	355	205	308
	8	179	269	135	202	375	564	304	457	232	349	201	303
	9	176	265	133	200	368	553	298	448	228	343	198	297
	10	173	260	131	196	359	540	292	439	223	335	193	291
	11	170	256	128	193	351	527	285	428	218	328	189	284
	12	167	251	126	189	341	513	277	417	212	319	184	277
	13	163	245	123	185	331	497	269	405	206	310	179	269
	14	159	239	120	181	321	482	261	392	200	301	174	261
	15	155	233	117	176	310	465	252	380	194	291	168	253
	16	151	227	114	171	298	448	244	366	187	281	163	244
	17	147	221	111	167	287	431	234	352	180	271	157	236
	18	142	214	107	162	275	414	225	338	173	261	151	227
	19	138	207	104	156	263	396	216	324	166	250	145	217
	20	133	200	101	151	251	378	206	310	159	239	139	208
	21	128	193	97.1	146	239	360	197	295	152	228	132	199
	22	124	186	93.5	141	227	342	187	281	145	217	126	190
	23	119	179	90.0	135	215	324	177	267	138	207	120	180
	24	114	171	86.4	130	204	306	168	253	130	196	114	171
	25	109	164	82.8	124	192	289	159	239	123	185	108	162
	26	104	157	79.2	119	181	272	150	225	117	175	102	153
	27	99.7	150	75.6	114	170	255	141	212	110	165	96.1	144
	28	95.0	143	72.1	108	159	239	132	198	103	155	90.3	136
	29	90.4	136	68.6	103	148	223	123	185	96.6	145	84.8	127
	30	85.8	129	65.2	98.0	138	208	115	173	90.3	136	79.2	119
	32	76.9	116	58.5	88.0	122	183	101	152	79.4	119	69.6	105
	34	68.4	103	52.1	78.3	108	162	89.7	135	70.3	106	61.7	92.7
	36	61.0	91.7	46.5	69.8	96.2	145	80.0	120	62.7	94.3	55.0	82.7
	38	54.7	82.3	41.7	62.7	86.3	130	71.8	108	56.3	84.6	49.4	74.2
	40	49.4	74.2	37.6	56.6	77.9	117	64.8	97.5	50.8	76.3	44.6	67.0
Properties													
$\begin{aligned} & A_{g}, \text { in. }^{2} \\ & I, \text { in. } .^{4} \\ & r, \text { in. } \end{aligned}$		$\begin{gathered} 6.87 \\ 75.9 \\ 3.32 \end{gathered}$		$\begin{gathered} 5.17 \\ 57.7 \\ 3.34 \end{gathered}$		$\begin{gathered} 14.7 \\ 119 \\ 2.85 \end{gathered}$		$\begin{gathered} 11.9 \\ 100 \\ 2.89 \end{gathered}$		$\begin{gathered} 9.07 \\ 77.8 \\ 2.93 \\ \hline \end{gathered}$		$\begin{gathered} 7.85 \\ 68.1 \\ 2.95 \end{gathered}$	
ASD		LRFD											
$\Omega_{c}=1.67$		$\phi_{c}=0.90$											

$F_{y}=46 \mathrm{ksi}$ Axial Comp													
Shape		HSS8.625 \times				HSS7.625×				HSS7.500×			
		0.250		0.188		0.375		0.328		0.500		0.375	
$t_{\text {des }}$, in.		0.233		0.174		0.349		0.305		0.465		0.349	
lb/ft		22.38		16.96		29.06		25.59		37.42		28.56	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	169	254	127	191	220	330	193	290	284	426	216	325
	6	163	244	122	184	209	314	183	276	268	403	205	307
	7	160	241	121	181	205	308	180	270	263	395	201	301
	8	158	237	119	178	200	301	176	265	257	386	196	295
	9	155	233	117	175	195	294	172	258	250	376	191	287
	10	152	228	114	172	190	286	167	251	243	365	186	279
	11	148	223	112	168	184	277	162	244	235	353	180	270
	12	144	217	109	164	178	268	157	236	227	341	174	261
	13	140	211	106	159	172	258	151	227	218	327	167	251
	14	136	205	103	155	165	248	145	219	209	314	161	241
	15	132	199	99.7	150	158	238	140	210	200	300	154	231
	16	128	192	96.4	145	151	228	133	201	190	286	147	220
	17	123	185	93.0	140	144	217	127	191	181	271	139	210
	18	118	178	89.6	135	137	206	121	182	171	257	132	199
	19	114	171	86.1	129	130	195	115	172	161	243	125	188
	20	109	164	82.5	124	123	185	108	163	152	228	118	177
	21	104	157	78.9	119	116	174	102	154	142	214	111	167
	22	99.4	149	75.3	113	109	163	96.0	144	133	200	104	156
	23	94.6	142	71.7	108	102	153	90.0	135	124	187	97.0	146
	24	89.8	135	68.2	102	95.1	143	84.0	126	115	173	90.3	136
	25	85.1	128	64.7	97.2	88.5	133	78.3	118	107	160	83.8	126
	26	80.5	121	61.2	91.9	82.0	123	72.6	109	98.6	148	77.5	116
	27	76.0	114	57.8	86.8	76.1	114	67.3	101	91.4	137	71.9	108
	28	71.5	107	54.4	81.8	70.7	106	62.6	94.1	85.0	128	66.8	100
	29	67.2	101	51.2	76.9	65.9	99.1	58.4	87.7	79.3	119	62.3	93.6
	30	62.8	94.4	47.9	72.0	61.6	92.6	54.5	82.0	74.1	111	58.2	87.5
	32	55.2	83.0	42.1	63.3	54.1	81.4	47.9	72.0	65.1	97.8	51.2	76.9
	34	48.9	73.5	37.3	56.1	48.0	72.1	42.5	63.8	57.7	86.7	45.3	68.1
	36	43.6	65.6	33.3	50.0	42.8	64.3	37.9	56.9	51.4	77.3	40.4	60.7
	38	39.2	58.8	29.9	44.9	38.4	57.7	34.0	51.1	46.2	69.4	36.3	54.5
	40	35.3	53.1	26.9	40.5	34.7	52.1	30.7	46.1	41.7	62.6	32.7	49.2
Properties													
$\begin{aligned} & A_{g}, \text { in. } \\ & I, \text { in. }{ }^{2} \\ & r, \text { in. } \\ & \hline \end{aligned}$		54	14 1 97	41.3	62 3 99	52	98 9 58		01 1 59	63		2	
ASD		LRFD											
$\Omega_{C}=1.67$		$\phi_{c}=0.90$											

HSS7.500HSS7.000 Table 4-5 (continued) Available Strength Axial Compression, Round HSS													
Shape		HSS7.500 \times						HSS7.000 \times					
		0.312		0.250		0.188		0.500		0.375		0.312	
$t_{\text {des, }}$, in.		0.291		0.233		0.174		0.465		0.349		0.291	
lb/ft		23.97		19.38		14.70		34.74		26.56		22.31	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	182	273	147	220	110	166	263	395	201	302	169	254
	6	172	259	139	209	105	157	247	371	189	283	159	239
	7	169	254	136	205	103	154	241	362	184	277	155	233
	8	165	248	133	201	100	151	234	352	179	270	151	227
	9	161	242	130	196	98.0	147	227	342	174	262	147	221
	10	156	235	127	190	95.4	143	220	330	168	253	142	214
	11	152	228	123	184	92.5	139	212	318	162	244	137	206
	12	146	220	119	178	89.5	135	203	305	156	234	132	198
	13	141	212	114	172	86.3	130	194	292	149	224	126	190
	14	136	204	110	165	83.0	125	185	278	142	214	120	181
	15	130	195	105	158	79.6	120	175	264	135	203	115	172
	16	124	186	101	151	76.1	114	166	249	128	193	109	163
	17	118	177	95.9	144	72.6	109	156	235	121	182	103	154
	18	112	168	91.1	137	69.0	104	147	221	114	171	96.6	145
	19	106	159	86.3	130	65.4	98.3	137	206	107	160	90.6	136
	20	100	150	81.5	123	61.8	92.9	128	192	99.6	150	84.7	127
	21	94.1	141	76.7	115	58.3	87.6	119	179	92.6	139	78.9	119
	22	88.3	133	72.1	108	54.8	82.3	110	165	85.9	129	73.3	110
	23	82.5	124	67.5	101	51.3	77.1	101	152	79.4	119	67.8	102
	24	77.0	116	63.0	94.6	48.0	72.1	93.1	140	73.0	110	62.4	93.8
	25	71.5	108	58.6	88.1	44.7	67.2	85.8	129	67.2	101	57.5	86.4
	26	66.2	99.4	54.3	81.5	41.4	62.3	79.4	119	62.2	93.4	53.2	79.9
	27	61.4	92.2	50.3	75.6	38.4	57.7	73.6	111	57.6	86.6	49.3	74.1
	28	57.1	85.7	46.8	70.3	35.7	53.7	68.4	103	53.6	80.6	45.8	68.9
	29	53.2	79.9	43.6	65.5	33.3	50.1	63.8	95.9	50.0	75.1	42.7	64.2
	30	49.7	74.7	40.8	61.3	31.1	46.8	59.6	89.6	46.7	70.2	39.9	60.0
	32	43.7	65.7	35.8	53.8	27.4	41.1	52.4	78.8	41.0	61.7	35.1	52.8
	34	38.7	58.2	31.7	47.7	24.2	36.4	46.4	69.8	36.4	54.6	31.1	46.7
	36	34.5	51.9	28.3	42.5	21.6	32.5	41.4	62.2	32.4	48.7	27.7	41.7
	38	31.0	46.6	25.4	38.2	19.4	29.2	37.2	55.8	29.1	43.7	24.9	37.4
	40	28.0	42.0	22.9	34.5	17.5	26.3						
Properties													
$\begin{aligned} & A_{g}, \text { in. }^{2}{ }^{2} \\ & I, \text { in. }{ }^{4} \\ & r, \mathrm{in} . \\ & \hline \end{aligned}$		$\begin{gathered} 6.59 \\ 42.9 \\ 2.55 \\ \hline \end{gathered}$		$\begin{gathered} 5.32 \\ 35.2 \\ 2.57 \end{gathered}$		$\begin{gathered} \hline 4.00 \\ 26.9 \\ 2.59 \\ \hline \end{gathered}$		$\begin{gathered} 9.55 \\ 51.2 \\ 2.32 \\ \hline \end{gathered}$		$\begin{gathered} 7.29 \\ 40.4 \\ 2.35 \end{gathered}$		$\begin{gathered} 6.13 \\ 34.6 \\ 2.37 \end{gathered}$	
ASD		LRFD		Note: Heavy line indicates L_{c} / r equal to or greater than 200.									
$\Omega_{c}=1.67$		$\phi_{c}=0.90$											

HSS6.875HSS6.625											
Shape		HSS6.875 \times				HSS6.625 \times					
		0.250		0.188		0.500		0.432		0.375	
$t_{\text {des }}$, in.		0.233		0.174		0.465		0.402		0.349	
lb/ft		17.71		13.44		32.74		28.60		25.06	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	134	201	101	152	248	373	217	325	190	285
	6	126	189	94.7	142	230	346	201	303	177	265
	7	123	185	92.6	139	224	337	196	295	172	259
	8	120	180	90.3	136	218	327	190	286	167	251
	9	116	175	87.7	132	210	316	184	277	162	243
	10	112	169	84.8	128	202	304	177	266	156	234
	11	108	163	81.8	123	194	291	170	255	149	225
	12	104	156	78.6	118	185	278	162	244	143	215
	13	99.5	150	75.3	113	176	264	154	232	136	204
	14	94.9	143	71.9	108	166	250	146	220	129	194
	15	90.2	136	68.4	103	157	236	138	207	122	183
	16	85.4	128	64.8	97.4	147	221	130	195	115	172
	17	80.6	121	61.2	92.1	138	207	121	182	107	161
	18	75.8	114	57.7	86.7	128	193	113	170	100	151
	19	71.1	107	54.1	81.3	119	179	105	158	93.2	140
	20	66.4	99.8	50.6	76.0	110	165	97.2	146	86.3	130
	21	61.8	92.8	47.1	70.8	101	152	89.6	135	79.7	120
	22	57.3	86.1	43.8	65.8	92.2	139	82.0	123	73.1	110
	23	52.9	79.6	40.5	60.9	84.4	127	75.1	113	66.9	101
	24	48.6	73.1	37.3	56.0	77.5	116	68.9	104	61.4	92.4
	25	44.8	67.4	34.3	51.6	71.4	107	63.5	95.5	56.6	85.1
	26	41.4	62.3	31.7	47.7	66.0	99.3	58.7	88.3	52.4	78.7
	27	38.4	57.8	29.4	44.2	61.2	92.0	54.5	81.9	48.5	73.0
	28	35.7	53.7	27.4	41.1	56.9	85.6	50.6	76.1	45.1	67.9
	29	33.3	50.1	25.5	38.3	53.1	79.8	47.2	71.0	42.1	63.3
	30	31.1	46.8	23.8	35.8	49.6	74.6	44.1	66.3	39.3	59.1
	32	27.4	41.1	21.0	31.5	43.6	65.5	38.8	58.3	34.6	51.9
	34	24.2	36.4	18.6	27.9	38.6	58.0	34.4	51.6	30.6	46.0
	36	21.6	32.5	16.6	24.9	34.4	51.8	30.6	46.1	27.3	41.0
	38	19.4	29.2	14.9	22.3						
Properties											
$\begin{aligned} & \hline A_{g}, \mathrm{in} .^{2}{ }^{2} \\ & I, \text { in. }{ }^{2} \\ & r, \text { in. } \end{aligned}$			86								88
ASD				Note: Heavy line indicates L_{c} / r equal to or greater than 200 .							
$\Omega_{C}=1.67$		$\phi_{C}=0.90$									

							onti tre eSS HSS	nue ngt $10 \cap$			F_{y}		
Shape		HSS6.000 \times											
		0.500		0.375		0.312		0.280		0.250		0.188	
$t_{\text {des, }}$, in.		0.465		0.349		0.291		0.260		0.233		0.174	
		29.40		22.55		18.97		17.12		15.37		11.68	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} \boldsymbol{P}_{\boldsymbol{n}}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	223	335	171	257	144	216	129	194	116	175	87.6	132
	1	222	334	170	256	143	216	129	194	116	174	87.4	131
	2	221	332	169	254	142	214	128	192	115	173	86.8	130
	3	218	327	167	251	141	212	126	190	114	171	85.8	129
	4	214	322	164	247	138	208	124	187	112	168	84.5	127
	5	209	314	161	242	135	204	122	183	110	165	82.7	124
	6	204	306	157	235	132	198	119	178	107	161	80.7	121
	7	197	296	152	228	128	192	115	173	104	156	78.3	118
	8	190	285	146	220	124	186	111	167	100	151	75.7	114
	9	182	273	140	211	119	178	107	161	96.3	145	72.8	109
	10	173	260	134	201	113	170	102	153	92.1	138	69.7	105
	11	164	247	127	191	108	162	97.2	146	87.7	132	66.5	99.9
	12	155	233	121	181	102	154	92.1	138	83.1	125	63.1	94.8
	13	146	219	113	170	96.3	145	86.8	131	78.4	118	59.6	89.5
	14	136	204	106	160	90.3	136	81.5	122	73.7	111	56.0	84.2
	15	126	190	99.0	149	84.3	127	76.1	114	68.9	103	52.4	78.8
	16	117	176	91.9	138	78.3	118	70.8	106	64.1	96.3	48.8	73.4
	17	108	162	84.8	127	72.4	109	65.5	98.4	59.3	89.2	45.3	68.1
	18	98.4	148	77.9	117	66.6	100	60.3	90.7	54.7	82.2	41.8	62.8
	19	89.7	135	71.2	107	61.0	91.7	55.3	83.1	50.2	75.4	38.4	57.8
	20	81.1	122	64.7	97.3	55.6	83.5	50.5	75.8	45.8	68.9	35.2	52.8
	21	73.6	111	58.7	88.2	50.4	75.8	45.7	68.8	41.6	62.5	31.9	48.0
	22	67.0	101	53.5	80.4	45.9	69.0	41.7	62.6	37.9	56.9	29.1	43.7
	23	61.3	92.2	48.9	73.5	42.0	63.2	38.1	57.3	34.7	52.1	26.6	40.0
	24	56.3	84.6	44.9	67.5	38.6	58.0	35.0	52.6	31.8	47.8	24.5	36.8
	25	51.9	78.0	41.4	62.3	35.6	53.5	32.3	48.5	29.3	44.1	22.5	33.9
	26	48.0	72.1	38.3	57.6	32.9	49.4	29.8	44.9	27.1	40.8	20.8	31.3
	28	41.4	62.2	33.0	49.6	28.4	42.6	25.7	38.7	23.4	35.1	18.0	27.0
	30	36.0	54.2	28.8	43.2	24.7	37.1	22.4	33.7	20.4	30.6	15.7	23.5
	32	31.7	47.6	25.3	38.0	21.7	32.6	19.7	29.6	17.9	26.9	13.8	20.7
	34									15.9	23.8	12.2	18.3
Properties													
$\begin{aligned} & A_{g}, \text { in. } \\ & I, \text { in. }{ }^{4} \\ & r \text { in } \end{aligned}$		8.0 31.2 1.9	09 26	24.8	80	21	.22 .3 .02	19	.69 .03	4. 17. 2.		13.	
ASD		LRF		Note: Heavy line indicates L_{c} / r equal to or greater than 200.									
$\Omega_{C}=1.67$		$\phi_{C}=0.90$											

$F_{y}=46 \mathrm{ksi}$ Available Axial Compr													
Shape		HSS6.000×		HSS5.563×									
		0.125		0.500		0.375		0.258		0.188		0.134	
$t_{\text {des }}$, in.		0.116		0.465		0.349		0.240		0.174		0.124	
lb/ft		7.85		27.06		20.80		14.63		10.80		7.78	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	58.9	88.6	205	308	158	237	110	166	81.3	122	58.4	87.8
	1	58.8	88.4	205	308	157	236	110	166	81.0	122	58.2	87.5
	2	58.4	87.8	203	305	156	234	109	164	80.4	121	57.8	86.9
	3	57.8	86.8	200	300	154	231	108	162	79.3	119	57.0	85.7
	4	56.9	85.5	196	294	151	226	106	159	77.9	117	56.0	84.2
	5	55.7	83.8	191	286	147	221	103	155	76.0	114	54.7	82.2
	6	54.4	81.7	184	277	142	214	100	150	73.8	111	53.1	79.8
	7	52.8	79.4	178	267	137	206	96.6	145	71.3	107	51.3	77.2
	8	51.1	76.8	170	255	131	198	92.7	139	68.6	103	49.4	74.2
	9	49.2	73.9	162	243	125	188	88.5	133	65.5	98.5	47.2	70.9
	10	47.1	70.8	153	229	119	178	84.0	126	62.3	93.6	44.9	67.5
	11	45.0	67.6	143	216	112	168	79.3	119	58.9	88.6	42.5	63.9
	12	42.7	64.2	134	201	105	158	74.4	112	55.4	83.3	40.0	60.1
	13	40.4	60.7	125	187	97.7	147	69.5	104	51.9	78.0	37.5	56.3
	14	38.0	57.1	115	173	90.5	136	64.6	97.0	48.3	72.6	34.9	52.4
	15	35.6	53.5	106	159	83.3	125	59.6	89.6	44.7	67.2	32.3	48.6
	16	33.2	49.9	96.3	145	76.3	115	54.8	82.3	41.2	61.9	29.8	44.8
	17	30.9	46.4	87.3	131	69.5	105	50.0	75.2	37.7	56.7	27.3	41.1
	18	28.5	42.9	78.6	118	63.0	94.7	45.5	68.3	34.4	51.7	24.9	37.5
	19	26.3	39.5	70.6	106	56.6	85.1	41.0	61.6	31.1	46.8	22.6	34.0
	20	24.1	36.2	63.7	95.7	51.1	76.8	37.0	55.6	28.1	42.2	20.4	30.7
	21	21.9	32.9	57.8	86.8	46.3	69.6	33.5	50.4	25.5	38.3	18.5	27.8
	22	20.0	30.0	52.6	79.1	42.2	63.5	30.6	45.9	23.2	34.9	16.9	25.3
	23	18.3	27.5	48.2	72.4	38.6	58.1	28.0	42.0	21.2	31.9	15.4	23.2
	24	16.8	25.2	44.2	66.5	35.5	53.3	25.7	38.6	19.5	29.3	14.2	21.3
	25	15.5	23.2	40.8	61.3	32.7	49.1	23.7	35.6	18.0	27.0	13.1	19.6
	26	14.3	21.5	37.7	56.6	30.2	45.4	21.9	32.9	16.6	25.0	12.1	18.1
	28	12.3	18.5	32.5	48.8	26.1	39.2	18.9	28.4	14.3	21.5	10.4	15.6
	30	10.7	16.1	28.3	42.5	22.7	34.1	16.4	24.7	12.5	18.8	9.06	13.6
	32	9.44	14.2									7.97	12.0
	34	8.36	12.6										
Properties													
$\begin{aligned} & A_{g}, \text { in. }^{2} \\ & I, \text { in. }{ }^{4} \\ & r, \text { in. } \end{aligned}$		$\begin{aligned} & 2.14 \\ & 9.28 \\ & 2.08 \end{aligned}$		$\begin{gathered} \hline 7.45 \\ 24.4 \\ 1.81 \\ \hline \end{gathered}$		$\begin{gathered} 5.72 \\ 19.5 \\ 1.85 \end{gathered}$		$\begin{gathered} 4.01 \\ 14.2 \\ 1.88 \end{gathered}$		$\begin{gathered} \hline 2.95 \\ 10.7 \\ 1.91 \\ \hline \end{gathered}$		$\begin{aligned} & \hline 2.12 \\ & 7.84 \\ & 1.92 \\ & \hline \end{aligned}$	
ASD		LRFD		Note: Heavy line indicates L_{c} / r equal to or greater than 200.									
$\Omega_{c}=1.67$		$\phi_{C}=0.90$											

HSS5.500HSS5.000 Table 4-5 (continued) Available Strength Axial Compression, Round HSS													
Shape		HSS5.500 \times						HSS5.000 \times					
		0.500		0.375		0.258		0.500		0.375		0.312	
$t_{\text {des }}$, in.		0.465		0.349		0.240		0.465		0.349		0.291	
		26.73		20.55		14.46		24.05		18.54		15.64	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	203	305	156	234	109	164	182	274	140	211	118	178
	1	202	304	155	233	109	164	182	273	140	210	118	177
	2	200	301	154	231	108	163	180	270	138	208	117	176
	3	197	297	152	228	107	160	176	265	136	204	115	173
	4	193	290	149	223	105	157	172	258	133	199	112	168
	5	188	283	145	218	102	153	166	250	129	193	109	163
	6	182	273	140	211	98.9	149	159	240	124	186	105	157
	7	175	263	135	203	95.3	143	152	228	118	177	99.9	150
	8	167	251	129	194	91.4	137	144	216	112	168	94.8	143
	9	159	239	123	185	87.2	131	135	202	105	158	89.4	134
	10	150	225	117	175	82.6	124	125	189	98.4	148	83.7	126
	11	141	211	110	165	77.9	117	116	174	91.3	137	77.8	117
	12	131	197	103	154	73.1	110	106	160	84.2	126	71.8	108
	13	122	183	95.5	143	68.1	102	97.0	146	77.0	116	65.9	99.0
	14	112	168	88.3	133	63.2	94.9	87.7	132	69.9	105	60.0	90.1
	15	103	154	81.2	122	58.2	87.5	78.7	118	63.1	94.8	54.2	81.5
	16	93.5	141	74.2	112	53.4	80.3	70.0	105	56.5	84.9	48.7	73.2
	17	84.6	127	67.5	101	48.7	73.2	62.0	93.2	50.1	75.4	43.3	65.1
	18	76.0	114	61.0	91.6	44.1	66.3	55.3	83.1	44.7	67.2	38.6	58.1
	19	68.2	102	54.7	82.2	39.7	59.7	49.6	74.6	40.1	60.3	34.7	52.1
	20	61.5	92.5	49.4	74.2	35.8	53.9	44.8	67.3	36.2	54.5	31.3	47.0
	21	55.8	83.9	44.8	67.3	32.5	48.9	40.6	61.0	32.9	49.4	28.4	42.7
	22	50.9	76.4	40.8	61.3	29.6	44.5	37.0	55.6	29.9	45.0	25.9	38.9
	23	46.5	69.9	37.3	56.1	27.1	40.7	33.9	50.9	27.4	41.2	23.7	35.6
	24	42.7	64.2	34.3	51.5	24.9	37.4	31.1	46.7	25.2	37.8	21.7	32.7
	25	39.4	59.2	31.6	47.5	22.9	34.5	28.7	43.1	23.2	34.9	20.0	30.1
	26	36.4	54.7	29.2	43.9	21.2	31.9	26.5	39.8	21.4	32.2	18.5	27.8
	28	31.4	47.2	25.2	37.9	18.3	27.5						
	30			21.9	33.0	15.9	23.9						
Properties													
$\begin{aligned} & \hline A_{g}, \text { in. }^{2} \\ & I, \text { in. }^{4} \\ & r, \text { in. } \end{aligned}$		$\begin{gathered} 7.36 \\ 23.5 \\ 1.79 \end{gathered}$		$\begin{gathered} 5.65 \\ 18.8 \\ 1.83 \\ \hline \end{gathered}$		$\begin{gathered} 3.97 \\ 13.7 \\ 1.86 \end{gathered}$		$\begin{gathered} \hline 6.62 \\ 17.2 \\ 1.61 \end{gathered}$		$\begin{gathered} \hline 5.10 \\ 13.9 \\ 1.65 \end{gathered}$		$\begin{gathered} \hline 4.30 \\ 12.0 \\ 1.67 \end{gathered}$	
ASD		LRFD		Note: Heavy line indicates L_{c} / r equal to or greater than 200.									
$\Omega_{C}=1.67$		$\phi_{C}=0.90$											

PIPE 12PIPE 8 Table 4-6 Available Streng Axial Compressio Pipe													
Shape		Pipe 12				Pipe 10				Pipe 8			
		x-Strong		Std		x-Strong		Std		xx-Strong		x-Strong	
$t_{\text {des }}$, in.		0.465		0.349		0.465		0.340		0.816		0.465	
lb/ft		65.5		49.6		54.8		40.5		72.5		43.4	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	367	551	287	432	316	476	241	362	419	630	249	375
	6	362	544	283	426	310	466	236	355	405	609	242	363
	7	360	541	282	424	308	463	235	353	400	601	239	359
	8	358	538	280	421	305	459	233	350	394	593	236	354
	9	355	534	278	418	303	455	231	347	388	583	232	349
	10	353	530	276	415	299	450	228	343	381	573	228	343
	11	350	526	274	412	296	445	226	339	373	561	224	337
	12	347	521	272	408	292	439	223	335	365	549	220	330
	13	343	516	269	405	288	433	220	330	357	536	215	323
	14	340	511	266	400	284	427	217	326	348	523	210	315
	15	336	505	263	396	279	420	213	320	338	508	204	307
	16	332	499	260	391	274	413	210	315	328	494	199	299
	17	328	493	257	386	269	405	206	310	318	478	193	290
	18	323	486	254	381	264	397	202	304	308	463	187	282
	19	319	479	250	376	259	389	198	298	297	447	181	273
	20	314	472	246	370	253	381	194	291	286	430	175	263
	21	309	464	243	365	248	372	190	285	275	414	169	254
	22	304	457	239	359	242	363	185	278	264	397	163	245
	23	298	449	235	353	236	354	181	272	253	380	156	235
	24	293	440	230	346	230	345	176	265	242	364	150	225
	25	288	432	226	340	224	336	172	258	231	347	144	216
	26	282	424	222	333	217	327	167	251	220	331	137	206
	27	276	415	217	327	211	317	162	244	209	314	131	197
	28	270	406	213	320	205	308	157	236	198	298	125	188
	29	264	397	208	313	198	298	153	229	188	283	119	178
	30	258	388	204	306	192	288	148	222	178	267	113	169
	32	246	370	194	292	179	269	138	207	158	237	101	152
	34	234	351	185	277	166	250	128	193	140	210	89.7	135
	36	221	333	175	263	154	231	119	179	124	187	80.0	120
	38	209	314	165	248	142	213	110	165	112	168	71.8	108
	40	197	296	156	234	130	195	101	152	101	152	64.8	97.5
Properties													
		$\begin{gathered} 17.5 \\ 339 \\ 4.35 \end{gathered}$		$\begin{gathered} 13.7 \\ 262 \\ 4.39 \end{gathered}$		$\begin{gathered} 15.1 \\ 199 \\ 3.64 \end{gathered}$		$\begin{gathered} \hline 11.5 \\ 151 \\ 3.68 \end{gathered}$		$\begin{gathered} 20.0 \\ 154 \\ 2.78 \end{gathered}$		$\begin{gathered} 11.9 \\ 100 \\ 2.89 \\ \hline \end{gathered}$	
ASD		LRFD											
Ω_{c}		$\phi_{C}=0.90$											

	PE					cont tre eSS e				$=3$	si
Shape		Pipe 5				Pipe 4					
		x-Strong		Std		xx-Strong		x-Strong		Std	
$t_{\text {des }}$, in.		0.349		0.241		0.628		0.315		0.221	
lb/ft		20.8		14.6		27.6		15.0		10.8	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	120	180	84.0	126	161	241	86.8	130	62.0	93.2
	6	111	167	78.0	117	140	210	76.9	116	55.2	83.0
	7	108	162	75.9	114	133	200	73.6	111	52.9	79.6
	8	105	157	73.5	111	126	189	70.0	105	50.4	75.8
	9	101	152	71.0	107	118	177	66.1	99.3	47.7	71.8
	10	96.8	146	68.2	103	110	165	62.0	93.1	44.9	67.5
	11	92.5	139	65.3	98.1	101	152	57.7	86.8	42.0	63.1
	12	88.1	132	62.2	93.6	92.7	139	53.4	80.3	38.9	58.5
	13	83.5	125	59.1	88.8	84.3	127	49.1	73.8	35.9	54.0
	14	78.7	118	55.8	83.9	76.0	114	44.9	67.4	32.9	49.5
	15	74.0	111	52.6	79.0	68.1	102	40.7	61.2	30.0	45.1
	16	69.2	104	49.3	74.1	60.3	90.7	36.7	55.1	27.1	40.8
	17	64.4	96.9	46.0	69.1	53.5	80.3	32.8	49.2	24.4	36.6
	18	59.8	89.8	42.8	64.3	47.7	71.7	29.2	43.9	21.7	32.7
	19	55.2	83.0	39.6	59.5	42.8	64.3	26.2	39.4	19.5	29.3
	20	50.7	76.3	36.5	54.9	38.6	58.0	23.7	35.6	17.6	26.5
	21	46.4	69.8	33.5	50.4	35.0	52.6	21.5	32.3	16.0	24.0
	22	42.3	63.6	30.6	45.9	31.9	48.0	19.6	29.4	14.6	21.9
	23	38.7	58.2	28.0	42.0	29.2	43.9	17.9	26.9	13.3	20.0
	24	35.5	53.4	25.7	38.6			16.4	24.7	12.2	18.4
	25	32.8	49.2	23.7	35.6					11.3	16.9
	26	30.3	45.5	21.9	32.9						
	27	28.1	42.2	20.3	30.5						
	28	26.1	39.2	18.9	28.4						
	29	24.3	36.6	17.6	26.4						
	30	22.7	34.2	16.4	24.7						
Properties											
$\begin{aligned} & A_{g}, \text { in. }^{2} \\ & I, \text { in. }{ }^{4} \\ & r, \text { in. } \end{aligned}$		5.73195		$\begin{gathered} 4.01 \\ 14.3 \\ 1.88 \\ \hline \end{gathered}$		7.66		4.14		2.96	
		19.5				14.7		9.12		6.82	
		1.85				1.39		1.48		1.51	
ASD		LRFD		Note: Heavy line indicates L_{c} / r equal to or greater than 200.							
$\Omega_{C}=1.67$		$\phi_{c}=0.90$									

			C		Co	Tabl le mp y L	$4-7$ tre ess aded	gt On, WT	in		$=5$	
	Shape		WT18×									
	lb/ft		$151{ }^{\text {c }}$		$141^{\text {c }}$		$131{ }^{\text {c }}$		123.5 ${ }^{\text {c }}$		$115.5{ }^{\text {c }}$	
Design			P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
			ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
		0	1310	1960	1200	1810	1100	1660	1030	1550	957	1440
		10	1260	1900	1160	1750	1070	1610	997	1500	927	1390
		12	1250	1870	1150	1720	1050	1580	983	1480	914	1370
		14	1230	1840	1130	1700	1040	1560	967	1450	898	1350
		16	1200	1810	1110	1660	1020	1530	948	1420	881	1320
		18	1180	1770	1080	1630	994	1490	927	1390	862	1300
	0	20	1150	1720	1060	1590	970	1460	905	1360	841	1260
	肴	22	1120	1680	1030	1540	944	1420	881	1320	819	1230
	$\underset{\underset{x}{x}}{\underset{X}{x}}$	24	1080	1620	997	1500	916	1380	855	1280	795	1190
		26	1040	1560	964	1450	887	1330	828	1240	770	1160
		28	1000	1500	931	1400	856	1290	799	1200	743	1120
		30	959	1440	893	1340	824	1240	769	1160	716	1080
		32	917	1380	854	1280	791	1190	739	1110	687	1030
		34	874	1310	813	1220	755	1130	708	1060	659	990
		36	830	1250	773	1160	717	1080	676	1020	629	946
		40	743	1120	691	1040	641	964	605	909	568	854
	$\begin{aligned} & \frac{0}{x} \\ & \frac{1}{x} \\ & \hline \end{aligned}$	0	1310	1960	1200	1810	1100	1660	1030	1550	957	1440
		10	1130	1690	1020	1540	916	1380	836	1260	758	1140
		12	1110	1670	1010	1520	904	1360	826	1240	749	1130
		14	1080	1630	987	1480	887	1330	811	1220	736	1110
		16	1050	1570	959	1440	863	1300	791	1190	719	1080
		18	1000	1510	924	1390	833	1250	765	1150	696	1050
		20	955	1430	880	1320	798	1200	733	1100	669	1010
		22	901	1350	831	1250	755	1130	698	1050	637	957
		24	845	1270	780	1170	708	1060	657	988	602	905
		26	788	1180	726	1090	659	991	612	920	563	846
		28	730	1100	672	1010	610	916	566	850	520	782
		30	672	1010	619	930	560	842	520	781	478	718
		32	615	924	566	850	512	769	474	713	435	654
		34	559	841	514	773	464	698	430	647	394	592
		36	505	759	464	697	418	628	387	582	355	533
		40	412	619	379	569	342	514	317	477	291	438
Properties												
A_{g}, in			4									
r_{x}, in												
r_{y}, in												
ASD					${ }^{\mathrm{c}}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$; tabulated values have been adjusted accordingly.							
$\Omega_{C}=1.67$			$\phi_{C}=0.90$									

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{\multirow[t]{2}{*}{$F_{y}=50 \mathrm{l}$

Shape}} \& \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} \& \begin{tabular}{l}
Table aila

Co

trica

 \&

4-7

le

mp

ly L

 \&

cont

stre ESS ade

 \&

ued

gt

On,

WT

 \&

in

kip

Shap

 \&

X

S

\end{tabular} \& \[

$$
\begin{gathered}
Y \\
\hline \\
\hline \\
\text { WT1 } \\
\text { W }
\end{gathered}
$$
\] \&

\hline \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& $\mathrm{lb} / \mathrm{ft}$ \& \& \& \& \& \& \& \& \& \& \&

\hline \multicolumn{3}{|c|}{\multirow[b]{2}{*}{Design}} \& P_{n} / Ω_{c} \& $\phi_{c} P_{n}$ \& P_{n} / Ω_{c} \& $\phi_{c} \boldsymbol{P}_{\boldsymbol{n}}$ \& P_{n} / Ω_{c} \& $\phi_{c} P_{n}$ \& P_{n} / Ω_{c} \& $\phi_{c} P_{n}$ \& P_{n} / Ω_{c} \& $\phi_{c} P_{n}$

\hline \& \& \& ASD \& LRFD \& ASD \& LRFD \& ASD \& LRFD \& ASD \& LRFD \& ASD \& LRFD

\hline \multirow{32}{*}{$$
\text { Effective length, } L_{c} \text { (ft), with respect to indicated axis }
$$} \& \multirow{16}{*}{} \& 0 \& 1100 \& 1660 \& 973 \& 1460 \& 876 \& 1320 \& 790 \& 1190 \& 730 \& 1100

\hline \& \& 10 \& 1070 \& 1610 \& 946 \& 1420 \& 852 \& 1280 \& 768 \& 1150 \& 710 \& 1070

\hline \& \& 12 \& 1060 \& 1590 \& 934 \& 1400 \& 841 \& 1260 \& 758 \& 1140 \& 701 \& 1050

\hline \& \& 14 \& 1040 \& 1570 \& 920 \& 1380 \& 829 \& 1250 \& 747 \& 1120 \& 691 \& 1040

\hline \& \& 16 \& 1030 \& 1540 \& 905 \& 1360 \& 815 \& 1230 \& 734 \& 1100 \& 679 \& 1020

\hline \& \& 18 \& 1010 \& 1510 \& 887 \& 1330 \& 800 \& 1200 \& 720 \& 1080 \& 666 \& 1000

\hline \& \& 20 \& 984 \& 1480 \& 868 \& 1300 \& 783 \& 1180 \& 705 \& 1060 \& 652 \& 980

\hline \& \& 22 \& 960 \& 1440 \& 847 \& 1270 \& 764 \& 1150 \& 688 \& 1030 \& 637 \& 957

\hline \& \& 24 \& 932 \& 1400 \& 825 \& 1240 \& 745 \& 1120 \& 671 \& 1010 \& 620 \& 933

\hline \& \& 26 \& 901 \& 1350 \& 802 \& 1200 \& 724 \& 1090 \& 652 \& 979 \& 603 \& 907

\hline \& \& 28 \& 870 \& 1310 \& 777 \& 1170 \& 702 \& 1050 \& 632 \& 950 \& 585 \& 879

\hline \& \& 30 \& 837 \& 1260 \& 751 \& 1130 \& 679 \& 1020 \& 611 \& 919 \& 566 \& 851

\hline \& \& 32 \& 804 \& 1210 \& 724 \& 1090 \& 655 \& 985 \& 590 \& 887 \& 546 \& 821

\hline \& \& 34 \& 770 \& 1160 \& 693 \& 1040 \& 631 \& 948 \& 568 \& 854 \& 526 \& 791

\hline \& \& 36 \& 735 \& 1110 \& 662 \& 995 \& 603 \& 907 \& 545 \& 820 \& 505 \& 760

\hline \& \& 40 \& 665 \& 1000 \& 598 \& 899 \& 546 \& 820 \& 499 \& 751 \& 463 \& 696

\hline \& \multirow{16}{*}{$$
\begin{aligned}
& \frac{0}{x} \\
& \frac{1}{x} \\
& \hline 1
\end{aligned}
$$} \& 0 \& 1100 \& 1660 \& 973 \& 1460 \& 876 \& 1320 \& 790 \& 1190 \& 730 \& 1100

\hline \& \& 10 \& 895 \& 1340 \& 780 \& 1170 \& 672 \& 1010 \& 590 \& 887 \& 531 \& 798

\hline \& \& 12 \& 847 \& 1270 \& 745 \& 1120 \& 643 \& 966 \& 566 \& 851 \& 510 \& 767

\hline \& \& 14 \& 789 \& 1190 \& 697 \& 1050 \& 604 \& 907 \& 535 \& 804 \& 483 \& 727

\hline \& \& 16 \& 724 \& 1090 \& 640 \& 962 \& 555 \& 834 \& 498 \& 748 \& 451 \& 677

\hline \& \& 18 \& 656 \& 986 \& 579 \& 870 \& 502 \& 755 \& 451 \& 678 \& 413 \& 621

\hline \& \& 20 \& 587 \& 882 \& 517 \& 777 \& 448 \& 673 \& 402 \& 604 \& 369 \& 554

\hline \& \& 22 \& 518 \& 778 \& 455 \& 684 \& 393 \& 591 \& 353 \& 531 \& 324 \& 487

\hline \& \& 24 \& 452 \& 679 \& 396 \& 595 \& 340 \& 511 \& 305 \& 459 \& 280 \& 421

\hline \& \& 26 \& 389 \& 585 \& 341 \& 512 \& 294 \& 442 \& 264 \& 397 \& 244 \& 366

\hline \& \& 28 \& 338 \& 508 \& 296 \& 445 \& 257 \& 386 \& 231 \& 347 \& 213 \& 320

\hline \& \& 30 \& 296 \& 445 \& 260 \& 391 \& 226 \& 339 \& 203 \& 306 \& 188 \& 283

\hline \& \& 32 \& 261 \& 393 \& 230 \& 345 \& 200 \& 300 \& 180 \& 271 \& 167 \& 251

\hline \& \& 34 \& 232 \& 349 \& 204 \& 307 \& 178 \& 267 \& 161 \& 242 \& 149 \& 224

\hline \& \& 36 \& 208 \& 312 \& 183 \& 275 \& 160 \& 240 \& 144 \& 217 \& 134 \& 201

\hline \& \& 40 \& 169 \& 254 \& 149 \& 224 \& 130 \& 196 \& 118 \& 177 \& 109 \& 164

\hline \multicolumn{13}{|c|}{Properties}

\hline \multicolumn{3}{|l|}{\multirow[t]{3}{*}{A_{g}, in. 2 r_{x}, in. r_{y}, in.}} \& \multicolumn{2}{|c|}{\multirow[t]{3}{*}{\[
$$
\begin{gathered}
37.6 \\
5.66 \\
2.65
\end{gathered}
$$

\]}} \& \multicolumn{2}{|c|}{\multirow[t]{3}{*}{\[

$$
\begin{gathered}
34.0 \\
5.63 \\
2.62
\end{gathered}
$$

\]}} \& \multicolumn{2}{|c|}{\multirow[t]{3}{*}{\[

$$
\begin{gathered}
\hline 30.9 \\
5.65 \\
2.58
\end{gathered}
$$

\]}} \& \multicolumn{2}{|c|}{\multirow[t]{3}{*}{\[

$$
\begin{gathered}
28.5 \\
5.62 \\
2.56
\end{gathered}
$$

\]}} \& \multicolumn{2}{|c|}{\multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 26.8 \\
& 5.62 \\
& 2.55
\end{aligned}
$$
\]}}

\hline \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& \& \& \&

\hline \multicolumn{3}{|c|}{ASD} \& \multicolumn{2}{|c|}{LRFD} \& \multicolumn{8}{|l|}{\multirow[t]{2}{*}{${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$; tabulated values have been adjusted accordingly.}}

\hline \multicolumn{3}{|c|}{$\Omega_{C}=1.67$} \& \multicolumn{2}{|l|}{$\phi_{C}=0.90$} \& \& \& \& \& \& \& \&

\hline
\end{tabular}

			\mathbf{C}			con eS ade	ued) gth On, WT-S	OS	$F_{y}=$	ksi
	Shap		WT18 \times							
lb/ft			$85^{\text {c }}$		$80^{\text {c }}$		$75^{\text {c }}$		67.5 ${ }^{\text {c }}$	
Design			P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} \boldsymbol{P}_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
			ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	$\begin{aligned} & \stackrel{n}{x} \\ & \underset{x}{x} \\ & \underset{x}{x} \end{aligned}$	0	669	1010	620	932	576	866	508	763
		10	651	978	603	906	560	842		42
		12	642	966	596	895	553	832	488	733
		14	633	952	587	882	545	820	481	723
		16	622	936	577	867	536	806	473	711
		18	611	918	566	851	526	791	465	698
		20	598	898	554	833	515	774	455	684
		22	584	877	541	813	503	756	445	669
		24	568	854	527	792	490	737	434	652
		26	553	830	513	770	477	716	422	634
		28	536	805	497	747	462	695	410	616
		30	518	779	481	723	448	673	397	597
		32	500	752	464	698	432	650	384	577
		34	482	724	447	672	417	626	370	557
		36	463	696	430	646	400	602	356	536
		40	424	638	394	592	367	552	328	493
	$\begin{aligned} & \frac{0}{x} \\ & \frac{1}{x} \\ & \hline 1 \end{aligned}$	0	669	1010	620	932	576	866	508	763
		10	470	707	418	628	367	552	282	424
		12	453	681	402	605	354	533	272	408
		14	430	646	382	575	337	507	258	388
		16	401	603	358	538	316	475	242	364
		18	369	555	329	495	291	438	223	335
		20	333	500	298	448	264	397	200	300
		22	292	439	261	392	231	347	178	267
		24	253	380	227	341	203	304	158	237
		26	220	331	199	299	178	268	140	211
		28	193	291	175	263	157	237	125	188
		30	171	257	155	233	140	210	112	168
		32	152	228	138	207	125	187	100	151
		34	136	204	123	185	112	168	90.5	136
		36	122	183	111	167	101	151	81.9	123
		40	99.9	150	91.1	137	82.9	125		
Properties										
A_{g},										
r_{x}, in										
r_{y}, in										
ASD			LRFD		${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$; tabulated values have been adjusted accordingly. Note: Heavy line indicates L_{c} / r equal to or greater than 200.					
$\Omega_{C}=1.67$			$\phi_{C}=0.90$							

WT16.5 Shape					e 4able	cont		$\begin{aligned} & \text { ips } \\ & \text { ape } \end{aligned}$	$y=$	ksi
			WT16.5×							
lb/ft			120.5 ${ }^{\text {c }}$		110.5 ${ }^{\text {c }}$		100.5 ${ }^{\text {c }}$		84.5 ${ }^{\text {c }}$	
Design			P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
			ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	$\begin{aligned} & \underset{\sim}{x} \\ & \underset{⿺}{x} \\ & \underset{x}{x} \end{aligned}$	0	1040	1560	935	1400	837	1260	677	1020
		10	997	1500	900	1350	806	1210	654	98
		12	981	1470	885	1330	793	1190	644	968
		14	961	1450	868	1300	777	1170	633	951
		16	940	1410	848	1270	760	1140	620	931
		18	916	1380	827	1240	741	1110	605	910
		20	890	1340	803	1210	720	1080	590	886
		22	861	1290	778	1170	697	1050	573	861
		24	832	1250	751	1130	673	1010	555	834
		26	798	1200	723	1090	648	974	536	805
		28	762	1150	693	1040	622	935	516	776
		30	725	1090	663	996	595	894	496	745
		32	688	1030	629	945	567	853	475	714
		34	650	977	594	893	539	811	453	681
		36	612	920	559	841	510	766	432	649
		40	537	808	491	738	447	672	388	583
	$\begin{aligned} & \stackrel{\infty}{x} \\ & \frac{1}{x} \\ & \underset{\lambda}{\lambda} \end{aligned}$	0	1040	1560	935	1400	837	1260	677	1020
		10	867	1300	761	1140	656	987	516	775
		12	853	1280	751	1130	648	974	493	741
		14	834	1250	735	1100	636	956	463	696
		16	807	1210	714	1070	619	930	428	643
		18	771	1160	686	1030	597	898	389	585
		20	729	1100	653	982	571	858	345	519
		22	685	1030	614	923	541	813	301	452
		24	638	959	572	860	507	761	258	388
		26	590	887	529	795	469	704	223	335
		28	542	815	486	730	430	646	194	292
		30	495	743	443	665	392	589	171	256
		32	448	674	401	602	354	532	151	227
		34	403	605	359	540	318	477	134	202
		36	361	543	323	485	286	429	120	181
		40	295	443	264	397	234	352	98.1	147
Properties										
A_{g},										
r_{x}, in										
r_{y}, in										
ASD			LRFD		${ }^{5}$ Shape is slender for compression with $F_{y}=50$ ksi; tabulated values have been adjusted accordingly.					
$\Omega_{c}=1.67$			$\phi_{C}=0.90$							

$F_{y}=50 \mathrm{k}$			AVe Axial Concen $76^{\text {c }}$			con eS ade			X WT					
Shape lb/ft					WT16.5×									
Design					P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$		
			ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD				
	$\begin{aligned} & \stackrel{n}{x} \\ & \underset{X}{x} \\ & \underset{x}{x} \end{aligned}$	0	607	913	548	824	500	751	446	670				
		10	587	882	530	797	484	727	432	649				
		12	578	869	523	785	477	716	425	639				
		14	568	854	513	772	468	704	418	629				
		16	557	837	503	756	459	690	410	617				
		18	544	818	492	739	449	675	401	603				
		20	530	797	479	721	438	658	391	588				
		22	515	774	466	700	426	640	381	573				
		24	499	750	452	679	413	621	370	556				
		26	482	725	437	657	400	601	358	538				
		28	465	699	421	633	386	580	345	519				
		30	447	672	405	609	371	558	333	500				
		32	428	644	388	584	356	535	319	480				
		34	409	615	371	558	341	512	306	460				
		36	390	586	354	532	325	489	292	439				
		40	351	528	319	480	294	442	264	397				
	$\begin{aligned} & \stackrel{\infty}{x} \\ & \frac{1}{x} \\ & \underset{\lambda}{\prime} \end{aligned}$	0	607	913	548	824	500	751	446	670				
		10	434	652	374	562	315	474	250	376				
		12	416	626	359	539	303	455	240	361				
		14	393	591	339	510	287	431	228	343				
		16	365	548	315	474	267	401	212	319				
		18	333	500	288	433	244	367	194	292				
		20	296	446	258	387	217	326	173	260				
		22	258	387	223	336	189	284	153	230				
		24	222	334	193	291	165	248	135	203				
		26	193	290	169	253	145	218	120	180				
		28	169	254	148	222	128	192	106	160				
		30	149	223	131	196	113	170	94.7	142				
		32	132	198	116	174	101	152	84.8	127				
		34	118	177	104	156	90.3	136	76.3	115				
		36	106	159	93.2	140	81.3	122	68.9	103				
		40	86.3	130	76.3	115								
Properties														
$\begin{array}{\|l} \hline A_{g}, \text { in. }^{2} \\ r_{x}, \text { in. } \\ r_{y}, \text { in. } \\ \hline \end{array}$			$\begin{array}{r} \hline 22.5 \\ 5.14 \\ 2.47 \\ \hline \end{array}$		$\begin{gathered} 20.7 \\ 5.15 \\ 2.43 \end{gathered}$		$\begin{gathered} 19.1 \\ 5.18 \\ 2.38 \end{gathered}$		$\begin{gathered} 17.4 \\ 5.20 \\ 2.32 \end{gathered}$					
ASD			LRFD		${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$; tabulated values have been adjusted accordingly. Note: Heavy line indicates L_{c} / r equal to or greater than 200.									
$\Omega_{C}=1.67$			$\phi_{C}=0.90$											

			Table 4-7 (continued) vailable Strength in Compression, kips ntrically Loaded WT-Shapes											
Shape			WT15×											
lb/ft			195.5 ${ }^{\text {h }}$		$178.5^{\text {h }}$		$163{ }^{\text {h }}$		146		130.5		$117.5^{\text {c }}$	
Design			P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
			ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	$\begin{aligned} & \stackrel{n}{x} \\ & \underset{x}{x} \\ & \underset{x}{x} \end{aligned}$	0	1720	2590	1570	2360	1440	2160	1290	1940	1150	1730	1030	1550
		10	1640	2470	1490	2250	1360	2050	1220	1840	1090	1640	981	1470
		12	1610	2410	1460	2200	1330	2010	1190	1790	1070	1610	960	1440
		14	1560	2350	1420	2140	1300	1950	1160	1750	1040	1560	934	1400
		16	1520	2280	1380	2080	1260	1890	1130	1690	1010	1510	904	1360
		18	1470	2210	1330	2010	1220	1830	1090	1630	971	1460	872	1310
		20	1410	2130	1280	1930	1170	1760	1040	1570	933	1400	837	1260
		22	1360	2040	1230	1850	1120	1680	999	1500	892	1340	799	1200
		24	1300	1950	1170	1760	1070	1610	952	1430	850	1280	761	1140
		26	1230	1850	1120	1680	1010	1520	903	1360	806	1210	721	1080
		28	1170	1760	1060	1590	959	1440	853	1280	761	1140	680	1020
		30	1100	1660	997	1500	904	1360	803	1210	716	1080	638	959
		32	1040	1560	936	1410	848	1270	752	1130	670	1010	597	897
		34	973	1460	875	1320	792	1190	702	1060	625	940	556	835
		36	907	1360	815	1230	737	1110	652	980	580	872	515	774
		40	781	1170	699	1050	630	947	556	836	494	743	437	657
	$\begin{aligned} & \frac{\infty}{x} \\ & \frac{1}{\lambda} \end{aligned}$	0	1720	2590	1570	2360	1440	2160	1290	1940	1150	1730	1030	1550
		10	1570	2360	1420	2130	1290	1940	1140	1720	1000	1510	891	1340
		12	1520	2280	1380	2070	1250	1880	1110	1670	979	1470	870	1310
		14	1460	2190	1320	1990	1200	1810	1070	1610	944	1420	841	1260
		16	1390	2100	1260	1900	1150	1720	1020	1530	901	1350	804	1210
		18	1320	1990	1200	1800	1090	1630	966	1450	853	1280	761	1140
		20	1250	1870	1130	1700	1020	1540	909	1370	801	1200	715	1070
		22	1170	1760	1060	1590	955	1440	849	1280	747	1120	667	1000
		24	1090	1630	982	1480	887	1330	788	1180	692	1040	617	928
		26	1010	1510	907	1360	818	1230	726	1090	636	956	567	852
		28	925	1390	833	1250	749	1130	664	999	581	873	518	778
		30	845	1270	760	1140	682	1020	604	908	527	792	469	705
		32	767	1150	688	1030	617	927	546	820	475	714	422	634
		34	692	1040	620	932	553	832	489	735	424	637	376	566
		36	619	930	554	833	494	743	437	657	379	570	337	506
		40	502	755	450	676	402	604	355	534	308	463	274	412
Properties														
$\begin{array}{\|l\|} \hline A_{g}, \text { i } \\ r_{x}, \text { in } \\ r_{y}, \text { in } \\ \hline \end{array}$				67		. 64		52		48	38 4 3	. 46		. 41
ASD			LRFD		${ }^{\mathrm{h}}$ Flange thickness is greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c. ${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$; tabulated values have been adjusted accordingly.									
$\Omega_{c}=1.67$			$\phi_{c}=0.90$											

			Table 4-7 (continued) vailable Strength in Compression, kips ntrically Loaded WT-Shapes									
Shape			WT15×									
lb/ft			$62^{\text {c }}$		$58{ }^{\text {c }}$		$54^{\text {c }}$		49.5 ${ }^{\text {c }}$		$45^{\text {c }}$	
Design			P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
			ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	$\begin{aligned} & \stackrel{\varrho}{\underset{X}{x}} \\ & \underset{X}{\underset{X}{x}} \end{aligned}$	0	493	740	458	688	420	632	376	565	331	498
		10	473	710	440	661	404	607	361	543	318	478
		12	464	698	432	649	397	596	355	534	313	470
		14	454	683	423	635	388	584	348	523	306	460
		16	443	666	412	620	379	570	340	510	299	449
		18	431	648	401	603	369	554	331	497	291	437
		20	418	628	389	585	358	538	321	482	282	424
		22	403	606	376	565	346	520	310	466	273	410
		24	388	584	362	544	333	501	299	450	263	396
		26	373	560	347	522	320	481	288	432	253	380
		28	356	535	332	499	306	461	276	414	242	364
		30	339	510	317	476	292	439	263	396	231	348
		32	322	484	301	452	278	418	250	376	220	331
		34	305	458	285	428	263	396	238	357	209	314
		36	288	432	269	404	249	374	225	338	197	297
		40	251	377	236	355	220	330	199	299	175	262
	$\begin{aligned} & \frac{0}{x} \\ & \frac{1}{x} \\ & \frac{1}{x} \end{aligned}$	0	493	740	458	688	420	632	376	565	331	498
		10	342	514	303	455	258	388	210	316	168	253
		12	324	486	286	430	245	368	199	300	160	241
		14	300	451	266	399	227	341	185	279	150	225
		16	272	409	241	362	206	310	167	252	137	206
		18	239	359	211	317	180	270	147	220	123	185
		20	205	307	180	271	155	232	128	192	109	163
		22	174	261	154	232	133	200	111	167	95.6	144
		24	149	224	133	200	116	174	97.1	146	84.3	127
		26	129	194	115	173	101	152	85.2	128	74.4	112
		28	113	169	101	152	88.5	133	75.2	113	66.0	99.2
		30	99.1	149	88.8	133	78.2	118	66.6	100	58.7	88.3
		32	87.7	132	78.8	118	69.5	105	59.4	89.3	52.5	79.0
		34	78.2	118	70.3	106	62.2	93.4	53.2	80.0	47.2	70.9
		36	70.1	105	63.1	94.8						
Properties												
A_{g}, in												
r_{x}, in				66						71		69
r_{y}, in				23						10		09
ASD			LRFD		${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$; tabulated values have been adjusted accordingly. Note: Heavy line indicates L_{c} / r equal to or greater than 200.							
$\Omega_{c}=1.67$			$\phi_{C}=0.90$									

$F_{y}=50$ Shape			Available Strength in Axial Compression, kips Concentrically Loaded WT-Shapes									X-	13.5	
			WT13.5×											
lb/ft			129		117.5		108.5		97 ${ }^{\text {c }}$		$89^{\text {c }}$		80.5 ${ }^{\text {c }}$	
Design			P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
			ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	$\begin{aligned} & \stackrel{n}{x} \\ & \underset{4}{x} \\ & \underset{x}{x} \end{aligned}$	0	1140	1710	1040	1560	958	1440	850	1280	778	1170	691	1040
		10	1070	1610	973	1460	896	1350	799	1200	732	1100	651	978
		12	1040	1560	945	1420	870	1310	777	1170	713	1070	634	953
		14	1000	1510	913	1370	840	1260	750	1130	691	1040	614	923
		16	965	1450	878	1320	807	1210	720	1080	664	997	592	890
		18	924	1390	839	1260	771	1160	687	1030	634	953	568	854
		20	879	1320	798	1200	732	1100	653	981	603	906	543	816
		22	832	1250	756	1140	692	1040	617	927	570	857	514	773
		24	784	1180	711	1070	651	978	579	871	536	805	483	726
		26	734	1100	666	1000	609	915	541	814	501	753	452	679
		28	684	1030	620	932	566	851	503	756	466	701	420	631
		30	635	954	575	864	524	787	465	699	432	649	388	583
		32	585	880	530	796	482	724	428	643	397	597	357	537
		34	537	807	486	730	441	663	391	588	364	547	327	491
		36	490	737	443	666	401	603	356	534	331	498	297	447
		40	402	604	362	544	327	492	290	435	270	406	242	364
	$\begin{aligned} & \frac{0}{x} \\ & \frac{1}{x} \\ & \hline 1 \end{aligned}$	0	1140	1710	1040	1560	958	1440	850	1280	778	1170	691	1040
		10	1010	1520	911	1370	833	1250	730	1100	650	978	568	854
		12	975	1470	880	1320	806	1210	709	1070	634	953	557	837
		14	932	1400	841	1260	772	1160	680	1020	610	917	539	811
		16	883	1330	797	1200	731	1100	645	969	580	871	515	774
		18	829	1250	748	1120	687	1030	606	910	545	819	485	728
		20	773	1160	697	1050	639	961	564	847	507	762	451	678
		22	715	1080	644	968	591	888	520	782	467	702	416	626
		24	657	987	590	887	541	814	476	716	427	642	380	572
		26	598	899	537	807	492	740	432	650	387	582	344	518
		28	541	813	485	729	444	668	390	585	348	523	309	465
		30	486	730	434	653	398	598	348	523	310	466	275	414
		32	432	649	385	579	353	530	308	463	274	412	243	366
		34	383	576	342	514	313	471	274	411	244	366	217	326
		36	342	515	306	459	280	421	245	368	218	328	194	292
		40	278	418	248	373	227	342	199	299	178	267	158	238
Properties														
A_{g}, in			38		34		32.		28.		26			
r_{x}, in						O0		96		94		97		95
r_{y}, in						33		32		29		25		23
ASD			LRFD		${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50$ ksi; tabulated values have been adjusted accordingly.									
$\Omega_{c}=1.67$			$\phi_{C}=0.90$											

			Available Strength in Axial Compression, kips Concentrically Loaded WT-Shapes									
Shape			WT12×									
lb/ft			103.5		96		88		81		$73^{\text {c }}$	
Design			P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
			ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	$\begin{aligned} & \stackrel{e n}{x} \\ & \underset{㐅}{x} \\ & \underset{x}{x} \end{aligned}$	0	907	1360	844	1270	772	1160	716	1080	637	957
		10	834	1250	776	1170	709	1070	657	987	589	886
		12	804	1210	748	1120	683	1030	632	950	569	855
		14	770	1160	715	1080	653	982	605	909	544	818
		16	733	1100	680	1020	621	933	574	863	517	776
		18	692	1040	642	965	586	880	542	814	487	732
		20	649	976	602	905	549	825	507	763	456	686
		22	605	910	561	843	511	768	472	709	425	638
		24	561	843	519	780	472	710	436	656	392	590
		26	516	775	477	717	433	652	400	602	360	541
		28	471	708	435	654	395	594	365	548	328	493
		30	428	643	395	593	358	538	330	496	297	446
		32	386	580	355	534	322	484	297	446	267	401
		34	345	518	317	477	287	431	264	397	238	357
		36	308	462	283	425	256	385	236	354	212	319
		40	249	374	229	345	207	312	191	287	172	258
	$\begin{aligned} & \frac{0}{x} \\ & \frac{\lambda}{x} \\ & \hline \end{aligned}$	0	907	1360	844	1270	772	1160	716	1080	637	957
		10	792	1190	732	1100	662	995	605	909	530	797
		12	758	1140	701	1050	635	955	582	875	512	770
		14	717	1080	664	998	602	904	553	831	488	733
		16	672	1010	622	935	563	847	519	780	458	688
		18	623	937	577	868	522	785	482	724	425	639
		20	573	862	531	798	479	721	443	666	390	586
		22	522	785	483	727	436	655	403	606	354	533
		24	472	709	436	656	393	590	364	547	319	479
		26	422	635	390	587	351	527	325	488	284	427
		28	375	563	346	520	310	466	288	432	251	377
		30	329	494	303	456	272	408	252	379	220	330
		32	290	435	267	402	239	360	222	334	194	291
		34	257	386	237	356	212	319	197	297	172	259
		36	229	345	212	318	190	285	176	265	154	231
		40	186	280	172	258	154	231	143	215	125	188
Properties												
A_{g}, in												
r_{x}, in						3						
r_{y}, in						. 7						
ASD			LRFD		${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$; tabulated values have been adjusted accordingly.							
$\Omega_{c}=1.67$			$\phi_{C}=0.90$									

$F_{y}=50$ Shape			Available Strength in Axial Compression, kips Concentrically Loaded WT-Shapes								Y Y WT12	X
			WT12×									
lb/ft			65.5 ${ }^{\text {c }}$		58.5 ${ }^{\text {c }}$		$52^{\text {c }}$		51.5 ${ }^{\text {c }}$		47 ${ }^{\text {c }}$	
Design			P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
			ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	$\begin{aligned} & \stackrel{n}{x} \\ & \underset{x}{x} \\ & \underset{x}{x} \end{aligned}$	0	565	849	494	742	430	646	428	644	385	579
		10	523	787	457	688	399	599	400	601	360	541
		12	506	761	442	665	386	580	388	584	349	525
		14	486	731	425	639	371	557	375	563	337	507
		16	465	698	406	611	354	533	360	541	324	487
		18	439	659	386	580	337	506	344	516	309	465
		20	411	618	364	547	318	478	326	490	294	441
		22	383	576	341	512	298	448	308	463	277	417
		24	354	532	315	473	278	418	288	433	260	391
		26	325	489	289	434	257	386	267	401	243	365
		28	297	446	264	396	234	352	245	368	224	336
		30	269	404	239	359	212	319	224	336	204	307
		32	242	364	215	323	191	287	203	305	186	279
		34	216	325	191	288	170	256	183	275	167	252
		36	193	289	171	257	152	228	164	246	150	225
		40	156	234	138	208	123	185	133	199	121	182
	$\begin{aligned} & \frac{0}{x} \\ & \frac{\pi}{x} \\ & \hline \lambda \end{aligned}$	0	565	849	494	742	430	646	428	644	385	579
		10	457	687	384	577	316	476	315	474	276	415
		12	444	667	375	564	310	466	287	431	252	379
		14	424	638	362	544	301	452	251	378	223	336
		16	399	600	344	517	288	432	215	323	191	287
		18	371	558	320	481	271	408	180	270	160	240
		20	340	512	294	442	251	378	148	222	132	198
		22	309	464	267	402	228	343	124	186	110	166
		24	277	417	240	360	205	308	105	157	93.7	141
		26	247	371	213	320	182	274	89.6	135	80.4	121
		28	217	326	187	281	160	240	77.6	117	69.7	105
		30	190	286	164	247	141	212	67.8	102	61.0	91.7
		32	168	252	145	218	125	188	59.8	89.8	53.8	80.9
		34	149	224	129	194	111	167				
		36	134	201	116	174	100	150				
		40	109	164	94.5	142	81.7	123				
Properties												
A_{g}, in					17							
r_{x}, in												
r_{y}, in												
ASD			LRFD		${ }^{\mathrm{c}}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$; tabulated values have been adjusted accordingly. Note: Heavy line indicates L_{c} / r equal to or greater than 200.							
$\Omega_{C}=1.67$			$\phi_{C}=0.90$									

			Table 4-7 (continued) vailable Strength in Compression, kips ntrically Loaded WT-Shapes										
Shape			WT12×										
lb/ft			$42^{\text {c }}$		$38^{\text {c }}$		$34^{\text {c }}$		$31^{\text {c }}$		$27.5{ }^{\text {c }}$		
Design			P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	
			ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	
Effective length, $L_{c}(\mathrm{ft})$, with respect to indicated axis	$\begin{aligned} & \stackrel{n}{x} \\ & \underset{1}{x} \\ & \underset{x}{x} \end{aligned}$	0	338	508	299	449	261	393	236	355	203	306	
		10	316	475	280	421	245	368	223	334	192	288	
		12	307	461	272	408	238	358	217	326	187	281	
		14	296	445	263	395	230	346	210	316	181	272	
		16	285	428	252	379	221	333	203	304	175	263	
		18	272	409	241	362	212	318	194	292	168	252	
		20	258	388	229	345	202	303	186	279	160	241	
		22	244	367	217	326	191	287	176	265	153	229	
		24	229	345	204	306	180	270	167	251	144	217	
		26	214	322	191	287	168	253	157	236	136	204	
		28	199	299	177	266	157	236	147	221	128	192	
		30	184	276	164	246	145	218	137	206	119	179	
		32	167	251	151	227	134	201	127	191	110	166	
		34	150	226	137	205	122	184	117	175	102	153	
		36	135	202	122	184	110	166	105	158	93.3	140	
		40	109	164	98.9	149	89.3	134	85.4	128	76.3	115	
	$\frac{\text { n }}{\frac{\infty}{x}}$	0	338	508	299	449	261	393	236	355	203	306	
		10	231	347	192	289	152	229	114	171	85.7	129	
		12	212	318	177	267	141	212	92.4	139	71.2	107	
		14	189	285	159	239	127	190	74.2	112	58.5	87.9	
		16	163	245	138	207	109	164	60.1	90.4	48.1	72.3	
		18	136	204	115	172	92.2	139	49.3	74.1	39.9	59.9	
		20	113	169	96.0	144	78.0	117	41.0	61.6	33.4	50.2	
		22	94.6	142	81.2	122	66.5	100	34.5	51.9	28.3	42.5	
		24	80.5	121	69.3	104	57.2	85.9					
		26	69.3	104	59.8	89.9	49.5	74.5					
		28	60.2	90.4	52.1	78.3	43.3	65.1					
		30	52.7	79.3	45.7	68.7	38.1	57.3					
		32	46.6	70.0	40.4	60.7							
Properties													
A_{g}, in													
r_{x}, in				67		68		70		9			
r_{y}, in				95		92				38			
ASD			LRFD		${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$; tabulated values have been adjusted accordingly. Note: Heavy line indicates L_{c} / r equal to or greater than 200.								
$\Omega_{c}=1.67$			$\phi_{C}=0.90$										

			Available Strength in Axial Compression, kips Concentrically Loaded WT-Shapes											
Shape			WT10.5×											
lb/ft			$55.5{ }^{\text {c }}$		$50.5{ }^{\text {c }}$		46.5 ${ }^{\text {c }}$		41.5 ${ }^{\text {c }}$		36.5 ${ }^{\text {c }}$		$34^{\text {c }}$	
Design			P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
			ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
		0	480	72	431	64	407	612	353	530	300	451	6	414
		10	433	651	389	584	371	558	323	485	275	413	252	379
		12	414	622	371	558	355	534	310	467	264	397	243	365
		14	390	586	352	528	337	507	296	445	252	379	232	348
		16	364	547	330	496	318	478	281	422	239	360	220	330
		18	337	506	306	460	297	446	263	395	225	338	207	311
		20	308	464	280	421	275	414	243	366	210	316	193	290
		22	280	421	254	382	253	381	223	336	195	293	179	269
		24	252	379	228	343	231	347	204	306	178	267	165	248
		26	225	338	203	306	209	314	184	276	161	241	149	225
		28	199	298	179	270	188	282	165	248	144	216	134	201
		30	174	261	157	235	167	251	146	220	128	192	119	178
		32	153	229	138	207	148	222	129	194	112	169	104	157
		34	135	203	122	183	131	196	114	172	99.6	150	92.5	139
		36	121	181	109	163	117	175	102	153	88.8	133	82.5	124
		40	97.6	147	88.1	132	94.4	142	82.5	124	71.9	108	66.8	100
	$\begin{aligned} & \frac{n}{x} \\ & \frac{1}{x} \end{aligned}$	0	480	722	431	648	407	612	353	530	300	451	276	414
		10	390	587	343	516	282	424	245	369	206	309	185	277
		12	378	568	335	503	248	372	216	324	183	275	166	249
		14	360	541	322	483	211	318	184	277	156	235	142	214
		16	337	506	303	455	176	264	153	230	130	195	118	177
		18	311	468	280	421	142	214	124	187	105	158	95.8	144
		20	284	427	256	385	117	175	102	153	86.4	130	79.0	119
		22	256	385	231	347	97.0	146	84.9	128	72.2	108	66.2	99.5
		24	229	344	206	310	81.9	123	71.8	108	61.1	91.9	56.1	84.4
		26	202	304	182	274	70.1	105	61.4	92.4	52.4	78.8	48.2	72.4
		28	176	265	159	239	60.6	91.1	53.2	79.9	45.4	68.2	41.8	62.8
		30	154	232	139	210	52.9	79.6	46.5	69.8	39.7	59.7	36.5	54.9
		32	136	205	123	185								
		34	121	182	109	165								
		36	108	163	97.9	147								
		40	88.1	132	79.7	120								
Properties														
A_{g}, in			16.		14		13		12		.		,	
r_{x}, in						1		25		22		. 1		20
r_{y}, in						89		84		83		. 81		80
ASD			LRFD		${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50$ ksi; tabulated values have been adjusted accordingly. Note: Heavy line indicates L_{c} / r equal to or greater than 200.									
	$=1.6$		$\phi_{C}=0.90$											

				Axial Compression, kips Concentrically Loaded WT-Shapes										
Shape			WT9×											
lb/ft			87.5		79		71.5		65		59.5		53	
Design			P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
			ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	$\begin{aligned} & \stackrel{0}{x} \\ & \underset{x}{x} \\ & \underset{x}{x} \end{aligned}$	0	769	1160	695	1040	629	945	575	864	527	792	467	702
		10	663	997	597	897	538	809	491	738	451	678	399	600
		12	621	933	558	839	502	755	458	688	421	633	373	560
		14	575	864	515	775	463	696	422	634	388	584	343	516
		16	526	790	470	707	422	634	383	576	354	532	313	470
		18	475	714	424	638	380	571	344	518	318	478	281	422
		20	424	638	378	568	337	507	305	459	283	425	249	375
		22	374	563	332	500	296	445	267	402	248	373	219	328
		24	327	491	289	434	256	385	231	347	215	323	189	284
		26	281	422	248	372	219	329	197	297	184	276	162	243
		28	242	364	214	321	189	284	170	256	158	238	139	209
		30	211	317	186	280	165	247	148	223	138	207	121	182
		32	185	279	164	246	145	217	130	196	121	182	107	160
		34	164	247	145	218	128	193	115	173	107	161	94.5	142
		36	146	220	129	194	114	172	103	155	95.8	144	84.3	127
		40	119	178	105	157	92.6	139	83.4	125	77.6	117	68.3	103
	$\begin{aligned} & \frac{n}{x} \\ & \frac{1}{x} \end{aligned}$	0	769	1160	695	1040	629	945	575	864	527	792	467	702
		10	664	999	597	898	538	809	489	735	443	666	387	581
		12	626	940	562	845	506	761	460	692	418	628	365	549
		14	583	876	523	786	471	708	427	642	389	584	340	511
		16	536	806	481	723	432	650	392	590	357	536	312	468
		18	488	734	437	657	393	590	356	535	323	486	282	424
		20	440	661	393	591	353	530	319	479	290	435	252	379
		22	392	589	350	525	313	470	283	425	256	385	223	335
		24	345	518	307	462	275	413	247	372	224	337	194	292
		26	300	451	267	401	238	357	214	321	194	291	167	251
		28	259	389	230	346	205	308	185	277	167	252	145	217
		30	226	340	201	302	179	269	161	242	146	220	126	190
		32	199	299	177	265	157	237	142	213	129	193	111	167
		34	176	265	157	235	140	210	126	189	114	171	98.6	148
		36	157	236	140	210	125	187	112	168	102	153	88.1	132
		40	127	191	113	170	101	152	90.9	137	82.6	124	71.5	107
Properties														
A_{g},			25.		23		21		19		17		15	
r_{x}, in				66		63		60		58		60		59
r_{y}, in						74		72		70		69		66
ASD			LRFD											
$\Omega_{C}=1.67$			$\phi_{C}=0.90$											

$F_{y}=50 \mathrm{k}$						lab jor call			nued ngt ion WT		OS pes			
	Shape		WT7×											
	lb/ft		66		6		54						4	
Design			P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	${ }_{\phi c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
			ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	$\begin{aligned} & \stackrel{\infty}{x} \\ & \underset{x}{x} \\ & \underset{x}{x} \end{aligned}$	0	581	873	530	797	479	720	437	657	395	594	359	540
		10	409	614	370	556	330	496	300	450	270	405	264	397
		12	350	526	316	474	280	421	254	381	228	343	231	347
		14	291	438	262	393	231	347	209	313	187	281	197	295
		16	236	355	211	317	184	277	166	250	148	223	163	246
		18	187	281	167	251	145	219	131	197	117	176	132	199
		20	152	228	135	203	118	177	106	160	94.9	143	107	161
		22	125	188	112	168	97.4	146	87.8	132	78.4	118	88.6	133
		24	105	158	93.8	141	81.8	123	73.8	111	65.9	99.1	74.4	112
		26	89.7	135	79.9	120	69.7	105	62.9	94.5	56.2	84.4	63.4	95.3
		2830	77.3	116	68.9	104	60.1	90.4					54.7	82.2
													47.6	71.6
	$\stackrel{\frac{\pi}{x}}{x}$	0	581	873	530	797	479	720	437	657	395	594	359	540
		10	519	781	485	699	412	619	366	549	320	481	298	446
		12	512	770	461	693	410	616	364	547	319	480	277	417
		14	497	747	450	676	403	605	360	541	317	476	254	382
		16	477	716	433	650	389	585	351	527	312	468	229	345
		18	454	682	412	619	371	558	336	505	301	452	204	307
		20	429	645	389	585	351	527	318	478	286	429	179	270
		22	403	606	366	550	330	495	299	449	269	404	155	234
		24	376	566	342	513	308	462	279	419	251	377	133	199
		26	350	525	317	476	285	429	258	388	233	349	113	170
		28	323	485	292	439	263	395	238	358	214	322	97.6	147
		30	296	445	268	402	241	362	218	328	196	295	85.1	128
		32	270	406	244	367	219	330	198	298	178	268	74.9	113
		34	245	368	221	332	199	299	179	269	161	242	66.4	99.7
		36	220	331	198	298	178	268	161	242	144	217	59.2	89.0
		40	178	268	161	242	145	217	130	196	117	176	48.0	72.1
Properties														
A_{g}, in			19		17		16.		14		13		12	
r_{x}, in				73		71		68		67		66		85
r_{y}, in				76		74		73		71		70		48
ASD			LRFD		Note: Heavy line indicates L_{c} / r equal to or greater than 200 .									
$\Omega_{c}=1.67$			$\phi_{c}=0.90$											

			Available Strength in Axial Compression, kips Concentrically Loaded WT-Shapes											
Shape			WT7 \times											
lb/ft			37		34		$30.5{ }^{\text {c }}$		$26.5{ }^{\text {c }}$		$24^{\text {c }}$		$21.5{ }^{\text {c }}$	
Design			P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
			ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	$\begin{aligned} & \stackrel{n}{x} \\ & \underset{X}{x} \\ & \underset{x}{x} \end{aligned}$	0	326	491	299	450	267	402	232	349	207	312	182	273
		10	237	357	217	326	194	291	173	261	157	236	138	207
		12	206	310	188	283	168	253	152	229	138	207	122	183
		14	175	263	159	240	142	213	130	196	118	177	104	156
		16	145	217	132	198	117	175	109	164	98.7	148	86.7	130
		18	116	175	106	159	93.5	141	88.8	133	80.5	121	70.3	106
		20	94.2	142	85.5	128	75.8	114	71.9	108	65.2	98.0	57.0	85.6
		22	77.9	117	70.7	106	62.6	94.1	59.5	89.4	53.9	81.0	47.1	70.8
		24	65.4	98.3	59.4	89.2	52.6	79.1	50.0	75.1	45.3	68.1	39.6	59.5
		26	55.7	83.8	50.6	76.0	44.8	67.4	42.6	64.0	38.6	58.0	33.7	50.7
		28	48.1	72.2	43.6	65.6	38.7	58.1	36.7	55.2	33.3	50.0	29.1	43.7
		30	41.9	62.9	38.0	57.1	33.7	50.6	32.0	48.1	29.0	43.6	25.3	38.1
	$\begin{aligned} & \frac{0}{x} \\ & \frac{1}{x} \\ & \hline 1 \end{aligned}$	0	326	491	299	450	267	402	232	349	207	312	182	273
		10	270	405	245	369	217	326	171	257	153	230	133	200
		12	251	378	229	344	203	305	151	228	136	204	119	179
		14	230	346	210	315	186	280	131	196	117	176	102	154
		16	208	313	189	284	168	253	110	166	98.7	148	86.1	129
		18	185	279	168	253	149	224	90.8	136	81.1	122	70.4	106
		20	163	245	147	222	131	197	73.8	111	66.0	99.2	57.4	86.3
		22	141	212	127	191	113	170	61.2	92.0	54.8	82.3	47.7	71.7
		24	120	181	108	163	96.0	144	51.5	77.5	46.1	69.3	40.2	60.4
		26	103	154	92.5	139	82.0	123	44.0	66.1	39.4	59.2	34.3	51.6
		28	88.6	133	79.9	120	70.9	106	38.0	57.1	34.0	51.1	29.7	44.6
		30	77.3	116	69.7	105	61.8	92.9	33.1	49.8	29.7	44.6	25.9	38.9
		32	68.0	102	61.3	92.1	54.4	81.8	29.1	43.8				
		34	60.2	90.5	54.3	81.7	48.2	72.5						
		36	53.8	80.8	48.5	72.9	43.1	64.7						
		40	43.6	65.5	39.3	59.1	34.9	52.5						
Properties														
A_{g}, in			10		10.			96		80		07		31
r_{x}, in				82		81		80		88		88		86
r_{y}, in				48		46		45		92		91		89
ASD			LRFD		${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50$ ksi; tabulated values have been adjusted accordingly. Note: Heavy line indicates L_{c} / r equal to or greater than 200 .									
$\Omega_{c}=1.67$			$\phi_{C}=0.90$											

			Available Strength in Axial Compression, kips Concentrically Loaded WT-Shapes											
Shape			WT6×											
lb/ft			29		26.5		25		22.5		20°		$17.5^{\text {c }}$	
Design			P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
			ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
$\text { Effective length, } L_{c} \text { (ft), with respect to indicated axis }$	$\begin{aligned} & \stackrel{n}{x} \\ & \stackrel{y}{x} \\ & \underset{x}{x} \end{aligned}$	0	255	383	233	350	219	329	196	295	172	258	151	226
		4	237	356	216	325	205	308	184	276	161	242	143	215
		6	216	324	197	296	188	283	169	254	149	224	135	203
		8	189	284	173	261	168	252	150	226	133	200	124	186
		10	160	240	147	221	145	218	130	195	114	171	110	166
		12	130	195	120	180	121	182	108	162	94.5	142	94.9	143
		14	102	153	94.2	142	97.6	147	86.8	130	75.7	114	79.5	120
		16	78.2	117	72.3	109	76.2	115	67.6	102	58.7	88.2	64.8	97.5
		18	61.8	92.8	57.1	85.9	60.2	90.5	53.4	80.3	46.4	69.7	51.6	77.5
		20	50.0	75.2	46.3	69.6	48.8	73.3	43.3	65.0	37.6	56.5	41.8	62.8
		22	41.3	62.1	38.3	57.5	40.3	60.6	35.8	53.8	31.0	46.7	34.5	51.9
		24	34.7	52.2	32.1	48.3	33.9	50.9	30.1	45.2	26.1	39.2	29.0	43.6
		26					28.9	43.4	25.6	38.5	22.2	33.4	24.7	37.2
		28											21.3	32.0
	$\frac{0}{\frac{0}{x}}$	0	255	383	233	350	219	329	196	295	172	258	151	226
		4	222	334	197	296	194	291	170	255	147	220	127	191
		6	221	333	196	295	190	285	167	251	145	217	122	183
		8	219	329	194	292	179	269	159	239	139	209	111	167
		10	211	317	189	284	163	245	145	218	128	192	95.4	143
		12	197	297	178	267	145	218	129	194	114	171	78.8	118
		14	182	273	164	246	126	189	112	168	98.8	149	62.7	94.2
		16	165	247	148	222	107	161	95.0	143	83.7	126	48.6	73.1
		18	147	221	132	198	88.8	133	78.8	118	69.3	104	38.7	58.1
		20	130	195	116	174	72.3	109	64.2	96.5	56.4	84.8	31.4	47.3
		22	113	169	100	151	59.9	90.1	53.2	79.9	46.8	70.3	26.1	39.2
		24	96.4	145	85.7	129	50.4	75.8	44.8	67.3	39.4	59.2	22.0	33.0
		26	82.3	124	73.1	110	43.0	64.7	38.2	57.4	33.6	50.5		
		28	71.0	107	63.2	94.9	37.1	55.8	33.0	49.6	29.0	43.6		
		30	61.9	93.1	55.1	82.8	32.4	48.6	28.8	43.2	25.3	38.0		
		32	54.5	81.8	48.5	72.8	28.5	42.8	25.3	38.0	22.3	33.5		
Properties														
A_{g}, i				52		. 78		. 30		56		84		17
r_{x}, in				50		. 51		. 60		59		57		76
r_{y}, in				51		. 48		. 96		95		94		54
ASD			LRFD		${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50$ ksi; tabulated values have been adjusted accordingly. Note: Heavy line indicates L_{c} / r equal to or greater than 200 .									
$\Omega_{c}=1.67$			$\phi_{C}=0.90$											

			Table 4-7 (continued) vailable Strength in Compression, kips ntrically Loaded WT-Shapes											
Shape			WT5×											
lb/ft			22.5		19.5		16.5		15		$13^{\text {c }}$			
Design			P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$		
			ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD		
Effective length, $L_{c}(\mathrm{ft})$, with respect to indicated axis	$\begin{aligned} & \stackrel{\varrho}{\underset{x}{x}} \\ & \underset{x}{x} \end{aligned}$	0		298	172	258	145	218	132	199	112	168		
		4	178	267	154	231	131	196	122	184	104	156		
		6	155	233	134	202	114	172	111	166	94.9	143		
		8	128	192	111	166	95.0	143	96.0	144	82.4	124		
		10	100	150	86.5	130	74.8	112	80.2	121	68.7	103		
		12	73.9	111	63.9	96.0	55.8	83.9	64.3	96.7	54.9	82.5		
		14	54.3	81.6	46.9	70.5	41.0	61.6	49.5	74.4	42.1	63.2		
		16	41.6	62.5	35.9	54.0	31.4	47.2	37.9	57.0	32.2	48.4		
		18	32.8	49.4	28.4	42.7	24.8	37.3	29.9	45.0	25.5	38.3		
		20	26.6	40.0	23.0	34.6	20.1	30.2	24.3	36.4	20.6	31.0		
		22							20.0	30.1	17.0	25.6		
		24							16.8	25.3	14.3	21.5		
		0	199	298	172	258	145	218	132	199	112	168		
		4	179	270	150	226	121	182	114	171	94.5	142		
		6	176	265	148	223	120	180	104	157	88.1	132		
		8	166	250	141	212	116	174	90.0	135	76.3	115		
		10	152	228	129	194	107	160	73.8	111	62.5	93.9		
		12	135	203	115	173	95.0	143	57.7	86.8	48.8	73.3		
		14	118	178	100	151	82.4	124	43.4	65.2	36.6	55.0		
	"	16	101	152	85.4	128	69.8	105	33.4	50.1	28.2	42.4		
	خ	18	84.8	127	71.2	107	57.7	86.8	26.4	39.7	22.4	33.6		
		20	69.5	104	58.1	87.4	47.0	70.6	21.5	32.3	18.2	27.3		
		22	57.5	86.4	48.1	72.3	38.9	58.5	17.8	26.7	15.1	22.6		
		24	48.3	72.7	40.5	60.8	32.8	49.3						
		26	41.2	61.9	34.5	51.9	28.0	42.0						
		28	35.6	53.4	29.8	44.8	24.1	36.3						
		30	31.0	46.6	26.0	39.0	21.1	31.6						
		32	27.2	40.9	22.8	34.3	18.5	27.8						
Properties														
$\begin{aligned} & A_{g}, \text { in. }^{2} \\ & r_{x}, \text { in. } \\ & r_{y}, \text { in. } \\ & \hline \end{aligned}$			$\begin{aligned} & 6.63 \\ & 1.24 \\ & 2.01 \end{aligned}$		$\begin{aligned} & 5.73 \\ & 1.24 \\ & 1.98 \end{aligned}$		4.85		4.42		3.81			
				26						44				
										36				
ASD					LRFD		${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50$ ksi; tabulated values have been adjusted accordingly. Note: Heavy line indicates L_{c} / r equal to or greater than 200.							
$\Omega_{c}=1.67$					$\phi_{C}=0.90$									

$F_{y}=36 \mathrm{ksi}$			Table 4－8（continued） vailable Strength in al Compression，kips uble Angles－Equal Legs								3/8"		
Shape		2L6×6×											
		9／16		1／2		$7 / 16^{\text {c }}$		$3 / 8{ }^{\text {c }}$		$5 / 16^{\text {c }}$			
lb／ft		43.8		39.2		34.4		29.8		24.8			
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$		
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD		
	$\begin{aligned} & \stackrel{e}{x} \\ & \underset{x}{x} \\ & \underset{x}{x} \\ & \underset{x}{2} \end{aligned}$	278	418	248	373	211	318	165	248	122	183	b	
		276	414	246	369	210	316	164	246	121	182		
		268	403	239	360	206	310	161	242	119	179		
		257	386	229	344	200	300	156	235	116	174		
		241	363	215	324	191	287	150	226	111	167		
		223	335	199	299	177	265	142	214	106	159		
		202	304	181	272	160	241	133	200	99.6	150		
		180	271	161	243	143	215	123	184	92.5	139		
		158	237	141	213	125	189	108	163	84.7	127		
		136	204	122	183	108	162	93.6	141	76.4	115		
		115	172	103	155	91.5	138	79.3	119	67.1	101		
		95.2	143	85.8	129	76.1	114	66.1	99.3	55.9	84.1		
		80.0	120	72.1	108	63.9	96.1	55.5	83.4	47.0	70.7		
		68.2	102	61.4	92.3	54.5	81.9	47.3	71.1	40.1	60.2		
		58.8	88.3	53.0	79.6	47.0	70.6	40.8	61.3	34.5	51.9		
		51.2	77.0	46.1	69.4	40.9	61.5	35.5	53.4	30.1	45.2		
玉	$\begin{aligned} & \frac{0}{x} \\ & \frac{1}{x} \\ & \frac{\lambda}{\lambda} \end{aligned}$	278	418	248	373	211	318	165	248	122	183	2	
－		237	356	203	305	170	255	130	196	88.9	134		
		233	350	200	301	168	252	129	194	88.2	133		
등		220	331	191	287	162	243	126	190	86.7	130		
0		202	304	176	265	151	227	121	183	84.2	127		
弟		180	270	158	237	136	205	111	167	80.2	121		
䓣		156	234	137	206	119	178	97.9	147	74.3	112		
		132	199	116	175	101	152	83.5	126	65.7	98.7		
		115	173	101	152	87.6	132	72.4	109	54.9	82.5		
		94.2	142	82.8	124	72.0	108	59.9	90.0	48.0	72.2		
		78.2	118	68.8	103	60.0	90.3	50.2	75.4	40.6	61.0		
		66.0	99.2	58.1	87.4	50.8	76.3	42.6	64.0	34.6	52.1	3	
		56.4	84.7	49.7	74.7	43.5	65.4	36.5	54.9	29.9	44.9		
		48.7	73.2	43.0	64.6	37.6	56.6	31.7	47.6	26.0	39.0		
Properties of 2 angles－ $3 / 8$ in．back to back													
	，in．${ }^{2}$	12		11		10							
	，in．		85		86								
			64		63								
Properties of single angle													
	，in．	1.18		1.18		1.18		1.19		1.19			
ASD		LRFD	${ }^{\text {a }}$ For $Y-Y$ axis，welded or pretensioned bolted intermediate connectors with Class A or B faying surfaces must be used． ${ }^{\mathrm{b}}$ For required number of intermediate connectors，see the discussion of Table 4－8． ${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=36 \mathrm{ksi}$ ；tabulated values have been adjusted accordingly．										
$\Omega_{c}=1.67$		$\phi_{c}=0.90$											

$F_{y}=36 \mathrm{ks}$										UUed gt On, ual			$x=$		3/8"		
Shape		2L4×4×															
			/4											1/4			
	lb/ft	37	7.0	31	1.4	25	. 6	22	. 6	19	. 6		6.4	13	3.2		
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$		
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD		
		235	353	199	299	162	243	142	214	123	185	103	155	72.6	109	b	
		230	346	195	293	158	238	139	210	121	182	101	152	71.6	108		
		215	324	183	275	149	224	131	197	114	171	95.6	144	68.9	104		
		193	290	164	247	134	202	118	178	103	155	86.6	130	64.5	96.9		
		166	249	142	213	116	174	103	154	89.5	134	75.5	113	58.7	88.2		
		136	205	117	176	96.3	145	85.5	128	74.7	112	63.2	95.0	51.2	77.0		
		107	161	93.1	140	76.7	115	68.3	103	59.9	90.1	50.9	76.5	41.4	62.2		
		80.8	121	70.7	106	58.5	87.9	52.3	78.6	46.1	69.3	39.3	59.1	32.1	48.3		
		61.9	93.0	54.1	81.4	44.8	67.3	40.1	60.2	35.3	53.0	30.1	45.2	24.6	37.0		
		48.9	73.5	42.8	64.3	35.4	53.2	31.6	47.6	27.9	41.9	23.8	35.7	19.4	29.2		
				34.6	52.1	28.7	43.1	25.6	38.5	22.6	33.9	19.3	28.9	15.7	23.7		
		235	353	199	299	162	243	142	214	123	185	103	155	72.6	109	3	
		225	338	187	281	148	222	127	190	105	159	83.1	125	57.7	86.7		
		223	335	186	279	147	221	126	189	105	158	82.6	124	57.4	86.3		
		215	324	180	271	144	216	124	186	103	155	81.6	123	57.0	85.7		
		203	306	170	256	137	205	118	178	99.7	150	79.4	119	56.2	84.4		
		188	283	158	237	126	190	110	165	93.2	140	75.2	113	54.7	82.2		
		167	250	139	209	112	168	96.8	146	82.6	124	67.3	101	50.7	76.2		
		148	222	123	184	98.2	148	85.1	128	72.6	109	59.5	89.4	45.4	68.2		
		128	193	106	160	84.8	127	73.3	110	62.5	94.0	51.3	77.0	39.4	59.2		
		109	164	90.1	135	71.8	108	61.8	92.9	52.7	79.2	43.2	64.9	33.3	50.1		
		91.5	137	74.9	113	59.4	89.3	51.0	76.7	43.4	65.3	35.6	53.5	27.6	41.5		
		75.7	114	62.0	93.2	49.2	74.0	42.3	63.6	36.1	54.2	29.7	44.6	23.1	34.8		
		63.6	95.7	52.2	78.4	41.5	62.3	35.7	53.6	30.4	45.8	25.1	37.7	19.6	29.5		
		54.3	81.6	44.5	66.9	35.4	53.2	30.4	45.8	26.0	39.1	21.5	32.3	16.9	25.3		
		46.8	70.4	38.4	57.7	30.5	45.9	26.3	39.5	22.5	33.8	18.6	27.9	14.6	22.0		
		40.8	61.3	33.5	50.3	26.6	40.0	22.9	34.5	19.6	29.5						
Properties of 2 angles- $3 / 8$ in. back to back																	
	in. ${ }^{2}$	10			. 22		50		60		72		80		86		
r_{x},	in.		. 18		. 20		21		22		23		. 24		25		
r_{y},	,		. 88		. 85		83		81		80		. 79		78		
Properties of single angle																	
r_{z},	in.	0.774			. 774	0.776			777	0.779			. 781	0.783			
ASD		LRFD	${ }^{\text {a }}$ For $Y-Y$ axis, welded or pretensioned bolted intermediate connectors with Class A or B faying surfaces must be used. ${ }^{\text {a }}$ For $Y-Y$ axis, welded or pretensioned bolted intermediate connectors must be used. ${ }^{\mathrm{b}}$ For required number of intermediate connectors, see the discussion of Table 4-8. ${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=36$ ksi; tabulated values have been adjusted accordingly. Note: Heavy line indicates L_{c} / r equal to or greater than 200.														
	c $=1.67$	$\phi_{c}=0.90$															

$F_{y}=36 \mathrm{ksi}$					Tabl aila ble					In Kio egs		2	3/8"		
Shape		2L3×3×													
		1/2													
lb/ft		18.8		16.6		14.4		12.2		9.80		7.42			
Design		P_{n} / Ω_{c}	${ }_{\phi} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$										
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD		
	X-X Axis	119	179	105	157	91.0	137	76.7	115	62.1	93.3	41.0	61.6	b	
		118	177	104	156	90.1	135	76.1	114	61.5	92.5	40.7	61.2		
		115	172	101	152	87.7	132	74.0	111	59.9	90.1	40.0	60.2		
		109	164	96.4	145	83.8	126	70.8	106	57.3	86.2	38.9	58.5		
		102	154	90.3	136	78.6	118	66.5	99.9	53.9	81.0	37.3	56.1		
		93.9	141	83.0	125	72.4	109	61.3	92.1	49.8	74.8	35.4	53.1		
		84.6	127	75.0	113	65.4	98.3	55.5	83.4	45.2	67.9	33.1	49.7		
		74.8	112	66.4	99.8	58.1	87.3	49.4	74.2	40.3	60.5	30.5	45.8		
		64.9	97.6	57.8	86.9	50.6	76.1	43.2	64.9	35.3	53.0	26.9	40.5		
		55.3	83.1	49.3	74.2	43.3	65.1	37.0	55.7	30.3	45.6	23.2	34.9		
		46.2	69.4	41.3	62.1	36.4	54.7	31.2	46.9	25.6	38.5	19.7	29.6		
		38.1	57.3	34.2	51.4	30.1	45.3	25.9	38.9	21.3	32.0	16.4	24.6		
		32.1	48.2	28.7	43.2	25.3	38.1	21.7	32.7	17.9	26.9	13.8	20.7		
		27.3	41.0	24.5	36.8	21.6	32.4	18.5	27.9	15.3	22.9	11.7	17.6		
		23.5	35.4	21.1	31.7	18.6	28.0	16.0	24.0	13.2	19.8	10.1	15.2		
				18.4	27.6	16.2	24.4	13.9	20.9	11.5	17.2	8.80	13.2		
	0	119	179	105	157	91.0	137	76.7	115	62.1	93.3	41.0	61.6	3	
	2	112	169	97.5	147	82.8	124	67.1	101	50.6	76.0	32.2	48.3		
	4	110	165	95.8	144	81.6	123	66.3	99.6	50.0	75.2	31.9	48.0		
	6	103	155	90.0	135	77.3	116	63.5	95.4	48.5	72.9	31.5	47.3		
	8	90.9	137	79.5	120	68.4	103	56.6	85.0	44.2	66.4	30.1	45.2		
	$\begin{array}{l\|l} \frac{\infty}{x} & 10 \end{array}$	78.6	118	68.7	103	59.0	88.7	48.8	73.3	38.4	57.7	27.0	40.5		
	> 12	65.8	98.9	57.3	86.2	49.2	73.9	40.5	60.9	31.9	48.0	22.8	34.2		
	14	53.3	80.1	46.3	69.6	39.6	59.6	32.5	48.8	25.6	38.4	18.4	27.6		
	16	41.7	62.7	36.2	54.4	30.9	46.4	25.2	37.9	19.9	29.9	14.4	21.7		
	18	33.0	49.6	28.6	43.1	24.5	36.8	20.0	30.1	15.9	23.8	11.6	17.4		
	20	26.8	40.2	23.2	34.9	19.9	29.9	16.3	24.5	12.9	19.4	9.48	14.3		
	22	22.1	33.3	19.2	28.9	16.5	24.7	13.5	20.3	10.7	16.1	7.89	11.9		
Properties of 2 angles- $3 / 8$ in. back to back															
	g, in. ${ }^{2}$	5.5	52		86		22								
	, in.	0.8	895		903		910		918		926		933		
	, in.	1.4			42		41		39						
Properties of single angle															
	, in.	0.580		0.580			581	0.583		0.585		0.586			
ASD		LRFD	${ }^{\text {a }}$ For Y - Y axis, welded or pretensioned bolted intermediate connectors with Class A or B faying sura must be used. ${ }^{\mathrm{b}}$ For required number of intermediate connectors, see the discussion of Table 4-8. ${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=36$ ksi; tabulated values have been adjusted accordingly. Note: Heavy line indicates L_{c} / r equal to or greater than 200.												
$\Omega_{C}=1.67$		$\phi_{c}=0.90$													

			Table 4－8（continued） vailable Strength in Compression，kips uble Angles－Equal Legs																		
Shape		$2 \mathrm{~L} \mathbf{2}^{1 / 2 \times 21 / 2 \times}$																			
		1／2		3／8		5／16		$1 / 4$		$3 / 16^{\text {c }}$											
lb／ft		15.4		11.8		10.0		8.20		6.14											
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$										
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD										
	$\begin{aligned} & \stackrel{e n}{x} \\ & \underset{y}{x} \\ & \underset{x}{x} \end{aligned}$	97.4	146	74.6	112	62.9	94.6	51.3	77.1	37.9	57.0										
		96.1	144	73.6	111	62.1	93.4	50.6	76.1	37.6	56.5										
		92.1	138	70.7	106	59.7	89.7	48.7	73.2	36.6	55.0										
		85.9	129	66.0	99.3	55.9	84.0	45.6	68.6	34.6	52.0										
		77.8	117	60.1	90.3	50.9	76.5	41.7	62.6	31.6	47.6										
		68.6	103	53.2	80.0	45.2	67.9	37.1	55.7	28.2	42.4										
		58.8	88.4	45.9	68.9	39.0	58.7	32.1	48.3	24.5	36.8										
		49.0	73.6	38.5	57.8	32.9	49.4	27.2	40.8	20.8	31.2										
		39.7	59.7	31.4	47.2	26.9	40.5	22.3	33.6	17.2	25.8										
		31.5	47.3	25.0	37.6	21.5	32.3	17.9	26.9	13.8	20.7										
		25.5	38.3	20.3	30.5	17.4	26.2	14.5	21.8	11.2	16.8										
		21.1	31.7	16.7	25.2	14.4	21.6	12.0	18.0	9.23	13.9										
		17.7	26.6	14.1	21.1	12.1	18.2	10.1	15.1	7.76	11.7										
－	0	97.4	146	74.6	112	62.9	94.6	51.3	77.1	37.9	57.0										
－	1	93.7	141	69.8	105	57.3	86.1	44.5	66.9	30.3	45.6										
¢	2	93.4	140	69.6	105	57.1	85.9	44.4	66.7	30.2	45.5										
至	3	92.0	138	68.9	104	56.7	85.2	44.1	66.3	30.1	45.2										
3	4	89.2	134	67.3	101	55.6	83.6	43.5	65.4	29.8	44.8										
E	5	85.4	128	64.6	97.0	53.6	80.6	42.3	63.6	29.3	44.0										
3	6	80.9	122	61.1	91.9	50.8	76.4	40.4	60.8	28.4	42.7										
E	7	73.9	111	55.8	83.9	46.4	69.7	37.1	55.7	26.6	39.9										
⿹ㅡㄹ	8	68.1	102	51.3	77.1	42.5	63.9	34.0	51.1	24.6	37.0										
응	$\stackrel{\infty}{\times} 9$	62.0	93.1	46.6	70.0	38.5	57.9	30.8	46.3	22.4	33.6										
$\stackrel{\otimes}{\underset{Z}{2}}$	$\underset{~}{\underset{\nwarrow}{\Sigma}} 10$	55.8	83.9	41.8	62.8	34.5	51.8	27.6	41.4	20.1	30.2	3									
E0	>11	49.7	74.7	37.1	55.8	30.5	45.8	24.3	36.6	17.7	26.7										
密	12	43.8	65.8	32.6	48.9	26.7	40.1	21.2	31.9	15.5	23.3										
	13	38.1	57.3	28.2	42.4	23.0	34.5	18.3	27.5	13.3	20.0										
	14	32.9	49.4	24.3	36.6	19.9	29.8	15.8	23.8	11.6	17.4										
	15	28.7	43.1	21.2	31.9	17.3	26.0	13.8	20.8	10.1	15.2										
	16	25.2	37.9	18.7	28.1	15.2	22.9	12.2	18.3	8.95	13.5										
	17	22.3	33.6	16.6	24.9	13.5	20.3	10.8	16.2	7.96	12.0										
	18	19.9	30.0	14.8	22.2	12.1	18.1	9.65	14.5	7.12	10.7										
	19	17.9	26.9	13.3	19.9	10.8	16.3	8.67	13.0	6.40	9.62										
	20	16.2	24.3	12.0	18.0																
Properties of 2 angles－ $3 / 8$ in．back to back																					
A_{g}, in．${ }^{2}$ r_{x} ，in． r_{y} ，in．		$\begin{aligned} & 4.52 \\ & 0.735 \\ & 1.23 \end{aligned}$		$\begin{aligned} & 3.46 \\ & 0.749 \\ & 1.21 \end{aligned}$		$\begin{aligned} & 2.92 \\ & 0.756 \\ & 1.19 \end{aligned}$		$\begin{aligned} & 2.38 \\ & 0.764 \\ & 1.18 \end{aligned}$		$\begin{aligned} & 1.80 \\ & 0.771 \\ & 1.17 \\ & \hline \end{aligned}$											
Properties of single angle																					
r_{z} ，in．				0.481		0.481		0.481		0.482		0.482									
ASD				LRFD	${ }^{\text {a }}$ For $\mathrm{Y}-\mathrm{Y}$ axis，welded or pretensioned bolted intermediate connectors with Class A or B faying surfaces must be used． ${ }^{\mathrm{b}}$ For required number of intermediate connectors，see the discussion of Table 4－8． ${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=36 \mathrm{ksi}$ ；tabulated values have been adjusted accordingly． Note：Heavy line indicates L_{c} / r equal to or greater than 200.																
$\Omega_{C}=1.67$		$\phi_{c}=0.90$																			

$F_{y}=36 \mathrm{ksi}$				Ta vai oub			entin Sin Equ	ed） th n，	ps		3/8"										
Shape		$\mathbf{2 L 2 \times 2 \times}$																			
		3／8		5／16		1／4		3／16		1／8 ${ }^{\text {c }}$											
	lb／ft	9.40		7.84		6.38		4.88		3.30											
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$										
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD										
$\frac{.0}{x}$	$\begin{aligned} & \frac{m}{x} \\ & \underset{\underset{x}{x}}{\underset{x}{x}} \\ & \hline \end{aligned}$	59.1	88.8	50.0	75.2	40.7	61.2	31.0	46.7	18.5	27.8	b									
		57.8	86.9	49.0	73.6	39.9	60.0	30.4	45.7	18.3	27.4										
		54.2	81.4	45.9	69.1	37.5	56.4	28.6	43.0	17.5	26.4										
		48.6	73.0	41.3	62.1	33.8	50.8	25.9	38.9	16.4	24.6										
		41.7	62.7	35.6	53.5	29.3	44.0	22.5	33.7	14.9	22.4										
		34.3	51.6	29.4	44.2	24.3	36.5	18.7	28.1	12.9	19.4										
		27.0	40.6	23.3	35.0	19.3	29.1	15.0	22.5	10.4	15.6										
		20.4	30.6	17.7	26.6	14.7	22.1	11.5	17.3	8.04	12.1										
		15.6	23.5	13.5	20.3	11.3	17.0	8.80	13.2	6.16	9.25										
		12.3	18.5	10.7	16.1	8.91	13.4	6.95	10.4	4.86	7.31										
						7.22	10.9	5.63	8.46	3.94	5.92										
\＃	0	59.1	88.8	50.0	75.2	40.7	61.2	31.0	46.7	18.5	27.8										
¢	1	56.5	84.9	47.0	70.6	37.1	55.7	26.4	39.6	14.6	21.9										
5	2	56.1	84.3	46.7	70.2	36.9	55.4	26.3	39.5	14.6	21.9										
3	3	54.6	82.1	45.7	68.7	36.3	54.6	26.0	39.1	14.5	21.7										
E	4	52.0	78.2	43.7	65.6	35.0	52.5	25.3	38.1	14.3	21.5										
${ }_{0}$	5	48.7	73.2	40.9	61.4	32.8	49.3	24.1	36.2	14.0	21.1										
年	6	43.6	65.6	36.5	54.9	29.3	44.1	21.7	32.6	13.3	20.0										
	$\begin{array}{ll}\text { ¢ } & 7\end{array}$	39.2	59.0	32.8	49.3	26.2	39.4	19.4	29.2	12.2	18.3										
$\stackrel{0}{0}$	【 8	34.7	52.1	28.9	43.4	23.1	34.7	17.1	25.6	10.8	16.2	3									
	$>$－ 9	30.2	45.3	25.0	37.6	19.9	29.9	14.7	22.1	9.33	14.0										
黑	10	25.8	38.8	21.3	32.1	16.9	25.4	12.4	18.7	7.87	11.8										
	11	21.7	32.6	17.8	26.8	14.1	21.2	10.3	15.5	6.62	9.94										
	12	18.2	27.4	15.0	22.6	11.9	17.8	8.72	13.1	5.62	8.45										
	13	15.5	23.3	12.8	19.2	10.1	15.2	7.46	11.2	4.83	7.26										
	14	13.4	20.1	11.0	16.6	8.75	13.1	6.45	9.69	4.19	6.30										
	15	11.7	17.6	9.63	14.5	7.63	11.5	5.63	8.46	3.67	5.51										
	16	10.3	15.4	8.47	12.7	6.71	10.1	4.95	7.44												
Properties of 2 angles－ $3 / 8$ in．back to back																					
$\begin{aligned} & A_{g}, \text { in. }^{2} \\ & r_{x}, \text { in. } \\ & r_{y}, \text { in. } \\ & \hline \end{aligned}$		$\begin{aligned} & 2.74 \\ & 0.591 \\ & 1.01 \end{aligned}$		$\begin{aligned} & 2.32 \\ & 0.598 \\ & 0.996 \end{aligned}$		$\begin{aligned} & 1.89 \\ & 0.605 \\ & 0.982 \end{aligned}$		$\begin{aligned} & 1.44 \\ & 0.612 \\ & 0.967 \end{aligned}$		$\begin{aligned} & 0.982 \\ & 0.620 \\ & 0.951 \end{aligned}$											
Properties of single angle																					
r_{z} ，in．				0.386		0.386		0.387		0.389		0.391									
ASD				LRFD	${ }^{\mathrm{a}}$ For Y－Y axis，welded or pretensioned bolted intermediate connectors with Class A or B faying surfaces must be used． ${ }^{\mathrm{b}}$ For required number of intermediate connectors，see the discussion of Table 4－8． ${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=36 \mathrm{ksi}$ ；tabulated values have been adjusted accordingly． Note：Heavy line indicates L_{c} / r equal to or greater than 200.																
$\Omega_{c}=1.67$		$\phi_{C}=0.90$																			

	$F_{y}=36$	36 ksi				ble ilab Co ubl						OS	x^{c}	2L8	$3 / 8 "$ LBB														
Shape		2L8×4×																											
										$9 / 1$		1/2																	
lb/ft		74.8		66.2		57.4		48.4		43.8		39.2		34.4															
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	$P_{n} / \Omega_{c} \mid$	$\phi_{c} P_{n}$	$P_{n} / \Omega_{c} \mid$	$\phi_{c} P_{n}$	$P_{n} / \Omega_{c} \mid$	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	$P_{n} / \Omega_{c} \mid$	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$														
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD														
	$\stackrel{n}{x}$	0479	719	423	635	366	551	308	463	269	405	229	344	190	285														
		4469	706	415	623	360	541	303	455	265	399	225	339	187	281														
		6458	689	405	609	351	528	296	444	260	391	221	333	184	276														
		8443	666	392	589	340	511	286	430	254	381	216	325	179	270														
		1042	638	375	564	326	490	275	413	245	369	209	314	174	261														
		2 402	605	356	535	310	466	261	392	236	354	201	302	167	251														
		4378	568	335	503	292	438	246	369	224	336	192	288	160	240														
		6352	529	312	469	272	409	229	345	209	314	181	273	151	227														
		8324	487	288	433	251	378	212	319	193	290	170	256	142	214														
		(296	444	263	395	230	346	194	292	177	266	159	238	133	200														
		2267	402	238	358	208	313	176	265	161	242	144	217	123	185	b													
		4239	360	214	321	187	281	158	238	145	217	130	195	113	170														
		6212	319	190	285	167	250	141	212	129	194	116	174	102	154														
		8186	280	167	251	147	221	124	187	114	171	102	154	90.7	136														
		162	244	146	219	128	193	109	163	99.6	150	89.6	135	79.4	119														
		143	214	128	192	113	169	95.5	144	87.5	132	78.7	118	69.7	105														
		4126	190	113	170	99.8	150	84.6	127	77.5	117	69.7	105	61.8	92.9														
		113	169	101	152	89.0	134	75.5	113	69.2	104	62.2	93.5	55.1	82.8														
		101	152	90.7	136	79.9	120	67.7	102	62.1	93.3	55.8	83.9	49.5	74.3														
		0	137	81.8	123	72.1	108	61.1	91.9	56.0	84.2	50.4	75.7	44.6	67.1														
		2		74.2	112	65.4	98.3	55.5	83.3	50.8	76.4	45.7	68.7	40.5	60.9														
		0479	719	423	635	366	551	308	463	269	405	229	344	190	285														
		4437	657	379	570	320	480	257	386	225	338	185	278	145	218														
	6	6415	624	360	542	305	458	245	369	216	324	179	269	141	212														
	8	8384	577	333	500	282	423	227	342	200	301	169	254	134	201														
	10	0336	504	290	436	246	369	198	298	175	264	150	226	121	182														
	. $\frac{0}{x}$	2291	438	251	377	212	318	170	256	151	227	130	195	108	162														
	14	$4{ }^{1} 246$	370	210	316	177	266	142	213	126	189	108	162	90.0	135	2													
	>16	6202	304	172	259	144	217	115	172	101	152	87.0	131	72.9	110														
	18	8162	244	138	207	115	173	92.1	138	81.6	123	70.6	106	59.7	89.7														
	20	132	199	112	169	94.2	142	75.5	113	67.1	101	58.3	87.6	49.5	74.4														
	22	2110	165	93.1	140	78.4	118	63.0	94.6	56.1	84.3	48.8	73.4	41.7	62.6														
	24	492.3	139	78.5	118	66.2	99.4	53.2	80.0	47.5	71.4	41.4	62.3	35.5	53.3														
	26	678.8	118	67.1	101																								
Properties of 2 angles- $3 / 8$ in. back to back																													
A_{g}, in. ${ }^{2}$ r_{x}, in. r_{y}, in.		$\begin{gathered} 22.2 \\ 2.51 \\ 1.60 \end{gathered}$		$\begin{gathered} 19.6 \\ 2.53 \\ 1.57 \end{gathered}$		$\begin{gathered} \hline 17.0 \\ 2.55 \\ 1.55 \end{gathered}$		$\begin{gathered} 14.3 \\ 2.56 \\ 1.52 \end{gathered}$		$\begin{gathered} 13.0 \\ 2.57 \\ 1.51 \end{gathered}$		$\begin{gathered} 11.6 \\ 2.58 \\ 1.50 \end{gathered}$		$\begin{gathered} 10.2 \\ 2.59 \\ 1.49 \end{gathered}$															
Properties of single angle																													
r_{z}, in.				0.844			846		. 850		. 856		859		863		. 867												
ASD				LRFD	${ }^{\text {a }}$ For Y-Y axis, welded or pretensioned bolted intermediate connectors with Class A or B faying surfaces must be used. ${ }^{\mathrm{b}}$ For required number of intermediate connectors, see the discussion of Table 4-8. ${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=36$ ksi; tabulated values have been adjusted accordingly. Note: Heavy line indicates L_{c} / r equal to or greater than 200.																								
$\Omega_{C}=1.67$		$\phi_{C}=0$.																											

$F_{y}=36 \mathrm{ksi}$		Table 4-9 (continued) Available Strength in Axial Compression, kips Double Angles-LLBB						
Shape	$2 \mathrm{~L} 6 \times{ }^{1 / 2} \times$							
	1/2		$3 / 8^{\text {c }}$		5/16 ${ }^{\text {c }}$			
lb/ft	30.6		23.4		19.6		\%	
Design	P_{n} / Ω_{c}	${ }_{c}{ }^{\text {c }}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$		
	ASD	LRFD	ASD	LRFD	ASD	LRFD		
	0 194	292	136	205	106	160	b	
	2192	289	135	204	106	159		
	4 188	282	133	200	104	156		
	6 180	271	129	193	100	151		
	8 170	256	123	185	96.0	144		
	10158	237	116	174	90.6	136		
	$2{ }^{2} 144$	217	108	162	84.5	127		
	$4 \quad 130$	195	98.6	148	77.7	117		
	$6 \quad 115$	172	88.1	132	70.5	106		
	8 99.6	- 150	76.7	115	63.1	94.8		
	O 85.2	- 128	65.7	98.8	55.6	83.5		
	271.6	- 108	55.3	83.1	46.9	70.5		
	460.1	- 90.4	46.4	69.8	39.4	59.2		
	8 44.2	- 66.4	34.1	51.3	29.0	43.5		
	38.5	- 57.8	29.7	44.7	25.2	37.9		
	323.8	- 50.8	26.1	39.3	22.2	33.3		
$\bigcirc 0$	0 194	292	136	205	106	160		
言 2	2168	252	111	167	79.9	120		
- 4	$4{ }^{4} 164$	246	109	164	78.6	118		
$\stackrel{0}{0}$ \%	6 155	233	105	158	75.9	114		
-	8 138	207	96.6	145	70.6	106		
少 10	$0 \quad 119$	179	84.5	127	63.6	95.6	2	
خ 12	2 99.3	$3 \quad 149$	70.6	106	55.1	82.9		
14	4 79.8	120	56.6	85.1	44.4	66.7		
16	6 62.4	- 93.8	44.7	67.2	35.6	53.5		
18	8 49.9	- 75.0	36.1	54.2	29.0	43.5		
20	20 40.7	$7 \quad 61.2$	29.6	44.5	24.0	36.0		
22	233.8	50.9	24.7	37.2	20.1	30.2		
Properties of 2 angles- $3 / 8$ in. back to back								
A_{g}, in. ${ }^{2}$		9.00						
r_{x}, in.		1.92						
r_{y}, in.		1.40						
Properties of single angle								
$r_{\text {z }}$, in.		0.756	0.763		0.767			
ASD	LRFD	${ }^{\text {a }}$ For Y - Y axis, welded or pretensioned bolted intermediate connectors with Class A or B faying surfaces must be used. ${ }^{\mathrm{b}}$ For required number of intermediate connectors, see the discussion of Table 4-8. ${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=36 \mathrm{ksi}$; tabulated values have been adjusted accordingly.						
$\Omega_{c}=1.67$	$\phi_{c}=0.90{ }^{\text {b }}$							

2L5 LLBB				Table 4-9 (continued) vailable Strength in al Compression, kips Double Angles-LLBB										
Shape			$2 L 5 \times 31 / 2 \times$											
			$3 / 4$		$5 / 8$		1/2		$3 / 8{ }^{\text {c }}$		$5 / 16^{\text {c }}$			
	lb/		39.6		33.6		27.2		20.8		17.4			
Design			P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$		
			ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD		
	$\begin{aligned} & \underset{\sim}{\underset{x}{x}} \\ & \underset{x}{x} \end{aligned}$	0	252	379	213	319	172	259	130	195	102	153	b	
		2	249	374	210	316	170	256	128	193	101	152		
		4	240	360	202	304	164	247	125	187	98.2	148		
		6	225	338	190	286	155	232	118	177	93.5	141		
		8	206	310	174	262	142	213	109	163	87.4	131		
		10	184	276	156	234	127	191	97.4	146	80.0	120		
		12	160	241	136	204	111	167	85.4	128	71.8	108		
		14	136	204	115	173	95.1	143	73.1	110	61.8	92.8		
		16	112	169	95.7	144	79.3	119	61.0	91.7	51.7	77.7		
		18	90.6	136	77.3	116	64.3	96.7	49.7	74.7	42.2	63.5		
		20	73.4	110	62.6	94.1	52.1	78.3	40.2	60.5	34.2	51.4		
		22	60.6	91.1	51.7	77.8	43.1	64.7	33.3	50.0	28.3	42.5		
		24	50.9	76.6	43.5	65.4	36.2	54.4	27.9	42.0	23.8	35.7		
		0	252	379	213	319	172	259	130	195	102	153		
		2	239	360	198	297	155	232	109	164	82.2	124		
		4	234	351	194	291	152	228	107	161	81.1	122		
		6	220	331	183	275	144	217	103	155	78.7	118		
		8	197	296	163	245	129	195	93.7	141	73.4	110		
		10	173	260	143	215	113	170	82.4	124	65.5	98.4		
		12	148	222	121	182	95.8	144	69.8	105	55.6	83.6	2	
		14	122	184	99.9	150	78.6	118	57.1	85.8	45.5	68.3		
		16	98.5	148	79.6	120	62.4	93.7	45.2	68.0	36.1	54.2		
		18	81.7	123	63.2	95.0	49.6	74.6	36.2	54.5	29.1	43.7		
		20	66.4	99.8	51.4	77.2	40.4	60.7	29.6	44.5	23.9	35.9		
		22	55.0	82.6	42.5	63.9	33.5	50.4	24.6	37.0	19.9	30.0		
		24	46.2	69.5	37.5	56.3	28.2	42.5	20.8	31.3	16.9	25.4		
													3	
Properties of 2 angles- $3 / 8$ in. back to back														
	, in. ${ }^{2}$		11			86								
r_{x},	in.			55		56								
r_{y},				53		50								
Properties of single angle														
r_{z},	in.		0.744			746	0.750		0.755		0.758			
ASD			LRFD	${ }^{\text {a }}$ For $\mathrm{Y}-\mathrm{Y}$ axis, welded or pretensioned bolted intermediate connectors with Class A or B faying surfaces must be used. ${ }^{\mathrm{b}}$ For required number of intermediate connectors, see the discussion of Table 4-8. ${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=36 \mathrm{ksi}$; tabulated values have been adjusted accordingly. Note: Heavy line indicates L_{c} / r equal to or greater than 200.										
	$=1$		$\phi_{c}=0.90$											

$F_{y}=36 \mathrm{ksi}$			Table 4-9 (continued) Available Strength in Axial Compression, kips Double Angles-LLBB																		
Shape		$2 \mathrm{~L} \times \times 3 \times$																			
		$5 /$																			
	lb/ft			22.2		17.0		14.4		11.6											
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$										
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD										
		- 172	259	140	211	107	161	90.0	135	67.5	102										
		2169	253	137	206	105	158	88.4	133	66.5	100										
		4159	239	129	195	99.5	149	83.6	126	63.5	95.4										
		6 144	216	117	176	90.4	136	76.1	114	58.8	88.3										
		8125	188	102	154	79.1	119	66.7	100	52.7	79.2										
		104	157	85.6	129	66.6	100	56.3	84.6	45.5	68.4										
		- 83.6	126	68.9	104	54.0	81.1	45.8	68.8	37.0	55.7	b									
		464.3	96.6	53.2	80.0	42.1	63.3	35.9	53.9	29.0	43.6										
		- 49.2	74.0	40.8	61.2	32.2	48.5	27.5	41.3	22.2	33.4										
		- 38.9	58.5	32.2	48.4	25.5	38.3	21.7	32.6	17.6	26.4										
		31.5	47.4	26.1	39.2	20.6	31.0	17.6	26.4	14.2	21.4										
	$\stackrel{0}{x}$$\frac{1}{\lambda}$$\gg$	0 172	259	140	211	107	161	90.0	135	67.5	102										
		2164	246	130	195	94.6	142	75.5	114	54.1	81.4										
		4158	237	126	190	92.4	139	73.9	111	53.3	80.1										
		6146	219	117	176	86.5	130	69.9	105	51.2	76.9										
		8126	189	100	151	74.7	112	60.9	91.5	46.2	69.4										
		106	160	84.4	127	62.6	94.1	51.2	76.9	39.0	58.7	2									
		- 86.5	130	68.1	102	50.3	75.7	41.1	61.8	31.4	47.2										
		4 67.8	102	52.8	79.3	38.8	58.3	31.6	47.5	24.1	36.3										
		654.8	82.3	42.6	64.0	31.3	47.1	24.5	36.9	18.9	28.4										
		8 43.4	65.2	33.8	50.7	24.9	37.4	19.5	29.4	15.1	22.7										
		O 35.2	52.9	27.4	41.2	20.3	30.5	15.9	23.9	12.4	18.6										
		29.1	43.8	22.7	34.1																
Properties of 2 angles- $3 / 8$ in. back to back																					
$\begin{aligned} & A_{g}, \text { in. }^{2} \\ & r_{x}, \text { in. } \\ & r_{y}, \text { in. } \end{aligned}$		$\begin{aligned} & 7.98 \\ & 1.23 \\ & 1.35 \end{aligned}$		$\begin{aligned} & 6.50 \\ & 1.24 \\ & 1.32 \end{aligned}$		$\begin{aligned} & 4.98 \\ & 1.26 \\ & 1.30 \\ & \hline \end{aligned}$		$\begin{aligned} & 4.18 \\ & 1.27 \\ & 1.29 \end{aligned}$		$\begin{aligned} & 3.38 \\ & 1.27 \\ & 1.27 \end{aligned}$											
Properties of single angle																					
r_{z}, in.				0.631		0.633		0.636		0.638		0.639									
ASD				LRFD	${ }^{\text {a }}$ For Y-Y axis, welded or pretensioned bolted intermediate connectors with Class A or B faying surfaces must be used. ${ }^{\mathrm{b}}$ For required number of intermediate connectors, see the discussion of Table 4-8. ${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=36 \mathrm{ksi}$; tabulated values have been adjusted accordingly. Note: Heavy line indicates L_{c} / r equal to or greater than 200.																
$\Omega_{C}=1.67$		$\phi_{C}=0.90$																			

$F_{y}=36 \mathrm{ksi}$			Table 4-9 (continued) Available Strength in Axial Compression, kips Double Angles-LLBB										
Shape		$2 \mathrm{~L} \times \times 2 \times$											
		1/2		3/8		5/16		$1 / 4$		$3 / 16^{\text {c }}$			
	lb/ft	15.4		11.8		10.0		8.20		6.14			
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$		
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD		
	$\begin{array}{\|l\|l\|} \stackrel{e n}{x} \\ \underset{y}{x} \\ \underset{x}{x} \end{array}$	97.4	146	75.4	113	63.8	95.9	51.7	77.8	36.4	54.8	b	
		96.6	145	74.8	112	63.3	95.1	51.3	77.1	36.2	54.4		
		94.0	141	72.9	110	61.7	92.7	50.0	75.2	35.5	53.3		
		89.9	135	69.8	105	59.1	88.8	48.0	72.1	34.3	51.6		
		84.5	127	65.7	98.8	55.7	83.7	45.3	68.0	32.7	49.2		
		78.0	117	60.8	91.4	51.6	77.6	42.0	63.1	30.8	46.3		
		70.7	106	55.3	83.1	47.0	70.7	38.3	57.6	28.6	43.0		
		62.9	94.6	49.4	74.3	42.1	63.3	34.4	51.7	26.2	39.3		
		55.1	82.8	43.4	65.3	37.1	55.7	30.3	45.6	23.3	35.1		
		47.3	71.1	37.5	56.3	32.1	48.2	26.3	39.5	20.3	30.5		
		39.9	60.0	31.8	47.8	27.3	41.0	22.5	33.7	17.4	26.1		
		33.1	49.8	26.5	39.8	22.8	34.3	18.8	28.3	14.6	21.9		
		27.9	41.9	22.3	33.5	19.2	28.8	15.8	23.7	12.3	18.4		
		23.7	35.7	19.0	28.5	16.3	24.5	13.5	20.2	10.4	15.7		
		20.5	30.8	16.4	24.6	14.1	21.2	11.6	17.4	9.00	13.5		
		17.8	26.8	14.3	21.4	12.3	18.4	10.1	15.2	7.84	11.8		
										6.89	10.4		
	$\frac{0}{x}$$\frac{1}{x}$خ$\lambda$	97.4	146	75.4	113	63.8	95.9	51.7	77.8	36.4	54.8	2	
		93.5	141	70.4	106	57.9	86.9	44.6	67.0	29.7	44.6		
		92.2	139	69.5	104	57.2	85.9	44.1	66.3	29.4	44.2		
		88.8	134	67.3	101	55.5	83.4	43.0	64.6	28.9	43.4		
		83.8	126	63.5	95.4	52.6	79.0	41.0	61.6	28.0	42.0		
		75.5	113	57.0	85.7	47.2	71.0	37.0	55.7	26.0	39.1		
		67.8	102	50.9	76.6	42.2	63.4	33.1	49.7	23.6	35.4		
		59.8	89.8	44.6	67.0	36.8	55.3	28.8	43.3	20.6	31.0		
		51.6	77.6	38.2	57.5	31.4	47.3	24.5	36.9	17.5	26.4		
		43.8	65.8	32.1	48.3	26.3	39.5	20.4	30.7	14.6	21.9		
		38.3	57.5	27.7	41.7	22.6	33.9	16.7	25.2	12.0	18.1		
		31.7	47.6	23.0	34.6	18.8	28.2	14.6	21.9	10.1	15.2		
		26.7	40.1	19.4	29.1	15.8	23.8	12.3	18.5	8.57	12.9		
		22.8	34.2	16.5	24.9	13.5	20.3	10.6	15.9	7.36	11.1		
		19.6	29.5	14.3	21.5	11.7	17.6	9.14	13.7	6.39	9.60		
		17.1	25.7	12.5	18.7								
												3	
Properties of 2 angles- $3 / 8$ in. back to back													
	in. ${ }^{2}$		2										
r_{x},	in.		. 922		937		45				61		
r_{y},			940		P11		97				86		
Properties of single angle													
r_{z},		0.425		0.426		0.428		0.431		0.435			
ASD		LRFD	${ }^{\mathrm{a}}$ For $\mathrm{Y}-\mathrm{Y}$ axis, welded or pretensioned bolted intermediate connectors with Class A or B faying surfaces must be used. ${ }^{\mathrm{b}}$ For required number of intermediate connectors, see the discussion of Table 4-8. ${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=36$ ksi; tabulated values have been adjusted accordingly. Note: Heavy line indicates L_{c} / r equal to or greater than 200.										
	$=1.67$	$\phi_{C}=0.90$											

$F_{y}=36 \mathrm{ks}$					Ve			le 4 St ores ngle	-10 ren ssi			OS			3/8" BB		
Shape		2L8 $\times 6 \times$															
		1		7／8		$3 / 4$		5／8		$9 / 16^{\text {c }}$		$1 / 2^{\text {c }}$		7／16 ${ }^{\text {c }}$			
	lb／ft	88.4		78.2		67.6		57.0		51.4		46.0		40.4			
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	$P_{n} / \Omega_{c} \mid$	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$								
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD		
	$\begin{array}{\|c} \stackrel{e n}{x} \\ \underset{y}{x} \\ \underset{x}{x} \\ \underset{x}{2} \end{array}$	565	849	496	745	431	648	362	544	317	476	272	409	224	337	b	
		542	815	476	716	414	623	348	524	307	461	264	396	219	329		
		515	774	453	681	394	593	332	499	295	443	253	381	212	318		
		479	720	422	635	368	553	310	466	279	419	240	361	202	304		
		437	657	386	580	337	506	284	427	258	388	224	336	189	284		
		391	587	346	520	302	454	256	384	232	349	205	308	173	261		
		342	514	304	456	265	399	225	339	205	308	184	277	157	236		
		293	441	261	393	229	344	195	293	178	267	160	240	139	210		
		246	370	220	331	193	291	165	249	151	227	136	205	121	182		
		202	304	182	273	160	240	137	206	126	189	114	171	101	152		
		167	251	150	226	132	199	114	171	104	156	94.0	141	83.8	126		
		140	211	126	190	111	167	95.4	143	87.3	131	79.0	119	70.5	106		
		120	180	108	162	94.6	142	81.3	122	74.4	112	67.3	101	60.0	90.2		
		103	155	92.7	139	81.5	123	70.1	105	64.1	96.4	58.0	87.2	51.8	77.8		
														45.1	67.8		
¢	0	565	849	496	745	431	648	362	544	317	476	272	409	224	337		
走	4	524	787	450	676	378	569	301	453	261	392	215	323	169	254		
E	6	523	786	450	676	378	568	301	452	261	392	215	323	169	253		
家	8	522	784	449	674	377	567	300	451	260	391	214	322	168	253		
9	10	519	780	447	672	376	565	300	450	260	390	214	322	168	253		
5	12	513	771	443	666	374	562	298	448	259	389	213	321	168	252	3	
흘	16	488	733	425	638	363	545	293	440	255	383	211	318	166	250		
0	¢ 20	440	661	384	577	331	497	272	409	241	362	204	307	162	244		
\％	$\begin{array}{l\|l} \hline \frac{x}{4} & 24 \\ \hline \end{array}$	396	595	345	519	297	447	246	370	220	330	191	287	155	233		
边	ㅊ	349	525	304	457	262	394	217	326	194	292	171	257	143	214		
	>32	302	454	263	395	226	340	187	281	168	252	148	223	127	191		
	36	256	385	223	335	191	287	158	238	142	213	125	188	108	162		
	40	222	334	193	290	165	248	136	205	122	183	108	162	92.9	140		
	44	184	276	160	240	136	205	113	170	101	152	89.7	135	77.6	117		
	48	155	232	134	202	115	173	95.1	143	85.5	128	75.7	114	65.7	98.7		
	52	132	198	114	172	98.0	147	81.2	122	73.0	110	64.7	97.3	56.3	84.6	4	
	56	114	171	98.7	148	84.6	127	70.1	105	63.1	94.8	56.0	84.1	48.7	73.2		
	60	99.1	149	86.1	129	73.7	111	61.2	91.9	55.0	82.7	48.9	73.4	42.5	63.9		
Properties of 2 angles－ $3 / 8$ in．back to back																	
	，in．${ }^{2}$	26		23.	． 0	20.		16.		15.				2.			
r_{x} ，in	in．		． 72		． 74		． 75		． 77		． 78		79		80		
r_{y} ，i	in．		． 77		3.75		． 72		． 70		． 69		68		66		
Properties of single angle																	
r_{z} ，in	in．	1.28			． 28	1.29		1.29		1.30		1.30		1.31			
ASD		LRFD	${ }^{\text {a }}$ For $Y-Y$ axis，welded or pretensioned bolted intermediate connectors with Class A or B faying surfaces must be used． ${ }^{\mathrm{b}}$ For required number of intermediate connectors，see the discussion of Table 4－8． ${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=36$ ksi；tabulated values have been adjusted accordingly． Note：Heavy line indicates L_{c} / r equal to or greater than 200.														
	${ }_{c}=1.67$	$\phi_{c}=0.90$															

$F_{y}=36 \mathrm{ksi}$					le 4 ab			ed) th n, BB	ps	$2 \mathrm{~L}$			
Shape		$2 \mathrm{~L} \times \times 4 \times$											
		$3 / 4$		5/8		$1 / 2^{\text {c }}$		7/16 ${ }^{\text {c }}$		$3 / 8{ }^{\text {c }}$			
	lb/ft	52.4		44.2		35.8		31.4		27.2			
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$		
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD		
	$\begin{aligned} & \frac{\infty}{x} \\ & \underset{x}{x} \\ & \underset{x}{x} \end{aligned}$	334	502	280	421	219	329	183	275	148	223	b	
		301	453	254	381	202	304	170	255	138	207		
		264	397	224	336	181	273	154	231	125	188		
		220	331	188	282	153	229	134	202	109	164		
		174	262	150	225	122	184	109	164	91.6	138		
		131	197	114	171	93.3	140	83.6	126	72.2	109		
		96.3	145	83.8	126	68.9	104	61.9	93.0	53.4	80.3		
		73.7	111	64.1	96.4	52.7	79.3	47.4	71.2	40.9	61.5		
		58.2	87.5	50.7	76.2	41.7	62.6	37.4	56.2	32.3	48.6		
	0	334	502	280	421	219	329	183	275	148	223		
	4	303	456	244	367	184	276	148	222	111	167		
	6	303	455	244	367	184	276	148	222	111	167		
	8	303	455	244	367	184	276	147	222	111	167		
	10	302	454	244	366	183	276	147	221	111	167		
	12	299	450	243	365	183	275	147	221	111	167		
	16	283	425	234	352	181	272	146	220	111	166		
	20	252	378	210	315	167	251	141	211	108	163		
	$\stackrel{\sim}{\times}$	223	335	186	279	148	223	129	194	102	154	5	
	近 28	193	290	160	241	128	192	112	168	92.1	138		
	خ 32	163	245	136	204	108	162	94.4	142	80.3	121		
	36	135	203	112	168	88.9	134	77.7	117	66.0	99.2		
	40	113	169	93.4	140	72.2	108	63.2	94.9	53.8	80.8		
	44	93.1	140	77.2	116	59.7	89.8	52.3	78.6	44.6	67.0		
	48	78.3	118	64.9	97.6	50.2	75.5	44.0	66.2	37.6	56.4		
	52	66.7	100	55.4	83.2	42.8	64.4	37.6	56.4	32.1	48.2		
	56	57.5	86.5	47.7	71.8	37.0	55.5	32.4	48.7	27.7	41.6		
												6	
Properties of 2 angles- $3 / 8$ in. back to back													
	, in. ${ }^{2}$	15				10.							
r_{x},	in.		. 08		10								
r_{y},	in.		48		46								
Properties of single angle													
r_{z},	in.	0.855			860	0.866			69	0.873			
ASD		LRFD	${ }^{\text {a }}$ For Y - Y axis, welded or pretensioned bolted intermediate connectors with Class A or B faying surfaces must be used. ${ }^{\mathrm{b}}$ For required number of intermediate connectors, see the discussion of Table 4-8. ${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=36$ ksi; tabulated values have been adjusted accordingly. Note: Heavy line indicates L_{c} / r equal to or greater than 200.										
	${ }_{c}=1.67$	$\phi_{c}=0.90$											

$F_{y}=36 \mathrm{ksi}$					e 4 abl			ed) th n, BB	ps	$2 \mathrm{~L}$											
Shape		$2 \mathrm{~L} \times \times{ }^{1 / 2} \times$																			
		$3 / 4$		5/8		1/2		$3 / 8{ }^{\text {c }}$		$5 / 16^{\text {c }}$											
lb/ft		39.6		33.6		27.2		20.8		17.4											
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	${ }_{\phi} P_{n}$										
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD										
	$\begin{aligned} & \stackrel{e n}{x} \\ & \underset{a}{x} \\ & \underset{x}{x} \end{aligned}$	252	379	213	319	172	259	130	195	102	153	b									
		250	376	211	317	171	257	129	194	101	152										
		244	367	206	310	167	251	127	190	99.6	150										
		235	353	198	298	161	242	123	185	96.7	145										
		222	334	188	282	153	230	117	176	92.8	139										
		207	310	175	263	143	214	110	165	87.9	132										
		189	284	161	241	131	197	101	152	82.3	124										
		170	256	145	218	119	179	92.0	138	76.1	114										
		151	227	129	194	106	160	82.5	124	69.2	104										
		132	198	113	170	93.3	140	72.9	110	61.2	91.9										
		113	170	97.6	147	80.8	121	63.5	95.4	53.3	80.1										
		95.7	144	82.9	125	68.9	104	54.5	81.8	45.7	68.7										
		80.5	121	69.6	105	58.0	87.2	46.0	69.1	38.6	58.0										
		68.6	103	59.3	89.2	49.4	74.3	39.2	58.9	32.9	49.4										
		59.1	88.8	51.2	76.9	42.6	64.0	33.8	50.8	28.4	42.6										
		51.5	77.4	44.6	67.0	37.1	55.8	29.4	44.3	24.7	37.1										
		45.3	68.0	39.2	58.9	32.6	49.0	25.9	38.9	21.7	32.6										
								22.9	34.5	19.2	28.9										
	181	252	379	213	319	172	259	130	195	102	153										
		237	357	196	295	153	230	107	162	80.9	122										
		231	348	193	290	152	228	107	161	80.6	121										
		222	333	186	279	148	223	106	159	80.1	120										
		210	316	176	265	141	212	103	155	79.2	119										
		192	288	161	242	129	194	95.9	144	76.2	114										
		177	265	148	222	119	178	88.4	133	72.0	108										
		161	242	134	202	108	162	80.3	121	66.1	99.4										
		145	218	121	182	96.6	145	72.0	108	59.4	89.3	4									
		129	194	107	162	85.7	129	63.8	95.9	52.7	79.2										
		114	171	94.5	142	75.1	113	55.8	83.9	46.1	69.4										
		99.0	149	82.1	123	65.0	97.7	48.2	72.4	39.8	59.8										
		85.4	128	70.8	106	56.1	84.4	41.6	62.6	34.5	51.8										
		74.4	112	61.7	92.8	48.9	73.6	36.3	54.6	30.1	45.3										
		65.4	98.3	54.3	81.6	43.0	64.7	32.0	48.1	26.5	39.9										
		58.0	87.1	48.1	72.3	38.2	57.3	28.4	42.6	23.5	35.4										
		46.4	69.8	38.5	57.9	30.6	45.9	22.7	34.2	18.9	28.4										
Properties of 2 angles- $3 / 8$ in. back to back																					
A_{g}, in. ${ }^{2}$ r_{x}, in. r_{y}, in.		11.7 0.974 2.47		$\begin{aligned} & 9.86 \\ & 0.987 \\ & 2.45 \end{aligned}$		$\begin{aligned} & 8.00 \\ & 1.00 \\ & 2.42 \end{aligned}$		$\begin{aligned} & 6.10 \\ & 1.02 \\ & 2.39 \end{aligned}$		$\begin{aligned} & 5.12 \\ & 1.02 \\ & 2.38 \end{aligned}$											
Properties of single angle																					
r_{z},	in.			0.744		0.746		0.750		0.755		0.758									
ASD				LRFD	${ }^{\text {a }}$ For Y-Y axis, welded or pretensioned bolted intermediate connectors with Class A or B faying surfaces must be used. ${ }^{\mathrm{b}}$ For required number of intermediate connectors, see the discussion of Table 4-8. ${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=36$ ksi; tabulated values have been adjusted accordingly. Note: Heavy line indicates L_{c} / r equal to or greater than 200.																
	${ }_{c}=1.67$	$\phi_{c}=0.90$																			

$F_{y}=36 \mathrm{ksi}$					le 4 ab om ble			ed) th n, BB	ips	2L3			
Shape		$2 \mathrm{~L} 3^{1 / 2 \times 3 \times}$											
		1/2		7/16		3/8		5/16		$1 / 4^{\text {c }}$			
	lb/ft	20.4		18.2		15.8		13.2		10.8			
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$		
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD		
with respect to indicated axis	$\begin{array}{\|l\|l} \stackrel{e n}{x} \\ \underset{㐅}{x} \\ \underset{x}{x} \end{array}$	130	196	115	173	100	150	84.1	126	66.3	99.6	b	
		129	194	114	171	99.1	149	83.3	125	65.8	98.8		
		125	188	111	166	96.3	145	81.0	122	64.2	96.6		
		119	179	106	159	91.8	138	77.3	116	61.8	92.9		
		111	167	98.6	148	85.9	129	72.4	109	58.5	87.9		
		102	153	90.4	136	78.8	118	66.5	100	54.1	81.4		
		91.3	137	81.2	122	71.0	107	60.0	90.2	48.9	73.5		
		80.3	121	71.6	108	62.7	94.3	53.1	79.9	43.4	65.2		
		69.3	104	62.0	93.1	54.4	81.7	46.2	69.4	37.8	56.8		
		58.6	88.1	52.6	79.0	46.2	69.5	39.4	59.2	32.3	48.6		
		48.5	72.9	43.7	65.6	38.5	57.9	33.0	49.6	27.2	40.8		
		40.1	60.2	36.1	54.2	31.8	47.9	27.3	41.0	22.5	33.8		
		33.7	50.6	30.3	45.6	26.8	40.2	22.9	34.4	18.9	28.4		
		28.7	43.1	25.8	38.8	22.8	34.3	19.5	29.3	16.1	24.2		
		24.7	37.2	22.3	33.5	19.7	29.6	16.8	25.3	13.9	20.9		
								14.7	22.0	12.1	18.2		
	$\begin{aligned} & \frac{\infty}{x} \\ & \frac{9}{x} \\ & \frac{1}{\lambda} \end{aligned}$	130	196	115	173	100	150	84.1	126	66.3	99.6	3	
		117	176	102	154	87.2	131	70.7	106	53.1	79.8		
		109	164	95.5	144	82.1	123	67.5	101	51.6	77.5		
		96.1	144	84.2	127	72.5	109	60.1	90.3	47.0	70.6		
		84.4	127	73.8	111	63.5	95.4	52.7	79.2	41.5	62.3		
		72.3	109	63.0	94.7	54.2	81.5	45.0	67.6	35.4	53.2		
		60.6	91.0	52.6	79.0	45.2	67.9	37.4	56.2	29.4	44.2		
		49.4	74.3	42.7	64.2	36.6	55.0	30.3	45.5	23.8	35.7		
		41.7	62.6	36.0	54.1	29.7	44.7	24.6	37.0	19.4	29.1		
		34.5	51.8	29.8	44.7	24.6	37.0	20.4	30.7	16.1	24.2		
		29.0	43.6	25.0	37.6	20.7	31.1	17.2	25.8	13.6	20.4		
		24.7	37.1	21.4	32.1	17.7	26.6	14.7	22.0	11.6	17.4		
		21.3	32.0										
												4	
Properties of 2 angles- $3 / 8$ in. back to back													
	, in. ${ }^{2}$. 04										
r_{x},	in.		877		885		92		00		08		
r_{y},													
Properties of single angle													
r_{z},	in.	0.618			620	0.622		0.624		0.628			
ASD		LRFD	${ }^{\text {a }}$ For $\mathrm{Y}-\mathrm{Y}$ axis, welded or pretensioned bolted intermediate connectors with Class A or B faying surfaces must be used. ${ }^{\mathrm{b}}$ For required number of intermediate connectors, see the discussion of Table 4-8. ${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=36$ ksi; tabulated values have been adjusted accordingly. Note: Heavy line indicates L_{c} / r equal to or greater than 200.										
	c $=1.67$	$\phi_{c}=0.90$											

2L3½ SLBB Table 4-10 (continued) Available Strength in Axial Compression, kips Double Angles-SLBB																	
Shape		$2 \mathrm{~L} 3^{1 / 2 \times 2}{ }^{1 / 2 \times}$															
			1/2	$3 / 8$		5/16		$1 / 4{ }^{\text {c }}$									
lb/ft		18.8		14.4		12.2		9.80									
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$								
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD								
		119	179	91.4	137	77.2	116	60.7	91.2	b							
		118	177	90.1	135	76.1	114	60.0	90.1								
		- 112	169	86.2	129	72.8	109	57.9	87.0								
		304	156	80.0	120	67.7	102	54.5	82.0								
		43.3	140	72.1	108	61.2	92.0	49.8	74.9								
		51.2	122	63.2	94.9	53.7	80.7	43.8	65.9								
		68.5	103	53.7	80.7	45.8	68.8	37.5	56.4								
		56.1	84.3	44.3	66.6	37.9	57.0	31.2	46.9								
		44.4	66.7	35.5	53.3	30.5	45.8	25.2	37.9								
		35.1	52.7	28.0	42.1	24.1	36.2	20.0	30.0								
		28.4	42.7	22.7	34.1	19.5	29.4	16.2	24.3								
		23.5	35.3	18.8	28.2	16.1	24.3	13.4	20.1								
						13.6	20.4	11.2	16.9								
	$\begin{aligned} & \frac{0}{x} \\ & \underset{⿺ 𠃊}{\lambda} \\ & \underset{\lambda}{\lambda} \end{aligned}$	119	179	91.4	137	77.2	116	60.7	91.2	4							
		2112	169	82.4	124	66.7	100	50.0	75.1								
		112	168	82.1	123	66.5	100	49.8	74.9								
		108	163	80.9	122	65.9	99.1	49.5	74.4								
		102	153	76.7	115	63.6	95.5	48.6	73.1								
		90.7	136	68.5	102	57.2	86.0	45.1	67.7								
		80.5	121	60.6	91.1	50.7	76.2	40.2	60.4								
		69.9	105	52.4	78.8	43.9	65.9	34.8	52.3								
		59.4	89.3	44.3	66.7	37.0	55.7	29.3	44.1								
		49.4	74.2	36.7	55.1	30.6	46.0	24.1	36.2								
		40.2	60.5	29.8	44.8	24.9	37.4	19.6	29.5								
		33.3	50.0	24.7	37.1	20.6	30.9	16.3	24.4								
		28.0	42.0	20.7	31.2	17.3	26.0	13.7	20.6								
		23.8	35.8	17.7	26.6	14.8	22.2	11.7	17.6								
		20.6	30.9	15.3	22.9	12.7	19.1	10.1	15.2								
Properties of 2 angles- $3 / 8$ in. back to back																	
$\begin{aligned} & A_{g}, \text { in. }{ }^{2} \\ & r_{x} \text { in. } \\ & r_{y}, \text { in. } \end{aligned}$				$\begin{aligned} & 4.24 \\ & 0.716 \\ & 1.73 \end{aligned}$		3.58 0.723 1.72	$\begin{aligned} & 3.58 \\ & 0.723 \\ & 1.72 \end{aligned}$	$\begin{aligned} & 2.90 \\ & 0.731 \\ & 1.70 \end{aligned}$									
		5.54 0.701 1.76															
Properties of single angle																	
r_{z}, in	in.		0.532	0.535		0.538		0.541									
ASD		LRFD	${ }^{\text {a }}$ For Y-Y axis, welded or pretensioned bolted intermediate connectors with Class A or B faying surfaces must be used. ${ }^{\mathrm{b}}$ For required number of intermediate connectors, see the discussion of Table 4-8. ${ }^{\mathrm{c}}$ Shape is slender for compression with $F_{y}=36 \mathrm{ksi}$; tabulated values have been adjusted accordingly. Note: Heavy line indicates L_{c} / r equal to or greater than 200.														
$\Omega_{C}=1.67$		$\phi_{c}=0.90$															

$F_{y}=36 \mathrm{ksi}$						$\begin{aligned} & \text { 4-1 } \\ & \text { ible } \\ & \text { omp } \end{aligned}$	0 (C St pre Angle				x	2L3			
Shape		2L3 $\times 2$ 1/2×													
		1/2													
	lb/ft	17.0	. 0	15	. 2	13	3.2	11	1.2	9.0	00				
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$		
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD		
	X-X Axis	108	162	95.7	144	83.2	125	70.3	106	56.9	85.5	39.7	59.6	b	
		106	160	94.3	142	82.0	123	69.3	104	56.1	84.4	39.3	59.1		
		102	153	90.3	136	78.6	118	66.5	99.9	53.9	81.0	38.2	57.5		
		94.4	142	84.0	126	73.2	110	62.0	93.2	50.3	75.7	36.3	54.6		
		85.2	128	75.9	114	66.3	99.7	56.3	84.6	45.8	68.8	33.6	50.4		
		74.6	112	66.7	100	58.4	87.7	49.7	74.7	40.5	60.8	30.3	45.6		
		63.5	95.4	56.9	85.5	49.9	75.0	42.6	64.1	34.9	52.4	26.6	40.0		
		52.4	78.8	47.1	70.8	41.5	62.4	35.6	53.5	29.2	43.9	22.4	33.7		
		42.0	63.2	37.9	57.0	33.6	50.4	28.9	43.4	23.8	35.8	18.3	27.5		
		33.2	49.9	30.0	45.1	26.6	39.9	22.9	34.5	18.9	28.5	14.6	22.0		
		26.9	40.4	24.3	36.5	21.5	32.4	18.6	27.9	15.3	23.0	11.8	17.8		
		22.2	33.4	20.1	30.2	17.8	26.7	15.4	23.1	12.7	19.0	9.78	14.7		
				16.9	25.4	15.0	22.5	12.9	19.4	10.6	16.0	8.22	12.4		
	Y-Y Axis	108	162	95.7	144	83.2	125	70.3	106	56.9	85.5	7		3	
		103	154	90.0	135	76.6	115	62.6	94.1	47.8	71.8	31.2	46.9		
		101	152	88.8	133	75.8	114	62.1	93.3	47.5	71.4	31.1	46.7		
		94.8	142	83.8	126	72.1	108	59.9	90.0	46.4	69.8	30.7	46.1		
		83.8	126	74.1	111	63.8	95.9	53.3	80.1	42.3	63.5	29.3	44.1		
		73.0	110	64.4	96.8	55.3	83.1	46.2	69.5	36.8	55.3	26.5	39.9		
		61.6	92.5	54.2	81.5	46.4	69.7	38.7	58.2	30.9	46.4	22.4	33.7		
		50.4	75.7	44.3	66.5	37.7	56.7	31.4	47.2	25.0	37.6	18.1	27.3		
		41.6	62.5	36.4	54.8	30.8	46.3	25.6	38.5	20.3	30.6	14.2	21.4		
		32.9	49.4	28.8	43.3	24.4	36.7	20.3	30.5	16.1	24.3	11.8	17.7		
		26.7	40.1	23.4	35.1	19.8	29.7	16.5	24.7	13.1	19.7	9.59	14.4		
		22.0	33.1	19.3	29.0	16.4	24.6	13.6	20.5	10.9	16.3	7.96	12.0	4	
		18.5	27.9	16.2	24.4	13.8	20.7	11.5	17.2	9.14	13.7				
Properties of 2 angles- $3 / 8$ in. back to back															
	, in. ${ }^{2}$	5.0	00		. 44		. 86		26		64		00		
	in.		718		. 724		. 731		739		746		753		
			49		. 48		. 46		45		, 44				
Properties of single angle															
	in.	0.516		0.516		0.517		0.518		0.520		0.521			
ASD		LRFD	${ }^{\text {a }}$ For Y - Y axis, welded or pretensioned bolted intermediate connectors with Class A or B faying surfaces must be used. ${ }^{\mathrm{b}}$ For required number of intermediate connectors, see the discussion of Table 4-8. ${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=36$ ksi; tabulated values have been adjusted accordingly. Note: Heavy line indicates L_{c} / r equal to or greater than 200.												
$\Omega_{c}=1.67$		$\phi_{C}=0.90$													

Shape		L12×12×							
		13/8		11/4		11/8		1	
lb/ft		105		96.4		87.2		77.8	
Design		P_{n} / Ω_{c}	${ }_{\phi}{ }_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	670	1010	612	920	556	836	496	745
	1	669	1010	611	919	555	835	495	744
	2	667	1000	609	915	553	831	493	741
	3	662	995	604	908	549	825	490	736
	4	655	985	598	899	544	817	485	729
	5	647	972	591	888	537	807	479	720
	6	637	957	582	874	529	795	472	709
	7	625	939	571	858	519	781	463	696
	8	612	919	559	840	509	764	454	682
	9	597	897	546	820	497	747	443	666
	10	581	873	531	798	484	727	432	649
	11	564	847	516	775	470	706	419	630
	12	545	820	499	750	455	684	406	611
	13	526	791	482	724	439	660	392	590
	14	506	761	463	697	423	636	378	568
	15	486	730	445	668	406	611	363	546
	16	465	698	426	640	389	585	348	523
	17	443	666	406	610	371	558	332	499
	18	421	633	386	581	354	532	317	476
	19	400	601	367	551	336	505	301	452
	20	378	568	347	521	318	478	285	428
	21	356	536	327	492	300	452	269	405
	22	335	504	308	463	283	425	254	381
	23	314	472	289	434	266	399	238	358
	24	294	441	270	406	249	374	223	336
	25	274	411	252	379	232	349	209	314
	26	254	382	234	352	216	325	194	292
	27	236	354	217	326	201	301	180	271
	28	219	329	202	303	186	280	168	252
Properties									
$\begin{aligned} & A_{g}, \text { in }^{2}{ }^{2} \\ & r_{Z}, \text { in. } \end{aligned}$		$\begin{gathered} 31.1 \\ 2.30 \end{gathered}$		$\begin{gathered} 28.4 \\ 2.31 \end{gathered}$		25.8		23.0	
ASD		LRFD							
$\Omega_{C}=$		$\phi_{C}=0.90$							

$F_{y}=36$		Table 4-11 (continued) Available Strength in Axial Compression, kips Concentrically Loaded Single Angles											
Shape		L10×10×											
		13/8		11/4		11/8		1		7/8		$3 / 4^{\text {c }}$	
lb/ft		87.1		79.9		72.3		64.7		56.9		49.1	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	552	829	504	758	459	690	410	616	362	544	306	460
	1	551	828	503	757	458	689	409	614	361	543	305	459
	2	547	823	500	752	455	684	406	611	359	540	304	457
	3	542	814	495	744	451	677	402	604	356	534	302	454
	4	534	802	488	733	444	668	396	596	351	527	299	449
	5	524	787	479	720	436	656	389	585	344	517	295	443
	6	512	770	468	704	426	641	380	572	337	506	290	436
	7	498	749	456	685	415	624	370	557	328	493	284	427
	8	483	726	442	664	403	605	359	540	318	478	275	414
	9	466	701	426	641	389	584	347	521	307	462	266	400
	10	448	674	410	616	374	562	333	501	295	444	257	386
	11	429	645	392	590	358	538	319	480	283	426	246	370
	12	409	615	374	562	341	513	305	458	270	406	235	354
	13	388	584	355	534	324	488	289	435	257	386	224	337
	14	367	552	336	505	307	461	274	411	243	365	212	319
	15	346	520	316	475	289	434	258	388	229	344	201	301
	16	324	487	296	445	271	408	242	364	215	323	189	283
	17	303	455	277	416	253	381	226	340	201	302	177	266
	18	281	423	257	387	236	354	210	316	187	282	165	248
	19	261	392	238	358	219	328	195	293	174	261	153	230
	20	240	361	220	330	202	303	180	270	160	241	142	213
	21	221	332	202	303	185	279	165	249	148	222	131	197
	22	201	303	184	277	169	255	151	227	135	203	120	181
	23	184	277	168	253	155	233	138	208	123	186	110	165
	24	169	254	155	233	142	214	127	191	113	170	101	152
	25	156	234	143	214	131	197	117	176	105	157	93.0	140
	26	144	217	132	198	121	182	108	163	96.6	145	86.0	129
	27	134	201	122	184	112	169	100	151	89.6	135	79.8	120
	28	124	187	114	171	105	157	93.3	140	83.3	125	74.2	111
Properties													
A_{g}, in. ${ }^{2}$		25		23.		21		19		16		14	
r_{z}, in.			91		91		92		92		93		96
ASD		LRFD		${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=36 \mathrm{ksi}$; tabulated values have been adjusted accordingly.									
$\Omega_{c}=1.67$		$\phi_{c}=0.90$											

$F_{y}=36$		Cosi		Tab vai al ntric	le 4 abl am ally		cont	inue ngt ion Sing	d)	OS ngles	z X		
Shape		L8×8×		L8×6×									
		$1 / 2^{\text {c }}$		1		7/8		$3 / 4$		5/8		$9 / 16^{\text {c }}$	
lb/ft		26.4		44.2		39.1		33.8		28.5		25.7	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	148	222	282	424	248	373	215	324	181	272	159	238
	1	147	222	281	422	247	371	214	322	180	270	158	237
	2	147	220	277	417	243	366	211	318	177	267	156	235
	3	145	218	271	407	238	357	207	311	174	261	153	230
	4	143	215	262	394	230	346	200	301	168	253	149	224
	5	140	211	252	378	221	332	192	289	161	243	144	217
	6	137	206	239	359	210	315	183	275	153	231	139	208
	7	134	201	225	338	198	297	172	259	145	217	132	198
	8	130	195	210	316	184	277	161	242	135	203	123	185
	9	125	188	194	292	170	256	149	224	125	188	114	171
	10	120	181	178	267	156	235	137	205	115	172	105	157
	11	115	173	161	242	142	213	124	187	104	157	95.3	143
	12	109	164	145	218	127	191	112	168	94.0	141	86.0	129
	13	102	153	129	194	113	170	99.7	150	83.9	126	76.9	116
	14	93.9	141	114	171	100	150	88.2	133	74.2	112	68.1	102
	15	86.1	129	99.6	150	87.4	131	77.1	116	64.9	97.6	59.7	89.7
	16	78.4	118	87.5	132	76.8	115	67.8	102	57.1	85.8	52.4	78.8
	17	71.0	107	77.5	117	68.1	102	60.0	90.2	50.5	76.0	46.5	69.8
	18	63.9	96.0	69.1	104	60.7	91.2	53.6	80.5	45.1	67.8	41.4	62.3
	19	57.3	86.1	62.1	93.3	54.5	81.9	48.1	72.2	40.5	60.8	37.2	55.9
	20	51.7	77.7	56.0	84.2	49.2	73.9	43.4	65.2	36.5	54.9	33.6	50.4
	21	46.9	70.5	50.8	76.4	44.6	67.0	39.3	59.1	33.1	49.8	30.4	45.8
	22	42.7	64.2										
	23	39.1	58.8										
	24	35.9	54.0										
	25	33.1	49.8										
	26	30.6	46.0										
Properties													
A_{g}, in. ${ }^{2}$			84	13		11.			99		41		
r_{z}, in.			59		28		28		29		29		30
ASD		LRFD		${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=36 \mathrm{ksi}$; tabulated values have been adjusted accordingly. Note: Heavy line indicates L_{c} / r_{z} equal to or greater than 200.									
$\Omega_{c}=1.67$		$\phi_{c}=0.90$											

L12		Ec			4-1 Str es ded	gth ng, ngle		$y=$	$k s i$
Shape		L12×12×							
		13/8		11/4		11/8		1	
		105		96.4		87.2		77.8	
Design		P_{n} / Ω_{c}	${ }_{\phi} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	355	534	343	516	328	494	311	467
	1	354	533	342	515	328	493	310	466
	2	353	530	341	513	326	491	309	464
	3	350	526	338	509	324	487	306	461
	4	346	521	334	503	320	482	303	456
	5	341	514	330	496	316	475	298	449
	6	336	505	324	488	310	467	293	442
	7	329	496	318	479	304	458	287	433
	8	322	485	310	468	297	448	281	423
	9	313	473	302	457	289	437	273	413
	10	305	461	294	444	281	425	266	401
	11	296	447	285	431	273	412	257	389
	12	286	433	276	417	263	399	249	376
	13	276	419	266	403	254	385	240	363
	14	266	404	256	388	245	371	230	349
	15	256	389	246	373	235	357	221	336
	16	246	373	236	359	225	342	212	322
	17	235	358	226	344	215	328	203	308
	18	225	343	216	329	206	314	193	295
	19	215	328	206	314	196	299	184	281
	20	205	313	197	300	187	286	175	268
	21	196	299	187	286	178	272	167	255
	22	186	285	178	272	169	259	158	242
	23	177	271	169	259	161	246	150	230
	24	168	258	161	246	153	233	142	218
	25	160	245	152	233	145	221	135	206
	26	151	232	144	221	137	210	127	195
	27	143	220	136	209	129	198	120	184
	28	136	208	129	198	122	187	114	174
Properties									
$\begin{aligned} & A_{g}, \text { in. }^{2} \\ & r_{z}, \text { in. } \end{aligned}$		$\begin{gathered} 31.1 \\ 2.30 \end{gathered}$		$\begin{gathered} 28.4 \\ 2.31 \end{gathered}$		$\begin{aligned} & 25.8 \\ & 2.33 \end{aligned}$		$\begin{gathered} 23.0 \\ 2.34 \end{gathered}$	
ASD		LRFD							
$\Omega_{C}=1.67$		$\phi_{C}=0.90$							

$F_{y}=36 \mathrm{ksi}$			Table 4-12 (continued) Available Strength in Axial Compression, kips Eccentrically Loaded Single Angles									L10	$\overbrace{-Y}^{a l}$
Shape		L10×10×											
		13/8		11/4		11/8		1		7/8		$3 / 4{ }^{\text {c }}$	
lb/ft		87.1		79.9		72.3		64.7		56.9		49.1	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{C} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	262	393	254	383	247	371	234	352	223	336	187	282
	1	261	393	254	382	246	370	233	351	223	335	187	282
	2	259	390	252	379	245	368	232	349	221	333	187	281
	3	257	386	249	375	242	364	229	345	219	329	187	281
	4	253	380	246	370	238	358	225	339	215	324	186	280
	5	248	373	241	363	233	351	221	333	211	317	185	278
	6	242	365	235	354	228	343	215	325	205	310	184	277
	7	236	356	229	345	221	334	209	316	199	301	181	272
	8	229	345	221	335	214	324	202	306	193	291	176	265
	9	221	334	214	323	207	312	195	295	186	281	172	258
	10	213	322	206	311	199	301	187	284	178	270	165	250
	11	204	310	197	299	190	288	179	272	170	258	158	239
	12	196	297	189	286	182	276	171	260	162	246	150	228
	13	187	284	180	274	173	263	163	247	154	234	143	217
	14	178	271	171	261	165	250	154	235	146	223	135	206
	15	170	258	163	248	156	238	146	223	138	211	128	195
	16	161	245	154	235	148	225	138	211	130	199	121	184
	17	152	233	146	222	140	213	130	199	123	188	113	173
	18	144	220	138	210	132	201	123	188	115	176	107	163
	19	136	208	130	198	124	189	115	177	108	166	100	153
	20	128	196	122	187	116	178	108	166	101	155	94.1	143
	21	121	185	115	176	109	167	102	156	95.4	146	88.0	134
	22	113	174	108	165	102	157	95.4	145	89.1	136	82.2	125
	23	107	163	101	155	96.4	147	89.3	136	83.2	127	76.7	117
	24	100	154	95.4	145	90.5	138	83.7	128	77.9	119	71.7	109
	25	95.1	145	89.8	137	85.1	130	78.6	120	73.1	111	67.1	102
	26	89.8	137	84.8	129	80.2	122	74.0	113	68.7	105	63.0	96.4
	27	84.9	130	80.1	122	75.7	115	69.8	106	64.7	99.0	59.2	90.7
	28	80.5	123	75.8	116	71.6	109	65.9	100	61.0	93.3	55.8	85.4
Properties													
$\begin{aligned} & A_{g}, \text { in. }^{2} \\ & r_{z}, \text { in. } \end{aligned}$		$\begin{aligned} & 25.6 \\ & 1.91 \end{aligned}$		$\begin{gathered} 23.4 \\ 1.91 \end{gathered}$		$\begin{gathered} 21.3 \\ 1.92 \end{gathered}$		$\begin{gathered} 19.0 \\ 1.92 \end{gathered}$		$\begin{gathered} 16.8 \\ 1.93 \end{gathered}$		$\begin{gathered} 14.5 \\ 1.96 \end{gathered}$	
ASD		LRFD		${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=36 \mathrm{ksi}$; tabulated values have been adjusted accordingly.									
$\Omega_{c}=1.67$		$\phi_{C}=0.90$											

L8			Table 4-12 (continued) vailable Strength in al Compression, kips trically Loaded Single Angles										
Shape		L8×8×											
		11/8		1		7/8		$3 / 4$		5/8		$9 / 16^{\text {c }}$	
		56.9		51.0		45.0		38.9		32.7		29.6	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	174	262	167	251	160	240	150	225	127	192	108	163
	1	173	261	167	251	159	239	149	225	127	191	108	163
	2	172	258	165	248	157	237	148	222	127	191	108	162
	3	169	254	162	244	155	233	145	219	126	189	107	161
	4	165	249	158	239	151	228	142	213	125	188	107	160
	5	160	242	154	232	147	221	137	207	124	186	105	159
	6	155	234	148	224	141	213	132	200	121	181	103	154
	7	149	225	142	215	135	205	127	191	116	175	100	150
	8	142	216	136	206	129	196	120	182	110	167	97.4	146
	9	135	205	129	196	122	186	114	173	104	158	94.2	141
	10	128	195	122	186	116	176	108	163	98.3	149	90.7	135
	11	121	184	115	175	109	166	101	154	92.1	140	86.1	129
	12	114	174	108	165	102	155	94.8	144	86.0	130	80.3	122
	13	107	163	101	154	95.6	145	88.3	134	80.0	121	74.6	113
	14	100	153	94.9	144	89.1	136	82.1	125	74.1	113	69.1	105
	15	93.7	143	88.4	134	82.8	126	76.1	116	68.6	104	63.8	97.5
	16	87.3	133	82.1	125	76.8	117	70.4	107	63.3	96.8	58.8	90.0
	17	81.1	123	76.1	116	71.1	108	64.9	99.4	58.3	89.2	54.1	82.8
	18	75.1	114	70.3	107	65.5	100	59.7	91.4	53.5	81.9	49.6	75.9
	19	69.6	106	65.1	99.6	60.5	92.6	55.0	84.2	49.1	75.2	45.5	69.6
	20	64.7	99.0	60.4	92.4	56.0	85.8	50.8	77.8	45.3	69.3	41.9	64.1
	21	60.2	92.2	56.2	85.9	52.0	79.6	47.1	72.0	41.9	64.1	38.7	59.2
	22	56.2	86.1	52.3	80.1	48.4	74.1	43.7	66.9	38.8	59.4	35.8	54.8
	23	52.6	80.5	48.9	74.8	45.1	69.1	40.7	62.3	36.1	55.2	33.2	50.9
	24	49.3	75.5	45.8	70.1	42.2	64.6	38.0	58.1	33.6	51.4	30.9	47.4
	25	46.3	70.9	42.9	65.7	39.5	60.5	35.5	54.4	31.4	48.0	28.9	44.2
	26	43.6	66.7	40.3	61.8	37.1	56.8	33.3	50.9	29.4	44.9	27.0	41.3
Properties													
$\begin{aligned} & A_{g}, \text { in. }^{2} \\ & r_{z}, \text { in. } \end{aligned}$		$\begin{gathered} 16.8 \\ 1.56 \end{gathered}$		$\begin{gathered} 15.1 \\ 1.56 \end{gathered}$		$\begin{gathered} 13.3 \\ 1.57 \end{gathered}$		$\begin{gathered} 11.5 \\ 1.57 \end{gathered}$		$\begin{aligned} & 9.69 \\ & 1.58 \end{aligned}$		$\begin{aligned} & 8.77 \\ & 1.58 \end{aligned}$	
ASD		LRFD		${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=36 \mathrm{ksi}$; tabulated values have been adjusted accordingly. Note: Heavy line indicates L_{C} / r_{z} equal to or greater than 200.									
$\Omega_{c}=1.67$		$\phi_{C}=0.90$											

L6				able aila Co icall		con tre ed	nue gt On ngl	in kip Ang	S	$=36$	
Shape		L6×4×									
		$3 / 4$		5/8		9/16		1/2		$7 / 16^{\text {c }}$	
		23.6		20.0		18.1		16.2		14.3	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	70.4	105	67.6	101	66.5	99.0	64.0	96.3	62.8	94.4
	1	69.4	104	66.5	100	65.3	98.2	63.1	95.0	61.9	93.1
	2	66.5	100	63.4	95.6	62.1	93.5	60.5	91.2	59.2	89.3
	3	62.1	93.8	58.8	88.9	57.9	87.5	56.2	85.0	54.9	83.1
	4	56.9	86.2	53.9	81.8	52.8	80.1	50.9	77.3	49.5	75.3
	5	51.5	78.3	48.6	73.9	47.2	71.9	45.2	68.9	43.6	66.5
	6	46.2	70.4	43.1	65.9	41.7	63.7	39.7	60.7	37.9	58.1
	7	41.0	62.7	38.0	58.2	36.5	55.9	34.6	53.0	32.7	50.3
	8	36.2	55.5	33.3	51.1	31.8	48.8	30.0	46.1	28.2	43.4
	9	31.8	48.8	29.0	44.6	27.6	42.5	25.9	39.9	24.2	37.4
	10	27.8	42.7	25.2	38.8	23.9	36.8	22.3	34.4	20.8	32.1
	11	24.4	37.5	22.0	33.8	20.7	32.0	19.3	29.8	17.9	27.7
	12	21.5	33.1	19.3	29.8	18.2	28.0	16.9	26.1	15.6	24.1
	13	19.2	29.5	17.1	26.4	16.1	24.8	14.9	23.0	13.7	21.2
	14	17.2	26.4	15.3	23.5	14.3	22.0	13.2	20.4	12.2	18.8
Properties											
$\begin{aligned} & A_{g}, \text { in. }{ }^{2} \\ & r_{z}, \text { in. } \end{aligned}$. 856		59						
ASD		LRFD		${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=36$ ksi; tabulated values have been adjusted accordingly. Note: Heavy line indicates L_{c} / r_{z} equal to or greater than 200 .							
$\Omega_{C}=1.67$		$\phi_{C}=0.90$									

L3 ${ }^{1} / 2$			Table 4-12 (continued) vailable Strength in al Compression, kips trically Loaded Single Angles										
Shape		L3 ${ }^{1 / 2 \times 3}{ }^{1 / 2} \times$						L3 ${ }^{1} / 2 \times 3 \times$					
		3/8		$5 / 16$		$1 / 4{ }^{\text {c }}$		1/2		7/16		3/8	
		8.50		7.20		5.80		10.2		9.10		7.90	
Design		P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	30.8	46.3	28.1	42.3	21.0	31.7	36.8	55.3	37.8	56.8	38.7	58.3
	1	30.2	45.5	27.6	41.5	21.0	31.5	36.2	54.6	37.1	55.8	37.9	57.1
	2	28.6	43.1	26.1	39.3	20.7	31.1	34.6	52.3	35.1	53.2	35.5	53.8
	3	26.2	39.6	23.8	36.0	19.5	29.3	32.1	48.9	32.1	49.0	31.7	48.6
	4	23.3	35.4	21.1	32.0	18.1	27.1	28.5	43.6	28.1	43.1	27.3	41.9
	5	20.3	30.8	18.3	27.8	16.1	24.5	23.2	35.6	22.5	34.6	21.4	33.1
	6	17.3	26.4	15.5	23.7	13.6	20.8	18.7	28.9	17.9	27.7	16.9	26.2
	7	14.6	22.3	13.0	19.8	11.3	17.3	15.1	23.4	14.3	22.2	13.4	20.7
	8	12.1	18.5	10.7	16.4	9.31	14.2	12.3	19.0	11.6	17.9	10.7	16.6
	9	10.1	15.5	8.95	13.7	7.70	11.7	10.2	15.7	9.56	14.7	8.80	13.6
	10	8.61	13.1	7.56	11.5	6.46	9.89	8.62	13.2	8.01	12.3	7.34	11.3
	11	7.39	11.3	6.46	9.89	5.50	8.42						
Properties													
$\begin{aligned} & A_{g}, \text { in. }^{2} \\ & r_{z}, \text { in. } \end{aligned}$		$\begin{aligned} & 2.50 \\ & 0.683 \end{aligned}$		$\begin{aligned} & 2.10 \\ & 0.685 \end{aligned}$		$\begin{aligned} & 1.70 \\ & 0.688 \end{aligned}$		$\begin{aligned} & 3.02 \\ & 0.618 \end{aligned}$		$\begin{aligned} & 2.67 \\ & 0.620 \end{aligned}$		$\begin{aligned} & 2.32 \\ & 0.622 \end{aligned}$	
ASD		LRFD		${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=36 \mathrm{ksi}$; tabulated values have been adjusted accordingly. Note: Heavy line indicates L_{C} / r_{z} equal to or greater than 200.									
$\Omega_{c}=1.67$		$\phi_{C}=0.90$											

				f	SS	Tab	$\begin{aligned} & \text { le 4- } \\ & \text { duc } \end{aligned}$	3	Fa	cto			
$\begin{array}{\|c\|} \hline \text { ASD } \\ \hline \frac{P a}{A} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { LRFD } \\ \hline \frac{P_{u}}{\boldsymbol{A}} \\ \hline \end{array}$	F_{y}, ksi											
		35		36		46		50		65		70	
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	50	-	-	-	-	-	-	-	-	-	0.710	-	0.816
	49	-	-	-	-	-	-	-	0.0784	-	0.742	-	0.840
	48	-	-	-	-	-	-	-	0.154	-	0.773	-	0.862
	47	-	-	-	-	-	-	-	0.226	-	0.801	-	0.882
	46	-	-	-	-	-	-	-	0.294	-	0.827	-	0.901
	45	-	-	-	-	-	0.0851	-	0.360	-	0.852	-	0.918
	44	-	-	-	-	-	0.166	-	0.422	-	0.875	-	0.934
	43	-	-	-	_	-	0.244	-	0.482	-	0.896	0.0674	0.948
	42	-	-	-	-	-	0.318	-	0.538	-	0.915	0.154	0.960
	41	-	-	-	-	-	0.388	-	0.590	-	0.932	0.236	0.971
	40	-	-	-	-	-	0.454	-	0.640	0.0606	0.947	0.313	0.980
	39	-	-	-	-	-	0.516	-	0.686	0.154	0.960	0.387	0.987
	38	-	-	-	-	-	0.575	-	0.730	0.242	0.971	0.457	0.993
	37	-	-	-	-	-	0.629	-	0.770	0.325	0.981	0.522	0.997
	36	-	-	-	-	-	0.681	-	0.806	0.404	0.988	0.583	0.999
	35	-	-	-	0.108	-	0.728	-	0.840	0.477	0.994	0.640	1.00
	34	-	0.111	-	0.210	-	0.771	-	0.870	0.546	0.998	0.693	
	33	-	0.216	-	0.306	-	0.811	-	0.898	0.610	1.00	0.741	
	32	-	0.313	-	0.395	-	0.847	-	0.922	0.669		0.786	
	31	-	0.405	-	0.478	_	0.879	0.0317	0.942	0.723		0.826	
	30	-	0.490	-	0.556	-	0.907	0.154	0.960	0.773		0.862	
	29	-	0.568	-	0.627	-	0.932	0.267	0.974	0.817		0.894	
	28	-	0.640	-	0.691	0.102	0.953	0.373	0.986	0.857		0.922	
	27	-	0.705	-	0.750	0.229	0.970	0.470	0.994	0.892		0.945	
	26	-	0.764	-	0.802	0.346	0.983	0.559	0.998	0.922		0.964	
	25	-	0.816	-	0.849	0.454	0.992	0.640	1.00	0.947		0.980	
	24	-	0.862	-	0.889	0.552	0.998	0.713		0.967		0.991	
	23	_	0.901	-	0.923	0.640	1.00	0.777		0.982		0.997	
	22	-	0.934	0.087	0.951	0.719		0.834		0.993		1.00	
	21	0.154	0.960	0.249	0.972	0.788		0.882		0.999		1	
	20	0.313	0.980	0.395	0.988	0.847		0.922		1.00			
	19	0.457	0.993	0.525	0.997	0.896		0.953					
	18	0.583	0.999	0.640	1.00	0.936		0.977					
	17	0.693	1.00	0.739		0.967		0.992					
	16	0.786	1.00	0.822		0.987		0.999					
	15	0.862	1.00	0.889		0.998		1.00					
	14	0.922	1.00	0.940		0.999							
	13	0.964	1.00	0.976		1.00							
	12	0.991	1.00	0.996		\|		1		\|			
	11 10	1.00 1.00	1.00 1.00	1.00	\downarrow		\downarrow	\downarrow	\downarrow		\downarrow	\downarrow	\downarrow
	10	1.00	1.00	1.00	\checkmark	\downarrow	V	\checkmark	\downarrow	\downarrow	V	\checkmark	V
- Indicates the stiffness reduction parameter is not applicable because the required strength exceeds the ava $L_{C} / r=0$. $A=A_{g}$ for members not controlled by slender element buckling, in. ${ }^{2}$ $=A_{e}$ as defined in AISC Specification Section E7 for members controlled by slender element buckling, in. ${ }^{2}$													

	$F_{y}=35 \mathrm{ksi}$		$F_{y}=36 \mathrm{ksi}$		$F_{y}=46 \mathrm{ksi}$		$F_{y}=50 \mathrm{ksi}$		$F_{y}=65 \mathrm{ksi}$		$F_{y}=70 \mathrm{ksi}$	
$\frac{L_{c}}{r}$	$F_{c r} / \Omega_{c}$	$\phi_{c} F_{c r}$	$F_{c r} / \Omega_{c}$	$\phi_{c} F_{c r}$	$F_{c r} / \Omega_{c}$	$\phi_{c} F_{c r}$	$F_{c r} / \Omega_{c}$	$\phi_{c} F_{c r}$	$F_{c r} / \Omega_{c}$	$\phi_{c} F_{c r}$	$F_{c r} / \Omega_{c}$	$\phi_{c} F_{c r}$
	ksi	ksi	ksi	ksi	ksi	ksi	ksi	ksi	ksi	ksi	ksi	ksi
	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
1	21.0	31.5	21.6	32.4	27.5	41.4	29.9	45.0	38.9	58.5	41.9	63.0
2	21.0	31.5	21.6	32.4	27.5	41.4	29.9	45.0	38.9	58.5	41.9	63.0
3	20.9	31.5	21.5	32.4	27.5	41.4	29.9	45.0	38.9	58.4	41.9	62.9
4	20.9	31.5	21.5	32.4	27.5	41.4	29.9	44.9	38.9	58.4	41.8	62.9
5	20.9	31.5	21.5	32.4	27.5	41.3	29.9	44.9	38.8	58.4	41.8	62.8
6	20.9	31.4	21.5	32.3	27.5	41.3	29.9	44.9	38.8	58.3	41.8	62.8
7	20.9	31.4	21.5	32.3	27.5	41.3	29.8	44.8	38.7	58.2	41.7	62.7
8	20.9	31.4	21.5	32.3	27.4	41.2	29.8	44.8	38.7	58.1	41.6	62.6
9	20.9	31.4	21.5	32.3	27.4	41.2	29.8	44.7	38.6	58.1	41.6	62.5
10	20.9	31.3	21.4	32.2	27.4	41.1	29.7	44.7	38.6	57.9	41.5	62.4
11	20.8	31.3	21.4	32.2	27.3	41.1	29.7	44.6	38.5	57.8	41.4	62.2
12	20.8	31.3	21.4	32.2	27.3	41.0	29.6	44.5	38.4	57.7	41.3	62.1
13	20.8	31.2	21.4	32.1	27.2	40.9	29.6	44.4	38.3	57.6	41.2	61.9
14	20.7	31.2	21.3	32.1	27.2	40.9	29.5	44.4	38.2	57.4	41.1	61.7
15	20.7	31.1	21.3	32.0	27.1	40.8	29.5	44.3	38.1	57.3	41.0	61.6
16	20.7	31.1	21.3	32.0	27.1	40.7	29.4	44.2	38.0	57.1	40.8	61.4
17	20.7	31.0	21.2	31.9	27.0	40.6	29.3	44.1	37.9	56.9	40.7	61.2
18	20.6	31.0	21.2	31.9	27.0	40.5	29.2	43.9	37.7	56.7	40.5	60.9
19	20.6	30.9	21.2	31.8	26.9	40.4	29.2	43.8	37.6	56.5	40.4	60.7
20	20.5	30.9	21.1	31.7	26.8	40.3	29.1	43.7	37.5	56.3	40.2	60.5
21	20.5	30.8	21.1	31.7	26.7	40.2	29.0	43.6	37.3	56.1	40.1	60.2
22	20.4	30.7	21.0	31.6	26.7	40.1	28.9	43.4	37.2	55.9	39.9	60.0
23	20.4	30.7	21.0	31.5	26.6	40.0	28.8	43.3	37.0	55.6	39.7	59.7
24	20.3	30.6	20.9	31.4	26.5	39.8	28.7	43.1	36.8	55.4	39.5	59.4
25	20.3	30.5	20.9	31.4	26.4	39.7	28.6	43.0	36.7	55.1	39.3	59.1
26	20.2	30.4	20.8	31.3	26.3	39.6	28.5	42.8	36.5	54.9	39.1	58.8
27	20.2	30.3	20.7	31.2	26.2	39.4	28.4	42.7	36.3	54.6	38.9	58.5
28	20.1	30.3	20.7	31.1	26.1	39.3	28.3	42.5	36.1	54.3	38.7	58.1
29	20.1	30.2	20.6	31.0	26.0	39.1	28.2	42.3	35.9	54.0	38.5	57.8
30	20.0	30.1	20.6	30.9	25.9	39.0	28.0	42.1	35.7	53.7	38.2	57.5
31	20.0	30.0	20.5	30.8	25.8	38.8	27.9	41.9	35.5	53.4	38.0	57.1
32	19.9	29.9	20.4	30.7	25.7	38.6	27.8	41.8	35.3	53.1	37.7	56.7
33	19.8	29.8	20.4	30.6	25.6	38.5	27.7	41.6	35.1	52.7	37.5	56.4
34	19.8	29.7	20.3	30.5	25.5	38.3	27.5	41.4	34.9	52.4	37.2	56.0
35	19.7	29.6	20.2	30.4	25.4	38.1	27.4	41.2	34.6	52.1	37.0	55.6
36	19.6	29.5	20.1	30.3	25.2	37.9	27.2	40.9	34.4	51.7	36.7	55.2
37	19.5	29.4	20.1	30.1	25.1	37.8	27.1	40.7	34.2	51.4	36.4	54.8
38	19.5	29.3	20.0	30.0	25.0	37.6	26.9	40.5	33.9	51.0	36.2	54.3
39	19.4	29.1	19.9	29.9	24.9	37.4	26.8	40.3	33.7	50.6	35.9	53.9
40	19.3	29.0	19.8	29.8	24.7	37.2	26.6	40.0	33.4	50.2	35.6	53.5
	ASD	LRFD										
Ω_{c}	$=1.67$	$\phi_{C}=0.90$										

					ble 4 le ores	-14 riti Sio						
	$F_{y}=35 \mathrm{ksi}$		$F_{y}=36 \mathrm{ksi}$		$F_{y}=46 \mathrm{ksi}$		$F_{y}=50 \mathrm{ksi}$		$F_{y}=65 \mathrm{ksi}$		$F_{y}=70 \mathrm{ksi}$	
$\frac{L_{c}}{r}$	$F_{c r} / \Omega_{c}$	$\phi_{c} F_{c r}$	$F_{c r} / \Omega_{c}$	$\phi_{c} F_{c r}$	$F_{c r} / \Omega_{c}$	$\phi_{c} F_{c r}$	$F_{c r} / \Omega_{c}$	$\phi_{c} F_{c r}$	$F_{c r} / \Omega_{c}$	$\phi_{c} F_{c r}$	$F_{c r} / \Omega_{c}$	$\phi_{c} F_{c r}$
	ksi	ksi	ksi	ksi	ksi	ksi	ksi	ksi	ksi	ksi	ksi	ksi
	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
41	19.2	28.9	19.7	29.7	24.6	37.0	26.5	39.8	33.2	49.9	35.3	53.0
42	19.2	28.8	19.6	29.5	24.5	36.8	26.3	39.5	32.9	49.5	35.0	52.6
43	19.1	28.7	19.6	29.4	24.3	36.6	26.2	39.3	32.6	49.1	34.7	52.1
44	19.0	28.5	19.5	29.3	24.2	36.3	26.0	39.1	32.4	48.7	34.4	51.7
45	18.9	28.4	19.4	29.1	24.0	36.1	25.8	38.8	32.1	48.3	34.1	51.2
46	18.8	28.3	19.3	29.0	23.9	35.9	25.6	38.5	31.8	47.8	33.8	50.7
47	18.7	28.1	19.2	28.9	23.8	35.7	25.5	38.3	31.6	47.4	33.4	50.3
48	18.6	28.0	19.1	28.7	23.6	35.4	25.3	38.0	31.3	47.0	33.1	49.8
49	18.5	27.9	19.0	28.5	23.4	35.2	25.1	37.7	31.0	46.6	32.8	49.3
50	18.4	27.7	18.9	28.4	23.3	35.0	24.9	37.5	30.7	46.1	32.5	48.8
51	18.3	27.6	18.8	28.3	23.1	34.8	24.8	37.2	30.4	45.7	32.1	48.3
52	18.3	27.4	18.7	28.1	23.0	34.5	24.6	36.9	30.1	45.2	31.8	47.8
53	18.2	27.3	18.6	28.0	22.8	34.3	24.4	36.7	29.8	44.8	31.4	47.3
54	18.1	27.1	18.5	27.8	22.6	34.0	24.2	36.4	29.5	44.3	31.1	46.7
55	18.0	27.0	18.4	27.6	22.5	33.8	24.0	36.1	29.2	43.9	30.8	46.2
56	17.9	26.8	18.3	27.5	22.3	33.5	23.8	35.8	28.9	43.4	30.4	45.7
57	17.7	26.7	18.2	27.3	22.1	33.3	23.6	35.5	28.6	43.0	30.1	45.2
58	17.6	26.5	18.1	27.1	22.0	33.0	23.4	35.2	28.3	42.5	29.7	44.6
59	17.5	26.4	17.9	27.0	21.8	32.8	23.2	34.9	28.0	42.0	29.4	44.1
60	17.4	26.2	17.8	26.8	21.6	32.5	23.0	34.6	27.6	41.5	29.0	43.6
61	17.3	26.0	17.7	26.6	21.4	32.2	22.8	34.3	27.3	41.1	28.6	43.0
62	17.2	25.9	17.6	26.5	21.3	32.0	22.6	34.0	27.0	40.6	28.3	42.5
63	17.1	25.7	17.5	26.3	21.1	31.7	22.4	33.7	26.7	40.1	27.9	42.0
64	17.0	25.5	17.4	26.1	20.9	31.4	22.2	33.4	26.4	39.6	27.6	41.4
65	16.9	25.4	17.3	25.9	20.7	31.2	22.0	33.0	26.0	39.2	27.2	40.9
66	16.8	25.2	17.1	25.8	20.5	30.9	21.8	32.7	25.7	38.7	26.8	40.3
67	16.7	25.0	17.0	25.6	20.4	30.6	21.6	32.4	25.4	38.2	26.5	39.8
68	16.5	24.9	16.9	25.4	20.2	30.3	21.4	32.1	25.1	37.7	26.1	39.2
69	16.4	24.7	16.8	25.2	20.0	30.1	21.1	31.8	24.8	37.2	25.7	38.7
70	16.3	24.5	16.7	25.0	19.8	29.8	20.9	31.4	24.4	36.7	25.4	38.2
71	16.2	24.3	16.5	24.8	19.6	29.5	20.7	31.1	24.1	36.2	25.0	37.6
72	16.1	24.2	16.4	24.7	19.4	29.2	20.5	30.8	23.8	35.7	24.7	37.1
73	16.0	24.0	16.3	24.5	19.2	28.9	20.3	30.5	23.5	35.3	24.3	36.5
74	15.8	23.8	16.2	24.3	19.1	28.6	20.1	30.2	23.1	34.8	23.9	36.0
75	15.7	23.6	16.0	24.1	18.9	28.4	19.8	29.8	22.8	34.3	23.6	35.4
76	15.6	23.4	15.9	23.9	18.7	28.1	19.6	29.5	22.5	33.8	23.2	34.9
77	15.5	23.3	15.8	23.7	18.5	27.8	19.4	29.2	22.2	33.3	22.8	34.3
78	15.4	23.1	15.6	23.5	18.3	27.5	19.2	28.8	21.8	32.8	22.5	33.8
79	15.2	22.9	15.5	23.3	18.1	27.2	19.0	28.5	21.5	32.3	22.1	33.3
80	15.1	22.7	15.4	23.1	17.9	26.9	18.8	28.2	21.2	31.8	21.8	32.7
ASD		LRFD										
$\Omega_{C}=1.67$		$\phi_{C}=0.90$										

					ble 4 le ores	14 Citi Sio						
	$F_{y}=35 \mathrm{ksi}$		$F_{y}=36 \mathrm{ksi}$		$F_{y}=46 \mathrm{ksi}$		$F_{y}=50 \mathrm{ksi}$		$F_{y}=65 \mathrm{ksi}$		$F_{y}=70 \mathrm{ksi}$	
$\frac{L_{c}}{r}$	$F_{c r} / \Omega_{c}$	$\phi_{c} F_{c r}$	$F_{c r} / \Omega_{c}$	$\phi_{c} F_{c r}$	$F_{c r} / \Omega_{c}$	$\phi_{c} F_{c r}$	$F_{c r} / \Omega_{c}$	$\phi_{c} F_{c r}$	$F_{c r} / \Omega_{c}$	$\phi_{c} F_{c r}$	$F_{c r} / \Omega_{c}$	$\phi_{c} F_{c r}$
	ksi	ksi	ksi	ksi	ksi	ksi	ksi	ksi	ksi	ksi	ksi	ksi
	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
81	15.0	22.5	15.3	22.9	17.7	26.6	18.5	27.9	20.9	31.4	21.4	32.2
82	14.9	22.3	15.1	22.7	17.5	26.3	18.3	27.5	20.5	30.9	21.1	31.7
83	14.7	22.1	15.0	22.5	17.3	26.0	18.1	27.2	20.2	30.4	20.7	31.1
84	14.6	22.0	14.9	22.3	17.1	25.8	17.9	26.9	19.9	29.9	20.4	30.6
85	14.5	21.8	14.7	22.1	16.9	25.5	17.7	26.5	19.6	29.4	20.0	30.1
86	14.4	21.6	14.6	22.0	16.7	25.2	17.4	26.2	19.3	29.0	19.7	29.5
87	14.2	21.4	14.5	21.8	16.6	24.9	17.2	25.9	19.0	28.5	19.3	29.0
88	14.1	21.2	14.3	21.6	16.4	24.6	17.0	25.5	18.6	28.0	19.0	28.5
89	14.0	21.0	14.2	21.4	16.2	24.3	16.8	25.2	18.3	27.6	18.6	28.0
90	13.8	20.8	14.1	21.2	16.0	24.0	16.6	24.9	18.0	27.1	18.3	27.5
91	13.7	20.6	13.9	21.0	15.8	23.7	16.3	24.6	17.7	26.6	18.0	27.0
92	13.6	20.4	13.8	20.8	15.6	23.4	16.1	24.2	17.4	26.2	17.6	26.5
93	13.5	20.2	13.7	20.5	15.4	23.1	15.9	23.9	17.1	25.7	17.3	26.0
94	13.3	20.0	13.5	20.3	15.2	22.8	15.7	23.6	16.8	25.3	17.0	25.5
95	13.2	19.9	13.4	20.1	15.0	22.6	15.5	23.3	16.5	24.8	16.6	25.0
96	13.1	19.7	13.3	19.9	14.8	22.3	15.3	22.9	16.2	24.4	16.3	24.5
97	13.0	19.5	13.1	19.7	14.6	22.0	15.0	22.6	15.9	23.9	16.0	24.0
98	12.8	19.3	13.0	19.5	14.4	21.7	14.8	22.3	15.6	23.5	15.7	23.5
99	12.7	19.1	12.9	19.3	14.2	21.4	14.6	22.0	15.3	23.0	15.3	23.0
100	12.6	18.9	12.7	19.1	14.1	21.1	14.4	21.7	15.0	22.6	15.0	22.6
101	12.4	18.7	12.6	18.9	13.9	20.8	14.2	21.3	14.7	22.1	14.7	22.1
102	12.3	18.5	12.5	18.7	13.7	20.6	14.0	21.0	14.4	21.7	14.4	21.7
103	12.2	18.3	12.3	18.5	13.5	20.3	13.8	20.7	14.2	21.3	14.2	21.3
104	12.1	18.1	12.2	18.3	13.3	20.0	13.6	20.4	13.9	20.9	13.9	20.9
105	11.9	17.9	12.1	18.1	13.1	19.7	13.4	20.1	13.6	20.5	13.6	20.5
106	11.8	17.7	11.9	17.9	12.9	19.4	13.2	19.8	13.4	20.1	13.4	20.1
107	11.7	17.5	11.8	17.7	12.8	19.2	13.0	19.5	13.1	19.7	13.1	19.7
108	11.5	17.3	11.7	17.5	12.6	18.9	12.8	19.2	12.9	19.4	12.9	19.4
109	11.4	17.2	11.5	17.3	12.4	18.6	12.6	18.9	12.7	19.0	12.7	19.0
110	11.3	17.0	11.4	17.1	12.2	18.3	12.4	18.6	12.4	18.7	12.4	18.7
111	11.2	16.8	11.3	16.9	12.0	18.1	12.2	18.3	12.2	18.3	12.2	18.3
112	11.0	16.6	11.1	16.7	11.8	17.8	12.0	18.0	12.0	18.0	12.0	18.0
113	10.9	16.4	11.0	16.5	11.7	17.5	11.8	17.7	11.8	17.7	11.8	17.7
114	10.8	16.2	10.9	16.3	11.5	17.3	11.6	17.4	11.6	17.4	11.6	17.4
115	10.7	16.0	10.7	16.2	11.3	17.0	11.4	17.1	11.4	17.1	11.4	17.1
116	10.5	15.8	10.6	16.0	11.1	16.7	11.2	16.8	11.2	16.8	11.2	16.8
117	10.4	15.6	10.5	15.8	11.0	16.5	11.0	16.5	11.0	16.5	11.0	16.5
118	10.3	15.5	10.4	15.6	10.8	16.2	10.8	16.2	10.8	16.2	10.8	16.2
119	10.2	15.3	10.2	15.4	10.6	16.0	10.6	16.0	10.6	16.0	10.6	16.0
120	10.0	15.1	10.1	15.2	10.4	15.7	10.4	15.7	10.4	15.7	10.4	15.7
ASD		LRFD										
$\Omega_{C}=1.67$		$\phi_{C}=0.90$										

Table 4-14 (continued) Available Critical Stress for Compression Members

	$F_{y}=35 \mathrm{ksi}$		$F_{y}=36 \mathrm{ksi}$		$F_{y}=46 \mathrm{ksi}$		$F_{y}=50 \mathrm{ksi}$		$F_{y}=65 \mathrm{ksi}$		$F_{y}=70 \mathrm{ksi}$	
	$F_{c r} / \Omega_{c}$	$\phi_{c} F_{c r}$	$F_{c r} / \Omega_{c}$	$\phi_{c} F_{c r}$	$F_{c r} / \Omega_{c}$	$\phi_{c} F_{c r}$	$F_{c r} / \Omega_{c}$	$\phi_{c} F_{c r}$	$F_{c r} / \Omega_{c}$	$\phi_{c} F_{c r}$	$F_{c r} / \Omega_{c}$	$\phi_{c} F_{c r}$
$\frac{L_{c}}{r}$	ksi	ksi	ksi	ksi	ksi	ksi	ksi	ksi	ksi	ksi	ksi	ksi
	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
121	9.91	14.9	10.0	15.0	10.3	15.4	10.3	15.4	10.3	15.4	10.3	15.4
122	9.79	14.7	9.85	14.8	10.1	15.2	10.1	15.2	10.1	15.2	10.1	15.2
123	9.67	14.5	9.72	14.6	9.94	14.9	9.94	14.9	9.94	14.9	9.94	14.9
124	9.55	14.3	9.59	14.4	9.78	14.7	9.78	14.7	9.78	14.7	9.78	14.7
125	9.43	14.2	9.47	14.2	9.62	14.5	9.62	14.5	9.62	14.5	9.62	14.5
126	9.31	14.0	9.35	14.0	9.47	14.2	9.47	14.2	9.47	14.2	9.47	14.2
127	9.19	13.8	9.22	13.9	9.32	14.0	9.32	14.0	9.32	14.0	9.32	14.0
128	9.07	13.6	9.10	13.7	9.17	13.8	9.17	13.8	9.17	13.8	9.17	13.8
129	8.95	13.4	8.98	13.5	9.03	13.6	9.03	13.6	9.03	13.6	9.03	13.6
130	8.83	13.3	8.86	13.3	8.89	13.4	8.89	13.4	8.89	13.4	8.89	13.4
131	8.71	13.1	8.73	13.1	8.76	13.2	8.76	13.2	8.76	13.2	8.76	13.2
132	8.60	12.9	8.61	12.9	8.63	13.0	8.63	13.0	8.63	13.0	8.63	13.0
133	8.48	12.7	8.49	12.8	8.50	12.8	8.50	12.8	8.50	12.8	8.50	12.8
134	8.37	12.6	8.37	12.6	8.37	12.6	8.37	12.6	8.37	12.6	8.37	12.6
135	8.25	12.4	8.25	12.4	8.25	12.4	8.25	12.4	8.25	12.4	8.25	12.4
136	8.13	12.2	8.13	12.2	8.13	12.2	8.13	12.2	8.13	12.2	8.13	12.2
137	8.01	12.0	8.01	12.0	8.01	12.0	8.01	12.0	8.01	12.0	8.01	12.0
138	7.89	11.9	7.89	11.9	7.89	11.9	7.89	11.9	7.89	11.9	7.89	11.9
139	7.78	11.7	7.78	11.7	7.78	11.7	7.78	11.7	7.78	11.7	7.78	11.7
140	7.67	11.5	7.67	11.5	7.67	11.5	7.67	11.5	7.67	11.5	7.67	11.5
141	7.56	11.4	7.56	11.4	7.56	11.4	7.56	11.4	7.56	11.4	7.56	11.4
142	7.45	11.2	7.45	11.2	7.45	11.2	7.45	11.2	7.45	11.2	7.45	11.2
143	7.35	11.0	7.35	11.0	7.35	11.0	7.35	11.0	7.35	11.0	7.35	11.0
144	7.25	10.9	7.25	10.9	7.25	10.9	7.25	10.9	7.25	10.9	7.25	10.9
145	7.15	10.7	7.15	10.7	7.15	10.7	7.15	10.7	7.15	10.7	7.15	10.7
146	7.05	10.6	7.05	10.6	7.05	10.6	7.05	10.6	7.05	10.6	7.05	10.6
147	6.96	10.5	6.96	10.5	6.96	10.5	6.96	10.5	6.96	10.5	6.96	10.5
148	6.86	10.3	6.86	10.3	6.86	10.3	6.86	10.3	6.86	10.3	6.86	10.3
149	6.77	10.2	6.77	10.2	6.77	10.2	6.77	10.2	6.77	10.2	6.77	10.2
150	6.68	10.0	6.68	10.0	6.68	10.0	6.68	10.0	6.68	10.0	6.68	10.0
151	6.59	9.91	6.59	9.91	6.59	9.91	6.59	9.91	6.59	9.91	6.59	9.91
152	6.51	9.78	6.51	9.78	6.51	9.78	6.51	9.78	6.51	9.78	6.51	9.78
153	6.42	9.65	6.42	9.65	6.42	9.65	6.42	9.65	6.42	9.65	6.42	9.65
154	6.34	9.53	6.34	9.53	6.34	9.53	6.34	9.53	6.34	9.53	6.34	9.53
155	6.26	9.40	6.26	9.40	6.26	9.40	6.26	9.40	6.26	9.40	6.26	9.40
156	6.18	9.28	6.18	9.28	6.18	9.28	6.18	9.28	6.18	9.28	6.18	9.28
157	6.10	9.17	6.10	9.17	6.10	9.17	6.10	9.17	6.10	9.17	6.10	9.17
158	6.02	9.05	6.02	9.05	6.02	9.05	6.02	9.05	6.02	9.05	6.02	9.05
159	5.95	8.94	5.95	8.94	5.95	8.94	5.95	8.94	5.95	8.94	5.95	8.94
160	5.87	8.82	5.87	8.82	5.87	8.82	5.87	8.82	5.87	8.82	5.87	8.82

ASD	LRFD
$\Omega_{c}=1.67$	$\phi_{C}=0.90$

						-14 \square riti Sio						
	$F_{y}=35 \mathrm{ksi}$		$F_{y}=36 \mathrm{ksi}$		$F_{y}=46 \mathrm{ksi}$		$F_{y}=50 \mathrm{ksi}$		$F_{y}=65 \mathrm{ksi}$		$F_{y}=70 \mathrm{ksi}$	
$\frac{L_{c}}{r}$	$F_{c r} / \Omega_{c}$	$\phi_{c} F_{c r}$	$F_{c r} / \Omega_{c}$	$\phi_{c} F_{c r}$	$F_{c r} / \Omega_{c}$	$\phi_{c} F_{c r}$	$F_{c r} / \Omega_{c}$	$\phi_{c} F_{c r}$	$F_{c r} / \Omega_{c}$	$\phi_{c} F_{c r}$	$F_{c r} / \Omega_{c}$	$\phi_{c} F_{c r}$
	ksi	ksi	ksi	ksi	ksi	ksi	ksi	ksi	ksi	ksi	ksi	ksi
	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
161	5.80	8.72	5.80	8.72	5.80	8.72	5.80	8.72	5.80	8.72	5.80	8.72
162	5.73	8.61	5.73	8.61	5.73	8.61	5.73	8.61	5.73	8.61	5.73	8.61
163	5.66	8.50	5.66	8.50	5.66	8.50	5.66	8.50	5.66	8.50	5.66	8.50
164	5.59	8.40	5.59	8.40	5.59	8.40	5.59	8.40	5.59	8.40	5.59	8.40
165	5.52	8.30	5.52	8.30	5.52	8.30	5.52	8.30	5.52	8.30	5.52	8.30
166	5.45	8.20	5.45	8.20	5.45	8.20	5.45	8.20	5.45	8.20	5.45	8.20
167	5.39	8.10	5.39	8.10	5.39	8.10	5.39	8.10	5.39	8.10	5.39	8.10
168	5.33	8.00	5.33	8.00	5.33	8.00	5.33	8.00	5.33	8.00	5.33	8.00
169	5.25	7.89	5.25	7.89	5.25	7.89	5.25	7.89	5.25	7.89	5.25	7.89
170	5.20	7.82	5.20	7.82	5.20	7.82	5.20	7.82	5.20	7.82	5.20	7.82
171	5.14	7.73	5.14	7.73	5.14	7.73	5.14	7.73	5.14	7.73	5.14	7.73
172	5.08	7.64	5.08	7.64	5.08	7.64	5.08	7.64	5.08	7.64	5.08	7.64
173	5.02	7.55	5.02	7.55	5.02	7.55	5.02	7.55	5.02	7.55	5.02	7.55
174	4.96	7.46	4.96	7.46	4.96	7.46	4.96	7.46	4.96	7.46	4.96	7.46
175	4.91	7.38	4.91	7.38	4.91	7.38	4.91	7.38	4.91	7.38	4.91	7.38
176	4.85	7.29	4.85	7.29	4.85	7.29	4.85	7.29	4.85	7.29	4.85	7.29
177	4.80	7.21	4.80	7.21	4.80	7.21	4.80	7.21	4.80	7.21	4.80	7.21
178	4.74	7.13	4.74	7.13	4.74	7.13	4.74	7.13	4.74	7.13	4.74	7.13
179	4.69	7.05	4.69	7.05	4.69	7.05	4.69	7.05	4.69	7.05	4.69	7.05
180	4.64	6.97	4.64	6.97	4.64	6.97	4.64	6.97	4.64	6.97	4.64	6.97
181	4.59	6.90	4.59	6.90	4.59	6.90	4.59	6.90	4.59	6.90	4.59	6.90
182	4.54	6.82	4.54	6.82	4.54	6.82	4.54	6.82	4.54	6.82	4.54	6.82
183	4.49	6.75	4.49	6.75	4.49	6.75	4.49	6.75	4.49	6.75	4.49	6.75
184	4.44	6.67	4.44	6.67	4.44	6.67	4.44	6.67	4.44	6.67	4.44	6.67
185	4.39	6.60	4.39	6.60	4.39	6.60	4.39	6.60	4.39	6.60	4.39	6.60
186	4.34	6.53	4.34	6.53	4.34	6.53	4.34	6.53	4.34	6.53	4.34	6.53
187	4.30	6.46	4.30	6.46	4.30	6.46	4.30	6.46	4.30	6.46	4.30	6.46
188	4.25	6.39	4.25	6.39	4.25	6.39	4.25	6.39	4.25	6.39	4.25	6.39
189	4.21	6.32	4.21	6.32	4.21	6.32	4.21	6.32	4.21	6.32	4.21	6.32
190	4.16	6.26	4.16	6.26	4.16	6.26	4.16	6.26	4.16	6.26	4.16	6.26
191	4.12	6.19	4.12	6.19	4.12	6.19	4.12	6.19	4.12	6.19	4.12	6.19
192	4.08	6.13	4.08	6.13	4.08	6.13	4.08	6.13	4.08	6.13	4.08	6.13
193	4.04	6.06	4.04	6.06	4.04	6.06	4.04	6.06	4.04	6.06	4.04	6.06
194	3.99	6.00	3.99	6.00	3.99	6.00	3.99	6.00	3.99	6.00	3.99	6.00
195	3.95	5.94	3.95	5.94	3.95	5.94	3.95	5.94	3.95	5.94	3.95	5.94
196	3.91	5.88	3.91	5.88	3.91	5.88	3.91	5.88	3.91	5.88	3.91	5.88
197	3.87	5.82	3.87	5.82	3.87	5.82	3.87	5.82	3.87	5.82	3.87	5.82
198	3.83	5.76	3.83	5.76	3.83	5.76	3.83	5.76	3.83	5.76	3.83	5.76
199	3.80	5.70	3.80	5.70	3.80	5.70	3.80	5.70	3.80	5.70	3.80	5.70
200	3.76	5.65	3.76	5.65	3.76	5.65	3.76	5.65	3.76	5.65	3.76	5.65
ASD		LRFD										
$\Omega_{c}=1.67$		$\phi_{C}=0.90$										

PART 5
 DESIGN OF TENSION MEMBERS

SCOPE 5-2
GROSS AREA, NET AREA AND EFFECTIVE NET AREA 5-2
Gross Area 5-2
Effective Net Area 5-2
TENSILE STRENGTH 5-2
Yielding Limit State 5-2
Rupture Limit State 5-3
Use of Table 6-2 for Design of Tension Members 5-3
OTHER SPECIFICATION REQUIREMENTS AND DESIGN CONSIDERATIONS 5-3
Special Requirements for Heavy Shapes and Plates 5-3
Slenderness 5-3
DESIGN TABLE DISCUSSION 5-3
STEEL TENSION MEMBER SELECTION TABLES 5-5
Table 5-1. Available Strength in Axial Tension-W-Shapes 5-5
Table 5-2. Available Strength in Axial Tension-Angles 5-14
Table 5-3. Available Strength in Axial Tension-WT-Shapes 5-19
Table 5-4. Available Strength in Axial Tension-Rectangular HSS 5-28
Table 5-5. Available Strength in Axial Tension-Square HSS 5-37
Table 5-6. Available Strength in Axial Tension-Round HSS 5-40
Table 5-7. Available Strength in Axial Tension-Pipe 5-45
Table 5-8. Available Strength in Axial Tension-Double Angles 5-47

SCOPE

The specification requirements and other design considerations summarized in this Part apply to the design of members subject to static axial tension. For fatigue applications, see AISC Specification Appendix 3. For the design of members subject to eccentric tension or combined tension and flexure, see Part 6.

GROSS AREA, NET AREA AND EFFECTIVE NET AREA

In the determination of the available strength of a tension member, the gross area, A_{g}, is needed for the tensile yielding limit state and the effective net area, A_{e}, is needed for the tensile rupture limit state, as stipulated in AISC Specification Section D2.

Gross Area

The gross area, A_{g}, is determined as specified in AISC Specification Section B4.3a.

Effective Net Area

The effective net area, A_{e}, is determined from AISC Specification Section D3 by multiplying the net area, A_{n}, by the shear lag coefficient, U, where A_{n} is determined for tension members per AISC Specification Section B4.3b and U is determined from AISC Specification Table D3.1. Shear lag parameters are illustrated in AISC Specification Commentary Figures C-D3.1, C-D3.2 and C-D3.4.

TENSILE STRENGTH

The limit state of tensile yielding will control the available tensile strength over tensile rupture when the following relationship is satisfied:

LRFD	ASD	
$0.90 F_{y} A_{g} \leq 0.75 F_{u} A_{e}$	(5-1a)	$\frac{F_{y} A_{g}}{1.67} \leq \frac{F_{u} A_{e}}{2.00}$

These expressions are both reduced to:

$$
\begin{equation*}
\frac{A_{e}}{A_{g}} \geq 1.2 \frac{F_{y}}{F_{u}} \tag{5-2}
\end{equation*}
$$

Otherwise, the limit state of tensile rupture will control over tensile yielding.
Design of tension members without consideration of the tensile rupture limit state may require connections with reinforcement, resulting in a design that may have a lower tonnage but a higher overall cost. It is generally more economical to design larger members that do not require reinforcement.

Yielding Limit State

The available tensile strength due to tensile yielding, which must equal or exceed the required strength, P_{u} or P_{a}, is determined for tension members, per AISC Specification Section D2(a), using Equation D2-1.

Rupture Limit State

The available tensile strength due to tensile rupture, which must equal or exceed the required strength, P_{u} or P_{a}, is determined for tension members, per AISC Specification Section D2(b), using Equation D2-2.

Use of Table 6-2 for Design of Tension Members

Table 6-2 may be used for design of tension members. This table includes all W-shapes. Values of available strength for the tensile rupture limit state are based on the assumption that $A_{e}=0.75 A_{g}$. Therefore, if $A_{e}<0.75 A_{g}$, the available strength based on the rupture limit state must be calculated. See Part 6 for additional information on using Table 6-2 for design of tension members.

OTHER SPECIFICATION REQUIREMENTS AND DESIGN CONSIDERATIONS

Special Requirements for Heavy Shapes and Plates

For tension members with complete-joint-penetration groove welded joints and made from heavy shapes with a flange thickness exceeding 2 in . or built-up sections consisting of plates with a thickness exceeding 2 in., see AISC Specification Section A3.1c and Section A3.1d.

Slenderness

Tension member slenderness ratio, L / r, should preferably be limited to a maximum of 300 per the User Note in AISC Specification Section D1. The intent of this recommendation is explained in the corresponding Commentary.

DESIGN TABLE DISCUSSION

Available tensile strengths for various types of tension members (see individual descriptions in the text to follow) are given in Tables 5-1 through 5-8 and in Table 6-2 for the limit states of tensile yielding and tensile rupture. In each case, the tabulated values for available tensile rupture strength are based upon the assumption that $A_{e}=0.75 A_{g}$, which is arbitrarily selected as a value that is practical to achieve with typical end connections. Such consideration of the effective net area during the design of the member will simplify the design of its end connections, which can be difficult to configure and costly if tension members are selected based upon available tensile yielding strength only, without considering the reduction in strength due to the connection.

When $A_{e}>0.75 A_{g}$, either the tabulated values for available tensile rupture strength can be used conservatively or the available tensile rupture strength can be calculated based upon the actual value of A_{e}. When $A_{e}<0.75 A_{g}$, the tabulated values of the available tensile rupture strength cannot be used but rather must be calculated based upon the actual value of A_{e}.

Table 5-1. Available Strength in Axial Tension-W-Shapes

Available strengths in axial tension are given for W-shapes with $F_{y}=50 \mathrm{ksi}$ and $F_{u}=65 \mathrm{ksi}$ (ASTM A992). Note that tensile rupture will control over tensile yielding for W -shapes with $F_{y}=50 \mathrm{ksi}$ and $F_{u}=65 \mathrm{ksi}$ when $A_{e} / A_{g}<0.923$. Otherwise, tensile yielding will control over tensile rupture.

Table 5-2. Available Strength in Axial Tension—Angles

Available strengths in axial tension are given for single angles with $F_{y}=36 \mathrm{ksi}$ and $F_{u}=58$ ksi (ASTM A36). Note that tensile rupture will control over tensile yielding for single angles with $F_{y}=36 \mathrm{ksi}$ and $F_{u}=58 \mathrm{ksi}$ when $A_{e} / A_{g}<0.745$. Otherwise, tensile yielding will control over tensile rupture.

Table 5-3. Available Strength in Axial Tension-WT-Shapes

Table 5-3 is similar to Table 5-1, except that it covers WT-shapes with $F_{y}=50 \mathrm{ksi}$ and $F_{u}=65 \mathrm{ksi}$ (ASTM A992).

Table 5-4. Available Strength in Axial TensionRectangular HSS

Available strengths in axial tension are given for rectangular HSS with $F_{y}=50 \mathrm{ksi}$ and $F_{u}=62 \mathrm{ksi}$ (ASTM A500 Grade C). Note that tensile rupture will control over tensile yielding for rectangular HSS with $F_{y}=50 \mathrm{ksi}$ and $F_{u}=62 \mathrm{ksi}$ when $A_{e} / A_{g}<0.968$. Otherwise, tensile yielding will control over tensile rupture.

Table 5-5. Available Strength in Axial Tension—Square HSS

Table 5-5 is similar to Table 5-4, except that it covers square HSS with $F_{y}=50 \mathrm{ksi}$ and $F_{u}=62 \mathrm{ksi}($ ASTM A500 Grade C).

Table 5-6. Available Strength in Axial Tension-Round HSS

Available strengths in axial tension are given for round HSS with $F_{y}=46 \mathrm{ksi}$ and $F_{u}=62 \mathrm{ksi}$ (ASTM A500 Grade C). Note that tensile rupture will control over tensile yielding for round HSS with $F_{y}=46 \mathrm{ksi}$ and $F_{u}=62 \mathrm{ksi}$ when $A_{e} / A_{g}<0.890$. Otherwise, tensile yielding will control over tensile rupture.

Table 5-7. Available Strength in Axial Tension—Pipe

Available strengths in axial tension are given for pipe with $F_{y}=35 \mathrm{ksi}$ and $F_{u}=60 \mathrm{ksi}$ (ASTM A53 Grade B). Note that tensile rupture will control over tensile yielding for pipe with $F_{y}=35 \mathrm{ksi}$ and $F_{u}=60 \mathrm{ksi}$ when $A_{e} / A_{g}<0.700$. Otherwise, tensile yielding will control over tensile rupture.

Table 5-8. Available Strength in Axial Tension-Double Angles

Available strengths in axial tension are given for double angles with $F_{y}=36 \mathrm{ksi}$ and $F_{u}=58$ ksi (ASTM A36). Note that tensile rupture will control over tensile yielding for double angles with $F_{y}=36 \mathrm{ksi}$ and $F_{u}=58 \mathrm{ksi}$ when $A_{e} / A_{g}<0.745$. Otherwise, tensile yielding will control over tensile rupture.

$\underbrace{}_{\mathrm{W} 36-\mathrm{W}}$	33	Table 5-1 (continued) Available Strength in Axial Tension W-Shapes				F	0 ksi 5 ksi
Shape		Gross Area, A_{g}	$\begin{gathered} A_{e}= \\ 0.75 A_{g} \end{gathered}$	Yielding		Rupture	
				kips		kips	
				P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$
		in. ${ }^{2}$	in. ${ }^{2}$	ASD	LRFD	ASD	LRFD
W36×92		272	204	8140	12200	6630	9950
$\times 85$	56h	251	188	7510	11300	6110	9170
$\times 80$	2h	236	177	7070	10600	5750	8630
$\times 72$	仿h	213	160	6380	9590	5200	7800
$\times 65$	'	192	144	5750	8640	4680	7020
$\times 52$	29h	156	117	4670	7020	3800	5700
$\times 48$	87	143	107	4280	6440	3480	5220
$\times 44$		130	97.5	3890	5850	3170	4750
$\times 39$		116	87.0	3470	5220	2830	4240
$\times 36$	价 ${ }^{\text {h }}$	106	79.5	3170	4770	2580	3880
$\times 330$		96.9	72.7	2900	4360	2360	3540
$\times 302$		89.0	66.8	2660	4010	2170	3260
$\times 282$		82.9	62.2	2480	3730	2020	3030
$\times 262$		77.2	57.9	2310	3470	1880	2820
$\times 24$		72.5	54.4	2170	3260	1770	2650
$\times 23$		68.2	51.2	2040	3070	1660	2500
W36×25		75.3	56.5	2250	3390	1840	2750
$\times 23$		68.0	51.0	2040	3060	1660	2490
$\times 210$		61.9	46.4	1850	2790	1510	2260
$\times 19$		57.0	42.8	1710	2570	1390	2090
$\times 182$		53.6	40.2	1600	2410	1310	1960
$\times 170$		50.0	37.5	1500	2250	1220	1830
$\times 160$		47.0	35.3	1410	2120	1150	1720
$\times 150$		44.3	33.2	1330	1990	1080	1620
$\times 13$		39.9	29.9	1190	1800	972	1460
W 33×38		114	85.5	3410	5130	2780	4170
$\times 35$		104	78.0	3110	4680	2540	3800
$\times 318$		93.7	70.3	2810	4220	2280	3430
$\times 29$		85.6	64.2	2560	3850	2090	3130
$\times 26$		77.4	58.1	2320	3480	1890	2830
$\times 24$		71.1	53.3	2130	3200	1730	2600
$\times 22$		65.3	49.0	1960	2940	1590	2390
$\times 20$		59.1	44.3	1770	2660	1440	2160
Limit State	ASD	LRFD	${ }^{\mathrm{h}}$ Flange thickness is greater than 2 in . Special requirements may apply per AISC Specification Section A3.1c. Note: Tensile rupture on the effective net area will control over tensile yielding on the gross area unless the tension member is selected so that an end connection can be configured with $A_{e} \geq 0.923 A_{g}$.				
Yielding	$\Omega_{\text {t }}=1.67$	7 $\phi_{\text {t }}=0.90$					
Rupture	$\Omega_{t}=2.00$	0 $\phi_{t}=0.75$					

$\begin{aligned} & F_{y}=50 \mathrm{ksi} \\ & F_{u}=65 \mathrm{ksi} \end{aligned}$		Table 5-1 (continued) Available Strength in Axial Tension W-Shapes					-W27		
Shape		$\begin{aligned} & \text { Gross Area, } \\ & A_{g} \end{aligned}$	$\begin{gathered} A_{e}= \\ 0.75 A_{g} \end{gathered}$	Yielding		Rupture			
				P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$		
		in. ${ }^{2}$	in. ${ }^{2}$	ASD	LRFD	ASD	LRFD		
W33×169		49.5	37.1	1480	2230	1210	1810		
$\times 15$		44.9	33.7	1340	2020	1100	1640		
$\times 14$		41.5	31.1	1240	1870	1010	1520		
$\times 130$		38.3	28.7	1150	1720	933	1400		
$\times 118$		34.7	26.0	1040	1560	845	1270		
W30 $\times 39$		115	86.3	3440	5180	2800	4210		
$\times 35$		105	78.8	3140	4730	2560	3840		
$\times 32$		95.9	71.9	2870	4320	2340	3510		
$\times 292$		86.0	64.5	2570	3870	2100	3140		
$\times 26$		77.0	57.8	2310	3470	1880	2820		
$\times 235$		69.3	52.0	2070	3120	1690	2540		
$\times 21$		62.3	46.7	1870	2800	1520	2280		
$\times 19$		56.1	42.1	1680	2520	1370	2050		
$\times 17$		50.9	38.2	1520	2290	1240	1860		
W30×148		43.6	32.7	1310	1960	1060	1590		
$\times 132$		38.8	29.1	1160	1750	946	1420		
$\times 12$		36.5	27.4	1090	1640	891	1340		
$\times 116$		34.2	25.7	1020	1540	835	1250		
$\times 108$		31.7	23.8	949	1430	774	1160		
$\times 99$		29.0	21.8	868	1310	709	1060		
$\times 90$		26.3	19.7	787	1180	640	960		
W27×539		159	119	4760	7160	3870	5800		
$\times 36$		109	81.8	3260	4910	2660	3990		
$\times 33$		99.2	74.4	2970	4460	2420	3630		
$\times 30$		90.2	67.7	2700	4060	2200	3300		
$\times 28$		83.1	62.3	2490	3740	2020	3040		
$\times 258$		76.1	57.1	2280	3420	1860	2780		
$\times 235$		69.4	52.1	2080	3120	1690	2540		
$\times 217$		63.9	47.9	1910	2880	1560	2340		
$\times 194$		57.1	42.8	1710	2570	1390	2090		
$\times 178$		52.5	39.4	1570	2360	1280	1920		
$\times 16$		47.6	35.7	1430	2140	1160	1740		
$\times 146$		43.2	32.4	1290	1940	1050	1580		
Limit State	ASD	LRFD	${ }^{\mathrm{h}}$ Flange thickness is greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.						
Yielding	$\Omega_{t}=1.67$	7 $\phi_{t}=0.90$							
Rupture	$\Omega_{t}=2.00$	0 $\phi_{t}=0.75$							

$\begin{aligned} & F_{y}=50 \mathrm{ksi} \\ & F_{u}=65 \mathrm{ksi} \end{aligned}$		Table 5-1 (continued) Available Strength in Axial Tension W-Shapes					W14
Shape		$\begin{aligned} & \text { Gross Area, } \\ & \quad A_{g} \end{aligned}$	$\begin{gathered} A_{e}= \\ 0.75 A_{g} \end{gathered}$	Yielding		Rupture	
				P_{n} / Ω_{t}	$\phi_{t} \boldsymbol{P}_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$
		in. ${ }^{2}$	in. ${ }^{2}$	ASD	LRFD	ASD	LRFD
W14×87		257	193	7690	11600	6270	9410
$\times 80$		238	179	7130	10700	5820	8730
$\times 73$		215	161	6440	9680	5230	7850
$\times 66$		196	147	5870	8820	4780	7170
$\times 60$		178	134	5330	8010	4360	6530
$\times 55$		162	122	4850	7290	3970	5950
$\times 50$		147	110	4400	6620	3580	5360
$\times 45$		134	101	4010	6030	3280	4920
$\times 42$		125	93.8	3740	5630	3050	4570
$\times 39$		117	87.8	3500	5270	2850	4280
$\times 37$		109	81.8	3260	4910	2660	3990
$\times 34$		101	75.8	3020	4550	2460	3700
$\times 31$		91.4	68.6	2740	4110	2230	3340
$\times 28$		83.3	62.5	2490	3750	2030	3050
$\times 25$		75.6	56.7	2260	3400	1840	2760
$\times 23$		68.5	51.4	2050	3080	1670	2510
$\times 21$		62.0	46.5	1860	2790	1510	2270
$\times 19$		56.8	42.6	1700	2560	1380	2080
$\times 17$		51.8	38.9	1550	2330	1260	1900
$\times 15$		46.7	35.0	1400	2100	1140	1710
$\times 14$		42.7	32.0	1280	1920	1040	1560
W14×13		38.8	29.1	1160	1750	946	1420
$\times 12$		35.3	26.5	1060	1590	861	1290
$\times 10$		32.0	24.0	958	1440	780	1170
$\times 99$		29.1	21.8	871	1310	709	1060
$\times 90$		26.5	19.9	793	1190	647	970
W14×82		24.0	18.0	719	1080	585	878
$\times 74$		21.8	16.4	653	981	533	800
$\times 68$		20.0	15.0	599	900	488	731
$\times 61$		17.9	13.4	536	806	436	653
W14×53		15.6	11.7	467	702	380	570
$\times 48$		14.1	10.6	422	635	345	517
$\times 43$		12.6	9.45	377	567	307	461
Limit State	ASD	LRFD	ange thich	greater th	Special re	s may ap	
Yielding	$\Omega_{t}=1.67$	$7{ }^{\phi_{t}=0.90}$: Tensile	A3.1c.	area w	ver tens	on the
Rupture	$\Omega_{t}=2.00$	($\phi_{t}=0.75$	$\begin{aligned} & \text { oss area ur } \\ & \text { onfigured wi } \end{aligned}$	$\begin{aligned} & \text { tension } \\ & 0.923 A_{g} . \end{aligned}$	is select	end con	can be

$\begin{aligned} & F_{y}=50 \mathrm{ksi} \\ & F_{u}=65 \mathrm{ksi} \end{aligned}$		Table 5-1 (continued) Available Strength in Axial Tension W-Shapes					10-W8
Shape		Gross Area, \boldsymbol{A}_{g}	$\begin{gathered} A_{e}= \\ 0.75 A_{g} \end{gathered}$	Yielding			
				P_{n} / Ω_{t}	${ }_{\phi t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$
		in. ${ }^{2}$	in. ${ }^{2}$	ASD	LRFD	ASD	LRFD
W10×112		32.9	24.7	985	1480	803	1200
$\times 100$		29.3	22.0	877	1320	715	1070
$\times 88$		26.0	19.5	778	1170	634	951
$\times 77$		22.7	17.0	680	1020	553	829
$\times 68$		19.9	14.9	596	896	484	726
$\times 60$		17.7	13.3	530	797	432	648
$\times 54$		15.8	11.9	473	711	387	580
$\times 49$		14.4	10.8	431	648	351	527
W10×45		13.3	9.98	398	599	324	487
$\times 39$		11.5	8.63	344	518	280	421
$\times 33$		9.71	7.28	291	437	237	355
W10×30		8.84	6.63	265	398	215	323
$\times 26$		7.61	5.71	228	342	186	278
$\times 22$		6.49	4.87	194	292	158	237
W10×19		5.62	4.22	168	253	137	206
$\times 17$		4.99	3.74	149	225	122	182
$\times 15$		4.41	3.31	132	198	108	161
$\times 12$		3.54	2.66	106	159	86.5	130
W8×67		19.7	14.8	590	887	481	722
$\times 58$		17.1	12.8	512	770	416	624
$\times 48$		14.1	10.6	422	635	345	517
$\times 40$		11.7	8.78	350	527	285	428
$\times 35$		10.3	7.73	308	464	251	377
$\times 31$		9.13	6.85	273	411	223	334
W 8×28		8.25	6.19	247	371	201	302
$\times 24$		7.08	5.31	212	319	173	259
W8×21		6.16	4.62	184	277	150	225
$\times 18$		5.26	3.95	157	237	128	193
W8×15		4.44	3.33	133	200	108	162
$\times 13$		3.84	2.88	115	173	93.6	140
$\times 10$		2.96	2.22	88.6	133	72.2	108
Limit State	ASD	LRFD	e: Tensile	on the eff			on the
Yielding	$\Omega_{\text {t }}=1.67$	$7 \phi_{t}=0.90$	ss area u figured	tension $0.923 A_{g}$.	lected	n end co	
Rupture	$\Omega_{t}=2.00$	0 $\phi_{t}=0.75$					

$\begin{aligned} & F_{y}=36 \mathrm{ksi} \\ & F_{u}=58 \mathrm{ksi} \end{aligned}$		Table 5-2 (continued) Available Strength in Axial Tension Angles					L7-L5
Shape		$\begin{aligned} & \text { Gross Area, } \\ & A_{g} \end{aligned}$	$\begin{gathered} A_{e}= \\ 0.75 A_{g} \end{gathered}$	Yielding		$\begin{gathered} \hline \text { Rupture } \\ \hline \text { kips } \end{gathered}$	
				P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$
		in. ${ }^{2}$	in. ${ }^{2}$	ASD	LRFD	ASD	LRFD
L7x4×3/4		7.74	5.81	167	251	168	253
$\times 5 / 8$		6.50	4.88	140	211	142	212
$\times 1 / 2$		5.26	3.95	113	170	115	172
$\times^{7 / 1}$		4.63	3.47	99.8	150	101	151
$\times 3 / 8$		4.00	3.00	86.2	130	87.0	131
L6×6×1		11.0	8.25	237	356	239	359
$\times{ }^{7 / 8}$		9.75	7.31	210	316	212	318
$\times^{3 / 4}$		8.46	6.35	182	274	184	276
$\times 5 / 8$		7.13	5.35	154	231	155	233
$\times 9 / 1$		6.45	4.84	139	209	140	211
$\times 1 / 2$		5.77	4.33	124	187	126	188
$\times^{7 / 1}$		5.08	3.81	110	165	110	166
$\times 3 / 8$		4.38	3.29	94.4	142	95.4	143
$\times 5 / 1$		3.67	2.75	79.1	119	79.8	120
L6x4×7/8		8.00	6.00	172	259	174	261
$\times^{3 / 4}$		6.94	5.21	150	225	151	227
$\times 5 / 8$		5.86	4.40	126	190	128	191
$\times 9 / 1$		5.31	3.98	114	172	115	173
$\times 1 / 2$		4.75	3.56	102	154	103	155
$\times^{7} 1$		4.18	3.14	90.1	135	91.1	137
$\times 3 / 8$		3.61	2.71	77.8	117	78.6	118
$\times 5 / 1$		3.03	2.27	65.3	98.2	65.8	98.7
L6 $63^{1 / 2} \times 1 / 1 / 2$		4.50	3.38	97.0	146	98.0	147
$x^{3 / 8}$		3.44	2.58	74.2	111	74.8	112
$\times 5 / 1$		2.89	2.17	62.3	93.6	62.9	94.4
L5 $\times 5 \times 7 / 8$		8.00	6.00	172	259	174	261
$\times 3 / 4$		6.98	5.24	150	226	152	228
$\times 5 / 8$		5.90	4.43	127	191	128	193
$\times 1 / 2$		4.79	3.59	103	155	104	156
$\times^{7 / 1}$		4.22	3.17	91.0	137	91.9	138
$\times 3 / 8$		3.65	2.74	78.7	118	79.5	119
$\times 5 / 1$		3.07	2.30	66.2	99.5	66.7	100
Limit State	ASD	LRFD	ote: Tensile	on the effe			on the
Yielding	$\Omega_{t}=1.67$	$\phi_{t}=0.90$	ross area un onfigured w	tension m $0.745 A_{g} .$	selected	n end con	can be
Rupture	$\Omega_{t}=2.00$	- $\phi_{t}=0.75$					

$\begin{aligned} F_{y} & =36 \mathrm{ksi} \\ F_{u} & =58 \mathrm{ksi} \end{aligned}$		Table 5-2 (continued) Available Strength in Axial Tension Angles					- $\mathbf{2}^{1 / 2}$
Shape		Gross Area, A_{g}	$\begin{gathered} A_{e}= \\ 0.75 A_{g} \end{gathered}$	Yielding		Rupture	
				kips		kips	
				P_{n} / Ω_{t}	${ }_{\phi t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$
		in. ${ }^{2}$	in. ${ }^{2}$	ASD	LRFD	ASD	LRFD
$\begin{gathered} \mathrm{L} 31 / 2 \times 3 \times{ }^{1 / 2} 2 \\ \times^{7 / 16} \\ \times^{3 / 8} \\ x^{5} / 16 \\ x^{1 / 1 / 4} \end{gathered}$		3.02	2.27	65.1	97.8	65.8	98.7
		2.67	2.00	57.6	86.5	58.0	87.0
		2.32	1.74	50.0	75.2	50.5	75.7
		1.95	1.46	42.0	63.2	42.3	63.5
		1.58	1.19	34.1	51.2	34.5	51.8
$\begin{array}{r} \mathrm{L} 3^{1 / 2 \times 2^{1 / 2} \times 1 / 2} \times \\ \times^{3 / 8} \\ x^{5 / 16} \\ x^{1 / 4} \end{array}$		2.77	2.08	59.7	89.7	60.3	90.5
		2.12	1.59	45.7	68.7	46.1	69.2
		1.79	1.34	38.6	58.0	38.9	58.3
		1.45	1.09	31.3	47.0	31.6	47.4
$\mathrm{L} 3 \times 3 \times 1 / 2$		2.76	2.07	59.5	89.4	60.0	90.0
$\times^{7} / 16$		2.43	1.82	52.4	78.7	52.8	79.2
$x^{3 / 8}$		2.11	1.58	45.5	68.4	45.8	68.7
		1.78	1.34	38.4	57.7	38.9	58.3
$\begin{aligned} & x^{1 / 4} \\ & x^{3} / 16 \end{aligned}$		1.44	1.08	31.0	46.7	31.3	47.0
		1.09	0.818	23.5	35.3	23.7	35.6
L3 $\times 2^{1 / 2} \times 1 / 2$		2.50	1.88	53.9	81.0	54.5	81.8
$\times{ }^{7 / 16}$		2.22	1.67	47.9	71.9	48.4	72.6
$\times 3 / 8$		1.93	1.45	41.6	62.5	42.1	63.1
$\times 5 / 16$		1.63	1.22	35.1	52.8	35.4	53.1
$\times{ }^{1 / 4}$		1.32	0.990	28.5	42.8	28.7	43.1
$\times 3 / 16$		1.00	0.750	21.6	32.4	21.8	32.6
L3 $\times 2 \times 1 / 2$		2.26	1.70	48.7	73.2	49.3	74.0
- ${ }^{3 / 8}$		1.75	1.31	37.7	56.7	38.0	57.0
$\times{ }^{5} / 16$		1.48	1.11	31.9	48.0	32.2	48.3
$\times 5 / 16$$\times 1 / 4$		1.20	0.900	25.9	38.9	26.1	39.2
$\times 3 / 16$		0.917	0.688	19.8	29.7	20.0	29.9
$\mathrm{L} 2^{1 / 2 \times 21 / 2 \times 1 / 2}$		2.26	1.70	48.7	73.2	49.3	74.0
		1.73	1.30	37.3	56.1	37.7	56.6
$\times 3 / 8$$\times 5 / 16$		1.46	1.10	31.5	47.3	31.9	47.9
${ }^{5} / 1 / 16$$\times 1 / 4$		1.19	0.893	25.7	38.6	25.9	38.8
$\times 3 / 16$		0.901	0.676	19.4	29.2	19.6	29.4
Limit State	ASD	LRFD	Note: Tensile rupture on the effective net area will control over tensile yielding on the gross area unless the tension member is selected so that an end connection can be configured with $A_{e} \geq 0.745 A_{g}$.				
Yielding	$\Omega_{\text {t }}=1.67$	$7 \phi_{t}=0.90$					
Rupture	$\Omega_{t}=2.00$	0 $\phi_{t}=0.75$					

$\begin{aligned} & F_{y}=50 \mathrm{ksi} \\ & F_{u}=65 \mathrm{ksi} \end{aligned}$		Table 5-3 (continued) Available Strength in Axial Tension WT-Shapes				WT1	WT13.5	
Shape		Gross Area, A_{g}	$\begin{gathered} A_{e}= \\ 0.75 A_{g} \end{gathered}$	Yielding		Rupture		
		kips		kips				
		P_{n} / Ω_{t}		$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$		
		in. ${ }^{2}$	in. ${ }^{2}$	ASD	LRFD	ASD	LRFD	
WT16.5×84.5			24.7	18.5	740	1110	601	902
$\times 76$			22.5	16.9	674	1010	549	824
$\times 70.5$		20.7	15.5	620	932	504	756	
$\times 65$		19.1	14.3	572	860	465	697	
$\times 59$		17.4	13.1	521	783	426	639	
WT15 $\times 195.5{ }^{\text {h }}$		57.6	43.2	1720	2590	1400	2110	
$\times 178.5{ }^{\text {h }}$		52.5	39.4	1570	2360	1280	1920	
$\times 163{ }^{\text {h }}$		48.0	36.0	1440	2160	1170	1760	
$\times 146$		43.0	32.3	1290	1940	1050	1570	
$\times 130.5$		38.5	28.9	1150	1730	939	1410	
$\times 117.5$		34.7	26.0	1040	1560	845	1270	
$\times 105.5$		31.1	23.3	931	1400	757	1140	
$\times 95.5$		28.0	21.0	838	1260	683	1020	
$\times 86.5$		25.4	19.1	760	1140	621	931	
WT15×74		21.8	16.4	653	981	533	800	
$\times 66$		19.5	14.6	584	878	475	712	
$\times 62$		18.2	13.7	545	819	445	668	
$\times 58$		17.1	12.8	512	770	416	624	
$\times 54$		15.9	11.9	476	716	387	580	
$\times 49.5$		14.5	10.9	434	653	354	531	
$\times 45$		13.2	9.90	395	594	322	483	
WT13.5×269.5 ${ }^{\text {h }}$		79.3	59.5	2370	3570	1930	2900	
$\times 184 \mathrm{~h}$		54.2	40.7	1620	2440	1320	1980	
$\times 168{ }^{\text {h }}$		49.5	37.1	1480	2230	1210	1810	
$\times 153.5{ }^{\text {h }}$		45.2	33.9	1350	2030	1100	1650	
+140.5		41.5	31.1	1240	1870	1010	1520	
$\times 129$		38.1	28.6	1140	1710	930	1390	
$\times 117.5$		34.7	26.0	1040	1560	845	1270	
+108.5		32.0	24.0	958	1440	780	1170	
$\times 97$		28.6	21.5	856	1290	699	1050	
$\times 89$		26.3	19.7	787	1180	640	960	
$\times 80.5$		23.8	17.9	713	1070	582	873	
$\times 80.5$$\times 73$		21.6	16.2	647	972	527	790	
Limit State	ASD	LRFD	${ }^{\mathrm{n}}$ Flange thickness is greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c. Note: Tensile rupture on the effective net area will control over tensile yielding on the gross area unless the tension member is selected so that an end connection can be configured with $A_{e} \geq 0.923 A_{g}$.					
Yielding $\Omega^{(1)}$	$\Omega_{\text {t }}=1.67$	$\phi^{\phi_{t}=0.90}$						
Rupture $\Omega^{\text {何 }} \mathbf{2} \mathbf{2 . 0 0}$		¢ $\phi_{t}=0.75$						

WT9-WT8			Table ailab Axi		ed) th n	$\begin{aligned} & F_{y} \\ & F_{u} \end{aligned}$	0 ksi 65 ksi
Shape ${ }^{\text {G }}$			$\begin{gathered} A_{e}= \\ 0.75 A_{g} \end{gathered}$	Yielding		Rupture	
		Gross Area,		kips		kips	
				P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$
		in. ${ }^{2}$	in. ${ }^{2}$	ASD	LRFD	ASD	LRFD
WT9 $\times 15$	5.5 ${ }^{\text {h }}$	45.8	34.4	1370	2060	1120	1680
	$1.5{ }^{\text {h }}$	41.7	31.3	1250	1880	1020	1530
$\times 12$		38.0	28.5	1140	1710	926	1390
$\times 11$		34.3	25.7	1030	1540	835	1250
$\times 10$		31.2	23.4	934	1400	761	1140
$\times 96$		28.1	21.1	841	1260	686	1030
$\times 87$		25.7	19.3	769	1160	627	941
$\times 79$		23.2	17.4	695	1040	566	848
$\times 71$		21.0	15.8	629	945	514	770
$\times 65$		19.2	14.4	575	864	468	702
$\times 59$		17.6	13.2	527	792	429	644
$\times 53$		15.6	11.7	467	702	380	570
$\times 48$		14.2	10.7	425	639	348	522
$\times 43$		12.7	9.53	380	572	310	465
$\times 38$		11.1	8.33	332	500	271	406
WT9 $\times 35$		10.4	7.80	311	468	254	380
$\times 32$		9.55	7.16	286	430	233	349
$\times 30$		8.82	6.62	264	397	215	323
$\times 27$		8.10	6.08	243	365	198	296
$\times 25$		7.34	5.51	220	330	179	269
WT9 $\times 23$		6.77	5.08	203	305	165	248
$\times 20$		5.88	4.41	176	265	143	215
$\times 17$		5.15	3.86	154	232	125	188
WT8×50		14.7	11.0	440	662	358	536
$\times 44$		13.1	9.83	392	590	319	479
$\times 38$		11.3	8.48	338	509	276	413
$\times 33$		9.81	7.36	294	441	239	359
WT8×28		8.39	6.29	251	378	204	307
$\times 25$		7.37	5.53	221	332	180	270
$\times 22$		6.63	4.97	199	298	162	242
$\times 20$		5.89	4.42	176	265	144	215
$\times 18$		5.29	3.97	158	238	129	194
WT8×15		4.56	3.42	137	205	111	167
$\times 13$		3.84	2.88	115	173	93.6	140
Limit State	ASD	LRFD	${ }^{\mathrm{h}}$ Flange thickness is greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c. Note: Tensile rupture on the effective net area will control over tensile yielding on the gross area unless the tension member is selected so that an end connection can be configured with $A_{e} \geq 0.923 A_{g}$.				
Yielding	$\Omega_{t}=1.67$	$7 \phi_{t}=0.90$					
Rupture	$\Omega_{t}=2.00$	0 $\phi_{t}=0.75$					

$\begin{aligned} & F_{y}=50 \mathrm{ksi} \\ & F_{u}=65 \mathrm{ksi} \end{aligned}$		Table 5-3 (continued) Available Strength in Axial Tension WT-Shapes					
Shape		$\begin{aligned} & \text { Gross Area, } \\ & \qquad A_{g} \end{aligned}$	$\begin{gathered} A_{e}= \\ 0.75 A_{g} \end{gathered}$	Yielding		Rupture	
				kips		kips	
				P_{n} / Ω_{t}	${ }_{\phi}{ }_{1} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$
		in. ${ }^{2}$	in. ${ }^{2}$	ASD	LRFD	ASD	LRFD
$\begin{gathered} \mathrm{WT} 7 \times 436.5^{\mathrm{h}} \\ \times 404^{\mathrm{h}} \end{gathered}$		129	96.8	3860	5810	3150	4720
		119	89.3	3560	5360	2900	4350
$\times 365 \mathrm{~h}$		107	80.3	3200	4820	2610	3910
$\times 332.5{ }^{\text {h }}$		97.8	73.4	2930	4400	2390	3580
$\times 302.5{ }^{\text {h }}$		89.0	66.8	2660	4010	2170	3260
$\times 275{ }^{\text {h }}$		80.9	60.7	2420	3640	1970	2960
$\times 250 \mathrm{~h}$		73.5	55.1	2200	3310	1790	2690
$\times 227.5{ }^{\text {h }}$		66.9	50.2	2000	3010	1630	2450
$\times 213{ }^{\text {h }}$		62.7	47.0	1880	2820	1530	2290
$\times 199 \mathrm{~h}$		58.4	43.8	1750	2630	1420	2140
$\times 185{ }^{\text {h }}$		54.4	40.8	1630	2450	1330	1990
$\times 171^{\text {h }}$		50.3	37.7	1510	2260	1230	1840
$\times 155.5{ }^{\text {h }}$		45.7	34.3	1370	2060	1110	1670
$\times 141.5{ }^{\text {h }}$		41.6	31.2	1250	1870	1010	1520
$\times 128.5$		37.8	28.4	1130	1700	923	1380
$\times 116.5$		34.2	25.7	1020	1540	835	1250
$\times 105.5$		31.0	23.3	928	1400	757	1140
$\times 96.5$		28.4	21.3	850	1280	692	1040
$\times 88$		25.9	19.4	775	1170	631	946
$\times 79.5$		23.4	17.6	701	1050	572	858
$\times 72.5$		21.3	16.0	638	959	520	780
WT7×66		19.4	14.6	581	873	475	712
$\times 60$		17.7	13.3	530	797	432	648
$\times 54.5$		16.0	12.0	479	720	390	585
$\times 49.5$		14.6	11.0	437	657	358	536
$\times 45$		13.2	9.90	395	594	322	483
WT7 $\times 41$		12.0	9.00	359	540	293	439
$\times 37$		10.9	8.18	326	491	266	399
$\times 34$		10.0	7.50	299	450	244	366
$\times 30.5$		8.96	6.72	268	403	218	328
WT7×26.5		7.80	5.85	234	351	190	285
$\times 24$		7.07	5.30	212	318	172	258
$\times 21.5$		6.31	4.73	189	284	154	231
Limit State	ASD	LRFD	${ }^{\mathrm{h}}$ Flange thickness is greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.				
Yielding	$\Omega_{t}=1.67$	$\phi_{t}=0.90$	Note: Tensile rupture on the eff gross area unless the tension configured with $A_{e} \geq 0.923 A_{g}$.		area will	over tensil	g on the
Rupture	$\Omega_{t}=2.00$	$\phi_{t}=0.75$					

WT7-WT6			Table vailab Ax		ed) th n	$\begin{aligned} & F_{y} \\ & F_{l} \end{aligned}$	0 ksi 65 ksi	
Shape		$\begin{aligned} & \text { Gross Area, } \\ & \boldsymbol{A}_{g} \end{aligned}$	$\begin{gathered} A_{e}= \\ 0.75 A_{g} \end{gathered}$	Yielding		Rupture		
		kips		kips				
		P_{n} / Ω_{t}		$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$		
		in. ${ }^{2}$	in. ${ }^{2}$	ASD	LRFD	ASD	LRFD	
WT7×19			5.58	4.19	167	251	136	204
$\times 17$			5.00	3.75	150	225	122	183
$\times 15$		4.42	3.32	132	199	108	162	
WT 7×13		3.85	2.89	115	173	93.9	141	
$\times 11$		3.25	2.44	97.3	146	79.3	119	
WT6×16		49.5	37.1	1480	2230	1210	1810	
$\times 15$	2.5h	44.7	33.5	1340	2010	1090	1630	
	39.5 ${ }^{\text {h }}$	41.0	30.8	1230	1850	1000	1500	
$\times 12$		37.1	27.8	1110	1670	904	1360	
$\times 11$		33.8	25.4	1010	1520	826	1240	
$\times 10$		30.9	23.2	925	1390	754	1130	
$\times 95$		28.0	21.0	838	1260	683	1020	
$\times 85$		25.0	18.8	749	1130	611	917	
$\times 76$		22.4	16.8	671	1010	546	819	
$\times 68$		20.0	15.0	599	900	488	731	
$\times 60$		17.6	13.2	527	792	429	644	
$\times 53$		15.6	11.7	467	702	380	570	
$\times 48$		14.1	10.6	422	635	345	517	
$\times 43$		12.8	9.60	383	576	312	468	
$\times 39$		11.6	8.70	347	522	283	424	
$\times 36$		10.6	7.95	317	477	258	388	
$\times 32$		9.54	7.16	286	429	233	349	
WT6×29		8.52	6.39	255	383	208	312	
$\times 26$		7.78	5.84	233	350	190	285	
WT6 $\times 25$		7.30	5.48	219	329	178	267	
$\times 22$		6.56	4.92	196	295	160	240	
$\times 20$		5.84	4.38	175	263	142	214	
WT6 $\times 17$		5.17	3.88	155	233	126	189	
$\times 15$		4.40	3.30	132	198	107	161	
$\times 13$		3.82	2.87	114	172	93.3	140	
WT6 $\times 11$		3.24	2.43	97.0	146	79.0	118	
$\times 9.5$		2.79	2.09	83.5	126	67.9	102	
$\times 8$		2.36	1.77	70.7	106	57.5	86.3	
$\times 7$		2.08	1.56	62.3	93.6	50.7	76.1	
Limit State	ASD	LRFD	${ }^{\mathrm{h}}$ Flange thickness is greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c. Note: Tensile rupture on the effective net area will control over tensile yielding on the gross area unless the tension member is selected so that an end connection can be configured with $A_{e} \geq 0.923 A_{g}$.					
Yielding	$\Omega_{t}=1.67$	$7 \phi_{t}=0.90$						
Rupture	$\Omega_{t}=2.00$	0 $\phi_{t}=0.75$						

$\begin{aligned} & F_{y}=50 \mathrm{ksi} \\ & F_{u}=65 \mathrm{ksi} \end{aligned}$		Table 5-3 (continued) Available Strength in Axial Tension WT-Shapes					
Shape		Gross Area, A_{g}	$\begin{gathered} A_{e}= \\ 0.75 A_{g} \end{gathered}$	Yielding		Rupture	
				kips		kips	
				P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$
		in. ${ }^{2}$	in. ${ }^{2}$	ASD	LRFD	ASD	LRFD
WT5×56		16.5	12.4	494	743	403	605
$\times 50$		14.7	11.0	440	662	358	536
$\begin{aligned} & \times 44 \\ & \times 38.5 \end{aligned}$		13.0	9.75	389	585	317	475
		11.3	8.48	338	509	276	413
$\times 34$		10.0	7.50	299	450	244	366
$\times 30$		8.84	6.63	265	398	215	323
$\times 27$		7.90	5.93	237	356	193	289
$\times 24.5$		7.21	5.41	216	324	176	264
WT5 $\times 22.5$		6.63	4.97	199	298	162	242
$\times 19.5$		5.73	4.30	172	258	140	210
$\times 16.5$		4.85	3.64	145	218	118	177
WT 5×15		4.42	3.32	132	199	108	162
$\times 13$		3.81	2.86	114	171	93.0	139
$\times 11$		3.24	2.43	97.0	146	79.0	118
WT5 $\times 9.5$		2.81	2.11	84.1	126	68.6	103
$\times 8.5$		2.50	1.88	74.9	113	61.1	91.7
$\times 7.5$		2.21	1.66	66.2	99.5	54.0	80.9
$\times 6$		1.77	1.33	53.0	79.7	43.2	64.8
WT 4×33.5		9.84	7.38	295	443	240	360
$\times 29$		8.54	6.41	256	384	208	312
$\times 24$$\times 2$		7.05	5.29	211	317	172	258
$\times 20$		5.87	4.40	176	264	143	215
$\times 17.5$		5.14	3.86	154	231	125	188
$\times 15.5$		4.56	3.42	137	205	111	167
WT 4×14		4.12	3.09	123	185	100	151
$\times 12$		3.54	2.66	106	159	86.5	130
WT 4×10.5		3.08	2.31	92.2	139	75.1	113
$\times 9$		2.63	1.97	78.7	118	64.0	96.0
WT 4×7.5		2.22	1.67	66.5	99.9	54.3	81.4
$\times 6.5$		1.92	1.44	57.5	86.4	46.8	70.2
$\times 6.5$$\times 5$		1.48	1.11	44.3	66.6	36.1	54.1
Limit State	ASD	LRFD	Note: Tensile rupture on the effective net area will control over tensile yielding on the gross area unless the tension member is selected so that an end connection can be configured with $A_{e} \geq 0.923 A_{g}$.				
Yielding	$\Omega_{t}=1.67$	$7 \phi_{t}=0.90$					
Rupture	$\Omega_{t}=2.00$	0 $\phi_{t}=0.75$					

$\begin{aligned} F_{y} & =50 \mathrm{ksi} \\ F_{u} & =62 \mathrm{ksi} \end{aligned}$		Table 5-4 (continued) Available Strength in Axial Tension Rectangular HSS					HSS6	
Shape	Gross Area, A_{g}		$\begin{gathered} A_{e}= \\ 0.75 A_{g} \end{gathered}$	Yielding		Rupture		
			kips	kips				
			P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	${ }_{\phi t} P_{n}$		
		in. ${ }^{2}$		in. ${ }^{2}$	ASD	LRFD	ASD	LRFD
$\begin{array}{r} \text { HSS8×2 } 2 x^{3 / 8} \\ x^{5 / 16} \\ \times^{1 / 4} \\ x^{3 / 16} \\ x^{1 / 8} \end{array}$		6.18		4.63	185	278	144	216
		5.26	3.94	157	237	122	184	
		4.30	3.22	129	194	100	150	
		3.28	2.46	98.2	148	76.3	114	
		2.23	1.67	66.8	100	51.8	77.7	
$\begin{gathered} \text { HSS7 } \times 5 x^{1 / 2} \\ \times^{3 / 8} \\ x^{5} / 16 \\ x^{1 / 4} \\ x^{3 / 16} \\ x^{1 / 8} \end{gathered}$		9.74	7.30	292	438	227	340	
		7.58	5.69	227	341	176	265	
		6.43	4.82	193	289	149	224	
		5.24	3.93	157	236	122	183	
		3.98	2.99	119	179	92.7	139	
		2.70	2.03	80.8	122	62.9	94.4	
HSS7 $\times 4 \times 1 / 2$		8.81	6.61	264	396	205	307	
$\begin{aligned} & x^{3} / 8 \\ & x^{5} / 16 \end{aligned}$		6.88	5.16	206	310	160	240	
		5.85	4.39	175	263	136	204	
$\times 1 / 4$		4.77	3.58	143	215	111	166	
$\begin{aligned} & x^{3} / 16 \\ & x^{1 / 8} \end{aligned}$		3.63	2.72	109	163	84.3	126	
		2.46	1.85	73.7	111	57.4	86.0	
HSS $7 \times 3 \times 1 / 2$		7.88	5.91	236	355	183	275	
$\times 3 / 8$		6.18	4.63	185	278	144	216	
$\times 5 / 16$		5.26	3.94	157	237	122	184	
$\times 1 / 4$		4.30	3.22	129	194	100	150	
		3.28	2.46	98.2	148	76.3	114	
$\times 1 / 8$ $\times 1 / 8$		2.23	1.67	66.8	100	51.8	77.7	
HSS7 $\times 2 \times 1 / 4$		3.84	2.88	115	173	89.3	134	
$x^{3 / 16}$		2.93	2.20	87.7	132	68.2	102	
$\times 1 / 8$		2.00	1.50	59.9	90.0	46.5	69.8	
HSS6 $\times 5 \times 1 / 2$		8.81	6.61	264	396	205	307	
$\times 3 / 8$		6.88	5.16	206	310	160	240	
$\times{ }^{5} / 16$		5.85	4.39	175	263	136	204	
$\times 1 / 4$		4.77	3.58	143	215	111	166	
		3.63	2.72	109	163	84.3	126	
		2.46	1.85	73.7	111	57.4	86.0	
Limit State	ASD	LRFD	Note: Tensile rupture on the effective net area will control over tensile yielding on the gross area unless the tension member is selected so that an end connection can be configured with $A_{e} \geq 0.968 A_{g}$.					
Yielding	$\Omega_{t}=1.67$	$\phi_{t}=0.90$						
Rupture	$\Omega_{t}=2.00$	$\phi_{t}=0.75$						

HSS6-HSS5	Table 5-4 (continued) vailable Strength in Axial Tension $\begin{aligned} & F_{y}=50 \mathrm{ksi} \\ & F_{u}=62 \mathrm{ksi} \end{aligned}$ Rectangular HSS					
Shape	Gross Area, A_{g}	$\begin{gathered} A_{e}= \\ 0.75 A_{g} \end{gathered}$	Yielding		Rupture	
			kips		kips	
			P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$
	in. ${ }^{2}$	in. ${ }^{2}$	ASD	LRFD	ASD	LRFD
HSS6×	7.88	5.91	236	355	183	275
	6.18	4.63	185	278	144	216
	5.26	3.94	157	237	122	184
	4.30	3.22	129	194	100	150
	3.28	2.46	98.2	148	76.3	114
	2.23	1.67	66.8	100	51.8	77.7
HSS6×	6.95	5.21	208	313	162	242
	5.48	4.11	164	247	127	191
	4.68	3.51	140	211	109	163
	3.84	2.88	115	173	89.3	134
	2.93	2.20	87.7	132	68.2	102
	2.00	1.50	59.9	90.0	46.5	69.8
HSS6x	4.78	3.58	143	215	111	167
	4.10	3.08	123	185	95.5	143
	3.37	2.53	101	152	78.4	118
	2.58	1.94	77.2	116	60.1	90.2
	1.77	1.33	53.0	79.7	41.2	61.8
HSS5 \times	6.95	5.21	208	313	162	242
	5.48	4.11	164	247	127	191
	4.68	3.51	140	211	109	163
	3.84	2.88	115	173	89.3	134
	2.93	2.20	87.7	132	68.2	102
	2.00	1.50	59.9	90.0	46.5	69.8
HSS5 \times	6.02	4.51	180	271	140	210
	4.78	3.58	143	215	111	167
	4.10	3.08	123	185	95.5	143
	3.37	2.53	101	152	78.4	118
	2.58	1.94	77.2	116	60.1	90.2
	1.77	1.33	53.0	79.7	41.2	61.8
HSS5 $\times 2^{1 / 2}$	3.14	2.36	94.0	141	73.2	110
	2.41	1.81	72.2	108	56.1	84.2
	1.65	1.24	49.4	74.3	38.4	57.7
Limit State	LRFD	Note: Tensile rupture on the effective net area will control over tensile yielding on the gross area unless the tension member is selected so that an end connection can be configured with $A_{e} \geq 0.968 A_{g}$.				
Yielding	$\phi_{t}=0.90$					
Rupture	$\phi_{t}=0.75$					

$\begin{aligned} & F_{y}=50 \mathrm{ksi} \\ & F_{u}=62 \mathrm{ksi} \end{aligned}$		Table 5-5 (continued) Available Strength in Axial Tension Square HSS					HSS2
Shape		Gross Area, A_{g}	$\begin{gathered} A_{e}= \\ 0.75 A_{g} \end{gathered}$	Yielding		Rupture	
				kips		kips	
				P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$
		in. ${ }^{2}$	in. ${ }^{2}$	ASD	LRFD	ASD	LRFD
$\begin{gathered} \text { HSS4×4×1/2 } \\ \times 3 / 8 \\ \times^{5} / 16 \\ \times 1 / 4 \\ \times^{3 / 16} \\ \times{ }^{1 / 8} \end{gathered}$		6.02	4.51	180	271	140	210
		4.78	3.58	143	215	111	167
		4.10	3.08	123	185	95.5	143
		3.37	2.53	101	152	78.4	118
		2.58	1.94	77.2	116	60.1	90.2
		1.77	1.33	53.0	79.7	41.2	61.8
$\begin{gathered} H S S 31 / 2 \times 3^{1 / 2} \times 3 / 8 \\ \times 5 / 16 \\ \times 1 / 4 \\ \times^{3} / 16 \\ \times 1 / 8 \end{gathered}$		4.09	3.07	122	184	95.2	143
		3.52	2.64	105	158	81.8	123
		2.91	2.18	87.1	131	67.6	101
		2.24	1.68	67.1	101	52.1	78.1
		1.54	1.16	46.1	69.3	36.0	53.9
$\begin{gathered} \text { HSS3 } \times 3 \times 3 / 8 \\ \times 5 / 16 \\ \times 1 / 4 \\ \times^{3} / 16 \\ \times{ }^{1 / 8} \end{gathered}$		3.39	2.54	101	153	78.7	118
		2.94	2.21	88.0	132	68.5	103
		2.44	1.83	73.1	110	56.7	85.1
		1.89	1.42	56.6	85.1	44.0	66.0
		1.30	0.975	38.9	58.5	30.2	45.3
$\begin{array}{r} \text { HSS2 }{ }^{1 / 2 \times 2^{1} / 2 \times 5 / 16} \\ \times^{1 / 4} \\ \times^{3} / 16 \\ \times^{1 / 8} \end{array}$		2.35	1.76	70.4	106	54.6	81.8
		1.97	1.48	59.0	88.7	45.9	68.8
		1.54	1.16	46.1	69.3	36.0	53.9
		1.07	0.803	32.0	48.2	24.9	37.3
$\begin{array}{r} \mathrm{HSS} 2^{1 / 4 \times 2^{1 / 4} \times \times^{1 / 4}} \\ \times^{3} / 16 \\ \times^{1 / 8} \end{array}$		1.74	1.30	52.1	78.3	40.6	60.9
		1.37	1.03	41.0	61.7	31.9	47.9
		0.956	0.717	28.6	43.0	22.2	33.3
$\begin{array}{r} \text { HSS } 2 \times 2 \times 1 / 4 \\ x^{1 / 1 / 16} \\ \times 1 / 8 \end{array}$		1.51	1.13	45.2	68.0	35.0	52.5
		1.19	0.892	35.6	53.6	27.7	41.5
		0.840	0.630	25.1	37.8	19.5	29.3
Limit State	ASD	LRFD	Note: Tensile rupture on the effective net area will control over tensile yielding on the gross area unless the tension member is selected so that an end connection can be configured with $A_{e} \geq 0.968 A_{g}$.				
Yielding	$\Omega_{\text {t }}=1.67$	$7 \phi_{t}=0.90$					
Rupture	$\Omega_{t}=2.00$	($\phi_{t}=0.75$					

HSS6. HSS5.	$25-$ 000		Table aila Ax	(con Stre Ten nd HS	ed) th n		6 ksi 2 ksi
Sh			$A_{e}=$				
Shap				P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$
			in. ${ }^{2}$	ASD	LRFD	ASD	LRFD
HSS6.625	$\times 0.500$		6.75	248	373	209	314
	$\times 0.432$		5.90	217	325	183	274
	$\times 0.375$		5.16	190	285	160	240
	$\times 0.312$		4.34	159	240	135	202
	$\times 0.280$		3.90	143	215	121	181
	$\times 0.250$		3.51	129	194	109	163
	$\times 0.188$		2.65	97.2	146	82.2	123
	$\times 0.125$		1.78	65.3	98.1	55.2	82.8
HSS6.000	$\times 0.500$		6.07	223	335	188	282
	$\times 0.375$		4.65	171	257	144	216
	$\times 0.312$		3.92	144	216	122	182
	$\times 0.280$		3.52	129	194	109	164
	$\times 0.250$		3.17	116	175	98.3	147
	$\times 0.188$		2.39	87.6	132	74.1	111
	$\times 0.125$		1.61	58.9	88.6	49.9	74.9
HSS5.563	$\times 0.500$		5.59	205	308	173	260
	$\times 0.375$		4.29	158	237	133	199
	$\times 0.258$		3.01	110	166	93.3	140
	$\times 0.188$		2.21	81.3	122	68.5	103
	$\times 0.134$		1.59	58.4	87.8	49.3	73.9
HSS5.500	$\times 0.500$		5.52	203	305	171	257
	$\times 0.375$		4.24	156	234	131	197
	$\times 0.258$		2.98	109	164	92.4	139
HSS5.000	$\times 0.500$		4.97	182	274	154	231
	$\times 0.375$		3.82	140	211	119	178
	$\times 0.312$		3.22	118	178	100	150
	$\times 0.258$		2.69	98.9	149	83.4	125
	$\times 0.250$		2.62	96.1	144	81.2	122
	$\times 0.188$		1.98	72.7	109	61.4	92.1
	$\times 0.125$		1.34	49.0	73.7	41.5	62.3
Limit State	ASD		Note: Tensile rupture on the effective net area will control over tensile yielding on the gross area unless the tension member is selected so that an end connection can be configured with $A_{e} \geq 0.890 A_{g}$.				
Yielding	$\Omega_{t}=1.67$						
Rupture	$\Omega_{t}=2.00$						

$\begin{aligned} & F_{y}=46 \mathrm{ksi} \\ & F_{u}=62 \mathrm{ksi} \end{aligned}$			Table 5-6 (continued) Available Strength in Axial Tension Round HSS					-500-		
Shape		Gross Area, A_{g}		$\begin{gathered} A_{e}= \\ 0.75 A_{g} \end{gathered}$	Yielding		Rupture			
		kips	kips							
		P_{n} / Ω_{t}	$\phi_{t} P_{n}$		P_{n} / Ω_{t}	$\phi_{t} P_{n}$				
			in. ${ }^{2}$		in. ${ }^{2}$	ASD	LRFD	ASD	LRFD	
HSS4.500	$\times 0.375$				4.55	3.41	125	188	106	159
	$\times 0.337$				4.12	3.09	113	171	95.8	144
	$\times 0.237$		2.96	2.22	81.5	123	68.8	103		
	$\times 0.188$		2.36	1.77	65.0	97.7	54.9	82.3		
	$\times 0.125$		1.60	1.20	44.1	66.2	37.2	55.8		
HSS4.000	$\times 0.313$		3.39	2.54	93.4	140	78.7	118		
	$\times 0.250$		2.76	2.07	76.0	114	64.2	96.3		
	$\times 0.237$		2.61	1.96	71.9	108	60.8	91.1		
	$\times 0.226$		2.50	1.88	68.9	104	58.3	87.4		
	$\times 0.220$		2.44	1.83	67.2	101	56.7	85.1		
	$\times 0.188$		2.09	1.57	57.6	86.5	48.7	73.0		
	$\times 0.125$		1.42	1.07	39.1	58.8	33.2	49.8		
HSS3.500	$\times 0.313$		2.93	2.20	80.7	121	68.2	102		
	$\times 0.300$		2.82	2.11	77.7	117	65.7	98.6		
	$\times 0.250$		2.39	1.79	65.8	98.9	55.5	83.2		
	$\times 0.216$		2.08	1.56	57.3	86.1	48.4	72.5		
	$\times 0.203$		1.97	1.48	54.3	81.6	45.9	68.8		
	$\times 0.188$		1.82	1.36	50.1	75.3	42.5	63.7		
	$\times 0.125$		1.23	0.923	33.9	50.9	28.6	42.9		
HSS3.000	$\times 0.250$		2.03	1.52	55.9	84.0	47.1	70.7		
	$\times 0.216$		1.77	1.33	48.8	73.3	41.2	61.8		
	$\times 0.203$		1.67	1.25	46.0	69.1	38.8	58.1		
	$\times 0.188$		1.54	1.16	42.4	63.8	36.0	53.9		
	$\times 0.152$		1.27	0.953	35.0	52.6	29.5	44.3		
	$\times 0.134$		1.12	0.840	30.9	46.4	26.0	39.1		
	$\times 0.125$		1.05	0.788	28.9	43.5	24.4	36.6		
HSS2.875	$\times 0.250$		1.93	1.45	53.2	79.9	45.0	67.4		
	$\times 0.203$		1.59	1.19	43.8	65.8	36.9	55.3		
	$\times 0.188$		1.48	1.11	40.8	61.3	34.4	51.6		
	$\times 0.125$		1.01	0.758	27.8	41.8	23.5	35.2		
HSS2.500	$\times 0.250$		1.66	1.25	45.7	68.7	38.8	58.1		
	$\times 0.188$		1.27	0.953	35.0	52.6	29.5	44.3		
	$\times 0.125$		0.869	0.652	23.9	36.0	20.2	30.3		
Limit State	ASD		LRFD	Note: Tensile rupture on the effective net area will control over tensile yielding on the gross area unless the tension member is selected so that an end connection can be configured with $A_{e} \geq 0.890 A_{g}$.						
Yielding	$\Omega_{t}=1.67$		$\phi_{t}=0.90$							
Rupture	$\Omega_{t}=2.00$		$\phi_{t}=0.75$							

HSS2.375-
HSS1.660

Table 5-6 (continued)
Available Strength in Axial Tension
$F_{y}=46 \mathrm{ksi}$
$F_{u}=62 \mathrm{ksi}$
Round HSS

$\begin{aligned} & F_{y}=35 \mathrm{ksi} \\ & F_{u}=60 \mathrm{ksi} \end{aligned}$		Table 5-7 Available Strength in Axial Tension Pipe					$\begin{aligned} & \text { E12- } \\ & E 11 / 4 \end{aligned}$	
Shape		$\begin{gathered} \text { Gross Area, } \\ A_{g} \end{gathered}$	$\begin{gathered} A_{e}= \\ 0.75 A_{g} \end{gathered}$	Yielding		Rupture		
		kips		kips				
		P_{n} / Ω_{t}		$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} \boldsymbol{P}_{\boldsymbol{n}}$		
		in. ${ }^{2}$	in. ${ }^{2}$	ASD	LRFD	ASD	LRFD	
Pipe 12 X	-Strong		17.5	13.1	367	551	393	590
	Std.		13.7	10.3	287	432	309	464
Pipe 10 X	X-Strong	15.1	11.3	316	476	339	509	
	Std.	11.5	8.63	241	362	259	388	
Pipe 8 XX	-Strong	20.0	15.0	419	630	450	675	
	X-Strong	11.9	8.93	249	375	268	402	
	Std.	7.85	5.89	165	247	177	265	
Pipe 6 XX	-Strong	14.7	11.0	308	463	330	495	
	X-Strong	7.83	5.87	164	247	176	264	
	Std.	5.20	3.90	109	164	117	176	
Pipe 5 XX	-Strong	10.7	8.03	224	337	241	361	
	X-Strong	5.73	4.30	120	180	129	194	
	Std.	4.01	3.01	84.0	126	90.3	135	
Pipe 4 XX	-Strong	7.66	5.75	161	241	173	259	
	X-Strong	4.14	3.11	86.8	130	93.3	140	
	Std.	2.96	2.22	62.0	93.2	66.6	99.9	
Pipe $31 / 2 \mathrm{X}$	-Strong	3.43	2.57	71.9	108	77.1	116	
	Std.	2.50	1.88	52.4	78.8	56.4	84.6	
Pipe 3 XX	-Strong	5.17	3.88	108	163	116	175	
	X-Strong	2.83	2.12	59.3	89.1	63.6	95.4	
	Std.	2.07	1.55	43.4	65.2	46.5	69.8	
Pipe $2^{1} 12 \mathrm{XX}$	-Strong	3.83	2.87	80.3	121	86.1	129	
	X-Strong	2.10	1.58	44.0	66.2	47.4	71.1	
	Std.	1.61	1.21	33.7	50.7	36.3	54.5	
Pipe 2 XX	-Strong	2.51	1.88	52.6	79.1	56.4	84.6	
	X-Strong	1.40	1.05	29.3	44.1	31.5	47.3	
	Std.	1.02	0.765	21.4	32.1	23.0	34.4	
Pipe $11 / 2 \mathrm{X}$	X-Strong	1.00	0.750	21.0	31.5	22.5	33.8	
	Std.	0.749	0.562	15.7	23.6	16.9	25.3	
Pipe $11 / 4 \mathrm{X}$	X-Strong	0.837	0.628	17.5	26.4	18.8	28.3	
	Std.	0.625	0.469	13.1	19.7	14.1	21.1	
Limit State	ASD	LRFD	Note: Tensile rupture on the effective net area will control over tensile yielding on the gross area unless the tension member is selected so that an end connection can be configured with $A_{e} \geq 0.700 A_{g}$.					
Yielding	$\Omega_{t}=1$.	.67 $\phi_{t}=0.90$						
Rupture	$\Omega_{t}=2$.	. $00 \phi_{t}=0.75$						

$\begin{aligned} & F_{y}=36 \mathrm{ksi} \\ & F_{u}=58 \mathrm{ksi} \end{aligned}$			Table 5－8 Available Strength in Axial Tension Double Angles					2L8		
Shape		Gross Area， A_{g}		$\begin{gathered} A_{e}= \\ 0.75 A_{g} \end{gathered}$	Yielding		Rupture			
		kips	kips							
		P_{n} / Ω_{t}	$\phi_{t} P_{n}$		P_{n} / Ω_{t}	$\phi_{t} P_{n}$				
			in．${ }^{2}$		in．${ }^{2}$	ASD	LRFD	ASD	LRFD	
$2 \mathrm{~L} 12 \times 12 \times$					62.2	46.7	1340	2020	1350	2030
	$11 / 4$				56.8	42.6	1220	1840	1240	1850
	11／8		51.6	38.7	1110	1670	1120	1680		
			46.0	34.5	992	1490	1000	1500		
$2 \mathrm{~L} 10 \times 10 \times$			51.2	38.4	1100	1660	1110	1670		
	$11 / 4$		46.8	35.1	1010	1520	1020	1530		
	11／8		42.6	32.0	918	1380	928	1390		
			38.0	28.5	819	1230	827	1240		
	7／8		33.6	25.2	724	1090	731	1100		
	3／4		29.0	21.8	625	940	632	948		
2L8×8			33.6	25.2	724	1090	731	1100		
			30.2	22.7	651	978	658	987		
	7／8		26.6	20.0	573	862	580	870		
	年／4		23.0	17.3	496	745	502	753		
	5／8		19.4	14.6	418	629	423	635		
	9／16		17.5	13.1	377	567	380	570		
	／2		15.7	11.8	338	509	342	513		
$2 \mathrm{~L} 8 \times 6$			26.2	19.7	565	849	571	857		
	7／8		23.0	17.3	496	745	502	753		
	年／4		20.0	15.0	431	648	435	653		
	5／8		16.8	12.6	362	544	365	548		
	9／16		15.2	11.4	328	492	331	496		
	1／2		13.6	10.2	293	441	296	444		
	／16		12.0	9.00	259	389	261	392		
2L8×4			22.2	16.7	479	719	484	726		
	7／8		19.6	14.7	423	635	426	639		
	＋3／4		17.0	12.8	366	551	371	557		
	5／8		14.3	10.7	308	463	310	465		
	9／16		13.0	9.75	280	421	283	424		
	处		11.6	8.70	250	376	252	378		
	／16		10.2	7.65	220	330	222	333		
Limit State	AS		LRFD	Note：Tensile rupture on the effective net area will control over tensile yielding on the gross area unless the tension member is selected so that an end connection can be configured with $A_{e} \geq 0.745 A_{g}$ ．						
Yielding	$\Omega_{t}=$		$\phi_{t}=0.90$							
Rupture	$\Omega_{t}=$		$\phi_{t}=0.75$							

$F_{u}=$	$F_{y}=36 \mathrm{ksi}$ Table 5-8 (continued)						$3^{1 / 2}$
Shape		Gross Area, A_{g}	$\begin{gathered} A_{e}= \\ 0.75 A_{g} \end{gathered}$	Yielding		Rupture	
				kips		kips	
				P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	${ }_{\phi t} P_{n}$
		in. ${ }^{2}$	in. ${ }^{2}$	ASD	LRFD	ASD	LRFD
$2 L 5 \times 3^{1 / 2} \times 3 / 4$		11.7	8.78	252	379	255	382
$\times^{5 / 8}$		9.86	7.40	213	319	215	322
$\times^{1 / 2}$		8.00	6.00	172	259	174	261
$x^{3 / 8}$		6.10	4.58	131	198	133	199
$\times^{5} / 16$$\times{ }^{1 / 4} 4$		5.12	3.84	110	166	111	167
		4.14	3.11	89.2	134	90.2	135
$2 \mathrm{~L} 5 \times 3 \times 1 / 2$		7.50	5.63	162	243	163	245
$\times^{7 / 16}$		6.62	4.97	143	214	144	216
$\times 3 / 8$		5.72	4.29	123	185	124	187
$\times 5 / 16$		4.82	3.62	104	156	105	157
$\times 1 / 4$		3.88	2.91	83.6	126	84.4	127
$2 \mathrm{~L} 4 \times 4 \times 3 / 4$		10.9	8.18	235	353	237	356
$\times^{5 / 8}$		9.22	6.92	199	299	201	301
$\times^{1 / 2}$		7.50	5.63	162	243	163	245
$\times{ }^{7 / 16}$		6.60	4.95	142	214	144	215
$\times 3 / 8$		5.72	4.29	123	185	124	187
$\times 5 / 16$		4.80	3.60	103	156	104	157
$\times{ }^{1 / 1 / 4}$		3.86	2.90	83.2	125	84.1	126
$2 L 4 \times 31 / 2 \times 1 / 2$		7.00	5.25	151	227	152	228
$\times 3 / 8$		5.36	4.02	116	174	117	175
$\times 5 / 16$		4.50	3.38	97.0	146	98.0	147
$\times 1 / 4$		3.64	2.73	78.5	118	79.2	119
$2 \mathrm{~L} 4 \times 3 \times 5 / 8$		7.98	5.99	172	259	174	261
+ $\times 1 / 2$		6.50	4.88	140	211	142	212
$\times 3 / 8$		4.98	3.74	107	161	108	163
$\times 5 / 16$		4.18	3.14	90.1	135	91.1	137
$\times 1 / 4$		3.38	2.54	72.9	110	73.7	110
$2 \mathrm{~L} 3^{1 / 2} \times 3^{1 / 2} \times 1 / 2$		6.50	4.88	140	211	142	212
		5.78	4.34	125	187	126	189
$\times 7 / 16$$\times 3 / 8$		5.00	3.75	108	162	109	163
$\times 5 / 16$		4.20	3.15	90.5	136	91.4	137
$\times 1 / 4$		3.40	2.55	73.3	110	74.0	111
Limit State	ASD	LRFD	Note: Tensile rupture on the effective net area will control over tensile yielding on the gross area unless the tension member is selected so that an end connection can be configured with $A_{e} \geq 0.745 A_{g}$.				
Yielding	$\Omega_{\text {t }}=1.67$	$7 \phi_{t}=0.90$					
Rupture	$\Omega_{t}=2.00$	($\phi_{t}=0.75$					

PART 6

DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES

SCOPE 6-2
LOCAL BUCKLING CONSIDERATIONS 6-2
MEMBERS SUBJECT TO FLEXURE AND SHEAR 6-2
MEMBERS SUBJECT TO AXIAL COMPRESSION 6-2
MEMBERS SUBJECT TO TENSION 6-2
MEMBERS SUBJECT TO COMBINED AXIAL FORCE AND FLEXURE 6-2
MEMBERS SUBJECT TO COMBINED TORSION, FLEXURE, SHEAR AND/OR AXIAL FORCE 6-3
COMPOSITE MEMBERS SUBJECT TO FLEXURE, AXIAL OR COMBINED FORCES 6-4
SELECTION TABLE FOR DESIGN OF FLEXURE, COMPRESSION, TENSION OR COMBINED FORCES: W-SHAPES 6-4
COEFFICIENTS FOR DESIGN OF W-SHAPES SUBJECT TO COMBINED FORCES 6-4
DESIGN TABLE DISCUSSION 6-4
PART 6 REFERENCES 6-6
STEEL BEAM-COLUMN SELECTION TABLES 6-7
Table 6-1a. Width-to-Thickness Ratios: Compression Elements- Members Subject to Axial Compression 6-7
Table 6-1b. Width-to-Thickness Ratios: Compression Elements- Members Subject to Flexure 6-9
Table 6-2. Available Strength for Members Subject to Axial, Shear, Flexural and Combined Forces, W-Shapes 6-11
COMPOSITE BEAM-COLUMN CROSS-SECTION STRENGTH TABLES 6-106
Table 6-3a. Cross-Section Strength for Rectangular Encased W-Shapes- Subject to Flexure about the Major Axis 6-106
Table 6-3b. Cross-Section Strength for Rectangular Encased W-Shapes- Subject to Flexure about the Minor Axis 6-107
Table 6-4. Cross-Section Strength for Composite Filled Rectangular HSS- Subject to Flexure about Either Principal Axis 6-108
Table 6-5. Cross-Section Strength for Composite Filled Round HSS- Subject to Flexure about Any Axis 6-109

SCOPE

The specification requirements and other design considerations summarized in this Part apply to the design of W-shape and composite members subject to biaxial flexure and/or flexure in combination with axial tension or compression and/or torsion.

LOCAL BUCKLING CONSIDERATIONS

Width-to-thickness ratio limits for classification of shapes as compact, noncompact or slenderelement are provided in AISC Specification Chapter B. Discussions of width-to-thickness ratios in Parts 3 and 6 of the Manual apply based upon the available strength being determined. Limiting width-to-thickness ratios for various values of F_{y} of members subjected to flexure and axial compression are presented in Table 6-1.

MEMBERS SUBJECT TO FLEXURE AND SHEAR

AISC Specification Chapters F and G apply to members subject to flexure and shear, respectively. Part 3 addresses design of flexural members.

The available moment strength, $\phi_{b} M_{n}$ or M_{n} / Ω_{b}, which must equal or exceed the required moment strength, M_{u} or M_{a}, respectively, can be found in Table 6-2.

The values given in Table 6-2 are based on $C_{b}=1.0$. For situations where lateral-torsional buckling controls flexural design, appropriate adjustments to the nominal flexural strength may be made for $C_{b}>1.0$ as follows:

$$
M_{n\left(C_{b}>1.0\right)}=C_{b} M_{n\left(C_{b}=1.0\right)} \leq\left\{\begin{array}{l}
M_{p} \text { for compact sections } \\
M_{p}^{\prime} \text { for noncompact sections }
\end{array}\right.
$$

For flexural members, the available shear strength, $\phi_{v} V_{n}$ or V_{n} / Ω_{v}, which must equal or exceed the required shear strength, V_{u} or V_{a}, respectively, can be found in Table 6-2.

MEMBERS SUBJECT TO AXIAL COMPRESSION

AISC Specification Chapter E applies to members subject to axial compression. Part 4 addresses design of compression members.

For compression members, the available strength, $\phi_{c} P_{n}$ or P_{n} / Ω_{c}, which must equal or exceed the required strength, P_{u} or P_{a}, respectively, can be found in Table 6-2.

MEMBERS SUBJECT TO TENSION

AISC Specification Chapter D applies to members subject to tension. Part 5 of the Manual addresses design of tension members.

For tension members, the available strength, $\phi_{t} P_{n}$ or P_{n} / Ω_{t}, which must equal or exceed the required strength, P_{u} or P_{a}, respectively, can be found in Table 6-2.

MEMBERS SUBJECT TO COMBINED AXIAL FORCE AND FLEXURE

The interaction of required strengths for members subject to combined axial (tensile or compressive) forces and flexure must satisfy the interaction equations of AISC Specification Chapter H as follows:

1. Doubly symmetric and singly symmetric members: AISC Specification Section H1
2. Unsymmetric and other members: AISC Specification Section H2

The requirements of AISC Specification Chapters D, E and F and design considerations given in Parts 3, 4 and 5 apply to the design of members subject to combined axial force and flexure.

The adequacy of W -shapes subject to combined axial force and flexure is governed by either Equation H1-1a or Equation H1-1b of the AISC Specification as follows:
(a) When $\frac{P_{r}}{P_{c}} \geq 0.2$

$$
\frac{P_{r}}{P_{c}}+\frac{8}{9}\left(\frac{M_{r x}}{M_{c x}}+\frac{M_{r y}}{M_{c y}}\right) \leq 1.0
$$

(Spec. Eq. H1-1a)
(b) When $\frac{P_{r}}{P_{c}}<0.2$

$$
\begin{equation*}
\frac{P_{r}}{2 P_{c}}+\left(\frac{M_{r x}}{M_{c x}}+\frac{M_{r y}}{M_{c y}}\right) \leq 1.0 \tag{Spec.Eq.H1-1b}
\end{equation*}
$$

where
$M_{c x}=$ available flexural strength about the x-axis, $\phi_{b} M_{n x}$ or $M_{n x} / \Omega_{b}$, determined in accordance with AISC Specification Chapter F, kip-in.
$M_{c y}=$ available flexural strength about the y-axis, $\phi_{b} M_{n y}$ or $M_{n y} / \Omega_{b}$, determined in accordance with AISC Specification Chapter F, kip-in.
$M_{r x}=$ required flexural strength about the x-axis, determined in accordance with AISC Specification Chapter C, using LRFD ($M_{u x}$) or ASD ($M_{a x}$) load combinations, kip-in.
$M_{r y}=$ required flexural strength about the y-axis, determined in accordance with AISC Specification Chapter C, using LRFD ($M_{u y}$) or ASD ($M_{a y}$) load combinations, kip-in.
$P_{c}=$ available axial strength, ϕP_{n} or P_{n} / Ω, kips
$P_{r}=$ required axial strength, determined in accordance with AISC Specification Chapter C, using LRFD (P_{u}) or ASD (P_{a}) load combinations, kips

Parts 3, 4 and 5 address ϕ and Ω for members subject to flexure, compression and tension alone, respectively.

For W-shaped members subject to compression and flexure about the major principal axis only, the provisions of AISC Specification Section H1.3 may produce a more economical design than the provisions of Section H1.1.

MEMBERS SUBJECT TO COMBINED TORSION, FLEXURE, SHEAR AND/OR AXIAL FORCE

The interaction of the required strengths for members subject to torsion, flexure, shear, and/or axial force must satisfy the requirements of AISC Specification Section H3.

See also AISC Design Guide 9, Torsional Analysis of Structural Steel Members (Seaburg and Carter, 1997).

COMPOSITE MEMBERS SUBJECT TO FLEXURE, AXIAL OR COMBINED FORCES

Requirements for the design of composite members subject to axial force, flexure, shear and combined forces are given in AISC Specification Chapter I.

SELECTION TABLE FOR DESIGN OF FLEXURE, COMPRESSION, TENSION OR COMBINED FORCES: W-SHAPES

Steel W-shapes with $F_{y}=50 \mathrm{ksi}$ and $F_{u}=65 \mathrm{ksi}$ (ASTM A992) subject to flexure, compression, tension, or combined axial force and flexure may be checked for compliance with the provisions of the appropriate chapters of the AISC Specification using Table 6-2.

All W-shapes given in Table 1-1 are included in Table 6-2.

COEFFICIENTS FOR DESIGN OF W-SHAPES SUBJECT TO COMBINED FORCES

Previous editions of this Manual included a table in Part 6 that offered coefficients for design of W-shapes subject to combined forces; that table is now available at www.aisc.org/ manualresources in Part IV of the Design Examples.

DESIGN TABLE DISCUSSION

Table 6-1. Width-to-Thickness Ratios

Values for limiting width-to-thickness ratios of various elements of the cross section subject to compression are given for a range of F_{y} values for use in the classification of members subject to axial compression in Table 6-1a and members subject to flexure in Table 6-1b.

Table 6-2. Available Strength for Members Subject to Axial, Shear, Flexural and Combined Forces, W-Shapes

The available strengths of the W-shapes for $F_{y}=50 \mathrm{ksi}$ and $F_{u}=65 \mathrm{ksi}$ (ASTM A992) given in Table 6-2 may be used to design members with only compression, tension, flexure and shear or may be used to design members subject to combined effects. All of the information presented here has already been presented in Parts 3, 4 and 5, as appropriate, but has been grouped here for ease of use.

W-Shapes Subject to Flexure

The available flexural strengths of W-shapes bent about their major principal axis are given in Table 6-2.

For flexural design, the numerical values given in the center column of Table 6-2 represent the laterally unbraced length of the beam, L_{b}, in feet. All applicable limit states are addressed and $C_{b}=1$. Values of L_{p} and M_{p} listed for noncompact sections represent L_{p}^{\prime} and M_{p}^{\prime}, as defined in Part 3.

The available flexural strength of the W -shapes bent about minor principal axis are given in the lower portion of Table 6-2. Because the limit state of lateral-torsional buckling does
not apply to bending of W -shapes about their minor axis, the available strength is a single value based on the limit state of yielding or flange local buckling.

W-Shapes Subject to Shear

The available shear strengths of W-shapes are given in the lower portion of Table 6-2.
All W-shapes with $F_{y}=50 \mathrm{ksi}$ meet the requirements of either Section G2.1(a) or Section G2.1(b)(1)(i) of the AISC Specification. Available shear strengths listed in Table 6-2 take into consideration these provisions. W-shapes not meeting the requirements of Section G2.1(a) are identified in the table with footnotes.

W-Shapes Subject to Compression

The available compressive strengths of W-shapes are given in Table 6-2.
For compression the numerical values given in the center column of the table represent the effective length, L_{c}, of the column in feet with respect to the least radius of gyration, r_{y}. Therefore, the table should be entered with the larger of $L_{c y}$ and $L_{c y ~ e q}$, where

$$
L_{c y e q}=\frac{L_{c x}}{\frac{r_{x}}{r_{y}}}
$$

The available compressive strengths listed in Table 6-2 account for flexural buckling and local buckling as appropriate for W-shapes with $F_{y}=50 \mathrm{ksi}$. Compressive strengths are given for a range of effective lengths up to a slenderness ratio not exceeding 200. Those W-shapes with elements initially defined as slender are identified in the table with footnotes.

W-Shapes Subject to Tension

The available tensile strengths of W -shapes are given in the lower portion of Table 6-2 for the limit states of tensile yielding and tensile rupture.

Strengths given for the limit state of tensile rupture are based on the assumption that $A_{e}=0.75 A_{g}$.

W-Shapes Subject to Combined Forces

AISC Specification Equation H1-1a or Equation H1-1b governs the design of W-shapes subject to combined axial force and flexure. The values of available strengths in tension, compression or flexure obtained from Table 6-2 may be used to check interaction through these equations or the equations given in AISC Specification Section H1.3.

Table 6-3. Cross-Section Strength for Rectangular Encased W-Shapes

Tables 6-3a and 6-3b present equations applicable to the design of W-shape members encased in concrete subject to combined compression and flexure according to the plastic stress distribution method defined in AISC Specification Section I1.2a and Geschwindner (2010). The nominal axial and flexural strengths as well as equations for the pertinent properties are given for encased composite members subjected to flexure about the x-axis and y-axis in Tables 6-3a and 6-3b, respectively, depending on where the plastic neutral axis is
located in the member. The given equations may be used with the interaction diagram (Method 2) or the simplified interaction equations (Method 2-Simplified) as discussed in AISC Specification Commentary Section I5.

Table 6-4. Cross-Section Strength for Composite Filled Rectangular HSS

Table 6-4 presents equations applicable to the design of concrete filled rectangular members subject to combined compression and flexure according to the plastic stress distribution method defined in AISC Specification Section I1.2a and Geschwindner (2010). The nominal axial and flexural strengths as well as equations for the pertinent properties are given for composite members subjected to flexure about either principal axis. The table is only applicable to filled composite members classified as compact in accordance with AISC Specification Section I1.4. The given equations may be used with the interaction diagram (Method 2) or the simplified interaction equations (Method 2-Simplified) as discussed in AISC Specification Commentary Section I5.

Table 6-5. Cross-Section Strength for Composite Filled Round HSS

Table 6-5 presents equations applicable to the design of concrete filled circular members subject to combined compression and flexure according to the plastic stress distribution method defined in AISC Specification Section I1.2a, Geschwindner (2010) and Denavit et al. (2015). The nominal axial and flexural strengths as well as equations for the pertinent properties are given for filled composite members bent about any axis. The table is only applicable to filled composite members classified as compact in accordance with AISC Specification Section I1.4. The given equations may be used with the interaction diagram (Method 2) or the simplified interaction equations (Method 2-Simplified) as discussed in AISC Specification Commentary Section I5.

PART 6 REFERENCES

Aminmansour, A. (2000), "A New Approach for Design of Steel Beam-Columns," Engineering Journal, AISC, Vol. 37, No. 2, pp. 41-72.
Aminmansour, A. (2006), "New Method of Design for Combined Tension and Bending," Engineering Journal, AISC, Vol. 43, No. 4, pp. 247-256.
Aminmansour, A. (2009), "Optimum Flexural Design of Steel Members Utilizing Moment Gradient and $C_{b}, "$ Engineering Journal, AISC, Vol. 46, No. 1, pp. 47-55.
Denavit, M.D., Hajjar, J.F. and Leon, R.T. (2015), "Cross-Section Strength of Circular Concrete-Filled Steel Tube Beam-Columns," Engineering Journal, AISC, Vol. 53, No. 2, pp. 99-105.
Geschwindner, L.F. (2010), "Discussion of Limit State Response of Composite Columns and Beam-Columns Part II: Application of Design Provisions for the 2005 AISC Specification," Engineering Journal, AISC, Vol. 47, No. 2, pp. 131-139.
Seaburg, P.A. and Carter, C.J. (1997), Torsional Analysis of Structural Steel Members, Design Guide 9, AISC, Chicago, IL.

Table 6-1a Width-to-Thickness Ratios: Compression Elements Members Subject to Axial Compression								
	Case	Description of Element	Width-toThickness Ratio	F_{y}, ksi				
				32	36	42	46	50
				λ_{r}	λ_{r}	λ_{r}	λ_{r}	λ_{r}
	1	Flanges of rolled l-shaped sections, plates projecting from rolled I-shaped sections, outstanding legs of pairs of angles connected with continuous contact, flanges of channels, and flanges of tees	b / t	-	15.9	14.7	-	13.5
	2	Flanges of built-up I-shaped sections and plates or angle legs projecting from built-up I-shaped sections	b / t	$19.3 \sqrt{k_{c}}$	$18.2 \sqrt{k_{c}}$	$16.8 \sqrt{k_{c}}$	-	$15.4 \sqrt{k_{c}}$
	3	Legs of single angles, legs of double angles with separators, and all other unstiffened elements	b / t	-	12.8	11.8	-	10.8
	4	Stems of tees	d / t	-	21.3	19.7	-	18.1
	5	Webs of doubly symmetric rolled and built-up l-shaped sections and channels	h / t_{w}	-	42.3	39.2	-	35.9
	6	Walls of rectangular HSS	b/t	-	39.7	-	35.2	33.7
	7	Flange cover plates and diaphragm plates between lines of fasteners or welds	b / t	42.1	39.7	36.8	-	33.7
	8	All other stiffened elements	b/t	44.9	42.3	39.2	37.4	35.9
	9	Round HSS	D/t	-	88.6	76.0	69.3	63.8
Note: See Tables 2-4 and 2-5 for preferred material specification. - Indicates that element is not available with specified F_{y}. $k_{c}=4 / \sqrt{h / t_{w}}$, but shall not be taken less than 0.35 nor greater than 0.76 for calculation purposes.								

Table 6-1a (continued) Width-to-Thickness Ratios: Compression Elements Members Subject to Axial Compression

Note: See Tables 2-4 and 2-5 for preferred material specification.

- Indicates that element is not available with specified F_{y}.
$k_{c}=4 / \sqrt{h / t_{w}}$, but shall not be taken less than 0.35 nor greater than 0.76 for calculation purposes.

Table 6-1b (continued) Width-to-Thickness Ratios: Compression Elements Members Subject to Flexure

${ }^{\text {a }}$ See AISC Specification Table B4.1b.

- Indicates that element is not available with specified F_{y}.

Note: See Tables 2-4 and 2-5 for preferred material specification.

		Table Available St Subject Flexural and W40×						tinue for I，Sh ined s				$\begin{aligned} & =50 \\ & =65 \end{aligned}$	
$\frac{\text { W44× }}{230^{c}}$								230^{v}		W40×			
		655 ${ }^{\text {h }}$		593 ${ }^{\text {h }}$		Ib／ft				655 ${ }^{\text {h }}$		593 ${ }^{\text {h }}$	
$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{\boldsymbol{c}}$	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	$P_{\boldsymbol{n}} / \Omega_{\boldsymbol{c}}$	$\phi_{c} P_{n}$	Design		$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$	$M_{n x} / \Omega_{b}$	${ }_{\phi b} M_{n x}$	$M_{n x} / \Omega_{b}$	${ }_{b} M_{n x}$
Available Compressive Strength，kips								Available Flexural Strength，kip－ft					
ASD	LRFD	ASD	LRFD	ASD	LRFD			ASD	LRFD	ASD	LRFD	ASD	LRFD
1800	2710	5780	8680	5210	7830		0	2740	4130	7680	11600	6890	10400
1750	2630	5630	8470	5070	7630		6	2740	4130	7680	11600	6890	10400
1740	2610	5580	8390	5030	7560		7	2740	4130	7680	11600	6890	10400
1720	2580	5520	8300	4970	7470		8	2740	4130	7680	11600	6890	10400
1690	2540	5460	8200	4910	7380		9	2740	4130	7680	11600	6890	10400
1670	2510	5380	8090	4840	7280		10	2740	4130	7680	11600	6890	10400
1640	2470	5300	7970	4770	7170		11	2740	4130	7680	11600	6890	10400
1610	2420	5220	7840	4690	7050		12	2740	4130	7680	11600	6890	10400
1580	2380	5130	7710	4610	6920		13	2700	4060	7680	11600	6890	10400
1550	2330	5030	7560	4520	6790		14	2660	3990	7660	11500	6850	10300
1510	2280	4930	7410	4420	6650		15	2610	3920	7610	11400	6800	10200
1480	2220	4820	7250	4320	6500		16	2560	3850	7550	11400	6740	10100
1440	2170	4710	7080	4220	6340	즟	17	2510	3780	7500	11300	6690	10100
1400	2110	4600	6910	4110	6180	을	18	2470	3710	7440	11200	6630	9970
1360	2050	4480	6730	4000	6020	せ	19	2420	3640	7380	11100	6580	9880
1320	1990	4360	6550	3890	5850		20	2370	3570	7330	11000	6520	9800
1240	1870	4100	6170	3660	5500	¢	22	2280	3420	7210	10800	6410	9630
1160	1740	3850	5780	3420	5140	돋	24	2180	3280	7100	10700	6300	9470
1070	1610	3580	5390	3180	4780	3	26	2090	3140	6990	10500	6190	9300
986	1480	3320	4990	2940	4420	¢゙	28	1990	3000	6880	10300	6080	9130
902	1360	3060	4600	2700	4060		30	1900	2860	6770	10200	5970	8970
812	1220	2800	4210	2470	3710		32	1810	2710	6650	10000	5860	8800
720	1080	2550	3840	2240	3370	产	34	1710	2570	6540	9830	5740	8630
642	966	2310	3480	2020	3040	흥	36	1570	2350	6430	9660	5630	8470
577	867	2080	3120	1820	2730		38	1430	2150	6320	9490	5520	8300
520	782	1880	2820	1640	2460		40	1320	1980	6200	9320	5410	8130
472	709	1700	2560	1490	2230	\％	42	1220	1830	6090	9160	5300	7970
430	646	1550	2330	1350	2040	山	44	1130	1700	5980	8990	5190	7800
393	591	1420	2130	1240	1860		46	1060	1590	5870	8820	5080	7630
361	543	1300	1960	1140	1710		48	991	1490	5750	8650	4970	7470
333	501	1200	1800	1050	1580		50	932	1400	5640	8480	4860	7300
Properties													
Available Strength in Tensile Yielding，kips										ng Unb	ced Leng	s，ft	
P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$			L_{p}	L_{r}	L_{p}	L_{r}	L_{p}	L_{r}
2030	3050	5780	8690	5210	7830			12.1	34.3	13.6	69.9	13.4	63.9
Available Strength in Tensile Rupture（ $A_{e}=0.75 A_{g}$ ），kips								Area，in．${ }^{\text {a }}$					
P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$			67.8		193		174	
1650	2480	4710	7070	4260	6390			Moment of Inertia，in．${ }^{4}$					
Available Strength in Shear，kips								I_{x}	I_{y}	$I_{\text {x }}$	I_{y}	I_{x}	1 y
V_{n} / Ω_{v}	$\phi_{v} V_{n}$	V_{n} / Ω_{v}	$\phi_{v} V_{n}$	V_{n} / Ω_{v}	$\phi_{v} V_{n}$			20800	796	56500	2870	50400	2520
547	822	1720	2580	1540	2310			r_{y} ，in．					
Available Strength in Flexure about Y－Y Axis，kip－ft								3.43		3.86		3.80	
$M_{n y} / \Omega_{b}$	${ }_{\phi} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{\phi} M_{n y}$	$M_{n y} / \Omega_{b}$	${ }_{\phi} M M_{n y}$			r_{x} / r_{y}					
392	589	1350	2030	1200	1800			5.10		4.43		4.47	
${ }^{\mathrm{c}}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$ ． ${ }^{\mathrm{h}}$ Flange thickness is greater than 2 in．Special requirements may apply per AISC Specification Section A3．1c． ${ }^{v}$ Shape does not meet the h / t_{w} limit for shear in AISC Specification Section G2．1（a）with $F_{y}=50$ ksi；therefore，$\phi_{v}=0.90$ and $\Omega_{v}=1.67$ ．													

$\begin{aligned} & F_{y} \\ & F_{u} \end{aligned}$	50 65	si si						inu Or ，S ne					
		W4											
		43											
P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{\boldsymbol{c}}$	$\phi_{c} P_{n}$			$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$	$M_{n x} / \Omega$	$\phi_{b} M_{n x}$	$M_{n X}$	$\phi_{b} M_{n}$
	able	ompres	ve Str	gth，					Avail	Fle	Str	th，	
ASD	LRFD	ASD	LRFD	ASD	LRFD			ASD	LRFD	ASD	LRFD	ASD	LRFD
4430	6660	3800	5710	3500	5260		0	5790	8700	4890	7350	4490	6750
4310	6480	3700	5550	3400	5120		6	5790	8700	4890	7350	4490	6750
4270	6420	3660	5500	3370	5060		7	5790	8700	4890	7350	4490	6750
4220	6340	3610	5430	3330	5000	5	8	5790	8700	4890	7350	4490	6750
4170	6260	3570	5360	3280	4940	E－	9	5790	8700	4890	7350	4490	6750
4110	6170	3510	5280	3240	4860	은	10	5790	8700	4890	7350	4490	6750
4040	6070	3460	5190	3180	4780	준 잉	11	5790	8700	4890	7350	4490	6750
3970	5970	3390	5100	3120	4700	운 등	12	5790	8700	4890	7350	4490	6750
3900	5860	3330	5000	3060	4600	\bigcirc	13	5790	8700	4880	7340	4480	6740
3820	5740	3260	4890	3000	4510	릉	14	5740	8630	4830	7260	4430	6660
3730	5610	3180	4780	2930	4400	준	15	5690	8550	4780	7180	4380	6580
3650	5480	3110	4670	2860	4300	旬	16	5630	8460	4720	7100	4330	6500
3560	5350	3030	4550	2780	4180	过	17	5570	8380	4670	7020	4270	6420
3460	5200	2940	4420	2710	4070	으응	18	5520	8300	4620	6940	4220	6350
3370	5060	2860	4300	2630	3950		19	5460	8210	4560	6860	4170	6270
3270	4910	2770	4170	2550	3830		20	5410	8130	4510	6780	4120	6190
3070	4610	2590	3900	2380	3580	¢	22	5300	7960	4400	6620	4010	6030
2860	4300	2410	3630	2220	3330	돠훙	24	5190	7800	4290	6460	3910	5880
2650	3980	2230	3350	2050	3080	衰	26	5080	7630	4190	6290	3800	5720
2440	3670	2050	3080	1880	2820	ギ	28	4970	7460	4080	6130	3700	5560
2230	3360	1870	2810	1710	2580	－	30	4850	7300	3970	5970	3600	5400
2030	3060	1690	2540	1550	2330	－	32	4740	7130	3870	5810	3490	5250
1840	2760	1530	2290	1400	2100	훙 든	34	4630	6960	3760	5650	3390	5090
1650	2480	1360	2050	1250	1880	등	36	4520	6800	3650	5490	3280	4930
1480	2230	1220	1840	1120	1680	©	38	4410	6630	3540	5330	3180	4780
1340	2010	1100	1660	1010	1520	？	40	4300	6460	3440	5170	3070	4620
1210	1820	1000	1500	917	1380	¢	42	4190	6300	3330	5010	2970	4460
1100	1660	912	1370	836	1260	㐫	44	4080	6130	3220	4840	2860	4300
1010	1520	835	1250	765	1150		46	3970	5960	3120	4680	2760	4150
928	1390	767	1150	702	1060		48	3860	5800	3010	4520	2630	3950
855	1290	706	1060	647	973		50	3750	5630	2880	4330	2500	3760
Properties													
Available Strength in Tensile Yielding，kips										g Unb	Len		
$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{\boldsymbol{t}}$	$\phi_{t} P_{\boldsymbol{n}}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{\boldsymbol{t}}$	$\phi_{t} P_{n}$			L_{p}	L_{r}	L_{p}	L_{r}	L_{p}	L_{r}
4430	6660	3800	5720	3500	5270			13.1	55.2	12.9	49.1	12.9	46.7
Available Strength in Tensile Rupture（ $A_{e}=0.75 A_{g}$ ），kips								Area，in．${ }^{2}$					
P_{n} / Ω_{t}	$\phi_{t} P_{n}$	$P_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$			14					
3610	5410	3100	4650	2850	4280			Moment of Inertia，in．${ }^{4}$					
Available Strength in Shear，kips								I_{X}	I_{y}	I_{X}	I_{y}	I_{X}	I_{y}
V_{n} / Ω_{v}	$\phi_{v} V_{n}$	V_{n} / Ω_{v}	$\phi_{v} V_{n}$	V_{n} / Ω_{v}	$\phi_{v} V_{n}$			41600	2040	34800	1690	32000	1540
1300	1950	1110	1660	1000	1500			r_{y} ，in．					
Available Strength in Flexure about Y－Y Axis，kip－ft								3.7					64
$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$								
983	1480	818	1230	749	1130			4.5					56
${ }^{\text {h }}$ Flange thickness greater than 2 in．Special requirements may apply per AISC Specification Section A3．1c．													

Table 6－2（conti Available Strength Subject to Axial， Flexural and Combin W－Shapes													
								W40×					
392 ${ }^{\text {h }}$				36		lb／ft		39				36	
P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	$P_{\boldsymbol{n}} / \Omega_{\boldsymbol{c}}$	$\phi_{c} P_{n}$	Design		$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$	$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$	$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$
Available Compressive Strength，kips								Available Flexural Strength，kip－ft					
ASD	LRFD	ASD	LRFD	ASD	LRFD			ASD	LRFD	ASD	LRFD	ASD	LRFD
3470	5220	3290	4950	3170	4770		0	4270	6410	4190	6300	4090	6150
3290	4940	3200	4810	3080	4630		6	4270	6410	4190	6300	4090	6150
3230	4850	3160	4760	3050	4580		7	4270	6410	4190	6300	4090	6150
3150	4740	3130	4700	3010	4530	ミ	8	4270	6410	4190	6300	4090	6150
3070	4620	3080	4630	2970	4470	E－	9	4270	6410	4190	6300	4090	6150
2990	4490	3040	4560	2930	4400	은	10	4230	6350	4190	6300	4090	6150
2890	4350	2990	4490	2880	4320	는 인	11	4170	6260	4190	6300	4090	6150
2790	4200	2930	4400	2820	4240	은 등	12	4100	6170	4190	6300	4090	6150
2690	4040	2870	4310	2770	4160	\bigcirc	13	4040	6080	4180	6280	4080	6130
2580	3880	2810	4220	2710	4070	荗	14	3980	5990	4130	6200	4030	6050
2470	3720	2740	4120	2640	3970	훈	15	3920	5900	4070	6120	3970	5970
2360	3550	2670	4020	2580	3870	蕓	16	3860	5810	4020	6040	3920	5900
2240	3370	2600	3910	2510	3770	巡	17	3800	5720	3970	5970	3870	5820
2130	3200	2530	3800	2440	3670	은	18	3740	5620	3920	5890	3820	5740
2010	3030	2460	3690	2370	3560	気	19	3680	5530	3870	5810	3770	5660
1900	2850	2380	3580	2290	3450		20	3620	5440	3810	5730	3720	5590
1670	2510	2220	3340	2140	3220	¢	22	3500	5260	3710	5580	3610	5430
1450	2190	2060	3100	1990	2990	도응	24	3380	5080	3610	5420	3510	5280
1250	1880	1900	2860	1830	2750	3	26	3260	4900	3500	5270	3410	5120
1080	1620	1740	2620	1680	2520	ギロ	28	3140	4720	3400	5110	3310	4970
938	1410	1590	2380	1530	2300	－	30	3020	4530	3300	4960	3200	4810
824	1240	1430	2150	1380	2080	든	32	2900	4350	3190	4800	3100	4660
730	1100	1290	1940	1240	1860	두ㅇㅡㅡㄹ	34	2780	4170	3090	4640	3000	4500
651	979	1150	1730	1110	1660	흥	36	2650	3990	2990	4490	2890	4350
584	878	1030	1550	993	1490		38	2530	3810	2880	4330	2790	4190
527	793	930	1400	896	1350	？	40	2390	3590	2780	4180	2690	4040
478	719	844	1270	813	1220	边	42	2260	3390	2680	4020	2580	3880
436	655	769	1160	741	1110	示	44	2140	3220	2570	3870	2480	3730
		703	1060	678	1020		46	2040	3060	2440	3660	2340	3520
		646	971	622	935		48	1940	2920	2310	3470	2220	3330
		595	895	574	862		50	1850	2790	2190	3300	2110	3170
						Prope							
	vailable S	rength in	Tensile Yi	elding，kip					Limi	ng Unbra	ed Lengt		
$\boldsymbol{P}_{n} / \Omega_{t}$	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$			L_{p}	L_{r}	L_{p}	L_{r}	L_{p}	L_{r}
3470	5220	3290	4950	3170	4770			9.33	38.3	12.7	44.4	12.7	44.0
Availabl	Strength	in Tensile	Rupture	$A_{e}=0.75$	g_{g} ，kips								
P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$			11				10	
2830	4240	2680	4020	2580	3880					oment of	nertia，in		
	Availa	le Streng	h in Shea	r，kips				I_{x}	I_{y}	I_{x}	I_{y}	I_{x}	I_{y}
$\mathrm{V}_{\mathrm{n}} / \Omega_{\mathrm{v}}$	$\phi_{v} V_{n}$	V_{n} / Ω_{v}	$\phi_{V} V_{n}$	V_{n} / Ω_{v}	$\phi_{V} V_{n}$			29900	803	29600	1420	28900	1380
1180	1770	942	1410	909	1360								
Avail	ble Stren	th in Flex	ure about	Y－Y Axis，	kip－ft			2.6					
$M_{n y} / \Omega_{b}$	${ }_{\phi} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	${ }_{\phi} M M_{n y}$								
519	780	691	1040	674	1010			6.1					
${ }^{\mathrm{h}}$ Flange Note：He	thicknes vy line	greater dicates L	han 2 in． ／r equal	Special re to or grea	quiremen ter than	s may a 00.		AISC Speci	fication	ction A3			

Table 6－2（conti Available Strength Subject to Axial Flexural and Combi W－Shapes													
								W40×					
$297{ }^{\text {c }}$				27		lb／ft		29				27	
P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	Design		$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$	$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$	$M_{n X} / \Omega_{b}$	$\phi_{b} M_{n x}$
Available Compressive Strength，kips								Available Flexural Strength，kip－ft					
ASD	LRFD	ASD	LRFD	ASD	LRFD			ASD	LRFD	ASD	LRFD	ASD	LRFD
2600	3900	2580	3880	2460	3700		0	3320	4990	3170	4760	2970	4460
2530	3800	2430	3660	2320	3490		6	3320	4990	3170	4760	2970	4460
2510	3770	2380	3580	2270	3410		7	3320	4990	3170	4760	2970	4460
2480	3720	2330	3500	2220	3330	ミ	8	3320	4990	3170	4760	2970	4460
2440	3670	2260	3400	2150	3240	E－	9	3320	4990	3170	4760	2960	4450
2400	3610	2200	3300	2090	3140	은	10	3320	4990	3110	4680	2910	4370
2360	3550	2120	3190	2020	3030	능 앙	11	3320	4990	3060	4590	2850	4290
2320	3480	2040	3070	1940	2920	는 등	12	3320	4990	3000	4510	2800	4210
2270	3410	1960	2950	1860	2800	\bigcirc	13	3290	4950	2940	4420	2740	4120
2220	3330	1880	2820	1780	2680	号	14	3250	4880	2880	4330	2690	4040
2160	3250	1790	2690	1700	2550	둔	15	3200	4810	2830	4250	2630	3960
2110	3170	1710	2560	1610	2420	あ	16	3150	4740	2770	4160	2580	3870
2050	3080	1620	2430	1530	2290		17	3100	4670	2710	4080	2520	3790
1990	2990	1530	2300	1440	2160	웅	18	3060	4600	2660	3990	2470	3710
1930	2900	1440	2160	1350	2040	边	19	3010	4520	2600	3910	2410	3620
1870	2810	1350	2030	1270	1910		20	2960	4450	2540	3820	2360	3540
1740	2620	1180	1770	1100	1660	div	22	2870	4310	2430	3650	2250	3380
1610	2420	1020	1530	947	1420	和氝	24	2770	4170	2310	3480	2140	3210
1480	2230	865	1300	807	1210	衰	26	2680	4020	2200	3310	2030	3040
1350	2030	746	1120	696	1050	ギロ	28	2580	3880	2090	3130	1910	2880
1230	1840	650	977	606	911		30	2490	3740	1970	2960	1800	2710
1110	1660	571	859	533	801	年	32	2390	3600	1850	2770	1660	2500
988	1480	506	761	472	709	드ㅇㅡㅡㄹ	34	2300	3450	1710	2560	1530	2300
881	1320	451	679	421	633	흥	36	2200	3310	1580	2380	1420	2140
791	1190	405	609	378	568	¢	38	2110	3170	1480	2220	1330	2000
714	1070	366	550	341	512	？	40	1990	3000	1390	2090	1250	1870
647	973	332	499	309	465	迷	42	1860	2800	1310	1970	1170	1760
590	887					岕	44	1740	2620	1240	1860	1110	1670
540	811						46	1640	2470	1170	1760	1050	1580
496	745						48	1550	2330	1120	1680	998	1500
457	687						50	1470	2210	1060	1600	951	1430
						Prope							
	ailable S	trength in	Tensile Y	Iding，kip						ing Unbra	ced Lengt	s，ft	
$\mathrm{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$			L_{p}	L_{r}	L_{p}	L_{r}	L_{p}	L_{r}
2610	3930	2580	3880	2460	3700			12.5	39.3	9.01	31.5	8.90	30.4
Available	Strength	in Tensile	Rupture	$A_{e}=0.75$	g），kips						，in．${ }^{2}$		
P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$			87			． 2	8	
2130	3190	2100	3150	2010	3010					oment of	Inertia，in		
	Availa	ble Streng	h in Shea	，kips				I_{x}	I_{y}	I_{x}	I_{y}	I_{x}	I_{y}
V_{n} / Ω_{V}	$\phi_{v} V_{n}$	V_{n} / Ω_{V}	$\phi_{v} V_{n}$	V_{n} / Ω_{v}	$\phi_{V} V_{n}$			23200	1090	21900	562	20500	521
740	1110	856	1280	828	1240						in．		
Avail	be Stren	th in Flex	re about	Y－Y Axis，	kip－ft			3.5			55		
$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{\text {b }} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$						$1 r_{y}$		
536	806	373	561	348	523			4.6			24		
${ }^{\text {c }}$ Shape Note：He	is slende vy line	for comp idicates	ession ／r equal	th $F_{y}=50$ to or grea	ksi． er than								

Table 6-2 (continued) Available Strength for Members Subject to Axial, Shear, Flexural and Combined Forces W-Shapes												W	
W40×						$\begin{gathered} \hline \text { Shape } \\ \hline \mathrm{lb} / \mathrm{ft} \end{gathered}$		W40x					
$277^{\text {c }}$		264		249 ${ }^{\text {c }}$				277		264		249	
P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	Design		$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$	$M_{n x} / \Omega_{\text {d }}$	$\phi_{b} M_{n x}$	$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$
Available Compressive Strength, kips								Available Flexural Strength, kip-ft					
ASD	LRFD	ASD	LRFD	ASD	LRFD			ASD ${ }^{\text {L }}$ LRFD		ASD	LRFD	ASD	LRFD
2360	3550	2320	3480	2080	3120		0	3120	4690	2820	4240	2790	4200
2300	3460	2180	3280	2020	3040		6	3120	4690	2820	4240	2790	4200
2280	3420	2140	3210	2000	3010		7	3120	4690	2820	4240	2790	4200
2250	3390	2080	3130	1980	2980		8	3120	4690	2820	4240	2790	4200
2230	3350	2030	3050	1960	2940		9	3120	4690	2810	4230	2790	4200
2200	3300	1960	2950	1930	2900		10	3120	4690	2760	4150	2790	4200
2160	3250	1900	2850	1900	2860		11	3120	4690	2710	4070	2790	4200
2130	3200	1830	2740	1870	2810		12	3120	4690	2650	3990	2790	4200
2090	3140	1750	2630	1830	2760		13	3100	4660	2600	3900	2770	4170
2050	3080	1670	2520	1800	2700		14	3060	4590	2540	3820	2730	4110
2010	3020	1600	2400	1760	2650		15	3010	4530	2490	3740	2690	4040
1960	2950	1520	2280	1720	2590		16	2970	4460	2440	3660	2650	3980
1920	2880	1440	2160	1680	2520		17	2920	4390	2380	3580	2600	3910
1870	2810	1350	2040	1640	2460		18	2870	4320	2330	3500	2560	3850
1810	2730	1270	1910	1590	2390		19	2830	4250	2270	3420	2520	3780
1760	2640	1190	1790	1550	2330		20	2780	4180	2220	3340	2470	3720
1640	2460	1040	1560	1460	2190		22	2690	4040	2110	3170	2390	3590
1520	2280	891	1340	1360	2040		24	2600	3910	2000	3010	2300	3460
1400	2100	759	1140	1250	1880		26	2510	3770	1890	2850	2220	3330
1280	1930	654	984	1140	1720		28	2420	3630	1790	2690	2130	3200
1160	1750	570	857	1040	1560		30	2320	3490	1670	2510	2040	3070
1050	1580	501	753	935	1410		32	2230	3360	1530	2300	1960	2940
943	1420	444	667	836	1260		34	2140	3220	1410	2120	1870	2810
841	1260	396	595	746	1120		36	2050	3080	1310	1960	1790	2680
755	1130	355	534	670	1010		38	1960	2940	1220	1830	1680	2520
681	1020	321	482	604	908		40	1840	2760	1140	1710	1550	2330
618	929	291	437	548	824		42	1710	2570	1070	1610	1440	2170
563	846			499	751		44	1600	2410	1010	1520	1350	2030
515	774			457	687		46	1510	2260	959	1440	1270	1900
473	711			420	631		48	1420	2140	911	1370	1190	1790
436	655			387	581		50	1340	2020	867	1300	1130	1690
						Prope							
	vailable	trength in	Tensile Yi	elding, kips					Lim	ing Unbra	ced Length		
P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$			ι_{p}	L_{r}	L_{p}	L_{r}	ι_{p}	L_{r}
2440	3670	2320	3480	2200	3310			12.6	38.8	8.90	29.7	12.5	37.2
Available	Strength	in Tensile	Rupture	$\left(A_{e}=0.75 \mathrm{~A}\right.$	g), kips					Area			
P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$					77.			
1990	2980	1890	2830	1790	2690					Moment of	nertia, in.		
	Availa	ble Streng	th in Shea	r, kips				$I_{\text {x }}$	I_{y}	I_{x}	I_{y}	I_{x}	I_{y}
V_{n} / Ω_{V}	$\phi_{v} V_{n}$	V_{n} / Ω_{2}	$\phi_{1} V_{n}$	V_{n} / Ω_{ν}	$\phi_{v} V_{n}$			21900	1040	19400	493	19600	926
659	989	768	1150	591	887					r_{y},			
Avail	ble Stren	gth in Flex	ure about	Y-Y Axis, k	ip-ft					2.5			
$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$					$r_{x}{ }_{1}$			
509	765	329	495	454	683					6.2			
${ }^{\text {c }}$ Shape Note: H	is slender avy line in	for comp idicates L	ression ${ }_{c} /$ requal	$\begin{aligned} & \text { tith } F_{y}=50 \\ & \text { to or great } \end{aligned}$	ksi. er than								

Table 6-2 (continued) Available Strength for Members Subject to Axial, Shear, Flexural and Combined Forces W-Shapes												${ }_{\text {W40 }}$	
W40x						$\begin{array}{\|l\|} \hline \text { Shape } \\ \hline \text { Ib/ft } \\ \hline \end{array}$		W40×					
199 ${ }^{\text {c }}$		$183{ }^{\text {c }}$		$167{ }^{\text {c }}$				199		183		167	
P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	Design		$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$	$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$	$M_{n x} / \Omega_{\text {b }}$	$\phi_{b} M_{n x}$
Available Compressive Strength, kips								Available Flexural Strength, kip-ft					
ASD	LRFD	ASD	LRFD	ASD	LRFD			ASD	LRFD	ASD	LRFD	ASD	LRFD
1590	2390	1430	2150	1310	1970		0	2170	3260	1930	2900	1730	2600
1550	2330	1360	2040	1240	1860		6	2170	3260	1930	2900	1730	2600
1530	2310	1330	2000	1210	1820		7	2170	3260	1930	2900	1730	2600
1520	2280	1300	1960	1190	1780		8	2170	3260	1930	2900	1730	2600
1500	2250	1270	1910	1160	1740		9	2170	3260	1920	2890	1710	2570
1480	2220	1240	1860	1120	1690		10	2170	3260	1880	2820	1670	2500
1450	2180	1200	1800	1090	1630		11	2170	3260	1830	2760	1620	2440
1430	2140	1160	1740	1050	1580		12	2170	3260	1790	2690	1580	2380
1400	2100	1120	1680	1010	1520		13	2140	3210	1750	2620	1540	2320
1370	2060	1070	1610	968	1450		14	2100	3160	1700	2560	1500	2250
1340	2010	1030	1550	925	1390		15	2060	3100	1660	2490	1460	2190
1310	1970	985	1480	882	1330		16	2030	3050	1610	2420	1420	2130
1280	1920	939	1410	839	1260		17	1990	2990	1570	2360	1370	2060
1240	1870	892	1340	795	1190		18	1950	2930	1520	2290	1330	2000
1210	1810	846	1270	751	1130		19	1910	2880	1480	2230	1290	1940
1170	1760	799	1200	707	1060		20	1880	2820	1440	2160	1250	1880
1100	1650	701	1050	609	916		22	1800	2710	1350	2030	1160	1750
1020	1540	599	900	515	773		24	1730	2600	1260	1890	1080	1620
947	1420	510	767	438	659		26	1650	2490	1170	1750	967	1450
872	1310	440	661	378	568		28	1580	2380	1040	1560	857	1290
794	1190	383	576	329	495		30	1510	2260	929	1400	767	1150
712	1070	337	506	289	435		32	1430	2150	842	1270	693	1040
632	950	298	448	256	385		34	1360	2040	769	1160	631	949
564	847	266	400	229	344		36	1240	1870	707	1060	579	870
506	760	239	359	205	309		38	1140	1710	654	982	535	803
457	686	216	324	185	278		40	1050	1570	608	914	496	746
414	622						42	969	1460	568	854	463	695
377	567						44	901	1350	533	801	433	651
345	519						46	841	1260	502	754	407	612
317	477						48	788	1190	474	713	384	578
292	439						50	742	1110	449	676	364	547
Properties													
Available Strength in Tensile Yielding, kips						Limiting Unbraced Lengths, ft							
P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$			L_{p}	L_{r}	L_{p}	L_{r}	L_{p}	L_{r}
1760	2650	1600	2400	1480	2220			12.2	34.3	8.80	25.8	8.48	24.8
Available	Strength	in Tensile	Rupture	$\left(A_{e}=0.75 A^{\prime}\right.$	g), kips			Area, in. ${ }^{2}$					
P_{n} / Ω_{t} 1430	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{1} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$			58.8		53.3		49.3	
	2150	1300	1950	1200	1800			Moment of Inertia, in. ${ }^{4}$					
Available Strength in Shear, kips								$I_{\text {x }}$	I_{y}	$I_{\text {x }}$	I_{y}	$I_{\text {x }}$	I_{y}
V_{n} / Ω_{ν}	$\phi_{v} V_{n}$	V_{n} / Ω_{v}	$\phi_{v} V_{n}$	V_{n} / Ω_{ν}	$\phi_{v} V_{n}$			14900	695	13200	331	11600	283
503	755	507	761	502	753			r_{y}, in.					
Available Strength in Flexure about Y-Y Axis, kip-ft								3.45		2.49		2.40	
$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{\text {d }}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$			r_{x} / r_{y}					
342	514	220	331	190	285					6.3			
${ }^{\mathrm{c}}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$. Note: Heavy line indicates L_{c} / r equal to or greater than 200.													

		Table Available Str Subject Flexural and W36×				6－2 eng to $N-S h$		tinue for I，Sh ined s	d） em hear Fo	ber ， ree	$\begin{aligned} & F_{y}=50 \mathrm{ksi} \\ & F_{u}=65 \mathrm{ksi} \end{aligned}$		
$\frac{W 40 \times}{149^{c}}$								$\frac{W 40 \times}{149^{v}}$		W36×			
		925 ${ }^{\text {h }}$		853 ${ }^{\text {h }}$		lb／ft				925 ${ }^{\text {h }}$		853 ${ }^{\text {h }}$	
$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{c}$	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	Design		$M_{n X} / \Omega_{b} \mid \phi_{b} M_{n x}$		M $M_{n x} / \Omega_{b} \mid \phi_{b} M_{n x}$		$M_{n X} / \Omega_{b} \mid{ }_{\phi}{ }^{\prime} M_{n x}$	
Available Compressive Strength，kips								Available Flexural Strength，kip－ft					
ASD	LRFD	ASD	LRFD	ASD	LRFD			ASD	LRFD	ASD	LRFD	ASD	LRFD
1140	1710	8140	12200	7510	11300		0	1490	2240	10300	15500	9780	14700
1070	1610	7980	12000	7360	11100		6	1490	2240	10300	15500	9780	14700
1050	1570	7920	11900	7310	11000		7	1490	2240	10300	15500	9780	14700
1020	1540	7850	11800	7240	10900		8	1490	2240	10300	15500	9780	14700
994	1490	7770	11700	7170	10800		9	1460	2190	10300	15500	9780	14700
963	1450	7680	11600	7100	10700		10	1420	2130	10300	15500	9780	14700
930	1400	7590	11400	7010	10500		11	1380	2070	10300	15500	9780	14700
895	1340	7490	11300	6920	10400		12	1340	2020	10300	15500	9780	14700
858	1290	7380	11100	6820	10200		13	1300	1960	10300	15500	9780	14700
821	1230	7270	10900	6710	10100		14	1260	1900	10300	15500	9780	14700
782	1180	7150	10700	6600	9920		15	1230	1840	10300	15500	9780	14700
743	1120	7020	10600	6490	9750	芉	16	1190	1780	10300	15400	9740	14600
703	1060	6890	10400	6360	9570	$\underset{\text { ® }}{\substack{\text { ¢ }}}$	17	1150	1730	10200	15300	9690	14600
664	997	6750	10100	6240	9380	응	18	1110	1670	10200	15300	9640	14500
624	938	6600	9930	6110	9180	さ	19	1070	1610	10100	15200	9590	14400
585	879	6460	9700	5970	8980		20	1030	1550	10100	15100	9540	14300
495	745	6150	9240	5690	8550	dit	22	956	1440	9970	15000	9450	14200
416	626	5830	8760	5400	8110	도융	24	866	1300	9880	14800	9350	14100
355	533	5500	8270	5100	7660	产	26	755	1140	9780	14700	9250	13900
306	460	5170	7770	4790	7200	ギす	28	667	1000	9680	14600	9160	13800
266	400	4830	7260	4480	6730		30	595	895	9590	14400	9060	13600
234	352	4500	6760	4170	6270	－	32	537	806	9490	14300	8960	13500
207	312	4160	6260	3870	5810	研	34	487	733	9400	14100	8870	13300
185	278	3840	5770	3570	5360	흘	36	446	670	9300	14000	8770	13200
166	250	3520	5300	3280	4930		38	411	617	9200	13800	8670	13000
		3220	4840	3000	4500	？	40	380	572	9110	13700	8580	12900
		2920	4390	2720	4090	¢	42	354	532	9010	13500	8480	12700
		2660	4000	2480	3730	山	44	331	497	8920	13400	8380	12600
		2430	3660	2270	3410		46	310	466	8820	13300	8290	12500
		2240	3360	2080	3130		48	292	439	8730	13100	8190	12300
		2060	3100	1920	2890		50	276	415	8630	13000	8090	12200
						Pro							
	vailable S	rength in	ensile Yi	lding，kip						ting Unbra	ced Lengt		
$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{\boldsymbol{t}}$	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$			L_{p}	L_{r}	L_{p}	L_{r}	L_{p}	L_{r}
1310	1970	8140	12200	7510	11300			8.09	23.6	15.0	107	15.1	100
Availab	Strength	Tensile	Rupture	$A_{e}=0.75$	A_{g} ），kips						，in．${ }^{2}$		
$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{\boldsymbol{t}}$	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$			43			2		
1070	1600	6630	9950	6110	9170					Moment of	Inertia，in		
	Availa	le Streng	th in Shea	r，kips				I_{x}	I_{y}	I_{x}	I_{y}	I_{x}	I_{y}
V_{n} / Ω_{v}	$\phi_{v} V_{n}$	V_{n} / Ω_{v}	$\phi_{v} V_{n}$	V_{n} / Ω_{V}	$\phi_{V} V_{n}$			9800	229	73000	4940	70000	4600
432	650	2600	3900	2170	3260						n．		
Avail	ble Stren	th in Flex	ure about	Y－Y Axis，	kip－ft			2.2			26		
$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	${ }_{\phi} M M_{n y}$						源		
155	233	2120	3190	2010	3020			6.5			， 85		
${ }^{\text {c }}$ Shape ${ }^{\mathrm{n}}$ Flange ${ }^{\mathrm{v}}$ Shape Note：H	is slende thicknes does not avy line in	for comp is greate meet the h dicates	ression w r than 2 $/ t_{w}$ limit for ／requal	ith $F_{y}=5$ ．Special or shear in to or grea	0 ksi． requirem AISC Spe ter than	ts may fication 0.	ply ction	r AISC Sp G2．1（a）with	cificatio $F_{y}=50$	Section ksi ；there	A3．1c． re，$\phi_{v}=0$	90 and	$e_{v}=1.67 .$

					ble St ect an	$\begin{aligned} & \text {-2 } \\ & \text { en } \\ & \text { to } \\ & \text { C-S } \end{aligned}$	n					$\begin{aligned} & =50 \\ & =65 \end{aligned}$	$\begin{aligned} & \text { ksi } \\ & \text { ri } \end{aligned}$
W36×						Shape lb/ft		W36×					
529 ${ }^{\text {h }}$		487 ${ }^{\text {h }}$		441 ${ }^{\text {h }}$				529 ${ }^{\text {h }}$		487 ${ }^{\text {h }}$		441 ${ }^{\text {h }}$	
$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{c}$	$\phi_{c} P_{n}$	$\boldsymbol{P}_{n} / \Omega_{c}$	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	Design		$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$	$M_{n x} / \Omega$	$\phi_{b} M_{n x}$	$M_{n X} / \Omega_{b}$	$\phi_{b} M$
Available Compressive Strength, kips								Available Flexural Strength, kip-ft					
ASD	LRFD	ASD	LRFD	ASD	LRFD			ASD	LRFD	ASD	LRFD	ASD	LRFD
4670	7020	4280	6430	3890	5850		0	5810	8740	5310	7990	4770	7160
4560	6860	4180	6280	3800	5710		6	5810	8740	5310	7990	4770	7160
4520	6800	4140	6230	3760	5660		7	5810	8740	5310	7990	4770	7160
4480	6730	4100	6160	3730	5600		8	5810	8740	5310	7990	4770	7160
4430	6660	4050	6090	3680	5530		9	5810	8740	5310	7990	4770	7160
4370	6570	4000	6020	3630	5460		10	5810	8740	5310	7990	4770	7160
4310	6480	3950	5930	3580	5380		11	5810	8740	5310	7990	4770	7160
4250	6390	3890	5840	3530	5300		12	5810	8740	5310	7990	4770	7160
4180	6280	3820	5740	3470	5210		13	5810	8740	5310	7990	4770	7160
4110	6170	3750	5640	3400	5110		14	5810	8740	5310	7990	4760	7150
4030	6050	3680	5530	3340	5010		15	5770	8680	5270	7920	4710	7080
3950	5930	3610	5420	3270	4910	$\begin{aligned} & \text { W } \\ & \underset{\sim}{\otimes} \\ & \end{aligned}$	16	5730	8610	5220	7850	4670	7020
3860	5800	3530	5300	3190	4800		17	5680	8540	5180	7780	4620	6950
3770	5670	3440	5180	3120	4690	으는	18	5630	8470	5130	7710	4580	6880
3680	5540	3360	5050	3040	4570		19	5590	8400	5080	7640	4530	6810
3590	5400	3270	4920	2960	4450		20	5540	8330	5040	7570	4490	6740
3400	5110	3090	4650	2790	4200		22	5450	8190	4950	7430	4400	6610
3200	4810	2910	4370	2620	3940		24	5350	8050	4850	7290	4310	6470
2990	4500	2720	4090	2450	3680		26	5260	7910	4760	7160	4220	6340
2790	4190	2530	3800	2270	3420		28	5170	7770	4670	7020	4130	6200
2580	3880	2340	3520	2100	3160		30	5070	7630	4580	6880	4030	6060
2380	3580	2150	3240	1930	2900		32	4980	7490	4480	6740	3940	5930
2180	3280	1970	2960	1760	2650		34	4890	7350	4390	6600	3850	5790
1990	2990	1790	2700	1600	2410		36	4790	7210	4300	6460	3760	5660
1800	2710	1620	2440	1440	2170	式	38	4700	7070	4210	6320	3670	5520
1630	2450	1460	2200	1300	1960		40	4610	6930	4120	6190	3580	5380
1480	2220	1330	1990	1180	1780		42	4510	6790	4020	6050	3490	5250
1350	2020	1210	1820	1080	1620		44	4420	6650	3930	5910	3400	5110
1230	1850	1110	1660	985	1480		46	4330	6510	3840	5770	3310	4980
1130	1700	1020	1530	905	1360		48	4240	6370	3750	5630	3220	4840
1040	1570	936	1410	834	1250		50	4140	6230	3650	5490	3130	4700
Properties													
Available Strength in Tensile Yielding, kips						Limiting Unbraced Lengths, ft							
$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{\boldsymbol{t}}$	$\phi_{t} P_{\boldsymbol{n}}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{\boldsymbol{n}}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{\boldsymbol{t}}$	$\phi_{t} P_{n}$			L_{p}	L_{r}	L_{p}	L_{r}	L_{p}	L_{r}
4670	7020	4280	6440	3890	5850			14.1	64.3	14.0	59.9	13.8	55.5
Available Strength in Tensile Rupture ($A_{e}=0.75 A_{g}$), kips								Area, in. ${ }^{2}$					
P_{n} / Ω_{t}	$\phi_{t} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{\boldsymbol{t}}$	$\phi_{t} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$			156		143		130	
3800	5700	3480	5220	3170	4750			Moment of Inertia, in. ${ }^{4}$					
Available Strength in Shear, kips								$I_{\text {I }}$	I_{y}	$I_{\text {I }}$	I_{y}	$I_{\text {X }}$	I_{y}
V_{n} / Ω_{v}	$\phi_{v} V_{n}$	V_{n} / Ω_{v}	$\phi_{v} V_{n}$	V_{n} / Ω_{v}	$\phi_{v} V_{n}$			39600	2490	36000	2250	32100	1990
1280	1920	1180	1770	1060	1590			r_{y}, in.					
Available Strength in Flexure about Y-Y Axis, kip-ft								4.00		3.96		3.92	
$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$			r_{x} / r_{y}					
1130	1700	1030	1550	918	1380			4.00		3.99		4.01	
${ }^{\text {h }}$ Flange thickness is greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.													

W36		Table 6－2（continued） Available Strength for Members Subject to Axial，Shear，$\quad F_{y}=50 \mathrm{ksi}$ Flexural and Combined Forces $F_{u}=65 \mathrm{ksi}$ W－Shapes											
W36×						Shape lb／ft		W36×					
302		282 ${ }^{\text {c }}$		$262{ }^{\text {c }}$				302		282		262	
P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	$P_{\boldsymbol{n}} / \Omega_{\boldsymbol{c}}$	$\phi_{c} P_{n}$	Design		$M_{n x} / \Omega_{b} / \phi_{b} M_{n x}$		$M_{n x} / \Omega_{b} / \phi_{b} M_{n x}$		$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$
Available Compressive Strength，kips								Available Flexural Strength，kip－ft					
ASD	LRFD	ASD	LRFD	ASD	LRFD			ASD	LRFD	ASD	LRFD	ASD	LRFD
2660	4000	2480	3720	2280	3420		0	3190	4800	2970	4460	2740	4130
2600	3900	2420	3630	2220	3340		6	3190	4800	2970	4460	2740	4130
2570	3870	2390	3600	2200	3310		7	3190	4800	2970	4460	2740	4130
2540	3820	2370	3560	2180	3280		8	3190	4800	2970	4460	2740	4130
2510	3780	2340	3520	2160	3250		9	3190	4800	2970	4460	2740	4130
2480	3730	2310	3470	2130	3200		10	3190	4800	2970	4460	2740	4130
2440	3670	2270	3420	2100	3160		11	3190	4800	2970	4460	2740	4130
2400	3610	2230	3360	2070	3110		12	3190	4800	2970	4460	2740	4130
2360	3550	2190	3300	2040	3060		13	3190	4800	2970	4460	2740	4130
2310	3480	2150	3230	2000	3000		14	3170	4770	2950	4430	2720	4080
2270	3400	2110	3170	1950	2940		15	3130	4710	2910	4370	2680	4030
2220	3330	2060	3100	1910	2870	芉	16	3090	4650	2870	4310	2640	3970
2160	3250	2010	3020	1860	2800	$\underset{\text { ® }}{\substack{\text { ¢ }}}$	17	3050	4590	2830	4250	2600	3910
2110	3170	1960	2950	1820	2730	응	18	3010	4530	2790	4190	2560	3850
2050	3090	1910	2870	1770	2660	せ	19	2970	4470	2750	4130	2530	3800
2000	3000	1850	2790	1720	2580	気	20	2930	4400	2710	4070	2490	3740
1880	2820	1740	2620	1610	2420	¢	22	2850	4280	2630	3950	2410	3620
1760	2640	1630	2450	1510	2260	도융	24	2770	4160	2550	3840	2330	3510
1640	2460	1520	2280	1400	2100	3	26	2690	4040	2470	3720	2260	3390
1510	2270	1400	2110	1290	1940	ギす	28	2610	3920	2390	3600	2180	3280
1390	2090	1290	1940	1180	1780	－	30	2530	3800	2320	3480	2100	3160
1270	1910	1180	1770	1080	1620	或	32	2440	3670	2240	3360	2030	3050
1160	1740	1070	1610	977	1470	产	34	2360	3550	2160	3240	1950	2930
1050	1570	964	1450	879	1320	흘	36	2280	3430	2080	3120	1870	2820
939	1410	865	1300	789	1190	－	38	2200	3310	2000	3010	1800	2700
847	1270	781	1170	712	1070	？	40	2120	3190	1920	2890	1720	2590
768	1160	708	1060	646	971	边	42	2040	3070	1840	2770	1610	2420
700	1050	645	970	588	884	亗	44	1950	2930	1730	2600	1510	2270
641	963	591	888	538	809		46	1840	2760	1630	2440	1420	2130
588	884	542	815	494	743		48	1730	2610	1530	2300	1330	2000
542	815	500	751	456	685		50	1640	2470	1450	2180	1260	1900
						Prope							
	ailable S	rength in	Tensile Yi	lding，kip					Limi	Ing Unbra	ced Lengt	s，ft	
P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$			L_{p}	L_{r}	L_{p}	L_{r}	L_{p}	L_{r}
2660	4010	2480	3730	2310	3470			13.5	43.6	13.4	42.2	13.3	40.6
Availabl	Strength	in Tensile	Rupture	$A_{e}=0.75$	g），kips						in．${ }^{2}$		
$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{\boldsymbol{t}}$	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$			89				77	
2170	3260	2020	3030	1880	2820					oment of	nertia，in		
	Availa	le Streng	h in Shear	r，kips				$I_{\text {x }}$	I_{y}	I_{x}	I_{y}	I_{x}	I_{y}
V_{n} / Ω_{v}	$\phi_{V} V_{n}$	V_{n} / Ω_{v}	$\phi_{V} V_{n}$	V_{n} / Ω_{v}	$\phi_{v} V_{n}$			21100	1300	19600	1200	17900	1090
705	1060	657	985	620	930								
Avail	ble Stren	th in Flex	ure about	Y－Y Axis，	kip－ft			3.8					
$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$								
601	904	556	836	509	765			4.0					
${ }^{\text {c }}$ Shape	slender	or compr	ssion w	$F_{y}=5$									

Table 6-2 (continued) Available Strength for Members Subject to Axial, Shear, Flexural and Combined Forces W-Shapes												W3	
W36×						$\begin{gathered} \hline \text { Shape } \\ \hline \mathrm{Ib} / \mathrm{ft} \end{gathered}$		W36×					
256		$247^{\text {c }}$		$232{ }^{\text {c }}$				256		247		232	
P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	Design		$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$	$M_{n x} / \Omega_{4}$	$\phi_{b} M_{n X}$	$M_{n x} / \Omega_{b}$	$\phi_{\phi} M_{n X}$
Available Compressive Strength, kips								Available Flexural Strength, kip-ft					
ASD	LRFD	ASD	LRFD	ASD	LRFD			ASD	LRFD	ASD	LRFD	ASD	LRFD
2250	3390	2110	3170	2010	3030		0	2590	3900	2570	3860	2340	3510
2140	3210	2060	3100	1920	2890		6	2590	3900	2570	3860	2340	3510
2090	3150	2040	3070	1890	2840		7	2590	3900	2570	3860	2340	3510
2050	3080	2020	3040	1850	2770		8	2590	3900	2570	3860	2340	3510
2000	3000	2000	3010	1800	2700		9	2590	3900	2570	3860	2340	3510
1940	2920	1980	2970	1750	2620		10	2560	3860	2570	3860	2300	3460
1880	2830	1950	2930	1690	2540		11	2520	3780	2570	3860	2260	3390
1820	2730	1920	2890	1630	2450		12	2470	3710	2570	3860	2210	3330
1750	2630	1890	2840	1570	2360		13	2420	3640	2570	3860	2170	3260
1680	2530	1860	2790	1510	2270		14	2380	3570	2540	3820	2120	3190
1610	2420	1820	2740	1440	2170		15	2330	3500	2500	3760	2080	3130
1540	2310	1780	2680	1370	2070		16	2280	3430	2470	3710	2030	3060
1460	2200	1750	2620	1310	1960		17	2240	3360	2430	3650	1990	2990
1390	2080	1700	2560	1240	1860		18	2190	3290	2390	3590	1950	2920
1310	1970	1650	2490	1170	1760		19	2140	3220	2350	3540	1900	2860
1240	1860	1610	2410	1100	1660		20	2100	3150	2320	3480	1860	2790
1090	1640	1510	2270	969	1460		22	2000	3010	2240	3370	1770	2660
951	1430	1410	2110	842	1260		24	1910	2870	2170	3260	1680	2520
817	1230	1300	1960	721	1080		26	1820	2730	2090	3150	1590	2390
704	1060	1200	1810	621	934		28	1720	2590	2020	3040	1500	2260
613	922	1100	1660	541	814		30	1630	2450	1950	2920	1410	2120
539	810	1000	1510	476	715		32	1530	2290	1870	2810	1290	1930
477	718	909	1370	421	633		34	1410	2120	1800	2700	1180	1780
426	640	817	1230	376	565		36	1310	1960	1720	2590	1100	1650
382	575	733	1100	337	507		38	1220	1830	1650	2480	1020	1530
345	518	662	994	305	458		40	1140	1710	1560	2340	954	1430
313	470	$\begin{aligned} & 600 \\ & 547 \\ & 500 \\ & 459 \\ & 423 \end{aligned}$	$\begin{aligned} & 902 \\ & 822 \\ & 752 \\ & 691 \\ & 636 \end{aligned}$	276	415		42	1070	1610	1450	2180	896	1350
285	429						44	1010	1520	1350	2030	844	1270
							46	960	1440	1270	1910	799	1200
							48	912	1370	1200	1800	758	1140
							50	868	1310	1130	1700	721	1080
Properties													
Available Strength in Tensile Yielding, kips						Limiting Unbraced Lengths, ft							
P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$			ι_{p}	L_{r}	L_{p}	L_{r}	ι_{p}	L_{r}
2250	3390	2170	3260	2040	3060			9.36	31.5	13.2	39.4	9.25	30.0
Available Strength in Tensile Rupture ($A_{e}=0.75 \mathrm{~g}_{g}$), kips								Area, in. ${ }^{2}$					
P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$			75.3		72.5		68.0	
1840	2750	1770	2650	1660	2490			Moment of Inertia, in. ${ }^{4}$					
Available Strength in Shear, kips								I_{x}	I_{y}	I_{x}	l_{y}	I_{x}	I_{y}
V_{n} / Ω_{V}	$\phi_{v} V_{n}$	$\mathrm{V}_{n} / \Omega_{v}$	$\phi_{v} V_{n}$	V_{n} / Ω_{ν}	$\phi_{v} V_{n}$			16800	528	16700	1010	15000	468
718	1080	587	881	646	968			r_{y}, in.					
Available Strength in Flexure about Y-Y Axis, kip-ft								2.65		3.74		2.62	
$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{\text {d }}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$			r_{x} / r_{y}					
342	514	474	713	304	458					4.0			
${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$. Note: Heavy line indicates L_{c} / r equal to or greater than 200.													

		Table 6－2（continued） Available Strength for Members Subject to Axial，Shear， Flexural and Combined Forces W－Shapes													
W36×				$\frac{\text { W33× }}{387^{h}}$		Shape lb／ft		W36×				W33×			
$150^{\text {c }}$		135 ${ }^{\text {c }}$				150	135＊		387 ${ }^{\text {h }}$						
P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$			Design		$M_{n x} / \Omega_{b}$ $\phi_{b} M_{n x}$		$M_{n x} / \Omega_{b} \mid \phi_{b} M_{n x}$		$M_{n X} / \Omega$	$\phi_{b} M_{n x}$
Available Compressive Strength，kips						Available Flexural Strength，kip－ft									
ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD			ASD	LRFD	ASD	LRFD		
1180	1770	1040	1560	3410	5130		0			1450	2180	1270	1910	3890	5850
1120	1680	982	1480	3320	4990		6	1450	2180	1270	1910	3890	5850		
1100	1650	963	1450	3290	4950		7	1450	2180	1270	1910	3890	5850		
1070	1610	941	1410	3260	4890		8	1450	2180	1270	1910	3890	5850		
1050	1580	916	1380	3210	4830		9	1440	2160	1250	1880	3890	5850		
1020	1530	890	1340	3170	4760		10	1410	2110	1220	1830	3890	5850		
989	1490	861	1290	3120	4690		11	1370	2060	1190	1780	3890	5850		
956	1440	831	1250	3070	4610		12	1340	2010	1160	1740	3890	5850		
922	1390	800	1200	3010	4530		13	1300	1960	1120	1690	3890	5850		
887	1330	767	1150	2950	4440		14	1270	1910	1090	1640	3870	5810		
851	1280	734	1100	2890	4340		15	1230	1850	1060	1590	3830	5750		
813	1220	700	1050	2820	4240		16	1200	1800	1030	1550	3790	5700		
775	1170	665	1000	2760	4140	첯	17	1160	1750	997	1500	3750	5640		
737	1110	630	947	2680	4040	응	18	1130	1700	965	1450	3710	5580		
698	1050	595	895	2610	3930	\＃	19	1100	1650	934	1400	3670	5520		
660	992	561	842	2540	3810	\％	20	1060	1600	902	1360	3640	5460		
575	865	486	730	2380	3580		22	993	1490	838	1260	3560	5350		
490	736	410	616	2230	3350	和哥	24	924	1390	775	1160	3480	5230		
417	627	349	525	2070	3110	3	26	838	1260	679	1020	3410	5120		
360	541	301	452	1910	2870	ボ	28	741	1110	598	899	3330	5000		
313	471	262	394	1750	2630		30	662	994	533	801	3250	4890		
275	414	230	346	1600	2400	比	32	597	897	479	720	3180	4770		
244	367	204	307	1450	2180	드ㅇㅡㅡㄹ	34	542	815	435	653	3100	4660		
218	327	182	274	1300	1960	흥	36	497	746	397	597	3020	4540		
195	294	163	246	1170	1760	¢	38	457	688	365	548	2940	4430		
176	265			1060	1590	？	40	424	637	337	507	2870	4310		
				959	1440	\＄	42	395	593	313	471	2790	4200		
				874	1310	亗	44	369	555	292	439	2710	4080		
				799	1200		46	346	521	274	412	2640	3960		
				734	1100		48	326	491	258	387	2560	3850		
				676	1020		50	309	464	243	365	2480	3730		
						Prop									
	vailable	rength in	ensile Y	lding，kip						ng Unb	ed Leng				
$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{\boldsymbol{t}}$	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$			L_{p}	L_{r}	L_{p}	L_{r}	L_{p}	L_{r}		
1330	1990	1190	1800	3410	5130			8.72	25.3	8.41	24.3	13.3	53.3		
Availabl	Strength	in Tensile	Rupture	$A_{e}=0.75$	$\mathrm{g}_{\text {g }}$ ，kips										
$\boldsymbol{P}_{n} / \Omega_{t}$	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$			44							
1080	1620	972	1460	2780	4170					oment of	nertia，in				
	Availa	le Strengt	h in She	，kips				I_{x}	I_{y}	I_{x}	I_{y}	I_{x}	I_{y}		
V_{n} / Ω_{v}	$\phi_{v} V_{n}$	V_{n} / Ω_{v}	$\phi_{V} V_{n}$	V_{n} / Ω_{v}	$\phi_{v} V_{n}$			9040	270	7800	225	24300	1620		
449	673	384	577	907	1360										
Avail	ble Stren	th in Flex	re about	Y－Y Axis，	ip－ft			2.							
$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	${ }_{\phi} M_{n y}$										
177	266	149	224	778	1170			5.							
${ }^{c}$ Shape ${ }^{\mathrm{h}}$ Flange ${ }^{v}$ Shape Note：He	is slender thicknes oes not vy line	for comp is greater meet the h dicates L	ession than 2 t_{w} limit ／r equa	th $F_{y}=5$ ．Special shear in to or grea	ksi． requirem AISC Spe er than	nts may cification 00.	ply p	AISC Sp 2．1（a）with	$\begin{aligned} & \text { cificatio } \\ & F_{y}=50 \end{aligned}$	Section si；there	3．1c． $\text { re, } \phi_{v}=$	90 and	$v=1.67$		

		Table 6－2（continued） Available Strength for Members Subject to Axial，Shear，$\quad F_{y}=50 \mathrm{ksi}$ Flexural and Combined Forces $F_{u}=65 \mathrm{ksi}$ W－Shapes													
W33×						$\begin{gathered} \hline \text { Shape } \\ \hline \mathrm{lb} / \mathrm{ft} \end{gathered}$		W33×							
263		$241{ }^{\text {c }}$		$221{ }^{\text {c }}$				263		241		221			
$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{\boldsymbol{c}}$	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{C} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	Design		$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$	$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$	$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$		
Available Compressive Strength，kips								Available Flexural Strength，kip－ft							
ASD	LRFD	ASD	LRFD	ASD	LRFD			ASD	LRFD	ASD	LRFD	ASD	LRFD		
2320	3480	2130	3200	1920	2890		0	2590	3900	2350	3530	2140	3210		
2250	3390	2070	3110	1870	2810		6	2590	3900	2350	3530	2140	3210		
2230	3350	2050	3080	1860	2790		7	2590	3900	2350	3530	2140	3210		
2200	3310	2020	3040	1840	2760		8	2590	3900	2350	3530	21403210			
2170	3270	1990	3000	1810	2730		9	2590	3900	2350	$\begin{aligned} & 3530 \\ & 3530 \end{aligned}$	21403210			
2140	3220	1960	2950	1790	2690		10	2590	3900			2140			
2110	3170	1930	2900	1760	2650		11	25903900		23503530		21403210			
2070	3110	1900	2850	1730	2600		12	2590	3900	23503530		21403210			
2030	3050	1860	2790	1700	2560		13	2590	3900	23403510		21303200			
1990	2990	1820	2730	1670	2500		14		$\begin{aligned} & 3840 \\ & 3790 \end{aligned}$	2310	3460	2100			
1940	2920	1780	2670	1630	2450		15	 2520 3790 2270 3410 2060 3100 2490 3740 2240 3360 2030 3050							
1890	2850	1730	2600	1590	2380	䓌	16								
1850	2780	1690	2540	1540	2320		17	2450	3740 3690	$\begin{aligned} & 2240 \\ & 2210 \end{aligned}$	$\begin{aligned} & 3360 \\ & 3320 \end{aligned}$	$\begin{aligned} & 2030 \\ & 2000 \end{aligned}$	$\begin{aligned} & 3050 \\ & 3010 \end{aligned}$		
1800	2700	1640	2470	1500	2260	은	18	2420	3640	21702140	3270	19702960			
1740	2620	1590	2390	1460	2190	$\begin{aligned} & \text { T } \\ & \text { W } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	19		23903580		$\begin{aligned} & 3220 \\ & 3170 \end{aligned}$	19402910			
1690	2540	1540	2320	1410	2120		20	23503530		$\begin{aligned} & 2140 \\ & 2110 \end{aligned}$		19102860			
1580	2380	1440	2170	1320	1980		22	2280	3430	20403070		1840 1780 2770 170			
1470	2210	1340	2010	1220	1840		24	$\begin{aligned} & 2210 \\ & 2140 \end{aligned}$	3330	19702970					
1360	2050	1240	1860	1130	1690		26		3220	19102870		17102580			
1250	1880	1130	1700	1030	1550	ギす	28	2070	31203010	18402770		16502480			
1140	1720	1030	1550	937	1410	¢	30	2010		1770	$\begin{aligned} & 2770 \\ & 2670 \end{aligned}$	15902380			
1040	1560	935	1410	847	1270		32		2910	$\begin{aligned} & 1710 \\ & 1640 \end{aligned}$	2570	15202290			
934	1400	841	1260	760	1140		34		2810		2470	14602190			
835	1260	750	1130	678	1020		36	1870 1800	$\begin{aligned} & 2700 \\ & 2600 \end{aligned}$	$\begin{aligned} & 1640 \\ & 1580 \end{aligned}$	2370	1400			
749	1130	674	1010	608	914		38	1730		$\begin{aligned} & 1580 \\ & 1510 \end{aligned}$	2270	13301240	2000		
676	1020	608	914	549	825	？	40	1660	2500	1440	2160		1860		
$\begin{aligned} & 614 \\ & 559 \\ & 511 \\ & 470 \\ & 433 \end{aligned}$	922	551	829	498	748	苞	42	$\begin{aligned} & 1580 \\ & 1490 \\ & 1400 \\ & 1320 \\ & 1260 \\ & \hline \end{aligned}$	$\begin{aligned} & 2380 \\ & 2230 \\ & 2100 \\ & 1990 \\ & 1890 \\ & \hline \end{aligned}$	$\begin{aligned} & 1340 \\ & 1260 \\ & 1180 \\ & 1110 \\ & 1060 \\ & \hline \end{aligned}$	$\begin{aligned} & 2010 \\ & 1890 \\ & 1780 \\ & 1680 \\ & 1590 \\ & \hline \end{aligned}$	$\begin{array}{r} 1150 \\ 1080 \\ 1010 \\ 953 \\ 901 \\ \hline \end{array}$	$\begin{aligned} & 1730 \\ & 1620 \\ & 1520 \\ & 1430 \\ & 1350 \end{aligned}$		
	840	502	755	454	682		44								
	769	460	691	415	624		46								
	706	422	634	381	573		48								
	651	389	585	351	528		50								
Properties															
Available Strength in Tensile Yielding，kips						Limiting Unbraced Lengths，ft									
P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$			L_{p}	L_{r}	L_{p}	L_{r}	L_{p}	L_{r}		
2320	3480	2130	3200	1960	2940			12.9	41.6	12.8	39.7	12.7	38.2		
Available Strength in Tensile Rupture（ $A_{e}=0.75 A_{g}$ ），kips								Area，in．${ }^{2}$							
P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$			77.4		71.1		65.3			
1890	2830	1730	2600	1590	2390			Moment of Inertia，in．${ }^{4}$							
Available Strength in Shear，kips								I_{x}	I_{y}	I_{x}	I_{y}	I_{x}	I_{y}		
V_{n} / Ω_{v}	$\phi_{v} V_{n}$	V_{n} / Ω_{v}	$\phi_{V} V_{n}$	V_{n} / Ω_{v}	$\phi_{V} V_{n}$			15900	1040	14200	933	12900	840		
600	900	568	852	525	788			r_{y} ，in．							
Available Strength in Flexure about Y－Y Axis，kip－ft								3.66		3.62		3.59			
$M_{n y} / \Omega_{b}$	$\phi_{\phi} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$			r_{x} / r_{y} 3.91 3.90							
504	758	454	683	409	615							3.93			
${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$ ．															

Table 6-2 (continued) Available Strength for Members Subject to Axial, Shear, Flexural and Combined Forces W-Shapes												W3	
W33×						$\begin{gathered} \hline \text { Shape } \\ \hline \mathrm{Ib} / \mathrm{ft} \end{gathered}$		W33×					
$201{ }^{\text {c }}$		$169{ }^{\text {c }}$		$152^{\text {c }}$				201		169		152	
P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	Design		$M_{n x} / \Omega_{b}$	${ }_{\phi b} M_{n x}$	$M_{n X} / \Omega_{b}$	$\phi_{b} M_{n x}$	$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$
Available Compressive Strength, kips								Available Flexural Strength, kip-ft					
ASD	LRFD	ASD	LRFD	ASD	LRFD			ASD ${ }^{3}$ Availab		ASD	LRFD	ASD	LRFD
1700	2560	1390	2090	1240	1860		0	1930	2900	1570	2360	1390	2100
1660	2500	1320	1990	1180	1770		6	1930	2900	1570	2360	1390	2100
1640	2470	1300	1950	1150	1730		7	1930	2900	1570	2360	1390	2100
1630	2440	1270	1910	1130	1700		8	1930	2900	1570	2360	1390	2100
1610	2410	1240	1860	1100	1650		9	1930	2900	1560	2350	1390	2080
1580	2380	1210	1810	1070	1610		10	1930	2900	1530	2300	1350	2030
1560	2350	1170	1760	1040	1560		11	1930	2900	1500	2250	1320	1990
1530	2310	1130	1700	1000	1510		12	1930	2900	1460	2200	1290	1940
1510	2270	1090	1640	967	1450		13	1920	2880	1430	2140	1260	1890
1480	2220	1050	1580	929	1400		14	1890	2830	1390	2090	1230	1840
1450	2170	1010	1510	890	1340		15	1860	2790	1360	2040	1190	1790
1410	2130	962	1450	851	1280		16	1830	2740	1320	1990	1160	1750
1380	2080	911	1370	810	1220		17	1790	2700	1290	1940	1130	1700
1350	2020	859	1290	769	1160		18	1760	2650	1260	1890	1100	1650
1310	1970	807	1210	721	1080		19	1730	2610	1220	1840	1070	1600
1270	1910	755	1140	674	1010		20	1700	2560	1190	1780	1030	1550
1180	1780	656	986	583	876		22	1640	2470	1120	1680	969	1460
1100	1650	561	843	496	746		24	1580	2380	1050	1580	905	1360
1010	1520	478	718	423	636		26	1520	2290	982	1480	834	1250
923	1390	412	619	365	548		28	1460	2200	890	1340	741	1110
838	1260	359	539	318	478		30	1400	2110	803	1210	666	1000
756	1140	315	474	279	420		32	1340	2020	730	1100	604	908
676	1020	279	420	247	372		34	1280	1930	670	1010	552	830
603	907	249	375	221	332		36	1220	1830	618	929	508	763
541	814	224	336	198	298		38	1140	1710	574	862	470	707
489	734	202	303	179	269		40	1050	1580	535	805	438	658
443	666						42	976	1470	502	754	409	615
404	607						44	911	1370	472	710	384	577
369	555						46	854	1280	446	670	362	544
339	510						48	804	1210	422	635	342	514
313	470						50	759	1140	401	603	324	488
						Prope							
	vailable S	rength in	Tensile Yi	elding, kips					Lim	ng Unbrac	ed Lengt		
P^{\prime} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$			ι_{p}	L_{r}	L_{p}	L_{r}	ι_{p}	L_{r}
1770	2660	1480	2230	1340	2020			12.6	36.7	8.83	26.7	8.72	25.7
Available	Strength	in Tensile	Rupture	$\left(A_{e}=0.75 \mathrm{~A}\right.$	g), kips					Area,			
P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$					49.		4	
1440	2160	1210	1810	1100	1640					oment of	nertia, in		
	Availa	le Streng	th in Shea	r, kips				$I_{\text {x }}$	I_{y}	I_{x}	I_{y}	I_{x}	I_{y}
V_{n} / Ω_{V}	$\phi_{v} V_{n}$	$\mathrm{V}_{n} / \Omega_{v}$	$\phi_{v} V_{n}$	V_{n} / Ω_{ν}	$\phi_{v} V_{n}$			11600	749	9290	310	8160	273
482	723	453	679	425	638					r_{y},			
Avail	ble Stren	th in Flex	ure about	Y-Y Axis, k	ip-ft					2.5			
$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{\text {d }}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$					$r_{x} /{ }^{\prime}$			
367	551	211	317	184	277					5.4			
${ }^{\text {c }}$ Shape Note: H	is slender avy line in	$\begin{aligned} & \text { for compr } \\ & \text { ddicates } L_{2} \end{aligned}$	-c /requal	$\text { vith } F_{y}=50$ to or great	ksi. er than								

$F_{y}=50 \mathrm{ksi} \quad$ Subject to Axial，Shear， $F_{u}=65 \mathrm{ksi}$ Flexural and Combined Forces													
W30×								W30×					
	11	19		17									
P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	Design		$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$	$n \mathrm{n} / \Omega_{b}$	$\phi_{b} M_{n x}$	$M_{n X} / \Omega$	$\phi_{b} M_{n}$
Available Compressive Strength，kips								Available Flexural Strength，kip－ft					
ASD	LRFD	ASD	LRFD	ASD	LRFD			ASD	LRFD	ASD	LRFD	ASD	LRFD
1870	2800	1660	2500	1480	2220		0	1870	2820	1680	2530	1510	2280
1810	2720	1610	2430	1440	2160		6	1870	2820	1680	2530	1510	2280
1790	2690	1600	2400	1420	2140		7	1870	2820	1680	2530	1510	2280
1760	2650	1580	2370	1400	2110	5	8	1870	2820	1680	2530	1510	2280
1740	2610	1560	2340	1390	2080	E－	9	1870	2820	1680	2530	1510	2280
1710	2570	1540	2310	1370	2050	은	10	1870	2820	1680	2530	1510	2280
1680	2530	1510	2270	1340	2020	은	11	1870	2820	1680	2530	1510	2280
1650	2480	1480	2220	1320	1980	안 등	12	1870	2820	1680	2530	1510	2280
1610	2420	1450	2180	1290	1940	\bigcirc	13	1860	2790	1660	2500	1490	2240
1570	2370	1410	2120	1270	1900	20	14	1830	2750	1640	2460	1470	2210
1540	2310	1380	2070	1240	1860	둔	15	1800	2710	1610	2420	1440	2170
1490	2250	1340	2020	1210	1810	\＃	16	1770	2670	1590	2380	1420	2130
1450	2180	1300	1960	1170	1770	过	17	1750	2630	1560	2350	1390	2100
1410	2120	1260	1900	1140	1710	으웅	18	1720	2590	1530	2310	1370	2060
1370	2050	1220	1840	1100	1660		19	1690	2550	1510	2270	1350	2020
1320	1980	1180	1780	1060	1600	O	20	1670	2510	1480	2230	1320	1990
1230	1850	1100	1650	986	1480	d	22	1610	2420	1430	2150	1270	1910
1130	1700	1010	1520	907	1360	¢ 年	24	1560	2340	1380	2070	1220	1840
1040	1560	927	1390	829	1250	衰	26	1500	2260	1330	2000	1180	1770
947	1420	843	1270	752	1130	ギ	28	1450	2180	1280	1920	1130	1690
857	1290	761	1140	678	1020	－	30	1400	2100	1220	1840	1080	1620
770	1160	682	1030	606	911	¢	32	1340	2020	1170	1760	1030	1550
685	1030	606	911	538	808	흥	34	1290	1940	1120	1690	981	1470
611	919	541	813	479	721	등	36	1230	1860	1070	1610	922	1390
549	824	485	730	430	647	¢	38	1180	1770	1000	1500	850	1280
495	744	438	659	388	584	？	40	1110	1670	928	1400	787	1180
449	675	397	597	352	529	－	42	1040	1560	866	1300	733	1100
409	615	362	544	321	482	而	44	973	1460	812	1220	685	1030
374	563	331	498	294	441		46	917	1380	763	1150	643	967
344	517	304	457	270	405		48	866	1300	720	1080	606	911
317	476	280	421	249	374		50	822	1230	682	1030	573	861
Properties													
Available Strength in Tensile Yielding，kips										Un Unb	ed Leng		
$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{\boldsymbol{t}}$	$\phi_{t} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{\boldsymbol{n}}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{\boldsymbol{t}}$	$\phi_{t} P_{n}$			L_{p}	L_{r}	L_{p}	L_{r}	L_{p}	L_{r}
1870	2800	1680	2520	1520	2290			12.3	38.7	12.2	36.8	12.1	35.5
Available Strength in Tensile Rupture（ $A_{e}=0.75 A_{g}$ ），kips								Area，in．${ }^{2}$					
P_{n} / Ω_{t}	$\phi_{t} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{\boldsymbol{t}}$	$\phi_{t} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$			62					
1520	2280	1370	2050	1240	1860			Moment of Inertia，in．${ }^{4}$					
Available Strength in Shear，kips								$I_{\text {X }}$	I_{y}	$I_{\text {I }}$	I_{y}	$I_{\text {X }}$	I_{y}
V_{n} / Ω_{v}	$\phi_{v} V_{n}$	V_{n} / Ω_{v}	$\phi_{v} V_{n}$	V_{n} / Ω_{v}	$\phi_{v} V_{n}$			10300	757	9200	673	8230	598
479	718	436	654	398	597			r_{y} ，in．					
Available Strength in Flexure about Y－Y Axis，kip－ft								3.4					42
$\boldsymbol{M}_{\boldsymbol{n y}} / \Omega_{\boldsymbol{b}}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$								
387	581	344	518	307	461			3.7					71
${ }^{\text {c }}$ Shape	slende	or comp	ssion w	$F_{y}=5$									

		Table 6－2（continued） Available Strength for Members Subject to Axial，Shear， Flexural and Combined Forces W－Shapes													
$\frac{\text { W30 } \times}{\mathbf{9 0}^{\text {c }}}$		W27×				Shape lb／ft		$\frac{\text { W30× }}{90^{v}}$		W27×					
		539 ${ }^{\text {h }}$		368 ${ }^{\text {h }}$				539 ${ }^{\text {h }}$	368 ${ }^{\text {h }}$						
P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	$P_{n} / \Omega_{c} \|$${ }_{c} P_{n}$		Design				$M_{n x} / \Omega_{b} \mid \phi_{b} M_{n x}$		$M_{n x} / \Omega_{b} \mid{ }_{\phi b} M_{n x}$		$M_{n x} / \Omega_{b}{ }_{\phi}{ }_{b} M_{n x}$	
Available Compressive Strength，kips								Available Flexural Strength，kip－ft							
ASD	LRFD	ASD	LRFD	ASD	LRFD			ASD	LRFD	ASD	LRFD	ASD	LRFD		
672	1010	4760	7150	3260	4900		0	706	1060	4720	7090	3090	4650		
625	939	4630	6950	3160	4750		6	706	1060	4720	7090	3090	4650		
609	915	4580	6880	3130	4700		7	706	1060	4720	7090	3090	4650		
591	888	4530	6800	3090	4640		8	693	1040	4720	7090	3090	4650		
571	858	4470	6710	3040	4570		9	673	1010	4720	7090	3090	4650		
549	826	4400	6610	2990	4500		10	652	980	4720	7090	3090	4650		
527	792	4330	6500	2940	4420		11	632	949	4720	7090	3090	4650		
503	756	4250	6390	2880	4330		12	611	918	4720	7090	3090	4650		
479	719	4170	6260	2820	4230		13	590	887	4710	7080	3080	4620		
453	681	4080	6130	2750	4140		14	570	857	4690	7040	3050	4590		
428	643	3980	5990	2680	4030		15	549	826	4660	7000	3030	4550		
402	604	3890	5840	2610	3930	岗	16	529	795	4630	6970	3000	4510		
376	566	3790	5690	2540	3820	$\underset{\text { OX }}{\text { ¢ }}$	17	508	764	4610	6930	2980	4470		
351	527	3690	5540	2460	3700	응	18	488	733	4580	6890	2950	4440		
326	490	3580	5380	2380	3580	さ	19	467	702	4560	6850	2930	4400		
300	451	3470	5220	2300	3460	O	20	446	671	4530	6810	2900	4360		
248	372	3250	4880	2140	3220		22	390	587	4480	6730	2850	4290		
208	313	3020	4540	1980	2970	도융	24	335	504	4430	6650	2800	4210		
177	267	2790	4190	1810	2730	3	26	293	440	4370	6570	2750	4130		
153	230	2560	3850	1650	2480	ギ	28	259	389	4320	6500	2700	4060		
133	200	2340	3510	1490	2240		30	231	347	4270	6420	2650	3980		
117	176	2120	3190	1340	2010	或	32	208	313	4220	6340	2600	3910		
104	156	1910	2870	1190	1790	등	34	189	284	4160	6260	2550	3830		
		1710	2560	1060	1600	흥	36	173	260	4110	6180	2500	3760		
		1530	2300	954	1430		38	159	240	4060	6100	2450	3680		
		1380	2080	861	1290	？	40	148	222	4010	6020	2400	3610		
		1250	1880	781	1170	尔	42	137	206	3960	5950	2350	3530		
		1140	1720	712	1070	亗	44	128	193	3900	5870	2300	3460		
		1040	1570	651	979		46	121	181	3850	5790	2250	3380		
		960	1440	598	899		48	114	171	3800	5710	2200	3310		
		884	1330	551	828		50	107	161	3750	5630	2150	3230		
						Prop									
	ailable S	rength in	Tensile Yi	Iding，kips						g Unb	den				
$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{\boldsymbol{t}}$	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$			L_{p}	L_{r}	L_{p}	L_{r}	L_{p}	L_{r}		
787	1180	4760	7160	3260	4910			7.38	20.9	12.9	88.5	12.3	62.0		
Availabl	Strength	in Tensile	Rupture	$A_{e}=0.75{ }^{\text {a }}$	g_{g} ，kips										
$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$										
640	960	3870	5800	2660	3990					ment of	nertia，in				
	Availa	le Strengt	h in Shea	，kips				I_{x}	I_{y}	I_{x}	I_{y}	I_{x}	I_{y}		
V_{n} / Ω_{V}	$\phi_{V} V_{n}$	V_{n} / Ω_{v}	$\phi_{V} V_{n}$	V_{n} / Ω_{v}	$\phi_{V} V_{n}$			3610	115	25600	2110	16200	1310		
249	374	1280	1920	839	1260										
Availa	le Stren	th in Flex	ure about	Y－Y Axis，	ip－ft			2.							
$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	${ }_{\phi} M_{n y}$										
86.6	130	1090	1640	696	1050										
${ }^{c}$ Shape ${ }^{\mathrm{h}}$ Flange ${ }^{\mathrm{v}}$ Shape Note：Heary	slende hicknes oes not vy line in	for comp is greate meet the h dicates L	ession w than 2 in t_{w} limit for ／r equal	th $F_{y}=50$ Special shear in to or grea	ksi． requirem AISC Spe er than	nts may ification 00.	cty ply	AISC S 2．1（a）with	cificatio $F_{y}=50$	Section si；there	3．1c． e，$\phi_{v}=$	90 and	$v=1.67 .$		

$F_{y}=50 \mathrm{ksi} \quad$ Subject to Axial，Shear， $F_{u}=65 \mathrm{ksi}$ Flexural and Combined Forces													
W27×								W27×					
	4	17		16									
P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	Design		$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$	$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$	$M_{n X} / \Omega$	$\phi_{b} M_{n}$
Available Compressive Strength，kips								Available Flexural Strength，kip－ft					
ASD	LRFD	ASD	LRFD	ASD	LRFD			ASD	LRFD	ASD	LRFD	ASD	LRFD
1710	2570	1570	2360	1420	2140		0	1570	2370	1420	2140	1280	1930
1650	2480	1520	2280	1370	2070		6	1570	2370	1420	2140	1280	1930
1630	2450	1500	2250	1360	2040		7	1570	2370	1420	2140	1280	1930
1610	2410	1470	2220	1340	2010	5	8	1570	2370	1420	2140	1280	1930
1580	2370	1450	2180	1310	1970	E－	9	1570	2370	1420	2140	1280	1930
1550	2330	1420	2140	1290	1940	은	10	1570	2370	1420	2140	1280	1930
1520	2280	1390	2090	1260	1900	은	11	1570	2370	1420	2140	1280	1930
1490	2230	1360	2050	1230	1850	안 등	12	1570	2350	1410	2120	1270	1910
1450	2180	1330	2000	1200	1810	\bigcirc	13	1540	2320	1390	2090	1250	1880
1410	2120	1290	1940	1170	1760	20	14	1520	2290	1370	2060	1230	1850
1370	2060	1260	1890	1140	1710	둔	15	1500	2250	1350	2020	1210	1820
1330	2000	1220	1830	1100	1650	\＃	16	1480	2220	1320	1990	1190	1790
1290	1940	1180	1770	1060	1600	过	17	1450	2180	1300	1960	1170	1760
1250	1870	1140	1710	1030	1540	으웅	18	1430	2150	1280	1920	1150	1720
1200	1810	1100	1650	990	1490	흔	19	1410	2120	1260	1890	1130	1690
1160	1740	1050	1590	952	1430	O	20	1390	2080	1240	1860	1110	1660
1070	1600	970	1460	874	1310	d	22	1340	2020	1190	1790	1060	1600
976	1470	885	1330	797	1200	¢ 年	24	1300	1950	1150	1730	1020	1540
886	1330	801	1200	720	1080	衰	26	1250	1880	1110	1660	981	1470
797	1200	719	1080	646	971	ギ	28	1210	1810	1060	1600	939	1410
712	1070	641	963	575	864	－	30	1160	1740	1020	1530	898	1350
630	947	565	850	506	761	¢	32	1120	1680	977	1470	856	1290
558	839	501	753	448	674	흥	34	1070	1610	933	1400	814	1220
498	748	447	671	400	601	등	36	1030	1540	890	1340	757	1140
447	671	401	602	359	540	¢	38	981	1470	829	1250	701	1050
403	606	362	544	324	487	？	40	918	1380	773	1160	652	980
366	550	328	493	294	442	－	42	861	1290	724	1090	610	916
333	501	299	449	268	402	它	44	811	1220	681	1020	572	860
305	458	274	411	245	368		46	767	1150	643	966	539	811
280	421	251	378	225	338		48	727	1090	608	914	510	766
258	388	232	348	207	312		50	692	1040	578	868	484	727
Properties													
Available Strength in Tensile Yielding，kips										ng Unb	ed Leng		
$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{\boldsymbol{t}}$	$\phi_{t} P_{n}$	$P_{\boldsymbol{n}} / \Omega_{\boldsymbol{t}}$	$\phi_{t} P_{\boldsymbol{n}}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{\boldsymbol{t}}$	$\phi_{t} P_{n}$			L_{p}	L_{r}	L_{p}	L_{r}	L_{p}	L_{r}
1710	2570	1570	2360	1430	2140			11.6	38.2	11.5	36.4	11.4	34.7
Available Strength in Tensile Rupture（ $A_{e}=0.75 A_{g}$ ），kips								Area，in．${ }^{2}$					
P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$			57					
1390	2090	1280	1920	1160	1740			Moment of Inertia，in．${ }^{4}$					
Available Strength in Shear，kips								I_{X}	I_{y}	I_{X}	I_{y}	I_{X}	I_{y}
V_{n} / Ω_{v}	$\phi_{v} V_{n}$	V_{n} / Ω_{v}	$\phi_{v} V_{n}$	V_{n} / Ω_{v}	$\phi_{v} V_{n}$			7860	619	7020	555	6310	497
422	632	403	605	364	546								
Available Strength in Flexure about Y－Y Axis，kip－ft								3.2					23
$M_{\text {ny }} / \Omega_{\boldsymbol{b}}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{\boldsymbol{b}}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$								
339	510	304	458	272	409			3.5					56
${ }^{\text {c }}$ Shape	slende	or compr	ssion w	$F_{y}=5$									

		Table 6－2（continued） Available Strength for Members Subject to Axial，Shear，$\quad F_{y}=50 \mathrm{ksi}$ Flexural and Combined Forces $F_{u}=65$ ksi W－Shapes											
W27×						Shape lb／ft		W27×					
$146{ }^{\text {c }}$		129 ${ }^{\text {c }}$		114 ${ }^{\text {c }}$				146		129		114	
P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	Design		$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$	$n{ }_{n} / \Omega_{b}$	$\phi_{b} M_{n x}$	$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$
Available Compressive Strength，kips								Available Flexural Strength，kip－ft					
ASD	LRFD	ASD	LRFD	ASD	LRFD			ASD	LRFD	ASD	LRFD	ASD	LRFD
1270	1900	1100	1650	958	1440		0	1160	1740	986	1480	856	1290
1220	1840	1030	1550	895	1350		6	1160	1740	986	1480	856	1290
1210	1820	1010	1510	873	1310		7	1160	1740	986	1480	856	1290
1190	1790	977	1470	849	1280	5	8	1160	1740	981	1470	849	1280
1180	1770	947	1420	822	1240	E＇	9	1160	1740	958	1440	828	1240
1160	1740	912	1370	793	1190	은	10	1160	1740	934	1400	806	1210
1130	1700	872	1310	762	1140	준 앙	11	1160	1740	911	1370	784	1180
1110	1670	830	1250	729	1100	안 등	12	1140	1720	888	1330	763	1150
1090	1630	786	1180	692	1040	\bigcirc	13	1120	1690	864	1300	741	1110
1060	1590	742	1110	652	979	号	14	1100	1660	841	1260	720	1080
1030	1540	697	1050	611	918	끈	15	1080	1630	818	1230	698	1050
994	1490	652	980	571	858	\％	16	1070	1600	795	1190	676	1020
961	1440	607	912	530	797	西	17	1050	1570	771	1160	655	984
927	1390	563	846	491	738	은	18	1030	1540	748	1120	633	951
892	1340	520	781	452	680		19	1010	1510	725	1090	611	919
857	1290	478	718	415	623	O ${ }^{\circ}$	20	986	1480	701	1050	590	886
786	1180	398	598	344	518	¢	22	947	1420	655	984	547	821
715	1080	335	503	289	435		24	907	1360	608	914	493	740
645	970	285	428	247	371	产	26	868	1300	544	817	436	655
578	868	246	369	213	320	ギ	28	828	1250	489	736	391	587
513	771	214	322	185	278	－	30	789	1190	445	669	354	532
451	678	188	283	163	245	¢	32	750	1130	408	613	323	485
399	600	167	251	144	217	한 든	34	701	1050	376	566	297	446
356	535	149	223	129	193	딩	36	644	967	349	525	275	413
320	481					¢	38	594	893	326	490	256	384
289	434					需	40	552	830	306	460	239	359
262	393					－	42	515	774	288	433	225	338
239	358						44	483	725	272	409	212	318
218	328						46	454	682	258	388	200	301
200	301						48	429	644	245	368	190	286
185	278						50	406	610	234	351	181	272
Properties													
Available Strength in Tensile Yielding，kips								Limiting Unbraced Lengths，ft					
$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{\boldsymbol{t}}$	$\phi_{t} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{\boldsymbol{t}}$	$\phi_{t} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$			L_{p}	L_{r}	L_{p}	L_{r}	L_{p}	L_{r}
1290	1940	1130	1700	1010	1510			11.3	33.3	7.81	24.2	7.70	23.1
Available Strength in Tensile Rupture（ $A_{e}=0.75 A_{g}$ ），kips								Area，in．${ }^{\text {a }}$					
P_{n} / Ω_{t}	$\phi_{t} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{\boldsymbol{t}}$	$\phi_{t} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$			43.2		37.8		33.6	
1050	1580	923	1380	819	1230			Moment of Inertia，in．${ }^{4}$					
Available Strength in Shear，kips								I_{X}	I_{y}	I_{X}	I_{y}	$I_{\text {I }}$	I_{y}
V_{n} / Ω_{v}	$\phi_{v} V_{n}$	V_{n} / Ω_{v}	$\phi_{v} V_{n}$	V_{n} / Ω_{v}	$\phi_{v} V_{n}$			5660	443	4760	184	4080	159
332	497	337	505	311	467			r_{y} ，in．					
Available Strength in Flexure about Y－Y Axis，kip－ft								3.20		2.21		2.18	
$M_{n y} / \Omega_{b}$	${ }_{\phi b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	${ }_{\phi} M_{n y}$			r_{x} / r_{y}					
244	366	144	216	123	185			3.59		5.07		5.05	
${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$ ． Note：Heavy line indicates L_{c} / r equal to or greater than 200.													

$\begin{aligned} & F_{y} \\ & F_{u} \end{aligned}$	$\begin{aligned} & 50 \\ & 65 \end{aligned}$	ki ksi			ble St ect an	-2 eng 10 C ／－Sh							
		W											
		25											
P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{c}$	$\phi_{c} P_{n}$			$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$	$M_{n x} / \Omega$	$\phi_{b} M_{n x}$	$M_{n X} / \Omega$	$\phi_{b} M_{n}$
	able	ompres	ve Str	gth，					vaila	Flex	Stre	th，	
ASD	LRFD	ASD	LRFD	ASD	LRFD			ASD	LRFD	ASD	LRFD	ASD	LRFD
2450	3690	2200	3310	2010	3020		0	2080	3130	1860	2790	1680	2530
2360	3550	2120	3180	1930	2910		6	2080	3130	1860	2790	1680	2530
2330	3500	2090	3140	1910	2870		7	2080	3130	1860	2790	1680	2530
2290	3450	2060	3090	1880	2820	5	8	2080	3130	1860	2790	1680	2530
2250	3390	2020	3030	1840	2770	E－	9	2080	3130	1860	2790	1680	2530
2210	3320	1980	2970	1800	2710	은	10	2080	3130	1860	2790	1680	2530
2160	3250	1930	2910	1760	2650	준 잉	11	2080	3130	1860	2790	1680	2530
2110	3170	1890	2840	1720	2590	운 등	12	2070	3110	1840	2760	1660	2500
2050	3090	1840	2760	1670	2520	\bigcirc	13	2050	3080	1820	2730	1650	2470
2000	3000	1790	2680	1630	2440	릉	14	2030	3050	1800	2700	1630	2440
1940	2910	1730	2600	1570	2370	꾼	15	2010	3020	1780	2680	1610	2420
1880	2820	1670	2520	1520	2290	－	16	1990	2990	1760	2650	1590	2390
1810	2720	1620	2430	1470	2210	过	17	1970	2960	1740	2620	1570	2360
1750	2620	1560	2340	1410	2130	으은	18	1950	2930	1720	2590	1550	2330
1680	2520	1500	2250	1360	2040		19	1930	2900	1700	2560	1530	2300
1610	2420	1440	2160	1300	1960		20	1910	2870	1680	2530	1510	2270
1480	2220	1310	1970	1190	1790	¢	22	1870	2810	1640	2470	1470	2210
1340	2020	1190	1790	1070	1620	돠훙	24	1830	2750	1610	2410	1430	2160
1210	1820	1070	1610	964	1450	衰	26	1790	2690	1570	2350	1400	2100
1080	1620	953	1430	857	1290	む゙	28	1750	2640	1530	2300	1360	2040
955	1430	840	1260	754	1130	¢	30	1710	2580	1490	2240	1320	1980
839	1260	739	1110	663	996	－	32	1670	2520	1450	2180	1280	1920
743	1120	654	983	587	882	훙 든	34	1640	2460	1410	2120	1240	1870
663	996	584	877	523	787	등	36	1600	2400	1370	2060	1200	1810
595	894	524	787	470	706	¢	38	1560	2340	1330	2000	1160	1750
537	807	473	711	424	637	？	40	1520	2280	1290	1950	1130	1690
487	732	429	645	385	578	－	42	1480	2220	1260	1890	1090	1640
444	667	391	587	350	527	㐫	44	1440	2160	1220	1830	1050	1580
406	610	357	537	321	482		46	1400	2100	1180	1770	1010	1510
373	560	328	493	294	443		48	1360	2040	1140	1710	958	1440
344	516	303	455	271	408		50	1320	1990	1090	1640	915	1380
Properties													
Available Strength in Tensile Yielding，kips								Limiting Unbraced Lengths，ft					
$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{\boldsymbol{n}}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$			L_{p}	L_{r}	L_{p}	L_{r}	L_{p}	L_{r}
2450	3690	2200	3310	2010	3020			11.2	53.4	11.1	48.7	11.0	45.2
Available Strength in Tensile Rupture（ $A_{e}=0.75 A_{g}$ ），kips								Area，in．${ }^{2}$					
P_{n} / Ω_{t}	$\phi_{t} P_{n}$	$P_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$			81.9		73.5		67.2	
2000	2990	1790	2690	1640	2460			Moment of Inertia，in．${ }^{4}$					
Available Strength in Shear，kips								I_{X}	I_{y}	$I_{\text {X }}$	I_{y}	$I_{\text {X }}$	I_{y}
V_{n} / Ω_{v}	$\phi_{v} V_{n}$	V_{n} / Ω_{v}	$\phi_{v} V_{n}$	V_{n} / Ω_{v}	$\phi_{v} V_{n}$			9600	823	8490	724	7650	651
619	929	547	821	499	749			r_{y} ，in．					
Available Strength in Flexure about Y－Y Axis，kip－ft								3.					11
$M_{\text {ny }} / \Omega_{\boldsymbol{b}}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$								
482	724	427	641	384	578			3.					44
${ }^{\text {h }}$ Flange thickness is greater than 2 in．Special requirements may apply per AISC Specification Section A3．1c．													

		Table 6－2（continued） Available Strength for Members Subject to Axial，Shear，$\quad F_{y}=50 \mathrm{ksi}$ Flexural and Combined Forces $F_{u}=65 \mathrm{ksi}$ W－Shapes											
W24×						Shape lb／ft		W24×					
$117^{\text {c }}$		$104{ }^{\text {c }}$		$103{ }^{\text {c }}$				117		104		103	
$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{\boldsymbol{c}}$	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{\boldsymbol{c}}$	$\phi_{c} P_{n}$	Design		$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$	$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$	$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$
Available Compressive Strength，kips								Available Flexural Strength，kip－ft					
ASD	LRFD	ASD	LRFD	ASD	LRFD			ASD	LRFD	ASD	LRFD	ASD	LRFD
1010	1520	879	1320	886	1330		0	816	1230	721	1080	699	1050
970	1460	845	1270	815	1230		6	816	1230	721	1080	699	1050
957	1440	833	1250	791	1190		7	816	1230	721	1080	699	1050
942	1420	820	1230	765	1150	5	8	816	1230	721	1080	681	1050
924	1390	805	1210	731	1100	E－	9	816	1230	721	1080	663	996
906	1360	788	1180	695	1050	은	10	816	1230	721	1080	645	969
886	1330	770	1160	658	988	끈 아	11	806	1210	711	1070	626	941
864	1300	751	1130	619	930	안 등	12	791	1190	696	1050	608	914
838	1260	731	1100	579	870	¢ ${ }^{\circ}$	13	776	1170	682	1030	590	887
811	1220	710	1070	539	810	릉	14	760	1140	668	1000	572	859
783	1180	688	1030	499	750	꾼	15	745	1120	654	982	554	832
754	1130	665	999	459	690	匂	16	730	1100	639	961	535	805
724	1090	641	964	421	632	过	17	714	1070	625	939	517	777
694	1040	614	923	383	576	은	18	699	1050	611	918	499	750
663	997	587	882	347	521	芫	19	684	1030	596	896	481	723
633	951	559	840	313	471	O	20	668	1000	582	875	463	695
571	858	504	757	259	389	¢	22	638	959	553	832	425	639
511	767	449	675	217	327	도흥	24	607	912	525	789	375	563
452	679	397	596	185	278	長	26	576	866	496	746	335	504
396	595	346	520	160	240	¢゙	28	546	820	467	703	303	455
345	518	302	453	139	209	－	30	515	774	430	647	276	415
303	456	265	398	122	184	－든	32	470	707	389	584	254	382
268	404	235	353			흦 들	34	430	646	354	532	235	353
239	360	209	315			등	36	395	594	324	488	219	329
215	323	188	282			¢	38	365	549	299	450	205	308
194	292	170	255			？	40	340	511	278	417	192	289
176	264	154	231			¢	42	317	477	259	389	181	273
160	241	140	211				44	298	448	242	364	172	258
147	220	128	193				46	281	422	228	342	163	245
135	202	118	177				48	265	398	215	323	155	233
							50	251	378	203	305	148	222
Properties													
Available Strength in Tensile Yielding，kips								Limiting Unbraced Lengths，ft					
$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{\boldsymbol{t}}$	$\phi_{t} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{\boldsymbol{t}}$	$\phi_{t} P_{n}$			L_{p}	L_{r}	L_{p}	L_{r}	L_{p}	L_{r}
1030	1550	919	1380	907	1360			10.4	30.4	10.3	29.2	7.03	21.9
Available Strength in Tensile Rupture（ $A_{e}=0.75 A_{g}$ ），kips								Area，in．${ }^{\text {a }}$					
$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{\boldsymbol{t}}$	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$			34.4		30.7		30.3	
839	1260	748	1120	738	1110			Moment of Inertia，in．${ }^{4}$					
Available Strength in Shear，kips								I_{X}	I_{y}	$I_{\text {I }}$	I_{y}	$I_{\boldsymbol{X}}$	I_{y}
V_{n} / Ω_{v}	$\phi_{v} V_{n}$	V_{n} / Ω_{v}	$\phi_{v} V_{n}$	V_{n} / Ω_{v}	$\phi_{v} V_{n}$			3540	297	3100	259	3000	119
267	401	241	362	270	404			r_{y} ，in．					
Available Strength in Flexure about Y－Y Axis，kip－ft								2.9		2.		1.9	99
$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$								
178	268	156	234	104	156			3.				5.0	，
${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$ ． Note：Heavy line indicates L_{C} / r equal to or greater than 200.													

$\begin{aligned} & F_{y}=50 \mathrm{ksi} \\ & F_{u}=65 \mathrm{ksi} \end{aligned}$			vai		ble St ect an	－2 n to C							
W21×						Shape lb／ft		W21×					
275 ${ }^{\text {h }}$		248		223				275 ${ }^{\text {h }}$		248		223	
P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	Design		$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$	$M_{n x} / \Omega$	$\phi_{b} M_{n x}$	$M_{n X} / \Omega$	$\phi_{b} M$
Available Compressive Strength，kips								Available Flexural Strength，kip－ft					
ASD	LRFD	ASD	LRFD	ASD	LRFD			ASD	LRFD	ASD	LRFD	ASD	LRFD
2450	3680	2210	3320	1990	2990		0	1870	2810	1670	2520	1500	2250
2350	3540	2120	3190	1910	2870		6	1870	2810	1670	2520	1500	2250
2320	3490	2090	3150	1880	2830		7	1870	2810	1670	2520	1500	2250
2280	3430	2060	3090	1850	2780	5	8	1870	2810	1670	2520	1500	2250
2240	3370	2020	3040	1820	2730	E－	9	1870	2810	1670	2520	1500	2250
2190	3300	1980	2970	1780	2670	은	10	1870	2810	1670	2520	1500	2250
2150	3220	1930	2900	1730	2610	준 잉	11	1870	2810	1670	2510	1500	2250
2090	3140	1880	2830	1690	2540	운 등	12	1850	2790	1660	2490	1480	2230
2040	3060	1830	2750	1640	2470	\bigcirc	13	1840	2760	1640	2470	1470	2200
1980	2970	1780	2670	1590	2390	릉	14	1820	2740	1630	2450	1450	2180
1910	2880	1720	2590	1540	2320	꾼	15	1810	2720	1610	2430	1440	2160
1850	2780	1660	2500	1490	2240	－	16	1790	2700	1600	2400	1420	2140
1780	2680	1600	2410	1430	2150	过	17	1780	2680	1590	2380	1410	2120
1720	2580	1540	2320	1380	2070	으응	18	1770	2650	1570	2360	1390	2100
1650	2480	1480	2220	1320	1980		19	1750	2630	1560	2340	1380	2070
1580	2370	1420	2130	1260	1900		20	1740	2610	1540	2320	1360	2050
1440	2170	1290	1940	1150	1720	¢	22	1710	2570	1510	2270	1340	2010
1300	1960	1170	1750	1030	1550	돠훙	24	1680	2520	1480	2230	1310	1960
1170	1760	1040	1570	922	1390	衰	26	1650	2480	1460	2190	1280	1920
1040	1560	926	1390	815	1220	む゙	28	1620	2430	1430	2140	1250	1880
912	1370	812	1220	713	1070	¢	30	1590	2390	1400	2100	1220	1830
801	1200	714	1070	626	942	－	32	1560	2350	1370	2060	1190	1790
710	1070	632	950	555	834	훙 든	34	1530	2300	1340	2010	1160	1750
633	952	564	847	495	744	등	36	1500	2260	1310	1970	1130	1700
568	854	506	761	444	668	¢	38	1470	2210	1280	1930	1100	1660
513	771	457	686	401	603	？	40	1440	2170	1250	1880	1070	1610
465	699	414	623	364	547	－	42	1410	2130	1220	1840	1050	1570
424	637	377	567	331	498	㐫	44	1390	2080	1200	1800	1020	1530
388	583	345	519	303	456		46	1360	2040	1170	1750	987	1480
356	535	317	477	278	418		48	1330	1990	1140	1710	958	1440
328	493	292	439	257	386		50	1300	1950	1110	1670	929	1400
Properties													
Available Strength in Tensile Yielding，kips								Limiting Unbraced Lengths， ft					
$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{\boldsymbol{n}}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{\boldsymbol{t}}$	$\phi_{t} P_{n}$			L_{p}	L_{r}	L_{p}	L_{r}	L_{p}	L_{r}
2450	3680	2210	3320	1990	2990			10.9	62.5	10.9	57.1	10.7	51.4
Available Strength in Tensile Rupture（ $A_{e}=0.75 A_{g}$ ），kips								Area，in．${ }^{2}$					
P_{n} / Ω_{t}	$\phi_{t} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{\boldsymbol{t}}$	$\phi_{t} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$			81.8		73.8		66.5	
2000	2990	1800	2700	1620 2430				Moment of Inertia，in．${ }^{4}$					
Available Strength in Shear，kips								X	I_{y}	I_{X}	I_{y}	$\begin{array}{l\|l} \hline I_{x} & I_{y} \\ \hline \end{array}$	
V_{n} / Ω_{v}	$\phi_{v} V_{n}$	V_{n} / Ω_{v}	$\phi_{v} V_{n}$	V_{n} / Ω_{v}	$\phi_{v} V_{n}$			7690	787	6830	699	6080	614
588	882	521	782	468	702			r_{y} ，in．					
Available Strength in Flexure about Y－Y Axis，kip－ft								3.					24
$\boldsymbol{M}_{\boldsymbol{n y}} / \Omega_{\boldsymbol{b}}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$								
477	716	424	638	374	563			3.					14
h Flange thickness is greater than 2 in．Special requirements may apply per AISC Specification Section A3．1c．													

		Table 6－2（continued） Available Strength for Members Subject to Axial，Shear，$\quad F_{y}=50 \mathrm{ksi}$ Flexural and Combined Forces $F_{u}=65 \mathrm{ksi}$ W－Shapes											
W21×						Shape lb／ft		W21×					
201		182		166				201		182		166	
P_{n} / Ω_{c}	$\phi_{c} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{c}$	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	Design		$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$	$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$	$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n}$
Available Compressive Strength，kips								Available Flexural Strength，kip－ft					
ASD	LRFD	ASD	LRFD	ASD	LRFD			ASD	LRFD	ASD	LRFD	ASD	LRFD
1780	2670	1600	2410	1460	2200		0	1320	1990	1190	1790	1080	1620
1700	2560	1540	2310	1400	2100		6	1320	1990	1190	1790	1080	1620
1680	2520	1520	2280	1380	2070		7	1320	1990	1190	1790	1080	1620
1650	2480	1490	2240	1350	2040	5	8	1320	1990	1190	1790	1080	1620
1620	2430	1460	2190	1330	2000	E－	9	1320	1990	1190	1790	1080	1620
1580	2380	1430	2150	1300	1950	은	10	1320	1990	1190	1790	1080	1620
1540	2320	1390	2090	1270	1900	낓	11	1320	1980	1180	1780	1070	1610
1500	2260	1360	2040	1230	1850	아ㄴㅡㅡㅇ	12	1300	1960	1170	1750	1060	1590
1460	2200	1320	1980	1200	1800	\bigcirc	13	1290	1940	1150	1730	1040	1570
1420	2130	1280	1920	1160	1740	鹿	14	1270	1910	1140	1710	1030	1550
1370	2060	1230	1850	1120	1680	둔	15	1260	1890	1120	1690	1020	1530
1320	1990	1190	1790	1080	1620	あ	16	1240	1870	1110	1670	1000	1500
1270	1910	1140	1720	1040	1560	过	17	1230	1850	1100	1650	987	1480
1220	1840	1100	1650	998	1500	으 는	18	1220	1830	1080	1630	973	1460
1170	1760	1050	1580	955	1440	せ ¢	19	1200	1810	1070	1600	959	1440
1120	1680	1010	1510	912	1370	¢	20	1190	1780	1050	1580	945	1420
1020	1530	911	1370	826	1240	¢	22	1160	1740	1020	1540	916	1380
913	1370	818	1230	741	1110	도흥	24	1130	1700	996	1500	888	1330
814	1220	728	1090	659	991	3 딘	26	1100	1650	967	1450	860	1290
718	1080	641	964	580	872	ギ	28	1070	1610	938	1410	832	1250
627	943	559	841	506	760	\％	30	1040	1560	910	1370	803	1210
551	829	492	739	445	668	¢	32	1010	1520	881	1320	775	1160
488	734	436	655	394	592	흥	34	983	1480	852	1280	747	1120
436	655	389	584	351	528	등 훙	36	954	1430	824	1240	719	1080
391	588	349	524	315	474	\pm	38	925	1390	795	1200	690	1040
353	530	315	473	285	428	？	40	895	1350	767	1150	661	993
320	481	285	429	258	388	¢	42	866	1300	738	1110	624	938
292	438	260	391	235	354	㐫	44	837	1260	703	1060	591	888
267	401	238	358	215	323		46	808	1210	668	1000	562	844
245	368	219	328	198	297		48	771	1160	637	957	535	804
226	339	201	303				50	737	1110	609	915	511	768
Properties													
Available Strength in Tensile Yielding，kips								Limiting Unbraced Lengths，ft					
$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{\boldsymbol{t}}$	$\phi_{t} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$			L_{p}	L_{r}	L_{p}	L_{r}	L_{p}	L_{r}
1780	2670	1600	2410	1460	2200			10.7	46.2	10.6	42.7	10.6	39.9
Available Strength in Tensile Rupture（ $A_{e}=0.75 A_{g}$ ），kips								Area，in．${ }^{2}$					
$P_{\boldsymbol{n}} / \Omega_{\boldsymbol{t}}$	$\phi_{t} P_{n}$	$P_{\boldsymbol{n}} / \Omega_{\boldsymbol{t}}$	$\phi_{t} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$			59.3		53.6		48.8	
1450	2170	1310	1960	1190	1780			Moment of Inertia，in．${ }^{4}$					
Available Strength in Shear，kips								I_{X}	I_{y}	I_{X}	I_{y}	$I_{\text {X }}$	I_{y}
V_{n} / Ω_{v}	$\phi_{v} V_{n}$	$V_{\boldsymbol{n}} / \Omega_{\mathbf{v}}$	$\phi_{v} V_{n}$	V_{n} / Ω_{v}	$\phi_{v} V_{n}$			5310	542	4730	483	4280	435
419	628	377	565	338	506			r_{y} ，in．					
Available Strength in Flexure about Y－Y Axis，kip－ft								3.0			O		99
$M_{n y} / \Omega_{\boldsymbol{b}}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$								
332	499	297	446	269	405			3.1			13		13
Note：He	y line in	cates L	requal	or grea	r than								

Table 6-2 (continued) Available Strength for Members Subject to Axial, Shear, Flexural and Combined Forces W-Shapes													
W21×						Shape lb/ft		W21×					
147		132		122				147		132		122	
P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	Design		$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$	${ }_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$	$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$
Available Compressive Strength, kips								Available Flexural Strength, kip-ft					
ASD	LRFD	ASD	LRFD	ASD	LRFD			ASD	LRFD	ASD	LRFD	ASD	LRFD
1290	1940	1160	1750	1070	1620		0	931	1400	831	1250	766	1150
1240	1860	1110	1670	1030	1550		6	931	1400	831	1250	766	1150
1220	1830	1090	1640	1010	1520		7	931	1400	831	1250	766	1150
1200	1800	1070	1610	993	1490		8	931	1400	831	1250	766	1150
1170	1760	1050	1580	973	1460		9	931	1400	831	1250	766	1150
1150	1720	1030	1540	950	1430		10	931	1400	831	1250	766	1150
1120	1680	1000	1510	926	1390		11	923	1390	822	1240	757	1140
1090	1630	974	1460	900	1350		12	909	1370	809	1220	744	1120
1050	1580	944	1420	872	1310		13	895	1350	796	1200	731	1100
1020	1530	913	1370	844	1270		14	881	1320	783	1180	718	1080
985	1480	882	1320	814	1220		15	868	1300	769	1160	705	1060
949	1430	849	1280	784	1180		16	854	1280	756	1140	693	1040
912	1370	815	1220	752	1130		17	840	1260	743	1120	680	1020
874	1310	781	1170	720	1080	$\begin{aligned} & \text { 웅 } \\ & \text { 응 흥 } \end{aligned}$	18	826	1240	730	1100	667	1000
836	1260	746	1120	688	1030		19	813	1220	716	1080	654	983
797	1200	711	1070	656	986		20	799	1200	703	1060	641	963
720	1080	642	964	591	889		22	771	1160	677	1020	615	924
644	968	573	861	528	793		24	744	1120	650	977	589	886
571	858	507	762	466	701		26	716	1080	624	937	563	847
501	752	443	667	408	613		28	689	1040	597	898	538	808
436	655	386	581	355	534		30	661	994	571	858	512	769
383	576	340	510	312	469		32	634	953	544	818	486	730
339	510	301	452	276	415		34	606	912	518	778	452	679
303	455	268	403	247	371		36	579	870	481	723	418	629
272	408	241	362	221	333	式	38	542	815	448	674	390	585
245	369	217	327	200	300		40	509	765	420	631	364	548
222	334	197	296	181	272		42	480	721	395	594	342	515
203	305	180	270	165	248		44	453	681	373	561	323	485
185	279	164	247	151	227		46	430	646	353	531	306	459
170	256	151	227	139	208		48	409	615	336	505	290	436
							50	390	586	320	481	276	415
Properties													
Available Strength in Tensile Yielding, kips						Limiting Unbraced Lengths, ft							
$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{\boldsymbol{t}}$	$\phi_{t} P_{n}$	$P_{\boldsymbol{n}} / \Omega_{\boldsymbol{t}}$	$\phi_{t} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$			L_{p}	L_{r}	L_{p}	L_{r}	L_{p}	L_{r}
1290	1940	1160	1750	1070	1620			10.4	36.3	10.3	34.2	10.3	32.7
Available Strength in Tensile Rupture ($A_{e}=0.75 A_{g}$), kips								Area, in. ${ }^{2}$					
$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{\boldsymbol{n}}$			43.2		38.8		35.9	
1050	1580	946	1420	874	1310			Moment of Inertia, in. ${ }^{4}$					
Available Strength in Shear, kips								$I_{\text {I }}$	I_{y}	$I_{\text {I }}$	I_{y}	$I_{\text {X }}$	I_{y}
$V_{n} / \Omega_{\boldsymbol{v}}$	$\phi_{v} V_{n}$	V_{n} / Ω_{v}	$\phi_{V} V_{n}$	V_{n} / Ω_{v}	$\phi_{v} V_{n}$			3630	376	3220	333	2960	305
318	477	283	425	260	391			r_{y}, in.					
Available Strength in Flexure about Y-Y Axis, kip-ft								2.95		2.93		2.92	
$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$			r_{x} / r_{y}					
231	347	205	309	189	284			3.11		3.11		3.11	
Note: Heavy line indicates L_{c} / r equal to or greater than 200 .													

W21		Ava Fle $\frac{W 21 \times}{101^{c}}$		Table ble St ubject ral and		－2 eng to $N-S t$		tinue for I，Sh ined	d） em eal Fo	ce		$\begin{aligned} & =50 \\ & =65 \end{aligned}$	ksi ksi		
				$\begin{gathered} \hline \text { Shape } \\ \hline \mathrm{lb} / \mathrm{ft} \end{gathered}$		W21×									
111				93	111		101		93						
P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\begin{array}{\|l\|l\|l\|} \hline \phi_{c} P_{n} & P_{n} / \Omega_{c} & \phi_{c} P_{n} \\ \hline \end{array}$			Design		M		$M_{n x} / \Omega_{b} / \phi_{b} M_{n x}$		$M_{n x} / \Omega_{b}$	${ }_{\phi} M_{n x}$		
Available Compressive Strength，kips								Available Flexural Strength，kip－ft							
ASD	LRFD	ASD	LRFD			ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD		
976	1470	884	1330	817	1230				0	696	1050	631	949	551	829
933	1400	849	1280	731	1100	6	696		1050	631	949	551	829		
918	1380	836	1260	702	1050	7	696		1050	631	949	544	818		
901	1350	822	1240	670	1010	8	696		1050	631	949	530	796		
882	1330	806	1210	635	955	9	696		1050	631	949	515	774		
861	1290	787	1180	599	900	10	696		1050	631	949	500	752		
839	1260	766	1150	561	843	11	687		1030	622	935	486	730		
815	1220	744	1120	522	785	12	674		1010	610	917	471	708		
790	1190	721	1080	483	726	13	662		995	598	899	457	686		
764	1150	697	1050	444	668	14	649		976	586	881	442	665		
736	1110	672	1010	406	610	15	637		957	575	864	428	643		
708	1060	646	971	369	554	16	624		939	563	846	413	621		
680	1020	620	932	333	500	式	17	612	920	551	828	398	599		
651	978	593	891	298	448	응	18	600	901	539	810	384	577		
621	934	566	851	267	402	む	19	587	883	527	793	369	555		
592	889	539	810	241	363	\％	20	575	864	515	775	355	533		
532	800	485	729	199	300	d	22	550	826	492	739	321	482		
475	713	432	649	167	252	委長	24	525	789	468	704	285	429		
419	629	381	572	143	215	产	26	500	752	445	668	257	386		
365	549	331	498	123	185	ボ	28	475	714	421	633	233	351		
318	478	289	434	107	161	＋	30	450	677	397	597	214	321		
279	420	254	381			或	32	420	631	361	543	197	297		
248	372	225	338			흥	34	385	579	331	497	183	276		
221	332	200	301			흥	36	356	535	305	458	171	258		
198	298	180	270			－	38	331	497	283	425	161	242		
179	269	162	244			？	40	309	464	263	396	151	228		
162	244	147	221			边	42	290	436	247	371	143	215		
148	222	134	202			耑	44	273	410	232	349	136	204		
135	203	123	185				46	258	388	219	329	129	194		
124	187	113	169				48	245	367	207	311	123	185		
							50	232	349	197	296	118	177		
Properties															
Available Strength in Tensile Yielding，kips										g Unbr	ced Lengt				
$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$			L_{p}	L_{r}	L_{p}	L_{r}	L_{p}	L_{r}		
976	1470	892	1340	817	1230			10.2	31.2	10.2	30.1	6.50	21.3		
Available Strength in Tensile Rupture（ $A_{e}=0.75 A_{g}$ ），kips								Area，in．${ }^{2}$							
$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$			32.6		29.8		27.3			
796	1190	728	1090	666	999			Moment of Inertia，in．${ }^{4}$							
Available Strength in Shear，kips								I_{x}	I_{y}	I_{x}	I_{y}	I_{x}	I_{y}		
V_{n} / Ω_{v}	$\phi_{v} V_{n}$	V_{n} / Ω_{v}	$\phi_{V} V_{n}$	V_{n} / Ω_{v}	$\phi_{v} V_{n}$			2670	274	2420	248	2070	92.9		
237	355	214	321	251	376			r_{y} ，in．							
Available Strength in Flexure about Y－Y Axis，kip－ft								2.9							
$M_{n y} / \Omega_{\text {d }}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$						$1 r_{y}$				
170	256	154	231	86.6	130			3.1			12				
${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$ ． Note：Heavy line indicates L_{c} / r equal to or greater than 200.															

Table 6－2（cont Available Strength for Subject to Axial Flexural and Combi W－Shapes													
								W18×					
311 ${ }^{\text {h }}$				25		lb／ft							
P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	Design		$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$	$M_{n x} / \Omega^{\prime}$	$\phi_{b} M_{n x}$	$M_{n x} / \Omega$	$\phi_{b} M_{n x}$
Available Compressive Strength，kips								Available Flexural Strength，kip－ft					
ASD	LRFD	ASD	LRFD	ASD	LRFD			ASD	LRFD	ASD	LRFD	ASD	LRFD
2740	4120	2490	3750	2280	3420		0	1880	2830	1690	2540	1520	2290
2630	3950	2380	3580	2170	3270		6	1880	2830	1690	2540	1520	2290
2580	3880	2350	3530	2140	3210		7	1880	2830	1690	2540	1520	2290
2540	3810	2300	3460	2100	3150	\pm	8	1880	2830	1690	2540	1520	2290
2490	3740	2260	3390	2050	3090	E	9	1880	2830	1690	2540	1520	2290
2430	3650	2200	3310	2000	3010	은	10	1880	2830	1690	2540	1520	2290
2370	3560	2150	3220	1950	2930	는 잉	11	1870	2820	1680	2520	1520	2280
2300	3460	2090	3130	1900	2850	은 등	12	1860	2800	1670	2510	1500	2260
2240	3360	2020	3040	1840	2760	\bigcirc	13	1850	2780	1660	2490	1490	2240
2160	3250	1950	2940	1770	2670	－	14	1840	2770	1650	2470	1480	2230
2090	3140	1890	2830	1710	2570	흔	15	1830	2750	1630	2460	1470	2210
2010	3020	1810	2730	1640	2470	－	16	1820	2730	1620	2440	1460	2200
1930	2910	1740	2620	1580	2370	®	17	1810	2720	1610	2420	1450	2180
1850	2790	1670	2510	1510	2270	은	18	1800	2700	1600	2410	1440	2160
1770	2660	1590	2390	1440	2160	す	19	1790	2680	1590	2390	1430	2150
1690	2540	1520	2280	1370	2060		20	1770	2670	1580	2370	1420	2130
1530	2300	1370	2050	1230	1850	¢	22	1750	2630	1560	2340	1390	2100
1370	2050	1220	1830	1100	1650	동	24	1730	2600	1540	2310	1370	2060
1210	1820	1080	1620	965	1450	3	26	1710	2570	1510	2270	1350	2030
1060	1600	939	1410	839	1260	ギ	28	1680	2530	1490	2240	1330	2000
925	1390	818	1230	731	1100	－	30	1660	2500	1470	2210	1310	1960
813	1220	719	1080	643	966	든	32	1640	2460	1450	2170	1280	1930
720	1080	637	957	569	855	드ㅇㅡㅡㄹ	34	1620	2430	1420	2140	1260	1900
642	965	568	854	508	763	흥	36	1590	2400	1400	2110	1240	1870
576	866	510	766	456	685		38	1570	2360	1380	2070	1220	1830
520	782	460	692	411	618	？	40	1550	2330	1360	2040	1200	1800
472	709	417	627	373	561	¢	42	1530	2300	1340	2010	1180	1770
430	646	380	572	340	511	岸	44	1510	2260	1310	1980	1150	1730
393	591	348	523	311	467		46	1480	2230	1290	1940	1130	1700
361	543	320	480	286	429		48	1460	2200	1270	1910	1110	1670
							50	1440	2160	1250	1880	1090	1630
						Prope							
	ailable S	rength in	Tensile Yi	lding，kip						ng Unbr	ed Lengt		
$\mathrm{P}_{n} / \Omega_{t}$	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$			L_{p}	L_{r}	L_{p}	L_{r}	L_{p}	L_{r}
2740	4120	2490	3750	2280	3420			10.4	81.1	10.3	73.6	10.2	67.3
Availabl	Strength	in Tensile	Rupture	$A_{e}=0.75$	g，，kips								
P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$								
2230	3350	2030	3050	1850	2780					ment 0	nertia，in．		
	Availa	le Streng	h in Shea	，kips				I_{x}	I_{y}	I_{x}	I_{y}	I_{x}	I_{y}
V_{n} / Ω_{v}	$\phi_{v} V_{n}$	V_{n} / Ω_{v}	$\phi_{V} V_{n}$	V_{n} / Ω_{v}	$\phi_{v} V_{n}$			6970	795	6170	704	5510	628
678	1020	613	920	550	826								
Avail	le Stren	th in Flex	ure about	Y－Y Axis，	kip－ft								
$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$								
516	776	462	694	414	623								
h Flange Note：He	hicknes vy line	is greate dicates L	than 2 ／r equal	Special to or grea	equirem r than	ts may 0.		$\text { er AISC } S p$	cification	Section	3.1c.		

$\begin{aligned} & F_{y}=50 \mathrm{ksi} \\ & F_{u}=65 \mathrm{ksi} \end{aligned}$								tinue for I，S ined s		ber rce		W	
								W18×					
234 ${ }^{\text {h }}$		211		192		lb／ft		234 ${ }^{\text {h }}$		211		192	
P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	Design		$M_{n X} / \Omega_{b}$	$\phi_{b} M_{n x}$	$M_{n x} / \Omega_{b}$	${ }_{\phi b} M_{n x}$	$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$
Available Compressive Strength，kips								Available Flexural Strength，kip－ft					
ASD	LRFD	ASD	LRFD	ASD	LRFD			ASD	LRFD	ASD	LRFD	ASD	LRFD
2050	3090	1870	2800	1680	2530	E	0	1370	2060	1220	1840	1100	1660
1960	2950	1780	2670	1600	2410		6	1370	2060	1220	1840	1100	1660
1930	2900	1750	2630	1570	2370		7	1370	2060	1220	1840	1100	1660
1890	2840	1710	2580	1540	2320		8	1370	2060	1220	1840	1100	1660
1850	2780	1680	2520	1510	2270		9	1370	2060	1220	1840	1100	1660
1800	2710	1630	2460	1470	2210		10	1370	2060	1220	1840	1100	1660
1760	2640	1590	2390	1430	2150	끈 앙	11	1360	2040	1210	1820	1090	1640
1700	2560	1540	2320	1380	2080	은 등	12	1350	2030	1200	1800	1080	1620
1650	2480	1490	2240	1340	2010	－	13	1340	2010	1190	1790	1070	1610
1590	2390	1440	2160	1290	1940	威	14	1330	1990	1180	1770	1060	1590
1530	2310	1380	2080	1240	1870		15	1320	1980	1170	1760	1050	1570
1470	2220	1330	2000	1190	1790	あ	16	1310	1960	1160	1740	1040	1560
1410	2120	1270	1910	1140	1710	む	17	1290	1950	1150	1720	1030	1540
1350	2030	1210	1830	1090	1630	을	18	1280	1930	1140	1710	1020	1530
1290	1930	1160	1740	1030	1550	苞	19	1270	1910	1130	1690	1010	1510
1220	1840	1100	1650	980	1470		20	1260	1900	1110	1680	994	1490
1100	1650	983	1480	874	1310	¢	22	1240	1860	1090	1640	973	1460
973	1460	870	1310	772	1160	和	24	1220	1830	1070	1610	952	1430
855	1290	762	1150	674	1010	\％	26	1200	1800	1050	1580	930	1400
742	1120	660	991	582	875	ボす	28	1180	1770	1030	1550	909	1370
646	971	575	864	507	763	－	30	1150	1730	1010	1510	888	1330
568	854	505	759	446	670	比	32	1130	1700	986	1480	866	1300
503	756	447	672	395	594	등	34	1110	1670	964	1450	845	1270
449	675	399	600	352	530	흥	36	1090	1640	943	1420	824	1240
403	605	358	538	316	475		38	1070	1600	922	1390	802	1210
364	546	323	486	285	429	？	40	1050	1570	900	1350	781	1170
330	496	293	441	259	389	边	42	1020	1540	879	1320	759	1140
300	452	267	401	236	355	完	44	1000	1510	857	1290	738	1110
275	413	244	367	216	324		46	981	1470	836	1260	717	1080
							48	959	1440	814	1220	695	1050
							50	937	1410	793	1190	674	1010
Properties													
Available Strength in Tensile Yielding，kips								Limiting Unbraced Lengths，ft					
P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$			L_{p}	L_{r}	L_{p}	L_{r}	L_{p}	L_{r}
2050	3090	1870	2800	1680	2530			10.1	61.4	9.96	55.7	9.85	51.0
Available Strength in Tensile Rupture（ $A_{e}=0.75 A_{g}$ ），kips								Area，in．${ }^{2}$					
$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{\boldsymbol{t}}$	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$			68.6		62.3		56.2	
1670	2510	1520	2280	1370	2060			Moment of Inertia，in．${ }^{4}$					
Available Strength in Shear，kips								I_{x}	I_{y}	I_{x}	I_{y}	I_{x}	I_{y}
V_{n} / Ω_{v}	$\phi_{V} V_{n}$	V_{n} / Ω_{V}	$\phi_{v} V_{n}$	V_{n} / Ω_{v}	$\phi_{V} V_{n}$			4900	558	4330	493	3870	440
490	734	439	658	392	588			r_{y} ，in．					
Available Strength in Flexure about Y －Y Axis，kip－ft								2.8					
$M_{n y} / \Omega_{b}$	${ }_{\phi b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$								
372	559	329	495	297	446			2.					
${ }^{\mathrm{h}}$ Flange thickness is greater than 2 in．Special requirements may apply per AISC Specification Section A3．1c． Note：Heavy line indicates L_{c} / r equal to or greater than 200.													

		Table 6－2（continued） Available Strength for Members Subject to Axial，Shear，$\quad F_{y}=50 \mathrm{ksi}$ Flexural and Combined Forces $F_{u}=65 \mathrm{ksi}$ W－Shapes											
W18×						Shape lb／ft		W18×					
175		158		143				175		158		143	
P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{\boldsymbol{c}}$	$\phi_{c} P_{n}$	Design		$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$	$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$	$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$
Available Compressive Strength，kips								Available Flexural Strength，kip－ft					
ASD	LRFD	ASD	LRFD	ASD	LRFD			ASD	LRFD	ASD	LRFD	ASD	LRFD
1540	2310	1390	2080	1260	1890		0	993	1490	888	1340	803	1210
1460	2200	1320	1980	1190	1800		6	993	1490	888	1340	803	1210
1440	2160	1290	1950	1170	1760		7	993	1490	888	1340	803	1210
1410	2120	1270	1900	1150	1730	\pm	8	993	1490	888	1340	803	1210
1380	2070	1240	1860	1120	1680	E－	9	993	1490	888	1340	803	1210
1340	2010	1200	1810	1090	1640	은	10	990	1490	885	1330	799	1200
1300	1960	1170	1760	1060	1590	끈 아	11	980	1470	874	1310	789	1190
1260	1900	1130	1700	1020	1540	안 등	12	969	1460	864	1300	779	1170
1220	1830	1090	1640	989	1490	O 0	13	959	1440	853	1280	768	1150
1170	1760	1050	1580	951	1430	릉	14	948	1420	843	1270	758	1140
1130	1690	1010	1520	913	1370	꾼	15	938	1410	833	1250	748	1120
1080	1620	968	1460	874	1310	匂	16	927	1390	822	1240	737	1110
1030	1550	924	1390	833	1250	过	17	916	1380	812	1220	727	1090
983	1480	880	1320	793	1190	은	18	906	1360	801	1200	717	1080
934	1400	836	1260	752	1130	\＃	19	895	1350	791	1190	706	1060
885	1330	791	1190	712	1070	O	20	885	1330	780	1170	696	1050
788	1180	703	1060	631	949	¢	22	864	1300	759	1140	675	1010
694	1040	618	929	554	833	도흥	24	842	1270	738	1110	654	984
605	909	537	807	480	721	長	26	821	1230	717	1080	634	952
521	784	463	696	414	622	¢゙	28	800	1200	697	1050	613	921
454	683	403	606	360	542	－	30	779	1170	676	1020	592	890
399	600	354	533	317	476	－든	32	758	1140	655	984	572	859
354	531	314	472	281	422	흦 들	34	737	1110	634	953	551	828
315	474	280	421	250	376	등	36	716	1080	613	921	530	797
283	425	251	378	225	338	¢	38	694	1040	592	890	509	766
255	384	227	341	203	305	？	40	673	1010	571	858	487	732
232	348	206	309	184	276	¢	42	652	980	550	827	461	693
211	317	187	282	168	252	㐫	44	631	948	525	790	438	658
193	290						46	610	917	500	752	417	626
							48	585	879	478	718	398	598
							50	560	842	457	687	380	572
Properties													
Available Strength in Tensile Yielding，kips										g Unbr	ed Lengt	s，ft	
$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{\boldsymbol{t}}$	$\phi_{t} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{\boldsymbol{t}}$	$\phi_{t} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$			L_{p}	L_{r}	L_{p}	L_{r}	L_{p}	L_{r}
1540	2310	1390	2080	1260	1890			9.75	46.9	9.68	42.8	9.61	39.6
Available Strength in Tensile Rupture（ $A_{e}=0.75 A_{g}$ ），kips								Area，in．${ }^{2}$					
$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{\boldsymbol{n}}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{\boldsymbol{n}}$			51.4		46.3		42.0	
1250	1880	1130	1690	1020	1540			Moment of Inertia，in．${ }^{4}$					
Available Strength in Shear，kips								I_{X}	I_{y}	$I_{\text {I }}$	I_{y}	$I_{\text {X }}$	I_{y}
$V_{n} / \Omega_{\boldsymbol{v}}$	$\phi_{v} V_{n}$	V_{n} / Ω_{v}	$\phi_{v} V_{n}$	V_{n} / Ω_{v}	$\phi_{v} V_{n}$			3450	391	3060	347	2750	311
356	534	319	479	285	427			r_{y} ，in．					
Available Strength in Flexure about Y－Y Axis，kip－ft								2.76		2.74		2.72	
$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$			r_{x} / r_{y}					
264	398	237	356	213	320			2.97		2.96		2.97	
Note：Heavy line indicates L_{c} / r equal to or greater than 200 ．													

	18	Ava Fle W18× $50^{\text {c }}$		Ta able Subj ural	ble St ect and	－2 eng to N－Sh	pe	tinue for al，S ined S			F F	$\begin{aligned} & =50 \\ & =65 \end{aligned}$	ksi ksi
										W			
$55{ }^{\text {c }}$				$46{ }^{\text {c }}$		lb／ft		55				46	
P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	Design		$M_{n x} / \Omega_{b} \mid$	$\phi_{b} M_{n x}$	$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$	$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$
Available Compressive Strength，kips								Available Flexural Strength，kip－ft					
ASD	LRFD	ASD	LRFD	ASD	LRFD			ASD	LRFD	ASD	LRFD	ASD	LRFD
468	703	414	622	379	569		0	279	420	252	379	226	340
416	625	367	551	312	469		6	279	419	251	377	212	319
398	599	351	528	291	437		7	269	405	242	363	203	304
379	570	334	502	268	403		8	260	391	233	350	193	290
357	537	315	474	242	364		9	251	377	224	337	183	275
333	500	296	445	215	323		10	242	363	216	324	173	261
307	462	276	414	188	283		11	232	349	207	311	164	246
282	423	252	379	163	244	은	12	223	335	198	298	154	232
256	385	229	344	139	209	\bigcirc	13	214	321	190	285	144	217
231	348	206	310	120	180	－	14	205	307	181	272	133	200
207	312	184	277	104	157	든	15	195	293	172	259	119	179
184	277	163	245	91.6	138	芴	16	186	280	163	246	108	163
163	245	145	217	81.1	122	※	17	177	266	154	232	99.0	149
146	219	129	194	72.4	109	응	18	165	248	141	212	91.1	137
131	196	116	174	65.0	97.6	\＃	19	152	228	130	195	84.4	127
118	177	104	157	58.6	88.1	－	20	141	212	120	180	78.5	118
97.4	146	86.3	130			¢	22	123	184	104	156	69.0	104
81.9	123	72.5	109			돟	24	108	163	91.5	137	61.5	92.4
69.8	105	61.8				衰	26	97.1	146	81.7	123	55.4	83.3
						だす	28	87.9	132	73.8	111	50.5	75.9
						－	30	80.4	121	67.3	101	46.4	69.7
						，	32	74.0	111	61.8	92.9	42.9	64.5
						흥	34	68.6	103	57.2	85.9	39.9	60.0
						등	36	63.9	96.1	53.2	79.9	37.4	56.2
						\％	38	59.9	90.0	49.7	74.8	35.1	52.8
						？	40	56.3	84.6	46.7	70.2	33.1	49.8
						荷	42	53.2	79.9	44.0	66.2	31.3	47.1
						示	44	50.3	75.7	41.7	62.6	29.7	44.7
							46	47.8	71.9	39.5	59.4	28.3	42.5
							48	45.6	68.5	37.6	56.6	27.0	40.6
							50	43.5	65.4	35.9	54.0	25.8	38.8
Properties													
Available Strength in Tensile Yielding，kips									Limi	g Unbra	ced Lengt		
$\boldsymbol{P}_{n} / \Omega_{t}$	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$			L_{p}	L_{r}	L_{p}	L_{r}	L_{p}	L_{r}
485	729	440	662	404	608			5.90	17.6	5.83	16.9	4.56	13.7
Available Strength in Tensile Rupture（ $A_{e}=0.75 A_{g}$ ），kips								Area，in．${ }^{2}$					
P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	$P_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$			16.2		14.7		13.5	
397	595	358	536	328	492			Moment of Inertia，in．${ }^{4}$					
Available Strength in Shear，kips								I_{x}	I_{y}	I_{x}	I_{y}	$I_{\text {x }}$	I_{y}
V_{n} / Ω_{v}	$\phi_{v} V_{n}$	V_{n} / Ω_{v}	$\phi_{v} V_{n}$	V_{n} / Ω_{v}	$\phi_{v} V_{n}$			890	44.9	800	40.1	712	22.5
141	212	128	192	130	195			r_{y} ，in．					
Available Strength in Flexure about Y－Y Axis，kip－ft								1.6		1.6			
$M_{\text {ny }} / \Omega_{\text {b }}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{\text {ny }}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$					r_{x}			
46.2	69.4	41.4	62.3	29.2	43.9			4.4		4.4			
${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$ ． Note：Heavy line indicates L_{c} / r equal to or greater than 200.													

	$\frac{1}{14}$	Table 6－2（continued） Available Strength for Members Subject to Axial，Shear，$\quad F_{y}=50 \mathrm{ksi}$ Flexural and Combined Forces $F_{u}=65 \mathrm{ksi}$ W－Shapes											
W14×						Shape lb／ft		W14×					
730 ${ }^{\text {h }}$		665 ${ }^{\text {h }}$		605 ${ }^{\text {h }}$				730 ${ }^{\text {h }}$		665 ${ }^{\text {h }}$		605	
P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	Design		$M_{n x} / \Omega_{b} \phi_{b} M_{n x}$		$M_{n x} / \Omega_{b} \mid{ }_{\phi_{b}} M_{n x}$		$M_{n X} / \Omega_{b} \mid{ }_{\phi} M_{n X}$	
Available Compressive Strength，kips								Available Flexural Strength，kip－ft					
ASD	LRFD	ASD	LRFD	ASD	LRFD			ASD	LRFD	ASD	LRFD	ASD	LRFD
6440	9670	5870	8820	5330	8010		0	4140	6230	3690	5550	3290	4950
6330	9510	5760	8660	5230	7860		6	4140	6230	3690	5550	3290	4950
6290	9450	5730	8610	5200	7810		7	4140	6230	3690	5550	3290	4950
6240	9380	5690	8550	5160	7750		8	4140	6230	3690	5550	3290	4950
6190	9310	5640	8470	5110	7690		9	4140	6230	3690	5550	3290	4950
6140	9220	5590	8400	5070	7610		10	4140	6230	3690	5550	3290	4950
6070	9130	5530	8310	5010	7530		11	4140	6230	3690	5550	3290	4950
6010	9030	5470	8220	4950	7440		12	4140	6230	3690	5550	3290	4950
5940	8920	5400	8110	4890	7350		13	4140	6230	3690	5550	3290	4950
5860	8810	5330	8010	4820	7250		14	4140	6230	3690	5550	3290	4950
5780	8690	5250	7890	4750	7140		15	4140	6230	3690	5550	3290	4950
5690	8560	5170	7770	4680	7030	岕	16	4140	6230	3690	5550	3290	4950
5610	8430	5090	7650	4600	6920	$\underset{\text { ® }}{\text { ¢ }}$	17	4140	6220	3690	5540	3290	4940
5510	8290	5000	7520	4520	6790	운	18	4130	6210	3680	5530	3280	4930
5420	8140	4910	7380	4440	6670	む	19	4120	6200	3670	5520	3270	4920
5320	7990	4820	7240	4350	6540		20	4120	6190	3670	5510	3270	4910
5110	7670	4620	6950	4170	6260	\％	22	4100	6160	3650	5490	3250	4890
4890	7340	4420	6640	3980	5980	委产	24	4090	6140	3640	5470	3240	4870
4660	7000	4200	6320	3780	5680	3	26	4070	6120	3620	5450	3230	4850
4420	6650	3990	5990	3580	5380	ギす	28	4060	6100	3610	5430	3210	4830
4180	6290	3760	5660	3370	5070	－	30	4040	6080	3600	5400	3200	4810
3940	5930	3540	5320	3170	4760		32	4030	6050	3580	5380	3180	4790
3700	5560	3320	4990	2960	4450	产	34	4010	6030	3570	5360	3170	4770
3460	5200	3100	4650	2760	4140	흥ㅎㅇ	36	4000	6010	3550	5340	3160	4740
3220	4850	2880	4330	2560	3840		38	3980	5990	3540	5320	3140	4720
2990	4500	2670	4010	2360	3550	？	40	3970	5970	3520	5300	3130	4700
2770	4160	2460	3690	2170	3270	全	42	3950	5940	3510	5280	3120	4680
2550	3830	2260	3390	1990	2990		44	3940	5920	3500	5250	3100	4660
2330	3510	2060	3100	1820	2730		46	3920	5900	3480	5230	3090	4640
2140	3220	1900	2850	1670	2510		48	3910	5880	3470	5210	3070	4620
1970	2970	1750	2630	1540	2310		50	3900	5850	3450	5190	3060	4600
						Prop							
	ailable S	trength in	Tensile Y	elding，kip					Limi	ng Unbra	ced Leng	s，ft	
$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$			L_{p}	L_{r}	L_{p}	L_{r}	L_{p}	L_{r}
6440	9680	5870	8820	5330	8010			16.6	275	16.3	253	16.1	232
Availab	Strength	Tensile	Rupture	$A_{e}=0.75$	g），kips						in．${ }^{2}$		
$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	$\mathrm{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$			21			6	17	
5230	7850	4780	7170	4360	6530					oment of	Inertia，in		
	Availa	ble Streng	h in Shea	r，kips				I_{x}	$1 y$	I_{x}	I_{y}	I_{x}	I_{y}
V_{n} / Ω_{v}	$\phi_{v} V_{n}$	V_{n} / Ω_{v}	$\phi_{v} V_{n}$	V_{n} / Ω_{V}	$\phi_{V} V_{n}$			14300	4720	12400	4170	10800	3680
1380	2060	1220	1830	1090	1630						in．		
Avail	ble Streng	th in Flex	re about	Y－Y Axis，	ip－ft			4.6			62		
$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	${ }_{\phi}{ }_{b} M_{n y}$						$1 r_{y}$		
2040	3060	1820	2740	1630	2450			1.7			， 7		
${ }^{\mathrm{h}}$ Flange	ickness	is greater	than 2 is	Special	requirem	ts ma		AISC Sp	cificatio	Section	3．1c．		

$\begin{aligned} & F_{y} \\ & F_{u} \end{aligned}$	$\begin{aligned} & 50 \\ & 65 \end{aligned}$	ki ksi			ble St ect an	-2 eng 10 C ／－Sh							
				45									
P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{\boldsymbol{c}}$	$\phi_{c} P_{n}$			$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$	${ }_{n x} / \Omega$	$\phi_{b} M_{n x}$	$M_{n X} /$	$\phi_{b} M$
	able	ompres	ve St	ngth，					vaila	Fle	Stre	th，	
ASD	LRFD	ASD	LRFD	ASD	LRFD			ASD	LRFD	ASD	LRFD	ASD	LRFD
4850	7290	4400	6610	4010	6030		0	2940	4430	2620	3940	2340	3510
4760	7150	4320	6490	3930	5910		6	2940	4430	2620	3940	2340	3510
4730	7110	4290	6440	3910	5870		7	2940	4430	2620	3940	2340	3510
4690	7050	4250	6390	3870	5820	5	8	2940	4430	2620	3940	2340	3510
4650	6990	4210	6330	3840	5770	E－	9	2940	4430	2620	3940	2340	3510
4600	6920	4170	6270	3800	5710	은	10	2940	4430	2620	3940	2340	3510
4550	6840	4120	6200	3750	5640	준 잉	11	2940	4430	2620	3940	2340	3510
4500	6760	4070	6120	3710	5570	운 등	12	2940	4430	2620	3940	2340	3510
4440	6670	4020	6040	3660	5500	\bigcirc	13	2940	4430	2620	3940	2340	3510
4380	6580	3960	5950	3600	5420	릉	14	2940	4430	2620	3940	2340	3510
4310	6480	3900	5860	3550	5330	꾼	15	2940	4430	2620	3940	2340	3510
4240	6380	3840	5770	3490	5240	旬	16	2940	4420	2620	3930	2330	3510
4170	6270	3770	5660	3420	5150	过	17	2940	4410	2610	3920	2330	3500
4100	6160	3700	5560	3360	5050	으응	18	2930	4400	2600	3910	2320	3490
4020	6040	3630	5450	3290	4950		19	2920	4390	2600	3910	2310	3480
3940	5920	3550	5340	3220	4840		20	2920	4380	2590	3900	2310	3470
3770	5660	3390	5100	3080	4620	¢	22	2900	4360	2580	3880	2290	3450
3590	5400	3230	4860	2920	4400	돠훙	24	2890	4340	2570	3860	2280	3430
3410	5120	3060	4600	2770	4160	衰	26	2880	4320	2550	3840	2270	3410
3220	4840	2890	4340	2610	3920	ギ	28	2860	4300	2540	3820	2260	3390
3030	4560	2720	4080	2450	3680	¢	30	2850	4280	2530	3800	2250	3370
2840	4270	2540	3820	2290	3440	－	32	2840	4260	2510	3780	2230	3360
2650	3990	2370	3560	2130	3200	훙 든	34	2820	4240	2500	3760	2220	3340
2460	3700	2200	3300	1970	2960	등	36	2810	4220	2490	3740	2210	3320
2280	3430	2030	3050	1820	2730	©	38	2800	4200	2480	3720	2200	3300
2100	3160	1870	2800	1670	2510	？	40	2780	4180	2460	3700	2180	3280
1930	2900	1710	2570	1520	2290	－	42	2770	4160	2450	3680	2170	3260
1760	2650	1560	2340	1390	2080	㐫	44	2760	4140	2440	3660	2160	3240
1610	2420	1420	2140	1270	1910		46	2740	4120	2420	3640	2150	3230
1480	2220	1310	1960	1160	1750		48	2730	4100	2410	3630	2130	3210
1360	2050	1200	1810	1070	1610		50	2720	4080	2400	3610	2120	3190
Properties													
Available Strength in Tensile Yielding，kips										Un Unb	ed Leng		
$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$			L_{p}	L_{r}	L_{p}	L_{r}	L_{p}	L_{r}
4850	7290	4400	6620	4010	6030			15.9	213	15.6	196	15.5	179
Available Strength in Tensile Rupture（ $\left.A_{e}=\mathbf{0 . 7 5 A _ { g }}\right)$ ，kips								Area，in．${ }^{2}$					
$P_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{\boldsymbol{t}}$	$\phi_{t} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$			16					
3970	5950	3580	5360	3280	4920			Moment of Inertia，in．${ }^{4}$					
Available Strength in Shear，kips								I_{X}	I_{y}	I_{X}	I_{y}	I_{X}	I_{y}
V_{n} / Ω_{v}	$\phi_{v} V_{n}$	V_{n} / Ω_{v}	$\phi_{v} V_{n}$	V_{n} / Ω_{v}	$\phi_{v} V_{n}$			9430	3250	8210	2880	7190	2560
962	1440	858	1290	768	1150			r_{y} ，in．					
Available Strength in Flexure about Y－Y Axis，kip－ft								4.4					
$M_{\text {ny }} / \Omega_{\text {b }}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$								
1450	2190	1300	1960	1170	1760			1.7					
${ }^{\text {h }}$ Flange thickness is greater than 2 in．Special requirements may apply per AISC Specification Section A3．1c．													

		Table 6－2（continued） Available Strength for Members Subject to Axial，Shear，$\quad F_{y}=50 \mathrm{ksi}$ Flexural and Combined Forces $F_{u}=65 \mathrm{ksi}$ W－Shapes											
W12×						Shape lb／ft		W12×					
53		50		45				53		50		45	
$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{c}$	$\phi_{c} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{c}$	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	Design		$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$	$n \times / \Omega_{b}$	$\phi_{b} M_{n x}$	$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$
Available Compressive Strength，kips								Available Flexural Strength，kip－ft					
ASD	LRFD	ASD	LRFD	ASD	LRFD			ASD	LRFD	ASD	LRFD	ASD	LRFD
467	702	437	657	392	589		0	194	292	179	270	160	241
439	660	396	595	355	534		6	194	292	179	270	160	241
429	646	382	574	342	515		7	194	292	179	269	160	240
419	629	367	551	329	494	\pm	8	194	292	175	263	156	234
407	611	350	526	313	471	E	9	193	291	171	257	152	229
394	592	332	500	297	447	은	10	190	285	167	251	148	223
380	571	314	472	281	422	읓 응	11	186	280	163	245	144	217
365	549	295	443	263	396	안 등	12	183	274	159	239	141	211
350	526	275	413	246	369	© 0	13	179	269	155	233	137	206
334	502	255	384	228	343	刍	14	175	263	151	227	133	200
318	478	236	355	210	316	꾼	15	172	258	147	221	129	194
301	453	217	326	193	290	－	16	168	252	143	215	125	188
285	428	198	298	176	265	ホ	17	164	247	139	209	121	183
268	403	180	270	160	240	으 능	18	161	241	135	203	118	177
252	378	162	244	144	216	ザ	19	157	236	131	197	114	171
235	354	146	220	130	195	$\begin{aligned} & \text { O } \\ & 2 \end{aligned}$	20	153	230	127	191	110	165
204	307	121	182	107	161	¢	22	146	219	119	179	102	154
174	261	102	153	90.3	136	둫	24	139	208	111	167	92.0	138
148	223	86.6	130	76.9	116	\％	26	131	197	101	151	83.1	125
128	192	74.7	112	66.3	99.7	¢゙	28	124	186	91.9	138	75.8	114
111	167	65.0	97.8	57.8	86.8	－	30	114	171	84.6	127	69.7	105
97.8	147	57.2	85.9	50.8	76.3	－	32	105	157	78.5	118	64.5	97.0
86.6	130					흔 들	34	97.2	146	73.2	110	60.1	90.3
77.3	116					등	36	90.6	136	68.6	103	56.2	84.5
69.4	104					\pm	38	84.9	128	64.5	97.0	52.9	79.4
62.6	94.1					？	40	79.8	120	60.9	91.6	49.9	75.0
						OU	42	75.4	113	57.7	86.8	47.2	71.0
						Ш	44	71.4	107	54.9	82.5	44.8	67.4
							46	67.9	102	52.3	78.6	42.7	64.2
							48	64.7	97.2	49.9	75.1	40.7	61.2
							50	61.7	92.8	47.8	71.8	39.0	58.6
Properties													
Available Strength in Tensile Yielding，kips						Limiting Unbraced Lengths，ft							
$P_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$			L_{p}	L_{r}	L_{p}	L_{r}	L_{p}	L_{r}
467	702	437	657	392	590			8.76	28.2	6.92	23.8	6.89	22.4
Available Strength in Tensile Rupture（ $A_{e}=0.75 A_{g}$ ），kips								Area，in．${ }^{2}$					
P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$			15.6		14.6		13.1	
380	570	358	536	319	479			Moment of Inertia，in．${ }^{4}$					
Available Strength in Shear，kips								I_{X}	I_{y}	$I_{\boldsymbol{X}}$	I_{y}	$I_{\boldsymbol{X}}$	I_{y}
V_{n} / Ω_{v}	$\phi_{v} V_{n}$	V_{n} / Ω_{v}	$\phi_{v} V_{n}$	V_{n} / Ω_{v}	$\phi_{V} V_{n}$			425	95.8	391	56.3	348	50.0
83.5	125	90.3	135	81.1	122			r_{y} ，in．					
Available Strength in Flexure about Y－Y Axis，kip－ft								2.		1.9		1.9	5
$M_{\text {ny }} / \Omega_{\boldsymbol{b}}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$								
72.6	109	53.1	79.9	47.4	71.3			2.		2.6		2.6	
Note：Heavy line indicates L_{c} / r equal to or greater than 200.													

W8		Table 6－2（continued） Available Strength for Members Subject to Axial，Shear，$\quad F_{y}=50 \mathrm{ksi}$ Flexural and Combined Forces $F_{u}=65 \mathrm{ksi}$ W－Shapes											
W8×						Shape lb／ft		W8×					
58		48		40				58		48		40	
P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	Design		$M_{n x} / \Omega_{b} \mid \phi_{b} M_{n x}$		$M_{n x} / \Omega_{b} \mid \phi_{b} M_{n x}$		$M_{n x} / \Omega$	$\phi_{b} M_{n x}$
Available Compressive Strength，kips								Available Flexural Strength，kip－ft					
ASD	LRFD	ASD	LRFD	ASD	LRFD			ASD	LRFD	ASD	LRFD	ASD	LRFD
512	769	422	634	350	526	츷	0	149	224	122	184	99.3	149
470	706	387	581	320	481		6	149	224	122	184	99.3	149
455	685	375	563	309	465		7	149	224	122	184	99.3	149
439	660	361	543	298	448		8	148	223	121	182	98.0	147
422	634	347	521	285	429		9	146	220	119	180	96.4	145
403	606	331	497	272	409		10	145	218	118	177	94.7	142
384	576	314	473	258	388		11	143	215	116	175	93.1	140
363	546	297	447	243	366	든 등	12	141	212	114	172	91.4	137
342	514	280	421	228	343	\bigcirc	13	140	210	113	169	89.8	135
321	482	262	394	213	321	号	14	138	207	111	167	88.2	132
299	450	244	367	198	298	둔	15	136	205	109	164	86.5	130
278	418	226	340	183	275	\＃	16	135	202	108	162	84.9	128
257	386	209	314	169	253	ホ	17	133	200	106	159	83.2	125
236	355	192	288	154	232	오응	18	131	197	104	157	81.6	123
216	325	175	264	141	211	む ¢	19	129	195	103	154	80.0	120
197	296	159	239	127	191	O	20	128	192	101	152	78.3	118
163	244	132	198	105	158	¢	22	124	187	97.7	147	75.0	113
137	205	111	166	88.2	133	兵镸	24	121	182	94.3	142	71.7	108
116	175	94.2	142	75.2	113	管	26	117	177	90.9	137	68.5	103
100	151	81.2	122	64.8	97.4	ギ	28	114	171	87.6	132	65.2	98.0
87.5	131	70.7	106	56.5	84.9		30	111	166	84.2	127	61.8	92.9
76.9	116	62.2	93.5	49.6	74.6	或	32	107	161	80.9	122	57.6	86.5
68.1	102	55.1	82.8	44.0	66.1	产	34	104	156	77.5	117	53.9	81.0
						흥	36	100	151	73.7	111	50.6	76.1
						－	38	97	146	69.6	105	47.8	71.8
						者	40	93.6	141	65.9	99.1	45.2	67.9
						边	42	89.9	135	62.7	94.2	42.9	64.5
							44	85.7	129	59.7	89.7	40.9	61.4
							46	81.8	123	57.0	85.7	39.0	58.6
							48	78.3	118	54.5	82.0	37.3	56.0
							50	75.1	113	52.3	78.6	35.7	53.7
						Prope							
	vailable S	trength in	Tensile Y	elding，kip						ing Unb	ced Lengt	s，ft	
P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$			L_{p}	L_{r}	L_{p}	L_{r}	L_{p}	L_{r}
512	770	422	635	350	527			7.42	41.6	7.35	35.2	7.21	29.9
Available	Strength	in Tensile	Rupture	$A_{e}=0.75$	A_{g} ），kips						，in．${ }^{2}$		
P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$			17			． 1		
416	624	345	517	285	428					Ioment	Inertia，in		
	Availa	ble Streng	h in She	r，kips				I_{x}	I_{y}	I_{x}	I_{y}	I_{x}	I_{y}
V_{n} / Ω_{V}	$\phi_{v} V_{n}$	V_{n} / Ω_{V}	$\phi_{V} V_{n}$	V_{n} / Ω_{v}	$\phi_{V} V_{n}$			228	75.1	184	60.9	146	49.1
89.3	134	68.0	102	59.4	89.1						in．		
Avail	ble Stren	th in Flex	ure about	Y－Y Axis，	kip－ft			2.1			08		04
$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{\text {b }}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$						／ry		
69.6	105	57.1	85.9	46.2	69.4			1.7			174		73
Note：He	avy line in	dicates L	equal	to or grea	ter than								

		Ava Fl W8× 21		Ta able Subj ural	ble St ect an	6－2 eng to N-Sh	pe	tinu for l，S ine s	d） Mer hea F			$\begin{aligned} & =50 \mathrm{ksi} \\ & =65 \mathrm{ksi} \end{aligned}$			
W8×						Shape lb／ft		W8×							
24					18		lb／ft		24		21		18		
P_{n} / Ω_{c}	$\phi_{c} P_{n}$			P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	Design		$M_{n X} / \Omega_{b} \mid \phi_{b} M_{n x}$		$M_{n x} / \Omega_{b} \mid{ }_{\phi_{b}} M_{n x}$		$M_{n x} / \Omega_{b} \mid{ }_{\phi} M_{n x}$	
Available Compressive Strength，kips						Available Flexural Strength，kip－ft									
ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD			ASD	LRFD	ASD	LRFD		
212	319	184	277	157	237		0			57.6	86.6	50.9	76.5	42.4	63.8
183	275	145	218	123	184		6	57.1	85.9	48.0	72.2	39.5	59.4		
174	261	133	200	112	168		7	55.5	83.5	46.2	69.4	37.8	56.8		
163	246	121	181	101	152	ミ	8	53.9	81.1	44.3	66.6	36.1	54.2		
153	229	108	162	89.6	135	Ė	9	52.3	78.7	42.5	63.9	34.3	51.6		
141	212	95.0	143	78.5	118	은	10	50.7	76.3	40.7	61.1	32.6	49.0		
130	195	82.7	124	67.8	102	늧 인	11	49.2	73.9	38.8	58.3	30.9	46.4		
118	178	70.9	107	57.7	86.7	웅	12	47.6	71.5	37.0	55.5	29.1	43.8		
107	160	60.4	90.8	49.2	73.9	－	13	46.0	69.1	35.1	52.8	27.4	41.2		
95.6	144	52.1	78.3	42.4	63.7	号	14	44.4	66.7	33.3	50.0	25.2	37.8		
85.0	128	45.4	68.2	36.9	55.5	휸 $\frac{n}{x}$	15	42.8	64.3	31.2	46.9	22.9	34.4		
74.8	112	39.9	59.9	32.4	48.8	岕	16	41.2	61.9	28.7	43.2	21.0	31.5		
66.3	99.6	35.3	53.1	28.7	43.2	$\underset{\text { ® }}{\text { ¢ }}$	17	39.6	59.5	26.6	40.0	19.4	29.1		
59.1	88.9	31.5	47.4	25.6	38.5	은	18	38.0	57.1	24.8	37.3	18.0	27.1		
53.1	79.8	28.3	42.5	23.0	34.6	む	19	36.3	54.5	23.2	34.9	16.8	25.3		
47.9	72.0	25.5	38.4	20.8	31.2		20	34.0	51.1	21.8	32.8	15.8	23.7		
39.6	59.5					¢	22	30.3	45.5	19.5	29.3	14.0	21.1		
33.3	50.0					도융	24	27.2	41.0	17.6	26.5	12.6	19.0		
28.3	42.6					3	26	24.8	37.3	16.1	24.2	11.5	17.3		
						ギロ	28	22.8	34.2	14.8	22.3	10.6	15.9		
						－	30	21.1	31.6	13.7	20.6	9.79	14.7		
						或	32	19.6	29.4	12.8	19.2	9.11	13.7		
						产	34	18.3	27.5	12.0	18.0	8.52	12.8		
						흥	36	17.2	25.8	11.3	17.0	8.00	12.0		
						－	38	16.2	24.4	10.6	16.0	7.55	11.3		
						？	40	15.3	23.1	10.1	15.2	7.14	10.7		
						边	42	14.6	21.9	9.58	14.4	6.78	10.2		
							44	13.9	20.8	9.12	13.7	6.45	9.69		
							46	13.2	19.9	8.71	13.1	6.15	9.25		
							48	12.6	19.0	8.33	12.5	5.88	8.84		
							50	12.1	18.2	7.98	12.0	5.64	8.47		
						Prop									
	vailable S	trength in	Tensile Y	elding，kip					Limi	g Unbra	ced Leng				
$\boldsymbol{P}_{n} / \Omega_{t}$	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$			L_{p}	L_{r}	L_{p}	L_{r}	L_{p}	L_{r}		
212	319	184	277	157	237			5.69	18.9	4.45	14.8	4.34	13.5		
Availab	Strength	in Tensile	Rupture	$A_{e}=0.75$	g_{g} ，kips					Area	in．${ }^{2}$				
$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$	P_{n} / Ω_{t}	$\phi_{t} P_{n}$	$\mathrm{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$										
173	259	150	225	128	193					ment of	Inertia，in				
	Availa	ble Streng	h in Shea	r，kips				I_{x}	I_{y}	I_{x}	I_{y}	I_{x}	I_{y}		
V_{n} / Ω_{v}	$\phi_{V} V_{n}$	V_{n} / Ω_{v}	$\phi_{v} V_{n}$	V_{n} / Ω_{V}	$\phi_{V} V_{n}$			82.7	18.3	75.3	9.77	61.9	7.97		
38.9	58.3	41.4	62.1	37.4	56.2						in．				
Avail	ble Stren	th in Flex	re about	Y－Y Axis，	kip－ft										
$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$						ry				
21.4	32.1	14.2	21.3	11.6	17.5										
Note：He	avy line in	dicates L_{C}	／r equal	to or grea	ter than										

W6-W5		Table 6－2（continued） Available Strength for Members Subject to Axial，Shear，$\quad F_{y}=50 \mathrm{ksi}$ Flexural and Combined Forces $F_{u}=65 \mathrm{ksi}$ W－Shapes													
		W5×				Shape lb／ft		$\frac{\text { W6 } \times}{8.5^{f}}$		W5×					
8.5		19		16				19	16						
P_{n} / Ω_{c}	$\phi_{c} P_{n}$	P_{n} / Ω_{c}	$\phi_{c} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{\boldsymbol{c}}$	$\phi_{c} P_{n}$	Design				$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$	$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$	$M_{n x} / \Omega_{b}$	$\phi_{b} M_{n x}$
Available Compressive Strength，kips								Available Flexural Strength，kip－ft							
ASD	LRFD	ASD	LRFD	ASD	LRFD			ASD	LRFD	ASD	LRFD	ASD	LRFD		
75.4	113	166	250	141	212		0	14.0	21.0	28.9	43.5	24.0	36.1		
46.8	70.3	132	199	111	167		6	11.9	17.8	28.1	42.2	23.1	34.7		
39.3	59.1	121	183	102	153		7	11.0	16.6	27.4	41.3	22.5	33.8		
32.2	48.4	110	166	92.2	139	\pm	8	10.2	15.3	26.8	40.3	21.9	33.0		
25.7	38.7	98.9	149	82.4	124	E－	9	9.32	14.0	26.2	39.4	21.3	32.1		
20.8	31.3	87.5	132	72.7	109	은	10	8.23	12.4	25.6	38.5	20.7	31.2		
17.2	25.9	76.5	115	63.2	95.0	읓 앙	11	7.18	10.8	25.0	37.6	20.1	30.3		
14.5	21.7	66.0	99.2	54.2	81.5	안 능	12	6.36	9.56	24.4	36.7	19.6	29.4		
12.3	18.5	56.3	84.6	46.2	69.4	¢ ${ }^{\text {O }}$	13	5.71	8.58	23.8	35.8	19.0	28.5		
10.6	16.0	48.5	72.9	39.8	59.9	릉	14	5.18	7.78	23.2	34.9	18.4	27.6		
		42.3	63.5	34.7	52.1	운	15	4.74	7.12	22.6	34.0	17.8	26.7		
		37.1	55.8	30.5	45.8	\％	16	4.37	6.56	22.0	33.1	17.2	25.8		
		32.9	49.5	27.0	40.6	过	17	4.05	6.09	21.4	32.2	16.6	24.9		
		29.3	44.1	24.1	36.2	은	18	3.78	5.68	20.8	31.3	16.0	24.1		
		26.3	39.6	21.6	32.5	＂	19	3.54	5.32	20.2	30.4	15.4	23.2		
		23.8	35.7			앙	20	3.33	5.01	19.6	29.5	14.8	22.2		
						¢	22	2.98	4.49	18.4	27.7	13.3	20.0		
						도흉	24	2.70	4.06	17.0	25.6	12.1	18.3		
						\％	26	2.47	3.71	15.6	23.5	11.2	16.8		
						む゙	28	2.28	3.42	14.5	21.8	10.3	15.5		
						－	30	2.11	3.17	13.5	20.3	9.61	14.4		
						플	32	1.97	2.96	12.6	19.0	8.99	13.5		
						훙	34	1.85	2.77	11.9	17.8	8.44	12.7		
						등	36	1.74	2.61	11.2	16.8	7.96	12.0		
						©	38	1.64	2.46	10.6	15.9	7.53	11.3		
						震	40	1.55	2.34	10.0	15.1	7.14	10.7		
						$\underset{4}{\text { den }}$	42	1.48	2.22	9.56	14.4	6.80	10.2		
						亗	44	1.41	2.11	9.12	13.7	6.48	9.74		
							46	1.34	2.02	8.72	13.1	6.19	9.31		
							48	1.28	1.93	8.35	12.5	5.93	8.92		
							50	1.23	1.85	8.01	12.0	5.69	8.55		
Properties															
Available Strength in Tensile Yielding，kips						Limiting Unbraced Lengths， ft									
P_{n} / Ω_{t}	$\phi_{t} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$			L_{p}	L_{r}	L_{p}	L_{r}	L_{p}	L_{r}		
75.4	113	166	250	141	212			3.55	9.49	4.52	23.0	4.45	19.8		
Available Strength in Tensile Rupture（ $A_{e}=0.75 A_{g}$ ），kips								Area，in．${ }^{2}$							
$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{\boldsymbol{t}}$	$\phi_{t} P_{n}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{\boldsymbol{t}}$	$\phi_{t} P_{\boldsymbol{n}}$	$\boldsymbol{P}_{\boldsymbol{n}} / \Omega_{t}$	$\phi_{t} P_{n}$			2.52		5.56		4.71			
61.4	92.1	136	203	115	172			Moment of Inertia，in．${ }^{4}$							
Available Strength in Shear，kips								X	I_{y}	$\boldsymbol{I}_{\boldsymbol{X}}$	I_{y}	$I_{\text {X }}$	I_{y}		
V_{n} / Ω_{v}	$\phi_{V} V_{n}$	$\mathbf{V}_{n} / \Omega_{\mathbf{v}}$	$\phi_{v} V_{n}$	$\mathrm{V}_{n} / \mathrm{O}_{v} \mathrm{\phi}^{\prime} \mathrm{V}_{n}$				14.9	1.99	26.3	9.13	21.4	7.51		
19.8	29.7	27.8	41.7	24.0	36.1			r_{y} ，in．							
Available Strength in Flexure about Y－Y Axis，kip－ft								0.8		1.			26		
$M_{\text {ny }} / \Omega_{\boldsymbol{b}}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$	$M_{n y} / \Omega_{b}$	$\phi_{b} M_{n y}$										
3.76	5.65	13.8	20.7	11.4	17.2			2.7		1.			69		
${ }^{\mathrm{f}}$ Shape exceeds compact limit for flexure with $F_{y}=50 \mathrm{ksi}$ ． Note：Heavy line indicates L_{C} / r equal to or greater than 200.															

PART 7
 DESIGN CONSIDERATIONS FOR BOLTS

SCOPE 7-3
GENERAL REQUIREMENTS FOR BOLTED JOINTS 7-3
Fastener Components 7-3
Proper Selection of Bolt Length 7-3
Washer Requirements 7-4
Nut Requirements 7-4
Bolted Parts 7-4
PROPER SPECIFICATION OF JOINT TYPE 7-4
Snug-Tightened Joints 7-5
Pretensioned Joints 7-5
Slip-Critical Joints 7-5
DESIGN REQUIREMENTS 7-5
Shear 7-5
Tension 7-6
Combined Shear and Tension 7-6
Bearing and Tearout Strength at Bolt Holes 7-6
Slip Resistance 7-6
ECCENTRICALLY LOADED BOLT GROUPS 7-6
Eccentricity in the Plane of the Faying Surface 7-6
Instantaneous Center of Rotation Method 7-6
Elastic Method 7-8
Eccentricity Normal to the Plane of the Faying Surface 7-10
Case I—Neutral Axis Not at Center of Gravity 7-10
Case II—Neutral Axis at Center of Gravity 7-11
SPECIAL CONSIDERATIONS FOR HOLLOW STRUCTURAL SECTIONS 7-13
Through-Bolting to HSS 7-13
Blind Bolts 7-13
Flow-Drilling 7-13
Threaded Studs to HSS 7-14
Nailing to HSS 7-15
Screwing to HSS 7-15
OTHER SPECIFICATION REQUIREMENTS AND DESIGN CONSIDERATIONS 7-15
Placement of Bolt Groups 7-15
Bolts in Combination with Welds 7-15
Coating High-Strength Bolts and Nuts 7-15
Reuse of Bolts 7-16
Fatigue Applications 7-16
Entering and Tightening Clearances 7-16
Fully Threaded ASTM F3125 Grade A325 Bolts 7-17
ASTM A307 Bolts 7-17
ASTM A449 and A354 Bolts 7-17
DESIGN TABLE DISCUSSION 7-17
PART 7 REFERENCES 7-21
DESIGN TABLES 7-22
Table 7-1. Available Shear Strength of Bolts 7-22
Table 7-2. Available Tensile Strength of Bolts 7-23
Table 7-3. Slip-Critical Connections, Available Slip Resistance 7-24
Tables 7-4 and 7-5. Available Bearing and Tearout Strength at Bolt Holes 7-27
Tables 7-6 through 7-13. Coefficients C for Eccentrically Loaded Bolt Groups 7-31
Table 7-14. Dimensions of High-Strength Fasteners 7-79
Tables 7-15 and 7-16. Entering and Tightening Clearance 7-80
Table 7-17. Threading Dimensions for High-Strength and Non-High-Strength Bolts 7-83
Table 7-18. Weights of High-Strength Fasteners 7-84
Table 7-19. Dimensions of Non-High-Strength Fasteners 7-85
Tables 7-20, 7-21 and 7-22. Weights of Non-High-Strength Fasteners 7-87

SCOPE

The specification requirements and other design considerations summarized in this Part apply to the design of bolts in steel-to-steel structural connections. Additional guidance on bolt design is available in AISC Design Guide 17, High Strength Bolts-A Primer for Structural Engineers, (Kulak, 2002). For the design of steel-to-concrete anchorage, see Part 14. For the design of connection elements, see Part 9. For the design of simple shear, moment, bracing and other connections, see Parts 10 through 15.

GENERAL REQUIREMENTS FOR BOLTED JOINTS

Fastener Components

The applicable material specifications for fastener components are given in Part 2. In this Part, for convenience in referencing and consistent with AISC Specification Section J3.1, ASTM F3125 Grades A325 and F1852 have been labeled Group A bolts, ASTM F3125 Grades A490 and F2280 have been labeled Group B bolts, and ASTM F3043 and ASTM F3111 assemblies have been labeled Group C bolts.

Material and storage requirements for fastener components are given in AISC Specification Section A3.3 and RCSC Specification Section 2. The compatibility of ASTM A563 nuts and ASTM F436 washers with Grades A325, F1852, A490 and F2280 bolts is given in RCSC Specification Table 2.1. These products are given identifying marks, as illustrated in RCSC Specification Figure C-2.1. ASTM F3043 and ASTM F3111 assemblies use nuts and washers as defined in their standard, and are marked according to that standard. Alternativedesign fasteners and alternative washer-type indicating devices are permitted, subject to the requirements in RCSC Specification Sections 2.8 and 2.6.2, respectively.

Mixing grades of fasteners raises inventory and quality control issues associated with the use of multiple fastener grades. When Group A, Group B and/or Group C bolts are used together on a project, different diameters can be specified for each to help ensure that the bolts are installed in the proper location.

Regardless of the bolt type selected, the typical sizes of $3 / 4$-in.-, $7 / 8$-in.-, 1 -in.-, $1^{1 / 8}$-in.and $1 / 1 / 4$-in.-diameter are usually preferred. Diameters above 1 in . may require special consideration for availability, as well as installation, when pretensioned installation is required. Installation wrenches with high torque capacity and special equipment may be required to pretension large diameter Group B and Group C bolts. The use of Group C fasteners is limited as stated in AISC Specification Commentary Section J3.1.

Proper Selection of Bolt Length

Per RCSC Specification Section 2.3.2, adequate thread engagement is developed when the end of the bolt is at least flush with or projects beyond the face of the nut. To provide for this, the ordered length of Group A and Group B bolts should be calculated as the grip (see Figure 7-1) plus the nominal thickness of washers and/or direct-tension indicators, if used, plus the allowance from Table 7-14, with the total rounded to the next higher increment of $1 / 4 \mathrm{in}$. up to a 5 -in. length and the next higher $1 / 2 \mathrm{in}$. over a 5 -in. length. Note that bolts longer than 5 in. are generally available only in $1 / 2$-in. increments, except by special arrangement with the manufacturer or vendor. While longer lengths may be ordered, an 8 -in. length is generally the maximum stock length available. Requirements for a minimum stick-through greater than zero are discouraged because of the risk of jamming the nut on the thread
runout, particularly in the bolt length range available only in $1 / 2$-in. increments. See Carter (1996) for further information.

For ASTM F3043 and F3111 assemblies, refer to the manufacturer's literature for selection of bolt length.

Washer Requirements

Requirements for the use of ASTM F436 washers and/or plate washers are given in RCSC Specification Section 6.

Nut Requirements

The compatibility of ASTM A563 nuts with Group A and Group B bolts is given in RCSC Specification Table 2.1.

Bolted Parts

The requirements for connected plies, faying surfaces, bolt holes and burrs are given in AISC Specification Sections J3.2 and M2.5, and RCSC Specification Section 3. Spacing and edge distance requirements are given in AISC Specification Sections J3.3, J3.4 and J3.5.

PROPER SPECIFICATION OF JOINT TYPE

When Group A or Group B high-strength bolts are to be used, the joint type must be specified as snug-tightened, pretensioned or slip-critical, per AISC Specification Section J3.1.

(a) Shear plane location when threads are
excluded

(b) Shear plane location when
threads are included

Fig. 7-1. Grip and other parameters for bolt length selection.

Snug-Tightened Joints

Snug-tightened joints simplify design, installation and inspection and should be specified whenever pretensioned joints and slip-critical joints are not required. The applicability is summarized and design requirements, installation requirements and inspection requirements are stipulated for snug-tightened joints per RCSC Specification Section 4.1. Faying surfaces in snug-tightened joints must meet the requirements in RCSC Specification Sections 3.2 and 3.2.1, but not those for slip-critical joints in RCSC Specification Section 3.2.2. Note that there is generally no need to limit the actual level of pretension provided in snug-tightened joints, per RCSC Specification Section 9.1.

Pretensioned Joints

When pretension is required but slip-resistance is not of concern, a pretensioned joint should be specified. The applicability is summarized and design requirements, installation requirements and inspection requirements are stipulated for pretensioned joints per RCSC Specification Section 4.2. Faying surfaces in pretensioned joints must meet the requirements in RCSC Specification Sections 3.2 and 3.2.1, but not those for slip-critical joints in RCSC Specification Section 3.2.2.

Slip-Critical Joints

The applicability of slip-critical joints is summarized and design requirements, installation requirements, and inspection requirements are stipulated in RCSC Specification Section 4.3, except as modified by AISC Specification Sections J3.8 and J3.9. Faying surfaces in slipcritical joints must meet the requirements in RCSC Specification Sections 3.2 and 3.2.2. The RCSC Specification defines a faying surface as "the plane of contact between two plies of a joint." Note that the surfaces under the bolt head, washer and/or nut are not faying surfaces.

Subject to the requirements in RCSC Specification Section 4.3, slip-critical joints are rarely required in building design. Slip-critical joints are appreciably more expensive because of the associated costs of faying surface preparation and installation and inspection requirements.

When slip resistance is required and the steel is painted, the fabricator should be consulted to determine the most economical approach to providing the necessary slip resistance. Special paint systems that are rated for slip resistance can be specified. Alternatively, a paint system that is not rated for slip resistance can be used with the faying surfaces masked.

DESIGN REQUIREMENTS

Design requirements are found in the AISC Specification as follows. In each case, the available strength determined in accordance with these provisions must equal or exceed the required strength. These requirements are derived from those in the RCSC Specification.

Shear

Available shear strength is determined as given in RCSC Specification Section 5.1 and AISC Specification Section J3.6, with consideration of the presence of fillers or shims, per RCSC Specification Section 5.1 and AISC Specification Section J5. The nominal shear strengths given in AISC Specification Table J3.2 have been reduced by approximately 10% from statistical results of tests to account for uneven force distributions associated with end loading and other effects normally neglected in the design process.

When the length of a bolted joint measured parallel to the line of force exceeds 38 in ., a 16.7% strength reduction may be applicable, per AISC Specification Table J3.2 footnote b.

The force that can be resisted by a snug-tightened or pretensioned high-strength bolt may also be limited by the bearing or tearout strength at the bolt hole per AISC Specification Section J3.10. The effective strength of an individual bolt may be taken as the lesser of the shear strength per Section J3.6 or the controlling bearing and tearout strength at the bolt hole per Section J3.10. The strength of the bolt group may be taken as the sum of the effective strengths of the individual fasteners.

Tension

Available tensile strength is determined as given in RCSC Specification Section 5.1 and AISC Specification Section J3.6, with consideration of the effects of prying action, if any. Prying action is a phenomenon (in bolted construction only) whereby the deformation of a fitting under a tensile force increases the tensile force in the bolt. While the effect of prying action is relevant to the design of the bolts, it is primarily a function of the strength and stiffness of the connection elements. Prying action is addressed in Part 9.

Combined Shear and Tension

Available strength for combined shear and tension in bearing-type connections is determined as given in RCSC Specification Section 5.2 and AISC Specification Section J3.7.

Bearing and Tearout Strength at Bolt Holes

Available bearing and tearout strength at bolt holes is determined as given in RCSC Specification Section 5.3 and AISC Specification Section J3.10.

Slip Resistance

The available slip resistance of slip-critical connections is determined in accordance with AISC Specification Section J3.8. The available strength, ϕR_{n} or R_{n} / Ω, is determined by applying the resistance factor or safety factor appropriate for the hole type used.

ECCENTRICALLY LOADED BOLT GROUPS

Eccentricity in the Plane of the Faying Surface

When eccentricity occurs in the plane of the faying surface, the bolts must be designed to resist the combined effect of the direct shear, P_{u} or P_{a}, and the additional shear from the induced moment, $P_{u} e$ or $P_{a} e$. Two analysis methods for this type of eccentricity are the instantaneous center of rotation method and the elastic method.

The instantaneous center of rotation method is more accurate, but generally requires the use of tabulated values or an iterative solution. The elastic method is simplified, but may be excessively conservative because it neglects the ductility of the bolt group and the potential for load redistribution.

Instantaneous Center of Rotation Method

Eccentricity produces both a rotation and a translation of one connection element with respect to the other. The combined effect of this rotation and translation is equivalent to a
rotation about a point defined as the instantaneous center of rotation (IC), as illustrated in Figure 7-2(a). The location of the IC depends upon the geometry of the bolt group as well as the direction and point of application of the load.

The load-deformation relationship for one bolt is illustrated in Figure 7-3, where

$$
\begin{equation*}
R=R_{u l t}\left(1-e^{-10 \Delta}\right)^{0.55} \tag{7-1}
\end{equation*}
$$

where
$R=$ nominal shear strength of one bolt at a deformation Δ, kips
$R_{\text {ult }}=$ ultimate shear strength of one bolt, kips
$e=2.718 \ldots$, base of the natural logarithm
$\Delta=$ total deformation, including shear, bearing and bending deformation in the bolt and bearing deformation of the connection elements, in.

(a) Instantaneous center of rotation (IC)

(b) Forces on bolts in group for case of $\theta=0^{\circ}$ for simplicity

Fig. 7-2. Illustration for instantaneous center of rotation method.

The shear strength of the bolt most remote from the IC can be determined by applying a maximum deformation, $\Delta_{\max }$, to that bolt. The load-deformation relationship is based upon data obtained experimentally for $3 / 4$-in.-diameter ASTM F3125 Grade A325 bolts in double shear, where $R_{u l t}=74 \mathrm{kips}$ and $\Delta_{\max }=0.34 \mathrm{in}$.

The nominal shear strengths of the other bolts in the joint can be determined by applying a deformation Δ that varies linearly with distance from the IC. The nominal shear strength of the bolt group is, then, the sum of the individual strengths of all bolts.

The individual resistance of each bolt is assumed to act on a line perpendicular to a ray passing through the IC and the centroid of that bolt, as illustrated in Figure 7-2(b). If the correct location of the IC has been selected, the three equations of in-plane static equilibrium ($\Sigma F_{x}=0, \Sigma F_{y}=0$, and $\Sigma M=0$) will be satisfied.

For further information, see Crawford and Kulak (1971).

Elastic Method

For a force applied as illustrated in Figure 7-4, the eccentric force, P_{u} or P_{a}, is resolved into a direct shear, P_{u} or P_{a}, acting through the center of gravity (c.g.) of the bolt group and a moment, $P_{u} e$ or $P_{a} e$, where e is the eccentricity. Each bolt is then assumed to resist an equal share of the direct shear and a share of the eccentric moment proportional to its distance from the c.g. The resultant vectorial sum of these forces is the required strength for the bolt, r_{u} or r_{a}.
The shear per bolt due to the concentric force, P_{u} or P_{a}, is $r_{p u}$ or $r_{p a}$, where

LRFD	ASD		
$r_{p u}=\frac{P_{u}}{n}$	$(7-2 \mathrm{a})$	$r_{p a}=\frac{P_{a}}{n}$	$(7-2 \mathrm{~b})$

Fig. 7-3. Load-deformation relationship for one 3/4-in.-diameter ASTM F3125 Grade A325 bolt in single shear.
and n is the number of bolts. To determine the resultant forces on each bolt when P_{u} or P_{a} is applied at an angle θ with respect to the vertical, $r_{p u}$ or $r_{p a}$ must be resolved into horizontal component, $r_{p x u}$ or $r_{p x a}$, and vertical component, $r_{p y u}$ or $r_{p y a}$, where

LRFD	ASD		
$r_{p x u}=r_{p u} \sin \theta$	$(7-3 \mathrm{a})$	$r_{p x a}=r_{p a} \sin \theta$ $r_{p y u}=r_{p u} \cos \theta$	$(7-4 \mathrm{a})$
$r_{p y a}=r_{p a} \cos \theta$	$(7-4 \mathrm{~b})$		

The shear on the bolt most remote from the c.g. due to the moment, $P_{u} e$ or $P_{a} e$, is $r_{m u}$ or $r_{m a}$, where

LRFD	ASD	
$r_{m u}=\frac{P_{u} e c}{I_{p}}$	(7-5a)	$r_{m a}=\frac{P_{a} e c}{I_{p}}$

where
$I_{p}=I_{x}+I_{y}=$ polar moment of inertia of the bolt group, in. ${ }^{4}$ per in. ${ }^{2}$
$c=$ radial distance from c.g. to center of bolt most remote from c.g., in.
To determine the resultant force on the most highly stressed bolt, $r_{m u}$ or $r_{m a}$ must be resolved into horizontal component $r_{m x u}$ or $r_{m x a}$ and vertical component $r_{m y u}$ or $r_{m y a}$, where

LRFD	ASD		
$r_{m x u}=\frac{P_{u} e c_{y}}{I_{p}}$	(7-6a)	$r_{m x a}=\frac{P_{a} e c_{y}}{I_{p}}$	(7-6b)
$r_{m y u}=\frac{P_{u} e c_{x}}{I_{p}}$	$(7-7 \mathrm{a})$	$r_{m y a}=\frac{P_{a} e c_{x}}{I_{p}}$	(7-7b)

Fig. 7-4. Illustration for elastic method.

In the preceding equations, c_{x} and c_{y} are the horizontal and vertical components of the diagonal distance c. Thus, the required strength per bolt is r_{u} or r_{a}, where

LRFD	ASD
$r_{u}=\sqrt{\left(r_{p x u}+r_{m x u}\right)^{2}+\left(r_{p y u}+r_{m y u}\right)^{2}} \quad(7-8 \mathrm{a})$	$r_{a}=\sqrt{\left(r_{p x a}+r_{m x a}\right)^{2}+\left(r_{p y a}+r_{m y a}\right)^{2}} \quad(7-8 \mathrm{~b})$

For further information, see Higgins (1971).

Eccentricity Normal to the Plane of the Faying Surface

Eccentricity normal to the plane of the faying surface produces tension above and compression below the neutral axis for a bracket connection as shown in Figure 7-5. The eccentric force, P_{u} or P_{a}, is resolved into a direct shear, P_{u} or P_{a}, acting at the faying surface of the joint and a moment normal to the plane of the faying surface, $P_{u} e$ or $P_{a} e$, where e is the eccentricity. Each bolt is then assumed to resist an equal share of the concentric force, P_{u} or P_{a}, and the moment is resisted by tension in the bolts above the neutral axis and compression below the neutral axis.

Two design approaches for this type of eccentricity are available: Case I, in which the neutral axis is not taken at the center of gravity (c.g.) of the bolt group, and Case II, in which the neutral axis is taken at the c.g.

Case I—Neutral Axis Not at Center of Gravity

The shear per bolt due to the concentric force, $r_{u v}$ or $r_{a v}$, is determined as

LRFD	ASD		
$r_{u v}=\frac{P_{u}}{n}$	$(7-9 \mathrm{a})$	$r_{a v}=\frac{P_{a}}{n}$	$(7-9 \mathrm{~b})$

where n is the number of bolts in the connection.

Fig. 7-5. Tee bracket subject to eccentric loading normal to the plane of the faying surface.

A trial position for the neutral axis can be selected at one-sixth of the total bracket depth, measured upward from the bottom [line X-X in Figure 7-6(a)]. To provide for reasonable proportions and to account for the bending stiffness of the connection elements, the effective width of the compression block, $b_{\text {eff }}$, should be taken as

$$
\begin{equation*}
b_{e f f}=8 t_{f} \leq b_{f} \tag{7-10}
\end{equation*}
$$

where
$b_{f}=$ connection element width, in.
$t_{f}=$ lesser connection element thickness, in.
This effective width is valid for bracket flanges made from W-shapes, S-shapes, welded plates and angles. Where the bracket flange thickness is not constant, the average flange thickness should be used.

The assumed location of the neutral axis can be evaluated by checking static equilibrium assuming an elastic stress distribution. Equating the moment of the bolt area above the neutral axis with the moment of the compression block area below the neutral axis,

$$
\begin{equation*}
\left(\Sigma A_{b}\right) y=b_{e f f} d(d / 2) \tag{7-11}
\end{equation*}
$$

where
$\Sigma A_{b}=$ sum of the areas of all bolts above the neutral axis, in. ${ }^{2}$
$d=$ depth of compression block, in.
$y=$ distance from line X-X to the c.g. of the bolt group above the neutral axis, in.
The value of d may then be adjusted until a reasonable equality exists.
Once the neutral axis has been located, the tensile force per bolt, $r_{u t}$ or $r_{a t}$, as illustrated in Figure 7-6(b), may be determined as

LRFD	ASD
$r_{u t}=\left(\frac{P_{u} e c}{I_{x}}\right) A_{b}$	$(7-12 \mathrm{a})$
$r_{a t}=\left(\frac{P_{a} e c}{I_{x}}\right) A_{b}$	$(7-12 \mathrm{~b})$

where
$I_{x}=$ combined moment of inertia of the bolt group and compression block about the neutral axis, in. ${ }^{4}$
$c=$ distance from neutral axis to the most remote bolt in the group, in.
Bolts above the neutral axis are subjected to the shear force, the tensile force, and the effect of prying action (see Part 9); bolts below the neutral axis are subjected to the shear force, $r_{u v}$ or $r_{a v}$, only.

Case II—Neutral Axis at Center of Gravity

This method provides a more direct, but also a more conservative result. As for Case I, the shear force per bolt, $r_{u v}$ or $r_{a v}$, due to the concentric force, P_{u} or P_{a}, is determined as

LRFD	ASD
$r_{u v}=\frac{P_{u}}{n}$	$(7-13 \mathrm{a})$
$r_{a v}=\frac{P_{a}}{n}$	$(7-13 \mathrm{~b})$

where n is the number of bolts in the connection.

The neutral axis is assumed to be located at the c.g. of the bolt group as illustrated in Figure 7-7. The bolts above the neutral axis are in tension and the bolts below the neutral axis are said to be in compression. To obtain a more accurate result, a plastic stress distribution is assumed; this assumption is justified because this method is still more conservative than Case I. Accordingly, the tensile force in each bolt above the neutral axis, $r_{u t}$ or $r_{a t}$, due to the moment, $P_{u} e$ or $P_{a} e$, is determined as

(a) Initial approximation of location of n.a.
(b) Force diagram with final location of n.a.

Fig. 7-6. Location of neutral axis (n.a.) for out-of-plane eccentric loading using Case I.

Fig. 7-7. Location of neutral axis (n.a.) for out-of-plane eccentric loading using Case II.
$\left.\begin{array}{|cc|c|}\hline \text { LRFD } & \text { ASD } \\ \hline r_{u t}=\frac{P_{u} e}{n^{\prime} d_{m}} & (7-14 \mathrm{a}) & r_{a t}=\frac{P_{a} e}{n^{\prime} d_{m}}\end{array} \quad(7-14 \mathrm{~b})\right]$.
where
$d_{m}=$ moment arm between resultant tensile force and resultant compressive force, in.
$n^{\prime}=$ number of bolts above the neutral axis
Bolts above the neutral axis are subjected to the shear force, the tensile force, and the effect of prying action (see Part 9); bolts below the neutral axis are subjected to the shear force, $r_{u v}$ or $r_{a v}$, only.

SPECIAL CONSIDERATIONS FOR HOLLOW STRUCTURAL SECTIONS

Through-Bolting to HSS

Long bolts that extend through the entire HSS are satisfactory for shear connections that do not require a pretensioned installation. The flexibility of the walls of the HSS precludes installation of pretensioned bolts. Standard structural bolts may be used, although ASTM A449 bolts may be required for longer lengths. The bolts are designed for static shear and the only limit-state involving the HSS is bolt bearing. The available bearing strength is determined as ϕR_{n} or R_{n} / Ω, where

$$
\begin{gather*}
R_{n}=1.8 n F_{y} d t_{d e s} \tag{7-15}\\
\phi=0.75 \quad \Omega=2.00
\end{gather*}
$$

where
$F_{y}=$ specified minimum yield strength of HSS, ksi
$d=$ fastener diameter, in.
n = number of fasteners
$t_{\text {des }}=$ design wall thickness of HSS, in.

Blind Bolts

Special fasteners are available that eliminate the need for access to install a nut (Korol et al., 1993; Henderson, 1996). The shank of the fastener is inserted through holes in the parts to be connected until the head bears on the outer ply (see Figure 7-8). In some cases, a special wrench is used on the open side to keep the outer part of the shank from rotating and simultaneously turn the threaded part of the shank. A wedge or other mechanism on the blind side causes the fixed part of the shank to expand and form a contact with the inside of the HSS. Some fasteners contain a break-off mechanism when the fastener is pretensioned. Recent versions of these fasteners meet the requirements for a pretensioned ASTM F3125 Grade A325 bolt (Henderson, 1996) and could be used in slip-critical or tension conditions. HSS limit states are bolt bearing and tearout in shear, tear-out of the bolt in tension, and wall distortion. Manufacturers' literature must be consulted to determine the available strength of blind bolts.

Flow-Drilling

Flow-drilling is a process that can be used to produce a threaded hole in an HSS to permit blind bolting when the inside of the HSS is inaccessible (Sherman, 1995; Henderson, 1996).

The process is to force a hole through the HSS with a carbide conical tool rotating at sufficient speed to produce high rapid heating, which softens the material in a local area. The material that is displaced as the tool is forced through the plate forms a truncated hollow cone (bushing) on the inner surface and a small upset on the outer surface. Tools can be obtained with a milling collar so that the material on the outer surface is removed, producing a flat surface allowing parts to be brought in close contact. A cold-formed tap is then used to roll a thread into the hole without any chips or removal of material. The resulting threaded hole has the approximate dimensions and hardness of a heavy hex nut. Shear and tension strengths of ASTM F3125 Grade A325 bolts can be developed for certain combinations of bolt size and HSS thickness (see Figure 7-9).

Drilling equipment with suitable rotational speed, torque and thrust is required, but with small sizes and thicknesses, field installation with conventional tools is possible. The bolts are designed with the normal criteria and the HSS limit states are bolt bearing and tearout in shear and distortion of the HSS wall in tension. HSS strength is not affected by the process except for the reduction in area due to the holes.

Threaded Studs to HSS

Threaded studs are available in $3 / 8$-in. to $7 / 8$-in. diameters and can be shop- or field-welded to an HSS with a stud-welding gun. The connection is similar to a bolted connection with an

Fig. 7-8. Two types of blind bolts.

HSS Thickness (in.)	Bolt Diameter (in.)				
	$\mathbf{1} / \mathbf{2}$	$\mathbf{5} / \mathbf{8}$	$\mathbf{3} / \mathbf{4}$	$\mathbf{7 / 8}$	$\mathbf{1}$
$3 / 16$	X	X			
$1 / 4$	X	X	X		
$5 / 16$		X	X	X	
$3 / 8$			X	X	X
$1 / 2$					X

Fig. 7-9. HSS thickness and bolt diameter combinations for flow-drilling.
external nut. The strength of the stud in tension or shear is based on manufacturer's recommendations and tests. The HSS limit state is distortion of the wall. When using threaded studs, countersunk holes must be used in the attached element to clear the weld fillet at the base of the stud.

Nailing to HSS

Power-driven nails that are installed with a power-actuated gun are satisfactory for pure shear connections where the combined thickness of the attachment and the HSS does not exceed $1 / 2$ in. This system was tested as splices between telescoping round HSS loaded with an axial force (Packer, 1996). The shear resistance of the fasteners is taken as the number of nails times the shear strength of a single nail and ignores any secondary contribution from a dimpling effect between the materials. The limit state for the HSS is shear-bearing. See Packer (1996).

Screwing to HSS

Self-tapping screws with or without self-drilling points are available for connecting materials with combined thicknesses up to $1 / 2 \mathrm{in}$. The screws have diameters from 0.08 in. to 0.25 in. The limit states for these connections are given in the AISI North American Specification for the Design of Cold-Formed Steel Structural Members (AISI, 2012).

OTHER SPECIFICATION REQUIREMENTS AND DESIGN CONSIDERATIONS

The following other specification requirements and design considerations apply to the design of bolts.

Placement of Bolt Groups

For the required placement of bolt groups at the ends of axially loaded members, see AISC Specification Section J1.7.

Bolts in Combination with Welds

For bolts used in combination with welds, see AISC Specification Section J1.8.

Coating High-Strength Bolts and Nuts

Coatings can affect the installation and performance of high-strength bolt assemblies. Coatings have a finite thickness and surface properties that can affect thread fit and the torquetension relationship. Coatings and the process of applying them can have an effect on hydrogen embrittlement. Service environment can have an effect on hydrogen embrittlement or stress corrosion cracking. Where bolts are approved for galvanizing or zinc/aluminum ($\mathrm{Zn} / \mathrm{Al}$) coating, nuts and washers are available with corresponding coatings. See ASTM F3125 Annex A1 for requirements regarding nuts, washers and thread fit. Nuts for Grades A325 and F1852 bolts must be galvanized by the same process as the bolt with which they are used. $\mathrm{Zn} / \mathrm{Al}$ coatings have been used on high strength fasteners in automotive applications and have been tested for use in structural applications on 150 -ksi bolts, nuts and washers. The tests evaluate the coated fasteners for hydrogen embrittlement susceptibility
using Industrial Fasteners Institute IFI-144 (IFI, 2013), ASTM F1940 and F2660. The tests do not assure durability or corrosion resistance over any length of time. The purchaser should evaluate any other performance characteristics of these coatings. Galvanized ASTM A449 may require an anti-galling lubricant. See Figure 7-10 for permitted coatings for fasteners.

Reuse of Bolts

The reuse of high-strength bolts is limited, per RCSC Specification Section 2.3.3. See also Bowman and Betancourt (1991) and AISC Design Guide 17 (Kulak, 2002).

Fatigue Applications

For applications involving fatigue, see RCSC Specification Sections 4.2, 4.3 and 5.5, and AISC Specification Appendix 3.

Entering and Tightening Clearances

Clearances must be provided for the entering and tightening of the bolts with an impact wrench. The clearance requirements for conventional high-strength bolts (ASTM F3125 Grades A325 and A490) are given in Table 7-15. When high-strength tension-control bolts (ASTM F3125 Grades F1852 and F2280) are specified, the clearance requirements are given in Table 7-16.

ASTM Designation		Fastener Description	Coating Type			
		Mechanical Galvanizing, ASTM B695	Hot Dip Galvanizing, ASTM F2329	Zinc/ Aluminum		
$\begin{aligned} & \stackrel{N}{N} \\ & \stackrel{N}{N} \\ & \underset{\sim}{N} \\ & \underset{\sim}{\infty} \end{aligned}$	Gr. A325		Heavy hex, $F_{u}=120 \mathrm{ksi}$	Class 55	$50 \mu \mathrm{~m}$	a
	Gr. F1852	Tension control, $F_{u}=120 \mathrm{ksi}$	Class 55	-	-	
	Gr. A490	Heavy hex, $F_{u}=150 \mathrm{ksi}$	-	-	a	
	Gr. F2280	Tension control, $F_{U}=150 \mathrm{ksi}$	-	-	-	
A449		Heavy hex, $F_{U}=90,105$ and 120 ksi	Class 55	$50 \mu \mathrm{~m}$	-	
A354 BC		Heavy hex, $F_{u}=115 \mathrm{ksi}$ and 125 ksi	Class 55	$50 \mu \mathrm{~m}$	-	
A354 BD		$\begin{gathered} \text { Heavy hex, } \\ F_{u}=140 \mathrm{ksi} \text { and } 150 \mathrm{ksi} \end{gathered}$	b	b	-	
- Indicates this coating is not qualified. a See ASTM F3125 Table 1.1 for approved zinc/aluminum coating standards and grades. ${ }^{\text {b }}$ Galvanizing of ASTM A354 BD is not prohibited but may cause susceptibility to hydrogen embrittlement. Precautions to avoid embrittlement, such as those in ASTM A143, should be considered.						

Fig. 7-10. Permitted coatings for structural fasteners.

Fully Threaded ASTM F3125 Grade A325 Bolts

ASTM F3125 Grade A325 bolts with length equal to or less than four times the nominal bolt diameter may be ordered as fully threaded with the designation Grade A325T. Fully threaded Grade A325T bolts are not for use in bearing-type " X " connections since it would be impossible to exclude the threads from the shear plane. While this supplementary provision exists for Grade A325 bolts, the supplementary provision does not apply to ASTM F3125 Grade A490 for full-length threading.

ASTM A307 Bolts

AISC Specification Section J3 provides limitations on the use of ASTM A307 bolts. ASTM A307 bolts are available with both hex and square heads in diameters from $1 / 4 \mathrm{in}$. to 4 in. in Grade A for general applications and Grade B for cast-iron-flanged piping joints. ASTM A563 Grade A nuts are recommended for use with ASTM A307 bolts. Other suitable grades are listed in ASTM A563 Table X1.1.

ASTM A449 and A354 Bolts

Limitations are provided on the use of ASTM A354 and A449 bolts, per AISC Specification Section J3.1. The tensile strength of ASTM A354 bolts decreases in bolts over $2 \frac{1}{2} \mathrm{in}$. in diameter. The tensile strength of ASTM A449 bolts decreases in bolts over 1 in . in diameter and again over $1 \frac{1}{2}$ in. in diameter. ASTM A354 and A449 are available in a variety of product forms. AISC Specification Section J3 permits their use as high-strength bolts in applications where the required diameter or length is outside the ranges permitted by ASTM F3125. When ASTM A354 and A449 are used in bolting applications they are ordered to conform to the dimensions of ASME B18.2.6 (ASME, 2010) heavy hex bolts and nuts.

DESIGN TABLE DISCUSSION

Table 7-1. Available Shear Strength of Bolts

The available shear strengths of various grades and sizes of bolts are summarized in Table 7-1.

Table 7-2. Available Tensile Strength of Bolts

The available tensile strengths of various grades and sizes of bolts are summarized in Table 7-2.

Table 7-3. Slip-Critical Connections—Available Slip Resistance

The available slip resistance of various grades and sizes of bolts are summarized in Table 7-3.

Tables 7-4 and 7-5. Available Bearing and Tearout Strength at Bolt Holes

The available bearing and tearout strength at bolt holes is tabulated for various spacings and edge distances in Tables 7-4 and 7-5, respectively. Note that these tables may be applied to bolts with countersunk heads, by subtracting one-half the depth of the countersink from the material thickness, t. As illustrated in Figure 7-11, this is equivalent to subtracting $d_{b} / 4$ from
the material thickness, t. Values in Table 7-4 and Table 7-5 are the lesser of $1.2 l_{c} t F_{u}$ and $2.4 d t F_{u}$ based on AISC Specification Section J3.10. Interpolation between values in these tables may produce an incorrect result.

Tables 7-6 through 7-13. Coefficients C for Eccentrically Loaded Bolt Groups

Tables 7-6 through 7-13 employ the instantaneous center of rotation method for the bolt patterns and eccentric conditions indicated, and inclined loads at $0^{\circ}, 15^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}$ and 75°. The tabulated non-dimensional coefficient, C, represents the number of bolts that are effective in resisting the eccentric shear force. In the following discussion, r_{n} is the least nominal strength of one bolt determined from the limit states of bolt shear strength, bearing and tearout strength at bolt holes, and slip resistance (if the connection is to be slip-critical).

When Analyzing a Known Bolt Group Geometry

For any of the bolt group geometries shown, the available strength of the eccentrically loaded bolt group, ϕR_{n} or R_{n} / Ω, is determined as

$$
\begin{equation*}
R_{n}=C r_{n} \tag{7-16}
\end{equation*}
$$

For bolts in bearing:

$$
\phi=0.75 \quad \Omega=2.00
$$

For bolts in slip-critical connections, see AISC Specification Section J3.8 for the appropriate resistance and safety factors.

When Selecting a Bolt Group

The available strength must be greater than or equal to the required strength, P_{u} or P_{a}. Thus, by dividing the required strength, P_{u} or P_{a}, by ϕr_{n} or r_{n} / Ω, the minimum coefficient, C, is obtained. The bolt group can then be selected from the table corresponding to the appropri-

Fig. 7-11. Effective bearing-thickness for bolts with countersunk heads.
ate load angle, at the appropriate eccentricity, e_{x}, for which the coefficient is of that magnitude or greater.

These tables may be used with any bolt diameter and are conservative when used with Group B or Group C bolts (see Kulak, 1975). Linear interpolation within a given table between adjacent values of e_{x} is permitted. Although this procedure is based on bearing connections, both load tests and analytical studies indicate that it may be conservatively extended to slip-critical connections (Kulak, 1975).

A convergence criterion of 1% was employed for the tabulated iterative solutions. Straight-line interpolation between values for loads at different angles may be significantly unconservative. Either a direct analysis should be performed or the values for the next lower angle increment in the tables should be used for design. For bolt group patterns not treated in these tables, a direct analysis is required if the instantaneous center of rotation method is to be used.

In some cases, it is necessary to calculate the pure moment strength of a bolt group for purposes of linear interpolation. For these cases, the value of C^{\prime} has been provided for a load angle of 0°. This moment strength of the bolt group is based on the instantaneous center of rotation method and, since a moment-only condition is assumed, the instantaneous center of rotation coincides with the center of gravity of the bolt group. In this case, the strength is:

$$
\begin{equation*}
M_{\max }=C^{\prime} r_{n} \tag{7-17}
\end{equation*}
$$

where

$$
\begin{equation*}
C^{\prime}=\sum l_{i}\left[1-e^{-\left(\frac{10 i_{\max }}{l_{\max }}\right)}\right]^{0.55}, \text { in. } \tag{7-18}
\end{equation*}
$$

$l_{i}=$ distance from the center of gravity of the bolt group to the i th bolt, in.
$l_{\max }=$ distance from the center of gravity of the bolt group to the center of the farthest bolt, in.
$\Delta_{\max }=$ maximum deformation on the bolt farthest from the center of gravity $=0.34 \mathrm{in}$.

Table 7-14. Dimensions of High-Strength Fasteners

Dimensions of ASTM F3125 Grades A325, F1852, A490 and F2280 bolts, ASTM A563 nuts, and ASTM F436 washers are given in Table 7-14.

Tables 7-15 and 7-16. Entering and Tightening Clearances

Clearance is required for entering and tightening bolts with an impact wrench. The required clearances are given for conventional high-strength bolts and twist-off-type tension-control bolt assemblies in Tables 7-15 and 7-16, respectively.

Table 7-17. Threading Dimensions for High-Strength and Non-High-Strength Bolts

Threading dimensions, properties and standard designations for high-strength and non-highstrength bolts are provided in Table 7-17.

Table 7-18. Weights of High-Strength Fasteners

Weights of conventional ASTM F3125 Grade A325 and Grade A490 bolts, ASTM A563 nuts, and ASTM F436 washers are given in Table 7-18. For dimensions and weights of ten-sion-control ASTM F3125 Grade F1852 and Grade F2280 bolts, refer to manufacturers' literature or the Industrial Fasteners Institute (IFI).

Table 7-19. Dimensions of Non-High-Strength Fasteners

Typical non-high-strength bolt head and nut dimensions are given in Table 7-19. Thread lengths listed in this table may be calculated for non-high-strength bolts as $2 d+1 / 4 \mathrm{in}$. for bolts up to 6 -in. long and $2 d+\frac{1}{2}$ in. for bolts over 6 -in. long, where d is the bolt diameter. Note that these thread lengths are longer than those given previously for high-strength bolts in Table 7-14. Threading dimensions are given in Table 7-17.

Tables 7-20, 7-21 and 7-22. Weights of Non-High-Strength Fasteners

Weights of non-high-strength fasteners are given in Tables 7-20, 7-21 and 7-22.

PART 7 REFERENCES

AISI (2012), North American Specification for the Design of Cold-Formed Steel Structural Members, AISI S100-12, American Iron and Steel Institute, Washington, DC.
ASME (2010), Fasteners for Use in Structural Applications, ASME B18.2.6, American Society of Mechanical Engineers, New York, NY.
Bowman, M.D. and Betancourt, M. (1991), "Reuse of A325 and A490 High-Strength Bolts," Engineering Journal, AISC, Vol. 28, No. 3, pp. 110-118.
Carter, C.J. (1996), "Specifying Bolt Length for High-Strength Bolts," Engineering Journal, AISC, Vol. 33, No. 2, pp. 43-53.
Crawford, S.F. and Kulak, G.L. (1971), "Eccentrically Loaded Bolted Connections," Journal of the Structural Division, ASCE, Vol. 97, No. ST3, pp. 765-784.
Henderson, J.E. (1996), "Bending, Bolting and Nailing of Hollow Structural Sections," Proceedings International Conference on Tubular Structures, pp. 150-161, American Welding Society.
Higgins, T.R. (1971), "Treatment of Eccentrically Loaded Connections in the AISC Manual," Engineering Journal, AISC, Vol. 8, No. 2, pp. 52-54.
IFI (2013), Test Evaluation Procedures for Coating Qualification Intended for Use on HighStrength Structural Bolts, IFI-144, Industrial Fasteners Institute, Independence, OH.
Korol, R.M., Ghobarah, A. and Mourad, S. (1993), "Blind Bolting W-Shape Beams to HSS Columns," Journal of Structural Engineering, ASCE, Vol.119, No.12, pp. 3,463-3,481.
Kulak, G.L. (1975), Eccentrically Loaded Slip-Resistant Connections," Engineering Journal, AISC, Vol. 12, No. 2, pp. 52-55.
Kulak, G.L. (2002), High-Strength Bolts-A Primer for Structural Engineers, Design Guide 17, AISC, Chicago, IL.
Packer, J.A. (1996), "Nailed Tubular Connections under Axial Loading," Journal of Structural Engineering, ASCE, Vol. 122, No. 8, pp. 867-872.
Sherman, D.R. (1995), "Simple Framing Connections to HSS Columns," Proceedings, National Steel Construction Conference, San Antonio, TX, AISC, pp. 30-1 to 30-16.

Table 7-1 Available Shear Strength of Bolts, kips

Nominal Bolt Diameter, d, in.					5/8		$3 / 4$		7/8		1	
Nominal Bolt Area, in. ${ }^{2}$					0.307		0.442		0.601		0.785	
Designation	Thread Cond.	$\begin{gathered} F_{n v} / \Omega \\ (\mathbf{k s i}) \end{gathered}$	$\phi F_{n v}$ (ksi)	Loading	r_{n} / Ω	$\phi \boldsymbol{r}_{n}$	r_{n} / Ω	$\phi \boldsymbol{r}_{n}$	r_{n} / Ω	$\phi \boldsymbol{r}_{n}$	r_{n} / Ω	$\phi \boldsymbol{r}_{\boldsymbol{n}}$
		ASD	LRFD		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
Group A	N	27.0	40.5	$\begin{aligned} & \hline \text { S } \\ & \text { D } \end{aligned}$	$\begin{gathered} 8.29 \\ 16.6 \end{gathered}$	$\begin{aligned} & \hline 12.4 \\ & 24.9 \end{aligned}$	$\begin{aligned} & 11.9 \\ & 23.9 \end{aligned}$	$\begin{aligned} & 17.9 \\ & 35.8 \end{aligned}$	$\begin{aligned} & 16.2 \\ & 32.5 \end{aligned}$	$\begin{aligned} & 24.3 \\ & 48.7 \end{aligned}$	$\begin{aligned} & 21.2 \\ & 42.4 \end{aligned}$	$\begin{aligned} & 31.8 \\ & 63.6 \end{aligned}$
	X	34.0	51.0	$\begin{aligned} & \mathrm{S} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 10.4 \\ & 20.9 \end{aligned}$	$\begin{aligned} & \hline 15.7 \\ & 31.3 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 30.1 \end{aligned}$	$\begin{aligned} & 22.5 \\ & 45.1 \end{aligned}$	$\begin{aligned} & 20.4 \\ & 40.9 \end{aligned}$	$\begin{aligned} & 30.7 \\ & 61.3 \end{aligned}$	$\begin{aligned} & 26.7 \\ & 53.4 \end{aligned}$	$\begin{aligned} & 40.0 \\ & 80.1 \end{aligned}$
Group B	N	34.0	51.0	$\begin{aligned} & \mathrm{S} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 10.4 \\ & 20.9 \end{aligned}$	$\begin{aligned} & \hline 15.7 \\ & 31.3 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 30.1 \end{aligned}$	$\begin{aligned} & \hline 22.5 \\ & 45.1 \end{aligned}$	$\begin{aligned} & 20.4 \\ & 40.9 \end{aligned}$	$\begin{aligned} & \hline 30.7 \\ & 61.3 \end{aligned}$	$\begin{aligned} & 26.7 \\ & 53.4 \end{aligned}$	$\begin{aligned} & \hline 40.0 \\ & 80.1 \end{aligned}$
	X	42.0	63.0	$\begin{aligned} & \mathrm{S} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 12.9 \\ & 25.8 \end{aligned}$	$\begin{aligned} & \hline 19.3 \\ & 38.7 \end{aligned}$	$\begin{aligned} & 18.6 \\ & 37.1 \end{aligned}$	$\begin{aligned} & 27.8 \\ & 55.7 \end{aligned}$	$\begin{aligned} & 25.2 \\ & 50.5 \end{aligned}$	$\begin{aligned} & \hline 37.9 \\ & 75.7 \end{aligned}$	$\begin{aligned} & 33.0 \\ & 65.9 \end{aligned}$	$\begin{aligned} & \hline 49.5 \\ & 98.9 \end{aligned}$
Group C	N	45.0	67.5	$\begin{aligned} & \mathrm{S} \\ & \mathrm{D} \end{aligned}$	-	-	-	-	-	-	35.3 70.7	$\begin{gathered} \hline 53.0 \\ 106 \end{gathered}$
	X	56.5	84.8	$\begin{aligned} & \mathrm{S} \\ & \mathrm{D} \end{aligned}$	-	-	-	-	-	-	$\begin{aligned} & 44.4 \\ & 88.7 \end{aligned}$	$\begin{array}{\|c} \hline 66.6 \\ 133 \end{array}$
A307	Not applicable	13.5	20.3	$\begin{aligned} & \mathrm{S} \\ & \mathrm{D} \end{aligned}$	$\begin{array}{r} 4.14 \\ 8.29 \\ \hline \end{array}$	$\begin{gathered} 6.23 \\ 12.5 \\ \hline \end{gathered}$	$\begin{gathered} 5.97 \\ 11.9 \\ \hline \end{gathered}$	$\begin{gathered} 8.97 \\ 17.9 \\ \hline \end{gathered}$	$\begin{gathered} \hline 8.11 \\ 16.2 \end{gathered}$	$\begin{aligned} & 12.2 \\ & 24.4 \end{aligned}$	$\begin{aligned} & 10.6 \\ & 21.2 \end{aligned}$	$\begin{aligned} & 15.9 \\ & 31.9 \end{aligned}$
Nominal Bolt Diameter, d, in.					11/8		11/4		13/8		11/2	
Nominal Bolt Area, in. ${ }^{2}$					0.994		1.23		1.48		1.77	
Designation	Thread Cond.	$\begin{gathered} F_{n v} / \Omega \\ (\mathbf{k s i}) \end{gathered}$	$\phi F_{n v}$ (ksi)	$\begin{aligned} & \text { Load- } \\ & \text { ing } \end{aligned}$	r_{n} / Ω	$\phi \boldsymbol{r}_{\boldsymbol{n}}$	r_{n} / Ω	$\phi \boldsymbol{r}_{n}$	r_{n} / Ω	$\phi \boldsymbol{r}_{n}$	r_{n} / Ω	$\phi \boldsymbol{r}_{\boldsymbol{n}}$
		ASD	LRFD		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
Group A	N	27.0	40.5	$\begin{aligned} & \hline \text { S } \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 26.8 \\ & 53.7 \end{aligned}$	$\begin{aligned} & \hline 40.3 \\ & 80.5 \end{aligned}$	$\begin{aligned} & 33.2 \\ & 66.4 \end{aligned}$	$\begin{aligned} & 49.8 \\ & 99.6 \end{aligned}$	$\begin{aligned} & 40.0 \\ & 79.9 \end{aligned}$	$\begin{gathered} 59.9 \\ 120 \end{gathered}$	$\begin{aligned} & 47.8 \\ & 95.6 \end{aligned}$	$\begin{gathered} \hline 71.7 \\ 143 \end{gathered}$
	X	34.0	51.0	$\begin{aligned} & \mathrm{S} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 33.8 \\ & 67.6 \end{aligned}$	$\begin{gathered} 50.7 \\ 101 \end{gathered}$	$\begin{aligned} & 41.8 \\ & 83.6 \end{aligned}$	$\begin{gathered} 62.7 \\ 125 \end{gathered}$	$\begin{gathered} 50.3 \\ 101 \end{gathered}$	$\begin{gathered} 75.5 \\ 151 \end{gathered}$	$\begin{aligned} & 60.2 \\ & 120 \end{aligned}$	$\begin{gathered} 90.3 \\ 181 \end{gathered}$
Group B	N	34.0	51.0	$\begin{aligned} & \mathrm{S} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 33.8 \\ & 67.6 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 50.7 \\ 101 \\ \hline \end{array}$	$\begin{aligned} & \hline 41.8 \\ & 83.6 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 62.7 \\ \hline 125 \\ \hline \end{array}$	$\begin{gathered} \hline 50.3 \\ 101 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 75.5 \\ 151 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 60.2 \\ 120 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 90.3 \\ 181 \\ \hline \end{array}$
	X	42.0	63.0	$\begin{aligned} & \hline \text { S } \\ & \text { D } \end{aligned}$	$\begin{aligned} & 41.7 \\ & 83.5 \end{aligned}$	$\begin{gathered} 62.6 \\ 125 \end{gathered}$	$\begin{gathered} 51.7 \\ 103 \end{gathered}$	$\begin{array}{\|c\|} \hline 77.5 \\ 155 \end{array}$	$\begin{gathered} 62.2 \\ 124 \end{gathered}$	$\begin{array}{\|c\|} \hline 93.2 \\ 186 \end{array}$	$\begin{gathered} 74.3 \\ 149 \end{gathered}$	$\begin{aligned} & 112 \\ & 223 \end{aligned}$
Group C	N	45.0	67.5	$\begin{aligned} & \mathrm{S} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 44.7 \\ & 89.5 \end{aligned}$	$\begin{array}{\|c\|} \hline 67.1 \\ 134 \end{array}$	$\begin{gathered} 55.4 \\ 111 \end{gathered}$	$\begin{gathered} \hline 83.0 \\ 166 \end{gathered}$	-	-	-	-
	X	56.5	84.8	$\begin{aligned} & \mathrm{S} \\ & \mathrm{D} \end{aligned}$	$\begin{gathered} 56.2 \\ 112 \end{gathered}$	$\begin{gathered} \hline 84.3 \\ 169 \end{gathered}$	$\begin{gathered} 69.5 \\ 139 \end{gathered}$	$\begin{aligned} & \hline 104 \\ & 209 \end{aligned}$		-	-	-
A307	Not applicable	13.5	20.3	$\begin{aligned} & \hline \mathrm{S} \\ & \mathrm{D} \\ & \hline \end{aligned}$	$\begin{aligned} & 13.4 \\ & 26.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 20.2 \\ & 40.4 \end{aligned}$	$\begin{aligned} & 16.6 \\ & 33.2 \end{aligned}$	$\begin{aligned} & 25.0 \\ & 49.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 20.0 \\ & 40.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 30.0 \\ & 60.1 \end{aligned}$	$\begin{aligned} & 23.9 \\ & 47.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 35.9 \\ & 71.9 \end{aligned}$
ASD $\Omega=2.00$	$\phi=0.75$	- Indicates that this grade is unavailable in the given diameter. For end loaded connections greater than 38 in., see AISC Specification Table J3.2 footnote b. Group A includes ASTM F3125 Grades A325 and F1852 bolts. Group B includes ASTM F3125 Grades A490 and F2280 bolts. Group C includes ASTM F3043 and ASTM F3111. Thread condition " N " indicates that threads are included in the shear plane. Thread condition " X " indicates that threads are excluded from the shear plane. $S=$ single shear $\quad D=$ double shear										

Table 7-2 Available Tensile rength of Bolts, kips																
Nominal Bolt Diameter, d, in.			$\begin{gathered} \hline 5 / 8 \\ \hline 0.307 \end{gathered}$		$\begin{gathered} \hline 3 / 4 \\ \hline 0.442 \end{gathered}$		$\begin{array}{\|c\|} \hline 7 / 8 \\ \hline 0.601 \end{array}$		1							
Nominal Bolt Area, in. ${ }^{2}$																
Designation	$\begin{aligned} & \hline F_{n t} / \Omega \\ & (k s i) \end{aligned}$	$\phi F_{n t}$ (ksi)	r_{n} / Ω	ϕr_{n}			r_{n} / Ω	ϕr_{n}	r_{n} / Ω	$\phi \boldsymbol{r}_{n}$	r_{n} / Ω	${ }_{\phi} \boldsymbol{r}_{n}$				
	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD						
Group A Group B Group C A307	45.0	67.5	13.8	20.7	19.9	29.8	27.1	40.6	35.3	53.0						
	56.5	84.8	17.3	26.0	25.0	37.4	34.0	51.0	44.4	66.6						
	75.0	113	-	-	-	-	-	-	58.9	88.4						
	22.5	33.8	6.90	10.4	9.94	14.9	13.5	20.3	17.7	26.5						
Nominal Bolt Diameter, d, in.			11/8		11/4		13/8		11122							
Nominal Bolt Area, in. ${ }^{2}$			0.994		1.23		1.48		1.77							
Designation	$\begin{gathered} \hline F_{n t} / \Omega \\ (\mathrm{ksi}) \end{gathered}$	$\begin{aligned} & \phi F_{n t} \\ & (\mathbf{k s i}) \end{aligned}$	r_{n} / Ω	ϕr_{n}	r_{n} / Ω	$\phi \boldsymbol{r}_{n}$	r_{n} / Ω	¢ $\boldsymbol{r}_{\boldsymbol{n}}$	r_{n} / Ω	${ }_{\phi} \boldsymbol{r}_{\boldsymbol{n}}$						
	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD						
Group A	45.0	67.5	44.7	67.1	55.2	82.8	66.8	100	79.5	119						
Group B	56.5	84.8	56.2	84.2	69.3	104	83.9	126	99.8	150						
Group C	75.0	113	74.6	112	92.0	138	-	-	-	-						
A307	22.5	33.8	22.4	33.5	27.6	41.4	33.4	50.1	39.8	59.6						
ASD	LRFD	- Indicates that this grade is unavailable in the given diameter. Group A includes ASTM F3125 Grades A325 and F1852 bolts. Group B includes ASTM F3125 Grades A490 and F2280 bolts. Group C includes ASTM F3043 and ASTM F3111.														
$\Omega=2.00$	$\phi=0.75$															

Group A Bolts (Includes A325 and F1852 bolts)		Table 7-3 Slip-Critical Connections Available Slip Resistance, kips (Class A Faying Surface, $\mu=0.30$)							
Group A Bolts									
Hole Type	Loading	Nominal Bolt Diameter, d, in.							
		5/8		$3 / 4$		7/8		1	
		Minimum Group A Bolt Pretension, kips							
		19		28		39		51	
		r_{n} / Ω	ϕr_{n}	r_{n} / Ω	$\phi \boldsymbol{r}_{\boldsymbol{n}}$	r_{n} / Ω	$\phi \boldsymbol{r}_{\boldsymbol{n}}$	r_{n} / Ω	ϕr_{n}
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
STD/SSLT	s	$\begin{aligned} & 4.29 \\ & 8.59 \end{aligned}$	$\begin{gathered} 6.44 \\ 12.9 \end{gathered}$	$\begin{gathered} 6.33 \\ 12.7 \end{gathered}$	$\begin{gathered} 9.49 \\ 19.0 \end{gathered}$	$\begin{gathered} 8.81 \\ 17.6 \end{gathered}$	$\begin{aligned} & 13.2 \\ & 26.4 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 23.1 \end{aligned}$	$\begin{aligned} & 17.3 \\ & 34.6 \end{aligned}$
OVS/SSLP	S	3.66	5.47	5.39	8.07	7.51	11.2	9.82	14.7
	D	7.32	10.9	10.8	16.1	15.0	22.5	19.6	29.4
LSL	S	3.01	4.51	4.44	6.64	6.18	9.25	8.08	12.1
	D	6.02	9.02	8.87	13.3	12.4	18.5	16.2	24.2
Hole Type	Loading	Nominal Bolt Diameter, d, in.							
		11/8		11/4				11/2	
		Minimum Group A Bolt Pretension, kips							
		64		81		97		118	
		r_{n} / Ω	ϕr_{n}	r_{n} / Ω	ϕr_{n}	r_{n} / Ω	ϕr_{n}	r_{n} / Ω	$\phi \boldsymbol{r}_{\boldsymbol{n}}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
STD/SSLT	s	$\begin{aligned} & 14.5 \\ & 28.9 \end{aligned}$	$\begin{aligned} & 21.7 \\ & 43.4 \end{aligned}$	$\begin{aligned} & 18.3 \\ & 36.6 \end{aligned}$	$\begin{aligned} & 27.5 \\ & 54.9 \end{aligned}$	$\begin{aligned} & 21.9 \\ & 43.8 \end{aligned}$	$\begin{aligned} & 32.9 \\ & 65.8 \end{aligned}$	26.7	$\begin{aligned} & 40.0 \\ & 80.0 \end{aligned}$
OVS/SSLP	s	$\begin{aligned} & 12.3 \\ & 24.7 \end{aligned}$	$\begin{aligned} & \hline 18.4 \\ & 36.9 \end{aligned}$	$\begin{aligned} & \hline 15.6 \\ & 31.2 \end{aligned}$	$\begin{aligned} & 23.3 \\ & 46.7 \end{aligned}$	$\begin{aligned} & \hline 18.7 \\ & 37.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 28.0 \\ & 55.9 \end{aligned}$	$\begin{aligned} & 22.7 \\ & 45.5 \end{aligned}$	$\begin{aligned} & 34.0 \\ & 68.0 \end{aligned}$
LSL	$\begin{aligned} & \hline \mathbf{S} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 10.1 \\ & 20.3 \end{aligned}$	$\begin{aligned} & 15.2 \\ & 30.4 \end{aligned}$	$\begin{aligned} & \hline 12.8 \\ & 25.7 \end{aligned}$	$\begin{aligned} & 19.2 \\ & 38.4 \end{aligned}$	$\begin{aligned} & 15.4 \\ & 30.7 \end{aligned}$	$\begin{aligned} & 23.0 \\ & 46.0 \end{aligned}$	$\begin{aligned} & 18.7 \\ & 37.4 \end{aligned}$	$\begin{aligned} & 28.0 \\ & 56.0 \end{aligned}$
$\begin{aligned} & \text { STD = standar } \\ & \text { OVS = oversize } \\ & \text { SSLT = short-SI } \\ & \text { SSLP = short-SI } \\ & \text { LSL = long-slc } \end{aligned}$	hole hole ted hole with ted hole with ed hole with	length tran length par ength tran	verse to el to the erse or	line ne of f arallel to	ce line of	$\begin{aligned} & =\text { sing } \\ & =\text { douk } \end{aligned}$ ce	ear hear		
Hole Type	ASD	LRFD	Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads in the fillers. See AISC Specification Sections J3.8 and J5 for provisions when fillers are present. For Class B faying surfaces, multiply the tabulated available strength by 1.67 .						
STD and SSLT	$\Omega=1.50$	$\phi=1.00$							
OVS and SSLP	$\Omega=1.76$	$\phi=0.85$							
LSL	$\Omega=2.14$	$\phi=0.70$							

			le 7 itic e Sli Fayin) ctio , k $=0$		Grou Bo (Inclu A490 F2280	B s des and olts)
				up B B					
					al Bolt	ameter			
				Minimum	roup B	It Pret	on, ki		
Hole Type	Load								
		r_{n} / Ω	ϕr_{n}	r_{n} / Ω	ϕr_{n}	r_{n} / Ω	ϕr_{n}	r_{n} / Ω	$\phi \boldsymbol{r}_{n}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
STD/SSLT	$\begin{aligned} & \hline \mathrm{S} \\ & \mathrm{D} \end{aligned}$	$\begin{gathered} 5.42 \\ 10.8 \end{gathered}$	$\begin{gathered} \hline 8.14 \\ 16.3 \end{gathered}$	$\begin{gathered} \hline 7.91 \\ 15.8 \end{gathered}$	$\begin{aligned} & \hline 11.9 \\ & 23.7 \end{aligned}$	$\begin{aligned} & \hline 11.1 \\ & 22.1 \end{aligned}$	$\begin{aligned} & \hline 16.6 \\ & 33.2 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 28.9 \end{aligned}$	$\begin{aligned} & 21.7 \\ & 43.4 \end{aligned}$
OVS/SSLP	$\begin{aligned} & \mathrm{S} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 4.62 \\ & 9.25 \end{aligned}$	$\begin{gathered} \hline 6.92 \\ 13.8 \end{gathered}$	$\begin{gathered} \hline 6.74 \\ 13.5 \end{gathered}$	$\begin{aligned} & \hline 10.1 \\ & 20.2 \end{aligned}$	$\begin{gathered} \hline 9.44 \\ 18.9 \end{gathered}$	$\begin{aligned} & 14.1 \\ & 28.2 \end{aligned}$	$\begin{aligned} & 12.3 \\ & 24.7 \end{aligned}$	$\begin{aligned} & \hline 18.4 \\ & 36.9 \end{aligned}$
LSL	$\begin{aligned} & \hline \mathrm{S} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 3.80 \\ & 7.60 \end{aligned}$	$\begin{gathered} \hline 5.70 \\ 11.4 \end{gathered}$	$\begin{gathered} 5.54 \\ 11.1 \end{gathered}$	$\begin{gathered} \hline 8.31 \\ 16.6 \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.76 \\ 15.5 \\ \hline \end{gathered}$	$\begin{aligned} & 11.6 \\ & 23.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.1 \\ & 20.3 \end{aligned}$	$\begin{aligned} & 15.2 \\ & 30.4 \end{aligned}$
Hole Type	Loading	Nominal Bolt Diameter, \boldsymbol{d}, in.							
		11/8		11/4		13/8		11/2	
		Minimum Group B Bolt Pretension, kips							
		80		102		121		148	
		r_{n} / Ω	ϕr_{n}	r_{n} / Ω	ϕr_{n}	r_{n} / Ω	ϕr_{n}	r_{n} / Ω	ϕr_{n}
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
STD/SSLT	$\begin{aligned} & \hline \mathbf{S} \\ & \mathbf{D} \end{aligned}$	$\begin{aligned} & 18.1 \\ & 36.2 \end{aligned}$	$\begin{aligned} & 27.1 \\ & 54.2 \end{aligned}$	$\begin{aligned} & 23.1 \\ & 46.1 \end{aligned}$	$\begin{aligned} & \hline 34.6 \\ & 69.2 \end{aligned}$	$\begin{aligned} & 27.3 \\ & 54.7 \end{aligned}$	$\begin{aligned} & 41.0 \\ & 82.0 \end{aligned}$	$\begin{aligned} & 33.4 \\ & 66.9 \end{aligned}$	$\begin{gathered} \hline 50.2 \\ 100 \end{gathered}$
OVS/SSLP	$\begin{aligned} & \hline \mathbf{S} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 15.4 \\ & 30.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 23.1 \\ & 46.1 \end{aligned}$	$\begin{array}{r} 19.6 \\ 39.3 \\ \hline \end{array}$	$\begin{aligned} & 29.4 \\ & 58.8 \end{aligned}$	$\begin{aligned} & 23.3 \\ & 46.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 34.9 \\ & 69.7 \end{aligned}$	$\begin{aligned} & 28.5 \\ & 57.0 \end{aligned}$	$\begin{aligned} & 42.6 \\ & 85.3 \\ & \hline \end{aligned}$
LSL	$\begin{aligned} & \hline \mathbf{S} \\ & \mathbf{D} \end{aligned}$	$\begin{aligned} & 12.7 \\ & 25.3 \end{aligned}$	$\begin{aligned} & 19.0 \\ & 38.0 \end{aligned}$	$\begin{aligned} & 16.2 \\ & 32.3 \end{aligned}$	$\begin{aligned} & \hline 24.2 \\ & 48.4 \end{aligned}$	$\begin{aligned} & 19.2 \\ & 38.3 \end{aligned}$	$\begin{aligned} & 28.7 \\ & 57.4 \end{aligned}$	$\begin{aligned} & 23.4 \\ & 46.9 \end{aligned}$	$\begin{aligned} & 35.1 \\ & 70.2 \end{aligned}$
STD $=$ standard hole S $=$ single shear OVS $=$ oversized hole $D=$ double shear SSLT $=$ short--slotted hole with length transverse to the line of force SSLP = short-slotted hole with length parallel to the line of force LSL $=$ long-slotted hole with length transverse or parallel to the line of force									
Hole Type	ASD	LRFD	Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads in the fillers. See AISC Specification Sections J 3.8 and J 5 for provisions when fillers are present. For Class B faying surfaces, multiply the tabulated available strength by 1.67 .						
STD and SSLT	$\Omega=1.50$	$\phi=1.00$							
OVS and SSLP	$\Omega=1.76$	$\phi=0.85$							
LSL	$\Omega=2.14$	$\phi=0.70$							

Group C, Grade 2 Bolts		Slip-Critical Connections Available Slip Resistance, kips (Class A Faying Surface, $\mu=0.30$)							
Group C Bolts									
Hole Type	Loading	Nominal Bolt Diameter, d, in.							
		5/8		$3 / 4$		7/8		1	
		Minimum Group C Grade 2 Bolt Pretension, kips							
		-		-		-		90	
		r_{n} / Ω	ϕr_{n}	r_{n} / Ω	ϕr_{n}	r_{n} / Ω	$\phi \boldsymbol{r}_{n}$	r_{n} / Ω	ϕr_{n}
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
STD/SSLT		-	-					40.7	$\begin{aligned} & \hline 0.5 \\ & 1.0 \end{aligned}$
OVS/SSLP	S	-			-	-	-	$\begin{aligned} & 17.3 \\ & 34.7 \end{aligned}$	25.9
LSL	$\begin{aligned} & \hline \mathrm{S} \\ & \mathrm{D} \end{aligned}$	-	-	-	-	-	-	$\begin{aligned} & 14.3 \\ & 28.5 \end{aligned}$	21.4 42.7
Hole Type	Loading	Nominal Bolt Diameter, d, in.							
		11/8		11/4		$13 / 8$		11/2	
		Minimum Group C Grade 2 Bolt Pretension, kips							
		113		143		-		-	
		r_{n} / Ω	$\phi \boldsymbol{r}_{\boldsymbol{n}}$	r_{n} / Ω	ϕr_{n}	r_{n} / Ω	$\phi \boldsymbol{r}_{n}$	r_{n} / Ω	ϕr_{n}
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
STD/SSLT	$\begin{aligned} & \mathbf{S} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 25.5 \\ & 51.1 \end{aligned}$	$\begin{aligned} & 38.3 \\ & 76.6 \end{aligned}$	$\begin{array}{r} 32.3 \\ 64.6 \end{array}$	$\begin{aligned} & 48.5 \\ & 97.0 \end{aligned}$	-	-	-	-
OVS/SSLP	$\begin{aligned} & \mathrm{S} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 21.8 \\ & 43.5 \end{aligned}$	$\begin{aligned} & \hline 32.6 \\ & 65.1 \end{aligned}$	$\begin{array}{r} 27.5 \\ 55.1 \\ \hline \end{array}$	$\begin{aligned} & 41.2 \\ & 82.4 \end{aligned}$	-	-	-	-
LSL	$\begin{aligned} & \mathrm{S} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 17.9 \\ & 35.8 \end{aligned}$	$\begin{aligned} & \hline 26.8 \\ & 53.6 \end{aligned}$	$\begin{aligned} & \hline 22.7 \\ & 45.3 \end{aligned}$	$\begin{aligned} & \hline 33.9 \\ & 67.9 \end{aligned}$	-	-	-	-
STD = standard hole S = single shear OVS = oversized hole D $=$ double shear SSLT = short-slotted hole with length transverse to the line of force SSLP = short-slotted hole with length parallel to the line of force LSL = long-slotted hole with length transverse or parallel to the line of force									
Hole Type	ASD	LRFD	- Indicates that this grade is unavailable for the given diameter. Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads in the fillers. See AISC Specification Sections J 3.8 and J 5 for provisions when fillers are present. For Class B faying surfaces, multiply the tabulated available strength by 1.67 .						
STD and SSLT	$\Omega=1.50$	$\phi=1.00$							
OVS and SSLP	$\Omega=1.76$	$\phi=0.85$							
LSL	$\Omega=2.14$	$\phi=0.70$							

Table 7-4 Available Bearing and Tearout Strength at Bolt Holes Based on Bolt Spacing kip/in. thickness										
Hole Type	Bolt Spacing, s, in.	F_{u}, ksi	Nominal Bolt Diameter, d, in.							
			5/8		$3 / 4$		7/8		1	
			r_{n} / Ω	$\phi \boldsymbol{r}_{\boldsymbol{n}}$	r_{n} / Ω	$\phi \boldsymbol{r}_{\boldsymbol{n}}$	r_{n} / Ω	$\phi \boldsymbol{r}_{\boldsymbol{n}}$	r_{n} / Ω	$\phi \boldsymbol{r}_{\boldsymbol{n}}$
			ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$2^{2 / 3} d_{b}$	$\begin{aligned} & 58 \\ & 65 \\ & \hline \end{aligned}$	$\begin{array}{r} 34.1 \\ 38.2 \\ \hline \end{array}$	$\begin{aligned} & 51.1 \\ & 57.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 41.3 \\ & 46.3 \end{aligned}$	$\begin{aligned} & \hline 62.0 \\ & 69.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 48.6 \\ 54.4 \\ \hline \end{array}$	$\begin{aligned} & 72.9 \\ & 81.7 \end{aligned}$	$\begin{aligned} & \hline 53.7 \\ & 60.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 80.5 \\ & 90.2 \\ & \hline \end{aligned}$
	3 in.	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 43.5 \\ & 48.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 65.3 \\ & 73.1 \end{aligned}$	$\begin{array}{r} 52.2 \\ 58.5 \\ \hline \end{array}$	$\begin{aligned} & \hline 78.3 \\ & 87.8 \end{aligned}$	$\begin{array}{r} 60.9 \\ 68.3 \\ \hline \end{array}$	$\begin{gathered} 91.4 \\ 102 \end{gathered}$	$\begin{aligned} & \hline 65.3 \\ & 73.1 \\ & \hline \end{aligned}$	$\begin{gathered} 97.9 \\ 110 \end{gathered}$
SSLP	$2{ }^{2 / 3} d_{b}$	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 27.6 \\ & 30.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 41.3 \\ & 46.3 \\ & \hline \end{aligned}$	$\begin{array}{r} 34.8 \\ 39.0 \\ \hline \end{array}$	$\begin{aligned} & 52.2 \\ & 58.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 42.1 \\ & 47.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 63.1 \\ & 70.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 47.1 \\ & 52.8 \end{aligned}$	$\begin{aligned} & 70.7 \\ & 79.2 \\ & \hline \end{aligned}$
	3 in .	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 43.5 \\ & 48.8 \end{aligned}$	$\begin{aligned} & \hline 65.3 \\ & 73.1 \end{aligned}$	$\begin{aligned} & 52.2 \\ & 58.5 \end{aligned}$	$\begin{aligned} & \hline 78.3 \\ & 87.8 \end{aligned}$	$\begin{aligned} & 60.9 \\ & 68.3 \end{aligned}$	$\begin{gathered} 91.4 \\ 102 \end{gathered}$	$\begin{aligned} & 58.7 \\ & 65.8 \end{aligned}$	$\begin{aligned} & 88.1 \\ & 98.7 \end{aligned}$
OVS	$2{ }^{2 / 3} d_{b}$	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 29.7 \\ & 33.3 \end{aligned}$	$\begin{aligned} & 44.6 \\ & 50.0 \end{aligned}$	$\begin{aligned} & 37.0 \\ & 41.4 \end{aligned}$	$\begin{aligned} & \hline 55.5 \\ & 62.2 \end{aligned}$	$\begin{aligned} & \hline 44.2 \\ & 49.6 \end{aligned}$	$\begin{aligned} & \hline 66.3 \\ & 74.3 \end{aligned}$	$\begin{aligned} & \hline 49.3 \\ & 55.3 \end{aligned}$	$\begin{aligned} & 74.0 \\ & 82.9 \end{aligned}$
	3 in.	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{array}{r} 43.5 \\ 48.8 \\ \hline \end{array}$	$\begin{array}{r} \hline 65.3 \\ 73.1 \\ \hline \end{array}$	$\begin{array}{r} 52.2 \\ 58.5 \\ \hline \end{array}$	$\begin{array}{r} \hline 78.3 \\ 87.8 \\ \hline \end{array}$	$\begin{aligned} & \hline 60.9 \\ & 68.3 \\ & \hline \end{aligned}$	$\begin{gathered} 91.4 \\ 102 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 60.9 \\ & 68.3 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 91.4 \\ 102 \\ \hline \end{array}$
LSLP	$2^{2 / 3} d_{b}$	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 3.62 \\ & 4.06 \end{aligned}$	$\begin{aligned} & 5.44 \\ & 6.09 \end{aligned}$	$\begin{aligned} & 4.35 \\ & 4.88 \end{aligned}$	$\begin{aligned} & \hline 6.53 \\ & 7.31 \end{aligned}$	$\begin{aligned} & \hline 5.08 \\ & 5.69 \end{aligned}$	$\begin{aligned} & \hline 7.61 \\ & 8.53 \end{aligned}$	$\begin{aligned} & 5.80 \\ & 6.50 \end{aligned}$	$\begin{aligned} & 8.70 \\ & 9.75 \end{aligned}$
	3 in .	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & \hline 43.5 \\ & 48.8 \end{aligned}$	$\begin{aligned} & 65.3 \\ & 73.1 \end{aligned}$	$\begin{aligned} & 39.2 \\ & 43.9 \end{aligned}$	$\begin{aligned} & \hline 58.7 \\ & 65.8 \end{aligned}$	$\begin{aligned} & 28.3 \\ & 31.7 \end{aligned}$	$\begin{aligned} & 42.4 \\ & 47.5 \end{aligned}$	$\begin{aligned} & 17.4 \\ & 19.5 \end{aligned}$	$\begin{aligned} & 26.1 \\ & 29.3 \end{aligned}$
LSLT	$2^{2} / 3 d_{b}$	$\begin{array}{r} 58 \\ 65 \\ \hline \end{array}$	$\begin{array}{r} 28.4 \\ 31.8 \\ \hline \end{array}$	$\begin{array}{r} 42.6 \\ 47.7 \\ \hline \end{array}$	$\begin{array}{r} 34.4 \\ 38.6 \\ \hline \end{array}$	$\begin{array}{r} \hline 51.7 \\ 57.9 \\ \hline \end{array}$	$\begin{array}{r} 40.5 \\ 45.4 \\ \hline \end{array}$	$\begin{aligned} & 60.7 \\ & 68.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 44.7 \\ & 50.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 67.1 \\ & 75.2 \\ & \hline \end{aligned}$
	3 in.	$\begin{aligned} & \hline 58 \\ & 65 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 36.3 \\ & 40.6 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 54.4 \\ 60.9 \\ \hline \end{array}$	$\begin{aligned} & 43.5 \\ & 48.8 \end{aligned}$	$\begin{aligned} & 65.3 \\ & 73.1 \end{aligned}$	$\begin{aligned} & 50.8 \\ & 56.9 \end{aligned}$	$\begin{aligned} & 76.1 \\ & 85.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 54.4 \\ & 60.9 \end{aligned}$	$\begin{aligned} & 81.6 \\ & 91.4 \end{aligned}$
$\begin{array}{\|c\|} \hline \text { STD, SSLT, } \\ \text { SSLP, OVS, } \\ \text { LSLP } \end{array}$	$s \geq s_{\text {full }}$	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 43.5 \\ & 48.8 \end{aligned}$	$\begin{aligned} & 65.3 \\ & 73.1 \end{aligned}$	$\begin{aligned} & 52.2 \\ & 58.5 \end{aligned}$	$\begin{aligned} & 78.3 \\ & 87.8 \end{aligned}$	$\begin{aligned} & 60.9 \\ & 68.3 \end{aligned}$	$\begin{gathered} 91.4 \\ 102 \end{gathered}$	$\begin{aligned} & 69.6 \\ & 78.0 \end{aligned}$	$\begin{aligned} & 104 \\ & 117 \end{aligned}$
LSLT	$s \geq s_{\text {full }}$	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & \hline 36.3 \\ & 40.6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 54.4 \\ & 60.9 \end{aligned}$	$\begin{array}{r} 43.5 \\ 48.8 \\ \hline \end{array}$	$\begin{aligned} & \hline 65.3 \\ & 73.1 \end{aligned}$	$\begin{array}{r} \hline 50.8 \\ 56.9 \\ \hline \end{array}$	$\begin{aligned} & \hline 76.1 \\ & 85.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 58.0 \\ & 65.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 87.0 \\ & 97.5 \\ & \hline \end{aligned}$
Spacing for full bearing and tearout strength, $s_{\text {full }}{ }^{\text {a }}$, in.		$\begin{aligned} & \text { STD, } \\ & \text { SSLT, } \\ & \text { LSLT } \end{aligned}$	15/16		25/16		211/16		$31 / 8$	
		OVS	21/16		$2^{7 / 16}$		$2^{13 / 16}$		$31 / 4$	
		SSLP	21/8		21/2		27/8		35/16	
		LSLP	$2^{13 / 16}$		3/8		$3^{15 / 16}$		$41 / 2$	
Minimum Spacing ${ }^{\text {a }}=2^{2} / 3 d$, in.			${ }^{111 / 16}$		2		25/16		$2^{11 / 16}$	
STD = standard hole SSLT = short-slotted hole oriented with length transverse to the line of force SSLP = short-slotted hole oriented with length parallel to the line of force OVS = oversized hole LSLP = long-slotted hole oriented with length parallel to the line of force LSLT = long-slotted hole oriented with length transverse to the line of force										
ASD	LRFD	Note: Spacing indicated is from the center of the hole or slot to the center of the adjacent hole or slot in the line of force. Hole deformation is considered. When hole deformation is not considered, see AISC Specification Section J3.10. a Decimal value has been rounded to the nearest sixteenth of an inch.								
$\Omega=2.00$	$\phi=0.75$									

Bolt Holes Based on Bolt Spacing kip/in. thickness										
Hole Type	Bolt Spacing, s, in.	$F_{u}, \mathbf{k s i}$	Nominal Bolt Diameter, d, in.							
			11/8		11/4		13/8		11/2	
			r_{n} / Ω	$\phi \boldsymbol{r}_{\boldsymbol{n}}$	r_{n} / Ω	$\phi \boldsymbol{r}_{n}$	r_{n} / Ω	$\phi \boldsymbol{r}_{\boldsymbol{n}}$	r_{n} / Ω	$\phi \boldsymbol{r}_{\boldsymbol{n}}$
			ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$2{ }^{2} / 3 d_{b}$	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & \hline 60.9 \\ & 68.3 \end{aligned}$	$\begin{gathered} 91.4 \\ 102 \end{gathered}$	68.2	$\begin{aligned} & 102 \\ & 115 \end{aligned}$	$\begin{aligned} & 75.4 \\ & 84.5 \end{aligned}$	$\begin{aligned} & 113 \\ & 127 \end{aligned}$	$\begin{aligned} & 82.7 \\ & 92.6 \end{aligned}$	$\begin{aligned} & 124 \\ & 139 \end{aligned}$
	3 in.	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 60.9 \\ & 68.3 \end{aligned}$	$\begin{gathered} 91.4 \\ 102 \end{gathered}$	-	-	-	-	-	-
SSLP	$2^{2} / 3 d_{b}$	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 52.2 \\ & 58.5 \end{aligned}$	$\begin{aligned} & \hline 78.3 \\ & 87.8 \end{aligned}$	$\begin{aligned} & 59.5 \\ & 66.6 \end{aligned}$	$\begin{aligned} & 89.2 \\ & 99.9 \end{aligned}$	$\begin{aligned} & 66.7 \\ & 74.8 \end{aligned}$	$\begin{aligned} & 100 \\ & 112 \end{aligned}$	$\begin{aligned} & 74.0 \\ & 82.9 \end{aligned}$	$\begin{aligned} & 111 \\ & 124 \end{aligned}$
	3 in.	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 52.2 \\ & 58.5 \end{aligned}$	$\begin{aligned} & \hline 78.3 \\ & 87.8 \end{aligned}$	-	-	-	-	-	-
OVS	$2{ }^{2} / 3 d_{b}$	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 54.4 \\ & 60.9 \end{aligned}$	$\begin{aligned} & \hline 81.6 \\ & 91.4 \end{aligned}$	$\begin{aligned} & 61.6 \\ & 69.1 \end{aligned}$	$\begin{gathered} 92.4 \\ 104 \end{gathered}$	$\begin{aligned} & 68.9 \\ & 77.2 \end{aligned}$	$\begin{aligned} & \hline 103 \\ & 116 \end{aligned}$	$\begin{aligned} & 76.1 \\ & 85.3 \end{aligned}$	$\begin{aligned} & \hline 114 \\ & 128 \end{aligned}$
	3 in.	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 54.4 \\ & 60.9 \end{aligned}$	$\begin{aligned} & 81.6 \\ & 91.4 \\ & \hline \end{aligned}$	-	-	-	-	-	-
LSLP	$2^{2} / 3 d_{b}$	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 6.53 \\ & 7.31 \end{aligned}$	$\begin{gathered} 9.79 \\ 11.0 \end{gathered}$	$\begin{aligned} & \hline 7.25 \\ & 8.13 \end{aligned}$	$\begin{aligned} & \hline 10.9 \\ & 12.2 \end{aligned}$	$\begin{aligned} & \hline 7.98 \\ & 8.94 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 13.4 \end{aligned}$	$\begin{aligned} & 8.70 \\ & 9.75 \end{aligned}$	$\begin{aligned} & 13.1 \\ & 14.6 \end{aligned}$
	3 in.	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 6.53 \\ & 7.31 \end{aligned}$	$\begin{gathered} 9.79 \\ 11.0 \end{gathered}$	-	-	-	-	-	-
LSLT	$2^{2} / 3 d_{b}$	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 50.8 \\ & 56.9 \end{aligned}$	$\begin{aligned} & \hline 76.1 \\ & 85.3 \end{aligned}$	$\begin{aligned} & 56.8 \\ & 63.6 \end{aligned}$	$\begin{aligned} & \hline 85.2 \\ & 95.5 \end{aligned}$	$\begin{aligned} & 62.8 \\ & 70.4 \end{aligned}$	$\begin{gathered} 94.3 \\ 106 \end{gathered}$	$\begin{aligned} & \hline 68.9 \\ & 77.2 \end{aligned}$	$\begin{aligned} & \hline 103 \\ & 116 \end{aligned}$
	3 in.	$\begin{aligned} & 58 \\ & 65 \\ & \hline \end{aligned}$	$\begin{aligned} & 50.8 \\ & 56.9 \end{aligned}$	$\begin{aligned} & \hline 76.1 \\ & 85.3 \end{aligned}$	-	-	-	-	-	-
$\begin{gathered} \hline \text { STD, SSLT, } \\ \text { SSLP, OVS, } \\ \text { LSLP } \\ \hline \end{gathered}$	$\boldsymbol{s} \geq \boldsymbol{s}_{\text {full }}$	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 78.3 \\ & 87.8 \end{aligned}$	$\begin{aligned} & 117 \\ & 132 \end{aligned}$	$\begin{aligned} & 87.0 \\ & 97.5 \end{aligned}$	$\begin{aligned} & 131 \\ & 146 \end{aligned}$	$\begin{gathered} 95.7 \\ 107 \end{gathered}$	$\begin{aligned} & 144 \\ & 161 \end{aligned}$	$\begin{aligned} & 104 \\ & 117 \end{aligned}$	$\begin{aligned} & 157 \\ & 176 \end{aligned}$
LSLT	$s \geq s_{\text {full }}$	$\begin{aligned} & 58 \\ & 65 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 65.3 \\ & 73.1 \\ & \hline \end{aligned}$	$\begin{gathered} 97.9 \\ 110 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 72.5 \\ & 81.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 109 \\ & 122 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 79.8 \\ & 89.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 120 \\ & 134 \\ & \hline \end{aligned}$	$\begin{aligned} & 87.0 \\ & 97.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 131 \\ & 146 \\ & \hline \end{aligned}$
Spacing for full bearing and tearout strength $s_{\text {full }}{ }^{\text {a }}$, in.		STD, SSLT, LSLT	3112		$3^{7 / 8}$		41/4		45/8	
		OVS	$3^{11 / 16}$		41/16		47/16		413/16	
		SSLP	$33 / 4$		41/8		41122		$47 / 8$	
		LSLP	51/16		55/8		63/16		63/4	
Minimum Spacing ${ }^{\text {a }}=\mathbf{2}^{2} / 3 \mathrm{~d}$, in.			3		$35 / 16$		$3^{11 / 16}$		4	
$\begin{aligned} & \text { STD = standard hole } \\ & \text { SSLT = short-slotted hole oriented with length transverse to the line of force } \\ & \text { SSLP = short-slotted hole oriented with length parallel to the line of force } \\ & \text { OVS = oversized hole } \\ & \text { LSLP = long-slotted hole oriented with length parallel to the line of force } \\ & \text { LSLT = long-slotted hole oriented with length transverse to the line of force } \end{aligned}$										
ASD	LRFD	- Indicates spacing less than minimum spacing required per AISC Specification Section J3.3. Note: Spacing indicated is from the center of the hole or slot to the center of the adjacent hole or slot in the line of force. Hole deformation is considered. When hole deformation is not considered, see AISC Specification Section J3.10. a Decimal value has been rounded to the nearest sixteenth of an inch.								
$\Omega=2.00$	$\phi=0.75$									

Table 7-5 Available Bearing and Tearout Strength at Bolt Holes Based on Edge Distance kip/in. thickness										
Hole Type	Edge Distance, l_{e}, in.	$F_{u}, \mathbf{k s i}$	Nominal Bolt Diameter, d, in.							
			5/8		$3 / 4$		7/8		1	
			r_{n} / Ω	$\phi \boldsymbol{r}_{\boldsymbol{n}}$	r_{n} / Ω	$\phi \boldsymbol{r}_{\boldsymbol{n}}$	r_{n} / Ω	ϕr_{n}	r_{n} / Ω	ϕr_{n}
			ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	11/4	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 31.5 \\ & 35.3 \end{aligned}$	$\begin{aligned} & \hline 47.3 \\ & 53.0 \end{aligned}$	$\begin{aligned} & \hline 29.4 \\ & 32.9 \end{aligned}$	$\begin{aligned} & \hline 44.0 \\ & 49.4 \end{aligned}$	$\begin{aligned} & 27.2 \\ & 30.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 40.8 \\ & 45.7 \end{aligned}$	$\begin{aligned} & \hline 23.9 \\ & 26.8 \end{aligned}$	$\begin{aligned} & 35.9 \\ & 40.2 \end{aligned}$
	2	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & \hline 43.5 \\ & 48.8 \end{aligned}$	$\begin{aligned} & \hline 65.3 \\ & 73.1 \end{aligned}$	$\begin{aligned} & 52.2 \\ & 58.5 \end{aligned}$	$\begin{aligned} & \hline 78.3 \\ & 87.8 \end{aligned}$	$\begin{aligned} & 53.3 \\ & 59.7 \end{aligned}$	$\begin{aligned} & \hline 79.9 \\ & 89.6 \end{aligned}$	$\begin{aligned} & 50.0 \\ & 56.1 \end{aligned}$	$\begin{aligned} & \hline 75.0 \\ & 84.1 \end{aligned}$
SSLP	11/4	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 28.3 \\ & 31.7 \end{aligned}$	$\begin{aligned} & 42.4 \\ & 47.5 \end{aligned}$	$\begin{aligned} & \hline 26.1 \\ & 29.3 \end{aligned}$	$\begin{aligned} & 39.2 \\ & 43.9 \end{aligned}$	$\begin{aligned} & \hline 23.9 \\ & 26.8 \end{aligned}$	$\begin{aligned} & 35.9 \\ & 40.2 \end{aligned}$	$\begin{aligned} & 20.7 \\ & 23.2 \end{aligned}$	$\begin{aligned} & 31.0 \\ & 34.7 \end{aligned}$
	2	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & \hline 43.5 \\ & 48.8 \end{aligned}$	$\begin{aligned} & \hline 65.3 \\ & 73.1 \end{aligned}$	$\begin{aligned} & 52.2 \\ & 58.5 \end{aligned}$	$\begin{aligned} & \hline 78.3 \\ & 87.8 \end{aligned}$	$\begin{aligned} & 50.0 \\ & 56.1 \end{aligned}$	$\begin{aligned} & \hline 75.0 \\ & 84.1 \end{aligned}$	$\begin{aligned} & 46.8 \\ & 52.4 \end{aligned}$	$\begin{aligned} & \hline 70.1 \\ & 78.6 \end{aligned}$
OVS	11/4	$\begin{aligned} & 58 \\ & 65 \\ & \hline \end{aligned}$	$\begin{aligned} & 29.4 \\ & 32.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 44.0 \\ & 49.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 27.2 \\ & 30.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 40.8 \\ & 45.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 25.0 \\ & 28.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 37.5 \\ & 42.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 21.8 \\ & 24.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 32.6 \\ & 36.6 \\ & \hline \end{aligned}$
	2	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 43.5 \\ & 48.8 \end{aligned}$	$\begin{aligned} & \hline 65.3 \\ & 73.1 \end{aligned}$	$\begin{aligned} & 52.2 \\ & 58.5 \end{aligned}$	$\begin{aligned} & \hline 78.3 \\ & 87.8 \end{aligned}$	$\begin{aligned} & 51.1 \\ & 57.3 \end{aligned}$	$\begin{aligned} & \hline 76.7 \\ & 85.9 \end{aligned}$	$\begin{aligned} & 47.9 \\ & 53.6 \end{aligned}$	$\begin{aligned} & \hline 71.8 \\ & 80.4 \end{aligned}$
LSLP	$11 / 4$	$\begin{aligned} & 58 \\ & 65 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 16.3 \\ & 18.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 24.5 \\ & 27.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.9 \\ & 12.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 16.3 \\ & 18.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5.44 \\ & 6.09 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8.16 \\ & 9.14 \\ & \hline \end{aligned}$	-	-
	2	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 42.4 \\ & 47.5 \end{aligned}$	$\begin{aligned} & \hline 63.6 \\ & 71.3 \end{aligned}$	$\begin{aligned} & 37.0 \\ & 41.4 \end{aligned}$	$\begin{aligned} & \hline 55.5 \\ & 62.2 \end{aligned}$	$\begin{aligned} & 31.5 \\ & 35.3 \end{aligned}$	$\begin{aligned} & \hline 47.3 \\ & 53.0 \end{aligned}$	$\begin{aligned} & \hline 26.1 \\ & 29.3 \end{aligned}$	$\begin{aligned} & 39.2 \\ & 43.9 \end{aligned}$
LSLT	11/4	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & \hline 26.3 \\ & 29.5 \end{aligned}$	$\begin{aligned} & \hline 39.4 \\ & 44.2 \end{aligned}$	$\begin{aligned} & \hline 24.5 \\ & 27.4 \end{aligned}$	$\begin{aligned} & 36.7 \\ & 41.1 \end{aligned}$	$\begin{aligned} & \hline 22.7 \\ & 25.4 \end{aligned}$	$\begin{aligned} & 34.0 \\ & 38.1 \end{aligned}$	$\begin{aligned} & \hline 19.9 \\ & 22.3 \end{aligned}$	29.9 33.5
	2	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 36.3 \\ & 40.6 \end{aligned}$	$\begin{aligned} & \hline 54.4 \\ & 60.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 43.5 \\ & 48.8 \end{aligned}$	$\begin{aligned} & 65.3 \\ & 73.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 44.4 \\ & 49.8 \end{aligned}$	$\begin{aligned} & \hline 66.6 \\ & 74.6 \end{aligned}$	$\begin{aligned} & \hline 41.7 \\ & 46.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 62.5 \\ & 70.1 \end{aligned}$
$\begin{aligned} & \text { STD, SSLT, } \\ & \text { SSLP, OVS, } \\ & \text { LSLP } \end{aligned}$	$l_{e} \geq l_{\text {efull }}$	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 43.5 \\ & 48.8 \end{aligned}$	$\begin{aligned} & 65.3 \\ & 73.1 \end{aligned}$	$\begin{aligned} & 52.2 \\ & 58.5 \end{aligned}$	$\begin{aligned} & 78.3 \\ & 87.8 \end{aligned}$	$\begin{aligned} & 60.9 \\ & 68.3 \end{aligned}$	$\begin{gathered} 91.4 \\ 102 \end{gathered}$	$\begin{aligned} & 69.6 \\ & 78.0 \end{aligned}$	$\begin{aligned} & 104 \\ & 117 \end{aligned}$
LSLT	$l_{e} \geq l_{e}$ full	$\begin{aligned} & 58 \\ & 65 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 36.3 \\ 40.6 \\ \hline \end{array}$	$\begin{aligned} & \hline 54.4 \\ & 60.9 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 43.5 \\ & 48.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 65.3 \\ & 73.1 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 50.8 \\ 56.9 \\ \hline \end{array}$	$\begin{aligned} & \hline 76.1 \\ & 85.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 58.0 \\ & 65.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 87.0 \\ & 97.5 \\ & \hline \end{aligned}$
Edge distance for full bearing and tearout strength $l_{e} \geq l_{e}$ fulla, in.		STD, SSLT, LSLT	$15 / 8$		115/16		21/4		29/16	
		OVS	111/16		2		25/16		25/8	
		SSLP	111/16		2		$25 / 16$		$2^{11 / 16}$	
		LSLP	21/16		27/16		$2^{7} / 8$		$31 / 4$	
STD = standard hole SSLT = short-slotted hole oriented with length transverse to the line of force SSLP = short-slotted hole oriented with length parallel to the line of force OVS = oversized hole LSLP = long-slotted hole oriented with length parallel to the line of force LSLT = long-slotted hole oriented with length transverse to the line of force										
ASD	LRFD	- Indicates edge distance less than minimum required per AISC Specification Section J3.4. Note: Edge distance indicated is from the center of the hole or slot to the edge of the element in the line of force. Hole deformation is considered. When hole deformation is not considered, see AISC Specification Section J3.10. a Decimal value has been rounded to the nearest sixteenth of an inch.								
$\Omega=2.00$	$\phi=0.75$									

Table 7-5 (continued) Available Bearing and Tearout Strength at Bolt Holes Based on Edge Distance kip/in. thickness										
Hole Type	Edge Distance, l_{e}, in.	$F_{u}, \mathbf{k s i}$	Nominal Bolt Diameter, d, in.							
			11/8		11/4		13/8		11/2	
			r_{n} / Ω	$\phi \boldsymbol{r}_{\boldsymbol{n}}$	r_{n} / Ω	$\phi \boldsymbol{r}_{\boldsymbol{n}}$	r_{n} / Ω	ϕr_{n}	r_{n} / Ω	$\phi \boldsymbol{r}_{\boldsymbol{n}}$
			ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	11/4	$\begin{aligned} & 58 \\ & 65 \\ & \hline \end{aligned}$	$\begin{aligned} & 21.8 \\ & 24.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 32.6 \\ & 36.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 19.6 \\ & 21.9 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 29.4 \\ & 32.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 17.4 \\ & 19.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 26.1 \\ & 29.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 15.2 \\ & 17.1 \end{aligned}$	$\begin{aligned} & \hline 22.8 \\ & 25.6 \\ & \hline \end{aligned}$
	2	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 47.9 \\ & 53.6 \end{aligned}$	$\begin{aligned} & \hline 71.8 \\ & 80.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 45.7 \\ & 51.2 \end{aligned}$	$\begin{aligned} & \hline 68.5 \\ & 76.8 \end{aligned}$	$\begin{aligned} & 43.5 \\ & 48.8 \end{aligned}$	$\begin{aligned} & 65.3 \\ & 73.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 41.3 \\ & 46.3 \end{aligned}$	$\begin{aligned} & \hline 62.0 \\ & 69.5 \end{aligned}$
SSLP	11/4	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 17.4 \\ & 19.5 \end{aligned}$	$\begin{aligned} & \hline 26.1 \\ & 29.3 \end{aligned}$	$\begin{aligned} & 15.2 \\ & 17.1 \end{aligned}$	$\begin{aligned} & \hline 22.8 \\ & 25.6 \end{aligned}$	$\begin{aligned} & 13.1 \\ & 14.6 \end{aligned}$	$\begin{aligned} & \hline 19.6 \\ & 21.9 \end{aligned}$	$\begin{aligned} & 10.9 \\ & 12.2 \end{aligned}$	$\begin{aligned} & \hline 16.3 \\ & 18.3 \end{aligned}$
	2	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 43.5 \\ & 48.8 \end{aligned}$	$\begin{aligned} & \hline 65.3 \\ & 73.1 \end{aligned}$	$\begin{aligned} & 41.3 \\ & 46.3 \end{aligned}$	$\begin{aligned} & \hline 62.0 \\ & 69.5 \end{aligned}$	$\begin{aligned} & 39.2 \\ & 43.9 \end{aligned}$	$\begin{aligned} & \hline 58.7 \\ & 65.8 \end{aligned}$	$\begin{aligned} & 37.0 \\ & 41.4 \end{aligned}$	$\begin{aligned} & \hline 55.5 \\ & 62.2 \end{aligned}$
OVS	11/4	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 18.5 \\ & 20.7 \end{aligned}$	$\begin{aligned} & \hline 27.7 \\ & 31.1 \end{aligned}$	$\begin{aligned} & \hline 16.3 \\ & 18.3 \end{aligned}$	$\begin{aligned} & \hline 24.5 \\ & 27.4 \end{aligned}$	$\begin{aligned} & 14.1 \\ & 15.8 \end{aligned}$	$\begin{aligned} & 21.2 \\ & 23.8 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 13.4 \end{aligned}$	$\begin{aligned} & \hline 17.9 \\ & 20.1 \end{aligned}$
	2	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{array}{r} 44.6 \\ 50.0 \\ \hline \end{array}$	$\begin{aligned} & 66.9 \\ & 75.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 42.4 \\ 47.5 \\ \hline \end{array}$	$\begin{aligned} & 63.6 \\ & 71.3 \\ & \hline \end{aligned}$	$\begin{array}{r} 40.2 \\ 45.1 \\ \hline \end{array}$	$\begin{aligned} & 60.4 \\ & 67.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 38.1 \\ & 42.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 57.1 \\ & 64.0 \\ & \hline \end{aligned}$
LSLP	$11 / 4$	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	-	-	-	-	-	-	-	-
	2	$\begin{aligned} & 58 \\ & 65 \\ & \hline \end{aligned}$	$\begin{aligned} & 20.7 \\ & 23.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 31.0 \\ & 34.7 \end{aligned}$	$\begin{aligned} & 15.2 \\ & 17.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 22.8 \\ & 25.6 \end{aligned}$	$\begin{gathered} 9.79 \\ 11.0 \end{gathered}$	$\begin{aligned} & 14.7 \\ & 16.5 \end{aligned}$	$\begin{aligned} & 4.35 \\ & 4.88 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.53 \\ & 7.31 \\ & \hline \end{aligned}$
LSLT	11/4	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 18.1 \\ & 20.3 \end{aligned}$	$\begin{aligned} & 27.2 \\ & 30.5 \end{aligned}$	$\begin{aligned} & 16.3 \\ & 18.3 \end{aligned}$	$\begin{aligned} & \hline 24.5 \\ & 27.4 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 16.3 \end{aligned}$	$\begin{aligned} & \hline 21.8 \\ & 24.4 \end{aligned}$	$\begin{aligned} & 12.7 \\ & 14.2 \end{aligned}$	$\begin{aligned} & \hline 19.0 \\ & 21.3 \end{aligned}$
	2	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{array}{r} 39.9 \\ 44.7 \\ \hline \end{array}$	$\begin{aligned} & 59.8 \\ & 67.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 38.1 \\ & 42.7 \end{aligned}$	$\begin{aligned} & 57.1 \\ & 64.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 36.3 \\ 40.6 \\ \hline \end{array}$	$\begin{aligned} & 54.4 \\ & 60.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 34.4 \\ & 38.6 \end{aligned}$	$\begin{array}{r} 51.7 \\ 57.9 \\ \hline \end{array}$
$\begin{array}{\|c} \hline \text { STD, SSLT, } \\ \text { SSLP, OVS, } \\ \text { LSLP } \end{array}$	$l_{e} \geq l_{e}$ full	$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 78.3 \\ & 87.8 \end{aligned}$	$\begin{aligned} & 117 \\ & 132 \end{aligned}$	$\begin{aligned} & 87.0 \\ & 97.5 \end{aligned}$	$\begin{aligned} & 131 \\ & 146 \end{aligned}$	$\begin{gathered} 95.7 \\ 107 \end{gathered}$	$\begin{aligned} & 144 \\ & 161 \end{aligned}$	$\begin{aligned} & 104 \\ & 117 \end{aligned}$	$\begin{aligned} & 157 \\ & 176 \end{aligned}$
LSLT	$l_{e} \geq l_{e}$ full	$\begin{aligned} & 58 \\ & 65 \\ & \hline \end{aligned}$	$\begin{array}{r} 65.3 \\ 73.1 \\ \hline \end{array}$	$\begin{gathered} 97.9 \\ 110 \\ \hline \end{gathered}$	$\begin{array}{r} 72.5 \\ 81.3 \\ \hline \end{array}$	$\begin{aligned} & 109 \\ & 122 \\ & \hline \end{aligned}$	$\begin{aligned} & 79.8 \\ & 89.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 120 \\ & 134 \\ & \hline \end{aligned}$	$\begin{aligned} & 87.0 \\ & 97.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 131 \\ & 146 \\ & \hline \end{aligned}$
Edge distance for full bearing and tearout strength $l_{e} \geq l_{e}$ full ${ }^{\mathrm{a}}$, in.		$\begin{aligned} & \text { STD, } \\ & \text { SSLT, } \\ & \text { LSLT } \end{aligned}$	$2^{7 / 8}$		$33 / 16$		$31 / 2$		$3^{13 / 16}$	
		OVS	3		$35 / 16$		35/8		$3^{15} / 16$	
		SSLP	3		$35 / 16$		35/8		$3^{15} / 16$	
		LSLP	$3^{11 / 16}$		41/16		$41 / 2$		$47 / 8$	
STD = standard holeSSLT = short-slotted hole oriented with length transverse to the line of forceSSLP = short-slotted hole oriented with length parallel to the line of forceOVS = oversized holeLSLP = long-slotted hole oriented with length parallel to the line of forceLSLT = long-slotted hole oriented with length transverse to the line of force										
ASD $=2.00$	$\phi=0.75$	- Indicates edge distance less than minimum required per AISC Specification Section J3.4. Note: Edge distance indicated is from the center of the hole or slot to the edge of the element in the line of force. Hole deformation is considered. When hole deformation is not considered, see AISC Specification Section J3.10. a Decimal value has been rounded to the nearest sixteenth of an inch.								

Table 7-6 Coefficients C for Eccentrically Loaded Bolt Groups Angle $=0^{\circ}$												
Available strength of a bolt group, ϕR_{n} or R_{n} / Ω, is determined with $R_{n}=C r_{n}$ or				where $P=$ required force, P_{u} or P_{a}, kips $r_{n}=$ nominal strength per bolt, kips $e_{x}=$ horizontal distance from the centroid of the bolt group to the line of action of P, in. $s=$ bolt spacing, in. $C=$ coefficient tabulated below								
s, in.	e_{x}, in.	Number of Bolts in One Vertical Row, n										
		2	3	4	5	6	7	8	9	10	11	12
3	1	1.63	2.71	3.75	4.77	5.77	6.77	7.76	8.75	9.74	10.7	11.7
	2	1.18	2.23	3.32	4.39	5.45	6.48	7.51	8.52	9.53	10.5	11.5
	3	0.88	1.75	2.81	3.90	4.98	6.06	7.12	8.17	9.21	10.2	11.3
	4	0.69	1.40	2.36	3.40	4.47	5.56	6.64	7.72	8.78	9.84	10.9
	5	0.56	1.15	2.01	2.96	3.98	5.05	6.13	7.22	8.30	9.38	10.4
	6	0.48	0.97	1.73	2.59	3.55	4.57	5.63	6.70	7.79	8.87	9.96
	7	0.41	0.83	1.51	2.28	3.17	4.13	5.15	6.20	7.28	8.36	9.44
	8	0.36	0.73	1.34	2.04	2.85	3.75	4.72	5.73	6.78	7.85	8.93
	9	0.32	0.65	1.21	1.83	2.59	3.42	4.34	5.31	6.32	7.36	8.42
	10	0.29	0.59	1.09	1.66	2.36	3.14	4.00	4.92	5.89	6.90	7.94
	12	0.24	0.49	0.92	1.40	2.00	2.68	3.44	4.27	5.15	6.09	7.06
	14	0.21	0.42	0.79	1.21	1.74	2.33	3.01	3.75	4.55	5.41	6.31
	16	0.18	0.37	0.70	1.06	1.53	2.06	2.67	3.33	4.06	4.85	5.68
	18	0.16	0.33	0.62	0.95	1.37	1.84	2.39	3.00	3.66	4.38	5.15
	20	0.15	0.29	0.56	0.85	1.24	1.67	2.16	2.72	3.33	3.99	4.70
	24	0.12	0.25	0.47	0.71	1.03	1.40	1.82	2.29	2.81	3.37	3.99
	28	0.11	0.21	0.40	0.61	0.89	1.20	1.57	1.97	2.42	2.92	3.45
	32	0.09	0.18	0.35	0.54	0.78	1.05	1.37	1.73	2.13	2.57	3.04
	36	0.08	0.16	0.31	0.48	0.69	0.94	1.22	1.54	1.90	2.29	2.72
	C^{\prime}, in.	2.94	5.89	11.3	17.1	25.1	33.8	44.4	55.9	69.2	83.5	100
6	1	1.86	2.88	3.88	4.87	5.86	6.84	7.83	8.81	9.80	10.8	11.8
	2	1.63	2.71	3.75	4.77	5.77	6.77	7.76	8.75	9.74	10.7	11.7
	3	1.39	2.48	3.56	4.60	5.63	6.65	7.65	8.66	9.66	10.7	11.6
	4	1.18	2.23	3.32	4.39	5.45	6.48	7.51	8.52	9.53	10.5	11.5
	5	1.01	1.98	3.07	4.15	5.23	6.28	7.33	8.36	9.38	10.4	11.4
	6	0.88	1.75	2.81	3.90	4.98	6.06	7.12	8.17	9.21	10.2	11.3
	7	0.77	1.56	2.58	3.64	4.73	5.81	6.89	7.95	9.00	10.1	11.1
	8	0.69	1.40	2.36	3.40	4.47	5.56	6.64	7.72	8.78	9.84	10.9
	9	0.62	1.26	2.17	3.17	4.22	5.30	6.39	7.47	8.55	9.61	10.7
	10	0.56	1.15	2.01	2.96	3.98	5.05	6.13	7.22	8.30	9.38	10.4
	12	0.48	0.97	1.73	2.59	3.55	4.57	5.63	6.70	7.79	8.87	9.96
	14	0.41	0.83	1.51	2.28	3.17	4.13	5.15	6.20	7.28	8.36	9.44
	16	0.36	0.73	1.34	2.04	2.85	3.75	4.72	5.73	6.78	7.85	8.93
	18	0.32	0.65	1.21	1.83	2.59	3.42	4.34	5.31	6.32	7.36	8.42
	20	0.29	0.59	1.09	1.66	2.36	3.14	4.00	4.92	5.89	6.90	7.94
	24	0.24	0.49	0.92	1.40	2.00	2.68	3.44	4.27	5.15	6.09	7.06
	28	0.21	0.42	0.79	1.21	1.74	2.33	3.01	3.75	4.55	5.41	6.31
	32	0.18	0.37	0.70	1.06	1.53	2.06	2.67	3.33	4.06	4.85	5.68
	36	0.16	0.33	0.62	0.95	1.37	1.84	2.39	3.00	3.66	4.38	5.15
	C^{\prime}, in.	5.89	11.8	22.5	34.3	50.2	67.6	88.8	112	138	167	199

Table 7-6 (continued) Coefficients C for Eccentrically Loaded Bolt Groups												
$\text { Angle }=15^{\circ}$												
Available strength of a bolt group ϕR_{n} or R_{n} / Ω, is determined with $R_{n}=C r_{n}$ or				where $P=$ required force, P_{u} or P_{a}, kips $r_{n}=$ nominal strength per bolt, kips $e_{X}=$ horizontal distance from the centroid of the bolt group to the line of action of P, in. $s=$ bolt spacing, in. $C=$ coefficient tabulated below								
LRFD		ASD										
$C_{\text {min }}=\frac{P_{u}}{\phi r_{n}}$		$C_{\text {min }}=\frac{\Omega P_{a}}{r_{n}}$										
s, in.	e_{x}, in.	Number of Bolts in One Vertical Row, n										
		2	3	4	5	6	7	8	9	10	11	12
	1	1.61	2.69	3.72	4.74	5.74	6.74	7.73	8.72	9.71	10.7	11.7
	2	1.15	2.20	3.28	4.34	5.39	6.42	7.45	8.46	9.47	10.5	11.5
	3	0.86	1.76	2.78	3.85	4.92	5.98	7.03	8.08	9.11	10.1	11.2
	4	0.67	1.42	2.35	3.36	4.41	5.48	6.55	7.61	8.67	9.72	10.8
	5	0.55	1.17	2.00	2.94	3.94	4.98	6.04	7.11	8.18	9.24	10.3
	6	0.47	0.99	1.73	2.58	3.52	4.52	5.55	6.61	7.67	8.74	9.81
	7	0.41	0.86	1.52	2.30	3.16	4.11	5.10	6.13	7.18	8.24	9.30
	8	0.36	0.75	1.35	2.06	2.86	3.74	4.69	5.68	6.70	7.74	8.80
	9	0.32	0.67	1.22	1.86	2.60	3.43	4.32	5.27	6.26	7.28	8.31
3	10	0.29	0.61	1.10	1.69	2.38	3.16	4.00	4.90	5.85	6.84	7.85
	12	0.24	0.51	0.93	1.43	2.03	2.71	3.46	4.28	5.15	6.06	7.01
	14	0.21	0.43	0.81	1.24	1.76	2.37	3.04	3.78	4.57	5.41	6.30
	16	0.19	0.38	0.71	1.09	1.56	2.10	2.70	3.37	4.09	4.87	5.69
	18	0.17	0.34	0.63	0.97	1.39	1.88	2.43	3.04	3.70	4.42	5.18
	20	0.15	0.30	0.57	0.88	1.26	1.70	2.20	2.76	3.37	4.03	4.74
	24	0.12	0.25	0.48	0.73	1.06	1.43	1.86	2.33	2.86	3.43	4.04
	28	0.11	0.22	0.41	0.63	0.91	1.23	1.60	2.02	2.47	2.97	3.51
	32	0.09	0.19	0.36	0.55	0.80	1.08	1.41	1.77	2.18	2.62	3.10
	36	0.08	0.17	0.32	0.49	0.71	0.96	1.26	1.58	1.95	2.34	2.78
6	1	1.85	2.87	3.87	4.86	5.84	6.83	7.81	8.80	9.78	10.8	11.7
	2	1.61	2.69	3.72	4.74	5.74	6.74	7.73	8.73	9.71	10.7	11.7
	3	1.36	2.45	3.52	4.56	5.59	6.60	7.61	8.61	9.61	10.6	11.6
	4	1.15	2.20	3.28	4.34	5.39	6.42	7.45	8.46	9.47	10.5	11.5
	5	0.98	1.96	3.03	4.10	5.16	6.21	7.25	8.28	9.30	10.3	11.3
	6	0.86	1.76	2.78	3.85	4.92	5.98	7.03	8.08	9.11	10.1	11.2
	7	0.75	1.57	2.55	3.60	4.66	5.73	6.80	7.85	8.90	9.94	11.0
	8	0.67	1.42	2.35	3.36	4.41	5.48	6.55	7.61	8.67	9.72	10.8
	9	0.61	1.29	2.16	3.14	4.17	5.23	6.30	7.36	8.43	9.49	10.5
	10	0.55	1.17	2.00	2.94	3.94	4.98	6.04	7.11	8.18	9.24	10.3
	12	0.47	0.99	1.73	2.58	3.52	4.52	5.55	6.61	7.67	8.74	9.81
	14	0.41	0.86	1.52	2.30	3.16	4.11	5.10	6.13	7.18	8.24	9.30
	16	0.36	0.75	1.35	2.06	2.86	3.74	4.69	5.68	6.70	7.74	8.80
	18	0.32	0.67	1.22	1.86	2.60	3.43	4.32	5.27	6.26	7.28	8.31
	20	0.29	0.61	1.10	1.69	2.38	3.16	4.00	4.90	5.85	6.84	7.85
	24	0.24	0.51	0.93	1.43	2.03	2.71	3.46	4.28	5.15	6.06	7.01
	28	0.21	0.43	0.81	1.24	1.76	2.37	3.04	3.78	4.57	5.41	6.30
	32	0.19	0.38	0.71	1.09	1.56	2.10	2.70	3.37	4.09	4.87	5.69
	36	0.17	0.34	0.63	0.97	1.39	1.88	2.43	3.04	3.70	4.42	5.18

Table 7-6 (continued) Coefficients C for Eccentrically Loaded Bolt Groups												
$\text { Angle }=45^{\circ}$												
Available strength of a bolt group, ϕR_{n} or R_{n} / Ω, is determined with $R_{n}=C r_{n}$ or				where $P=$ required force, P_{u} or P_{a}, kips $r_{n}=$ nominal strength per bolt, kips $e_{x}=$ horizontal distance from the centroid of the bolt group to the line of action of P, in. $s=$ bolt spacing, in. $C=$ coefficient tabulated below								
LRFD		ASD										
$C_{\text {min }}=\frac{P_{u}}{\phi r_{n}}$		$C_{\text {min }}=\frac{\Omega P_{a}}{r_{n}}$										
s, in.	e_{x}, in.	Number of Bolts in One Vertical Row, n										
		2	3	4	5	6	7	8	9	10	11	12
	1	1.57	2.64	3.66	4.66	5.66	6.66	7.65	8.64	9.63	10.6	11.6
	2	1.17	2.23	3.26	4.28	5.29	6.30	7.31	8.32	9.32	10.3	11.3
	3	0.92	1.89	2.87	3.87	4.88	5.90	6.91	7.93	8.94	9.95	11.0
	4	0.75	1.63	2.54	3.50	4.49	5.49	6.51	7.52	8.53	9.55	10.6
	5	0.64	1.42	2.25	3.17	4.13	5.11	6.11	7.11	8.12	9.14	10.2
	6	0.55	1.25	2.01	2.88	3.80	4.76	5.73	6.73	7.73	8.73	9.74
	7	0.49	1.11	1.81	2.63	3.51	4.43	5.38	6.36	7.34	8.34	9.34
	8	0.44	0.99	1.64	2.41	3.25	4.14	5.06	6.01	6.98	7.96	8.96
	9	0.40	0.90	1.49	2.22	3.02	3.87	4.77	5.69	6.64	7.61	8.58
3	10	0.36	0.81	1.37	2.06	2.82	3.63	4.50	5.39	6.32	7.27	8.23
	12	0.31	0.68	1.17	1.79	2.47	3.22	4.02	4.87	5.74	6.65	7.58
	14	0.27	0.59	1.03	1.58	2.20	2.88	3.62	4.41	5.24	6.11	6.99
	16	0.24	0.52	0.91	1.41	1.97	2.60	3.29	4.03	4.81	5.63	6.48
	18	0.21	0.46	0.82	1.27	1.78	2.36	3.00	3.70	4.43	5.21	6.02
	20	0.19	0.41	0.74	1.16	1.62	2.16	2.76	3.41	4.10	4.84	5.61
	24	0.16	0.35	0.63	0.98	1.38	1.85	2.37	2.94	3.56	4.22	4.92
	28	0.14	0.30	0.54	0.85	1.19	1.61	2.08	2.58	3.14	3.73	4.37
	32	0.12	0.26	0.48	0.75	1.05	1.43	1.84	2.30	2.80	3.34	3.92
	36	0.11	0.23	0.43	0.67	0.94	1.28	1.65	2.07	2.53	3.02	3.55
6	1	1.83	2.85	3.85	4.84	5.83	6.81	7.80	8.78	9.76	10.7	11.7
	2	1.57	2.64	3.66	4.67	5.67	6.66	7.66	8.65	9.64	10.6	11.6
	3	1.35	2.43	3.46	4.48	5.49	6.49	7.50	8.49	9.49	10.5	11.5
	4	1.17	2.23	3.26	4.28	5.29	6.30	7.31	8.32	9.32	10.3	11.3
	5	1.03	2.05	3.06	4.07	5.09	6.10	7.12	8.13	9.13	10.1	11.1
	6	0.92	1.89	2.87	3.87	4.88	5.90	6.91	7.93	8.94	9.95	11.0
	7	0.83	1.75	2.70	3.68	4.68	5.69	6.71	7.72	8.74	9.75	10.8
	8	0.75	1.63	2.54	3.50	4.49	5.49	6.51	7.52	8.53	9.55	10.6
	9	0.69	1.52	2.39	3.33	4.30	5.30	6.30	7.31	8.33	9.34	10.4
	10	0.64	1.42	2.25	3.17	4.13	5.11	6.11	7.11	8.12	9.14	10.2
	12	0.55	1.25	2.01	2.88	3.80	4.76	5.73	6.73	7.73	8.73	9.74
	14	0.49	1.11	1.81	2.63	3.51	4.43	5.38	6.36	7.34	8.34	9.34
	16	0.44	0.99	1.64	2.41	3.25	4.14	5.06	6.01	6.98	7.96	8.96
	18	0.40	0.90	1.49	2.22	3.02	3.87	4.77	5.69	6.64	7.61	8.58
	20	0.36	0.81	1.37	2.06	2.82	3.63	4.50	5.39	6.32	7.27	8.23
	24	0.31	0.68	1.17	1.79	2.47	3.22	4.02	4.87	5.74	6.65	7.58
	28	0.27	0.59	1.03	1.58	2.20	2.88	3.62	4.41	5.24	6.11	6.99
	32	0.24	0.52	0.91	1.41	1.97	2.60	3.29	4.03	4.81	5.63	6.48
	36	0.21	0.46	0.82	1.27	1.78	2.36	3.00	3.70	4.43	5.21	6.02

Table 7-6 (continued) Coefficients C for Eccentrically Loaded Bolt Groups												
$\text { Angle }=75^{\circ}$												
Available strength of a bolt group, ϕR_{n} or R_{n} / Ω, is determined with $R_{n}=C r_{n}$ or				where $P=$ required force, P_{u} or P_{a}, kips $r_{n}=$ nominal strength per bolt, kips $e_{x}=$ horizontal distance from the centroid of the bolt group to the line of action of P, in. $s=$ bolt spacing, in. $C=$ coefficient tabulated below								
LRFD		ASD										
$C_{\text {min }}=\frac{P_{u}}{\phi r_{n}}$		$C_{\min }=\frac{\Omega P_{a}}{r_{n}}$										
s, in.	e_{x}, in.	Number of Bolts in One Vertical Row, n										
		2	3	4	5	6	7	8	9	10	11	12
	1	1.72	2.72	3.70	4.68	5.66	6.64	7.62	8.59	9.58	10.6	11.5
	2	1.49	2.51	3.49	4.46	5.44	6.42	7.40	8.38	9.36	10.3	11.3
	3	1.32	2.33	3.30	4.27	5.24	6.21	7.18	8.15	9.13	10.1	11.1
	4	1.18	2.18	3.14	4.09	5.05	6.01	6.98	7.95	8.92	9.89	10.9
	5	1.07	2.04	2.99	3.93	4.88	5.84	6.79	7.75	8.72	9.68	10.7
	6	0.98	1.92	2.85	3.79	4.73	5.67	6.62	7.57	8.53	9.49	10.5
	7	0.90	1.82	2.73	3.65	4.58	5.52	6.46	7.40	8.36	9.31	10.3
	8	0.84	1.72	2.62	3.52	4.44	5.37	6.30	7.24	8.19	9.14	10.1
	9	0.78	1.63	2.51	3.40	4.31	5.23	6.16	7.09	8.03	8.97	9.92
3	10	0.73	1.55	2.41	3.29	4.19	5.10	6.02	6.94	7.88	8.81	9.76
	12	0.65	1.41	2.23	3.08	3.95	4.84	5.75	6.66	7.59	8.51	9.45
	14	0.58	1.30	2.06	2.88	3.73	4.60	5.50	6.40	7.31	8.23	9.16
	16	0.53	1.20	1.92	2.70	3.52	4.38	5.26	6.15	7.05	7.96	8.88
	18	0.48	1.11	1.78	2.53	3.33	4.17	5.03	5.91	6.80	7.70	8.61
	20	0.44	1.03	1.66	2.38	3.16	3.97	4.82	5.69	6.56	7.45	8.35
	24	0.38	0.89	1.46	2.12	2.85	3.63	4.44	5.27	6.13	6.99	7.87
	28	0.34	0.79	1.29	1.90	2.59	3.33	4.11	4.91	5.73	6.57	7.43
	32	0.30	0.70	1.16	1.73	2.38	3.08	3.81	4.58	5.37	6.19	7.02
	36	0.27	0.62	1.05	1.58	2.19	2.85	3.55	4.28	5.05	5.84	6.65
6	1	1.84	2.83	3.81	4.79	5.77	6.75	7.70	8.71	9.70	10.7	11.7
	2	1.71	2.72	3.70	4.69	5.67	6.66	7.64	8.79	9.78	10.8	11.7
	3	1.60	2.61	3.59	4.57	5.55	6.53	7.52	8.50	9.48	10.5	11.5
	4	1.49	2.51	3.49	4.46	5.44	6.42	7.40	8.38	9.36	10.3	11.3
	5	1.40	2.42	3.39	4.37	5.34	6.31	7.29	8.26	9.24	10.2	11.2
	6	1.32	2.33	3.30	4.27	5.24	6.21	7.18	8.15	9.13	10.1	11.1
	7	1.25	2.25	3.22	4.18	5.14	6.11	7.07	8.05	9.01	10.0	11.0
	8	1.18	2.18	3.14	4.09	5.05	6.01	6.98	7.95	8.92	9.89	10.9
	9	1.13	2.11	3.06	4.01	4.97	5.92	6.88	7.85	8.81	9.78	10.8
	10	1.07	2.04	2.99	3.93	4.88	5.84	6.79	7.75	8.72	9.68	10.7
	12	0.98	1.92	2.85	3.79	4.73	5.67	6.62	7.57	8.53	9.49	10.5
	14	0.90	1.82	2.73	3.65	4.58	5.52	6.46	7.40	8.36	9.31	10.3
	16	0.84	1.72	2.62	3.52	4.44	5.37	6.30	7.24	8.19	9.14	10.1
	18	0.78	1.63	2.51	3.40	4.31	5.23	6.16	7.09	8.03	8.97	9.92
	20	0.73	1.55	2.41	3.29	4.19	5.10	6.02	6.94	7.88	8.81	9.76
	24	0.65	1.41	2.23	3.08	3.95	4.84	5.75	6.66	7.59	8.51	9.45
	28	0.58	1.30	2.06	2.88	3.73	4.60	5.50	6.40	7.31	8.23	9.16
	32	0.53	1.20	1.92	2.70	3.52	4.38	5.26	6.15	7.05	7.96	8.88
	36	0.48	1.11	1.78	2.53	3.33	4.17	5.03	5.91	6.80	7.70	8.61

Table 7-7 Coefficients C for Eccentrically Loaded Bolt Groups													
Angle $=0^{\circ}$													
Available strength of a bolt group, ϕR_{n} or R_{n} / Ω, is determined with $R_{n}=C r_{n}$ or					where $P=$ required force, P_{u} or P_{a}, kips $r_{n}=$ nominal strength per bolt, kips $e_{X}=$ horizontal distance from the centroid of the bolt group to the line of action of P, in. $s=$ bolt spacing, in. $C=$ coefficient tabulated below								
LRFD		ASD											
$C_{\min }=\frac{P_{u}}{\phi r_{n}}$		$C_{\min }=\frac{\Omega P_{a}}{r_{n}}$											
s, in.	e_{x}, in.	Number of Bolts in One Vertical Row, n											
		1	2	3	4	5	6	7	8	9	10	11	12
3	2	0.84	2.54	4.48	6.59	8.72	10.8	12.9	15.0	17.0	19.0	21.0	23.0
	3	0.65	2.03	3.68	5.67	7.77	9.91	12.1	14.2	16.3	18.3	20.4	22.5
	4	0.54	1.67	3.06	4.86	6.84	8.93	11.1	13.2	15.4	17.5	19.6	21.7
	5	0.45	1.42	2.59	4.21	6.01	8.00	10.1	12.2	14.4	16.5	18.7	20.8
	6	0.39	1.22	2.25	3.69	5.32	7.17	9.16	11.2	13.4	15.5	17.7	19.8
	7	0.35	1.08	1.99	3.27	4.74	6.46	8.33	10.3	12.4	14.5	16.7	18.8
	8	0.31	0.96	1.78	2.93	4.27	5.86	7.60	9.50	11.5	13.6	15.7	17.8
	9	0.28	0.86	1.60	2.65	3.87	5.34	6.97	8.75	10.7	12.7	14.7	16.8
	10	0.26	0.78	1.46	2.42	3.53	4.90	6.42	8.10	9.91	11.8	13.8	15.9
	12	0.22	0.66	1.24	2.06	3.01	4.19	5.51	7.01	8.63	10.4	12.2	14.2
	14	0.19	0.57	1.08	1.78	2.62	3.66	4.82	6.15	7.61	9.19	10.9	12.7
	16	0.17	0.51	0.95	1.57	2.32	3.24	4.27	5.47	6.79	8.23	9.78	11.4
	18	0.15	0.45	0.85	1.41	2.07	2.90	3.83	4.92	6.11	7.43	8.85	10.4
	20	0.14	0.41	0.77	1.27	1.88	2.63	3.48	4.47	5.55	6.76	8.07	9.48
	24	0.12	0.34	0.65	1.07	1.58	2.21	2.93	3.77	4.69	5.72	6.85	8.06
	28	0.10	0.29	0.56	0.92	1.36	1.90	2.53	3.25	4.05	4.95	5.93	7.00
	32	0.09	0.26	0.49	0.80	1.19	1.67	2.22	2.86	3.57	4.36	5.23	6.18
	36	0.08	0.23	0.43	0.72	1.06	1.49	1.98	2.55	3.18	3.90	4.67	5.52
	C^{\prime}, in.	2.94	8.33	15.8	26.0	38.7	54.2	72.2	93.1	117	143	172	204
6	2	0.84	3.24	5.39	7.47	9.51	11.5	13.5	15.5	17.5	19.5	21.5	23.4
	3	0.65	2.79	4.93	7.08	9.17	11.2	13.3	15.3	17.3	19.3	21.3	23.3
	4	0.54	2.41	4.44	6.60	8.75	10.9	12.9	15.0	17.0	19.1	21.1	23.1
	5	0.45	2.10	3.97	6.11	8.27	10.4	12.5	14.6	16.7	18.7	20.8	22.8
	6	0.39	1.85	3.55	5.62	7.77	9.93	12.1	14.2	16.3	18.4	20.4	22.5
	7	0.35	1.64	3.18	5.17	7.27	9.43	11.6	13.7	15.9	18.0	20.1	22.1
	8	0.31	1.47	2.87	4.75	6.79	8.92	11.1	13.3	15.4	17.5	19.6	21.7
	9	0.28	1.34	2.61	4.39	6.34	8.43	10.6	12.7	14.9	17.1	19.2	21.3
	10	0.26	1.22	2.39	4.06	5.92	7.96	10.1	12.2	14.4	16.6	18.7	20.9
	12	0.22	1.04	2.04	3.52	5.20	7.10	9.12	11.2	13.4	15.5	17.7	19.9
	14	0.19	0.90	1.77	3.09	4.61	6.36	8.27	10.3	12.4	14.5	16.7	18.9
	16	0.17	0.80	1.57	2.75	4.12	5.74	7.52	9.44	11.5	13.5	15.7	17.8
	18	0.15	0.71	1.41	2.48	3.72	5.21	6.87	8.68	10.6	12.6	14.7	16.8
	20	0.14	0.64	1.28	2.25	3.38	4.77	6.31	8.02	9.85	11.8	13.8	15.9
	24	0.12	0.54	1.07	1.90	2.86	4.06	5.40	6.91	8.55	10.3	12.2	14.1
	28	0.10	0.46	0.93	1.64	2.47	3.52	4.70	6.05	7.52	9.12	10.8	12.6
	32	0.09	0.41	0.81	1.44	2.18	3.11	4.16	5.37	6.69	8.15	9.71	11.4
	36	0.08	0.36	0.73	1.29	1.94	2.78	3.72	4.81	6.02	7.34	8.78	10.3
	C^{\prime}, in.	2.94	13.2	26.5	47.0	71.4	103	138	180	226	279	337	400

Table 7-7 (continued) Coefficients C for Eccentrically Loaded Bolt Groups													
$\text { Angle }=75^{\circ}$													
Available strength of a bolt group, ϕR_{n} or R_{n} / Ω, is determined with $R_{n}=C r_{n}$ or					where $P=$ required force, P_{u} or P_{a}, kips $r_{n}=$ nominal strength per bolt, kips $e_{x}=$ horizontal distance from the centroid of the bolt group to the line of action of P, in. $s=$ bolt spacing, in. $C=$ coefficient tabulated below								
LRFD			ASD										
$C_{\text {min }}=\frac{P_{u}}{\phi r_{n}}$		$C_{\min }=\frac{\Omega P_{a}}{r_{n}}$											
s, in.	e_{x}, in.	Number of Bolts in One Vertical Row, n											
		1	2	3	4	5	6	7	8	9	10	11	12
3	2	1.84	3.63	5.44	7.29	9.17	11.1	13.0	14.9	16.9	18.8	20.8	22.7
	3	1.71	3.41	5.17	6.97	8.82	10.7	12.6	14.5	16.4	18.4	20.3	22.3
	4	1.57	3.19	4.90	6.67	8.50	10.4	12.2	14.1	16.0	18.0	19.9	21.8
	5	1.44	2.98	4.65	6.39	8.19	10.0	11.9	13.8	15.7	17.6	19.5	21.4
	6	1.31	2.79	4.41	6.12	7.90	9.71	11.6	13.4	15.3	17.2	19.1	21.0
	7	1.20	2.61	4.19	5.88	7.62	9.42	11.3	13.1	15.0	16.9	18.8	20.7
	8	1.10	2.45	3.99	5.65	7.37	9.14	11.0	12.8	14.7	16.5	18.4	20.3
	9	1.01	2.31	3.81	5.43	7.14	8.89	10.7	12.5	14.3	16.2	18.1	20.0
	10	0.93	2.18	3.63	5.23	6.91	8.65	10.4	12.2	14.1	15.9	17.8	19.6
	12	0.81	1.95	3.33	4.86	6.49	8.19	9.94	11.7	13.5	15.3	17.2	19.0
	14	0.71	1.77	3.06	4.53	6.11	7.76	9.47	11.2	13.0	14.8	16.6	18.4
	16	0.63	1.61	2.83	4.23	5.75	7.36	9.03	10.8	12.5	14.3	16.1	17.9
	18	0.57	1.48	2.63	3.96	5.42	6.98	8.61	10.3	12.0	13.8	15.6	17.4
	20	0.52	1.36	2.45	3.72	5.12	6.63	8.23	9.88	11.6	13.3	15.1	16.9
	24	0.44	1.18	2.15	3.30	4.60	6.02	7.53	9.12	10.8	12.4	14.2	15.9
	28	0.38	1.04	1.91	2.95	4.16	5.49	6.93	8.45	10.0	11.7	13.3	15.0
	32	0.34	0.92	1.71	2.67	3.78	5.04	6.41	7.86	9.37	10.9	12.6	14.2
	36	0.30	0.83	1.55	2.43	3.47	4.65	5.94	7.32	8.78	10.3	11.9	13.5
6	2	1.84	3.66	5.55	7.48	9.42	11.4	13.3	15.3	17.6	19.6	21.5	23.5
	3	1.71	3.49	5.36	7.27	9.20	11.2	13.1	15.1	17.0	19.0	21.0	22.9
	4	1.57	3.32	5.18	7.08	9.00	10.9	12.9	14.8	16.8	18.7	20.7	22.7
	5	1.44	3.16	5.01	6.89	8.81	10.7	12.7	14.6	16.6	18.5	20.5	22.4
	6	1.31	3.02	4.84	6.72	8.62	10.5	12.5	14.4	16.3	18.3	20.2	22.2
	7	1.20	2.88	4.69	6.55	8.44	10.4	12.3	14.2	16.1	18.1	20.0	22.0
	8	1.10	2.75	4.54	6.39	8.27	10.2	12.1	14.0	15.9	17.9	19.8	21.8
	9	1.01	2.63	4.40	6.24	8.11	10.0	11.9	13.8	15.7	17.7	19.6	21.5
	10	0.93	2.52	4.27	6.09	7.95	9.83	11.7	13.6	15.6	17.5	19.4	21.3
	12	0.81	2.32	4.03	5.82	7.66	9.52	11.4	13.3	15.2	17.1	19.0	20.9
	14	0.71	2.15	3.82	5.57	7.38	9.22	11.1	13.0	14.9	16.7	18.7	20.6
	16	0.63	2.00	3.62	5.35	7.13	8.95	10.8	12.7	14.5	16.4	18.3	20.2
	18	0.57	1.87	3.44	5.14	6.90	8.69	10.5	12.4	14.2	16.1	18.0	19.9
	20	0.52	1.75	3.28	4.94	6.67	8.45	10.3	12.1	13.9	15.8	17.7	19.5
	24	0.44	1.55	2.98	4.57	6.24	7.98	9.75	11.6	13.4	15.2	17.1	18.9
	28	0.38	1.40	2.74	4.24	5.85	7.54	9.28	11.1	12.9	14.7	16.5	18.3
	32	0.34	1.27	2.52	3.95	5.49	7.13	8.83	10.6	12.4	14.1	16.0	17.8
	36	0.30	1.16	2.33	3.68	5.16	6.75	8.41	10.1	11.9	13.7	15.4	17.3

Table 7-8 Coefficients C for Eccentrically Loaded Bolt Groups Angle $=0^{\circ}$													
Available strength of a bolt group, ϕR_{n} or R_{n} / Ω, is determined with $R_{n}=C r_{n}$ or					where $P=$ required force, P_{u} or P_{a}, kips $r_{n}=$ nominal strength per bolt, kips $e_{x}=$ horizontal distance from the centroid of the bolt group to the line of action of P, in. $s=$ bolt spacing, in. $C=$ coefficient tabulated below								
s, in.	e_{x}, in.	Number of Bolts in One Vertical Row, \boldsymbol{n}											
		1	2	3	4	5	6	7	8	9	10	11	12
3	2	1.14	2.75	4.59	6.61	8.69	10.8	12.9	14.9	17.0	19.0	21.0	23.0
	3	0.94	2.32	3.92	5.80	7.82	9.90	12.0	14.1	16.2	18.3	20.4	22.4
	4	0.80	1.99	3.39	5.10	6.98	9.00	11.1	13.2	15.3	17.4	19.6	21.7
	5	0.70	1.74	2.96	4.51	6.24	8.15	10.2	12.3	14.4	16.5	18.6	20.8
	6	0.62	1.54	2.62	4.03	5.60	7.39	9.30	11.3	13.4	15.5	17.7	19.8
	7	0.55	1.38	2.36	3.63	5.07	6.72	8.53	10.5	12.5	14.6	16.7	18.8
	8	0.50	1.25	2.14	3.30	4.61	6.15	7.84	9.67	11.6	13.6	15.7	17.8
	9	0.46	1.14	1.96	3.01	4.22	5.66	7.23	8.97	10.8	12.8	14.8	16.9
	10	0.42	1.04	1.80	2.78	3.89	5.23	6.70	8.34	10.1	12.0	13.9	15.9
	12	0.37	0.90	1.55	2.39	3.36	4.53	5.82	7.28	8.87	10.6	12.4	14.3
	14	0.32	0.79	1.36	2.10	2.96	3.99	5.13	6.44	7.87	9.42	11.1	12.8
	16	0.29	0.70	1.21	1.87	2.64	3.55	4.58	5.76	7.05	8.47	9.99	11.6
	18	0.26	0.63	1.09	1.68	2.37	3.20	4.14	5.21	6.38	7.68	9.08	10.6
	20	0.24	0.57	0.99	1.53	2.16	2.91	3.77	4.75	5.82	7.02	8.30	9.69
	24	0.20	0.48	0.84	1.29	1.83	2.46	3.19	4.03	4.94	5.97	7.07	8.28
	28	0.18	0.42	0.73	1.11	1.58	2.13	2.77	3.49	4.29	5.19	6.15	7.21
	32	0.16	0.37	0.64	0.98	1.39	1.88	2.44	3.08	3.79	4.58	5.44	6.38
	36	0.14	0.33	0.57	0.88	1.24	1.68	2.18	2.75	3.39	4.10	4.87	5.72
	C^{\prime}, in.	5.40	12.3	21.2	32.3	45.8	61.8	80.3	102	125	152	181	213
6	2	1.14	3.25	5.37	7.45	9.49	11.5	13.5	15.5	17.5	19.5	21.4	23.4
	3	0.94	2.86	4.93	7.05	9.14	11.2	13.2	15.3	17.3	19.3	21.3	23.3
	4	0.80	2.52	4.47	6.59	8.72	10.8	12.9	15.0	17.0	19.0	21.0	23.1
	5	0.70	2.24	4.04	6.12	8.25	10.4	12.5	14.6	16.7	18.7	20.8	22.8
	6	0.62	2.00	3.65	5.66	7.77	9.91	12.1	14.2	16.3	18.4	20.4	22.5
	7	0.55	1.80	3.31	5.23	7.29	9.42	11.6	13.7	15.8	17.9	20.0	22.1
	8	0.50	1.64	3.02	4.84	6.83	8.93	11.1	13.2	15.4	17.5	19.6	21.7
	9	0.46	1.50	2.77	4.49	6.39	8.45	10.6	12.7	14.9	17.0	19.2	21.3
	10	0.42	1.38	2.56	4.18	5.99	7.99	10.1	12.2	14.4	16.5	18.7	20.8
	12	0.37	1.19	2.21	3.65	5.29	7.16	9.15	11.2	13.4	15.5	17.7	19.8
	14	0.32	1.04	1.95	3.24	4.72	6.44	8.32	10.3	12.4	14.5	16.7	18.8
	16	0.29	0.93	1.74	2.90	4.24	5.83	7.59	9.48	11.5	13.6	15.7	17.8
	18	0.26	0.84	1.57	2.62	3.84	5.31	6.95	8.74	10.7	12.6	14.7	16.8
	20	0.24	0.76	1.43	2.39	3.50	4.87	6.39	8.08	9.89	11.8	13.8	15.9
	24	0.20	0.64	1.21	2.02	2.98	4.16	5.49	6.99	8.61	10.4	12.2	14.1
	28	0.18	0.55	1.05	1.76	2.59	3.63	4.80	6.13	7.59	9.18	10.9	12.7
	32	0.16	0.49	0.93	1.55	2.29	3.21	4.25	5.45	6.77	8.21	9.76	11.4
	36	0.14	0.43	0.83	1.38	2.05	2.88	3.81	4.90	6.09	7.41	8.83	10.4
	C^{\prime}, in.	5.40	16.0	30.6	51.0	76.2	107	143	185	232	284	342	406

Table 7-9 Coefficients C for Eccentrically Loaded Bolt Groups													
Angle $=0^{\circ}$													
Available strength of a bolt group, ϕR_{n} or R_{n} / Ω, is determined with $R_{n}=C r_{n}$ or					where $P=$ required force, P_{u} or P_{a}, kips $r_{n}=$ nominal strength per bolt, kips $e_{x}=$ horizontal distance from the centroid of the bolt group to the line of action of P, in. $s=$ bolt spacing, in. $C=$ coefficient tabulated below								
LRFD		ASD											
$C_{\text {min }}=\frac{P_{u}}{\phi r_{n}}$		$C_{\text {min }}=\frac{\Omega P_{a}}{r_{n}}$											
s, in.	e_{x}, in.	Number of Bolts in One Vertical Row, n											
		1	2	3	4	5	6	7	8	9	10	11	12
3	2	1.31	2.91	4.71	6.66	8.69	10.8	12.8	14.9	16.9	18.9	21.0	23.0
	3	1.12	2.54	4.14	5.95	7.90	9.93	12.0	14.1	16.2	18.2	20.3	22.4
	4	0.98	2.24	3.66	5.33	7.15	9.10	11.1	13.2	15.3	17.4	19.5	21.6
	5	0.87	1.99	3.27	4.80	6.48	8.33	10.3	12.3	14.4	16.5	18.6	20.7
	6	0.79	1.80	2.95	4.35	5.90	7.63	9.49	11.5	13.5	15.6	17.7	19.8
	7	0.71	1.63	2.68	3.97	5.40	7.02	8.77	10.7	12.6	14.6	16.7	18.8
	8	0.65	1.49	2.46	3.65	4.97	6.48	8.13	9.91	11.8	13.8	15.8	17.9
	9	0.60	1.38	2.27	3.37	4.59	6.01	7.55	9.24	11.1	13.0	14.9	17.0
	10	0.56	1.28	2.11	3.13	4.27	5.59	7.04	8.64	10.4	12.2	14.1	16.1
	12	0.49	1.11	1.84	2.73	3.73	4.90	6.19	7.63	9.18	10.9	12.6	14.5
	14	0.44	0.99	1.64	2.42	3.31	4.36	5.50	6.80	8.20	9.73	11.4	13.1
	16	0.39	0.89	1.47	2.17	2.98	3.91	4.95	6.13	7.40	8.80	10.3	11.9
	18	0.36	0.80	1.33	1.97	2.70	3.55	4.50	5.57	6.73	8.02	9.39	10.9
	20	0.33	0.73	1.22	1.80	2.47	3.25	4.12	5.10	6.17	7.35	8.62	9.99
	24	0.28	0.63	1.04	1.53	2.10	2.77	3.51	4.35	5.28	6.30	7.39	8.59
	28	0.25	0.55	0.91	1.33	1.83	2.41	3.06	3.79	4.60	5.50	6.46	7.51
	32	0.22	0.48	0.80	1.18	1.62	2.13	2.71	3.36	4.08	4.87	5.73	6.67
	36	0.20	0.43	0.72	1.06	1.45	1.91	2.43	3.01	3.66	4.37	5.15	5.99
	C^{\prime}, in.	7.85	16.8	27.3	39.9	54.6	71.5	90.9	113	137	164	194	226
6	2	1.31	3.28	5.35	7.42	9.47	11.5	13.5	15.5	17.5	19.5	21.4	23.4
	3	1.12	2.93	4.94	7.03	9.12	11.2	13.2	15.3	17.3	19.3	21.3	23.3
	4	0.98	2.63	4.52	6.59	8.70	10.8	12.9	14.9	17.0	19.0	21.0	23.0
	5	0.87	2.37	4.13	6.15	8.25	10.4	12.5	14.6	16.6	18.7	20.7	22.8
	6	0.79	2.15	3.78	5.72	7.78	9.90	12.0	14.1	16.2	18.3	20.4	22.4
	7	0.71	1.97	3.47	5.32	7.33	9.43	11.6	13.7	15.8	17.9	20.0	22.1
	8	0.65	1.81	3.19	4.95	6.89	8.95	11.1	13.2	15.4	17.5	19.6	21.7
	9	0.60	1.67	2.95	4.62	6.48	8.49	10.6	12.7	14.9	17.0	19.1	21.3
	10	0.56	1.55	2.75	4.33	6.10	8.05	10.1	12.2	14.4	16.5	18.7	20.8
	12	0.49	1.35	2.40	3.82	5.43	7.25	9.21	11.3	13.4	15.5	17.7	19.8
	14	0.44	1.20	2.14	3.41	4.86	6.56	8.40	10.4	12.4	14.5	16.7	18.8
	16	0.39	1.08	1.92	3.07	4.40	5.96	7.69	9.56	11.5	13.6	15.7	17.8
	18	0.36	0.97	1.75	2.79	4.00	5.46	7.06	8.83	10.7	12.7	14.7	16.8
	20	0.33	0.89	1.60	2.56	3.67	5.02	6.52	8.18	9.97	11.9	13.9	15.9
	24	0.28	0.76	1.37	2.18	3.14	4.32	5.62	7.11	8.71	10.4	12.3	14.2
	28	0.25	0.66	1.19	1.90	2.75	3.78	4.93	6.26	7.70	9.27	11.0	12.7
	32	0.22	0.58	1.05	1.68	2.44	3.35	4.38	5.58	6.88	8.31	9.85	11.5
	36	0.20	0.52	0.95	1.51	2.19	3.01	3.94	5.02	6.21	7.52	8.93	10.4
	C^{\prime}, in.	7.85	19.6	35.6	56.6	82.5	114	150	192	239	292	350	414

Table 7-9 (continued) Coefficients C for Eccentrically Loaded Bolt Groups Angle $=75^{\circ}$													
Available strength of a bolt group, ϕR_{n} or R_{n} / Ω, is determined with $R_{n}=C r_{n}$ or					```where P = required force, }\mp@subsup{P}{u}{}\mathrm{ or }\mp@subsup{P}{a}{},\mathrm{ , kips r kips ex}=\mathrm{ horizontal distance from the centroid of the bolt group to the line of action of P, in. s = bolt spacing, in. C = coefficient tabulated below```								
s, in.	$e_{\text {x }}$, in.	Number of Bolts in One Vertical Row, n											
		1	2	3	4	5	6	7	8	9	10	11	12
3	2	1.94	3.87	5.79	7.70	9.61	115	13.4	15.3	3	192		
	3	1.92	3.82	5.70	7.58	9.45	11.3	13.2	15.1	17.0	18.9	20.8	.
	4	1.89	3.75	5.60	7.43	9.26	11.1	12.9	14.8	16.7	18.5	20.4	22.3
	5	1.85	3.67	5.48	7.28	9.07	10.9	12.7	14.5	16.4	18.2	20.1	22.0
	6	1.81	3.59	5.35	7.11	8.87	10.6	12.4	14.2	16.1	17.9	19.8	21.6
	7	1.76	3.50	5.22	6.94	8.67	10.4	12.2	14.0	15.8	17.6	19.4	21.3
	8	1.71	3.40	5.08	6.76	8.46	10.2	11.9	13.7	15.5	17.3	19.1	21.0
	9	1.66	3.30	4.94	6.59	8.26	9.96	11.7	13.4	15.2	17.0	18.8	20.6
	10	1.61	3.20	4.80	6.42	8.06	9.73	11.4	13.2	14.9	16.7	18.5	20.3
	12	1.51	3.01	4.53	6.08	7.67	9.30	11.0	12.7	14.4	16.2	17.9	19.7
	14	1.41	2.82	4.27	5.76	7.31	8.90	10.5	12.2	13.9	15.6	17.4	19.2
	16	1.31	2.65	4.03	5.47	6.96	8.52	10.1	11.8	13.4	15.2	16.9	18.6
	18	1.23	2.48	3.80	5.19	6.64	8.16	9.73	11.3	13.0	14.7	16.4	18.1
	20	1.15	2.34	3.60	4.93	6.34	7.82	9.36	10.9	12.6	14.2	15.9	17.7
	24	1.01	2.08	3.23	4.48	5.80	7.20	8.67	10.2	11.8	13.4	15.0	16.7
	28	0.90	1.87	2.93	4.08	5.33	6.65	8.06	9.52	11.0	12.6	14.2	15.9
	32	0.81	1.69	2.67	3.75	4.91	6.17	7.51	8.91	10.4	11.9	13.5	15.1
	36	0.73	1.54	2.45	3.45	4.55	5.74	7.01	8.36	9.77	11.2	12.8	14.3
6	2	1.94	3.86	5.77	7.68	9.60	11.5	13.5	15.4	17.6	19.6	21.5	23.5
	3	1.92	3.80	5.68	7.55	9.45	11.4	13.3	15.2	17.2	19.1	21.1	23.0
	4	1.89	3.74	5.57	7.42	9.29	11.2	13.1	15.0	16.9	18.9	20.8	22.8
	5	1.85	3.66	5.46	7.29	9.14	11.0	12.9	14.8	16.7	18.7	20.6	22.6
	6	1.81	3.58	5.35	7.15	8.98	10.8	12.7	14.6	16.5	18.5	20.4	22.3
	7	1.76	3.49	5.23	7.01	8.83	10.7	12.5	14.4	16.3	18.3	20.2	22.1
	8	1.71	3.40	5.12	6.88	8.68	10.5	12.4	14.3	16.2	18.1	20.0	21.9
	9	1.66	3.31	5.00	6.74	8.53	10.4	12.2	14.1	16.0	17.9	19.8	21.7
	10	1.61	3.22	4.89	6.61	8.38	10.2	12.0	13.9	15.8	17.7	19.6	21.5
	12	1.51	3.05	4.67	6.36	8.10	9.89	11.7	13.6	15.4	17.3	19.2	21.1
	14	1.41	2.88	4.46	6.12	7.84	9.61	11.4	13.3	15.1	17.0	18.9	20.8
	16	1.31	2.73	4.26	5.89	7.59	9.33	11.1	12.9	14.8	16.6	18.5	20.4
	18	1.23	2.58	4.08	5.68	7.35	9.08	10.8	12.7	14.5	16.3	18.2	20.1
	20	1.15	2.45	3.90	5.47	7.13	8.84	10.6	12.4	14.2	16.0	17.9	19.7
	24	1.01	2.21	3.59	5.10	6.71	8.38	10.1	11.9	13.6	15.5	17.3	19.1
	28	0.90	2.01	3.32	4.77	6.32	7.96	9.65	11.4	13.1	14.9	16.7	18.5
	32	0.81	1.84	3.08	4.47	5.97	7.56	9.21	10.9	12.7	14.4	16.2	18.0
	36	0.73	1.70	2.87	4.19	5.64	7.19	8.80	10.5	12.2	13.9	15.7	17.5

Table 7-10 Coefficients C for Eccentrically Loaded Bolt Groups Angle $=0^{\circ}$													
Available strength of a bolt group, ϕR_{n} or R_{n} / Ω, is determined with $R_{n}=C r_{n}$ or				up, ith	where $P=$ required force, P_{u} or P_{a}, kips $r_{n}=$ nominal strength per bolt, kips $e_{X}=$ horizontal distance from the centroid of the bolt group to the line of action of P, in. $s=$ bolt spacing, in. $C=$ coefficient tabulated below								
s, in.	e_{x}, in.	Number of Bolts in One Vertical Row, n											
		1	2	3	4	5	6	7	8	9	10	11	12
3	2	1.71	4.07	6.81	9.86	13.0	16.1	19.3	22.3	25.4	28.5	31.5	
	3	1.42	3.40	5.79	8.61	11.7	14.8	18.0	21.1	24.3	27.4	30.5	33.6
	4	1.21	2.90	4.97	7.53	10.4	13.4	16.6	19.8	23.0	26.1	29.3	32.5
	5	1.05	2.51	4.34	6.64	9.24	12.1	15.2	18.3	21.5	24.7	27.9	31.1
	6	0.92	2.21	3.85	5.91	8.27	11.0	13.9	16.9	20.0	23.2	26.4	29.7
	7	0.81	1.96	3.44	5.31	7.46	9.95	12.7	15.6	18.6	21.8	25.0	28.2
	8	0.72	1.76	3.11	4.80	6.78	9.09	11.6	14.4	17.3	20.4	23.5	26.7
	9	0.64	1.60	2.83	4.38	6.20	8.34	10.7	13.3	16.1	19.1	22.1	25.2
	10	0.58	1.46	2.59	4.02	5.71	7.70	9.91	12.4	15.0	17.9	20.8	23.8
	12	0.49	1.24	2.21	3.44	4.91	6.65	8.59	10.8	13.2	15.7	18.5	21.3
	14	0.42	1.08	1.92	3.00	4.30	5.83	7.57	9.53	11.7	14.0	16.5	19.2
	16	0.37	0.95	1.70	2.66	3.82	5.19	6.75	8.51	10.5	12.6	14.9	17.3
	18	0.33	0.85	1.52	2.39	3.43	4.67	6.08	7.68	9.45	11.4	13.5	15.8
	20	0.29	0.77	1.37	2.16	3.11	4.24	5.53	6.99	8.61	10.4	12.3	14.4
	24	0.24	0.64	1.15	1.82	2.62	3.57	4.67	5.92	7.30	8.84	10.5	12.3
	28	0.21	0.55	0.99	1.57	2.26	3.08	4.04	5.12	6.33	7.67	9.13	10.7
	32	0.18	0.49	0.87	1.38	1.98	2.71	3.55	4.51	5.58	6.77	8.06	9.47
	36	0.16	0.43	0.77	1.23	1.77	2.42	3.17	4.03	4.99	6.05	7.21	8.48
	C^{\prime}, in.	5.89	15.8	28.0	44.7	64.3	88.5	116	148	183	223	267	315
6	2	1.71	4.85	8.04	11.2	14.2	17.3	20.3	23.2	26.2	29.2	32.2	35.1
	3	1.42	4.24	7.36	10.6	13.7	16.8	19.9	22.9	25.9	28.9	31.9	34.9
	4	1.21	3.72	6.66	9.86	13.1	16.2	19.4	22.4	25.5	28.5	31.6	34.6
	5	1.05	3.29	6.00	9.14	12.4	15.6	18.7	21.9	25.0	28.1	31.1	34.2
	6	0.92	2.93	5.41	8.44	11.6	14.9	18.1	21.2	24.4	27.5	30.6	33.7
	7	0.81	2.63	4.90	7.79	10.9	14.1	17.3	20.6	23.7	26.9	30.0	33.2
	8	0.72	2.38	4.46	7.20	10.2	13.4	16.6	19.8	23.0	26.2	29.4	32.6
	9	0.64	2.17	4.09	6.67	9.54	12.6	15.8	19.1	22.3	25.5	28.7	31.9
	10	0.58	2.00	3.78	6.20	8.94	12.0	15.1	18.3	21.6	24.8	28.0	31.2
	12	0.49	1.71	3.27	5.41	7.88	10.7	13.7	16.8	20.0	23.3	26.5	29.8
	14	0.42	1.49	2.87	4.78	7.01	9.61	12.4	15.4	18.6	21.8	25.0	28.2
	16	0.37	1.32	2.55	4.28	6.29	8.69	11.3	14.2	17.2	20.3	23.5	26.7
	18	0.33	1.19	2.30	3.86	5.70	7.91	10.4	13.1	15.9	18.9	22.0	25.2
	20	0.29	1.08	2.09	3.51	5.20	7.25	9.54	12.1	14.8	17.7	20.7	23.8
	24	0.24	0.91	1.76	2.97	4.42	6.19	8.19	10.4	12.9	15.5	18.3	21.2
	28	0.21	0.78	1.52	2.57	3.84	5.39	7.14	9.15	11.4	13.7	16.3	19.0
	32	0.18	0.69	1.33	2.27	3.39	4.77	6.33	8.13	10.1	12.3	14.6	17.1
	36	0.16	0.61	1.19	2.03	3.03	4.27	5.67	7.30	9.10	11.1	13.2	15.5
	C^{\prime}, in.	5.89	22.4	43.3	74.4	112	158	212	275	345	424	510	606

Table 7-10 (continued) Coefficients C for Eccentrically Loaded Bolt Groups													
Angle $=30^{\circ}$													
Available strength of a bolt group, ϕR_{n} or R_{n} / Ω, is determined with $R_{n}=C r_{n}$ or					where $P=$ required force, P_{u} or P_{a}, kips $r_{n}=$ nominal strength per bolt, kips $e_{x}=$ horizontal distance from the centroid of the bolt group to the line of action of P, in. $s=$ bolt spacing, in. $C=$ coefficient tabulated below								
LRFD			ASD										
$C_{\text {min }}=\frac{P_{u}}{\phi r_{n}}$		$C_{\text {min }}=\frac{\Omega P_{a}}{r_{n}}$											
s, in.	e_{x}, in.	Number of Bolts in One Vertical Row, \boldsymbol{n}											
			2	3	4	5	6	7	8	9	10	11	12
3	2	1.94	4.26	6.99	9.90	12.9	16.0	19.0	22.0	25.1	28.1	31.1	34.1
	3	1.61	3.63	6.09	8.80	11.7	14.7	17.7	20.8	23.9	27.0	30.0	33.1
	4	1.37	3.15	5.35	7.83	10.6	13.5	16.5	19.5	22.6	25.7	28.7	31.8
	5	1.19	2.77	4.74	7.00	9.54	12.3	15.2	18.2	21.2	24.3	27.4	30.5
	6	1.04	2.45	4.23	6.30	8.67	11.3	14.1	17.0	19.9	23.0	26.0	29.1
	7	0.92	2.19	3.81	5.71	7.92	10.4	13.0	15.8	18.7	21.7	24.7	27.8
	8	0.82	1.98	3.45	5.22	7.27	9.58	12.1	14.8	17.6	20.5	23.4	26.4
	9	0.74	1.80	3.16	4.79	6.71	8.88	11.2	13.8	16.5	19.3	22.2	25.2
	10	0.67	1.65	2.90	4.42	6.22	8.26	10.5	12.9	15.5	18.2	21.1	24.0
	12	0.56	1.41	2.49	3.82	5.41	7.22	9.23	11.5	13.8	16.4	19.0	21.8
	14	0.48	1.23	2.18	3.36	4.78	6.40	8.22	10.3	12.4	14.8	17.2	19.8
	16	0.42	1.08	1.93	2.99	4.26	5.73	7.40	9.25	11.3	13.4	15.7	18.2
	18	0.38	0.97	1.73	2.69	3.85	5.18	6.71	8.41	10.3	12.3	14.4	16.7
	20	0.34	0.88	1.57	2.44	3.50	4.73	6.14	7.70	9.42	11.3	13.3	15.4
	24	0.28	0.74	1.32	2.06	2.96	4.01	5.22	6.58	8.08	9.72	11.5	13.4
	28	0.24	0.64	1.14	1.78	2.56	3.48	4.54	5.73	7.05	8.51	10.1	11.8
	32	0.21	0.56	1.00	1.57	2.26	3.07	4.01	5.07	6.25	7.55	8.96	10.5
	36	0.19	0.50	0.89	1.40	2.02	2.75	3.59	4.54	5.61	6.78	8.06	9.44
6	2	1.94	4.86	7.96	11.0	14.1	17.1	20.1	23.1	26.0	29.0	32.0	35.0
	3	1.61	4.27	7.32	10.4	13.5	16.6	19.6	22.6	25.6	28.6	31.6	34.6
	4	1.37	3.78	6.70	9.75	12.9	15.9	19.0	22.1	25.1	28.1	31.1	34.2
	5	1.19	3.39	6.14	9.10	12.2	15.3	18.4	21.5	24.5	27.6	30.6	33.7
	6	1.04	3.06	5.64	8.48	11.5	14.6	17.7	20.8	23.9	27.0	30.1	33.1
	7	0.92	2.78	5.19	7.91	10.9	13.9	17.0	20.1	23.2	26.3	29.4	32.5
	8	0.82	2.54	4.80	7.38	10.3	13.3	16.3	19.4	22.6	25.7	28.8	31.9
	9	0.74	2.34	4.45	6.90	9.67	12.6	15.7	18.7	21.9	25.0	28.1	31.2
	10	0.67	2.16	4.14	6.46	9.14	12.0	15.0	18.1	21.2	24.3	27.4	30.5
	12	0.56	1.87	3.61	5.71	8.20	10.9	13.8	16.8	19.8	22.9	26.0	29.1
	14	0.48	1.65	3.20	5.10	7.41	9.95	12.7	15.6	18.5	21.5	24.6	27.7
	16	0.42	1.47	2.86	4.60	6.74	9.12	11.7	14.5	17.3	20.3	23.3	26.4
	18	0.38	1.33	2.58	4.19	6.17	8.39	10.8	13.5	16.2	19.1	22.0	25.0
	20	0.34	1.21	2.35	3.84	5.68	7.75	10.1	12.6	15.2	18.0	20.9	23.8
	24	0.28	1.02	2.00	3.29	4.89	6.71	8.78	11.1	13.5	16.1	18.8	21.6
	28	0.24	0.88	1.73	2.86	4.28	5.90	7.77	9.83	12.1	14.5	17.0	19.6
	32	0.21	0.78	1.52	2.54	3.80	5.25	6.95	8.83	10.9	13.1	15.4	17.9
	36	0.19	0.70	1.36	2.27	3.41	4.73	6.28	8.00	9.88	11.9	14.1	16.4

Table 7-10 (continued) Coefficients C for Eccentrically Loaded Bolt Groups Angle $=45^{\circ}$													
Available strength of a bolt group, ϕR_{n} or R_{n} / Ω, is determined with $R_{n}=C r_{n}$ or					where $P=$ required force, P_{u} or P_{a}, kips $r_{n}=$ nominal strength per bolt, kips $e_{X}=$ horizontal distance from the centroid of the bolt group to the line of action of P, in. $s=$ bolt spacing, in. $C=$ coefficient tabulated below								
s, in.	e_{x}, in.	Number of Bolts in One Vertical Row, \boldsymbol{n}											
		1	2	3	4	5	6	7	8	9	10	1	12
3	2	2.2	4.67	7.33	10.2	13.1	16	19.0	22.	25.0	28.0	. 0	
	3	1.89	4.06	6.50	9.19	12.0	14.9	17.9	20.9	23.9	26.9	29.9	
	4	1.63	3.57	5.84	8.36	11.1	13.9	16.8	19.7	22.7	25.7	28.7	31.7
	5	1.42	3.17	5.27	7.63	10.2	12.9	15.7	18.6	21.5	24.5	27.5	30.5
	6	1.25	2.84	4.78	6.99	9.40	12.0	14.7	17.6	20.4	23.4	26.3	29.3
	7	1.11	2.57	4.36	6.42	8.70	11.2	13.8	16.6	19.4	22.3	25.2	28.2
	8	0.99	2.33	3.99	5.92	8.09	10.5	13.0	15.7	18.4	21.2	24.1	27.0
	9	0.90	2.13	3.68	5.49	7.54	9.80	12.2	14.8	17.5	20.3	23.1	26.0
	10	0.81	1.96	3.40	5.10	7.05	9.21	11.6	14.0	16.6	19.3	22.1	24.9
	12	0.68	1.68	2.95	4.46	6.22	8.19	10.4	12.7	15.1	17.7	20.3	23.0
	14	0.59	1.47	2.59	3.95	5.55	7.35	9.34	11.5	13.8	16.2	18.7	21.3
	16	0.52	1.31	2.31	3.54	4.99	6.65	8.49	10.5	12.7	14.9	17.3	19.8
	18	0.46	1.17	2.08	3.20	4.54	6.06	7.77	9.64	11.7	13.8	16.1	18.5
	20	0.41	1.06	1.89	2.92	4.15	5.56	7.15	8.90	10.8	12.8	15.0	17.2
	24	0.35	0.90	1.60	2.48	3.54	4.76	6.15	7.70	9.39	11.2	13.1	15.2
	28	0.30	0.77	1.38	2.15	3.08	4.16	5.39	6.77	8.28	9.91	11.7	13.5
	32	0.26	0.68	1.22	1.90	2.72	3.68	4.79	6.03	7.39	8.87	10.5	12.2
	36	0.23	0.61	1.08	1.69	2.44	3.30	4.30	5.42	6.66	8.02	9.49	11.1
6	2	2.23	5.02	8.01	11.0	14.0	17.0	20.0	23.0	25.9	28.9	31.9	34.8
	3	1.89	4.50	7.44	10.4	13.5	16.5	19.5	22.5	25.5	28.4	31.4	34.4
	4	1.63	4.05	6.89	9.86	12.9	15.9	18.9	21.9	24.9	27.9	30.9	33.9
	5	1.42	3.68	6.40	9.30	12.3	15.3	18.3	21.3	24.4	27.4	30.4	33.4
	6	1.25	3.36	5.96	8.78	11.7	14.7	17.7	20.7	23.8	26.8	29.8	32.8
	7	1.11	3.09	5.57	8.29	11.2	14.1	17.1	20.1	23.2	26.2	29.2	32.3
	8	0.99	2.86	5.22	7.84	10.6	13.6	16.5	19.5	22.6	25.6	28.6	31.7
	9	0.90	2.65	4.90	7.43	10.2	13.0	16.0	19.0	22.0	25.0	28.0	31.1
	10	0.81	2.47	4.61	7.04	9.69	12.5	15.4	18.4	21.4	24.4	27.4	30.4
	12	0.68	2.16	4.11	6.35	8.85	11.6	14.4	17.3	20.2	23.2	26.2	29.2
	14	0.59	1.92	3.69	5.76	8.11	10.7	13.4	16.2	19.1	22.1	25.0	28.0
	16	0.52	1.72	3.34	5.25	7.47	9.94	12.6	15.3	18.1	21.0	23.9	26.9
	18	0.46	1.56	3.04	4.82	6.91	9.26	11.8	14.4	17.2	20.0	22.9	25.8
	20	0.41	1.43	2.79	4.44	6.43	8.66	11.1	13.6	16.3	19.0	21.9	24.7
	24	0.35	1.22	2.38	3.84	5.62	7.64	9.84	12.2	14.7	17.3	20.0	22.8
	28	0.30	1.06	2.08	3.37	4.98	6.81	8.82	11.0	13.4	15.8	18.4	21.1
	32	0.26	0.94	1.84	3.00	4.46	6.12	7.97	10.0	12.2	14.6	17.0	19.5
	36	0.23	0.84	1.65	2.71	4.04	5.56	7.27	9.18	11.2	13.4	15.7	18.1

Table 7-10 (continued) Coefficients C for Eccentrically Loaded Bolt Groups													
Available strength of a bolt group, ϕR_{n} or R_{n} / Ω, is determined with $R_{n}=C r_{n}$ or					where $P=$ required force, P_{u} or P_{a}, kips $r_{n}=$ nominal strength per bolt, kips $e_{x}=$ horizontal distance from the centroid of the bolt group to the line of action of P, in. $s=$ bolt spacing, in. $C=$ coefficient tabulated below								
s, in.	$e_{\text {x }}$, in.	Number of Bolts in One Vertical Row, \boldsymbol{n}											
		1	2	3	4	5	6	7	8	9	10	11	12
3	2	2.59	5.21	7.88	10.6	13.4	16.3	19.2	22.1	25.0	28.0	30.9	33.9
	3	2.32	4.73	7.27	9.91	12.7	15.5	18.3	21.2	24.1	27.0	30.0	32.9
	4	2.07	4.29	6.69	9.23	11.9	14.6	17.5	20.3	23.2	26.1	29.0	32.0
	5	1.84	3.90	6.18	8.63	11.2	13.9	16.6	19.5	22.3	25.2	28.1	31.0
	6	1.65	3.56	5.73	8.08	10.6	13.2	15.9	18.7	21.5	24.3	27.2	30.1
	7	1.49	3.27	5.32	7.59	10.0	12.6	15.2	17.9	20.7	23.5	26.3	29.2
	8	1.35	3.01	4.95	7.13	9.48	12.0	14.5	17.2	19.9	22.7	25.5	28.4
	9	1.23	2.78	4.63	6.71	8.98	11.4	13.9	16.5	19.2	22.0	24.7	27.6
	10	1.12	2.58	4.34	6.33	8.52	10.9	13.3	15.9	18.5	21.2	24.0	26.8
	12	0.95	2.25	3.84	5.67	7.70	9.91	12.3	14.7	17.3	19.9	22.6	25.3
	14	0.83	1.98	3.43	5.11	7.00	9.08	11.3	13.7	16.1	18.7	21.3	23.9
	16	0.73	1.77	3.09	4.64	6.40	8.36	10.5	12.7	15.1	17.5	20.1	22.6
	18	0.65	1.60	2.81	4.24	5.89	7.73	9.74	11.9	14.2	16.5	19.0	21.5
	20	0.59	1.46	2.57	3.90	5.44	7.19	9.09	11.1	13.3	15.6	17.9	20.4
	24	0.49	1.24	2.20	3.35	4.72	6.27	7.99	9.85	11.9	14.0	16.2	18.5
	28	0.42	1.07	1.91	2.93	4.15	5.55	7.10	8.81	10.7	12.6	14.7	16.8
	32	0.37	0.95	1.69	2.60	3.70	4.97	6.38	7.95	9.65	11.5	13.4	15.4
	36	0.33	0.85	1.51	2.34	3.34	4.49	5.79	7.23	8.81	10.5	12.3	14.2
6	2	2.59	5.32	8.17	11.1	14.0	17.0	19.9	22.9	25.8	28.8	31.8	34.7
	3	2.32	4.94	7.73	10.6	13.5	16.5	19.4	22.4	25.4	28.3	31.3	34.3
	4	2.07	4.57	7.31	10.2	13.1	16.0	19.0	21.9	24.9	27.8	30.8	33.8
	5	1.84	4.25	6.91	9.73	12.6	15.5	18.5	21.4	24.4	27.4	30.3	33.3
	6	1.65	3.95	6.55	9.32	12.2	15.1	18.0	20.9	23.9	26.9	29.8	32.8
	7	1.49	3.69	6.22	8.94	11.8	14.6	17.5	20.5	23.4	26.4	29.3	32.3
	8	1.35	3.46	5.92	8.58	11.4	14.2	17.1	20.0	22.9	25.9	28.8	31.8
	9	1.23	3.25	5.64	8.25	11.0	13.8	16.7	19.6	22.5	25.4	28.4	31.3
	10	1.12	3.06	5.39	7.94	10.6	13.4	16.3	19.1	22.0	24.9	27.9	30.8
	12	0.95	2.73	4.92	7.37	9.97	12.7	15.5	18.3	21.2	24.1	27.0	29.9
	14	0.83	2.46	4.52	6.85	9.36	12.0	14.7	17.5	20.3	23.2	26.1	29.0
	16	0.73	2.23	4.18	6.39	8.80	11.4	14.0	16.8	19.6	22.4	25.3	28.1
	18	0.65	2.04	3.87	5.97	8.28	10.8	13.4	16.1	18.8	21.6	24.4	27.3
	20	0.59	1.88	3.60	5.59	7.81	10.2	12.8	15.4	18.1	20.9	23.7	26.5
	24	0.49	1.63	3.15	4.94	6.99	9.25	11.7	14.2	16.8	19.5	22.2	25.0
	28	0.42	1.43	2.79	4.41	6.31	8.44	10.7	13.1	15.7	18.2	20.9	23.6
	32	0.37	1.27	2.49	3.97	5.74	7.74	9.90	12.2	14.6	17.1	19.7	22.3
	36	0.33	1.15	2.25	3.61	5.26	7.13	9.17	11.4	13.7	16.1	18.6	21.1

Table 7-10 (continued) Coefficients C for Eccentrically Loaded Bolt Groups													
Angle $=75^{\circ}$													
Available strength of a bolt group, ϕR_{n} or R_{n} / Ω, is determined with $R_{n}=C r_{n}$ or					$P=$ required force, P_{u} or P_{a}, kips $r_{n}=$ nominal strength per bolt, kips $e_{x}=$ horizontal distance from the centroid of the bolt group to the line of action of P, in. $s=$ bolt spacing, in. $C=$ coefficient tabulated below								
LRFD		ASD			the line of action of P, in. $s=$ bolt spacing, in. $C=$ coefficient tabulated below								
$C_{\text {min }}=\frac{P_{u}}{\phi r_{n}}$			$C_{\text {min }}=\frac{\Omega P_{a}}{r_{n}}$										
s, in.	e_{x}, in.	Number of Bolts in One Vertical Row, \boldsymbol{n}											
		1	2	3	4	5	6	7	8	9	10	11	12
	2	2.86	5.68	8.47	11.3	14.1	16.9	19.8	22.6	25.5	28.4	31.3	34.2
	3	2.77	5.49	8.19	10.9	13.7	16.4	19.2	22.1	24.9	27.8	30.7	33.6
	4	2.66	5.27	7.89	10.5	13.2	16.0	18.8	21.6	24.4	27.2	30.1	33.0
	5	2.53	5.04	7.58	10.2	12.8	15.5	18.3	21.0	23.9	26.7	29.5	32.4
	6	2.40	4.81	7.27	9.81	12.4	15.1	17.8	20.6	23.3	26.2	29.0	31.8
	7	2.26	4.57	6.97	9.47	12.0	14.7	17.4	20.1	22.9	25.6	28.4	31.3
	8	2.13	4.35	6.69	9.13	11.7	14.3	16.9	19.6	22.4	25.1	27.9	30.7
	9	2.00	4.13	6.41	8.82	11.3	13.9	16.5	19.2	21.9	24.7	27.4	30.2
3	10	1.89	3.93	6.15	8.51	11.0	13.5	16.1	18.8	21.5	24.2	27.0	29.8
3	12	1.67	3.57	5.67	7.95	10.4	12.9	15.4	18.0	20.7	23.4	26.1	28.8
	14	1.49	3.25	5.25	7.44	9.77	12.2	14.7	17.3	19.9	22.6	25.3	28.0
	16	1.34	2.97	4.87	6.98	9.23	11.6	14.1	16.6	19.2	21.8	24.5	27.2
	18	1.21	2.73	4.54	6.56	8.74	11.1	13.5	16.0	18.5	21.1	23.7	26.4
	20	1.10	2.53	4.24	6.18	8.28	10.5	12.9	15.3	17.8	20.4	23.0	25.6
	24	0.93	2.19	3.75	5.52	7.48	9.59	11.8	14.2	16.6	19.1	21.6	24.2
	28	0.80	1.93	3.34	4.97	6.79	8.78	10.9	13.2	15.5	17.9	20.4	22.9
	32	0.71	1.72	3.01	4.51	6.20	8.08	10.1	12.3	14.5	16.8	19.2	21.7
	36	0.63	1.55	2.74	4.12	5.70	7.47	9.40	11.5	13.6	15.9	18.2	20.6
	2	2.86	5.66	8.48	11.3	14.2	17.1	20.1	23.0	26.4	29.3	32.3	35.2
	3	2.77	5.49	8.25	11.1	13.9	16.8	19.7	22.7	25.6	28.5	31.5	34.4
	4	2.66	5.30	8.02	10.8	13.6	16.5	19.4	22.3	25.2	28.2	31.1	34.0
	5	2.53	5.10	7.79	10.6	13.4	16.2	19.1	22.0	24.9	27.8	30.8	33.7
	6	2.40	4.91	7.56	10.3	13.1	15.9	18.8	21.7	24.6	27.5	30.4	33.3
	7	2.26	4.72	7.34	10.1	12.9	15.7	18.5	21.4	24.3	27.2	30.1	33.0
	8	2.13	4.54	7.14	9.83	12.6	15.4	18.3	21.1	24.0	26.9	29.8	32.7
	9	2.00	4.37	6.94	9.61	12.4	15.2	18.0	20.8	23.7	26.6	29.5	32.4
	10	1.89	4.21	6.75	9.40	12.1	14.9	17.7	20.6	23.4	26.3	29.2	32.1
6	12	1.67	3.90	6.39	9.00	11.7	14.4	17.2	20.0	22.9	25.7	28.6	31.5
	14	1.49	3.63	6.06	8.63	11.3	14.0	16.8	19.6	22.4	25.2	28.1	30.9
	16	1.34	3.39	5.75	8.29	10.9	13.6	16.3	19.1	21.9	24.7	27.5	30.4
	18	1.21	3.17	5.47	7.96	10.6	13.2	15.9	18.7	21.4	24.2	27.0	29.9
	20	1.10	2.98	5.22	7.66	10.2	12.9	15.5	18.2	21.0	23.8	26.6	29.4
	24	0.93	2.65	4.76	7.10	9.57	12.2	14.8	17.5	20.2	22.9	25.7	28.5
	28	0.80	2.38	4.37	6.60	8.99	11.5	14.1	16.7	19.4	22.1	24.8	27.6
	32	0.71	2.16	4.03	6.15	8.45	10.9	13.4	16.0	18.7	21.3	24.0	26.8
	36	0.63	1.97	3.73	5.75	7.96	10.3	12.8	15.3	17.9	20.6	23.3	26.0

Coefficients C for Eccentrically Loaded Bolt Groups Angle $=0^{\circ}$													
Available strength of a bolt group, ϕR_{n} or R_{n} / Ω, is determined with $R_{n}=C r_{n}$ or				up, with	where $P=$ required force, P_{u} or P_{a}, kips $r_{n}=$ nominal strength per bolt, kips $e_{X}=$ horizontal distance from the centroid of the bolt group to the line of action of P, in. $s=$ bolt spacing, in. $C=$ coefficient tabulated below					Centroid of bolt group			
s, in.	$e_{\text {x }}$, in.	Number of Bolts in One Vertical Row, n											
		1	2	3	4	5	6	7	8	9	10	11	12
3	2	2.15	4.55	7.17	10.0	13.0	16.0	19.1	22.2	25.3	28.3	31.4	34.4
	3	1.91	4.06	6.43	9.06	11.9	14.9	17.9	21.0	24.1	27.2	30.3	33.4
	4	1.71	3.65	5.80	8.23	10.9	13.7	16.7	19.8	22.9	26.0	29.1	32.3
	5	1.55	3.31	5.27	7.51	9.97	12.7	15.5	18.5	21.5	24.7	27.8	31.0
	6	1.42	3.02	4.82	6.88	9.16	11.7	14.4	17.3	20.3	23.3	26.4	29.6
	7	1.31	2.77	4.44	6.34	8.46	10.8	13.4	16.1	19.0	22.0	25.1	28.2
	8	1.21	2.56	4.10	5.87	7.85	10.1	12.5	15.1	17.9	20.7	23.7	26.8
	9	1.12	2.38	3.81	5.46	7.31	9.39	11.7	14.1	16.8	19.6	22.5	25.5
	10	1.05	2.21	3.55	5.09	6.84	8.79	10.9	13.3	15.8	18.5	21.3	24.2
	12	0.92	1.94	3.12	4.48	6.03	7.78	9.70	11.8	14.1	16.6	19.1	21.9
	14	0.81	1.72	2.77	3.99	5.38	6.95	8.69	10.6	12.7	14.9	17.3	19.9
	16	0.72	1.53	2.48	3.58	4.84	6.27	7.85	9.60	11.5	13.6	15.8	18.1
	18	0.64	1.38	2.25	3.25	4.40	5.70	7.15	8.75	10.5	12.4	14.4	16.6
	20	0.58	1.26	2.05	2.96	4.02	5.21	6.55	8.03	9.65	11.4	13.3	15.3
	24	0.49	1.06	1.73	2.52	3.42	4.45	5.60	6.88	8.29	9.82	11.5	13.2
	28	0.42	0.92	1.50	2.19	2.97	3.87	4.88	6.00	7.24	8.59	10.1	11.6
	32	0.37	0.81	1.32	1.93	2.63	3.42	4.32	5.32	6.42	7.62	8.93	10.3
	36	0.33	0.72	1.18	1.72	2.35	3.06	3.87	4.77	5.76	6.84	8.02	9.29
	C^{\prime}, in.	11.8	26.5	43.3	63.7	86.8	114	144	178	216	257	302	352
6	2	2.15	4.94	7.98	11.1	14.2	17.2	20.2	23.2	26.2	29.2	32.1	35.1
	3	1.91	4.48	7.39	10.5	13.6	16.7	19.8	22.8	25.8	28.9	31.9	34.8
	4	1.71	4.07	6.81	9.86	13.0	16.1	19.3	22.3	25.4	28.5	31.5	34.5
	5	1.55	3.71	6.27	9.22	12.3	15.5	18.6	21.8	24.9	28.0	31.0	34.1
	6	1.42	3.40	5.79	8.61	11.7	14.8	18.0	21.1	24.3	27.4	30.5	33.6
	7	1.31	3.13	5.35	8.05	11.0	14.1	17.3	20.5	23.6	26.8	29.9	33.1
	8	1.21	2.90	4.97	7.53	10.4	13.4	16.6	19.8	23.0	26.1	29.3	32.5
	9	1.12	2.69	4.64	7.07	9.78	12.8	15.9	19.0	22.2	25.4	28.6	31.8
	10	1.05	2.51	4.34	6.64	9.24	12.1	15.2	18.3	21.5	24.7	27.9	31.1
	12	0.92	2.21	3.85	5.91	8.27	11.0	13.9	16.9	20.0	23.2	26.4	29.7
	14	0.81	1.96	3.44	5.31	7.46	9.95	12.7	15.6	18.6	21.8	25.0	28.2
	16	0.72	1.76	3.11	4.80	6.78	9.09	11.6	14.4	17.3	20.4	23.5	26.7
	18	0.64	1.60	2.83	4.38	6.20	8.34	10.7	13.3	16.1	19.1	22.1	25.2
	20	0.58	1.46	2.59	4.02	5.71	7.70	9.91	12.4	15.0	17.9	20.8	23.8
	24	0.49	1.24	2.21	3.44	4.91	6.65	8.59	10.8	13.2	15.7	18.5	21.3
	28	0.42	1.08	1.92	3.00	4.30	5.83	7.57	9.53	11.7	14.0	16.5	19.2
	32	0.37	0.95	1.70	2.66	3.82	5.19	6.75	8.51	10.5	12.6	14.9	17.3
	36	0.33	0.85	1.52	2.39	3.43	4.67	6.08	7.68	9.45	11.4	13.5	15.8
	C^{\prime}, in.	11.8	31.6	56.1	89.4	129	177	232	296	366	446	533	629

Table 7-11 (continued) Coefficients C for Eccentrically Loaded Bolt Groups													
Angle $=15^{\circ}$													
Available strength of a bolt group, ϕR_{n} or R_{n} / Ω, is determined with $R_{n}=C r_{n}$ or					where $P=$ required force, P_{u} or P_{a}, kips $r_{n}=$ nominal strength per bolt, kips $e_{x}=$ horizontal distance from the centroid of the bolt group to the line of action of P, in. $s=$ bolt spacing, in. $C=$ coefficient tabulated below								
LRFD		ASD											
$C_{\text {min }}=\frac{P_{u}}{\phi r_{n}}$		$C_{\text {min }}=\frac{\Omega P_{a}}{r_{n}}$											
s, in.	e_{x}, in.	Number of Bolts in One Vertical Row, n											
		1	2	3	4	5	6	7	8	9	10	11	12
3	2	2.22	4.62	7.25	10.1	13.0	16.0	19.0	22.1	25.1	28.2	31.2	34.2
	3	1.97	4.13	6.53	9.13	11.9	14.9	17.9	20.9	24.0	27.1	30.1	33.2
	4	1.77	3.72	5.91	8.31	10.9	13.7	16.7	19.7	22.7	25.8	28.9	32.0
	5	1.61	3.38	5.39	7.60	10.1	12.7	15.5	18.4	21.4	24.5	27.6	30.7
	6	1.47	3.10	4.93	6.98	9.28	11.8	14.4	17.2	20.2	23.2	26.2	29.3
	7	1.35	2.85	4.54	6.45	8.59	10.9	13.5	16.1	19.0	21.9	24.9	27.9
	8	1.25	2.63	4.21	5.98	7.98	10.2	12.6	15.1	17.8	20.7	23.6	26.6
	9	1.16	2.44	3.91	5.57	7.45	9.51	11.8	14.2	16.8	19.5	22.4	25.3
	10	1.08	2.28	3.65	5.21	6.97	8.92	11.1	13.4	15.9	18.5	21.2	24.1
	12	0.94	2.00	3.20	4.59	6.16	7.91	9.84	11.9	14.2	16.6	19.2	21.9
	14	0.83	1.77	2.85	4.09	5.50	7.08	8.84	10.8	12.8	15.0	17.4	19.9
	16	0.74	1.58	2.56	3.68	4.96	6.40	8.00	9.75	11.7	13.7	15.9	18.2
	18	0.66	1.43	2.31	3.34	4.51	5.83	7.30	8.91	10.7	12.6	14.6	16.8
	20	0.60	1.30	2.11	3.05	4.13	5.34	6.70	8.19	9.82	11.6	13.5	15.5
	24	0.50	1.10	1.79	2.59	3.52	4.56	5.74	7.03	8.45	10.0	11.7	13.4
	28	0.43	0.95	1.55	2.25	3.06	3.98	5.01	6.15	7.40	8.77	10.2	11.8
	32	0.38	0.84	1.37	1.99	2.70	3.52	4.43	5.45	6.57	7.79	9.12	10.5
	36	0.34	0.75	1.22	1.78	2.42	3.15	3.98	4.89	5.90	7.01	8.20	9.49
6	2	2.22	4.97	7.97	11.0	14.1	17.1	20.1	23.1	26.1	29.1	32.1	35.0
	3	1.97	4.50	7.40	10.5	13.5	16.6	19.7	22.7	25.7	28.7	31.7	34.7
	4	1.77	4.10	6.84	9.82	12.9	16.0	19.1	22.2	25.2	28.3	31.3	34.3
	5	1.61	3.75	6.32	9.20	12.3	15.4	18.5	21.6	24.7	27.8	30.8	33.9
	6	1.47	3.45	5.86	8.61	11.6	14.7	17.8	20.9	24.1	27.2	30.3	33.3
	7	1.35	3.18	5.44	8.06	11.0	14.0	17.1	20.3	23.4	26.5	29.6	32.7
	8	1.25	2.95	5.07	7.55	10.4	13.3	16.4	19.5	22.7	25.8	29.0	32.1
	9	1.16	2.75	4.73	7.09	9.78	12.7	15.7	18.8	22.0	25.1	28.3	31.4
	10	1.08	2.57	4.44	6.67	9.26	12.1	15.1	18.1	21.3	24.4	27.6	30.7
	12	0.94	2.26	3.93	5.96	8.33	11.0	13.8	16.8	19.8	23.0	26.1	29.3
	14	0.83	2.01	3.52	5.37	7.55	9.97	12.7	15.5	18.5	21.5	24.7	27.8
	16	0.74	1.81	3.18	4.87	6.88	9.13	11.7	14.4	17.2	20.2	23.2	26.4
	18	0.66	1.64	2.90	4.45	6.31	8.40	10.8	13.3	16.1	18.9	21.9	25.0
	20	0.60	1.50	2.65	4.10	5.81	7.77	9.99	12.4	15.0	17.8	20.7	23.6
	24	0.50	1.28	2.27	3.52	5.01	6.74	8.71	10.9	13.2	15.8	18.4	21.2
	28	0.43	1.11	1.98	3.08	4.40	5.93	7.69	9.62	11.8	14.1	16.5	19.1
	32	0.38	0.98	1.75	2.73	3.91	5.29	6.87	8.62	10.6	12.7	15.0	17.4
	36	0.34	0.88	1.57	2.45	3.52	4.77	6.20	7.80	9.59	11.5	13.6	15.9

Table 7-11 (continued) Coefficients C for Eccentrically Loaded Bolt Groups													
Angle $=30^{\circ}$													
Available strength of a bolt group, ϕR_{n} or R_{n} / Ω, is determined with $R_{n}=C r_{n}$ or					where$\begin{aligned} P= & \text { required force, } P_{u} \text { or } P_{a}, \text { kips } \\ r_{n}= & \text { nominal strength per bolt, } \\ & \text { kips } \\ e_{X}= & \text { horizontal distance from the } \\ & \text { centroid of the bolt group to } \\ & \text { the line of action of } P, \text { in. } \\ s= & \text { bolt spacing, in. } \\ C= & \text { coefficient tabulated below } \end{aligned}$								
LRFD		ASD											
$C_{\text {min }}=\frac{P_{u}}{\phi r_{n}}$		$C_{\text {min }}=\frac{\Omega P_{a}}{r_{n}}$											
s, in.	e_{x}, in.	Number of Bolts in One Vertical Row, n											
		1	2	3	4	5	6	7	8	9	10	11	12
3	2	2.40	4.89	7.53	10.3	13.2	16.1	19.1	22.1	25.1	28.1	31.1	34.1
	3	2.15	4.40	6.84	9.45	12.2	15.1	18.0	21.0	24.0	27.0	30.0	33.0
	4	1.94	3.99	6.24	8.69	11.3	14.0	16.9	19.8	22.8	25.8	28.8	31.9
	5	1.76	3.65	5.74	8.02	10.5	13.1	15.8	18.7	21.6	24.6	27.6	30.6
	6	1.61	3.35	5.29	7.42	9.72	12.2	14.8	17.6	20.4	23.4	26.3	29.3
	7	1.49	3.10	4.90	6.89	9.06	11.4	13.9	16.6	19.3	22.2	25.1	28.1
	8	1.37	2.87	4.55	6.42	8.47	10.7	13.1	15.6	18.3	21.1	23.9	26.9
	9	1.28	2.67	4.24	6.00	7.94	10.1	12.4	14.8	17.4	20.0	22.8	25.7
	10	1.19	2.49	3.97	5.63	7.47	9.49	11.7	14.0	16.5	19.1	21.8	24.6
	12	1.04	2.19	3.50	4.98	6.64	8.48	10.5	12.6	14.9	17.3	19.9	22.5
	14	0.92	1.95	3.12	4.46	5.97	7.64	9.46	11.4	13.6	15.8	18.2	20.7
	16	0.82	1.75	2.81	4.03	5.40	6.93	8.61	10.4	12.4	14.5	16.7	19.1
	18	0.74	1.58	2.55	3.66	4.92	6.33	7.89	9.59	11.4	13.4	15.5	17.7
	20	0.67	1.44	2.33	3.35	4.52	5.82	7.27	8.85	10.6	12.4	14.4	16.4
	24	0.56	1.22	1.98	2.86	3.87	5.00	6.26	7.65	9.16	10.8	12.5	14.4
	28	0.48	1.06	1.72	2.49	3.37	4.37	5.48	6.71	8.06	9.51	11.1	12.8
	32	0.42	0.93	1.52	2.20	2.99	3.88	4.87	5.97	7.18	8.49	9.91	11.4
	36	0.38	0.83	1.36	1.97	2.68	3.48	4.38	5.38	6.47	7.66	8.95	10.3
6	2	2.40	5.11	8.05	11.1	14.1	17.1	20.1	23.0	26.0	29.0	32.0	34.9
	3	2.15	4.66	7.51	10.5	13.5	16.5	19.6	22.6	25.6	28.6	31.6	34.6
	4	1.94	4.26	6.99	9.90	12.9	16.0	19.0	22.0	25.1	28.1	31.1	34.1
	5	1.76	3.92	6.52	9.34	12.3	15.3	18.4	21.5	24.5	27.6	30.6	33.6
	6	1.61	3.63	6.09	8.80	11.7	14.7	17.7	20.8	23.9	27.0	30.0	33.1
	7	1.49	3.38	5.70	8.30	11.1	14.1	17.1	20.2	23.2	26.3	29.4	32.5
	8	1.37	3.15	5.35	7.83	10.6	13.5	16.5	19.5	22.6	25.7	28.7	31.8
	9	1.28	2.95	5.03	7.40	10.0	12.9	15.8	18.8	21.9	25.0	28.1	31.2
	10	1.19	2.77	4.74	7.00	9.54	12.3	15.2	18.2	21.2	24.3	27.4	30.5
	12	1.04	2.45	4.23	6.30	8.67	11.3	14.1	17.0	19.9	23.0	26.0	29.1
	14	0.92	2.19	3.81	5.71	7.92	10.4	13.0	15.8	18.7	21.7	24.7	27.8
	16	0.82	1.98	3.45	5.22	7.27	9.58	12.1	14.8	17.6	20.5	23.4	26.4
	18	0.74	1.80	3.16	4.79	6.71	8.88	11.2	13.8	16.5	19.3	22.2	25.2
	20	0.67	1.65	2.90	4.42	6.22	8.26	10.5	12.9	15.5	18.2	21.1	24.0
	24	0.56	1.41	2.49	3.82	5.41	7.22	9.23	11.5	13.8	16.4	19.0	21.8
	28	0.48	1.23	2.18	3.36	4.78	6.40	8.22	10.3	12.4	14.8	17.2	19.8
	32	0.42	1.08	1.93	2.99	4.26	5.73	7.40	9.25	11.3	13.4	15.7	18.2
	36	0.38	0.97	1.73	2.69	3.85	5.18	6.71	8.41	10.3	12.3	14.4	16.7

Table 7-11 (continued) Coefficients C for Eccentrically Loaded Bolt Groups													
Angle $=60^{\circ}$													
Available strength of a bolt group, ϕR_{n} or R_{n} / Ω, is determined with $R_{n}=C r_{n}$ or					$r_{n}=$ nominal strength per bolt, kips $e_{X}=$ horizontal distance from the centroid of the bolt group to the line of action of P, in. $s=$ bolt spacing, in. $C=$ coefficient tabulated below								
LRFD		ASD			centroid of the bolt group to the line of action of P, in. $s=$ bolt spacing, in. $C=$ coefficient tabulated below								
$C_{\text {min }}=\frac{P_{u}}{\phi r_{n}}$		$C_{\text {min }}=\frac{\Omega P_{a}}{r_{n}}$											
s, in.	e_{x}, in.	Number of Bolts in One Vertical Row, n											
		1	2	3	4	5	6	7	8	9	10	11	12
3	2	2.83	5.64	8.45	11.3	14.1	16.9	19.8	22.6	25.5	28.4	31.3	34.2
	3	2.72	5.43	8.13	10.8	13.6	16.3	19.1	21.9	24.8	27.6	30.5	33.4
	4	2.59	5.18	7.77	10.4	13.0	15.7	18.5	21.2	24.0	26.8	29.7	32.5
	5	2.46	4.92	7.40	9.92	12.5	15.1	17.8	20.5	23.2	26.0	28.9	31.7
	6	2.32	4.66	7.03	9.46	12.0	14.5	17.1	19.8	22.5	25.2	28.0	30.8
	7	2.19	4.41	6.68	9.02	11.4	13.9	16.5	19.1	21.8	24.5	27.2	30.0
	8	2.07	4.17	6.35	8.61	11.0	13.4	15.9	18.4	21.1	23.7	26.5	29.2
	9	1.95	3.95	6.04	8.22	10.5	12.9	15.3	17.8	20.4	23.0	25.7	28.5
	10	1.84	3.74	5.75	7.86	10.1	12.4	14.8	17.3	19.8	22.4	25.0	27.7
	12	1.65	3.38	5.22	7.19	9.28	11.5	13.8	16.2	18.6	21.1	23.7	26.3
	14	1.49	3.06	4.76	6.61	8.58	10.7	12.9	15.2	17.5	20.0	22.5	25.0
	16	1.35	2.79	4.37	6.09	7.95	9.93	12.0	14.2	16.5	18.9	21.3	23.8
	18	1.23	2.55	4.02	5.64	7.39	9.28	11.3	13.4	15.6	17.9	20.3	22.7
	20	1.12	2.35	3.72	5.24	6.90	8.69	10.6	12.6	14.8	17.0	19.3	21.7
	24	0.95	2.02	3.22	4.57	6.06	7.68	9.43	11.3	13.3	15.4	17.5	19.8
	28	0.83	1.76	2.84	4.04	5.39	6.86	8.47	10.2	12.0	14.0	16.0	18.1
	32	0.73	1.56	2.53	3.61	4.84	6.19	7.66	9.26	11.0	12.8	14.7	16.7
	36	0.65	1.40	2.27	3.26	4.38	5.62	6.98	8.46	10.1	11.7	13.5	15.4
6	2	2.83	5.64	8.47	11.3	14.2	17.1	20.0	23.0	25.9	28.9	31.8	34.8
	3	2.72	5.44	8.19	11.0	13.8	16.7	19.6	22.6	25.5	28.4	31.4	34.3
	4	2.59	5.21	7.88	10.6	13.4	16.3	19.2	22.1	25.0	28.0	30.9	33.9
	5	2.46	4.97	7.57	10.3	13.1	15.9	18.8	21.7	24.6	27.5	30.4	33.4
	6	2.32	4.73	7.27	9.91	12.7	15.5	18.3	21.2	24.1	27.0	30.0	32.9
	7	2.19	4.51	6.97	9.56	12.3	15.0	17.9	20.8	23.7	26.6	29.5	32.4
	8	2.07	4.29	6.69	9.23	11.9	14.6	17.5	20.3	23.2	26.1	29.0	32.0
	9	1.95	4.09	6.43	8.92	11.5	14.3	17.0	19.9	22.8	25.6	28.6	31.5
	10	1.84	3.90	6.18	8.63	11.2	13.9	16.6	19.5	22.3	25.2	28.1	31.0
	12	1.65	3.56	5.73	8.08	10.6	13.2	15.9	18.7	21.5	24.3	27.2	30.1
	14	1.49	3.27	5.32	7.59	10.0	12.6	15.2	17.9	20.7	23.5	26.3	29.2
	16	1.35	3.01	4.95	7.13	9.48	12.0	14.5	17.2	19.9	22.7	25.5	28.4
	18	1.23	2.78	4.63	6.71	8.98	11.4	13.9	16.5	19.2	22.0	24.7	27.6
	20	1.12	2.58	4.34	6.33	8.52	10.9	13.3	15.9	18.5	21.2	24.0	26.8
	24	0.95	2.25	3.84	5.67	7.70	9.91	12.3	14.7	17.3	19.9	22.6	25.3
	28	0.83	1.98	3.43	5.11	7.00	9.08	11.3	13.7	16.1	18.7	21.3	23.9
	32	0.73	1.77	3.09	4.64	6.40	8.36	10.5	12.7	15.1	17.5	20.1	22.6
	36	0.65	1.60	2.81	4.24	5.89	7.73	9.74	11.9	14.2	16.5	19.0	21.5

Table 7-11 (continued) Coefficients C for Eccentrically Loaded Bolt Groups													
Angle $=75^{\circ}$													
Available strength of a bolt group, ϕR_{n} or R_{n} / Ω, is determined with $R_{n}=C r_{n}$ or					where $P=$ required force, P_{u} or P_{a}, kips $r_{n}=$ nominal strength per bolt, kips $e_{X}=$ horizontal distance from the centroid of the bolt group to the line of action of P, in. $s=$ bolt spacing, in. $C=$ coefficient tabulated below								
LRFD		ASD											
$C_{\text {min }}=\frac{P_{u}}{\phi r_{n}}$		$C_{\text {min }}=\frac{\Omega P_{a}}{r_{n}}$											
s, in.	e_{x}, in.	Number of Bolts in One Vertical Row, n											
		1	2	3	4	5	6	7	8	9	10	11	12
3	2	2.92	5.83	8.73	11.6	14.5	17.4	20.3	23.1	26.0	28.9	31.8	34.7
	3	2.89	5.77	8.63	11.5	14.3	17.2	20.0	22.8	25.7	28.5	31.4	34.2
	4	2.86	5.70	8.51	11.3	14.1	16.9	19.7	22.5	25.3	28.1	30.9	33.7
	5	2.82	5.61	8.38	11.1	13.9	16.6	19.4	22.1	24.9	27.7	30.5	33.3
	6	2.77	5.51	8.23	10.9	13.6	16.3	19.0	21.8	24.5	27.2	30.0	32.8
	7	2.72	5.40	8.06	10.7	13.4	16.0	18.7	21.4	24.1	26.8	29.6	32.3
	8	2.66	5.29	7.89	10.5	13.1	15.7	18.3	21.0	23.7	26.4	29.1	31.9
	9	2.60	5.16	7.71	10.3	12.8	15.4	18.0	20.6	23.3	26.0	28.7	31.4
	10	2.53	5.04	7.53	10.0	12.6	15.1	17.7	20.3	22.9	25.6	28.3	31.0
	12	2.40	4.78	7.16	9.57	12.0	14.5	17.0	19.6	22.1	24.8	27.4	30.1
	14	2.26	4.52	6.80	9.12	11.5	13.9	16.4	18.9	21.4	24.0	26.6	29.3
	16	2.13	4.27	6.45	8.68	11.0	13.3	15.8	18.2	20.7	23.3	25.9	28.5
	18	2.00	4.03	6.12	8.27	10.5	12.8	15.2	17.6	20.1	22.6	25.1	27.7
	20	1.89	3.81	5.80	7.88	10.1	12.3	14.6	17.0	19.4	21.9	24.4	27.0
	24	1.67	3.41	5.24	7.18	9.22	11.4	13.6	15.9	18.2	20.7	23.1	25.6
	28	1.49	3.06	4.75	6.56	8.49	10.5	12.6	14.9	17.1	19.5	21.9	24.3
	32	1.34	2.77	4.33	6.02	7.84	9.77	11.8	13.9	16.1	18.4	20.7	23.1
	36	1.21	2.52	3.97	5.56	7.27	9.10	11.1	13.1	15.2	17.4	19.7	22.0
6	2	2.92	5.82	8.71	11.6	14.5	17.4	20.3	23.5	26.4	29.3	32.3	35.2
	3	2.89	5.76	8.60	11.4	14.3	17.1	20.0	22.9	25.8	28.7	31.7	34.6
	4	2.86	5.68	8.47	11.3	14.1	16.9	19.8	22.6	25.5	28.4	31.3	34.2
	5	2.82	5.59	8.34	11.1	13.9	16.7	19.5	22.4	25.2	28.1	31.0	33.9
	6	2.77	5.49	8.19	10.9	13.7	16.4	19.2	22.1	24.9	27.8	30.7	33.6
	7	2.72	5.39	8.04	10.7	13.4	16.2	19.0	21.8	24.6	27.5	30.4	33.3
	8	2.66	5.27	7.89	10.5	13.2	16.0	18.8	21.6	24.4	27.2	30.1	33.0
	9	2.60	5.16	7.74	10.4	13.0	15.8	18.5	21.3	24.1	27.0	29.8	32.7
	10	2.53	5.04	7.58	10.2	12.8	15.5	18.3	21.0	23.9	26.7	29.5	32.4
	12	2.40	4.81	7.27	9.81	12.4	15.1	17.8	20.6	23.3	26.2	29.0	31.8
	14	2.26	4.57	6.97	9.47	12.0	14.7	17.4	20.1	22.9	25.6	28.4	31.3
	16	2.13	4.35	6.69	9.13	11.7	14.3	16.9	19.6	22.4	25.1	27.9	30.7
	18	2.00	4.13	6.41	8.82	11.3	13.9	16.5	19.2	21.9	24.7	27.4	30.2
	20	1.89	3.93	6.15	8.51	11.0	13.5	16.1	18.8	21.5	24.2	27.0	29.8
	24	1.67	3.57	5.67	7.95	10.4	12.9	15.4	18.0	20.7	23.4	26.1	28.8
	28	1.49	3.25	5.25	7.44	9.77	12.2	14.7	17.3	19.9	22.6	25.3	28.0
	32	1.34	2.97	4.87	6.98	9.23	11.6	14.1	16.6	19.2	21.8	24.5	27.2
	36	1.21	2.73	4.54	6.56	8.74	11.1	13.5	16.0	18.5	21.1	23.7	26.4

Table 7-12 Coefficients C for Eccentrically Loaded Bolt Groups													
Angle $=0^{\circ}$													
Available strength of a bolt group, ϕR_{n} or R_{n} / Ω, is determined with $R_{n}=C r_{n}$ or					where $P=$ required force, P_{u} or P_{a}, kips $r_{n}=$ nominal strength per bolt, kips $e_{X}=$ horizontal distance from the centroid of the bolt group to the line of action of P, in. $s=$ bolt spacing, in. $C=$ coefficient tabulated below								
LRFD		ASD								Centroid of bolt group			
$C_{\text {min }}=\frac{P_{u}}{\phi r_{n}}$		$C_{\text {min }}=\frac{\Omega P_{a}}{r_{n}}$											
s, in.	e_{x}, in.	Number of Bolts in One Vertical Row, n											
		1	2	3	4	5	6	7	8	9	10	11	12
3	2	2.60	5.70	9.24	13.2	17.3	21.4	25.6	29.7	33.8	37.8	41.9	45.9
	3	2.23	4.92	8.05	11.7	15.6	19.7	23.9	28.1	32.3	36.4	40.6	44.7
	4	1.94	4.30	7.09	10.4	14.0	18.0	22.1	26.3	30.5	34.7	38.9	43.1
	5	1.69	3.79	6.30	9.29	12.6	16.4	20.3	24.4	28.6	32.9	37.1	41.4
	6	1.49	3.37	5.65	8.37	11.5	14.9	18.7	22.6	26.7	30.9	35.2	39.4
	7	1.32	3.03	5.10	7.59	10.4	13.7	17.2	21.0	24.9	29.0	33.2	37.5
	8	1.18	2.74	4.63	6.92	9.56	12.6	15.9	19.5	23.3	27.3	31.4	35.5
	9	1.07	2.50	4.24	6.35	8.81	11.6	14.7	18.1	21.7	25.6	29.6	33.7
	10	0.98	2.29	3.89	5.86	8.15	10.8	13.7	16.9	20.3	24.0	27.9	31.9
	12	0.83	1.96	3.34	5.06	7.06	9.37	12.0	14.8	17.9	21.3	24.9	28.6
	14	0.73	1.72	2.92	4.44	6.21	8.27	10.6	13.2	16.0	19.1	22.3	25.8
	16	0.65	1.52	2.59	3.95	5.54	7.39	9.48	11.8	14.4	17.2	20.2	23.4
	18	0.58	1.37	2.33	3.55	4.99	6.67	8.57	10.7	13.1	15.6	18.4	21.4
	20	0.53	1.24	2.11	3.23	4.53	6.07	7.81	9.77	11.9	14.3	16.9	19.6
	24	0.44	1.04	1.78	2.72	3.83	5.14	6.62	8.30	10.2	12.2	14.4	16.8
	28	0.38	0.90	1.54	2.35	3.31	4.45	5.73	7.20	8.82	10.6	12.6	14.7
	32	0.34	0.79	1.36	2.07	2.91	3.92	5.05	6.35	7.79	9.38	11.1	13.0
	36	0.30	0.71	1.21	1.85	2.60	3.50	4.51	5.68	6.96	8.39	9.95	11.6
	C^{\prime}, in.	11.3	26.0	44.7	68.1	96.0	129	167	210	258	312	371	435
6	2	2.60	6.48	10.7	14.8	18.9	23.0	27.0	31.0	34.9	38.9	42.9	46.8
	3	2.23	5.75	9.79	14.0	18.2	22.3	26.4	30.5	34.5	38.5	42.5	46.5
	4	1.94	5.12	8.91	13.1	17.4	21.6	25.7	29.9	33.9	38.0	42.0	46.1
	5	1.69	4.58	8.10	12.2	16.4	20.7	24.9	29.1	33.2	37.4	41.4	45.5
	6	1.49	4.13	7.37	11.3	15.5	19.7	24.0	28.3	32.5	36.6	40.8	44.9
	7	1.32	3.74	6.74	10.5	14.5	18.8	23.1	27.3	31.6	35.8	40.0	44.1
	8	1.18	3.41	6.20	9.73	13.6	17.8	22.1	26.4	30.6	34.9	39.1	43.3
	9	1.07	3.13	5.73	9.05	12.8	16.9	21.1	25.4	29.7	34.0	38.2	42.5
	10	0.98	2.89	5.31	8.45	12.0	16.0	20.1	24.4	28.7	33.0	37.3	41.5
	12	0.83	2.50	4.63	7.43	10.7	14.3	18.3	22.4	26.7	31.0	35.3	39.6
	14	0.73	2.19	4.09	6.60	9.53	12.9	16.7	20.6	24.7	29.0	33.3	37.6
	16	0.65	1.95	3.65	5.93	8.59	11.7	15.2	19.0	22.9	27.1	31.3	35.5
	18	0.58	1.76	3.29	5.37	7.81	10.7	14.0	17.5	21.3	25.3	29.4	33.6
	20	0.53	1.60	2.99	4.90	7.15	9.85	12.9	16.2	19.8	23.6	27.6	31.7
	24	0.44	1.35	2.53	4.16	6.10	8.44	11.1	14.0	17.3	20.8	24.4	28.3
	28	0.38	1.17	2.19	3.61	5.31	7.37	9.69	12.3	15.2	18.4	21.8	25.3
	32	0.34	1.03	1.93	3.19	4.69	6.53	8.61	11.0	13.6	16.5	19.6	22.9
	36	0.30	0.92	1.72	2.85	4.20	5.85	7.73	9.89	12.3	14.9	17.7	20.8
	C^{\prime}, in.	11.3	33.7	63.7	106	156	219	291	375	469	574	690	817

Table 7-12 (continued) Coefficients C for Eccentrically Loaded Bolt Groups													
Angle $=15^{\circ}$													
Available strength of a bolt group, ϕR_{n} or R_{n} / Ω, is determined with $R_{n}=C r_{n}$ or					where $P=$ required force, P_{u} or P_{a}, kips $r_{n}=$ nominal strength per bolt, kips $e_{x}=$ horizontal distance from the centroid of the bolt group to the line of action of P, in. $s=$ bolt spacing, in. $C=$ coefficient tabulated below					Centroid of bolt group			
LRFD		ASD											
$C_{\text {min }}=\frac{P_{u}}{\phi r_{n}}$		$C_{\text {min }}=\frac{\Omega P_{a}}{r_{n}}$											
s, in.	e_{x}, in.	Number of Bolts in One Vertical Row, n											
		1	2	3	4	5	6	7	8	9	10	11	12
3	2	2.68	5.77	9.31	13.2	17.2	21.3	25.4	29.5	33.6	37.6	41.7	45.7
	3	2.30	5.00	8.17	11.7	15.6	19.6	23.7	27.8	32.0	36.1	40.2	44.3
	4	1.99	4.38	7.22	10.4	14.1	17.9	21.9	26.0	30.2	34.4	38.5	42.7
	5	1.74	3.88	6.43	9.37	12.7	16.4	20.2	24.2	28.3	32.5	36.7	40.9
	6	1.53	3.45	5.77	8.47	11.6	15.0	18.6	22.5	26.5	30.6	34.8	39.0
	7	1.36	3.10	5.21	7.71	10.6	13.7	17.2	20.9	24.8	28.8	32.9	37.1
	8	1.22	2.81	4.74	7.05	9.70	12.7	15.9	19.5	23.2	27.1	31.1	35.2
	9	1.11	2.57	4.34	6.48	8.95	11.7	14.8	18.1	21.7	25.5	29.4	33.4
	10	1.01	2.36	4.00	5.98	8.29	10.9	13.8	17.0	20.4	24.0	27.7	31.6
	12	0.86	2.02	3.44	5.18	7.21	9.52	12.1	15.0	18.1	21.4	24.9	28.5
	14	0.75	1.77	3.01	4.55	6.36	8.43	10.8	13.3	16.1	19.2	22.4	25.8
	16	0.67	1.57	2.68	4.05	5.67	7.54	9.66	12.0	14.6	17.3	20.3	23.5
	18	0.60	1.41	2.40	3.65	5.12	6.81	8.74	10.9	13.3	15.8	18.6	21.5
	20	0.54	1.28	2.18	3.32	4.66	6.21	7.98	9.95	12.1	14.5	17.1	19.8
	24	0.46	1.08	1.84	2.80	3.94	5.26	6.78	8.47	10.4	12.4	14.6	17.0
	28	0.40	0.93	1.59	2.43	3.41	4.56	5.89	7.37	9.02	10.8	12.8	14.9
	32	0.35	0.82	1.40	2.14	3.00	4.03	5.19	6.51	7.98	9.59	11.3	13.2
	36	0.31	0.73	1.25	1.91	2.68	3.60	4.65	5.83	7.15	8.59	10.2	11.9
6	2	2.68	6.48	10.6	14.7	18.8	22.9	26.9	30.9	34.8	38.8	42.8	46.7
	3	2.30	5.75	9.75	13.9	18.1	22.2	26.3	30.3	34.3	38.3	42.3	46.3
	4	1.99	5.13	8.91	13.0	17.2	21.4	25.5	29.6	33.7	37.7	41.8	45.8
	5	1.74	4.61	8.14	12.1	16.3	20.5	24.7	28.8	33.0	37.1	41.1	45.2
	6	1.53	4.17	7.45	11.2	15.3	19.5	23.7	27.9	32.1	36.3	40.4	44.5
	7	1.36	3.79	6.84	10.4	14.4	18.6	22.8	27.0	31.2	35.4	39.6	43.7
	8	1.22	3.46	6.30	9.71	13.6	17.6	21.8	26.0	30.3	34.5	38.7	42.9
	9	1.11	3.19	5.83	9.05	12.8	16.7	20.9	25.1	29.3	33.5	37.8	42.0
	10	1.01	2.94	5.42	8.47	12.0	15.9	19.9	24.1	28.3	32.6	36.8	41.0
	12	0.86	2.55	4.73	7.47	10.7	14.3	18.2	22.2	26.4	30.6	34.8	39.1
	14	0.75	2.24	4.18	6.66	9.62	12.9	16.6	20.5	24.5	28.6	32.8	37.1
	16	0.67	2.00	3.74	6.00	8.71	11.8	15.2	18.9	22.8	26.8	30.9	35.1
	18	0.60	1.80	3.38	5.45	7.94	10.8	14.0	17.5	21.2	25.1	29.1	33.2
	20	0.54	1.64	3.08	4.98	7.28	9.92	13.0	16.2	19.8	23.5	27.4	31.4
	24	0.46	1.39	2.60	4.25	6.23	8.54	11.2	14.1	17.3	20.8	24.4	28.1
	28	0.40	1.20	2.26	3.69	5.43	7.48	9.85	12.5	15.4	18.5	21.8	25.3
	32	0.35	1.06	1.99	3.26	4.81	6.65	8.77	11.1	13.8	16.6	19.7	22.9
	36	0.31	0.94	1.78	2.92	4.31	5.97	7.89	10.0	12.5	15.1	17.9	20.9

Table 7-13 Coefficients C for Eccentrically Loaded Bolt Groups													
Angle $=0^{\circ}$													
Available strength of a bolt group, ϕR_{n} or R_{n} / Ω, is determined with $R_{n}=C r_{n}$ or					where $P=$ required force, P_{u} or P_{a}, kips $r_{n}=$ nominal strength per bolt, kips $e_{X}=$ horizontal distance from the centroid of the bolt group to the line of action of P, in. $s=$ bolt spacing, in. $C=$ coefficient tabulated below								
LRFD		ASD								bolt group$\left\|\begin{array}{c} 4^{\prime \prime}-4^{\prime \prime}-4^{\prime \prime} \\ 12^{\prime \prime} \end{array}\right\|$			
$C_{\text {min }}=\frac{P_{u}}{\phi r_{n}}$		$C_{\text {min }}=\frac{\Omega P_{a}}{r_{n}}$											
s, in.	e_{x}, in.	Number of Bolts in One Vertical Row, n											
		1	2	3	4	5	6	7	8	9	10	11	12
3	2	2.82	5.98	9.46	13.3	17.3	21.3	25.5	29.6	33.7	37.7	41.8	45.8
	3	2.50	5.31	8.43	12.0	15.7	19.7	23.8	28.0	32.2	36.3	40.4	44.6
	4	2.23	4.74	7.58	10.8	14.3	18.2	22.2	26.3	30.4	34.6	38.8	43.0
	5	2.01	4.27	6.86	9.82	13.1	16.7	20.5	24.5	28.6	32.8	37.0	41.3
	6	1.81	3.86	6.24	8.96	12.0	15.4	19.0	22.9	26.9	31.0	35.2	39.4
	7	1.64	3.52	5.70	8.22	11.1	14.2	17.6	21.3	25.2	29.2	33.3	37.5
	8	1.49	3.22	5.24	7.57	10.2	13.2	16.4	19.9	23.6	27.5	31.5	35.6
	9	1.36	2.96	4.83	7.01	9.48	12.3	15.3	18.6	22.1	25.9	29.8	33.8
	10	1.25	2.73	4.47	6.51	8.83	11.4	14.3	17.5	20.8	24.4	28.2	32.1
	12	1.07	2.37	3.89	5.68	7.74	10.1	12.6	15.5	18.5	21.8	25.3	29.0
	14	0.94	2.08	3.42	5.02	6.86	8.95	11.3	13.8	16.6	19.6	22.8	26.2
	16	0.83	1.86	3.05	4.49	6.15	8.04	10.2	12.5	15.0	17.8	20.7	23.9
	18	0.75	1.67	2.75	4.06	5.56	7.29	9.22	11.4	13.7	16.3	19.0	21.9
	20	0.68	1.52	2.50	3.70	5.07	6.65	8.43	10.4	12.6	14.9	17.5	20.2
	24	0.58	1.29	2.12	3.14	4.30	5.66	7.18	8.88	10.8	12.8	15.0	17.4
	28	0.50	1.12	1.84	2.72	3.73	4.92	6.24	7.73	9.37	11.2	13.1	15.2
	32	0.44	0.98	1.62	2.40	3.30	4.34	5.51	6.84	8.29	9.90	11.6	13.5
	36	0.40	0.88	1.45	2.15	2.95	3.89	4.94	6.13	7.43	8.88	10.4	12.1
	C^{\prime}, in.	15.0	32.8	54.2	79.9	110	145	184	229	279	333	393	458
6	2	2.82	6.54	10.6	14.8	18.9	22.9	26.9	30.9	34.9	38.9	42.8	46.8
	3	2.50	5.90	9.81	14.0	18.1	22.3	26.4	30.4	34.5	38.5	42.5	46.5
	4	2.23	5.33	9.01	13.1	17.3	21.5	25.7	29.8	33.9	37.9	42.0	46.0
	5	2.01	4.84	8.27	12.2	16.4	20.6	24.8	29.0	33.2	37.3	41.4	45.5
	6	1.81	4.42	7.60	11.4	15.5	19.7	24.0	28.2	32.4	36.6	40.7	44.8
	7	1.64	4.05	7.02	10.6	14.6	18.8	23.0	27.3	31.5	35.7	39.9	44.1
	8	1.49	3.73	6.51	9.94	13.7	17.8	22.0	26.3	30.6	34.8	39.1	43.3
	9	1.36	3.45	6.06	9.30	13.0	16.9	21.1	25.3	29.6	33.9	38.2	42.4
	10	1.25	3.20	5.66	8.72	12.2	16.1	20.2	24.4	28.6	32.9	37.2	41.5
	12	1.07	2.80	4.98	7.73	10.9	14.5	18.4	22.5	26.7	30.9	35.2	39.5
	14	0.94	2.47	4.43	6.92	9.81	13.2	16.8	20.7	24.8	29.0	33.2	37.5
	16	0.83	2.21	3.98	6.25	8.90	12.0	15.4	19.1	23.0	27.1	31.3	35.5
	18	0.75	2.00	3.60	5.68	8.13	11.0	14.2	17.7	21.4	25.3	29.4	33.6
	20	0.68	1.82	3.29	5.21	7.47	10.1	13.1	16.4	20.0	23.7	27.7	31.7
	24	0.58	1.55	2.79	4.45	6.40	8.72	11.3	14.3	17.5	20.9	24.5	28.3
	28	0.50	1.34	2.42	3.87	5.59	7.64	9.96	12.6	15.5	18.6	21.9	25.5
	32	0.44	1.18	2.14	3.43	4.95	6.79	8.87	11.2	13.8	16.7	19.7	23.0
	36	0.40	1.06	1.92	3.07	4.44	6.10	7.98	10.1	12.5	15.1	17.9	20.9
	C^{\prime}, in.	15.0	39.4	71.8	115	167	230	304	388	483	588	705	832

Table 7-13 (continued) Coefficients C for Eccentrically Loaded Bolt Groups													
Angle $=15^{\circ}$													
Available strength of a bolt group, ϕR_{n} or R_{n} / Ω, is determined with $R_{n}=C r_{n}$ or					where $P=$ required force, P_{u} or P_{a}, kips $r_{n}=$ nominal strength per bolt, kips $e_{x}=$ horizontal distance from the centroid of the bolt group to the line of action of P, in. $s=$ bolt spacing, in. $C=$ coefficient tabulated below					Centroid of bolt group			
LRFD		ASD											
$C_{\text {min }}=\frac{P_{u}}{\phi r_{n}}$		$C_{\text {min }}=\frac{\Omega P_{a}}{r_{n}}$											
s, in.	e_{x}, in.	Number of Bolts in One Vertical Row, n											
		1	2	3	4	5	6	7	8	9	10	11	12
3	2	2.91	6.06	9.56	13.3	17.2	21.3	25.3	29.4	33.5	37.5	41.6	45.6
	3	2.57	5.40	8.57	12.0	15.8	19.7	23.7	27.8	31.9	36.1	40.2	44.3
	4	2.30	4.84	7.72	10.9	14.4	18.2	22.1	26.1	30.2	34.3	38.5	42.6
	5	2.06	4.37	6.99	9.93	13.2	16.7	20.5	24.4	28.5	32.6	36.7	40.9
	6	1.86	3.96	6.37	9.09	12.1	15.5	19.0	22.8	26.7	30.8	34.9	39.0
	7	1.69	3.61	5.83	8.36	11.2	14.3	17.7	21.3	25.1	29.0	33.1	37.2
	8	1.53	3.31	5.36	7.72	10.4	13.3	16.5	19.9	23.6	27.4	31.3	35.3
	9	1.40	3.04	4.95	7.15	9.64	12.4	15.4	18.7	22.2	25.8	29.7	33.6
	10	1.29	2.81	4.59	6.65	9.0	11.6	14.5	17.6	20.9	24.4	28.1	31.9
	12	1.11	2.44	4.00	5.82	7.9	10.2	12.8	15.6	18.7	21.9	25.3	28.9
	14	0.97	2.15	3.52	5.15	7.0	9.12	11.5	14.0	16.8	19.8	22.9	26.3
	16	0.86	1.92	3.15	4.61	6.3	8.21	10.3	12.7	15.2	18.0	20.9	24.0
	18	0.78	1.73	2.84	4.17	5.7	7.45	9.41	11.6	13.9	16.5	19.2	22.1
	20	0.71	1.57	2.59	3.80	5.2	6.81	8.61	10.6	12.8	15.2	17.7	20.4
	24	0.60	1.33	2.19	3.23	4.4	5.80	7.36	9.07	11.0	13.0	15.3	17.6
	28	0.52	1.15	1.90	2.80	3.9	5.05	6.41	7.91	9.59	11.4	13.4	15.5
	32	0.46	1.02	1.68	2.48	3.4	4.46	5.67	7.01	8.50	10.1	11.9	13.8
	36	0.41	0.91	1.50	2.22	3.0	4.00	5.08	6.29	7.63	9.09	10.7	12.4
6	2	2.91	6.57	10.6	14.7	18.8	22.8	26.8	30.8	34.8	38.8	42.7	46.7
	3	2.57	5.93	9.81	13.9	18.0	22.1	26.2	30.3	34.3	38.3	42.3	46.3
	4	2.30	5.37	9.04	13.0	17.2	21.3	25.5	29.6	33.6	37.7	41.7	45.8
	5	2.06	4.89	8.33	12.2	16.3	20.5	24.6	28.8	32.9	37.0	41.1	45.1
	6	1.86	4.48	7.70	11.4	15.4	19.5	23.7	27.9	32.1	36.2	40.3	44.4
	7	1.69	4.12	7.13	10.6	14.5	18.6	22.8	27.0	31.2	35.4	39.5	43.7
	8	1.53	3.80	6.62	9.95	13.7	17.7	21.8	26.0	30.2	34.4	38.6	42.8
	9	1.40	3.52	6.17	9.32	12.9	16.8	20.9	25.1	29.3	33.5	37.7	41.9
	10	1.29	3.27	5.77	8.76	12.2	16.0	20.0	24.1	28.3	32.5	36.8	41.0
	12	1.11	2.86	5.09	7.80	11.0	14.5	18.3	22.3	26.4	30.6	34.8	39.0
	14	0.97	2.54	4.53	7.00	9.92	13.2	16.8	20.6	24.6	28.7	32.8	37.1
	16	0.86	2.27	4.08	6.34	9.02	12.0	15.4	19.0	22.9	26.9	30.9	35.1
	18	0.78	2.06	3.70	5.78	8.26	11.1	14.2	17.7	21.3	25.2	29.1	33.2
	20	0.71	1.88	3.38	5.30	7.60	10.2	13.2	16.4	19.9	23.6	27.5	31.4
	24	0.60	1.59	2.88	4.54	6.54	8.84	11.5	14.4	17.5	20.9	24.5	28.2
	28	0.52	1.38	2.50	3.96	5.72	7.77	10.1	12.7	15.6	18.7	22.0	25.4
	32	0.46	1.22	2.21	3.51	5.08	6.92	9.03	11.4	14.0	16.8	19.9	23.1
	36	0.41	1.09	1.98	3.15	4.56	6.23	8.15	10.3	12.7	15.3	18.1	21.1

Table 7-13 (continued) Coefficients \boldsymbol{C} for Eccentrically Loaded Bolt Groups													
$\text { Angle }=30^{\circ}$													
Available strength of a bolt group, ϕR_{n} or R_{n} / Ω, is determined with $R_{n}=C r_{n}$ or					where $P=$ $r_{n}=$ $e_{x}=$	uired inal	ce, P_{u} ngth istanc	P_{a}			$\begin{aligned} & e_{x} \\ & \phi-\phi \\ & -\phi \end{aligned}$		
LRFD		ASD			centroid of the bolt group to the line of action of P, in. $s=$ bolt spacing, in. $C=$ coefficient tabulated below					Centroid of bolt group$\begin{gathered} 4^{\prime \prime}-4^{\prime \prime} \mid \\ 12 " \\ \hline \end{gathered}$			
$C_{\text {min }}=\frac{P_{u}}{\phi r_{n}}$		$C_{\text {min }}=\frac{\Omega P_{a}}{r_{n}}$											
s, in.	e_{x}, in.	Number of Bolts in One Vertical Row, n											
		1	2	3	4	5	6	7	8	9	10	11	12
3	2	3.14	6.41	9.91	13.6	17.5	21.4	25.4	29.4	33.4	37.4	41.4	45.4
	3	2.79	5.75	8.95	12.4	16.1	20.0	23.9	27.9	31.9	35.9	40.0	44.0
	4	2.50	5.19	8.16	11.4	14.9	18.5	22.4	26.3	30.3	34.3	38.4	42.4
	5	2.25	4.71	7.45	10.5	13.7	17.2	20.9	24.7	28.6	32.6	36.7	40.7
	6	2.04	4.29	6.83	9.65	12.7	16.0	19.6	23.3	27.1	31.0	35.0	39.0
	7	1.85	3.93	6.28	8.92	11.8	15.0	18.3	21.9	25.6	29.4	33.3	37.3
	8	1.69	3.61	5.80	8.27	11.0	14.0	17.2	20.6	24.2	27.9	31.7	35.6
	9	1.55	3.33	5.38	7.70	10.3	13.1	16.2	19.4	22.9	26.5	30.2	34.0
	10	1.43	3.08	5.00	7.19	9.64	12.3	15.3	18.4	21.7	25.2	28.8	32.5
	12	1.23	2.68	4.37	6.32	8.52	11.0	13.6	16.5	19.6	22.8	26.2	29.8
	14	1.08	2.36	3.88	5.62	7.61	9.83	12.3	14.9	17.8	20.8	24.0	27.3
	16	0.96	2.11	3.47	5.05	6.86	8.89	11.1	13.6	16.2	19.0	22.0	25.2
	18	0.87	1.91	3.14	4.57	6.24	8.10	10.2	12.4	14.9	17.5	20.3	23.3
	20	0.79	1.74	2.86	4.18	5.71	7.43	9.35	11.5	13.8	16.2	18.9	21.6
	24	0.67	1.48	2.43	3.56	4.88	6.36	8.03	9.87	11.9	14.1	16.4	18.9
	28	0.58	1.28	2.11	3.10	4.25	5.55	7.02	8.65	10.4	12.4	14.5	16.7
	32	0.51	1.13	1.87	2.74	3.76	4.92	6.23	7.69	9.29	11.0	12.9	14.9
	36	0.46	1.01	1.67	2.45	3.37	4.41	5.60	6.91	8.36	9.95	11.7	13.5
6	2	3.14	6.75	10.7	14.7	18.7	22.7	26.7	30.7	34.7	38.6	42.6	46.6
	3	2.79	6.12	9.94	13.9	18.0	22.0	26.1	30.1	34.1	38.1	42.1	46.1
	4	2.50	5.58	9.23	13.1	17.2	21.2	25.3	29.4	33.4	37.5	41.5	45.5
	5	2.25	5.13	8.58	12.4	16.3	20.4	24.5	28.6	32.7	36.7	40.8	44.8
	6	2.04	4.73	8.00	11.6	15.5	19.5	23.6	27.7	31.8	35.9	40.0	44.1
	7	1.85	4.38	7.47	10.9	14.7	18.7	22.7	26.8	31.0	35.1	39.2	43.3
	8	1.69	4.06	6.98	10.3	14.0	17.9	21.9	25.9	30.1	34.2	38.3	42.4
	9	1.55	3.78	6.55	9.72	13.3	17.1	21.0	25.1	29.2	33.3	37.4	41.5
	10	1.43	3.53	6.15	9.18	12.6	16.3	20.2	24.2	28.3	32.4	36.5	40.6
	12	1.23	3.10	5.47	8.25	11.4	14.9	18.6	22.5	26.5	30.6	34.7	38.8
	14	1.08	2.76	4.90	7.46	10.4	13.7	17.2	21.0	24.9	28.8	32.9	37.0
	16	0.96	2.48	4.43	6.79	9.55	12.6	16.0	19.6	23.3	27.2	31.2	35.2
	18	0.87	2.25	4.04	6.22	8.79	11.7	14.9	18.3	21.9	25.7	29.5	33.5
	20	0.79	2.06	3.70	5.72	8.14	10.9	13.9	17.1	20.6	24.2	28.0	31.9
	24	0.67	1.76	3.17	4.93	7.06	9.48	12.2	15.2	18.3	21.7	25.3	28.9
	28	0.58	1.53	2.76	4.32	6.22	8.38	10.8	13.5	16.5	19.6	22.9	26.3
	32	0.51	1.35	2.45	3.84	5.54	7.50	9.73	12.2	14.9	17.8	20.9	24.1
	36	0.46	1.21	2.19	3.46	5.00	6.77	8.82	11.1	13.6	16.3	19.1	22.2

Table 7-14
 Dimensions of High-Strength Fasteners, in.

ASTM F3125 Grades A325 and A490

Nut may be chamfered on both faces

ASTM F3125 Grades F1852 and F2280

Measurement			Nominal Bolt Diameter, in								
			1/2	5/8	3/4	7/8	1	11/8	11/4	13/8	11/2
	Width Across Flats, F		7/8	11/16	11/4	17/16	15/8	113/16	2	23/16	23/8
	$\begin{gathered} \text { Head } \\ \text { Diameter, } D^{\mathrm{e}} \end{gathered}$		11/8	15/16	19/16	17/8	23/16	23/8	-	-	-
	Height, H		5/16	25/64	15/32	35/64	39/64	11/16	25/32	27/32	15/16
	Thread Length		1	11/4	13/8	11/2	13/4	2	2	21/4	21/4
	Spline Lengthe		1/2	19/32	21/32	23/32	13/16	13/16	-	-	-
	Bolt Length = Grip + Washer Thickness $+\rightarrow$		11/16	7/8	1	11/8	11/4	11/2	15/8	13/4	17/8
	Width Across Flats, W		7/8	11/16	11/4	17/16	15/8	113/16	2	23/16	23/8
	Height, H		31/64	39/64	47/64	55/64	63/64	17/64	17/32	111/32	115/32
$\text { F436 Circular Washers }{ }^{\text {b }}$	Nom. Outside Diameter, OD		11/16	15/16	115/32	13/4	2	21/4	21/2	23/4	3
	Nom. Inside Diameter, ID		17/32	11/16	13/16	15/16	11/8	11/4	13/8	11/2	15/8
	Thckns., T	Min.	0.097	0.122	0.122	0.136	0.136	0.136	0.136	0.136	0.136
		Max.	0.177	0.177	0.177	0.177	0.177	0.177	0.177	0.177	0.177
	Min. Edge Distance, $E^{\text {c }}$		7/16	9/16	21/32	25/32	7/8	1	13/32	17/32	15/16
	Min. Side Dimension, A		13/4	13/4	13/4	13/4	13/4	21/4	21/4	21/4	21/4
	Min. Edge Distance, $E^{\text {c }}$		7/16	9/16	21/32	25/32	7/8	1	13/32	17/32	15/16

[^27]| Entering an ASTM F3125 H | | Tabl | | | | | ce, | in.
 A49 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aligned Bolts | | | | | | | | | |
| | | Nominal | Socket | | | | | | ${ }_{3}$ |
| | | Bolt Dia. | Dia. | H_{1} | H_{2} | C_{1} | C_{2} | Circular | Clipped |
| | | 5/8 | 21/8 | 25/64 | 11/4 | 13/16 | 11/16 | 11/16 | 5/8 |
| | | 3/4 | 21/8 | 15/32 | 13/8 | 13/16 | 3/4 | 3/4 | 11/16 |
| | | 7/8 | 21/4 | 35/64 | 11/2 | 11/4 | 7/8 | 7/8 | 13/16 |
| | | 1 | 21/2 | 39/64 | 13/4 | 13/8 | 15/16 | 1 | 7/8 |
| | | 11/8 | 23/4 | 11/16 | 2 | $11 / 2$ | 11/16 | $11 / 8$ | 1 |
| | | 11/4 | 33/8 | 25/32 | 2 | 113/16 | 11/8 | 11/4 | 11/8 |
| | | 13/8 | 31/2 | 27/32 | 21/4 | 17/8 | 11/4 | 13/8 | 11/4 |
| | | 11/2 | 33/4 | 15/16 | 21/4 | 2 | 15/16 | 11/2 | 13/8 |
| Staggered Bolts | | | | | | | | | |
| | F | Stagger P, in. | | | | | | | |
| | | Nominal Bolt Diameter, in. | | | | | | | |
| | | 5/8 | 3/4 | 7/8 | 1 | 11/8 | 11/4 | 13/8 | 11/2 |
| $C_{1}=$ tightening clearance | $11 / 4$ | 15/8 | 113/16 | 2 | | - | - | - | - |
| | $13 / 8$ | 11/2 | 13/4 | $15 / 16$ | 21/4 | - | - | - | - |
| | 11/2 | 11/2 | 19/16 | 17/8 | 23/16 | 21/2 | - | - | - |
| | 15/8 | 17/16 | 19/16 | 111/16 | 21/8 | 27/16 | - | - | - |
| | 13/4 | 13/8 | 11/2 | 111/16 | 21/16 | 23/8 | - | - | - |
| | 17/8 | 15/16 | 17/16 | 15/8 | 17/8 | 25/16 | 27/8 | 31/16 | - |
| | 2 | 11/4 | 13/8 | 19/16 | 17/8 | 21/4 | 213/16 | 3 | 35/16 |
| | 21/8 | 11/8 | 15/16 | $11 / 2$ | 113/16 | 21/16 | 27/16 | 215/16 | $31 / 4$ |
| | 21/4 | 15/16 | 13/16 | $17 / 16$ | 13/4 | 21/16 | $27 / 16$ | $27 / 8$ | 33/16 |
| | 23/8 | 11/16 | 1 | 15/16 | 13/4 | 2 | 23/8 | 29/16 | 23/4 |
| | 21/2 | - | 3/4 | 13/16 | 15/8 | 2 | 23/8 | 29/16 | 23/4 |
| | 25/8 | - | - | 1 | 19/16 | 115/16 | 25/16 | 21/2 | 211/16 |
| | 23/4 | - | - | 7/16 | 17/16 | 17/8 | 21/4 | 21/2 | 211/16 |
| | 27/8 | - | - | - | 15/16 | 13/4 | 23/16 | 27/16 | 25/8 |
| | 3 | - | - | - | 11/16 | 111/16 | 21/8 | 23/8 | 25/8 |
| | 31/8 | - | - | - | 1/2 | 19/16 | 21/16 | 23/8 | 29/16 |
| | 31/4 | - | - | - | - | 13/8 | 115/16 | 21/4 | 21/2 |
| | 33/8 | - | - | - | - | 13/16 | 113/16 | 23/16 | 23/8 |
| | 31/2 | - | - | - | - | 9/16 | 15/8 | 21/16 | 25/16 |
| | 35/8 | - | - | - | - | - | 17/16 | 115/16 | 23/16 |
| | 33/4 | - | - | - | - | - | 11/8 | 113/16 | 21/16 |
| | 37/8 | - | - | - | - | - | - | 15/8 | 115/16 |
| | 4 | - | - | - | - | - | - | 13/8 | 111/16 |
| | 41/8 | - | - | - | - | - | - | 11/16 | 17/16 |
| | 41/4 | - | - | - | - | - | - | | |
| | Notes:
 $H_{1}=$ height of head
 $\mathrm{H}_{2}=$ maximum shank extension*
 $C_{1}=$ clearance for tightening
 $C_{2}=$ clearance for entering | | | | $\begin{aligned} & C_{3}=\text { clearance for fillet* } \\ & P=\text { bolt stagger } \\ & F=\text { clearance for tightening staggered bolts } \\ & \text { Based on the use of one ASTM F436 washer } \end{aligned}$ | | | | |

Entering ASTM	$\begin{aligned} & \text { and Ti } \\ & =3125 \\ & \text { (F185 } \end{aligned}$	Table ght Tens	$\begin{aligned} & \text { 7-1 } \\ & \text { nin } \\ & \text { ion } \\ & \text { di F } \end{aligned}$										
Aligned Bolts													
	Tools	Nominal Bolt Dia.	H_{1}	H_{2}	C_{1}	C_{2}	C_{3}						
							Round	Clipped					
	Large Tools (S-110EZ)	4-in.-Diameter Critical											
		$\begin{aligned} & 7 / 8 \\ & 1 \\ & 11 / 8 \end{aligned}$	$\begin{aligned} & \hline 35 / 64 \\ & 39 / 64 \\ & 11 / 16 \\ & \hline \end{aligned}$	$\begin{aligned} & 11 / 2 \\ & 13 / 4 \\ & 2 \end{aligned}$	$\begin{aligned} & 21 / 8 \\ & 21 / 8 \\ & 21 / 8 \end{aligned}$	$\begin{aligned} & 11 / 8 \\ & 11 / 4 \\ & 15 / 16 \end{aligned}$	$\begin{aligned} & \quad 7 / 8 \\ & 1^{1} \\ & 11 / 8 \end{aligned}$	-					
	$-)^{-3 / 4}$	21/2-in.-Diameter Critical											
		7/8	35/64	11/2	13/8	11/8	7/8	-					
		1	39/64	13/4	13/8	11/4	1	-					
		11/8	11/16	2	13/8	15/16	11/8	-					
	Small Tools (S-60EZA)	27/8-in.-Diameter Critical											
		5/8	25/64	11/4	19/16	13/16	11/16	-					
		3/4	15/32	13/8	19/16	15/16	3/4	-					
		7/8	35/64	11/2	19/16	$11 / 8$	7/8	-					
	$--^{27 / 8^{\prime \prime}}$	17/8-in.-Diameter Critical											
	$-1-21 / 8$	5/8	25/64	11/4	11/16	13/16	11/16	-					
	$-17 /{ }^{\prime \prime}$	3/4	15/32	13/8	11/16	15/16	$3 / 4$	-					
		7/8	35/64	$11 / 2$	11/16	$11 / 8$	7/8						
Notes:$\begin{aligned} & H_{1}=\text { height of head } \\ & H_{2}=\text { maximum shank extension } \\ & C_{1}=\text { clearance for tightening } \end{aligned}$	$\begin{aligned} & C_{2}=\text { clearance for entering } \\ & C_{3}=\text { clearance for fillet* } \end{aligned}$ * Based on one standard hardened washer												

Table Entering and Tig ASTM F3125 (F185:		nue Co 228				
Staggered Bolts						
$C_{1}=$ tightening clearance	F	Stagger P, in.				
		Nominal Bolt Diameter, in.				
		5/8	3/4	7/8	1	11/8
	$\begin{aligned} & 15 / 8 \\ & 13 / 4 \\ & 17 / 8 \end{aligned}$	$\begin{aligned} & 113 / 16 \\ & 113 / 16 \\ & 13 / 4 \end{aligned}$	$\begin{aligned} & 115 / 16 \\ & 17 / 8 \\ & 17 / 8 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 115 / 16 \end{aligned}$	-	
	$\begin{aligned} & 2 \\ & 21 / 8 \\ & 21 / 4 \\ & 23 / 8 \end{aligned}$	$\begin{aligned} & 111 / 16 \\ & 15 / 8 \\ & 11 / 2 \\ & 13 / 8 \end{aligned}$	$\begin{aligned} & 113 / 16 \\ & 13 / 4 \\ & 111 / 16 \\ & 19 / 16 \end{aligned}$	$\begin{aligned} & 115 / 16 \\ & 17 / 8 \\ & 113 / 16 \\ & 13 / 4 \end{aligned}$	$\begin{gathered} - \\ 2^{9 / 16} \\ 2^{9 / 16} \\ 2^{1 / 2} \end{gathered}$	$\begin{gathered} - \\ 211 / 16 \\ 2^{11 / 16} \\ 25 / 8 \end{gathered}$
	$\begin{aligned} & 21 / 2 \\ & 25 / 8 \\ & 23 / 4 \\ & 27 / 8 \end{aligned}$	$\begin{gathered} 11 / 4 \\ 11 / 16 \\ 3 / 4 \\ - \end{gathered}$	$\begin{gathered} 17 / 16 \\ 15 / 16 \\ 11 / 8 \\ 13 / 16 \end{gathered}$	$\begin{aligned} & 15 / 8 \\ & 11 / 2 \\ & 13 / 8 \\ & 13 / 16 \end{aligned}$	$\begin{aligned} & 2^{1 / 2} \\ & 2^{7 / 16} \\ & 2^{3 / 8} \\ & 2^{5 / 16} \end{aligned}$	$\begin{aligned} & 25 / 8 \\ & 2^{9 / 16} \\ & 2^{9 / 16} \\ & 21 / 2 \end{aligned}$
	$\begin{aligned} & 3 \\ & 33 / 8 \\ & 31 / 2 \\ & 35 / 8 \end{aligned}$		$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$7 / 8$	$\begin{aligned} & 23 / 16 \\ & 17 / 8 \\ & 111 / 16 \\ & 11 / 2 \end{aligned}$	$\begin{aligned} & \hline 27 / 16 \\ & 23 / 16 \\ & 21 / 16 \\ & 115 / 16 \end{aligned}$
	$\begin{aligned} & 33 / 4 \\ & 37 / 8 \\ & 4 \\ & 41 / 8 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 13 / 16 \\ 1 / 2 \\ - \\ - \end{gathered}$	$\begin{gathered} 13 / 4 \\ 19 / 16 \\ 11 / 4 \\ 9 / 16 \end{gathered}$
Notes: $P=$ bolt stagger $F=$ clearance for tightening staggered bolts						

Thre		Tab mensio -Hig	-17 for treng	gh-St Bolts	ngth
 Diameter		Scre dard Series ANSI/		/4UNR minal size - No. thread UNC 2A LH Standard De	major dia.) inch (n) es symbol class symbol ${ }^{\text {c }}$ hand thread. symbol req. righthand ead. ations
			Area		
$\begin{aligned} & \text { Bolt Diameter, } \\ & d \text {, in. } \end{aligned}$	Min. Root, K, in.	Gross Bolt Area, in. ${ }^{2}$	Min. Root Area, in. ${ }^{2}$	Net Tensile Areaa, in. ${ }^{2}$	Threads per inch, $n^{\text {b }}$
1/4	0.196	0.0490	0.0301	0.0320	20
3/8	0.307	0.110	0.0742	0.0780	16
1/2	0.417	0.196	0.136	0.142	13
5/8	0.527	0.307	0.218	0.226	11
$3 / 4$	0.642	0.442	0.323	0.334	10
7/8	0.755	0.601	0.447	0.462	9
1	0.865	0.785	0.587	0.606	8
11/8	0.970	0.994	0.740	0.763	7
11/4	1.10	1.23	0.942	0.969	7
13/8	1.19	1.49	1.12	1.16	6
11/2	1.32	1.77	1.37	1.41	6
13/4	1.53	2.41	1.85	1.90	5
2	1.76	3.14	2.43	2.50	4.5
21/4	2.01	3.98	3.17	3.25	4.5
21/2	2.23	4.91	3.90	4.00	4
23/4	2.48	5.94	4.83	4.93	4
3	2.73	7.07	5.85	5.97	4
31/4	2.98	8.30	6.97	7.10	4
31/2	3.23	9.62	8.19	8.33	4
33/4	3.48	11.0	9.51	9.66	4
4	3.73	12.6	10.9	11.1	4
a Net tensile area $=$ ${ }^{\mathrm{b}}$ For diameters liste c 2A denotes Class	$\left(d-\frac{0.9743}{n}\right)^{2}$ hread series is UIIC fit applicable to ex	arse). For larger threads; 2B d	ers, thread seri orresponding C	UUN. fit for internal	

This table conforms to weight standards adopted by the Industrial Fasteners Institute (IFI), updated for washer weights.

Table 7-19 Dimensions of Non-High-Strength Fasteners, in.													
Bolt Dia., d, in.	Square			Hex			Heavy Hex			Countersunk		Min. Thrd. Length, in.	
	F, in.	C, in.	H, in.	F, in.	C, in.	H, in.	F, in.	C, in.	H, in.	C, in.	H, in.	$\begin{aligned} & L \leq \\ & 6 \mathrm{in} . \end{aligned}$	$\begin{aligned} & L> \\ & 6 \mathrm{in} . \end{aligned}$
$\begin{aligned} & 1 / 4 \\ & 3 / 8 \end{aligned}$		$\begin{aligned} & 1 / 2 \\ & 13 / 16 \end{aligned}$	$\begin{aligned} & 3 / 16 \\ & 1 / 4 \end{aligned}$	$\begin{aligned} & 7 / 16 \\ & 9 / 16 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 5 / 8 \end{aligned}$	$\begin{aligned} & 3 / 16 \\ & 1 / 4 \\ & \hline \end{aligned}$		-		$1 / 2$ $11 / 16$	$1 / 8$ $3 / 16$		
1/2	3/4	11/16	5/16	3/4	7/8	3/8	7/8	1	3/8	7/8	1/4	$11 / 4$	11/2
5/8	15/16	15/16	7/16	15/16	11/16	7/16	11/16	11/4	7/16	11/8	5/16	11/2	13/4
3/4	11/8	19/16	1/2	11/8	15/16	1/2	$11 / 4$	17/16	1/2	13/8	$3 / 8$	13/4	2
7/8	15/16	17/8	5/8	15/16	11/2	9/16	17/16	111/16	9/16	19/16	7/16	2	21/4
1	11/2	21/8	11/16	11/2	13/4	11/16	15/8	17/8	11/16	113/16	1/2	$21 / 4$	21/2
11/8	111/16	23/8	3/4	111/16	115/16	3/4	113/16	21/16	3/4	21/16	9/16	21/2	23/4
11/4	17/8	25/8	7/8	17/8	23/16	7/8	2	25/16	7/8	$21 / 4$	5/8	23/4	3
13/8	21/16	215/16	15/16	21/16	23/8	15/16	23/16	21/2	15/16	$21 / 2$	11/16	3	31/4
11/2	21/4	33/16	1	21/4	25/8	1	23/8	23/4	1	211/16	3/4	$31 / 4$	31/2
13/4	-	-	-	25/8	3	13/16	23/4	33/16	13/16	-	-	$33 / 4$	4
2	-	-	-	3	37/16	13/8	$31 / 8$	35/8	13/8	-	-	41/4	41/2
21/4	-	-	-	33/8	37/8	11/2	$31 / 2$	41/16	11/2	-	-	43/4	5
21/2	-	-	-	33/4	45/16	111/16	37/8	41/2	111/16	-	-	$51 / 4$	51/2
23/4	-	-	-	41/8	43/4	113/16	41/4	415/16	113/16	-	-	53/4	6
3	-	-	-	41/2	53/16	2	45/8	55/16	2	-	-	6	61/2
31/4	-	-	-	47/8	55/8	23/16	-	-	-	-	-	6	7
31/2	-	-	-	51/4	61/16	25/16	-	-	-	-	-	6	71/2
33/4	-	-	-	55/8	61/2	21/2	-	-	-	-	-	6	8
4	-	-	-	6	615/16	211/16	-	-	-	-	-	6	81/2
Notes: For high-strength bolt and nut dimensions, refer to Table 7-14. Square, hex and heavy hex bolt dimensions, rounded to nearest $1 / 16$ in., are in accordance with ASME B18.2.6. Countersunk bolt dimensions, rounded to the nearest $1 / 16$ in., are in accordance with ASME B18.5. Minimum thread length $=2 d+1 / 4$ in. for bolts up to 6 in. long, and $2 d+1 / 2$ in. for bolts longer than 6 in.													

Table 7-19 (continued) Dimensions of Non-High-Strength Fasteners, in.

Square, Heavy Square

Hex, Heavy Hex

Nut Size, in.	Square			Hex			Heavy Square			Heavy Hex		
	W, in.	C, in.	N, in.	W, in.	C, in.	N, in.	W, in.	C, in.	N, in.	W, in.	C, in.	N, in.
$1 / 4$	7/16	5/8	1/4	7/16	1/2	3/16	1/2	11/16	1/4	1/2	9/16	1/4
3/8	5/8	7/8	5/16	9/16	5/8	$1 / 4$	11/16	1	3/8	11/16	13/16	3/8
1/2	4/5	11/8	7/16	3/4	7/8	3/8	7/8	$11 / 4$	1/2	7/8	1	1/2
5/8	1	17/16	9/16	15/16	11/16	7/16	11/16	11/2	5/8	11/16	11/4	5/8
3/4	11/8	19/16	11/16	11/8	15/16	1/2	11/4	13/4	3/4	$11 / 4$	17/16	3/4
7/8	15/16	17/8	$3 / 4$	15/16	$11 / 2$	9/16	17/16	21/16	7/8	17/16	111/16	7/8
1	$11 / 2$	21/8	7/8	$11 / 2$	13/4	11/16	15/8	25/16	1	15/8	17/8	1
11/8	111/16	23/8	1	111/16	115/16	$3 / 4$	13/16	29/16	$11 / 8$	113/16	21/16	11/8
11/4	17/8	25/8	11/8	17/8	23/16	7/8	2	213/16	11/4	2	25/16	11/4
13/8	21/16	215/16	11/4	21/16	23/8	15/16	23/16	31/8	13/8	23/16	21/2	13/8
11/2	21/4	33/16	15/16	21/4	25/8	1	23/8	33/8	11/2	23/8	23/4	11/2
13/4	-	-	-	-	-	-	-	-	-	23/4	33/16	13/4
2	-	-	-	-	-	-	-	-	-	31/8	35/8	2
21/4	-	-	-	-	-	-	-	-	-	$31 / 2$	41/16	23/16
21/2	-	-	-	-	-	-	-	-	-	37/8	41/2	27/16
23/4	-	-	-	-	-	-	-	-	-	41/4	415/16	211/16
3	-	-	-	-	-	-	-	-	-	45/8	55/16	215/16
31/4	-	-	-	-	-	-	-	-	-	5	53/4	33/16
31/2	-	-	-	-	-	-	-	-	-	53/8	63/16	37/16
33/4	-	-	-	-	-	-	-	-	-	53/4	65/8	311/16
4	-	-	-	-	-	-	-	-	-	61/8	71/16	315/16

Notes:

For high-strength bolt and nut dimensions, refer to Table 7-14.
Square, hex and heavy hex bolt dimensions, rounded to nearest $1 / 16$ in., are in accordance with ASME B18.2.6.
Countersunk bolt dimensions, rounded to the nearest $1 / 16$ in., are in accordance with ASME B18.5.
Minimum thread length $=2 d+1 / 4$ in. for bolts up to 6 in. long, and $2 d+1 / 2$ in. for bolts longer than 6 in.

Table 7-20 Weights of Non-High-Strength Fasteners, pounds										
Bolt Length, in.		Nominal Bolt Diameter, in.								
		1/4	3/8	1/2	5/8	3/4	7/8	1	11/8	11/4
100 Square Bolts with Hexagonal Nuts ${ }^{\text {a }}$	$\begin{aligned} & \hline 1 \\ & 11 / 4 \\ & 11 / 2 \\ & 13 / 4 \end{aligned}$	$\begin{aligned} & 2.38 \\ & 2.71 \\ & 3.05 \\ & 3.39 \end{aligned}$	$\begin{aligned} & \hline 6.11 \\ & 6.71 \\ & 7.47 \\ & 8.23 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 14.0 \\ & 15.1 \\ & 16.5 \end{aligned}$	$\begin{aligned} & 24.1 \\ & 25.8 \\ & 27.6 \\ & 29.3 \end{aligned}$	$\begin{aligned} & 38.9 \\ & 41.5 \\ & 44.0 \\ & 46.5 \end{aligned}$	67.3 70.8	95.1 99.7	- - -	- - -
	$\begin{aligned} & 2 \\ & 21 / 4 \\ & 21 / 2 \\ & 23 / 4 \end{aligned}$	$\begin{aligned} & 3.73 \\ & 4.06 \\ & 4.40 \\ & 4.74 \end{aligned}$	$\begin{gathered} 8.99 \\ 9.75 \\ 10.5 \\ 11.3 \end{gathered}$	$\begin{aligned} & 17.8 \\ & 19.1 \\ & 20.5 \\ & 21.8 \end{aligned}$	$\begin{aligned} & 31.4 \\ & 33.5 \\ & 35.6 \\ & 37.7 \end{aligned}$	$\begin{aligned} & 49.1 \\ & 52.1 \\ & 55.1 \\ & 58.2 \end{aligned}$	$\begin{aligned} & 74.4 \\ & 77.9 \\ & 82.0 \\ & 86.1 \end{aligned}$	$\begin{aligned} & 104 \\ & 109 \\ & 114 \\ & 119 \end{aligned}$	$\begin{aligned} & 143 \\ & 149 \\ & 155 \\ & 161 \end{aligned}$	$\begin{array}{r} - \\ 206 \\ 213 \end{array}$
	$\begin{aligned} & \hline 3 \\ & 31 / 4 \\ & 31 / 2 \\ & 33 / 4 \end{aligned}$	$\begin{aligned} & 5.07 \\ & 5.41 \\ & 5.75 \\ & 6.09 \end{aligned}$	$\begin{aligned} & \hline 12.0 \\ & 12.8 \\ & 13.5 \\ & 14.3 \end{aligned}$	$\begin{aligned} & 23.2 \\ & 24.5 \\ & 25.9 \\ & 27.2 \end{aligned}$	$\begin{aligned} & 39.8 \\ & 41.9 \\ & 44.0 \\ & 46.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 61.2 \\ & 64.2 \\ & 67.2 \\ & 70.2 \end{aligned}$	$\begin{array}{r} 90.2 \\ 94.4 \\ 98.5 \\ 103 \end{array}$	$\begin{aligned} & \hline 124 \\ & 129 \\ & 135 \\ & 140 \end{aligned}$	$\begin{aligned} & \hline 168 \\ & 174 \\ & 181 \\ & 188 \end{aligned}$	$\begin{aligned} & 221 \\ & 229 \\ & 237 \\ & 246 \end{aligned}$
	$\begin{aligned} & 4 \\ & 41 / 4 \\ & 41 / 2 \\ & 43 / 4 \end{aligned}$	$\begin{aligned} & \hline 6.42 \\ & 6.76 \\ & 7.10 \\ & 7.43 \\ & \hline \end{aligned}$	$\begin{aligned} & 15.1 \\ & 15.8 \\ & 16.6 \\ & 17.3 \end{aligned}$	$\begin{aligned} & 28.6 \\ & 29.9 \\ & 31.3 \\ & 32.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 48.2 \\ & 50.3 \\ & 52.3 \\ & 54.4 \end{aligned}$	$\begin{aligned} & 73.3 \\ & 76.3 \\ & 79.3 \\ & 82.3 \end{aligned}$	$\begin{aligned} & 107 \\ & 111 \\ & 115 \\ & 119 \end{aligned}$	$\begin{aligned} & 145 \\ & 151 \\ & 156 \\ & 162 \end{aligned}$	$\begin{aligned} & 195 \\ & 202 \\ & 208 \\ & 215 \end{aligned}$	$\begin{aligned} & 254 \\ & 262 \\ & 271 \\ & 279 \end{aligned}$
	$\begin{aligned} & 5 \\ & 51 / 4 \\ & 51 / 2 \\ & 53 / 4 \end{aligned}$	$\begin{aligned} & \hline 7.77 \\ & 8.11 \\ & 8.44 \\ & 8.78 \end{aligned}$	$\begin{aligned} & \hline 18.1 \\ & 18.9 \\ & 19.6 \\ & 20.4 \end{aligned}$	$\begin{aligned} & 33.9 \\ & 35.3 \\ & 36.6 \\ & 38.0 \end{aligned}$	$\begin{aligned} & \hline 56.5 \\ & 58.6 \\ & 60.7 \\ & 62.8 \end{aligned}$	$\begin{aligned} & \hline 85.3 \\ & 88.4 \\ & 91.4 \\ & 94.4 \end{aligned}$	$\begin{aligned} & \hline 123 \\ & 127 \\ & 131 \\ & 136 \end{aligned}$	$\begin{aligned} & \hline 167 \\ & 172 \\ & 178 \\ & 183 \end{aligned}$	$\begin{aligned} & 222 \\ & 229 \\ & 236 \\ & 242 \end{aligned}$	$\begin{aligned} & 288 \\ & 296 \\ & 304 \\ & 313 \end{aligned}$
	$\begin{aligned} & 6 \\ & 61 / 4 \\ & 61 / 2 \\ & 63 / 4 \end{aligned}$	$\begin{array}{r} 9.12 \\ 9.37 \\ 9.71 \\ 10.1 \end{array}$	$\begin{aligned} & 21.1 \\ & 21.7 \\ & 22.5 \\ & 23.3 \end{aligned}$	$\begin{aligned} & 39.3 \\ & 40.4 \\ & 41.8 \\ & 43.1 \end{aligned}$	$\begin{aligned} & 64.9 \\ & 66.7 \\ & 68.7 \\ & 70.8 \end{aligned}$	$\begin{gathered} 97.4 \\ 100 \\ 103 \\ 106 \end{gathered}$	$\begin{aligned} & 140 \\ & 143 \\ & 147 \\ & 151 \end{aligned}$	$\begin{aligned} & 188 \\ & 193 \\ & 198 \\ & 204 \end{aligned}$	$\begin{aligned} & 249 \\ & 255 \\ & 262 \\ & 269 \end{aligned}$	$\begin{aligned} & 321 \\ & 329 \\ & 337 \\ & 345 \end{aligned}$
	$\begin{aligned} & \hline 7 \\ & 71 / 4 \\ & 71 / 2 \\ & 73 / 4 \end{aligned}$	$\begin{aligned} & 10.4 \\ & 10.7 \\ & 11.0 \\ & 11.4 \end{aligned}$	$\begin{aligned} & 24.0 \\ & 24.8 \\ & 25.5 \\ & 26.3 \end{aligned}$	$\begin{aligned} & 44.4 \\ & 45.8 \\ & 47.1 \\ & 48.5 \end{aligned}$	$\begin{aligned} & 72.9 \\ & 75.0 \\ & 77.1 \\ & 79.2 \end{aligned}$	$\begin{aligned} & 109 \\ & 112 \\ & 115 \\ & 118 \end{aligned}$	$\begin{aligned} & 156 \\ & 160 \\ & 164 \\ & 168 \end{aligned}$	$\begin{aligned} & 209 \\ & 214 \\ & 220 \\ & 225 \end{aligned}$	$\begin{aligned} & 275 \\ & 282 \\ & 289 \\ & 296 \end{aligned}$	$\begin{aligned} & 354 \\ & 362 \\ & 371 \\ & 379 \end{aligned}$
	$\begin{aligned} & 8 \\ & 81 / 2 \\ & 9 \\ & 91 / 2 \end{aligned}$	11.7	$\begin{aligned} & 27.0 \\ & 28.6 \\ & 30.1 \\ & 31.6 \end{aligned}$	$\begin{aligned} & 49.8 \\ & 52.5 \\ & 55.2 \\ & 57.9 \end{aligned}$	$\begin{aligned} & 81.3 \\ & 85.5 \\ & 89.7 \\ & 93.9 \end{aligned}$	$\begin{aligned} & 121 \\ & 127 \\ & 133 \\ & 139 \end{aligned}$	$\begin{aligned} & 172 \\ & 180 \\ & 189 \\ & 197 \end{aligned}$	$\begin{aligned} & 231 \\ & 241 \\ & 252 \\ & 263 \end{aligned}$	$\begin{aligned} & \hline 303 \\ & 316 \\ & 330 \\ & 343 \end{aligned}$	$\begin{aligned} & 387 \\ & 404 \\ & 421 \\ & 438 \end{aligned}$
	$\begin{aligned} & 10 \\ & 101 / 2 \end{aligned}$	-	$\begin{aligned} & \hline 33.1 \\ & 34.6 \end{aligned}$	$\begin{aligned} & 60.6 \\ & 63.3 \end{aligned}$	$\begin{gathered} 98.1 \\ 102 \end{gathered}$	$\begin{aligned} & 145 \\ & 151 \end{aligned}$	$\begin{aligned} & 205 \\ & 213 \end{aligned}$	$\begin{aligned} & 274 \\ & 284 \end{aligned}$	$\begin{aligned} & 357 \\ & 371 \end{aligned}$	$\begin{aligned} & 454 \\ & 471 \end{aligned}$
	$\begin{aligned} & 11 \\ & 111 / 2 \end{aligned}$	-	$\begin{aligned} & \hline 36.2 \\ & 37.7 \end{aligned}$	$\begin{aligned} & 66.0 \\ & 68.7 \end{aligned}$	$\begin{aligned} & 106 \\ & 110 \end{aligned}$	$\begin{aligned} & 157 \\ & 163 \end{aligned}$	$\begin{aligned} & 221 \\ & 230 \end{aligned}$	$\begin{aligned} & 295 \\ & 306 \end{aligned}$	$\begin{aligned} & 384 \\ & 398 \end{aligned}$	$\begin{aligned} & 488 \\ & 505 \end{aligned}$
	$\begin{aligned} & 12 \\ & 121 / 2 \end{aligned}$	-	39.2	$\begin{aligned} & 71.3 \\ & 74.0 \end{aligned}$	$\begin{aligned} & 115 \\ & 119 \end{aligned}$	$\begin{aligned} & 170 \\ & 176 \end{aligned}$	$\begin{aligned} & 238 \\ & 246 \end{aligned}$	$\begin{aligned} & 316 \\ & 327 \end{aligned}$	$\begin{aligned} & 411 \\ & 425 \end{aligned}$	$\begin{aligned} & 522 \\ & 538 \end{aligned}$
	$\begin{aligned} & 13 \\ & 131 / 2 \end{aligned}$	-	-	$\begin{aligned} & 76.7 \\ & 79.4 \end{aligned}$	$\begin{aligned} & \hline 123 \\ & 127 \end{aligned}$	$\begin{aligned} & \hline 182 \\ & 188 \end{aligned}$	$\begin{aligned} & \hline 254 \\ & 263 \end{aligned}$	$\begin{aligned} & \hline 338 \\ & 349 \end{aligned}$	$\begin{aligned} & 439 \\ & 452 \end{aligned}$	$\begin{aligned} & \hline 556 \\ & 572 \end{aligned}$
	$\begin{aligned} & 14 \\ & 141 / 2 \end{aligned}$		-	$\begin{aligned} & 82.1 \\ & 84.8 \end{aligned}$	$\begin{aligned} & 131 \\ & 135 \end{aligned}$	$\begin{aligned} & 194 \\ & 200 \end{aligned}$	$\begin{aligned} & 271 \\ & 279 \end{aligned}$	$\begin{aligned} & 359 \\ & 370 \end{aligned}$	$\begin{aligned} & 466 \\ & 479 \end{aligned}$	$\begin{aligned} & 589 \\ & 605 \end{aligned}$
	$\begin{aligned} & 15 \\ & 151 / 2 \end{aligned}$	-	-	$\begin{aligned} & 87.5 \\ & 90.2 \end{aligned}$	$\begin{aligned} & 140 \\ & 144 \end{aligned}$	$\begin{aligned} & 206 \\ & 212 \end{aligned}$	$\begin{aligned} & 287 \\ & 296 \end{aligned}$	$\begin{aligned} & 381 \\ & 392 \end{aligned}$	$\begin{aligned} & 493 \\ & 507 \end{aligned}$	$\begin{aligned} & 622 \\ & 639 \end{aligned}$
	16	-	-	92.9	148	218	304	402	520	656
	Per inch add'tl. Add	1.3	3.0	5.4	8.4	12.1	16.5	21.4	27.2	33.6
Notes: For weight of high-strength fasteners, see Table 7-18. This table conforms to weight standards adopted by the Industrial Fasteners Institute (IFI). a Square bolt per ASME B18.2.6, hexagonal nut per ASME B18.2.2. For other non-high-strength fasteners, refer to Tables 7-21 and 7-22.										

Fasteners Other than Tabulated in Table 7-20a, pounds												
Combinations of 100		$\begin{gathered} \text { Add } \\ \text { or Subtr. } \end{gathered}$	Nominal Bolt Diameter, in.									
		$1 / 4$	$3 / 8$	1/2	5/8	3/4	7/8	1	$11 / 8$	11/4		
	Square Nuts		+	0.1	1.0	2.0	3.4	3.5	5.5	8.0	12.2	16.3
	Heavy Square Nuts	+	0.6	2.1	4.1	7.0	11.6	17.2	23.2	32.1	41.2	
	Heavy Hex Nuts	+	0.4	1.5	2.8	4.6	7.6	10.7	14.2	18.9	24.3	
	Square Nuts	+	0.1	0.6	1.1	1.4	0.2	0.5	-0.2	-0.1	-1.7	
	Hex Nuts	-	0.0	0.4	0.9	2.0	3.3	5.0	8.2	12.3	18.0	
	Heavy Square Nuts	+	0.6	1.7	3.2	5.0	8.3	12.2	15.0	19.8	23.2	
	Heavy Hex Nuts	+	0.4	1.1	1.9	2.6	4.3	5.7	6.0	6.6	6.3	
으주옹ㅇㅇㅇ	Heavy Square Nuts	+	-	-	4.7	7.3	11.3	16.5	20.7	27.0	33.6	
	Heavy Hex Nuts	+	-	-	3.4	4.9	7.3	10.0	11.7	13.8	16.7	
Notes: For weights of high-strength fasteners, see Table 7-18. This table conforms to weight standards adopted by the Industrial Fasteners Institute (IFI). ${ }^{\text {a }}$ Add or subtract value in this table to or from the value in Table 7-20.												

of Diameter Greater than 1/14 in., pounds													
Weight of 100 Each		Nominal Bolt Diameter, in.											
		13/8	11/2	13/4	2	21/4	21/2	23/4	3	31/4	$31 / 2$	33/4	4
\%	Square Bolts	105	130	-	-	-	-	-	-	-	-	-	-
\%	Hex Bolts	84.0	112	178	259	369	508	680	900	1120	1390	1730	2130
호	Heavy Hex Bolts	95.0	124	195	280	397	541	720	950	-	-	-	-
	e Linear Inch, hreaded Shank	42.0	50.0	68.2	89.0	113	139	168	200	235	272	313	356
	e Linear Inch, readed Shank	35.0	42.5	57.4	75.5	97.4	120	147	178	210	246	284	325
	Square Nuts	94.5	122	-	-	-	-	-	-	-	-	-	-
Hea	vy Square Nuts	125	161	-	-	-	-	-	-	-	-	-	-
	avy Hex Nuts	102	131	204	299	419	564	738	950	1190	1530	1810	2180
- Indi	cates that the bolt siz	ize is not	available										

PART 8 DESIGN CONSIDERATIONS FOR WELDS

SCOPE 8-3
GENERAL REQUIREMENTS FOR WELDED JOINTS 8-3
Consumables 8-3
Thermal Cutting 8-3
Air-Arc Gouging 8-3
Inspection 8-4
Visual Testing (VT) 8-4
Penetrant Testing (PT) 8-4
Magnetic-Particle Testing (MT) 8-5
Ultrasonic Testing (UT) 8-6
Radiographic Testing (RT) 8-7
PROPER SPECIFICATION OF JOINT TYPE 8-7
Selection of Weld Type 8-7
Welding Symbols 8-8
Available Strength 8-8
Effect of Load Angle 8-9
CONCENTRICALLY LOADED WELD GROUPS 8-9
ECCENTRICALLY LOADED WELD GROUPS 8-9
Eccentricity in the Plane of the Faying Surface 8-9
Instantaneous Center of Rotation Method 8-9
Elastic Method 8-12
Plastic Method 8-14
Eccentricity Normal to the Plane of the Faying Surface 8-16
OTHER SPECIFICATION REQUIREMENTS AND DESIGN CONSIDERATIONS 8-16
Special Requirements for Heavy Shapes and Plates 8-17
Placement of Weld Groups 8-17
Welds in Combination with Bolts 8-17
Fatigue 8-17
One-Sided Fillet Welds 8-17
Welding Considerations and Appurtenances 8-17
Clearance Requirements 8-17
Excessive Welding 8-19
Minimum Shelf Dimensions for Fillet Welds 8-20
Beam Copes and Weld Access Holes 8-21
Corner Clips 8-21
Backing Bars 8-22
Spacer Bars 8-22
Weld Tabs 8-22
Lamellar Tearing 8-23
Prior Qualification of Welding Procedures 8-23
Painting Welded Connections 8-24
WELDING CONSIDERATIONS FOR HSS 8-24
HSS Welding Requirements in AWS D1.1 8-24
Clause 9, Part A 8-25
Clause 9, Part B 8-26
Clause 9, Parts C and D 8-26
Clause 9, Part E 8-26
Clause 9, Part F 8-26
Weld Sizing for Uneven Distribution of Loads 8-27
Detailing Considerations 8-27
DESIGN TABLE DISCUSSION 8-28
PART 8 REFERENCES 8-32
DESIGN TABLES 8-33
Table 8-1. Coefficients, C, for Concentrically Loaded Weld Group Elements 8-33
Table 8-2. Prequalified Welded Joints 8-34
Table 8-3. Electrode Strength Coefficient, C_{1} 8-67
Table 8-4. Coefficients, C, for Eccentrically Loaded Weld Groups 8-68
Table 8-5. Coefficients, C, for Eccentrically Loaded Weld Groups 8-74
Table 8-6. Coefficients, C, for Eccentrically Loaded Weld Groups 8-80
Table 8-7. Coefficients, C, for Eccentrically Loaded Weld Groups 8-86
Table 8-8. Coefficients, C, for Eccentrically Loaded Weld Groups 8-92
Table 8-9. Coefficients, C, for Eccentrically Loaded Weld Groups 8-98
Table 8-10. Coefficients, C, for Eccentrically Loaded Weld Groups 8-104
Table 8-10a. Coefficients, C, for Eccentrically Loaded Weld Groups 8-110
Table 8-11. Coefficients, C, for Eccentrically Loaded Weld Groups 8-115
Table 8-11a. Coefficients, C, for Eccentrically Loaded Weld Groups 8-121
Tables 8-12. Approximate Number of Passes for Welds 8-126

SCOPE

The specification requirements and other design considerations summarized in this Part apply to the design of welded joints. For the design of connecting elements, see Part 9. For the design of simple shear, moment, bracing and other connections, see Parts 10 through 15.

GENERAL REQUIREMENTS FOR WELDED JOINTS

The requirements for welded construction are given in AISC Specification Section M2.4, which requires the use of AWS D1.1, except as modified in AISC Specification Section J2. For further information see also Blodgett et al. (1997).

Welding in structural steel is performed in compliance with written welding procedure specifications (WPS). WPS are qualified by test or prequalified in AWS D1.1. WPS are used to control base metal, consumables, joint geometry, electrical and other essential variables for welded joints.

Consumables

Requirements for welding consumables are given in AISC Specification Sections A3.5, J2.6 and J2.7. Permissible filler metal strengths are shown in Table J2.5, based on matching filler metals shown in AWS D1.1 Table 3.2. Filler metal notch-toughness requirements are given in AISC Specification Section J2.6. Low-hydrogen electrodes for shielded metal arc welding (SMAW) are required, as shown in AWS D1.1 Table 3.2. Low-hydrogen SMAW electrodes have a limited exposure time and rod ovens are necessary near the point of use for storage.

Requirements for the manufacture, classification and packing of consumables are given in AWS A5.x specifications. Consumables vary based upon their welding process. SMAW, or "stick" welding, is a manual process. Submerged arc welding (SAW) is a semiautomatic or automatic process. Consumables are classified as an electrode flux combination because the weld metal properties are dependant on both the electrode and the flux. SAW is suitable for long straight or circumferential welds but the work must be performed in horizontal or flat positions. Flux-cored arc welding (FCAW) uses wire electrode that contains flux in the center. FCAW electrodes are provided for use with a gas shield or self shield. Gas for shielding is argon, carbon dioxide or a combination of the two. Gas metal arc welding (GMAW) uses wire electrodes that are solid or have a metal core. GMAW is performed with gas shielding.

Thermal Cutting

Oxygen-fuel gas cutting can be used to cut almost any commercially available plate thickness. If the plate being cut contains large discontinuities or nonmetallic inclusions, turbulence may be created in the cutting stream, resulting in notches or gouges in the edge of the cut. Plasma-arc cutting is much faster and less susceptible to the effects of discontinuities or nonmetallic inclusions, but leaves a slight taper in the cut as it descends and can be used only up to about $1 \frac{1}{1} 2$-in. thickness.

Air-Arc Gouging

In this method, a carbon arc is used to melt a nugget-shaped area of the base metal, which is blown away with a jet of compressed air. Air-arc gouging can be used to remove weld
defects, gouge the weld root to sound weld metal, form a U groove on one side of a square butt joint, and for similar operations.

Inspection

The five most commonly used methods for welding inspection are discussed in the following and in the Guide for the Nondestructive Examination of Welds (AWS B1.10) (AWS, 2009). Chapter N of the AISC Specification contains requirements for nondestructive examination (NDE) of welds. The general contractor or owner must arrange for this. This work must be scheduled to minimize interruption of the fabricator and erector. The designer may specify in the contract documents the types of weld inspection required as well as the extent and application of each type of inspection differing from the requirements of Chapter N. In the absence of instructions for weld inspection, the fabricator or erector is only responsible for those weld discontinuities found by visual inspection (see AWS D1.1). Welds may have defects that cannot be rejected based on AWS criteria. Stipulation of various NDE methods has the effect of selecting acceptance criteria and therefore has a related effect on costs. Weld repairs which may be difficult to perform and which may potentially damage other aspects of the connection are best referred to the engineer of record to determine the necessity of the correction with due consideration of fitness for purpose.

Visual inspection is the most commonly required inspection process. The designer must realize that more stringent requirements for inspection can needlessly add significant cost to the project and should specify them only in those instances where they are essential to the integrity of the structure.

Visual Testing (VT)

Visual inspection provides the most economical way to check weld quality and is the most commonly used method. Joints are scrutinized prior to the commencement of welding to check fit-up, preparation bevels, gaps, alignment and other variables. After the joint is welded, it is then visually inspected in accordance with AWS D1.1. If a discontinuity is suspected, the weld is either repaired or other inspection methods are used to validate the integrity of the weld. In most cases, timely visual inspection by an experienced inspector is sufficient and offers the most practical and effective inspection alternative to other, more costly methods.

Penetrant Testing (PT)

This test uses a red dye penetrant applied to the work from a pressure spray can. The dye penetrates any crack or crevice open to the surface. Excess dye is removed and white developer is sprayed on. Dye seeps out of the crack, producing a red image on the white developer (See Figure 8-1).

Penetrant testing (PT) can be used to detect tight cracks as long as they are open to the surface. However, only surface cracks are detectable. Furthermore, deep weld ripples and scratches may give a false indication when PT is used.

Dye penetrant examination tends to be messy and slow, but can be helpful when determining the extent of a defect found by visual inspection. This is especially true when a defect is being removed by gouging or grinding for the repair of a weld to assure that the defect is completely removed.

Magnetic-Particle Testing (MT)

A magnetizing current is introduced with a yoke or contact prods into the weldment to be inspected, as sketched in Figure 8-2 (prods shown). This induces a magnetic field in the work, which will be distorted by any cracks, seams, inclusions, etc. located on or near (within approximately 0.1 in. of) the surface. A dry magnetic powder blown lightly on the surface by a rubber squirt bulb will be picked up at such discontinuities making a distinct mark. The magnetically held particles show the location, size, and shape of the discontinuity.

The method will indicate surface cracks that might be difficult for liquid penetrant to enter and subsurface cracks to about 0.1-in. depth, with proper magnetization. Records may be kept by picking up the powder pattern with clear plastic tape. Cleanup is easy, but demagnetizing, if necessary, may not be. If the magnetizing prod is lifted from the work while the current is still on, an arc strike may be produced, which could lead to cracking. If arc strikes occur, they should be ground out.

Magnetic particle examination can be useful when a defect is suspected from visual inspection or when the absence of cracking in areas of high restraint must be confirmed. Relatively smooth surfaces are required for MT and it is reasonably economical. Where delayed cracking is suspected, the nondestructive examination may have to be performed after a cooling time-typically 48 hours.

Fig. 8-1. Schematic illustration of penetrant testing (PT).

Fig. 8-2. Schematic illustration of magnetic particle testing (MT).

Ultrasonic Testing (UT)

The ultrasonic inspection process is analogous to sonar. A short pulse of high-frequency sound waves are broadcast from a crystal into a metal, after which the crystal waits to receive reflections from the far end of the metal member and from any voids encountered on the way through. The technique is called pulse echo. The sound beam is produced by a piezoelectric transducer energized by an electric current which causes the crystal to vibrate and transmit through a liquid couplant into the metal. Any reflections are displayed as pips on a cathode ray tube (CRT) grid whose horizontal scale represents distance through the metal. The vertical scale represents the strength (or area) of the reflecting surface. The system is shown schematically in Figure 8-3.

The accuracy of ultrasonic inspection is highly dependent upon the skill and training of the operator and frequent calibration of the instrument. There is a "dead" area beneath most transducers that makes it difficult to inspect members less than $5 / 16$ in. in thickness. Austenitic stainless steels and extremely coarse-grained steels, e.g., electroslag welds, are difficult to inspect; but on structural carbon and low-alloy steels, the process can detect flat discontinuities (favorably oriented for reflection) smaller than $1 / 64$ in. The crystal, which is $3 / 8$ in. to 1 in . in size, can be readily moved about to check many orientations and can project the beam into the metal at angles of $90^{\circ}, 70^{\circ}, 60^{\circ}$ and 45°. With the latter three angles,

Fig. 8-3. Variations in UT reflections caused by defects at the boundary.
the beam can be bounced around inside the metal, producing echoes from any discontinuity on the way. For more information, see Krautkramer (1990) and Institute of Welding (1972).

Ultrasonic testing (UT) is a more versatile, rapid and economical inspection method than radiography, but it does not provide a permanent record like the X-ray negative. The operator, instead, makes a written record of discontinuity indications appearing on his CRT. Certain joint geometry limits the use of the ultrasonic method.

Ultrasonic examination has limited applicability in some applications, such as HSS fabrication. Relatively thin sections and variations in joint geometry can lead to difficulties in interpreting the signals, although technicians with specific experience on weldments similar to those to be examined may be able to decipher UT readings in some instances. Similarly, UT is usually not suitable for use with fillet welds and smaller partial-joint-penetration (PJP) groove welds. Complete-joint-penetration (CJP) groove welds with and without backing bars also give readings that are subject to differing interpretations. Ultrasonic examination may be specified to validate the integrity of CJP groove welds that are subject to tension. Ultrasonic examination has largely replaced radiographic examination for the inspection of critical CJP groove welds in building construction. New technology called phased array is in development and in use in some applications. Phased array is a computer controlled ultrasonic examination capable of providing an informative display. AWS D1.1 provisions for acceptance criteria have not been adopted for this method at this time.

Radiographic Testing (RT)

Radiographic testing (RT) is basically an X-ray film process. To be detected by radiography, a crack must be oriented roughly parallel to the impinging radiation beam, and occupy about $1 \frac{1}{2} \%$ of the metal thickness along that beam. There are problems with radiographs of fillets, tee and corner joints, however, because the radiation beam must penetrate varying thicknesses.

Precautions for avoiding radiation hazards interfere with shop work, and equipment and film costs make it the most expensive inspection method. Ultrasonic systems have gradually supplemented and even supplanted radiography.

Radiographic examination has very limited applicability in some applications, such as for HSS fabrication, because of the irregular shape of common joints and the resulting variations in thickness of material as projected onto film. RT can be used successfully for butt splices, but can only provide limited information about the condition of fusion at backing bars near the root corners. The general inability to place either the radiation source or the film inside the HSS means that exposures must usually be taken through both the front and back faces of the section with the film attached to the outside of the back face. Several such shots progressing around the member are needed to examine the complete joint.

PROPER SPECIFICATION OF JOINT TYPE

Selection of Weld Type

The most common weld types are fillet and groove welds. Fillet welds are normally more economical than groove welds and generally should be used in applications for which groove welds are not required. Additionally, fillet welds around the inside of holes or slots require less weld metal than plug or slot welds of the same size, even though the diameters of holes and widths of slots for fillet welds must be larger to accommodate the necessary tilt of the electrode.

PJP groove welds are more economical than CJP groove welds. When groove welds are required, bevel and V groove welds, which can be flame-cut, are usually more economical than J and U groove welds, which must be air-arc gouged or planed. Also, double-bevel, double-V, double-J, and double-U groove welds are typically more economical than welds of the same type with single-sided preparation because they use less weld metal, particularly as the thickness of the connection element(s) being welded increases. The symmetry also results in less rotational distortion strain. However, in thinner connection elements, the savings in weld-metal volume may not offset the additional cost of double edge preparation, weld-root cleaning, and repositioning. As a general rule of thumb, double-sided joint preparation is normally less expensive than single-sided preparation above 1 -in. thickness.

Welding Symbols

For guidance on the proper use of welding symbols, refer to Table 8-2. More extensive information on welding symbols may be found in AWS A2.4, Standard Symbols for Welding, Brazing, and Nondestructive Examination (AWS, 2007).

Available Strength

The available strength of a welded joint is determined in accordance with AISC Specification Section J2.4 and Table J2.5. Section 3.9.5 of AISC Design Guide 21, Welded Connections-A Primer for Engineers (Miller, 2006), includes a discussion of the strength of different weld types (groove, fillet, plug/slot) combined in a single joint.

The calculation of the available strength of a longitudinally loaded fillet weld can be simplified from that given in AISC Specification Table J2.5. For a fillet weld with length less than or equal to 100 times the weld size, the available shear strength, ϕR_{n} or R_{n} / Ω, may be calculated as follows:

$$
\begin{gather*}
R_{n}=0.60 F_{E X X}\left(\frac{\sqrt{2}}{2}\right)\left(\frac{D}{16}\right) l \tag{8-1}\\
\phi=0.75 \quad \Omega=2.00
\end{gather*}
$$

where
$D=$ weld size in sixteenths of an inch
$l=$ length, in.
For $F_{E X X}=70 \mathrm{ksi}:$

LRFD	ASD		
$\phi R_{n}=(1.392 \mathrm{kip} / \mathrm{in}) D l$.	$(8-2 \mathrm{a})$	$\frac{R_{n}}{\Omega}=(0.928 \mathrm{kip} / \mathrm{in}) D l$.	$(8-2 \mathrm{~b})$

When the fillet weld is not longitudinally loaded, the alternative provisions in AISC Specification Section J2.4(b) may be used to take advantage of the increased strength due to load angle.

Effect of Load Angle

When designing fillet welds, the increased strength due to loading angle may be accounted for by multiplying the available strength of the weld by the following expression if strain compatibility of the various weld elements is considered, as given in AISC Specification Equation J2-5:

$$
\left(1.0+0.50 \sin ^{1.5} \theta\right)
$$

where
$\theta=$ angle between the line of action of the required force and the weld longitudinal axis, degrees

For transversely loaded welds, $\theta=90^{\circ}$. This accounts for a 50% increase in weld strength over a longitudinally loaded weld. However, this increased weld strength is accompanied by a decrease in ductility. For a single line weld, the decreased ductility is inconsequential for most applications. However, for weld groups composed of welds loaded at various angles, this change in ductility means that the designer must consider load-deformation compatibility.

CONCENTRICALLY LOADED WELD GROUPS

The load-deformation curves shown in Figure 8-5 highlight the need for consideration of deformation compatibility, since the transversely loaded weld will fracture before the longitudinally loaded weld obtains its full strength.

A simplified procedure for determining the available strength of concentrically loaded fillet weld groups is discussed later in Part 8 using Table $8-1$. In lieu of using this procedure, it is permitted to sum the capacities of individual weld elements, neglecting load-deformation compatibility, when no increase in strength due to the loading angle is assumed.

ECCENTRICALLY LOADED WELD GROUPS

Eccentricity in the Plane of the Faying Surface

Eccentricity in the plane of the faying surface produces additional shear. The welds must be designed to resist the combined effect of the direct shear, P_{u} or P_{a}, and the additional shear from the induced moment, $P_{u} e$ or $P_{a} e$. Two methods of analysis for this type of eccentricity are the instantaneous center of rotation method and the elastic method.

The instantaneous center of rotation method is more accurate, but generally requires the use of tabulated values or an iterative solution. The elastic method is simplified, but may be excessively conservative because it neglects the ductility of the weld group and the potential load increase.

Instantaneous Center of Rotation Method

Eccentricity produces both a rotation and a translation of one connection element with respect to the other. The combined effect of this rotation and translation is equivalent to a rotation about a point defined as the instantaneous center of rotation (IC) as illustrated in Figure 8-4(a). The location of the IC depends upon the geometry of the weld group as well as the direction and point of application of the load.

The load deformation relationship for a unit length segment of the weld, as illustrated in Figure 8-5, is an approximation of the equation by Lesik and Kennedy (1990). The nominal stress in the i th weld element, $F_{n w i}$, is limited by the deformation, $\Delta_{u i}$, of the weld segment that first reaches its limit, where

$$
\begin{equation*}
F_{n w i}=0.60 F_{E X X}\left(1.0+0.50 \sin ^{1.5} \theta_{i}\right)\left[p_{i}\left(1.9-0.9 p_{i}\right)\right]^{0.3} \tag{8-3}
\end{equation*}
$$

where
$F_{E X X}=$ filler metal classification strength, ksi
$F_{n w i}=$ nominal stress in the i th weld element, ksi
$\theta_{i}=$ angle between the longitudinal axis of i th weld element and the direction of the resultant force acting on the element, degrees
$p_{i}=\Delta_{i} / \Delta_{m i}$
$=$ ratio of element i deformation to its deformation at maximum stress

(a) Instantaneous center of rotation (IC)

(b) Forces on weld elements

Fig. 8-4. Instantaneous center of rotation method.

$$
\begin{align*}
r_{c r}= & \text { distance from instantaneous center of rotation to weld element with minimum } \\
& \Delta_{u i} / r_{i} \text { ratio, in. } \\
w= & \text { weld leg size, in. } \\
\Delta_{i}= & r_{i} \Delta_{u c r} / r_{c r} \\
= & \text { deformation of the } i \text { th weld element at an intermediate stress level, linearly pro- } \\
& \text { portioned to the critical deformation based on distance from the instantaneous } \\
& \text { center of rotation, } r_{i}, \text { in. } \\
\Delta_{u c r}= & \text { deformation of the weld element with minimum ratio } \Delta_{u i} / r_{i} \text { at ultimate stress } \\
& \text { (rupture), usually in the element furthest from the instantaneous center of } \\
& \text { rotation, in. } \\
\Delta_{u i}= & 1.087\left(\theta_{i}+6\right)^{-0.65} w \leq 0.17 w, \text { in. } \tag{8-4}\\
= & \text { deformation of the } i \text { th weld element at ultimate stress (rupture), in. }
\end{align*}
$$

Unlike the load-deformation relationship for bolts, the strength deformation of welds is dependent upon the angle, θ_{i}, that the resultant elemental force makes with the axis of the weld element. Load-deformation curves in Figure 8-5 for values of weld element shear strength, P, relative to $P_{o}=0.60 F_{\text {EXX }}$ for values of $\theta_{i}=0^{\circ}, 15^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 75^{\circ}$ and 90° are shown. For further information, see AISC Specification Section J2.4 and its commentary.

The nominal strengths of the other unit-length weld segments in the joint can be determined by applying a deformation, Δ, that varies linearly with the distance from the IC. The nominal shear strength of the weld group is, then, the sum of the individual strengths of all weld segments. Because of the nonlinear nature of the requisite iterative solution, for sufficient accuracy, a minimum of 20 weld elements for the longest line segment is generally recommended.

Fig. 8-5. Fillet weld strength versus deformation as a function of load angle, θ.

The individual resistance of each weld segment is assumed to act on a line perpendicular to a ray passing through the IC and the centroid of that weld segment, as illustrated in Figure 8 -4(b). If the correct location of the instantaneous center has been selected, the three equations of in-plane static equilibrium, $\Sigma F_{x} A_{\text {wei }}=0, \Sigma F_{y} A_{\text {wei }}=0$, and $\Sigma M=0$, will be satisfied, where $A_{\text {wei }}$ is the effective weld area.

For further information, see Crawford and Kulak (1971) and Butler et al. (1972).

Elastic Method

For a force applied as illustrated in Figure 8-4, the eccentric force, P_{u} or P_{a}, is resolved into a force, P_{u} or P_{a}, acting through the center of gravity of the weld group and a moment, $P_{u} e$ or $P_{a} e$, where e is the eccentricity. Each weld element is then assumed to resist an equal share of the direct shear, P_{u} or P_{a}, and a share of the eccentric moment, $P_{u} e$ or $P_{a} e$, proportional to its distance from the center of gravity. The resultant vectorial sum of these forces, r_{u} or r_{a}, is the required strength for the weld.
The shear per linear inch of weld due to the concentric force, $r_{p u}$ or $r_{p a}$, is determined as

LRFD	ASD		
$r_{p u}=\frac{P_{u}}{l}$	$(8-5 \mathrm{a})$	$r_{p a}=\frac{P_{a}}{l}$	$(8-5 \mathrm{~b})$

where
$l=$ total length of the weld in the weld group, in.
To determine the resultant shear per linear inch of weld, $r_{p u}$ or $r_{p a}$ must be resolved into horizontal components, $r_{p u x}$ or $r_{p a x}$, and vertical components, $r_{p u y}$ or $r_{p a y}$, where

$$
\begin{align*}
& r_{p u x}=r_{p u} \sin \theta(\mathrm{LRFD}) \tag{8-6a}\\
& r_{p a x}=r_{p a} \sin \theta(\mathrm{ASD}) \tag{8-6b}\\
& r_{p u y}=r_{p u} \cos \theta(\mathrm{LRFD}) \tag{8-7a}\\
& r_{p a y}=r_{p a} \cos \theta(\mathrm{ASD}) \tag{8-7b}
\end{align*}
$$

The shear per linear inch of weld due to the moment, $P_{u} e$ or $P_{a} e$, is $r_{m u}$ or $r_{m a}$, where
$\left.\begin{array}{|c|c|c|}\hline \text { LRFD } & \text { ASD } \\ \hline r_{m u}=\frac{P_{u} e c}{I_{p}} & (8-8 \mathrm{a}) & r_{m a}=\frac{P_{a} e c}{I_{p}}\end{array} \quad(8-8 \mathrm{~b})\right]$
where
$c=$ radial distance from the center of gravity to point in weld group most remote from the center of gravity, in.
$I_{p}=I_{x}+I_{y}$
$=$ polar moment of inertia of the weld group, in. ${ }^{4}$ per in. Refer to Figure 8-6. For section moduli and torsional constants of various welds treated as line elements, refer to Table 5 in Section 7.4 of Blodgett (1966).

$I_{x o}=\frac{l^{3}}{12}$
$I_{x}=\frac{l^{3}}{12}+l\left(d_{y}\right)^{2}$
$I_{y o}=0$
$I_{y}=l\left(d_{x}\right)^{2}$

$$
\begin{gathered}
I_{x o}=0 \\
I_{x}=l\left(d_{y}\right)^{2} \\
I_{y o}=\frac{l^{3}}{12} \\
I_{y}=\frac{l^{3}}{12}+l\left(d_{x}\right)^{2}
\end{gathered}
$$

$$
I_{x o}=\frac{\ln ^{2}}{12}
$$

$$
I_{x}=\frac{\ln ^{2}}{12}+l\left(d_{y}\right)^{2}
$$

$$
I_{y o}=\frac{l m^{2}}{12}
$$

$$
I_{y}=\frac{l m^{2}}{12}+l\left(d_{x}\right)^{2}
$$

Length of weld, $l=6.28 R$

$$
a=0.637 R
$$

Length of weld, $l=3.14 R$

$$
a=0.637 R
$$

Length of weld, $l=1.57 R$

$$
\begin{gathered}
I_{x o}=\pi R^{3} \\
I_{x}=\pi R^{3}+l\left(d_{y}\right)^{2} \\
I_{y o}=\pi R^{3} \\
I_{y}=\pi R^{3}+l\left(d_{x}\right)^{2}
\end{gathered}
$$

$$
\begin{array}{cc}
I_{y o}=\frac{\pi}{2} R^{3} & I_{x o}=\left(\frac{\pi}{4}-\frac{2}{\pi}\right) R^{3} \\
I_{y}=\frac{\pi}{2} R^{3}+l\left(d_{x}\right)^{2} & I_{x}=\left(\frac{\pi}{4}-\frac{2}{\pi}\right) R^{3}+l\left(d_{y}\right)^{2} \\
I_{x o}=\left(\frac{\pi}{2}-\frac{4}{\pi}\right) R^{3} & I_{y o}=\left(\frac{\pi}{4}-\frac{2}{\pi}\right) R^{3} \\
I_{x}=\left(\frac{\pi}{2}-\frac{4}{\pi}\right) R^{3}+l\left(d_{y}\right)^{2} & I_{y}=\left(\frac{\pi}{4}-\frac{2}{\pi}\right) R^{3}+l\left(d_{x}\right)^{2}
\end{array}
$$

Fig. 8-6. Moments of inertia of various weld segments.

To determine the resultant force on the most highly stressed weld element, $r_{m u}$ or $r_{m a}$ must be resolved into horizontal component $r_{\text {mux }}$ or $r_{\max }$ and vertical component $r_{m u y}$ or $r_{\text {may }}$, where

LRFD	ASD	
$r_{m u x}=\frac{P_{u} e c_{y}}{I_{p}}$	$(8-9 \mathrm{a})$	$r_{\text {max }}=\frac{P_{a} e c_{y}}{I_{p}}$
$r_{m u y}=\frac{P_{u} e c_{x}}{I_{p}}$	$(8-10 \mathrm{a})$	$r_{m a y}=\frac{P_{a} e c_{x}}{I_{p}}$

In the above equations, c_{x} and c_{y} are the horizontal and vertical components of the radial distance c at the point where r_{u} or r_{a} is a maximum. The point in the weld group where the stress is highest will usually be at a corner, or a termination, or where the element is farthest from the center of gravity. Thus, the resultant force, r_{u} or r_{a}, is determined as

LRFD	ASD
$r_{u}=\sqrt{\left(r_{p u x}+r_{m u x}\right)^{2}+\left(r_{p u y}+r_{m u y}\right)^{2}}(8-11 \mathrm{a})$	$r_{a}=\sqrt{\left(r_{p a x}+r_{\text {max }}\right)^{2}+\left(r_{p a y}+r_{m a y}\right)^{2}} \quad(8-11 \mathrm{~b})$

which should be compared to the available strength, found in AISC Specification Table J2.5. For further information, see Higgins (1971).

Plastic Method

Table 8-4 provides coefficients that can be used to design pairs of linear welds subjected to an eccentric shear and a normal force, when k is taken equal to zero. These coefficients are calculated using the instantaneous center of rotation method. Given the prevalence with which these welds are encountered in design, simplified design methods have been developed and are presented in the following.

The simplest approach is to calculate the effects of the normal force and the moment independently, as shown in Figure 8-7, and combine them vectorially with the shear force. This approach produces:

$$
\begin{array}{r}
f_{v}=\frac{V}{l_{w}} \\
f_{a}=\frac{N}{l_{w}} \\
f_{b}=\frac{4 M}{l_{w}^{2}} \\
f_{w}=\sqrt{f_{v}^{2}+\left(f_{a}+f_{b}\right)^{2}} \tag{8-15}
\end{array}
$$

where
$M=$ applied moment, kip-in.
$N=$ applied normal force, kips
$V=$ applied shear, kips
$f_{a}=$ shear per linear inch of weld due to the applied normal force, kip/in.
$f_{b}=$ shear per linear inch of weld due to the applied moment, kip/in.
$f_{v}=$ shear per linear inch of weld due to the applied shear, kip/in.
$f_{w}=$ total design stress, kip/in.
$l_{w}=$ length of each weld, in.
A less conservative and more technically correct approach is to calculate the effects of the normal force and the moment based on a plastic normal stress distribution as shown in Figure 8-8, and then combine them vectorially with the shear. This approach produces:

$$
\begin{gather*}
f_{v}=\frac{V}{l_{w}} \tag{8-12}\\
l_{a}=\frac{\sqrt{4 e_{x}^{2}+l_{w}^{2} \tan ^{2} \theta}-2 e_{x}^{2}}{\tan \theta} \tag{8-16}\\
f_{a}=\frac{N}{l_{a}}=\frac{N \tan \theta}{\sqrt{4 e_{x}^{2}+l_{w}^{2} \tan ^{2} \theta}-2 e_{x}^{2}} \tag{8-17}\\
f_{b}=\frac{M}{l_{w}^{2}-l_{a}^{2}} \tag{8-18}\\
f_{w}=\sqrt{f_{v}^{2}+f_{b}^{2}} \tag{8-19}
\end{gather*}
$$

Fig. 8-7. Plastic method stress distribution.
where
$M=$ applied moment, kip-in.
$N=$ applied normal force, kips
$V=$ applied shear, kips
$f_{a}=$ shear per linear inch of weld due to the applied normal force, kip/in.
$f_{b}=$ shear per linear inch of weld due to the applied moment, kip/in.
$f_{v}=$ shear per linear inch of weld due to the applied shear, kip/in.
$f_{w}=$ total design stress, kip/in.
$l_{a}=$ length of weld over which the applied normal force is distributed, in.
$l_{w}=$ length of each weld, in.

Eccentricity Normal to the Plane of the Faying Surface

Eccentricity normal to the plane of the faying surface, as illustrated in Figure 8-9 for a bracket connection, produces tension above and compression below the neutral axis. The eccentric force, P_{u} or P_{a}, is resolved into a direct shear, P_{u} or P_{a}, acting at the faying surface of the joint and a moment normal to the plane of the faying surface, $P_{u} e$ or $P_{a} e$, where e is the eccentricity. Each unit-length segment of weld is then assumed to resist an equal share of the concentric force, P_{u} or P_{a}, and the moment is resisted by tension in the welds above the neutral axis and compression below the neutral axis.

In contrast to bolts, where the interaction of shear and tension must be considered, for welds, shear and tension can be combined vectorially into a resultant shear. Thus, the solution of a weld loaded eccentrically normal to the plane of the faying surface is similar to that discussed previously for welds loaded eccentrically in the plane of the faying surface.

OTHER SPECIFICATION REQUIREMENTS AND DESIGN CONSIDERATIONS

The following other specification requirements and design considerations apply to the design of welded joints.

Stress from Moment

Stress from Axial

Total Stress

Fig. 8-8. Optimized plastic method stress distribution.

Special Requirements for Heavy Shapes and Plates

For CJP groove welded joints in heavy shapes with a flange thickness exceeding 2 in . or built-up sections consisting of plates with a thickness exceeding 2 in., see AISC Specification Sections A3.1c and A3.1d.

Placement of Weld Groups

For the required placement of weld groups at the ends of axially loaded members, see AISC Specification Section J1.7.

Welds in Combination with Bolts

For welds used in combination with bolts, see AISC Specification Section J1.8.

Fatigue

For applications involving fatigue, see AISC Specification Appendix 3.

One-Sided Fillet Welds

When lateral deformation is not otherwise prevented, a severe notch can result at locations of one-sided welds. For the fillet-welded joint illustrated in Figure 8-10, the unwelded side has no strength in tension and a notch may form from the unwelded side. Using one fillet weld on each side will eliminate this condition. This is also true with PJP groove welds.

Welding Considerations and Appurtenances

Clearance Requirements

Clearances are required to allow the welder to make proper welds. Ample room must be provided so that the welder or welding operator may manipulate the electrode and observe the weld as it is being deposited.

Fig. 8-9. Welds subject to eccentricity normal to the plane of the faying surface.

In the SMAW process, the preferred position of the electrode when welding in the horizontal position is in a plane forming 30° with the vertical side of the fillet weld being made. However, this angle, shown as angle x in Figure 8-11, may be varied somewhat to avoid contact with some projecting part of the work. A simple rule to provide adequate clearance for the electrode in horizontal fillet welding is that the clear distance to a projecting element should be at least one-half the distance y in Figure 8-11(b).

Fig. 8-10. Notch effect at one-sided weld.

Fig. 8-11. Clearances for SMAW welding.

A special case of minimum clearance for welding with a straight electrode is illustrated in Figure $8-12$. The 20° angle is the minimum that will allow satisfactory welding along the bottom of the angle and therefore governs the setback with respect to the end of the beam. If a ${ }^{1 / 2}$-in. setback and ${ }^{3 / 8}$-in. electrode diameter were used, the clearance between the angle and the beam flange could be no less than $1^{1 / 4} \mathrm{in}$. for an angle with a leg dimension, w, of 3 in., nor less than $1^{5} / 8 \mathrm{in}$. with a w of 4 in . When it is not possible to provide this clearance, the end of the angle may be cut as noted by the optional cut in Figure 8-12 to allow the necessary angle. However, this secondary cut will increase the cost of fabricating the connection.

Excessive Welding

The specification of over or excessive welding will increase the amount of heat input into the parts joined and thereby add to distortion in the joint. Distortion of the joint is caused by three fundamental dimensional changes that occur during and after welding:

1. Transverse shrinkage that occurs perpendicular to the weld line,
2. Longitudinal shrinkage that occurs parallel to the weld line, and
3. Angular change that consists of rotation around the weld line.

If these dimensional changes alter the joint so that it is no longer within fabrication tolerances, the joint may need to be repaired with additional heating to bring the joint back to within fabrication tolerances. This added work will result in expensive repair costs which could have been avoided with appropriately sized welds.

Over-specification of weld size also increases the cost of welding for no structural benefit.

Fig. 8-12. Clearances for SMAW welding.

Minimum Shelf Dimensions for Fillet Welds

The recommended minimum shelf dimensions for normal size SMAW fillet welds are summarized in Figure 8-13. SAW fillet welds would require a greater shelf dimension to contain the flux, although auxiliary material can be clamped to the member to provide for this. The dimension b illustrated in Figure 8-14 must be sufficient to accommodate the combined dimensional variations of the angle length, cope depth, beam depth and weld size.

Fig. 8-13. Recommended minimum shelf dimensions for SMAW fillet welds.

Fig. 8-14. Illustration of shelf dimensions for fillet welding.

Beam Copes and Weld Access Holes

Requirements for beam copes and weld access holes are given in AISC Specification Sections J1.6 and M2.2. Weld access holes, as illustrated in Figure 8-15, are used to permit down-hand welding to the beam bottom flange, as well as the placement of a continuous backing bar under the beam top flange. Weld access holes also help to mitigate the effects of weld shrinkage strains and prevent the intersection or close juncture of welds in orthogonal directions. Weld access holes should not be filled with weld metal because doing so may result in a state of triaxial stress under loading.

Corner Clips

Corners of stiffeners and similar elements that fit into a corner should be clipped generously to avoid the lack of fusion that would likely result in that corner. In general, a ${ }^{3 / 4}$-in. clip will be adequate, although this dimension can be adjusted to suit conditions, such as when the

Fig. 8-15. Illustration of backing bars, spacer bars, weld tabs and other fittings for welding.
fillet radius is larger or smaller than that for which a $3 / 4-\mathrm{in}$. clip is appropriate. For further information, see Butler et al. (1972) and Blodgett (1980).

Corner clips of the sizes mentioned typically do not affect the available strength of gusset plates, except where these occur at or near a critical section. When this occurs, rupture or block shear limit states can be evaluated using the appropriate AISC Specification equations. However, corner clips of column stiffeners or continuity plates and similar stiffening elements should be included in the strength calculations because they can be of a significant size relative to the proportions of the plates.

Backing Bars

Backing bars, illustrated in Figure 8-15, should be of approved weldable material as specified in AWS D1.1 clause 5.2.2.2. Per AWS D1.1, backing bars on groove-welded joints are usually continuous or fully spliced to avoid stress concentrations or discontinuities and should be thoroughly fused with the weld metal.

Spacer Bars

Spacer bars, illustrated in Figure 8-15, must be of the same material specification as the base metal, per AWS D1.1 clause 5.2.2.3. This can create a procurement problem, since small tonnage requirements may make them difficult to obtain in the specified ASTM designation.

Weld Tabs

To obtain a fully welded cross section, the termination at either end of the joint must be of sound weld metal. Weld tabs, illustrated in Figure 8-15, should be of approved weldable material as specified in AWS D1.1 clause 5.2.2.1. Two configurations of weld tabs are illustrated in Figure 8-16, including flat-type weld tabs, which are normally used with bevel and V groove welds, and contour-type weld tabs, which are normally used with J and U groove welds. Weld-tab removal is addressed in AWS D1.1. Frequently, the backing bar can be extended to serve as the weld tab. Some welds performed in the horizontal position require shelf bars. Shelf bars will be left in place unless they are required to be removed by the engineer.

Fig. 8-16. Illustration of weld tabs.

Lamellar Tearing

Figures 8-17 and 8-18 illustrate preferred welded joint selection and connection configurations for avoiding susceptibility to lamellar tearing. Refer to the discussion "Avoiding Lamellar Tearing" in Part 2.

Prior Qualification of Welding Procedures

Evidence of prior qualification of welding procedures, welders, welding operators or tackers may be accepted at the discretion of the owner's designated representative for design, resulting in significant cost savings. Fabricators that participate in the AISC Quality Certification Program have the experience and documentation necessary to assure that such prior qualifications could be accepted. For more information about the AISC Quality Certification Program, visit www.aisc.org.

Fig. 8-17. Susceptible and improved details to reduce the incidence of lamellar tearing.

Painting Welded Connections

Paint is normally omitted in areas to be field-welded, per AISC Specification Section M3.5. Note that this requirement does not generally apply to shop-assembled connections, because painting is normally done after the welds are made. When required, the small paint-free areas can generally be identified with a general note (e.g., "no paint on OSL of connection angles," where OSL stands for outstanding leg).

WELDING CONSIDERATIONS FOR HSS

Flare welds are more common in HSS because of the increasing likelihood that the HSS corner is a part of the welded joint. A common flare bevel configuration that occurs when equal width sections are joined is illustrated in Figure 8-19. The easiest arrangement for welding occurs with equal wall thickness sections. However, when the corner radius increases due to wall thickness or manufacturing tolerances, the root gap may need to be adjusted by profile shaping, building out with weld metal, or by use of backing. See Figures 8-19 and 8-20.

HSS Welding Requirements in AWS D1.1

AWS uses the terminology "tubular" for all hollow members including pipe, hollow structural sections, and fabricated box sections. The following sections in AWS D1.1 apply to welded HSS-to-HSS connections:

Susceptible Detail

Improved Detail

Fig. 8-18. Susceptible and improved details to avoid intersecting welds with high restraint.

Clause 9, Part A

As explained in AWS D1.1 Commentary Section C-9.2, "In commonly used types of tubular connections, the weld itself may not be the factor limiting the capacity of the joint. Such limitations as local failure (punching shear), general collapse of the main member, and lamellar tearing are discussed because they are not adequately covered in other codes." Because of these various failure modes, the design of HSS-to-HSS connections must be part of the member sizing process. The members selected must be capable of transmitting the required strength or adequate reinforcement must be shown on the design documents.

Differences in the relative stiffness across HSS walls loaded normal to their surface can make the load transfer highly nonuniform. To prevent progressive failure and to ensure ductile behavior of the joint, minimum welds must be provided in T-, Y- and K-connections to transmit the factored load in the branch or web member. For normal building applications, fillet welds and PJP welds can be used.

While clause 9, Part A, deals primarily with design of HSS-to-HSS connections, some of these provisions are applicable to welded attachments that deliver a load normal to the wall of a tubular member.

Fig. 8-19. Flare bevel weld, equal width HSS weld joint.

Fig. 8-20. Welding methods accounting for the HSS corner radius.

Clause 9, Part B

AWS D1.1 Figure 9.10 shows prequalified fillet weld details for tubular joints that differ from details for nontubular skewed T-joints. These details will provide the minimum weld strength needed to ensure ductile joint behavior.

AWS D1.1 Figure 3.2 shows the joint detail and the effective throat for a flare-bevel and flare-V PJP groove weld that is commonly used for welding connection material to the face of an HSS. Groove welded joint details for HSS are designed to accommodate both the geometry of the section and the lack of access to the back side of the joint.

AWS D1.1 Figure 9.11 shows various PJP groove welded HSS joint details and AWS D1.1 Figures 9.12, 9.14, 9.15 and 9.16 show CJP groove welded HSS joint details. The joint preparation and weld sizing are complex and critical to obtain a sound weld. These details also provide the weld strength needed to ensure ductile joint behavior.

Clause 9, Parts C and D

AWS D1.1 clause 9, Part C, WPS Qualification, covers the requirements for qualification testing of welding procedure specifications and Part D covers performance testing of the welder's ability to produce sound welds. HSS connections may not always meet the requirements for a prequalified WPS because of unique geometry, connection access or for other reasons. This section also gives the requirements for a procedure qualification record (PQR), which is the basis for qualifying a WPS.

The performance testing of welders and welding operators considers process, material thickness, position, nontubular or tubular joint access. AWS D1.1 Tables 4.10 through 4.12 and Tables 9.13 and 9.14 list the required qualifications needed for each type of joint. Most welders are qualified for a particular process and position-in-plate (nontubular) joints. These qualifications will allow the welder to make similar fillet, PJP groove and backed CJP welds in very large tubular members. However, certain types of tubular connections, such as unbacked T-, Y- and K-connections, require special welder certifications because the lack of access to the back of the joint, the position of the connection, and the access to the connection require special skill to produce a sound connection.

Clause 9, Part E

Clause 9, Part E, Fabrication, covers the requirements for the preparation, assembly and workmanship of welded hollow structural sections (HSS). AWS D1.1 Table 9.15, Tubular Root Opening Tolerances, gives the acceptable fitup for unbacked groove welds. AWS D1.1 Table 5.7, Minimum Fillet Weld Size, gives the minimum weld pass size based on material thickness and process.

Clause 9, Part F

Clause 9, Part F, Inspection, contains all of the requirements for the inspector's qualifications and responsibilities, acceptance criteria for discontinuities, and procedures for NDE. AWS D1.1 considers fabrication/erection inspection and testing a separate function from verification inspection and testing. Fabrication/erection inspection and testing is usually the responsibility of the contractor and is performed as appropriate prior to assembly, during assembly, during welding, and after welding to ensure the requirements of the contract documents are met. Verification inspection and testing are the prerogatives of the owner. The extent of NDE and verification inspection must be specified in the contract documents.

The inspection covers WPS qualification, equipment, welder qualification, joint preparation, joint fitup, welding techniques, and weld size length and location. It is especially important when inspecting HSS-to-HSS joints that joint preparation and fitup be checked prior to welding.

In addition to inspecting the above items, AWS requires all welds to be visually inspected for conformance to the standards in AWS D1.1 Table 9.16, Visual Inspection Acceptance Criteria.

Four types of nondestructive testing can be used to supplement visual inspection. They are penetrant testing, magnetic particle testing, radiographic testing, and ultrasonic testing.

The AWS ultrasonic testing (UT) acceptance criteria for non-HSS type groove welds starts at $5 / 16$-in.-thick material. The procedures for HSS T-, Y- and K- connections have a minimum applicable thickness of $1 / 2 \mathrm{in}$., and diameter of $12^{3 / 4} \mathrm{in}$. AWS does, however, make provision for qualifying UT procedures for smaller size applications. It is possible to UT portions of butt-type splices with backing bars using the non-HSS criteria, however, the corners of rectangular HSS cannot be inspected.

AWS D1.1 makes provision for using alternate acceptance criteria based upon an evaluation of suitability for service using past experience, experimental evidence or engineering analysis. This can be especially important when deciding if and how to make any repairs.

Weld Sizing for Uneven Distribution of Loads

The connection strength for a member welded normal to an HSS wall is a function of the geometric parameters of the connected members and is often less than the full strength of the member. When limited by geometry, the available strength cannot be increased by increasing the weld strength. Due to the varying relative flexibility of the HSS wall loaded normal to its surface and the axial stiffness of the connected member, the transfer of load along the weld line is highly nonuniform. To prevent progressive failure, or "unzipping" of the weld, it is important to provide adequate welds to maintain ductile behavior of the joint.

Welds that satisfy this ductility requirement can be proportioned for the required strength using an effective width criteria similar to that used for checking the axial strength of the branch member or plate. For effective weld length of HSS-to-HSS connections, refer to AISC Specification Section K5.

An alternative to the effective length procedure is the use of the prequalified fillet and PJP groove weld details in AWS D1.1 that are sized to ensure ductile behavior. In addition, fillet welds with an effective throat of 1.1 times the thickness of the branch member can be used. Either of these two alternatives will, in most cases, be conservative.

Detailing Considerations

1. Butt joints will require a groove weld detail. Where possible, the joint should be a prequalified PJP groove weld sized for actual load or a CJP groove weld with steel backing.
2. T-, Y- and K-connections should, where possible, use either fillet welds or PJP groove welds sized for the design forces and checked for the minimum size needed to ensure ductile joint behavior. Where CJP welds are required, joint details using steel backing should be used whenever possible. For a detailed discussion of various types of backing and the advantages of using backing, see Post (1990).

DESIGN TABLE DISCUSSION

Table 8-1. Coefficients, C, for Concentrically Loaded Weld Group Elements

Concentrically loaded fillet weld groups must consider the effect of loading angle and deformation compatibility on weld strength.

By multiplying the appropriate values of C from Table 8-1 by the available strength of each weld element, an effective strength is determined for each weld element. The available strength of the weld group can be determined by summing the effective strengths of all of the elements in a weld group. It should be noted that this table is to be entered at the largest load angle on any weld in the weld group. For the weld group shown in Figure 8-21, this is calculated as:

LRFD	ASD	
$\phi R_{w}=1.392 D$	$(8-20 \mathrm{a})$	
$\times[1.50(1)+1.29(1.41)+0.825(1)]$	$R_{w} / \Omega=0.928 D$	
$=5.77 D$	$\times[1.50(1)+1.29(1.41)+0.825(1)]$	
	$=3.85 D$	

Table 8-2. Prequalified Welded Joints

The prequalified welded joints details given in AWS D1.1 and Table 8-2 provide joint geometries, such as root openings, angles and clearances (see Figures 8-22 and 8-23) that will permit the deposition of sound weld material. Prequalified welded joints are not, in themselves, adequate consideration of welded design details and the other provisions in AWS D1.1 must be satisfied as they are referenced in AISC Specification Section J2. The design and detailing for successful welded construction requires consideration of factors which include, but are not limited to, the magnitude, type and distribution of forces to be transmitted, access, restraint against weld shrinkage, thickness of connected materials, residual stress, and distortion. AWS D1.1 has provisions for material that is thinner than is normally considered applicable for structural applications. See AWS D1.1 and D1.3 (AWS, 2008) for welding requirements and limits applicable to these materials in lieu of provisions such as AISC Specification Table J2.3.

Load, P, passes through the geometric center of the weld group

Fig. 8-21. Concentrically loaded weld group.

The designations such as B-L1a, B-U2 and B-P3 are those used in AWS D1.1. Note that lowercase letters (e.g., a, b, c, etc.) are often used to differentiate between joints that would otherwise have the same joint designation. These prequalified welded joints are limited to those made by the SMAW, SAW, GMAW (except short circuit transfer), and FCAW procedures. Small deviations from dimensions, angles of grooves, and variation in depth of groove joints are permissible within the tolerances given.

In general, all fillet welds are prequalified, provided they conform to the requirements in AWS D1.1. Groove welds are classified using the conventions indicated in the tables. Welded joints other than those prequalified by AWS may be qualified, provided they are tested and qualified in accordance with AWS D1.1.

Fig. 8-22. Fillet weld nomenclature.

Preparation

Complete-Joint-Penetration

Partial-Joint-Penetration

Partial-Joint-Penetration
(When reinforcing fillet is specified)

Fig. 8-23. Groove weld nomenclature.

Table 8-3. Electrode Strength Coefficient, $\boldsymbol{C}_{\mathbf{1}}$

Electrode strength coefficients, C_{1}, which can be used to adjust the tabulated values of Tables 8-4 through 8-11 for electrodes other than E70XX, are given in Table 8-3. Note that this coefficient includes an additional reduction factor of 0.90 for E80 and E90 electrodes and 0.85 for E100 and E110; this accounts for the uncertainty of extrapolation to these higher-strength electrodes.

Tables 8-4 through 8-11. Coefficients, C, for Eccentrically Loaded Weld Groups

Tables 8-4 through 8-11 employ the instantaneous center of rotation method, as discussed earlier in this Part, for the weld patterns and eccentric conditions indicated and inclined loads at $0^{\circ}, 15^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}$ and 75°. The tabulated nondimensional coefficient, C, represents the effective strength of the weld group in resisting the eccentric shear force.

When Analyzing a Known Weld Group Geometry

For any of the weld group geometries shown, the available strength, ϕR_{n} or R_{n} / Ω, of the eccentrically loaded weld group is determined by

$$
\begin{gather*}
R_{n}=C C_{1} D l \tag{8-21}\\
\phi=0.75 \quad \Omega=2.00
\end{gather*}
$$

where
$C=$ tabular value
$C_{1}=$ electrode strength coefficient from Table 8-3
$D=$ number of sixteenths-of-an-inch in the fillet weld size
$l=$ length of the reference weld, in.
In developing these tables, the instantaneous center of rotation method was used, with a convergence criterion of less than $1 / 2 \%$ and considering deformation compatibility of adjacent weld elements. The first row in each table $(a=0)$ gives the available strength of a concentrically loaded weld group in accordance with AISC Specification Section J2.4. Linear interpolation within a given table between adjacent a and k values is permitted.

Straight-line interpolation between values for loads at different angles may be significantly unconservative. Either a rational analysis should be performed or the values for the next lower angle increment in the tables should be used for design. For weld group patterns not treated in these tables, a rational analysis is required.

Table 8-12. Approximate Number of Passes for Welds

Table 8-12 lists the approximate number of passes required for various welds. The actual number of passes can vary depending on the welding position and process used. The table can be used as a guide in selecting economical welds because the labor required will be roughly proportional to the number of passes. Longer single-pass welds will generally be more economical than shorter multi-pass welds because the number of passes, and therefore the cost, required to deposit the larger multi-pass weld increases faster than the strength of the weld.

PART 8 REFERENCES

AWS (2008), Structural Welding Code-Sheet Steel, AWS D1.3/D1.3M:2008, American Welding Society, Miami, FL.
AWS (2009), Guide for the Nondestructive Inspection of Welds, AWS B1.10, American Welding Society, Miami, FL.
AWS (2007), Standard Symbols for Welding, Brazing, and Nondestructive Examination, AWS A2.4:2007, American Welding Society, Miami, FL.
Blodgett, O.W. (1966), Design of Welded Structures, James F. Lincoln Arc Welding Foundation, Cleveland, OH.
Blodgett, O.W. (1980), "Detailing to Achieve Practical Welded Fabrication," Engineering Journal, AISC, Vol. 17, No. 4, pp. 106-119.
Blodgett, O.W., Funderburk, R.S. and Miller, D.K. (1997), Fabricator's and Erector's Guide to Welded Steel Construction, James F. Lincoln Arc Welding Foundation, Cleveland, OH.
Butler, L.J., Pal, S. and Kulak, G.L. (1972), "Eccentrically Loaded Welded Connections," Journal of the Structural Division, ASCE, Vol. 98, No. ST5, May, pp. 989-1,005.
Crawford, S.F. and Kulak, G.L. (1971), "Eccentrically Loaded Bolted Connections," Journal of the Structural Division, ASCE, Vol. 97, No. ST3, pp. 765-784.
Higgins, T.R. (1971), "Treatment of Eccentrically Loaded Connections in the AISC Manual," Engineering Journal, AISC, Vol. 8, No. 2, pp. 52-54.
Institute of Welding (1972), Procedures and Recommendations for the Ultrasonic Testing of Butt Welds, London, England.
Kaufmann, J.A., Pense, A.W. and Stout, R.D. (1981), "An Evaluation of Factors Significant to Lamellar Tearing," Welding Journal Research Supplement, AWS, Vol. 60, No. 3, Miami, FL.
Krautkramer, J. (1990), Ultrasonic Testing of Materials, 4th Ed., Springer-Verlag, Berlin, West Germany.
Lesik, D.F. and Kennedy, D.J.L. (1990), "Ultimate Strength of Fillet-Welded Connections Loaded in Plane," Canadian Journal of Civil Engineering, National Research Council of Canada, Vol. 17, No. 1, Ottawa, Canada.
Miller, D.K. (2006), Welded Connections-A Primer for Engineers, Design Guide 21, AISC, Chicago, IL.
Post, J.W. (1990), "Box-Tube Connections: Choices of Joint Details and Their Influence on Costs," National Steel Construction Conference Proceedings, AISC, Chicago, IL.

Table 8-1 Coefficients, C, for Concentrically Loaded Weld Group Elements							
Load angle on weld element, degrees	Largest load angle on any weld group element, degrees						
	90	75	60	45	30	15	0
0	0.825	0.849	0.876	0.909	0.948	0.994	1.00
15	1.02	1.04	1.05	1.07	1.06	0.883	
30	1.16	1.17	1.18	1.17	1.10		
45	1.29	1.30	1.29	1.26			
60	1.40	1.40	1.39				
75	1.48	1.47					
90	1.50						

Table 8-2 (continued) Prequalified Welded Joints Fillet Welds

Fillet weld (12)
T-joint (T)
Corner joint (C)
Lap joint (L)

ALL DIMENSIONS IN inches

Welding Process	Joint Designation	Base Metal Thickness T_{1} or T_{2}	Joint Design/Geometry			Allowed Welding Positions	Notes
			Root Opening	Tolerances			
				As Detailed	$\begin{gathered} \text { As } \\ \text { Fit-Up } \end{gathered}$		
SMAW	TC-F12	<3	$\mathrm{R}=0$	$+1 / 16,-0$	3/16 max.	All	$\mathrm{a}^{\prime}, \mathrm{b}^{\prime}, \mathrm{d}^{\prime}$
	TC-F12a	≥ 3			5/16 max.		$a^{\prime}, b^{\prime}, d^{\prime}$
	L-F12	<3			3/16 max.		$\mathrm{a}^{\prime}, \mathrm{b}^{\prime}, \mathrm{c}^{\prime}$
	L-F12a	≥ 3			5/16 max.		$\mathrm{a}^{\prime}, \mathrm{b}^{\prime}, c^{\prime}$
GMAW FCAW	TC-F12-GF	<3	$\mathrm{R}=0$	$+1 / 16,-0$	3/16 max.	All	$\mathrm{a}^{\prime}, \mathrm{b}^{\prime}, \mathrm{d}^{\prime}$
	TC-F12a-GF	≥ 3			5/16 max.		$\mathrm{a}^{\prime}, \mathrm{b}^{\prime}, \mathrm{d}^{\prime}$
	L-F12-GF	<3			3/16 max.		$\mathrm{a}^{\prime}, \mathrm{b}^{\prime}, c^{\prime}$
	L-F12a-GF	≥ 3			5/16 max.		$a^{\prime}, b^{\prime}, c^{\prime}$
SAW	TC-F12-S	<3	$\mathrm{R}=0$	$+1 / 16,-0$	3/16 max.	F, H	$\mathrm{a}^{\prime}, \mathrm{b}^{\prime}, \mathrm{d}^{\prime}$
	TC-F12a-S	≥ 3			5/16 max.		$a^{\prime}, b^{\prime}, d^{\prime}$
	L-F12-S	<3			3/16 max.		$a^{\prime}, b^{\prime}, c^{\prime}$
	L-F12a-S	≥ 3			5/16 max.		$\mathrm{a}^{\prime}, \mathrm{b}^{\prime}, \mathrm{c}^{\prime}$

${ }^{a^{\prime}}$ Fillet weld size ("S"). See 2.4.2.8 and Clause 5.13 for minimum fillet weld sizes. See Table 3.6 for maximum single pass size.
${ }^{\mathrm{b}}$ See 5.21 .1 for additional fillet weld assembly requirements or exceptions.
${ }^{\prime}$ ' See 2.4.2.9 for maximum weld size in lap joints.
d^{\prime} Perpendicularity of the members shall be within $\pm 10^{\circ}$.

Table 8-2 (continued)
 CJP Prequalified Welded Joints Complete-Joint-Penetration Groove Welds

Square-groove weld (1) Butt joint (B) Corner joint (C)									
Welding Process	Joint Designation	Base Metal Thickness ($\mathrm{U}=$ unlimited)		Groove Preparation			Allowed Welding Positions	Gas Shielding for FCAW	Notes
				Root Opening	Tolerances				
		T_{1}	T_{2}		As Detailed (see 3.13.1)	$\begin{gathered} \text { As Fit-Up } \\ \text { (see 3.13.1) } \end{gathered}$			
SMAW	B-L1a	1/4 max.	-	$\mathrm{R}=\mathrm{T}_{1}$	+ ${ }^{1 / 16, ~}{ }^{\text {a }}$ -	+ ${ }^{1 / 4},-1 / 16$	All	-	e, j
	C-L1a	1/4 max.	U	$\mathrm{R}=\mathrm{T}_{1}$	+1/16, -0	+1/4, - $1 / 16$	All	-	e, j
$\begin{aligned} & \text { FCAW } \\ & \text { GMAW } \end{aligned}$	B-L1a-GF	3/8 max.	-	$\mathrm{R}=\mathrm{T}_{1}$	$+^{1 / 16, ~-0}$	$+1 / 4,-1 / 16$	All	Not Required	a, j
Square-groove weld (1) Butt joint (B)									
Welding Process	JointDesignation	Base Metal Thickness ($U=$ unlimited)		Groove Preparation			Allowed Welding Positions	Gas Shielding for FCAW	Notes
				Root Opening	Tolerances				
		T_{1}	T_{2}		As Detailed (see 3.13.1)	$\begin{gathered} \text { As Fit-Up } \\ \text { (see 3.13.1) } \end{gathered}$			
SMAW	B-L1b	1/4 max.	-	$R=\frac{T_{1}}{2}$	+1/16, -0	$+1 / 16,-1 / 8$	All	-	d, e, j
$\begin{aligned} & \text { GMAW } \\ & \text { FCAW } \end{aligned}$	B-L1b-GF	3/8 max.	-	$\mathrm{R}=0$ to ${ }^{1 / 8}$	+1/16, -0	$+^{1 / 166,-1 / 8}$	All	Not Required	a, d, j
SAW	B-L1-S	3/8 max.	-	$\mathrm{R}=0$	± 0	+ ${ }^{1 / 16, ~}-0$	F	-	j
SAW	B-L1a-S	5/8 max.	-	$\mathrm{R}=0$	± 0	$+{ }^{1 / 166,-0}$	F	-	d, j

[^28]
Table 8-2 (continued)
 CJP
 Prequalified Welded Joints Complete-Joint-Penetration Groove Welds

Square-groove weld (1) T-joint (T) Corner joint (C)

Note: Referenced clauses in this table are from AWS D1.1. "Notes" on this page refer to Table 8-2, pg. 8-34, of this manual.

Table 8-2 (continued)
 CJP Prequalified Welded Joints Complete-Joint-Penetration Groove Welds

Table 8-2 (continued)
 Prequalified Welded Joints Complete-Joint-Penetration Groove Welds

Single-V-groove weld (2) Butt joint (B)									
Welding Process	Joint Designation	Base Metal Thickness$\text { (} \mathrm{U}=\text { unlimited })$		Groove Preparation			Allowed Welding Positions	Gas Shielding for FCAW	Notes
				Root Opening Root Face Groove Angle	Tolerances				
		T_{1}	T_{2}		As Detailed (see 3.13.1)	$\begin{gathered} \text { As Fit-Up } \\ \text { (see 3.13.1) } \end{gathered}$			
SMAW	B-U2	U	-	$\begin{gathered} \mathrm{R}=0 \text { to } 1 / 8 \\ \mathrm{f}=0 \text { to } 1 / 8 \\ \alpha=60^{\circ} \end{gathered}$	$+1 / 16,-0$ $+1 / 16,-0$ $+10^{\circ},-0^{\circ}$	$+1 / 16,-1 / 8$ Not Limited $+10^{\circ},-5^{\circ}$	All	-	d, e, j
$\begin{aligned} & \text { GMAW } \\ & \text { FCAW } \end{aligned}$	B-U2-GF	U	-	$\begin{gathered} \mathrm{R}=0 \text { to } 1 / 8 \\ \mathrm{f}=0 \text { to } 1 / 8 \\ \alpha=60^{\circ} \end{gathered}$	$+1 / 16,-0$ $+1 / 16,-0$ $+10^{\circ},-0^{\circ}$	$+1 / 16,-1 / 8$ Not Limited $+10^{\circ},-5^{\circ}$	All	Not Required	a, d, j
		Over $1 / 2$ to 1	-	$\begin{gathered} R=0 \\ f=1 / 4 \max . \\ \alpha=60^{\circ} \end{gathered}$					
SAW	B-L2c-S	Over 1 to 1 ¹/2	-	$\begin{gathered} R=0 \\ f=1 / 2 \max . \\ \alpha=60^{\circ} \end{gathered}$	$\begin{gathered} R= \pm 0 \\ f=+0,-f \\ \alpha=+10^{\circ},-0^{\circ} \end{gathered}$	$\begin{gathered} +^{1 / 166,-0} \\ \pm 1 / 16 \\ +10^{\circ},-5^{\circ} \end{gathered}$	F	-	d, j
		Over $1^{11 / 2}$ to 2	-	$\begin{gathered} R=0 \\ f=5 / 8 \max . \\ \alpha=60^{\circ} . \end{gathered}$					

Table 8-2 (continued)
 CJP Prequalified Welded Joints Complete-Joint-Penetration Groove Welds

Note: Referenced clauses in this table are from AWS D1.1. "Notes" on this page refer to Table 8-2, pg. 8-34, of this manual.
Reprinted from AWS D1.1/D1.1M:2015 with permission from the American Welding Society (AWS).

Table 8-2 (continued)
 CJP Prequalified Welded Joints Complete-Joint-Penetration Groove Welds

Table 8-2 (continued)
 CJP Prequalified Welded Joints Complete-Joint-Penetration Groove Welds

Single-bevel-groove wéld (4) Butt joint (B)						Tolerances			
						As Detailed (see 3.13.1)		$\begin{gathered} \hline \text { As Fit-Up } \\ \text { (see 3.13.1) } \end{gathered}$	
		A				$\mathrm{R}=+^{1 / 16},-0$		+1/4, $-1 / 16$	
						$\alpha=+10^{\circ},-0^{\circ}$		$+10^{\circ},-5^{\circ}$	
Welding Process	Joint Designation	Base Metal Thickness ($U=$ unlimited)		Groove Preparation		Allowed Welding Positions	Gas Shielding for FCAW	Notes	
		T_{1}	T_{2}	Root Opening	Groove Angle				
SMAW	B-U4a	U	-	$\mathrm{R}=1 / 4$	$\alpha=45^{\circ}$	All	-	c, e, j	
				$\mathrm{R}=3 / 8$	$\alpha=30^{\circ}$	All	-	c, e, j	
$\begin{aligned} & \text { GMAW } \\ & \text { FCAW } \end{aligned}$	B-U4a-GF	U	-	$\mathrm{R}=3 / 16$	$\alpha=30^{\circ}$	All	Required	a, c, j	
				$\mathrm{R}=1 / 4$	$\alpha=45^{\circ}$	All	Not required	a, c, j	
				$\mathrm{R}=3 / 8$	$\alpha=30^{\circ}$	F, H	Not required	a, c, j	
SAW	B-U4a-S	U		$\mathrm{R}=3 / 8$	$\alpha=30^{\circ}$	F	-	c, j	
				$\mathrm{R}=1 / 4$	$\alpha=45^{\circ}$				
Single-bevel-groove weld (4) T-joint (T) Corner joint (C)						Tolerances			
						As Detailed (see 3.13.1)	$\begin{gathered} \text { As Fit-Up } \\ \text { (see 3.13.1) } \end{gathered}$		
		,				$\begin{aligned} \mathrm{R} & =+^{1} / 16,-0 \\ \alpha & =+10^{\circ},-0^{\circ} \end{aligned}$	$\frac{+1 / 4,-1 / 16}{+10^{\circ},-5^{\circ}}$		
\hat{C}_{i}	$\sqrt{0}$								
Welding Process	Joint Designation	Base Metal Thickness ($\mathrm{U}=$ unlimited)		Groove Preparation		Allowed Welding Positions	Gas Shielding for FCAW	Notes	
		T_{1}	T_{2}	Root Opening	Groove Angle				
SMAW	TC-U4a	U	U	$\mathrm{R}=1 / 4$	$\alpha=45^{\circ}$	All	-	e, g, k, o	
				$\mathrm{R}=3 / 8$	$\alpha=30^{\circ}$	F, V, OH	-	e, g, k, o	
$\begin{aligned} & \text { GMAW } \\ & \text { FCAW } \end{aligned}$	TC-U4a-GF	U	U	$\mathrm{R}=3 / 16$	$\alpha=30^{\circ}$	All	Required	a, g, k, o	
				$\mathrm{R}=3 / 8$	$\alpha=30^{\circ}$	F	Not required	a, g, k, 0	
				$\mathrm{R}=1 / 4$	$\alpha=45^{\circ}$	All	Not required	a, g, k,	
SAW	TC-U4a-S	U	U	$\mathrm{R}=3 / 8$	$\alpha=30^{\circ}$	F	-	g, k, 0	
				$\mathrm{R}=1 / 4$	$\alpha=45^{\circ}$				

[^29]

[^30]

[^31]
Table 8-2 (continued) CJP Prequalified Welded Joints Complete-Joint-Penetration Groove Welds

Double-bevel-groove weld (5) T-joint (T) Corner joint (C)									
Welding Process	JointDesignation	Base Metal Thickness ($\mathrm{U}=$ unlimited)		Groove Preparation			Allowed Welding Positions	Gas Shielding for FCAW	Notes
					Toler	ances			
		T_{1}	T_{2}	Root Face Groove Angle	As Detailed (see 3.13.1)	$\begin{array}{\|c\|} \hline \text { As Fit-Up } \\ \text { (see 3.13.1) } \end{array}$			
SMAW	TC-U5b	U	U	$\begin{aligned} & \mathrm{R}=0 \text { to } 1 / 8 \\ & \mathrm{f}=0 \text { to } 1 / 8 \end{aligned}$	$\begin{aligned} & +1 / 16,-0 \\ & +^{1 / 116,}-0 \end{aligned}$	$+1 / 16,-1 / 8$ Not limited	All	-	$\begin{aligned} & \hline \mathrm{d}, \mathrm{e}, \mathrm{~g}, \\ & \mathrm{~h}, \mathrm{j}, \mathrm{k} \\ & \hline \end{aligned}$
$\begin{aligned} & \hline \text { GMAW } \\ & \text { FCAW } \end{aligned}$	TC-U5-GF	U	U		$+10^{\circ},-0$	$+10^{\circ},-5^{\circ}$	All	Not Required	$\begin{gathered} \hline \mathrm{a}, \mathrm{~d}, \mathrm{~g}, \\ \mathrm{~h}, \mathrm{j}, \mathrm{k} \end{gathered}$
SAW	TC-U5-S	U	U	$\begin{gathered} \mathrm{R}=0 \\ \mathrm{f}=1 / 4 \mathrm{max} . \\ \alpha=60^{\circ} \end{gathered}$	$\begin{gathered} \pm 0 \\ +0,-3 / 16 \\ +10^{\circ},-0^{\circ} \end{gathered}$	$\begin{gathered} +^{1 / 16},-0 \\ \pm 1 / 16 \\ +10^{\circ},-5^{\circ} \end{gathered}$	F	-	$\underset{\mathrm{j}, \mathrm{k}}{\mathrm{~d}, \mathrm{~h},}$

Table 8-2 (continued) Prequalified Welded Joints	CJP
Complete-Joint-Penetration Groove Welds	

Single-U-groove weld (6) Butt joint (B) Corner joint (C)								Tolerances		
								As Detailed (see 3.13.1)		$\begin{gathered} \text { As Fit-Up } \\ \text { (see 3.13.1) } \end{gathered}$
								$\mathrm{R}=+^{1 / 16,-0}$		+ ${ }^{1 / 16, ~}-1 / 8$
	-					G	UGE	$\alpha=+10^{\circ},-0^{\circ}$		$+10^{\circ},-5^{\circ}$
								$\mathrm{f}= \pm 1 / 16$		Not Limited
								$\mathrm{r}=+1 / 8,-0$		$+1 / 8,-0$
Welding Process	Joint Designation	Base Metal Thickness$\text { (} \mathrm{U}=\text { unlimited) }$		Groove Preparation				Allowed Welding Positions	Gas Shielding for FCAW	Notes
		T_{1}	T_{2}	Root Opening	Groove Angle	$\begin{aligned} & \text { Root } \\ & \text { Face } \end{aligned}$	Bevel Radius			
SMAW	B-U6	U	-	$\mathrm{R}=0$ to $1 / 8$	$\alpha=45^{\circ}$	$f=1 / 8$	$r=1 / 4$	All	-	d, e, j
				$\mathrm{R}=0$ to ${ }^{1 / 8}$	$\alpha=20^{\circ}$	$f=1 / 8$	$r=1 / 4$	F, OH	-	d, e, j
	C-U6	U	U	$\mathrm{R}=0$ to ${ }^{1 / 8}$	$\alpha=45^{\circ}$	$f=1 / 8$	$r=1 / 4$	All	-	d, e, g, j
				$\mathrm{R}=0$ to ${ }^{1 / 8}$	$\alpha=20^{\circ}$	$f=1 / 8$	$r=1 / 4$	F, OH	-	d, e, g, j
$\begin{aligned} & \text { GMAW } \\ & \text { FCAW } \end{aligned}$	B-U6-GF	U	-	$\mathrm{R}=0$ to $0^{1 / 8}$	$\alpha=20^{\circ}$	$f=1 / 8$	$r=1 / 4$	All	Not required	a, d, j
	C-U6-GF	U	U	$\mathrm{R}=0$ to ${ }^{1 / 8}$	$\alpha=20^{\circ}$	$f=1 / 8$	$r=1 / 4$	All	Not required	a, d, g, j

Table 8-2 (continued)	CJP
Prequalified Welded Joints	
Complete-Joint-Penetration Groove Welds	

Table 8-2 (continued) Prequalified Welded Joints Complete-Joint-Penetration Groove Welds	CJP

Table 8-2 (continued) Prequalified Welded Joints	CJP
Wemplete-Joint-Penetration Groove Welds	

Single-J-groove weld T-joint (T) Corner joint (C)								Tolerances		
								As Detailed (see 3.13.1)		$\begin{gathered} \text { As Fit-Up } \\ \text { (see 3.13.1) } \end{gathered}$
								TC-U8a and TC-U8a-GF		
								$\mathrm{R}=+1 / 16,-0$		$+^{1 / 16, ~-~}{ }^{1 / 8}$
		a						$\alpha=+10^{\circ},-0^{\circ}$		$+10^{\circ},-5^{\circ}$
								$\mathrm{f}=+1 / 16,-0$		Not Limited
		i)			I			$\mathrm{r}=+{ }^{1 / 4},-0$		$\pm{ }^{1 / 16}$
					15			TC-U8a-S		
								$\mathrm{R}= \pm 0$		$+1 / 4,-0$
		-R						$\alpha=+10^{\circ},-0^{\circ}$		$+10^{\circ},-5^{\circ}$
								$\mathrm{f}=+0,-1 / 8$		$\pm{ }^{1 / 16}$
								$r=+1 / 4,-0$		$\pm{ }^{1 / 16}$
Welding Process	Joint Designation	Base Metal Thickness ($\mathrm{U}=$ unlimited)		Groove Preparation				Allowed Welding Positions	Gas Shielding for FCAW	Notes
		T_{1}	T_{2}	Root Opening	Groove Angle	$\begin{aligned} & \text { Root } \\ & \text { Face } \end{aligned}$	Bevel Radius			
SMAW	TC-U8a	U	U	$\mathrm{R}=0$ to ${ }^{1 / 8}$	$\alpha=45^{\circ}$	$f=1 / 8$	$r=3 / 8$	All	-	$\begin{gathered} \mathrm{d}, \mathrm{e}, \mathrm{~g}, \\ \mathrm{j}, \mathrm{k} \end{gathered}$
				$\mathrm{R}=0$ to ${ }^{1 / 8}$	$\alpha=30^{\circ}$	$f=1 / 8$	$r=3 / 8$	F, OH	-	$\begin{gathered} \mathrm{d}, \mathrm{e}, \mathrm{~g}, \\ \mathrm{j}, \mathrm{k} \end{gathered}$
GMAW FCAW	TC-U8a-GF	U	U	$\mathrm{R}=0$ to ${ }^{1 / 8}$	$\alpha=30^{\circ}$	$f=1 / 8$	$r=3 / 8$	All	Not required	$\begin{gathered} \mathrm{a}, \mathrm{~d}, \mathrm{~g}, \\ \mathrm{j}, \mathrm{k} \end{gathered}$
SAW	TC-U8a-S	U	U	$\mathrm{R}=0$	$\alpha=45^{\circ}$	$\begin{gathered} f=1 / 4 \\ \text { max. } \end{gathered}$	$r=3 / 8$	F	-	d, g, j, k

[^32]| | | Preq -Join | | | continu Nelde ation | ued)
 d Jo Gro | | Neld | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Square-groove weld (1)
 Butt joint (B) | | | | | | | | | |
| Welding Process | Joint Designation | Base Metal Thickness$\text { (} \mathrm{U}=\text { unlimited })$ | | | ove Preparatio
 Tolera
 As Detailed
 (see 3.12.3) | on
 ances
 As Fit-Up
 (see 3.12.3) | Allowed Welding Positions | Weld Size
 (E) | Notes |
| | B-P1a | 1/8 | - | $\mathrm{R}=0$ to $1 / 16$ | +1/16, -0 | $\pm{ }^{1 / 16}$ | All | $\mathrm{T}_{1}-1 / 32$ | b |
| SMAW | B-P1C | 1/4 max. | - | $\mathrm{R}=\frac{\mathrm{T}_{1}}{2} \mathrm{~min}$. | +1/16, -0 | $\pm{ }^{1 / 16}$ | All | $\frac{\mathrm{T}_{1}}{2}$ | b |
| | B-P1a-GF | 1/8 | - | $\mathrm{R}=0$ to $1 / 16$ | +1/16, -0 | $\pm{ }^{1 / 16}$ | All | $\mathrm{T}_{1}-1 / 32$ | b, e |
| FCAW | B-P1c-GF | 1/4 max. | - | $\mathrm{R}=\frac{\mathrm{T}_{1}}{2} \mathrm{~min}$. | $+1 / 16,-0$ | $\pm 1 / 16$ | All | $\frac{\mathrm{T}_{1}}{2}$ | b, e |
| Square-g Butt join $E_{1}+E_{2} n$ | roove weld
 (B)
 must not excee | $\frac{3 T_{1}}{4}$ | | | $\left\{\begin{array}{l} \begin{array}{l} 1 \\ T_{1} \\ 1 \end{array} \end{array}\right.$ | $\begin{array}{c\|c} \left(E_{2}\right) & \\ \hline\left(E_{1}\right) & R \end{array}$ | | | |
| Welding Process | Joint Designation | Base Metal $(U=\text { unlir }$
 T_{1} | ess | Root Opening | oove Preparatio
 Toler
 As Detailed
 (see 3.12.3) | on
 Asces Fit-Up
 (see 3.12.3) | Allowed
 Welding
 Positions | Total Weld Size $\left(E_{1}+E_{2}\right)$ | Notes |
| SMAW | B-P1b | $1 / 4$ max. | - | $\mathrm{R}=\frac{\mathrm{T}_{1}}{2}$ | +1/16, -0 | $\pm 1 / 16$ | All | $\frac{3 T_{1}}{4}$ | |
| GMAW
 FCAW | B-P1b-GF | $1 / 4$ max. | - | $\mathrm{R}=\frac{\mathrm{T}_{1}}{2}$ | +1/16, -0 | $\pm{ }^{1 / 16}$ | All | $\frac{3 T_{1}}{4}$ | e |

	artia	Preq -Join		le 8-2 (fied enetr	contin Veld ation	ued) ed Jo Gro	ints ve	Veld	
Double-V-groove weld (3) Butt joint (B)									
Welding Process	JointDesignation	Base Metal Thickness ($\mathrm{U}=$ unlimited)		Groove Preparation			Allowed Welding Positions	Total Weld Size $\left(E_{1}+E_{2}\right)$	Notes
				Root Opening Root Face Groove Angle	Tolerances				
		T_{1}	T_{2}		As Detailed (see 3.12.3)	$\begin{gathered} \text { As Fit-Up } \\ \text { (see 3.12.3) } \end{gathered}$			
SMAW	B-P3	$1 / 2 \mathrm{~min}$.	-	$\begin{gathered} \mathrm{R}=0 \\ \mathrm{f}=1 / 8 \mathrm{~min} . \\ \alpha=60^{\circ} \end{gathered}$	$\begin{gathered} +^{1} / 16,-0 \\ +U,-0 \\ +10^{\circ},-0^{\circ} \end{gathered}$	$\begin{gathered} +^{1 / 8,},-1 / 16 \\ \pm 1 / 16 \\ +10^{\circ},-5^{\circ} \end{gathered}$	All	$\mathrm{S}_{1}+\mathrm{S}_{2}$	e, f, i, j
GMAW FCAW	B-P3-GF	$1 / 2 \mathrm{~min}$.	-	$\begin{gathered} R=0 \\ f=1 / 8 \mathrm{~min} . \\ \alpha=60^{\circ} \end{gathered}$	$\begin{gathered} +^{1} / 16,-0 \\ +U,-0 \\ +10^{\circ},-0^{\circ} \end{gathered}$	$+1 / 8,-1 / 16$ $\pm 1 / 16$ $+10^{\circ},-5^{\circ}$	All	$\mathrm{S}_{1}+\mathrm{S}_{2}$	$\mathrm{a}, \mathrm{f}, \mathrm{i}, \mathrm{j}$
SAW	B-P3-S	$3 / 4 \mathrm{~min}$.	-	$\begin{gathered} R=0 \\ f=1 / 4 \mathrm{~min} . \\ \alpha=60^{\circ} \end{gathered}$	$\begin{gathered} +0 \\ +U,-0 \\ +10^{\circ},-0^{\circ} \end{gathered}$	$\begin{gathered} +^{1 / 16},-0 \\ \pm 1 / 16 \\ +1^{\circ},-5^{\circ} \end{gathered}$	F	$\mathrm{S}_{1}+\mathrm{S}_{2}$	f, i, j

Table 8-2 (continued)
 Prequalified Welded Joints Partial-Joint-Penetration Groove Welds

Welding Process	Joint Designation	Base Metal Thickness ($\mathrm{U}=$ unlimited)		Groove Preparation			Allowed Welding Positions	Total Weld Size (E)	Notes
				Root Opening Root Face Groove Angle	Tolerances				
		T_{1}	T_{2}		As Detailed (see 3.12.3)	$\begin{array}{\|c\|} \hline \text { As Fit-Up } \\ \text { (see 3.12.3) } \end{array}$			
SMAW	BTC-P4	U	U	$\begin{gathered} R=0 \\ f=1 / 8 \mathrm{~min} . \\ \alpha=45^{\circ} \end{gathered}$	$\begin{gathered} +1 / 16,-0 \\ +U,-0 \\ +10^{\circ},-0^{\circ} \end{gathered}$	$\begin{gathered} +^{1 / 8,},-^{1 / 16} \\ \pm 1 / 16 \\ +1^{\circ},-5^{\circ} \end{gathered}$	All	S-1/8	$\begin{aligned} & \mathrm{b}, \mathrm{e}, \mathrm{f}, \\ & \mathrm{~g}, \mathrm{j}, \mathrm{k} \end{aligned}$
				$\mathrm{R}=0$	$+{ }^{1 / 16,-0}$	$+^{1 / 8, ~-~}-1_{1 / 16}$	F, H	S	
FCAW	BTC-P4-GF	$1 / 4 \mathrm{~min}$.	U	$\begin{gathered} \mathrm{f}=1 / 8 \mathrm{~min} . \\ \alpha=45^{\circ} \end{gathered}$	$\begin{gathered} +U,-0 \\ +10^{\circ},-0^{\circ} \end{gathered}$	$\begin{gathered} \pm 1 / 16 \\ +10^{\circ},-5^{\circ} \end{gathered}$	V, OH	S-1/8	$\begin{aligned} & \mathrm{a}, \mathrm{~b}, \mathrm{f}, \\ & \mathrm{~g}, \mathrm{j}, \mathrm{k} \end{aligned}$
SAW	TC-P4-S	7/16 min.	U	$\begin{gathered} R=0 \\ f=1 / 4 \mathrm{~min} . \\ \alpha=60^{\circ} \end{gathered}$	$\begin{gathered} \pm 0 \\ +U,-0 \\ +10^{\circ},-0^{\circ} \end{gathered}$	$+1 / 16,-0$ $\pm 1 / 16$ $+10^{\circ},-5^{\circ}$	F	S	$\begin{gathered} \mathrm{b}, \mathrm{f}, \mathrm{~g}, \\ \mathrm{j}, \mathrm{k} \end{gathered}$

Table 8-2 (continued) Prequalified Welded Joints									
Prequalified Welded Joints Partial-Joint-Penetration Groove Welds									
Double-U-groove weld (7)									
Butt join	(B)					$\begin{aligned} & \mathrm{s}_{2}\left(\mathrm{E}_{2}\right) \\ & \frac{\mathrm{s}_{1}\left(\mathrm{E}_{1}\right)}{\frac{T_{1}}{\uparrow}} \end{aligned}$			
		Base Metal		Gro	oove Preparation				
Welding	Joint	($\mathrm{U}=$ unlim		Root Opening	Toler	ances		Total	
Process	Designation	T_{1}	T_{2}	Bevel Radius Groove Angle	As Detailed (see 3.12.3)	$\begin{array}{c\|} \hline \text { As Fit-Up } \\ \text { (see 3.12.3) } \end{array}$			
SMAW	B-P7	$1 / 2 \mathrm{~min}$.	-	$\begin{gathered} R=0 \\ f=1 / 8 \mathrm{~min} . \\ r=1 / 4 \\ \alpha=45^{\circ} \end{gathered}$	$\begin{gathered} +1 / 16,-0 \\ +U,-0 \\ +1 / 4,-0 \\ +10^{0},-0^{\circ} \end{gathered}$	$\begin{gathered} +1 / 8,--^{1 / 16} \\ \pm^{1 / 16} \\ \pm^{1 / 16} \\ +10^{\circ},-5^{\circ} \end{gathered}$	All	$\mathrm{S}_{1}+\mathrm{S}_{2}$	e, f, i, j
$\begin{aligned} & \text { GMAW } \\ & \text { FCAW } \end{aligned}$	B-P7-GF	$1 / 2 \mathrm{~min}$.	-	$\begin{gathered} R=0 \\ f=1 / 8 \mathrm{~min} . \\ r=1 / 4 \\ \alpha=20^{\circ} \end{gathered}$	$\begin{gathered} +1 / 16,-0 \\ +U,-0 \\ +1 / 4,-0 \\ +10^{\circ},-0^{\circ} \end{gathered}$	$\begin{gathered} +^{1 / 8},--^{1} / 16 \\ \pm^{1 / 16} \\ \pm^{1 / 16} \\ +0^{\circ},-5^{\circ} \end{gathered}$	All	$\mathrm{S}_{1}+\mathrm{S}_{2}$	a, f, i, j
SAW	B-P7-S	$3 / 4 \mathrm{~min}$.	-	$\begin{gathered} R=0 \\ f=1 / 4 \min . \\ r=1 / 4 \\ \alpha=20^{\circ} \end{gathered}$	$\begin{gathered} \pm 0 \\ +U,-0 \\ +1 / 4,-0 \\ +10^{\circ},-0^{\circ} \end{gathered}$	$\begin{gathered} +^{1 / 116,-0} \\ \pm 1 / 16 \\ \pm^{1 / 16} \\ +0^{\circ},-5^{\circ} \end{gathered}$	F	$\mathrm{S}_{1}+\mathrm{S}_{2}$	f, i, j

Table 8-2 (continued)
 Prequalified Welded Joints Partial-Joint-Penetration Groove Welds

Single-J-groove weld (8) Butt joint (B)
T-joint (T)
Corner joint (C)

${ }^{*} \alpha_{o c}=$ Outside corner groove angle

${ }^{* *} \alpha_{\text {ic }}=$ Inside corner groove angle.

Welding Process	Joint Designation	Base Metal Thickness ($\mathrm{U}=$ unlimited)		Groove Preparation			Allowed Welding Positions	Total Weld Size (E)	Notes
				Root Opening Root Face Bevel Radius Groove Angle	Tolerances				
		T_{1}	T_{2}		As Detailed (see 3.12.3)	$\begin{gathered} \text { As Fit-Up } \\ \text { (see 3.12.3) } \end{gathered}$			
SMAW	B-P8	1/4 min.	-	$\begin{gathered} R=0 \\ f=1 / 8 \mathrm{~min} . \\ r=3 / 8 \\ \alpha=30^{\circ} \end{gathered}$	$\begin{gathered} +1 / 16,-0 \\ +U,-0 \\ +1 / 4,-0 \\ +10^{\circ},-0^{\circ} \end{gathered}$	$\begin{gathered} +1 / 8,--^{1 / 166} \\ \pm^{1 / 16} \\ \pm^{1 / 16} \\ +10^{\circ},-5^{\circ} \end{gathered}$	All	S	$\begin{gathered} \mathrm{e}, \mathrm{f}, \mathrm{~g}, \\ \mathrm{j}, \mathrm{k} \end{gathered}$
	TC-P8	1/4 min.	U	$\begin{gathered} R=0 \\ f=1 / 8 \mathrm{~min} . \\ r=3 / 8 \\ \alpha_{0 c}=30^{\circ *} \\ \alpha_{i c}=45^{\circ * *} \end{gathered}$	$\begin{gathered} +1 / 16,-0 \\ +U,-0 \\ +1 / 4,-0 \\ +10^{\circ},-0^{\circ} \\ +10^{\circ},-0^{\circ} \end{gathered}$	$\begin{gathered} +^{1 / 8,},-^{1 / 16} \\ \pm 1 / 16 \\ \pm^{1 / 16} \\ +10^{\circ},-5^{\circ} \\ +10^{\circ},-5^{\circ} \end{gathered}$	All	S	$\begin{gathered} \mathrm{e}, \mathrm{f}, \mathrm{~g}, \\ \mathrm{j}, \mathrm{k} \end{gathered}$
$\begin{aligned} & \text { GMAW } \\ & \text { FCAW } \end{aligned}$	B-P8-GF	$1 / 4 \mathrm{~min}$.	-	$\begin{gathered} R=0 \\ f=1 / 8 \mathrm{~min} . \\ r=3 / 8 \\ \alpha=30^{\circ} \end{gathered}$	$\begin{gathered} +1 / 16,-0 \\ +U,-0 \\ +1 / 4,-0 \\ +10^{\circ},-0^{\circ} \end{gathered}$	$\begin{gathered} +1 / 8,--^{1 / 16} \\ \pm^{1 / 16} \\ \pm^{1 / 16} \\ +10^{\circ},-5^{\circ} \end{gathered}$	All	S	$\begin{gathered} \mathrm{a}, \mathrm{f}, \mathrm{~g}, \\ \mathrm{j}, \mathrm{k} \end{gathered}$
	TC-P8-GF	1/4 min.	U	$\begin{gathered} R=0 \\ f=1 / 8 \mathrm{~min} . \\ r=3 / 8 \\ \alpha_{0 c}=30^{\circ *} \\ \alpha_{i c}=45^{\circ * *} \end{gathered}$	$\begin{gathered} +1 / 16,-0 \\ +\mathrm{U},-0 \\ +1 / 4,-0 \\ +10^{\circ},-0^{\circ} \\ +10^{\circ},-0^{\circ} \end{gathered}$	$\begin{gathered} +^{1 / 8,},-^{1 / 1 / 16} \\ \pm 1 / 16 \\ \pm^{1 / 16} \\ +10^{\circ},-5^{\circ} \\ +10^{\circ},-5^{\circ} \end{gathered}$	All	S	$\begin{gathered} \mathrm{a}, \mathrm{f}, \mathrm{~g}, \\ \mathrm{j}, \mathrm{k} \end{gathered}$
SAW	B-P8-S	7/16 min.	-	$\begin{gathered} R=0 \\ f=1 / 4 \mathrm{~min} . \\ r=1 / 2 \\ \alpha=20^{\circ} \end{gathered}$	$\begin{gathered} \pm 0 \\ +U,-0 \\ +^{1 / 4},-0 \\ +10^{\circ},-0^{\circ} \end{gathered}$	$\begin{gathered} +^{1 / 116,-0} \\ \pm^{1 / 16} \\ \pm^{1 / 16} \\ +10^{\circ},-5^{\circ} \end{gathered}$	F	S	$\begin{gathered} \mathrm{f}, \mathrm{~g}, \mathrm{j}, \\ \mathrm{k} \end{gathered}$
	TC-P8-S	7/16 min.	U	$\begin{gathered} R=0 \\ f=1 / 4 \mathrm{~min} . \\ r=1 / 2 \\ \alpha_{0 c}=20^{\circ *} \\ \alpha_{i c}=45^{\circ * *} \end{gathered}$	$\begin{gathered} \pm 0 \\ +U,-0 \\ +^{1 / 4},-0 \\ +10^{\circ},-0^{\circ} \\ +10^{\circ},-0^{\circ} \end{gathered}$	$\begin{gathered} +^{1 / 116,-0} \\ \pm^{1 / 16} \\ \pm^{1 / 16} \\ +10^{\circ},-5^{\circ} \\ +10^{\circ},-5^{\circ} \end{gathered}$	F	S	$\begin{gathered} \mathrm{f}, \mathrm{~g}, \mathrm{j}, \\ \mathrm{k} \end{gathered}$

[^33]| | | | | $8-2$ | ontin | led) | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | $\begin{aligned} & \text { Preq } \\ & \text { I-Joit } \end{aligned}$ | | fied enetr | Neld ation | | ints ve | | |
| Double-
 Butt join
 T-joint (
 Corner j $\begin{aligned} & * \\ &{ }^{*} \alpha_{\text {oc }}=0 \\ &{ }^{* *} \alpha_{\text {ic }}=\ln \end{aligned}$ | groove weld
 (B)
 nt (C)
 side corner groo de corner groov | angle.
 ngle. | | | | | | | |
| Welding Process | $\begin{gathered} \text { Joint } \\ \text { Designation } \end{gathered}$ | Base Metal Thickness ($\mathrm{U}=$ unlimited) | | Groove Preparation | | | Allowed
 Welding
 Positions | Total Weld Size $\left(E_{1}+E_{2}\right)$ | Notes |
| | | | | Root Opening Root Face Bevel Radius Groove Angle | Tolerances | | | | |
| | | T_{1} | T_{2} | | As Detailed (see 3.12.3) | $\begin{array}{\|c\|} \hline \text { As Fit-Up } \\ \text { (see 3.12.3) } \end{array}$ | | | |
| SMAW | B-P9 | $1 / 2 \mathrm{~min}$. | - | $\begin{gathered} R=0 \\ f=1 / 8 \mathrm{~min} . \\ r=3 / 8 \\ \alpha=30^{\circ} \end{gathered}$ | $\begin{gathered} \hline+^{1} / 16,-0 \\ +U,-0 \\ +^{1} / 4,-0 \\ +10^{\circ},-0^{\circ} \end{gathered}$ | $\begin{gathered} +1 / 8,--^{1 / 16} \\ \pm^{1 / 16} \\ \pm^{1 / 16} \\ +10^{\circ},-5^{\circ} \end{gathered}$ | All | $\mathrm{S}_{1}+\mathrm{S}_{2}$ | $\begin{aligned} & \mathrm{e}, \mathrm{f}, \mathrm{~g}, \\ & \mathrm{i}, \mathrm{j}, \mathrm{k} \end{aligned}$ |
| | TC-P9 | $1 / 2 \mathrm{~min}$. | U | $\begin{gathered} R=0 \\ f=1 / 8 \mathrm{~min} . \\ r=3 / 8 \\ \alpha_{0 c}=30^{\circ *} \\ \alpha_{\text {ic }}=45^{\circ * *} \end{gathered}$ | $\begin{gathered} +1 / 16,-0 \\ +U,-0 \\ +1 / 4,-0 \\ +10^{\circ},-0^{\circ} \\ +10^{\circ},-0^{\circ} \end{gathered}$ | $\begin{gathered} +^{1 / 8,},-^{1 / 1 / 16} \\ \pm 1 / 16 \\ \pm^{1 / 16} \\ +10^{\circ},-5^{\circ} \\ +10^{\circ},-5^{\circ} \end{gathered}$ | All | $\mathrm{S}_{1}+\mathrm{S}_{2}$ | $\begin{aligned} & \mathrm{e}, \mathrm{f}, \mathrm{~g}, \\ & \mathrm{i}, \mathrm{j}, \mathrm{k} \end{aligned}$ |
| $\begin{aligned} & \text { GMAW } \\ & \text { FCAW } \end{aligned}$ | B-P9-GF | $1 / 2 \mathrm{~min}$. | - | $\begin{gathered} R=0 \\ f=1 / 8 \mathrm{~min} . \\ r=3 / 8 \\ \alpha=30^{\circ} \end{gathered}$ | $\begin{gathered} +1 / 16,-0 \\ +U,-0 \\ +1 / 4,-0 \\ +10^{\circ},-0^{\circ} \end{gathered}$ | $\begin{gathered} \hline+^{1 / 8,},--^{1 / 16} \\ \pm 1 / 16 \\ \pm^{1 / 16} \\ +10^{\circ},-5^{\circ} \end{gathered}$ | All | $\mathrm{S}_{1}+\mathrm{S}_{2}$ | $\begin{aligned} & \mathrm{a}, \mathrm{f}, \mathrm{~g}, \\ & \mathrm{i}, \mathrm{j}, \mathrm{k} \end{aligned}$ |
| | TC-P9-GF | $1 / 2 \mathrm{~min}$. | U | $\begin{gathered} R=0 \\ f=1 / 8 \mathrm{~min} . \\ r=3 / 8 \\ \alpha_{0 c}=30^{\circ *} \\ \alpha_{i c}=45^{\circ * *} \end{gathered}$ | $\begin{array}{\|c\|} \hline \pm 0 \\ +U,-0 \\ +1 / 4,-0 \\ +10^{\circ},-0^{\circ} \\ +10^{\circ},-0^{\circ} \end{array}$ | $\begin{gathered} +^{1 / 166,-0} \\ \pm 1 / 16 \\ \pm^{1 / 16} \\ +10^{\circ},-5^{\circ} \\ +10^{\circ},-5^{\circ} \end{gathered}$ | All | $\mathrm{S}_{1}+\mathrm{S}_{2}$ | $\begin{gathered} \mathrm{a}, \mathrm{f}, \mathrm{~g}, \\ \mathrm{i}, \mathrm{j}, \mathrm{k} \end{gathered}$ |
| SAW | B-P9-S | $3 / 4 \mathrm{~min}$. | - | $\begin{gathered} R=0 \\ f=1 / 4 \mathrm{~min} . \\ r=1 / 2 \\ \alpha=20^{\circ} \end{gathered}$ | $\begin{array}{\|c\|} \hline \pm 0 \\ +U,-0 \\ +1 / 4,-0 \\ +10^{\circ},-0^{\circ} \\ \hline \end{array}$ | $\begin{gathered} ++^{1 / 16,-0} \\ \pm^{1 / 16} \\ \pm^{1 / 16} \\ +10^{\circ},-5^{\circ} \end{gathered}$ | F | $\mathrm{S}_{1}+\mathrm{S}_{2}$ | $\begin{gathered} \mathrm{f}, \mathrm{~g}, \mathrm{i}, \\ \mathrm{j}, \mathrm{k} \end{gathered}$ |
| | TC-P9-S | $3 / 4 \mathrm{~min}$. | U | $\begin{gathered} R=0 \\ f=1 / 4 \mathrm{~min} . \\ r=1 / 2 \\ \alpha_{0 c}=20^{\circ *} \\ \alpha_{\text {ic }}=45^{\circ * *} \end{gathered}$ | ± 0 $+U,-0$ $+1 / 4,-0$ $+10^{\circ},-0^{\circ}$ $+10^{\circ},-0^{\circ}$ | $\begin{gathered} +^{1 / 166},-0 \\ \pm^{1 / 16} \\ \pm^{1 / 16} \\ +10^{\circ},-5^{\circ} \\ +10^{\circ},-5^{\circ} \end{gathered}$ | F | $\mathrm{S}_{1}+\mathrm{S}_{2}$ | $\begin{gathered} \mathrm{f}, \mathrm{~g}, \mathrm{i}, \\ \mathrm{j}, \mathrm{k} \end{gathered}$ |

[^34]| | | | | | | continu Velde Groov | ued)
 d Jo
 e We | ints ds | FL | RE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Flare-bevel-groove weld (10)
 Butt joint (B)
 T-joint (T) Corner joint (C) | | | | | | | | | | |
| Welding Process | Joint Designation | Base Metal Thickness ($\mathrm{U}=$ unlimited) | | | Groove Preparation | | | Allowed
 Welding
 Positions | Total Weld Size (E) | Notes |
| | | T_{1} | T_{2} | T3 | Root Opening Root Face Bend Radius | As Detailed (see 3.12.3) | $\begin{gathered} \hline \text { As Fit-Up } \\ (\text { see } 3.12 .3) \end{gathered}$ | | | |
| SMAW
 FCAW-S | BTC-P10 | $\begin{aligned} & 3 / 16 \\ & \text { min. } \end{aligned}$ | U | $\begin{gathered} \mathrm{T}_{1} \\ \text { min. } \end{gathered}$ | $\begin{gathered} R=0 \\ f=3 / 16 \mathrm{~min} . \\ r=\frac{3 T_{1}}{2} \mathrm{~min} . \end{gathered}$ | $\begin{gathered} +1 / 16,-0 \\ +U,-0 \\ +U,-0 \end{gathered}$ | $\begin{gathered} +1 / 8,--^{1 / 16} \\ +U,-1^{1 / 16} \\ +U,-0 \end{gathered}$ | All | 5/16 r | e, g, j, i |
| GMAW
 FCAW-G | BTC-P10-GF | $\begin{gathered} 3 / 16 \\ \mathrm{~min} . \end{gathered}$ | U | $\begin{gathered} \mathrm{T}_{1} \\ \text { min. } \end{gathered}$ | $\begin{gathered} \mathrm{R}=0 \\ \mathrm{f}=3 / 16 \mathrm{~min} . \\ \mathrm{r}=\frac{3 \mathrm{~T}_{1}}{2} \mathrm{~min} . \end{gathered}$ | $\begin{gathered} +1 / 16,-0 \\ +U,-0 \\ +U,-0 \end{gathered}$ | $\begin{gathered} +^{1 / 8,-1 / 1 / 16} \\ +U,-1^{1 / 16} \\ +U,-0 \end{gathered}$ | All | 5/8r | $\begin{gathered} \mathrm{a}, \mathrm{~g}, \mathrm{j}, \\ \mathrm{I}, \mathrm{~m} \end{gathered}$ |
| SAW | B-P10-S | $\begin{gathered} 1 / 2 \\ \text { min. } \end{gathered}$ | N/A | $\begin{gathered} 1 / 2 \\ \text { min. } \end{gathered}$ | $\begin{gathered} R=0 \\ f=1 / 2 \mathrm{~min} . \\ r=\frac{3 T_{1}}{2} \mathrm{~min} . \end{gathered}$ | $\begin{gathered} \pm 0 \\ +U,-0 \\ +U,-0 \end{gathered}$ | $\begin{aligned} & +1 / 16,-0 \\ & +U,-1 / 16 \\ & +U,-0 \end{aligned}$ | F | 5/16 r | g, j, I, m |

Reprinted from AWS D1.1/D1.1M:2015 with permission from the American Welding Society (AWS)

Reprinted from AWS D1.1/D1.1M:2015 with permission from the American Welding Society (AWS).

Table 8-3		
Electrode Strength Coefficient, C1		
Electrode	FExx 2 (ksi)	$\boldsymbol{c}_{\mathbf{1}}$
E60	60	0.857
E70	70	1.00
E80	80	1.03
E90	90	1.16
E110	100	1.21

Table Coe rically																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with$R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$																
LRFD								ASD								
$C_{\text {min }}=\frac{P_{u}}{\phi C_{1} D l} \quad D_{\text {min }}=\frac{P_{u}}{\phi C C_{1} l} \quad l_{\text {min }}=\frac{P_{u}}{\phi C C_{1} D}$								$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l} \quad D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l} \quad l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$								
where $P=$ required force, P_{u} or P_{a}, kips $D=$ number of sixteenths-of-an-inch in the fillet weld size $l=$ characteristic length of weld group, in. $a=e_{X} / l$ $e_{X}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in. $C=$ coefficient tabulated below $C_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes)																
3 (${ }^{\text {a }}$																
a	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0.00	3.96	3.96	3.96	3.96	3.96	3.96	3.96	3.96	3.96	3.96	3.96	3.96	3.96	3.96	3.96	3.96
0.10	3.79	3.79	3.78	3.78	3.77	3.76	3.75	3.74	3.73	3.72	3.71	3.69	3.67	3.65	3.64	3.62
0.15	3.68	3.68	3.67	3.66	3.65	3.64	3.63	3.62	3.61	3.61	3.60	3.58	3.57	3.55	3.54	3.53
0.20	3.51	3.51	3.51	3.50	3.50	3.49	3.49	3.48	3.48	3.47	3.47	3.46	3.46	3.45	3.44	3.43
0.25	3.31	3.31	3.31	3.31	3.31	3.32	3.32	3.32	3.33	3.33	3.33	3.34	3.34	3.34	3.34	3.34
0.30	3.09	3.09	3.10	3.11	3.13	3.14	3.15	3.16	3.17	3.18	3.19	3.21	3.22	3.23	3.24	3.24
0.40	2.68	2.68	2.69	2.72	2.75	2.79	2.82	2.85	2.88	2.90	2.93	2.96	3.00	3.02	3.04	3.06
0.50	2.32	2.32	2.35	2.38	2.43	2.48	2.53	2.57	2.61	2.65	2.68	2.74	2.79	2.83	2.86	2.89
0.60	2.03	2.03	2.06	2.10	2.16	2.22	2.27	2.33	2.38	2.42	2.46	2.54	2.60	2.65	2.69	2.72
0.70	1.79	1.80	1.82	1.87	1.93	2.00	2.06	2.12	2.18	2.23	2.27	2.36	2.42	2.48	2.53	2.58
0.80	1.60	1.60	1.63	1.68	1.75	1.81	1.88	1.94	2.00	2.06	2.11	2.20	2.27	2.34	2.39	2.44
0.90	1.44	1.45	1.48	1.53	1.59	1.66	1.73	1.79	1.85	1.91	1.96	2.05	2.14	2.21	2.27	2.32
1.0	1.31	1.32	1.35	1.40	1.46	1.53	1.60	1.66	1.72	1.78	1.83	1.93	2.01	2.09	2.15	2.21
1.2	1.10	1.11	1.14	1.19	1.25	1.32	1.38	1.45	1.51	1.56	1.62	1.72	1.80	1.88	1.95	2.01
1.4	0.954	0.961	0.993	1.04	1.10	1.16	1.22	1.28	1.34	1.39	1.45	1.54	1.63	1.71	1.78	1.84
1.6	0.839	0.847	0.876	0.919	0.972	1.03	1.09	1.15	1.20	1.25	1.31	1.40	1.49	1.57	1.64	1.70
1.8	0.748	0.756	0.783	0.824	0.872	0.926	0.981	1.04	1.09	1.14	1.19	1.28	1.37	1.45	1.52	1.58
2.0	0.675	0.683	0.708	0.746	0.791	0.841	0.893	0.945	0.995	1.04	1.09	1.18	1.26	1.34	1.41	1.47
2.2	0.615	0.622	0.646	0.681	0.723	0.770	0.819	0.868	0.916	0.963	1.01	1.10	1.18	1.25	1.32	1.38
2.4	0.565	0.572	0.594	0.626	0.666	0.710	0.756	0.802	0.848	0.893	0.937	1.02	1.10	1.17	1.24	1.30
2.6	0.522	0.529	0.550	0.580	0.617	0.658	0.702	0.746	0.789	0.832	0.874	0.954	1.03	1.10	1.16	1.22
2.8	0.485	0.491	0.511	0.540	0.575	0.614	0.655	0.697	0.738	0.779	0.819	0.896	0.969	1.04	1.10	1.16
3.0	0.453	0.459	0.478	0.505	0.538	0.574	0.614	0.653	0.693	0.732	0.771	0.845	0.915	0.980	1.04	1.10
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.																

Table 8-4 (continued) Coefficients, C, rically Loaded Weld Groups																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with $R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$																
LRFD								ASD								
	¢	$D l$	m	ϕ	l	${ }_{n}=\frac{}{\phi}$	$\frac{P_{u}}{\phi C C_{1} D}$	$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l} \quad D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l} \quad l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$								
where$P=$ required force, P_{u} or P_{a}, kips$D=$ number of sixteenths-of-an-inch in the fillet weld size$l=$ characteristic length of weld group, in.$a=e_{x} l$$e_{x}=$ horizontal component of eccentricity of Pwith respect to centroid of weld group, in.$C=$ coefficient tabulated below of $C_{1}=$ electrode strength coefficient from Table $8-3$ (1.0 for E70XX electrodes)								Special case (load not in plane of weld group). Use C-values for $k=0$								
	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0.00	4.37	4.37	4.37	4.37	4.37	4.37	4.37	4.37	4.37	4.37	4.37	4.37	4.37	4.37	4.37	4.37
0.10	4.05	4.05	4.05	4.05	4.06	4.06	4.07	4.08	4.08	4.08	4.08	4.08	4.08	4.08	4.07	4.06
0.15	3.83	3.83	3.83	3.84	3.84	3.84	3.85	3.85	3.86	3.87	3.87	3.89	3.91	3.92	3.92	3.93
0.20	3.64	3.64	3.64	3.65	3.65	3.66	3.67	3.68	3.69	3.70	3.71	3.72	3.74	3.76	3.77	3.79
0.25	3.43	3.43	3.43	3.45	3.46	3.48	3.50	3.51	3.53	3.54	3.56	3.58	3.60	3.62	3.64	3.66
0.30	3.22	3.22	3.23	3.24	3.27	3.30	3.32	3.35	3.37	3.39	3.41	3.45	3.48	3.50	3.52	3.54
0.40	2.81	2.81	2.83	2.86	2.90	2.94	2.99	3.03	3.07	3.11	3.14	3.19	3.24	3.28	3.31	3.34
0.50	2.46	2.46	2.49	2.53	2.58	2.64	2.69	2.75	2.80	2.85	2.89	2.96	3.02	3.08	3.12	3.16
0.60	2.17	2.17	2.20	2.25	2.31	2.37	2.44	2.50	2.56	2.62	2.67	2.75	2.83	2.89	2.94	2.99
0.70	1.93	1.93	1.96	2.02	2.08	2.15	2.22	2.29	2.36	2.42	2.47	2.57	2.65	2.72	2.78	2.84
0.80	1.73	1.74	1.77	1.82	1.89	1.96	2.03	2.11	2.18	2.24	2.30	2.40	2.49	2.57	2.64	2.69
0.90	1.57	1.57	1.61	1.66	1.73	1.80	1.88	1.95	2.02	2.08	2.14	2.25	2.34	2.43	2.50	2.56
1.0	1.43	1.44	1.47	1.52	1.59	1.66	1.74	1.81	1.88	1.95	2.01	2.12	2.22	2.30	2.38	2.44
1.2	1.21	1.22	1.25	1.31	1.37	1.44	1.51	1.59	1.65	1.72	1.78	1.89	1.99	2.08	2.16	2.23
1.4	1.05	1.06	1.09	1.14	1.20	1.27	1.34	1.41	1.47	1.53	1.59	1.71	1.81	1.90	1.98	2.05
1.6	0.926	0.934	0.966	1.01	1.07	1.13	1.20	1.26	1.33	1.39	1.44	1.55	1.65	1.74	1.82	1.90
1.8	0.827	0.835	0.865	0.909	0.962	1.02	1.08	1.14	1.20	1.26	1.32	1.42	1.52	1.61	1.69	1.76
2.0	0.747	0.755	0.783	0.824	0.874	0.929	0.987	1.04	1.10	1.16	1.21	1.31	1.41	1.49	1.57	1.64
2.2	0.681	0.689	0.715	0.754	0.800	0.852	0.906	0.961	1.01	1.07	1.12	1.22	1.31	1.39	1.47	1.54
2.4	0.626	0.634	0.658	0.694	0.737	0.786	0.837	0.889	0.940	0.990	1.04	1.13	1.22	1.30	1.38	1.45
2.6	0.579	0.586	0.609	0.643	0.684	0.729	0.778	0.827	0.875	0.924	0.971	1.06	1.15	1.23	1.30	1.37
2.8	0.538	0.545	0.567	0.599	0.637	0.680	0.726	0.773	0.819	0.865	0.910	0.997	1.08	1.16	1.23	1.30
3.0	0.503	0.510	0.530	0.560	0.596	0.637	0.681	0.725	5.769	0.813	0.856	0.940	1.02	1.09	1.16	1.23
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.																

Table 8-4 (continued) Coefficients, C, rically Loaded Weld Groups																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with $R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$																
LRFD								ASD								
	¢	Dl	mi	ϕ	l	$l_{\text {min }}=\frac{}{\phi}$	$\frac{P_{u}}{\phi C C_{1} D}$	$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l} \quad D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l} \quad l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$								
where$P=$ required force, P_{u} or P_{a}, , kips$D=$ number of sixteenths-of-an-inch in the fillet weld size$l=$ characteristic length of weld group, in.$a=e_{x} / l$$e_{x}=$ horizontal component of eccentricity of Pwith respect to centroid of weld group, in.$C=$ coefficient tabulated below$C_{1}=$ electrode strength coefficient from Table 8-3(1.0 for E70XX electrodes)								Special case (load not in plane of weld group). Use C-values for $k=0$								
	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0.00	4.82	4.82	4.82	4.82	4.82	4.82	4.82	4.82	4.82	4.82	4.82	4.82	4.82	4.82	4.82	4.82
0.10	4.49	4.49	4.50	4.51	4.53	4.55	4.57	4.59	4.61	4.62	4.63	4.66	4.67	4.68	4.69	4.69
0.15	4.18	4.18	4.20	4.23	4.26	4.30	4.34	4.37	4.40	4.43	4.46	4.50	4.54	4.57	4.60	4.61
0.20	3.92	3.92	3.94	3.96	3.99	4.03	4.08	4.13	4.18	4.22	4.26	4.33	4.38	4.43	4.47	4.50
0.25	3.70	3.70	3.71	3.74	3.77	3.81	3.86	3.91	3.96	4.01	4.06	4.14	4.21	4.27	4.33	4.37
0.30	3.49	3.49	3.51	3.54	3.57	3.62	3.67	3.72	3.77	3.81	3.86	3.96	4.04	4.12	4.18	4.23
0.40	3.10	3.10	3.12	3.16	3.21	3.27	3.33	3.39	3.45	3.50	3.55	3.64	3.73	3.82	3.90	3.96
0.50	2.75	2.76	2.79	2.83	2.89	2.96	3.03	3.10	3.17	3.24	3.29	3.39	3.48	3.56	3.64	3.72
0.60	2.46	2.47	2.50	2.55	2.62	2.70	2.77	2.85	2.93	3.00	3.06	3.17	3.27	3.36	3.43	3.50
0.70	2.21	2.22	2.26	2.31	2.39	2.47	2.55	2.63	2.71	2.79	2.85	2.98	3.08	3.17	3.25	3.33
0.80	2.01	2.01	2.05	2.11	2.19	2.27	2.35	2.44	2.52	2.60	2.67	2.80	2.91	3.01	3.09	3.17
0.90	1.83	1.84	1.88	1.94	2.01	2.10	2.18	2.27	2.35	2.43	2.51	2.64	2.75	2.85	2.95	3.03
1.0	1.68	1.69	1.73	1.79	1.87	1.95	2.04	2.12	2.20	2.28	2.36	2.49	2.61	2.72	2.81	2.89
1.2	1.44	1.45	1.49	1.55	1.62	1.70	1.79	1.87	1.95	2.03	2.11	2.24	2.36	2.47	2.57	2.66
1.4	1.25	1.26	1.30	1.36	1.43	1.51	1.59	1.67	1.75	1.83	1.90	2.03	2.15	2.26	2.36	2.45
1.6	1.11	1.12	1.16	1.21	1.28	1.35	1.43	1.51	1.58	1.66	1.73	1.86	1.98	2.09	2.19	2.28
1.8	0.996	1.01	1.04	1.09	1.15	1.22	1.30	1.37	1.44	1.51	1.58	1.71	1.82	1.93	2.03	2.12
2.0	0.902	0.911	0.944	0.993	1.05	1.12	1.19	1.26	1.32	1.39	1.46	1.58	1.69	1.80	1.90	1.99
2.2	0.824	0.833	0.864	0.910	0.965	1.03	1.09	1.16	1.22	1.29	1.35	1.47	1.58	1.68	1.78	1.87
2.4	0.758	0.767	0.796	0.839	0.891	0.949	1.01	1.07	1.14	1.20	1.26	1.37	1.48	1.58	1.67	1.76
2.6	0.702	0.711	0.738	0.778	0.827	0.882	0.940	1.00	1.06	1.12	1.17	1.28	1.39	1.49	1.58	1.66
2.8	0.653	0.662	0.688	0.726	0.772	0.823	0.879	0.936	0.992	1.05	1.10	1.21	1.31	1.40	1.49	1.58
3.0	0.611	0.619	0.644	0.680	0.723	0.772	0.825	0.879	0.932	0.986	1.04	1.14	1.24	1.33	1.42	1.50
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.																

Table 8-4 (continued) Coefficients, C, rically Loaded Weld Groups																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with $R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$																
LRFD								ASD								
	¢	Dl	$D_{\text {min }}$	ϕ	l	$=\frac{}{\phi}$	$\frac{P_{u}}{\phi C C_{1} D}$	$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l} \quad D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l} \quad l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$								
Special case (load not in plane of where weld group). Use C-values for $k=0$ $P=$ required force, P_{u} or P_{a}, kips $D=$ number of sixteenths-of-an-inch in the fillet weld size $l=$ characteristic length of weld group, in. $a=e_{x} / l$ $e_{x}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in. $C=$ coefficient tabulated below $\mathcal{C}_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes) Any equal distances								Special case (load not in plane of weld group). Use C-values for $k=0$								
a	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0.00	5.21	5.21	5.21	5.21	5.21	5.21	5.21	5.21	5.21	5.21	5.21	5.21	5.21	5.21	5.21	5.21
0.10	4.86	4.87	4.90	4.94	4.99	5.03	5.07	5.10	5.12	5.13	5.14	5.15	5.15	5.15	5.15	5.15
0.15	4.61	4.62	4.65	4.70	4.77	4.84	4.91	4.96	5.01	5.04	5.07	5.10	5.12	5.13	5.14	5.14
0.20	4.36	4.37	4.41	4.46	4.54	4.62	4.71	4.79	4.86	4.92	4.97	5.03	5.07	5.09	5.11	5.12
0.25	4.13	4.14	4.17	4.23	4.31	4.40	4.51	4.61	4.70	4.78	4.84	4.94	5.00	5.04	5.06	5.08
0.30	3.93	3.94	3.97	4.03	4.10	4.19	4.30	4.41	4.52	4.62	4.70	4.83	4.91	4.97	5.01	5.04
0.40	3.58	3.59	3.62	3.68	3.75	3.84	3.93	4.04	4.15	4.27	4.39	4.57	4.71	4.81	4.88	4.93
0.50	3.26	3.27	3.31	3.37	3.45	3.54	3.64	3.74	3.84	3.95	4.07	4.29	4.47	4.61	4.71	4.79
0.60	2.98	2.99	3.03	3.10	3.19	3.28	3.39	3.49	3.59	3.69	3.78	4.01	4.22	4.39	4.52	4.63
0.70	2.74	2.75	2.79	2.86	2.95	3.05	3.16	3.26	3.37	3.47	3.56	3.76	3.97	4.16	4.32	4.45
0.80	2.52	2.53	2.58	2.65	2.75	2.85	2.96	3.06	3.17	3.27	3.37	3.55	3.74	3.94	4.11	4.26
0.90	2.34	2.35	2.39	2.47	2.56	2.67	2.78	2.88	2.99	3.09	3.19	3.37	3.54	3.72	3.90	4.07
1.0	2.17	2.18	2.23	2.31	2.40	2.50	2.61	2.72	2.83	2.93	3.03	3.21	3.37	3.54	3.71	3.88
1.2	1.89	1.90	1.95	2.03	2.12	2.23	2.33	2.44	2.54	2.65	2.74	2.93	3.09	3.24	3.39	3.54
1.4	1.67	1.69	1.73	1.81	1.90	2.00	2.10	2.20	2.31	2.41	2.50	2.68	2.85	2.99	3.13	3.27
1.6	1.50	1.51	1.56	1.63	1.71	1.81	1.91	2.01	2.11	2.20	2.30	2.47	2.63	2.78	2.92	3.05
1.8	1.35	1.36	1.41	1.48	1.56	1.65	1.74	1.84	1.94	2.03	2.12	2.29	2.45	2.60	2.73	2.85
2.0	1.23	1.24	1.29	1.35	1.43	1.51	1.60	1.70	1.79	1.88	1.97	2.13	2.29	2.43	2.56	2.69
2.2	1.13	1.14	1.18	1.24	1.32	1.40	1.48	1.57	1.66	1.75	1.83	1.99	2.14	2.28	2.41	2.54
2.4	1.04	1.06	1.10	1.15	1.22	1.30	1.38	1.46	1.55	1.63	1.71	1.87	2.02	2.15	2.28	2.40
2.6	0.970	0.981	1.02	1.07	1.14	1.21	1.29	1.37	1.45	1.53	1.61	1.76	1.90	2.03	2.16	2.28
2.8	0.905	0.916	0.951	1.00	1.06	1.13	1.21	1.29	1.36	1.44	1.51	1.66	1.80	1.93	2.05	2.16
3.0	0.848	0.859	0.892	0.941	1.00	1.07	1.14	1.21	1.28	1.36	1.43	1.57	1.70	1.83	1.95	2.06
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.																

Table 8-4 (continued) Coefficients, C, rically Loaded Weld Groups Angle $=75^{\circ}$																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with$R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$																
LRFD								ASD								
		\cdots	$D_{\text {min }}=\frac{P_{u}}{\phi C C_{1} l} \quad l_{\text {min }}=\frac{P_{u}}{\phi C C_{1} D}$					$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l} \quad D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l} \quad l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$								
Special case (load not in plane of where $P=$ required force, P_{u} or P_{a}, kips $D=$ number of sixteenths-of-an-inch in the fillet weld size $l=$ characteristic length of weld group, in. $a=e_{\chi} / l$ $e_{x}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in. $C=$ coefficient tabulated below $\mathcal{C}_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes)								Special case (load not in plane of weld group). Use C-values for $k=0$								
	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0.00	5.47	5.47	5.47	5.47	5.47	5.47	5.47	5.47	5.47	5.47	5.47	5.47	5.47	5.47	5.47	5.47
0.10	5.17	5.19	5.25	5.32	5.38	5.42	5.44	5.45	5.45	5.46	5.46	5.46	5.46	5.46	5.45	5.45
0.15	5.00	5.03	5.10	5.19	5.28	5.34	5.38	5.41	5.43	5.44	5.45	5.45	5.45	5.45	5.45	5.45
0.20	4.85	4.87	4.95	5.06	5.16	5.25	5.32	5.36	5.39	5.41	5.42	5.44	5.45	5.45	5.45	5.45
0.25	4.71	4.73	4.80	4.92	5.04	5.15	5.24	5.30	5.34	5.37	5.39	5.42	5.43	5.44	5.44	5.45
0.30	4.57	4.59	4.65	4.78	4.92	5.04	5.15	5.23	5.28	5.33	5.36	5.40	5.42	5.43	5.44	5.44
0.40	4.32	4.33	4.39	4.51	4.67	4.82	4.95	5.06	5.15	5.22	5.27	5.33	5.37	5.40	5.41	5.42
0.50	4.09	4.11	4.17	4.27	4.43	4.60	4.76	4.89	5.00	5.09	5.16	5.25	5.32	5.35	5.38	5.40
0.60	3.88	3.90	3.96	4.07	4.21	4.38	4.56	4.71	4.84	4.95	5.04	5.16	5.25	5.30	5.34	5.36
0.70	3.69	3.71	3.77	3.87	4.01	4.18	4.36	4.53	4.68	4.80	4.91	5.06	5.17	5.24	5.29	5.33
0.80	3.51	3.53	3.59	3.70	3.83	3.99	4.17	4.35	4.51	4.65	4.77	4.96	5.08	5.17	5.24	5.28
0.90	3.34	3.36	3.42	3.53	3.66	3.81	3.99	4.18	4.35	4.50	4.64	4.84	4.99	5.10	5.17	5.23
1.0	3.18	3.20	3.27	3.37	3.50	3.65	3.83	4.01	4.19	4.35	4.49	4.73	4.90	5.02	5.11	5.18
1.2	2.90	2.92	2.99	3.09	3.22	3.37	3.53	3.70	3.88	4.06	4.22	4.49	4.69	4.85	4.97	5.06
1.4	2.65	2.67	2.74	2.85	2.97	3.11	3.27	3.43	3.61	3.78	3.95	4.24	4.48	4.67	4.81	4.92
1.6	2.44	2.46	2.53	2.63	2.75	2.89	3.04	3.19	3.36	3.53	3.70	4.01	4.27	4.48	4.65	4.78
1.8	2.26	2.27	2.34	2.44	2.56	2.69	2.84	2.99	3.14	3.30	3.47	3.78	4.06	4.29	4.48	4.63
2.0	2.09	2.11	2.18	2.27	2.39	2.52	2.66	2.80	2.95	3.10	3.26	3.57	3.86	4.10	4.31	4.48
2.2	1.95	1.97	2.03	2.13	2.24	2.36	2.50	2.63	2.78	2.92	3.07	3.38	3.66	3.92	4.14	4.32
2.4	1.82	1.84	1.90	1.99	2.10	2.22	2.35	2.48	2.62	2.76	2.90	3.20	3.48	3.74	3.97	4.16
2.6	1.71	1.73	1.79	1.88	1.98	2.10	2.22	2.35	2.48	2.62	2.75	3.04	3.31	3.57	3.80	4.01
2.8	1.61	1.63	1.69	1.77	1.87	1.98	2.10	2.23	2.36	2.49	2.62	2.88	3.16	3.41	3.64	3.85
3.0	1.52	1.54	1.60	1.68	1.77	1.88	2.00	2.12	2.24	2.37	2.49	2.75	3.01	3.26	3.49	3.71
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.																

Table 8-5 Coefficients, C, for Eccentrically Loaded Weld Groups																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with $R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$																
LRFD								ASD								
	$=$	Dl	$D_{\text {min }}$	$=\frac{P_{u}}{\phi C C}$	$P_{u} C_{1} l$	$l_{\text {min }}=\frac{}{\phi}$	$\frac{P_{u}}{\phi C C_{1} D}$	$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l} \quad D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l} \quad l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$								
where $P=$ required force, P_{u} or P_{a}, kips $D=$ number of sixteenths-of-an-inch in the fillet weld size $l=$ characteristic length of weld group, in. $a=e_{x} / l$ $e_{x}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in. $C=$ coefficient tabulated below $G_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes)																
a																
a	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0.00	5.57	5.57	5.57	5.57	5.57	5.57	5.57	5.57	5.57	5.57	5.57	5.57	5.57	5.57	5.57	5.57
0.10	4.32	4.36	4.48	4.65	4.82	4.97	5.11	5.21	5.29	5.35	5.39	5.45	5.48	5.50	5.52	5.53
0.15	3.90	3.94	4.04	4.20	4.39	4.58	4.75	4.90	5.02	5.12	5.20	5.31	5.38	5.42	5.45	5.48
0.20	3.54	3.57	3.67	3.81	3.99	4.20	4.40	4.57	4.73	4.86	4.97	5.13	5.24	5.32	5.37	5.41
0.25	3.22	3.25	3.34	3.47	3.64	3.85	4.06	4.26	4.43	4.59	4.72	4.93	5.08	5.19	5.26	5.32
0.30	2.94	2.97	3.06	3.19	3.34	3.53	3.74	3.95	4.14	4.32	4.47	4.72	4.91	5.04	5.14	5.22
0.40	2.48	2.51	2.60	2.71	2.85	3.01	3.19	3.40	3.61	3.81	3.99	4.29	4.54	4.72	4.87	4.99
0.50	2.14	2.17	2.24	2.34	2.47	2.62	2.78	2.95	3.15	3.35	3.54	3.88	4.16	4.39	4.58	4.73
0.60	1.87	1.89	1.96	2.06	2.17	2.31	2.45	2.61	2.78	2.96	3.15	3.50	3.81	4.06	4.28	4.46
0.70	1.65	1.68	1.74	1.83	1.93	2.06	2.19	2.33	2.48	2.64	2.81	3.17	3.48	3.75	3.99	4.19
0.80	1.48	1.50	1.56	1.64	1.74	1.85	1.97	2.10	2.24	2.38	2.54	2.87	3.18	3.46	3.71	3.92
0.90	1.34	1.36	1.41	1.49	1.58	1.68	1.79	1.91	2.04	2.17	2.31	2.61	2.92	3.20	3.45	3.68
1.0	1.22	1.24	1.29	1.36	1.44	1.54	1.64	1.75	1.87	1.99	2.12	2.39	2.69	2.97	3.22	3.45
1.2	1.04	1.05	1.10	1.16	1.23	1.31	1.41	1.50	1.60	1.71	1.82	2.05	2.30	2.56	2.81	3.03
1.4	0.900	0.914	0.952	1.00	1.07	1.14	1.23	1.31	1.40	1.49	1.59	1.79	2.00	2.24	2.47	2.69
1.6	0.794	0.807	0.840	0.888	0.946	1.01	1.08	1.16	1.24	1.33	1.41	1.59	1.78	1.98	2.19	2.40
1.8	0.710	0.722	0.752	0.795	0.848	0.907	0.973	1.04	1.12	1.19	1.27	1.43	1.60	1.77	1.96	2.16
2.0	0.643	0.653	0.680	0.719	0.767	0.822	0.881	0.945	51.01	1.08	1.15	1.30	1.45	1.61	1.77	1.95
2.2	0.586	0.596	0.621	0.657	0.701	0.751	0.805	0.864	40.925	0.988	1.05	1.19	1.33	1.47	1.62	1.78
2.4	0.539	0.548	0.571	0.604	0.644	0.691	0.741	0.795	50.852	0.910	0.970	1.09	1.22	1.35	1.49	1.64
2.6	0.498	0.507	0.528	0.559	0.597	0.640	0.687	0.737	70.789	0.844	0.899	1.01	1.13	1.26	1.38	1.51
2.8	0.464	0.472	0.491	0.520	0.555	0.595	0.639	0.686	0.735	0.786	0.838	0.946	1.06	1.17	1.29	1.41
3.0	0.434	0.441	0.459	0.486	0.519	0.557	0.598	0.642	20.688	0.736	0.785	0.886	0.990	1.10	1.21	1.32
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.																

	Coefficients, for Eccentrically Loaded															
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with$R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$																
LRFD								ASD								
	$=$	P_{u} Dl	$D_{m i}$	$=\frac{P}{\phi C}$	$C_{u} l$	in $=$	$\frac{P_{u}}{\phi C C_{1} D}$	$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l} \quad D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l} \quad l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$								
where $P=$ required force, P_{u} or P_{a}, kips $D=$ number of sixteenths-of-an-inch in the fillet weld size $l=$ characteristic Iength of weld group, in. $a=e_{x} / l$ $e_{x}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in. $C=$ coefficient tabulated below $C_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes)																
a	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0.00	5.47	5.47	5.47	5.47	5.47	5.47	5.47	5.47	5.47	5.47	5.47	5.47	5.47	5.47	5.47	5.47
0.10	4.38	4.40	4.46	4.58	4.73	4.88	5.01	5.11	5.19	5.25	5.29	5.35	5.39	5.41	5.42	5.43
0.15	3.97	3.98	4.04	4.15	4.29	4.47	4.64	4.78	4.91	5.01	5.09	5.20	5.28	5.32	5.36	5.38
0.20	3.60	3.62	3.69	3.79	3.92	4.09	4.27	4.45	4.60	4.74	4.85	5.01	5.13	5.21	5.27	5.31
0.25	3.29	3.30	3.37	3.48	3.61	3.76	3.94	4.12	4.29	4.45	4.59	4.81	4.96	5.07	5.15	5.21
0.30	3.01	3.03	3.09	3.20	3.33	3.48	3.64	3.82	4.00	4.17	4.33	4.58	4.78	4.92	5.03	5.11
0.40	2.55	2.57	2.64	2.74	2.87	3.01	3.16	3.32	3.49	3.66	3.83	4.13	4.38	4.58	4.74	4.86
0.50	2.20	2.22	2.29	2.38	2.50	2.63	2.77	2.92	3.07	3.23	3.40	3.71	3.99	4.23	4.42	4.58
0.60	1.92	1.94	2.01	2.10	2.21	2.33	2.47	2.60	2.74	2.89	3.04	3.35	3.63	3.88	4.10	4.29
0.70	1.71	1.72	1.78	1.87	1.97	2.09	2.21	2.34	2.47	2.61	2.74	3.03	3.30	3.56	3.79	4.00
0.80	1.53	1.55	1.60	1.68	1.78	1.89	2.00	2.12	2.25	2.37	2.50	2.76	3.02	3.27	3.50	3.72
0.90	1.38	1.40	1.45	1.53	1.62	1.72	1.83	1.94	2.06	2.18	2.29	2.53	2.77	3.02	3.24	3.46
1.0	1.26	1.28	1.33	1.40	1.48	1.58	1.68	1.79	1.90	2.01	2.12	2.34	2.56	2.79	3.01	3.22
1.2	1.07	1.09	1.13	1.19	1.26	1.35	1.44	1.53	1.63	1.73	1.83	2.03	2.23	2.42	2.63	2.82
1.4	0.931	0.944	0.982	1.04	1.10	1.18	1.26	1.34	1.43	1.52	1.61	1.79	1.97	2.14	2.32	2.50
1.6	0.822	0.834	0.868	0.916	0.975	1.04	1.12	1.19	1.27	1.35	1.43	1.60	1.76	1.92	2.08	2.24
1.8	0.735	0.746	0.777	0.821	0.874	0.935	1.00	1.07	1.14	1.22	1.29	1.44	1.59	1.74	1.88	2.03
2.0	0.665	0.675	0.703	0.743	0.792	0.848	0.909	0.973	1.04	1.11	1.18	1.31	1.45	1.59	1.72	1.85
2.2	0.607	0.616	0.642	0.678	0.723	0.775	0.831	0.890	0.951	1.01	1.08	1.21	1.33	1.46	1.58	1.71
2.4	0.558	0.566	0.590	0.624	0.666	0.713	0.765	0.820	0.877	0.935	0.994	1.11	1.23	1.35	1.47	1.58
2.6	0.516	0.524	0.546	0.578	0.617	0.661	0.709	0.760	0.813	0.867	0.922	1.03	1.15	1.26	1.37	1.47
2.8	0.480	0.488	0.508	0.538	0.574	0.615	0.660	0.708	0.758	0.808	0.860	0.965	1.07	1.17	1.28	1.38
3.0	0.449	0.456	0.475	0.503	0.537	0.576	0.618	0.663	0.709	0.757	0.806	0.905	1.00	1.10	1.20	1.30
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.																

Table Coe for Eccentricall																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with$R_{n}=C C_{1} D l \quad(\phi=0.75, \Omega=2.00)$																
LRFD								ASD								
$C_{\text {min }}=\frac{P_{u}}{\phi C_{1} D l} \quad D_{\text {min }}=\frac{P_{u}}{\phi C C_{1} l} \quad l_{\text {min }}=\frac{P_{u}}{\phi C C_{1} D}$								$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l} \quad D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l} \quad l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$								
where $P=$ required force, P_{u} or P_{a}, kips $D=$ number of sixteenths-of-an-inch in the fillet weld size $l=$ characteristic length of weld group, in. $a=e_{x} / l$ $e_{x}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in. $C=$ coefficient tabulated below $C_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes)																
k																
a	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0.00	5.21	5.21	5.21	5.21	5.21	5.21	5.21	5.21	5.21	5.21	5.21	5.21	5.21	5.21	5.21	5.21
0.10	4.49	4.50	4.54	4.59	4.66	4.74	4.82	4.89	4.94	4.99	5.02	5.07	5.10	5.11	5.12	5.13
0.15	4.09	4.10	4.13	4.19	4.27	4.36	4.46	4.57	4.66	4.75	4.81	4.91	4.98	5.03	5.05	5.07
0.20	3.76	3.77	3.80	3.86	3.93	4.01	4.12	4.23	4.35	4.46	4.56	4.71	4.82	4.90	4.95	4.99
0.25	3.47	3.48	3.51	3.57	3.65	3.74	3.83	3.93	4.04	4.16	4.28	4.48	4.63	4.74	4.83	4.89
0.30	3.21	3.21	3.25	3.32	3.40	3.49	3.59	3.69	3.79	3.89	4.01	4.24	4.42	4.57	4.68	4.76
0.40	2.76	2.77	2.81	2.88	2.97	3.07	3.17	3.28	3.38	3.48	3.58	3.77	3.99	4.18	4.33	4.46
0.50	2.40	2.41	2.45	2.53	2.62	2.73	2.84	2.94	3.05	3.15	3.25	3.43	3.60	3.79	3.97	4.13
0.60	2.11	2.12	2.17	2.25	2.34	2.45	2.55	2.66	2.77	2.87	2.97	3.15	3.31	3.47	3.64	3.81
0.70	1.88	1.89	1.94	2.01	2.11	2.21	2.32	2.42	2.53	2.63	2.73	2.91	3.07	3.22	3.37	3.52
0.80	1.69	1.70	1.75	1.82	1.91	2.01	2.12	2.22	2.32	2.42	2.52	2.70	2.86	3.01	3.15	3.28
0.90	1.53	1.54	1.59	1.66	1.75	1.84	1.94	2.05	2.15	2.24	2.34	2.51	2.68	2.82	2.96	3.09
1.0	1.40	1.41	1.46	1.53	1.61	1.70	1.80	1.89	1.99	2.09	2.18	2.35	2.51	2.66	2.79	2.92
1.2	1.19	1.20	1.24	1.31	1.38	1.47	1.55	1.65	1.74	1.83	1.91	2.08	2.23	2.37	2.50	2.62
1.4	1.03	1.05	1.08	1.14	1.21	1.29	1.37	1.45	1.54	1.62	1.70	1.85	2.00	2.14	2.26	2.38
1.6	0.914	0.925	0.960	1.01	1.07	1.14	1.22	1.30	1.37	1.45	1.53	1.67	1.81	1.94	2.06	2.18
1.8	0.818	0.829	0.861	0.908	0.965	1.03	1.10	1.17	1.24	1.31	1.38	1.52	1.65	1.78	1.90	2.01
2.0	0.740	0.750	0.780	0.823	0.876	0.935	0.999	1.07	1.13	1.20	1.27	1.40	1.52	1.64	1.75	1.86
2.2	0.675	0.685	0.712	0.752	0.801	0.856	0.915	0.978	1.04	1.10	1.17	1.29	1.41	1.52	1.63	1.73
2.4	0.621	0.630	0.656	0.693	0.738	0.789	0.845	0.902	0.961	1.02	1.08	1.19	1.31	1.41	1.52	1.62
2.6	0.575	0.583	0.607	0.642	0.684	0.732	0.784	0.838	0.893	0.948	1.00	1.11	1.22	1.32	1.42	1.52
2.8	0.535	0.543	0.565	0.598	0.637	0.682	0.731	0.782	0.834	0.886	0.939	1.04	1.14	1.24	1.34	1.43
3.0	0.500	0.508	0.529	0.559	0.596	0.639	0.684	0.732	0.781	0.831	0.881	0.980	1.08	1.17	1.26	1.35
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.																

Coefficients for Eccentrically Load																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with$R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$																
LRFD								ASD								
	$=$	${ }_{u}$ Dl	$D_{\text {min }}$	$=\frac{P_{u}}{\phi C C}$	$C_{u} l$	${ }_{\text {in }}=\frac{}{\phi}$	$\frac{P_{u}}{\phi C C_{1} D}$	$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l} \quad D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l} \quad l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$								
where $P=$ required force, P_{u} or P_{a}, kips $D=$ number of sixteenths-of-an-inch in the fillet weld size $l=$ characteristic length of weld group, in. $a=e_{X} / l$ $e_{X}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in. $C=$ coefficient tabulated below $C_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes)																
a	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0.00	4.82	4.82	4.82	4.82	4.82	4.82	4.82	4.82	4.82	4.82	4.82	4.82	4.82	4.82	4.82	4.82
0.10	4.49	4.49	4.50	4.51	4.53	4.55	4.57	4.59	4.61	4.62	4.63	4.66	4.67	4.68	4.69	4.69
0.15	4.18	4.18	4.20	4.23	4.26	4.30	4.34	4.37	4.40	4.43	4.46	4.50	4.54	4.57	4.60	4.61
0.20	3.92	3.92	3.94	3.96	3.99	4.03	4.08	4.13	4.18	4.22	4.26	4.33	4.38	4.43	4.47	4.50
0.25	3.70	3.70	3.71	3.74	3.77	3.81	3.86	3.91	3.96	4.01	4.06	4.14	4.21	4.27	4.33	4.37
0.30	3.49	3.49	3.51	3.54	3.57	3.62	3.67	3.72	3.77	3.81	3.86	3.96	4.04	4.12	4.18	4.23
0.40	3.10	3.10	3.12	3.16	3.21	3.27	3.33	3.39	3.45	3.50	3.55	3.64	3.73	3.82	3.90	3.96
0.50	2.75	2.76	2.79	2.83	2.89	2.96	3.03	3.10	3.17	3.24	3.29	3.39	3.48	3.56	3.64	3.72
0.60	2.46	2.47	2.50	2.55	2.62	2.70	2.77	2.85	2.93	3.00	3.06	3.17	3.27	3.36	3.43	3.50
0.70	2.21	2.22	2.26	2.31	2.39	2.47	2.55	2.63	2.71	2.79	2.85	2.98	3.08	3.17	3.25	3.33
0.80	2.01	2.01	2.05	2.11	2.19	2.27	2.35	2.44	2.52	2.60	2.67	2.80	2.91	3.01	3.09	3.17
0.90	1.83	1.84	1.88	1.94	2.01	2.10	2.18	2.27	2.35	2.43	2.51	2.64	2.75	2.85	2.95	3.03
1.0	1.68	1.69	1.73	1.79	1.87	1.95	2.04	2.12	2.20	2.28	2.36	2.49	2.61	2.72	2.81	2.89
1.2	1.44	1.45	1.49	1.55	1.62	1.70	1.79	1.87	1.95	2.03	2.11	2.24	2.36	2.47	2.57	2.66
1.4	1.25	1.26	1.30	1.36	1.43	1.51	1.59	1.67	1.75	1.83	1.90	2.03	2.15	2.26	2.36	2.45
1.6	1.11	1.12	1.16	1.21	1.28	1.35	1.43	1.51	1.58	1.66	1.73	1.86	1.98	2.09	2.19	2.28
1.8	0.996	1.01	1.04	1.09	1.15	1.22	1.30	1.37	1.44	1.51	1.58	1.71	1.82	1.93	2.03	2.12
2.0	0.902	0.911	0.944	0.993	1.05	1.12	1.19	1.26	1.32	1.39	1.46	1.58	1.69	1.80	1.90	1.99
2.2	0.824	0.833	0.864	0.910	0.965	1.03	1.09	1.16	1.22	1.29	1.35	1.47	1.58	1.68	1.78	1.87
2.4	0.758	0.767	0.796	0.839	0.891	0.949	1.01	1.07	1.14	1.20	1.26	1.37	1.48	1.58	1.67	1.76
2.6	0.702	0.711	0.738	0.778	0.827	0.882	0.940	1.00	1.06	1.12	1.17	1.28	1.39	1.49	1.58	1.66
2.8	0.653	0.662	0.688	0.726	0.772	0.823	0.879	0.936	0.992	1.05	1.10	1.21	1.31	1.40	1.49	1.58
3.0	0.611	0.619	0.644	0.680	0.723	0.772	0.825	0.879	0.932	0.986	1.04	1.14	1.24	1.33	1.42	1.50
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.																

Coefficients, C, for Eccentrically Loaded Weld Groups																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with$R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$																
LRFD								ASD								
	$=\frac{}{\phi}$	$D l$	$D_{m i}$	$=\frac{}{\phi C}$	l_{1}	${ }_{n}=\frac{}{\phi}$	$\frac{P_{u}}{\phi C C_{1} D}$	$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l} \quad D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l} \quad l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$								
where $P=$ required force, P_{u} or P_{a}, kips $D=$ number of sixteenths-of-an-inch in the fillet weld size $l=$ characteristic length of weld group, in. $a=e_{x} / l$ $e_{x}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in. $C=$ coefficient tabulated below $\mathcal{C}_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes)																
a	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0.00	4.37	4.37	4.37	4.37	4.37	4.37	4.37	4.37	4.37	4.37	4.37	4.37	4.37	4.37	4.37	4.37
0.10	4.26	4.26	4.26	4.25	4.25	4.25	4.25	4.24	4.24	4.23	4.23	4.22	4.21	4.20	4.19	4.17
0.15	4.12	4.12	4.13	4.13	4.13	4.13	4.13	4.14	4.14	4.14	4.13	4.13	4.13	4.12	4.11	4.10
0.20	3.97	3.97	3.97	3.97	3.98	3.98	3.99	4.00	4.01	4.01	4.02	4.03	4.03	4.03	4.03	4.02
0.25	3.86	3.86	3.86	3.86	3.86	3.86	3.87	3.87	3.88	3.89	3.90	3.92	3.93	3.94	3.94	3.94
0.30	3.74	3.74	3.74	3.75	3.75	3.76	3.76	3.77	3.78	3.78	3.79	3.81	3.83	3.84	3.85	3.86
0.40	3.51	3.51	3.51	3.52	3.54	3.55	3.56	3.57	3.59	3.60	3.61	3.63	3.65	3.67	3.69	3.70
0.50	3.26	3.26	3.27	3.29	3.31	3.34	3.36	3.38	3.40	3.42	3.44	3.48	3.50	3.53	3.55	3.57
0.60	3.02	3.02	3.04	3.06	3.09	3.13	3.17	3.20	3.23	3.26	3.28	3.33	3.36	3.40	3.42	3.45
0.70	2.80	2.80	2.81	2.85	2.89	2.93	2.98	3.02	3.06	3.09	3.13	3.18	3.23	3.27	3.30	3.33
0.80	2.59	2.59	2.61	2.65	2.70	2.75	2.80	2.85	2.90	2.94	2.98	3.05	3.10	3.15	3.19	3.23
0.90	2.40	2.40	2.43	2.47	2.52	2.58	2.64	2.70	2.75	2.80	2.84	2.92	2.98	3.04	3.09	3.13
1.0	2.23	2.23	2.26	2.31	2.36	2.43	2.49	2.56	2.61	2.67	2.71	2.80	2.87	2.93	2.98	3.03
1.2	1.94	1.95	1.98	2.03	2.09	2.16	2.23	2.30	2.37	2.43	2.48	2.58	2.66	2.73	2.79	2.85
1.4	1.72	1.72	1.75	1.81	1.87	1.95	2.02	2.09	2.16	2.23	2.28	2.39	2.48	2.56	2.62	2.68
1.6	1.53	1.54	1.57	1.63	1.69	1.77	1.84	1.91	1.98	2.05	2.11	2.22	2.31	2.40	2.47	2.53
1.8	1.38	1.39	1.42	1.48	1.54	1.62	1.69	1.76	1.83	1.90	1.96	2.07	2.17	2.25	2.33	2.40
2.0	1.25	1.26	1.30	1.35	1.42	1.49	1.56	1.63	1.70	1.77	1.83	1.94	2.04	2.13	2.21	2.28
2.2	1.15	1.16	1.19	1.24	1.31	1.38	1.45	1.52	1.59	1.65	1.71	1.82	1.92	2.01	2.09	2.17
2.4	1.06	1.07	1.10	1.15	1.21	1.28	1.35	1.42	1.48	1.55	1.61	1.72	1.82	1.91	1.99	2.06
2.6	0.983	0.991	1.02	1.07	1.13	1.20	1.26	1.33	1.39	1.46	1.51	1.62	1.72	1.81	1.90	1.97
2.8	0.917	0.925	0.956	1.00	1.06	1.12	1.19	1.25	1.31	1.37	1.43	1.54	1.64	1.73	1.81	1.88
3.0	0.858	0.866	0.897	0.942	0.996	1.06	1.12	1.18	1.24	1.30	1.36	1.46	1.56	1.65	1.73	1.81
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.																

Table 8-5 (continued) Coefficients, C, rically Loaded Weld Groups																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with $R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$																
LRFD								ASD								
		l			l	$=$	$P_{u} C_{1} D$	$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l} \quad D_{\min }=\frac{\Omega P_{a}}{C C_{1} l} \quad l_{\min }=\frac{\Omega P_{a}}{C C_{1} D}$								
where $P=$ required force, P_{u} or P_{a}, kips $D=$ number of sixteenths-of-an-inch in the fillet weld size $l=$ characteristic length of weld group, in. $a=e_{X} / l$ $e_{X}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in. $C=$ coefficient tabulated below $C_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes)																
a																
a	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0.00	3.96	3.96	3.96	3.96	3.96	3.96	3.96	3.96	3.96	3.96	3.96	3.96	3.96	3.96	3.96	3.96
0.10	3.82	3.83	3.84	3.84	3.85	3.85	3.85	3.85	3.85	3.85	3.85	3.84	3.82	3.80	3.78	3.76
0.15	3.85	3.86	3.86	3.86	3.86	3.85	3.85	3.85	3.84	3.83	3.83	3.81	3.79	3.77	3.75	3.73
0.20	3.84	3.84	3.84	3.84	3.83	3.83	3.82	3.82	3.81	3.80	3.80	3.78	3.76	3.74	3.72	3.71
0.25	3.83	3.83	3.83	3.82	3.82	3.81	3.80	3.80	3.79	3.78	3.77	3.75	3.73	3.72	3.70	3.68
0.30	3.82	3.82	3.81	3.81	3.80	3.79	3.78	3.77	3.76	3.76	3.75	3.73	3.71	3.69	3.67	3.66
0.40	3.78	3.78	3.77	3.76	3.75	3.74	3.73	3.72	3.71	3.70	3.69	3.67	3.66	3.64	3.62	3.61
0.50	3.72	3.72	3.71	3.70	3.69	3.68	3.67	3.66	3.65	3.64	3.64	3.62	3.60	3.59	3.57	3.56
0.60	3.65	3.64	3.64	3.63	3.62	3.61	3.60	3.60	3.59	3.58	3.57	3.56	3.54	3.53	3.52	3.51
0.70	3.56	3.55	3.55	3.54	3.54	3.53	3.52	3.52	3.51	3.51	3.50	3.49	3.48	3.47	3.47	3.46
0.80	3.46	3.45	3.45	3.45	3.45	3.44	3.44	3.44	3.44	3.43	3.43	3.43	3.42	3.42	3.41	3.41
0.90	3.35	3.35	3.35	3.35	3.35	3.35	3.35	3.35	3.35	3.36	3.36	3.36	3.36	3.36	3.36	3.35
1.0	3.23	3.23	3.24	3.24	3.25	3.25	3.26	3.27	3.27	3.28	3.28	3.29	3.30	3.30	3.30	3.30
1.2	3.00	3.00	3.01	3.02	3.04	3.06	3.08	3.09	3.11	3.12	3.14	3.16	3.17	3.19	3.20	3.20
1.4	2.78	2.78	2.79	2.81	2.84	2.87	2.90	2.93	2.95	2.97	2.99	3.02	3.05	3.07	3.09	3.10
1.6	2.57	2.57	2.59	2.62	2.65	2.69	2.73	2.77	2.80	2.83	2.85	2.90	2.93	2.96	2.99	3.01
1.8	2.38	2.38	2.40	2.44	2.48	2.53	2.58	2.62	2.66	2.69	2.72	2.78	2.82	2.86	2.89	2.91
2.0	2.21	2.21	2.24	2.27	2.32	2.38	2.43	2.48	2.52	2.56	2.60	2.66	2.72	2.76	2.80	2.83
2.2	2.05	2.06	2.09	2.13	2.18	2.24	2.30	2.35	2.40	2.44	2.48	2.56	2.61	2.66	2.71	2.74
2.4	1.92	1.92	1.95	2.00	2.05	2.12	2.18	2.24	2.29	2.33	2.38	2.45	2.52	2.57	2.62	2.66
2.6	1.80	1.80	1.83	1.88	1.94	2.00	2.07	2.13	2.18	2.23	2.28	2.36	2.43	2.49	2.54	2.58
2.8	1.69	1.69	1.72	1.77	1.83	1.90	1.97	2.03	2.09	2.14	2.19	2.27	2.35	2.41	2.46	2.51
3.0	1.59	1.60	1.63	1.68	1.74	1.81	1.87	1.94	2.00	2.05	2.10	2.19	2.27	2.33	2.39	2.44
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.																

							Tab ffic Ang	ier Oa e =	nts de 0°		e					
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with $R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$																
LRFD								ASD								
	$=\bar{\phi}$	$\frac{P_{u}}{C_{1} D l}$	$D_{\text {mi }}$	$=\frac{}{\phi C}$	$P_{u} C_{1} l$	$l_{\text {min }}=$	$\frac{P_{u}}{\phi C C_{1} D}$		=	$\frac{P_{a}}{D l}$	D	=	${ }_{a}$	$l_{\text {min }}$	$\frac{\Omega}{C C}$	
wher $P=$ $D=$ $l=$ $a=$ $e_{x}=$ $C=$ $C_{1}=$	required number characte e_{x} / l horizonta with res coefficie electrod 1.0 for	force, of sixtee ristic len al comp pect to ent tabul e streng E70XX	P_{u} or P_{a}, enths-of ength of onent of centroid ated bel th coeffic electrodes	kips f-an-inc weld gro eccent of weld low ficient fr es)	h in the roup, in. tricity of P group, rom Tabl	fillet we o in. le 8-3	eld size									
\cdots									k							
a	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0.00	3.71	4.08	4.45	4.83	5.38	5.94	6.50	7.05	7.61	8.17	8.72	9.84	10.9	12.1	13.2	14.3
0.10	3.72	4.09	4.55	5.04	5.54	6.04	6.55	7.07	7.58	8.10	8.62	9.66	10.7	11.8	12.8	13.9
0.15	3.67	4.06	4.49	4.94	5.41	5.89	6.38	6.87	7.36	7.86	8.36	9.36	10.4	11.4	12.4	13.4
0.20	3.51	3.93	4.34	4.77	5.21	5.66	6.13	6.59	7.07	7.54	8.03	9.00	9.98	11.0	12.0	13.0
0.25	3.31	3.72	4.13	4.54	4.96	5.39	5.84	6.29	6.74	7.20	7.67	8.61	9.57	10.5	11.5	12.5
0.30	3.09	3.48	3.89	4.29	4.69	5.11	5.53	5.97	6.41	6.86	7.31	8.23	9.17	10.1	11.1	12.1
0.40	2.66	3.01	3.39	3.77	4.16	4.55	4.94	5.35	5.76	6.19	6.62	7.50	8.40	9.33	10.3	11.2
0.50	2.30	2.60	2.94	3.30	3.67	4.04	4.41	4.79	5.19	5.59	6.00	6.84	7.71	8.61	9.52	10.5
0.60	2.00	2.27	2.57	2.90	3.25	3.60	3.96	4.32	4.69	5.07	5.46	6.27	7.11	7.97	8.86	9.77
0.70	1.76	2.00	2.27	2.57	2.90	3.24	3.57	3.91	4.26	4.63	5.00	5.77	6.58	7.41	8.27	9.15
0.80	1.57	1.78	2.02	2.30	2.61	2.93	3.25	3.57	3.90	4.24	4.60	5.34	6.11	6.91	7.74	8.59
0.90	1.41	1.60	1.82	2.08	2.36	2.67	2.97	3.27	3.59	3.91	4.25	4.95	5.69	6.45	7.25	8.07
1.0	1.28	1.45	1.66	1.90	2.16	2.45	2.73	3.02	3.32	3.62	3.94	4.61	5.31	6.04	6.81	7.60
1.2	1.08	1.22	1.40	1.61	1.84	2.09	2.35	2.61	2.87	3.15	3.43	4.03	4.67	5.34	6.04	6.77
1.4	0.928	1.05	1.21	1.40	1.60	1.83	2.06	2.29	2.53	2.78	3.03	3.58	4.16	4.77	5.42	6.09
1.6	0.815	0.927	1.07	1.23	1.42	1.62	1.83	2.04	2.25	2.48	2.71	3.21	3.74	4.30	4.90	5.53
1.8	0.727	0.827	0.954	1.10	1.27	1.45	1.64	1.83	2.03	2.24	2.45	2.90	3.39	3.92	4.47	5.05
2.0	0.655	0.746	0.861	0.996	1.15	1.31	1.49	1.66	1.85	2.04	2.23	2.65	3.10	3.59	4.10	4.65
2.2	0.597	0.679	0.785	0.908	1.05	1.20	1.36	1.52	1.69	1.87	2.05	2.44	2.86	3.31	3.79	4.30
2.4	0.547	0.623	0.721	0.835	0.963	1.10	1.25	1.41	1.56	1.72	1.89	2.26	2.65	3.07	3.52	4.00
2.6	0.506	0.576	0.666	0.772	0.891	1.02	1.16	1.30	1.45	1.60	1.76	2.10	2.47	2.86	3.29	3.74
2.8	0.470	0.536	0.620	0.718	0.829	0.950	1.08	1.21	1.35	1.49	1.64	1.96	2.31	2.68	3.08	3.50
3.0	0.439	0.500	0.579	0.671	0.775	0.888	1.01	1.14	1.27	1.40	1.54	1.84	2.17	2.52	2.90	3.30

[^35]| Table 8-6 (continued) Coefficients, C, rically Loaded Weld Groups Angle $=15^{\circ}$ | | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with $R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$ | | | | | | | | | | | | | | | | |
| LRFD | | | | | | | | ASD | | | | | | | | |
| | $=\frac{}{\phi C}$ | $\frac{P_{u}}{C_{1} D l}$ | $D_{\text {min }}=\frac{P_{u}}{\phi C C_{1} l} \quad l_{\text {min }}=\frac{P_{u}}{\phi C C_{1} D}$ | | | | | $C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l}$ | | | $D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l} \quad l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$ | | | | | |
| where
 $P=$ required force, P_{u} or P_{a}, kips
 $D=$ number of sixteenths-of-an-inch in the fillet weld size
 $l=$ characteristic length of weld group, in.
 $a=e_{X} / l$
 $e_{X}=$ horizontal component of eccentricity of P
 with respect to centroid of weld group, in.
 $C=$ coefficient tabulated below
 $C_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes) | | | | | | | | | | | | | | | | |
| 3 l | | | | | | | | | | | | | | | | |
| a | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 0.8 0.9 | | | 1.0 1.2 | | | 1.6 | 1.8 2.0 | |
| 0.00 | 3.96 | 4.39 | 4.94 | 5.48 | 6.03 | 6.57 | 7.12 | 7.66 | 8.21 | 8.75 | 9.30 | 10.4 | 11.5 | 12.6 | 13.7 | 14.7 |
| 0.10 | 3.79 | 4.22 | 4.70 | 5.19 | 5.70 | 6.21 | 6.73 | 7.25 | 7.77 | 8.29 | 8.82 | 9.87 | 10.9 | 12.0 | 13.0 | 14.1 |
| 0.15 | 3.68 | 4.14 | 4.59 | 5.05 | 5.53 | 6.01 | 6.49 | 6.98 | 7.48 | 7.97 | 8.47 | 9.47 | 10.5 | 11.5 | 12.5 | 13.6 |
| 0.20 | 3.51 | 3.95 | 4.40 | 4.85 | 5.31 | 5.76 | 6.23 | 6.69 | 7.17 | 7.64 | 8.12 | 9.09 | 10.1 | 11.1 | 12.1 | 13.1 |
| 0.25 | 3.31 | 3.72 | 4.16 | 4.61 | 5.04 | 5.49 | 5.93 | 6.38 | 6.84 | 7.30 | 7.76 | 8.71 | 9.66 | 10.6 | 11.6 | 12.6 |
| 0.30 | 3.09 | 3.48 | 3.90 | 4.33 | 4.76 | 5.19 | 5.62 | 6.06 | 6.50 | 6.95 | 7.40 | 8.32 | 9.26 | 10.2 | 11.2 | 12.2 |
| 0.40 | 2.68 | 3.02 | 3.39 | 3.79 | 4.20 | 4.62 | 5.02 | 5.44 | 5.86 | 6.29 | 6.72 | 7.60 | 8.51 | 9.43 | 10.4 | 11.3 |
| 0.50 | 2.32 | 2.62 | 2.95 | 3.31 | 3.70 | 4.10 | 4.49 | 4.88 | 5.29 | 5.69 | 6.10 | 6.95 | 7.83 | 8.73 | 9.65 | 10.6 |
| 0.60 | 2.03 | 2.29 | 2.59 | 2.92 | 3.28 | 3.65 | 4.03 | 4.41 | 4.79 | 5.17 | 5.57 | 6.39 | 7.23 | 8.10 | 8.99 | 9.91 |
| 0.70 | 1.79 | 2.03 | 2.30 | 2.60 | 2.93 | 3.28 | 3.64 | 4.00 | 4.36 | 4.73 | 5.11 | 5.89 | 6.70 | 7.55 | 8.41 | 9.30 |
| 0.80 | 1.60 | 1.81 | 2.05 | 2.33 | 2.64 | 2.97 | 3.31 | 3.65 | 4.00 | 4.35 | 4.71 | 5.45 | 6.23 | 7.04 | 7.88 | 8.73 |
| 0.90 | 1.44 | 1.63 | 1.86 | 2.11 | 2.40 | 2.71 | 3.03 | 3.36 | 3.68 | 4.01 | 4.35 | 5.07 | 5.81 | 6.59 | 7.39 | 8.22 |
| 1.0 | 1.31 | 1.48 | 1.69 | 1.93 | 2.20 | 2.49 | 2.80 | 3.10 | 3.40 | 3.72 | 4.05 | 4.72 | 5.43 | 6.18 | 6.95 | 7.75 |
| 1.2 | 1.10 | 1.25 | 1.43 | 1.64 | 1.88 | 2.14 | 2.41 | 2.68 | 2.95 | 3.24 | 3.53 | 4.14 | 4.79 | 5.47 | 6.19 | 6.93 |
| 1.4 | 0.954 | 1.08 | 1.24 | 1.43 | 1.64 | 1.87 | 2.11 | 2.36 | 2.60 | 2.86 | 3.12 | 3.68 | 4.27 | 4.90 | 5.56 | 6.25 |
| 1.6 | 0.839 | 0.953 | 1.10 | 1.26 | 1.45 | 1.66 | 1.87 | 2.10 | 2.32 | 2.55 | 2.79 | 3.30 | 3.85 | 4.43 | 5.04 | 5.68 |
| 1.8 | 0.748 | 0.850 | 0.980 | 1.13 | 1.30 | 1.49 | 1.68 | 1.89 | 2.09 | 2.31 | 2.53 | 3.00 | 3.50 | 4.03 | 4.60 | 5.19 |
| 2.0 | 0.675 | 0.768 | 0.885 | 1.02 | 1.18 | 1.35 | 1.53 | 1.72 | 1.90 | 2.10 | 2.30 | 2.74 | 3.20 | 3.70 | 4.23 | 4.78 |
| 2.2 | 0.615 | 0.700 | 0.808 | 0.934 | 1.08 | 1.23 | 1.40 | 1.57 | 1.75 | 1.93 | 2.12 | 2.52 | 2.95 | 3.41 | 3.91 | 4.43 |
| 2.4 | 0.565 | 0.642 | 0.742 | 0.859 | 0.990 | 1.13 | 1.29 | 1.45 | 1.61 | 1.78 | 1.96 | 2.33 | 2.74 | 3.17 | 3.63 | 4.12 |
| 2.6 | 0.522 | 0.594 | 0.687 | 0.795 | 0.916 | 1.05 | 1.19 | 1.34 | 1.50 | 1.65 | 1.82 | 2.17 | 2.55 | 2.96 | 3.39 | 3.85 |
| 2.8 | 0.485 | 0.552 | 0.639 | 0.739 | 0.853 | 0.977 | 1.11 | 1.25 | 1.40 | 1.54 | 1.70 | 2.03 | 2.38 | 2.77 | 3.18 | 3.61 |
| 3.0 | 0.453 | 0.516 | 0.597 | 0.691 | 0.798 | 0.914 | 1.04 | 1.17 | 1.31 | 1.45 | 1.59 | 1.90 | 2.24 | 2.60 | 2.99 | 3.40 |

[^36]| Table 8-6 (continued) Coefficients, C, rically Loaded Weld Groups Angle $=30^{\circ}$ | | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with$R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$ | | | | | | | | | | | | | | | | |
| LRFD | | | | | | | | ASD | | | | | | | | |
| $C_{\text {min }}=\frac{P_{u}}{\phi C_{1} D l} \quad D_{\text {min }}=\frac{P_{u}}{\phi C C_{1} l} \quad l_{\text {min }}=\frac{P_{u}}{\phi C C_{1} D}$ | | | $D_{\text {min }}=\frac{P_{u}}{\phi C C_{1} l} \quad l_{\text {min }}=\frac{P_{u}}{\phi C C_{1} D}$ | | | | | $C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l}$ | | | $D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l} \quad l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$ | | | | | |
| where
 $P=$ required force, P_{u} or P_{a}, kips
 $D=$ number of sixteenths-of-an-inch in the fillet weld size
 $l=$ characteristic Iength of weld group, in.
 $a=e_{x} / l$
 $e_{x}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in.
 $C=$ coefficient tabulated below
 $C_{1}=$ electrode strength coefficient from Table 8-3
 (1.0 for E70XX electrodes) | | | | | | | | | | | | | | | | |
| a | | | | | | | | | | | | | | | | |
| a | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | 1.2 | 1.4 | 1.6 | 1.8 | 2.0 |
| 0.00 | 4.37 | 4.89 | 5.40 | 5.91 | 6.43 | 6.94 | 7.46 | 7.97 | 8.48 | 9.00 | 9.51 | 10.5 | 11.6 | 12.6 | 13.6 | 14.7 |
| 0.10 | 4.05 | 4.60 | 5.13 | 5.65 | 6.16 | 6.67 | 7.17 | 7.68 | 8.18 | 8.69 | 9.20 | 10.2 | 11.2 | 12.3 | 13.3 | 14.4 |
| 0.15 | 3.83 | 4.33 | 4.85 | 5.36 | 5.86 | 6.36 | 6.86 | 7.35 | 7.85 | 8.35 | 8.85 | 9.85 | 10.9 | 11.9 | 12.9 | 14.0 |
| 0.20 | 3.64 | 4.09 | 4.57 | 5.06 | 5.55 | 6.04 | 6.52 | 7.00 | 7.48 | 7.97 | 8.46 | 9.45 | 10.4 | 11.5 | 12.5 | 13.5 |
| 0.25 | 3.43 | 3.85 | 4.30 | 4.77 | 5.24 | 5.72 | 6.20 | 6.66 | 7.12 | 7.59 | 8.06 | 9.03 | 10.0 | 11.0 | 12.1 | 13.1 |
| 0.30 | 3.22 | 3.61 | 4.03 | 4.47 | 4.93 | 5.40 | 5.87 | 6.33 | 6.78 | 7.24 | 7.70 | 8.64 | 9.61 | 10.6 | 11.6 | 12.6 |
| 0.40 | 2.81 | 3.15 | 3.53 | 3.93 | 4.36 | 4.80 | 5.25 | 5.71 | 6.15 | 6.59 | 7.03 | 7.94 | 8.86 | 9.81 | 10.8 | 11.8 |
| 0.50 | 2.46 | 2.77 | 3.10 | 3.47 | 3.86 | 4.28 | 4.71 | 5.15 | 5.58 | 6.01 | 6.44 | 7.31 | 8.21 | 9.14 | 10.1 | 11.0 |
| 0.60 | 2.17 | 2.44 | 2.75 | 3.08 | 3.45 | 3.84 | 4.25 | 4.67 | 5.09 | 5.50 | 5.91 | 6.76 | 7.64 | 8.54 | 9.45 | 10.4 |
| 0.70 | 1.93 | 2.17 | 2.45 | 2.76 | 3.11 | 3.47 | 3.86 | 4.26 | 4.67 | 5.06 | 5.46 | 6.27 | 7.12 | 7.99 | 8.88 | 9.79 |
| 0.80 | 1.73 | 1.95 | 2.21 | 2.50 | 2.82 | 3.16 | 3.53 | 3.91 | 4.30 | 4.67 | 5.05 | 5.84 | 6.65 | 7.49 | 8.35 | 9.24 |
| 0.90 | 1.57 | 1.77 | 2.00 | 2.28 | 2.58 | 2.90 | 3.25 | 3.61 | 3.97 | 4.33 | 4.70 | 5.44 | 6.23 | 7.04 | 7.87 | 8.74 |
| 1.0 | 1.43 | 1.61 | 1.83 | 2.09 | 2.37 | 2.68 | 3.00 | 3.35 | 3.69 | 4.03 | 4.38 | 5.09 | 5.84 | 6.63 | 7.44 | 8.27 |
| 1.2 | 1.21 | 1.37 | 1.56 | 1.79 | 2.04 | 2.31 | 2.61 | 2.91 | 3.22 | 3.53 | 3.85 | 4.50 | 5.19 | 5.92 | 6.67 | 7.46 |
| 1.4 | 1.05 | 1.19 | 1.36 | 1.56 | 1.79 | 2.03 | 2.29 | 2.57 | 2.85 | 3.13 | 3.42 | 4.02 | 4.66 | 5.33 | 6.03 | 6.76 |
| 1.6 | 0.926 | 1.05 | 1.20 | 1.38 | 1.59 | 1.81 | 2.05 | 2.29 | 2.55 | 2.80 | 3.07 | 3.62 | 4.21 | 4.84 | 5.49 | 6.18 |
| 1.8 | 0.827 | 0.938 | 1.08 | 1.24 | 1.43 | 1.63 | 1.84 | 2.07 | 2.30 | 2.54 | 2.78 | 3.29 | 3.84 | 4.42 | 5.03 | 5.67 |
| 2.0 | 0.747 | 0.848 | 0.977 | 1.13 | 1.29 | 1.48 | 1.68 | 1.89 | 2.10 | 2.32 | 2.54 | 3.02 | 3.52 | 4.07 | 4.64 | 5.24 |
| 2.2 | 0.681 | 0.774 | 0.892 | 1.03 | 1.18 | 1.35 | 1.54 | 1.73 | 1.93 | 2.13 | 2.34 | 2.78 | 3.26 | 3.76 | 4.30 | 4.86 |
| 2.4 | 0.626 | 0.711 | 0.821 | 0.948 | 1.09 | 1.25 | 1.42 | 1.60 | 1.78 | 1.97 | 2.16 | 2.58 | 3.02 | 3.50 | 4.00 | 4.53 |
| 2.6 | 0.579 | 0.658 | 0.760 | 0.878 | 1.01 | 1.16 | 1.31 | 1.48 | 1.65 | 1.83 | 2.01 | 2.40 | 2.82 | 3.27 | 3.74 | 4.24 |
| 2.8 | 0.538 | 0.612 | 0.707 | 0.818 | 0.942 | 1.08 | 1.23 | 1.38 | 1.54 | 1.71 | 1.88 | 2.25 | 2.64 | 3.06 | 3.51 | 3.99 |
| 3.0 | 0.503 | 0.572 | 0.661 | 0.765 | 0.882 | 1.01 | 1.15 | 1.29 | 1.45 | 1.60 | 1.77 | 2.11 | 2.48 | 2.88 | 3.31 | 3.76 |

[^37]| Table 8-6 (continued) Coefficients, C, rically Loaded Weld Groups Angle $=45^{\circ}$ | | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with $R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$ | | | | | | | | | | | | | | | | |
| LRFD | | | | | | | | ASD | | | | | | | | |
| | $=\frac{}{\phi C}$ | $\frac{P_{u}}{C_{1} D l}$ | $D_{\text {min }}=\frac{P_{u}}{\phi C C_{1} l} \quad l_{\text {min }}=\frac{P_{u}}{\phi C C_{1} D}$ | | | | | $C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l}$ | | | $D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l} \quad l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$ | | | | | |
| where
 $P=$ required force, P_{u} or P_{a}, kips
 $D=$ number of sixteenths-of-an-inch in the fillet weld size
 $l=$ characteristic length of weld group, in.
 $a=e_{x} / l$
 $e_{x}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in.
 $C=$ coefficient tabulated below
 $\mathcal{C}_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes) | | | | | | | | | | | | | | | | |
| $3{ }^{3}$ | | | | | | | | | | | | | | | | |
| a | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 0.8 0.9 | | | 1.0 1.2 | | | 1.6 | 1.8 2.0 | |
| 0.00 | 4.82 | 5.14 | 5.61 | 6.08 | 6.54 | 7.01 | 7.48 | 7.95 | 8.41 | 8.88 | 9.35 | 10.3 | 11.2 | 12.2 | 13.1 | 14.0 |
| 0.10 | 4.49 | 4.99 | 5.48 | 5.96 | 6.45 | 6.94 | 7.43 | 7.92 | 8.41 | 8.90 | 9.39 | 10.4 | 11.4 | 12.3 | 13.3 | 14.3 |
| 0.15 | 4.18 | 4.69 | 5.19 | 5.67 | 6.16 | 6.65 | 7.15 | 7.65 | 8.15 | 8.65 | 9.14 | 10.1 | 11.1 | 12.1 | 13.1 | 14.1 |
| 0.20 | 3.92 | 4.39 | 4.87 | 5.36 | 5.84 | 6.33 | 6.83 | 7.33 | 7.84 | 8.34 | 8.85 | 9.86 | 10.9 | 11.9 | 12.9 | 13.9 |
| 0.25 | 3.70 | 4.13 | 4.58 | 5.05 | 5.52 | 6.01 | 6.50 | 7.00 | 7.50 | 8.02 | 8.53 | 9.54 | 10.6 | 11.6 | 12.6 | 13.6 |
| 0.30 | 3.49 | 3.89 | 4.32 | 4.76 | 5.22 | 5.70 | 6.18 | 6.67 | 7.18 | 7.69 | 8.20 | 9.21 | 10.2 | 11.3 | 12.3 | 13.3 |
| 0.40 | 3.10 | 3.45 | 3.84 | 4.25 | 4.68 | 5.13 | 5.60 | 6.07 | 6.56 | 7.06 | 7.57 | 8.56 | 9.57 | 10.6 | 11.6 | 12.7 |
| 0.50 | 2.75 | 3.07 | 3.42 | 3.81 | 4.22 | 4.65 | 5.10 | 5.56 | 6.03 | 6.52 | 7.01 | 7.96 | 8.94 | 9.96 | 11.0 | 12.0 |
| 0.60 | 2.46 | 2.75 | 3.08 | 3.44 | 3.83 | 4.24 | 4.67 | 5.11 | 5.58 | 6.05 | 6.52 | 7.43 | 8.38 | 9.37 | 10.4 | 11.4 |
| 0.70 | 2.21 | 2.48 | 2.78 | 3.12 | 3.49 | 3.88 | 4.30 | 4.73 | 5.17 | 5.62 | 6.08 | 6.96 | 7.87 | 8.83 | 9.81 | 10.8 |
| 0.80 | 2.01 | 2.25 | 2.53 | 2.85 | 3.20 | 3.57 | 3.97 | 4.39 | 4.81 | 5.25 | 5.69 | 6.54 | 7.42 | 8.34 | 9.29 | 10.3 |
| 0.90 | 1.83 | 2.06 | 2.32 | 2.62 | 2.95 | 3.31 | 3.69 | 4.08 | 4.49 | 4.91 | 5.33 | 6.16 | 7.01 | 7.89 | 8.81 | 9.76 |
| 1.0 | 1.68 | 1.89 | 2.13 | 2.42 | 2.73 | 3.08 | 3.44 | 3.81 | 4.20 | 4.60 | 5.01 | 5.81 | 6.63 | 7.48 | 8.38 | 9.30 |
| 1.2 | 1.44 | 1.62 | 1.84 | 2.10 | 2.38 | 2.69 | 3.02 | 3.36 | 3.71 | 4.08 | 4.46 | 5.20 | 5.97 | 6.77 | 7.60 | 8.47 |
| 1.4 | 1.25 | 1.41 | 1.61 | 1.84 | 2.10 | 2.38 | 2.68 | 2.99 | 3.32 | 3.65 | 4.00 | 4.69 | 5.41 | 6.17 | 6.95 | 7.76 |
| 1.6 | 1.11 | 1.25 | 1.43 | 1.64 | 1.88 | 2.13 | 2.40 | 2.69 | 2.99 | 3.30 | 3.62 | 4.27 | 4.94 | 5.65 | 6.38 | 7.15 |
| 1.8 | 0.996 | 1.13 | 1.29 | 1.48 | 1.70 | 1.93 | 2.18 | 2.44 | 2.72 | 3.00 | 3.30 | 3.90 | 4.53 | 5.20 | 5.89 | 6.62 |
| 2.0 | 0.902 | 1.02 | 1.17 | 1.35 | 1.55 | 1.76 | 1.99 | 2.23 | 2.49 | 2.75 | 3.03 | 3.59 | 4.18 | 4.81 | 5.46 | 6.15 |
| 2.2 | 0.824 | 0.934 | 1.07 | 1.24 | 1.42 | 1.62 | 1.83 | 2.06 | 2.29 | 2.54 | 2.80 | 3.32 | 3.88 | 4.47 | 5.09 | 5.74 |
| 2.4 | 0.758 | 0.860 | 0.990 | 1.14 | 1.31 | 1.49 | 1.69 | 1.90 | 2.12 | 2.36 | 2.60 | 3.09 | 3.62 | 4.17 | 4.76 | 5.37 |
| 2.6 | 0.702 | 0.797 | 0.918 | 1.06 | 1.22 | 1.39 | 1.57 | 1.77 | 1.98 | 2.19 | 2.42 | 2.89 | 3.38 | 3.91 | 4.46 | 5.05 |
| 2.8 | 0.653 | 0.742 | 0.855 | 0.987 | 1.14 | 1.30 | 1.47 | 1.66 | 1.85 | 2.05 | 2.27 | 2.71 | 3.18 | 3.67 | 4.20 | 4.76 |
| 3.0 | 0.611 | 0.694 | 0.801 | 0.925 | 1.06 | 1.22 | 1.38 | 1.55 | 1.74 | 1.93 | 2.13 | 2.55 | 2.99 | 3.47 | 3.97 | 4.50 |

[^38]| Table
 Coe for Eccentrically | | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with $R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$ | | | | | | | | | | | | | | | | |
| LRFD | | | | | | | | ASD | | | | | | | | |
| | $=\frac{}{\phi C}$ | $\frac{P_{u}}{C_{1} D l}$ | $D_{m i}$ | | ${ }_{1}$ | $=$ | $P_{u} C_{1} D$ | $C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l}$ | | | $D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l}$ | | | $l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$ | | |
| where
 $P=$ required force, P_{u} or P_{a}, kips
 $D=$ number of sixteenths-of-an-inch in the fillet weld size
 $l=$ characteristic length of weld group, in.
 $a=e_{x} / l$
 $e_{x}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in.
 $C=$ coefficient tabulated below
 $C_{1}=$ electrode strength coefficient from Table 8-3
 (1.0 for E70XX electrodes) | | | | | | | | | | | | | | | | |
| a | | | | | | | | | | | | | | | | |
| a | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | 1.2 | 1.4 | 1.6 | 1.8 | 2.0 |
| 0.00 | 5.21 | 5.58 | 6.01 | 6.45 | 6.89 | 7.33 | 7.76 | 8.20 | 8.64 | 9.07 | 9.51 | 10.4 | 11.3 | 12.1 | 13.0 | 13.9 |
| 0.10 | 4.86 | 5.29 | 5.73 | 6.19 | 6.65 | 7.12 | 7.59 | 8.06 | 8.52 | 8.98 | 9.43 | 10.3 | 11.2 | 12.1 | 13.0 | 13.9 |
| 0.15 | 4.61 | 5.04 | 5.48 | 5.93 | 6.40 | 6.88 | 7.37 | 7.86 | 8.34 | 8.81 | 9.28 | 10.2 | 11.1 | 12.0 | 12.9 | 13.8 |
| 0.20 | 4.36 | 4.80 | 5.23 | 5.67 | 6.14 | 6.63 | 7.13 | 7.62 | 8.12 | 8.61 | 9.10 | 10.1 | 11.0 | 11.9 | 12.8 | 13.7 |
| 0.25 | 4.13 | 4.56 | 4.99 | 5.43 | 5.89 | 6.37 | 6.87 | 7.38 | 7.89 | 8.39 | 8.89 | 9.87 | 10.8 | 11.8 | 12.7 | 13.6 |
| 0.30 | 3.93 | 4.34 | 4.76 | 5.19 | 5.64 | 6.12 | 6.62 | 7.13 | 7.65 | 8.16 | 8.67 | 9.67 | 10.6 | 11.6 | 12.5 | 13.5 |
| 0.40 | 3.58 | 3.95 | 4.35 | 4.77 | 5.20 | 5.66 | 6.15 | 6.66 | 7.17 | 7.69 | 8.21 | 9.24 | 10.2 | 11.2 | 12.2 | 13.2 |
| 0.50 | 3.26 | 3.60 | 3.98 | 4.39 | 4.82 | 5.27 | 5.74 | 6.24 | 6.75 | 7.27 | 7.78 | 8.81 | 9.83 | 10.8 | 11.8 | 12.8 |
| 0.60 | 2.98 | 3.30 | 3.66 | 4.05 | 4.47 | 4.92 | 5.39 | 5.86 | 6.36 | 6.87 | 7.38 | 8.41 | 9.44 | 10.4 | 11.4 | 12.4 |
| 0.70 | 2.74 | 3.04 | 3.38 | 3.75 | 4.17 | 4.60 | 5.06 | 5.52 | 6.00 | 6.50 | 7.01 | 8.03 | 9.05 | 10.1 | 11.1 | 12.1 |
| 0.80 | 2.52 | 2.81 | 3.13 | 3.49 | 3.89 | 4.31 | 4.75 | 5.21 | 5.68 | 6.16 | 6.65 | 7.66 | 8.68 | 9.70 | 10.7 | 11.7 |
| 0.90 | 2.34 | 2.60 | 2.91 | 3.26 | 3.64 | 4.05 | 4.48 | 4.92 | 5.38 | 5.85 | 6.33 | 7.32 | 8.32 | 9.32 | 10.3 | 11.3 |
| 1.0 | 2.17 | 2.42 | 2.71 | 3.05 | 3.42 | 3.82 | 4.23 | 4.66 | 5.11 | 5.56 | 6.03 | 6.99 | 7.98 | 8.96 | 9.95 | 10.9 |
| 1.2 | 1.89 | 2.12 | 2.39 | 2.70 | 3.04 | 3.41 | 3.79 | 4.20 | 4.61 | 5.05 | 5.49 | 6.40 | 7.33 | 8.28 | 9.24 | 10.2 |
| 1.4 | 1.67 | 1.88 | 2.12 | 2.41 | 2.73 | 3.07 | 3.43 | 3.80 | 4.20 | 4.60 | 5.02 | 5.89 | 6.76 | 7.66 | 8.60 | 9.55 |
| 1.6 | 1.50 | 1.68 | 1.91 | 2.18 | 2.47 | 2.78 | 3.12 | 3.47 | 3.84 | 4.22 | 4.62 | 5.44 | 6.26 | 7.12 | 8.01 | 8.93 |
| 1.8 | 1.35 | 1.52 | 1.73 | 1.98 | 2.25 | 2.54 | 2.86 | 3.19 | 3.53 | 3.89 | 4.26 | 5.04 | 5.82 | 6.63 | 7.49 | 8.37 |
| 2.0 | 1.23 | 1.39 | 1.59 | 1.81 | 2.07 | 2.34 | 2.63 | 2.94 | 3.26 | 3.60 | 3.96 | 4.69 | 5.44 | 6.20 | 7.02 | 7.86 |
| 2.2 | 1.13 | 1.28 | 1.46 | 1.67 | 1.91 | 2.16 | 2.44 | 2.73 | 3.03 | 3.35 | 3.68 | 4.38 | 5.10 | 5.82 | 6.59 | 7.41 |
| 2.4 | 1.04 | 1.18 | 1.35 | 1.55 | 1.77 | 2.01 | 2.27 | 2.54 | 2.83 | 3.13 | 3.44 | 4.10 | 4.79 | 5.49 | 6.22 | 6.99 |
| 2.6 | 0.970 | 1.10 | 1.26 | 1.45 | 1.65 | 1.88 | 2.12 | 2.38 | 2.65 | 2.94 | 3.23 | 3.86 | 4.51 | 5.18 | 5.88 | 6.62 |
| 2.8 | 0.905 | 1.02 | 1.18 | 1.35 | 1.55 | 1.76 | 1.99 | 2.23 | 2.49 | 2.76 | 3.04 | 3.64 | 4.26 | 4.90 | 5.57 | 6.28 |
| 3.0 | 0.848 | 0.961 | 1.10 | 1.27 | 1.46 | 1.66 | 1.88 | 2.11 | 2.35 | 2.61 | 2.87 | 3.44 | 4.04 | 4.65 | 5.29 | 5.97 |

[^39]| Table 8-6 (continued) Coefficients, C, rically Loaded Weld Groups Angle $=75^{\circ}$ | | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with$R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$ | | | | | | | | | | | | | | | | |
| LRFD | | | | | | | | ASD | | | | | | | | |
| $C_{\text {min }}=\frac{P_{u}}{\phi C_{1} D l} \quad D_{\text {min }}=\frac{P_{u}}{\phi C C_{1} l} \quad l_{\text {min }}=\frac{P_{u}}{\phi C C_{1} D}$ | | | $D_{\text {min }}=\frac{P_{u}}{\phi C C_{1} l} \quad l_{\text {min }}=\frac{P_{u}}{\phi C C_{1} D}$ | | | | | $C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l}$ | | | $D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l} \quad l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$ | | | | | |
| where
 $P=$ required force, P_{u} or P_{a}, kips
 $D=$ number of sixteenths-of-an-inch in the fillet weld size
 $l=$ characteristic length of weld group, in.
 $a=e_{x} / l$
 $e_{x}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in.
 $C=$ coefficient tabulated below
 $C_{1}=$ electrode strength coefficient from Table 8-3
 (1.0 for E70XX electrodes) | | | | | | | | | | | | | | | | |
| a $\begin{aligned} & \text { a }\end{aligned}$ | | | | | | | | | | | | | | | | |
| | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | 1.2 | 1.4 | 1.6 | 1.8 | 2.0 |
| 0.00 | 5.47 | 5.83 | 6.22 | 6.60 | 6.99 | 7.37 | 7.76 | 8.14 | 8.53 | 8.91 | 9.30 | 10.1 | 10.8 | 11.6 | 12.4 | 13.1 |
| 0.10 | 5.17 | 5.55 | 5.97 | 6.41 | 6.84 | 7.26 | 7.67 | 8.07 | 8.47 | 8.86 | 9.25 | 10.0 | 10.8 | 11.6 | 12.3 | 13.1 |
| 0.15 | 5.00 | 5.38 | 5.80 | 6.25 | 6.70 | 7.14 | 7.57 | 7.99 | 8.40 | 8.80 | 9.20 | 9.98 | 10.8 | 11.5 | 12.3 | 13.1 |
| 0.20 | 4.85 | 5.22 | 5.64 | 6.09 | 6.56 | 7.01 | 7.46 | 7.89 | 8.31 | 8.72 | 9.13 | 9.93 | 10.7 | 11.5 | 12.3 | 13.1 |
| 0.25 | 4.71 | 5.07 | 5.48 | 5.94 | 6.41 | 6.87 | 7.33 | 7.78 | 8.21 | 8.63 | 9.05 | 9.87 | 10.7 | 11.5 | 12.2 | 13.0 |
| 0.30 | 4.57 | 4.94 | 5.34 | 5.79 | 6.26 | 6.73 | 7.20 | 7.66 | 8.10 | 8.54 | 8.96 | 9.79 | 10.6 | 11.4 | 12.2 | 13.0 |
| 0.40 | 4.32 | 4.68 | 5.07 | 5.52 | 5.99 | 6.48 | 6.95 | 7.42 | 7.88 | 8.32 | 8.76 | 9.62 | 10.5 | 11.3 | 12.1 | 12.9 |
| 0.50 | 4.09 | 4.45 | 4.84 | 5.27 | 5.74 | 6.23 | 6.72 | 7.20 | 7.67 | 8.13 | 8.58 | 9.44 | 10.3 | 11.1 | 11.9 | 12.7 |
| 0.60 | 3.88 | 4.23 | 4.62 | 5.05 | 5.51 | 5.99 | 6.49 | 6.98 | 7.46 | 7.94 | 8.40 | 9.28 | 10.1 | 11.0 | 11.8 | 12.6 |
| 0.70 | 3.69 | 4.03 | 4.41 | 4.84 | 5.29 | 5.77 | 6.26 | 6.76 | 7.25 | 7.74 | 8.21 | 9.12 | 10.0 | 10.8 | 11.7 | 12.5 |
| 0.80 | 3.51 | 3.84 | 4.22 | 4.64 | 5.09 | 5.56 | 6.05 | 6.55 | 7.04 | 7.54 | 8.02 | 8.96 | 9.85 | 10.7 | 11.5 | 12.4 |
| 0.90 | 3.34 | 3.66 | 4.03 | 4.45 | 4.90 | 5.36 | 5.84 | 6.34 | 6.84 | 7.34 | 7.83 | 8.78 | 9.70 | 10.6 | 11.4 | 12.3 |
| 1.0 | 3.18 | 3.49 | 3.86 | 4.27 | 4.72 | 5.17 | 5.64 | 6.14 | 6.64 | 7.14 | 7.63 | 8.60 | 9.54 | 10.4 | 11.3 | 12.2 |
| 1.2 | 2.90 | 3.19 | 3.55 | 3.95 | 4.38 | 4.82 | 5.28 | 5.76 | 6.25 | 6.75 | 7.25 | 8.24 | 9.21 | 10.1 | 11.0 | 11.9 |
| 1.4 | 2.65 | 2.93 | 3.27 | 3.65 | 4.07 | 4.51 | 4.95 | 5.41 | 5.89 | 6.38 | 6.88 | 7.88 | 8.86 | 9.82 | 10.8 | 11.7 |
| 1.6 | 2.44 | 2.71 | 3.03 | 3.40 | 3.79 | 4.22 | 4.65 | 5.10 | 5.56 | 6.04 | 6.53 | 7.52 | 8.51 | 9.49 | 10.4 | 11.4 |
| 1.8 | 2.26 | 2.51 | 2.82 | 3.17 | 3.55 | 3.96 | 4.38 | 4.82 | 5.26 | 5.73 | 6.21 | 7.19 | 8.17 | 9.16 | 10.1 | 11.1 |
| 2.0 | 2.09 | 2.33 | 2.63 | 2.96 | 3.33 | 3.72 | 4.13 | 4.55 | 4.99 | 5.44 | 5.90 | 6.86 | 7.84 | 8.83 | 9.80 | 10.8 |
| 2.2 | 1.95 | 2.18 | 2.46 | 2.78 | 3.13 | 3.50 | 3.90 | 4.31 | 4.74 | 5.17 | 5.62 | 6.56 | 7.53 | 8.50 | 9.47 | 10.4 |
| 2.4 | 1.82 | 2.04 | 2.31 | 2.61 | 2.95 | 3.31 | 3.69 | 4.09 | 4.50 | 4.93 | 5.36 | 6.28 | 7.22 | 8.19 | 9.16 | 10.1 |
| 2.6 | 1.71 | 1.92 | 2.18 | 2.47 | 2.79 | 3.13 | 3.50 | 3.89 | 4.29 | 4.70 | 5.12 | 6.01 | 6.93 | 7.88 | 8.85 | 9.81 |
| 2.8 | 1.61 | 1.81 | 2.06 | 2.34 | 2.64 | 2.97 | 3.33 | 3.70 | 4.09 | 4.49 | 4.90 | 5.76 | 6.66 | 7.60 | 8.55 | 9.51 |
| 3.0 | 1.52 | 1.71 | 1.95 | 2.21 | 2.51 | 2.83 | 3.17 | 3.53 | 3.90 | 4.29 | 4.69 | 5.53 | 6.41 | 7.32 | 8.26 | 9.21 |

[^40]

[^41]| Table
 Coe for Eccentricall | | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with $R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$ | | | | | | | | | | | | | | | | |
| LRFD | | | | | | | | ASD | | | | | | | | |
| $C_{\text {min }}=\frac{P_{u}}{\phi C_{1} D l} \quad D_{\text {min }}=\frac{P_{u}}{\phi C C_{1} l} \quad l_{\text {min }}=\frac{P_{u}}{\phi C C_{1} D}$ | | | $D_{\text {min }}=\frac{P_{u}}{\phi C C_{1} l} \quad l_{\text {min }}=\frac{P_{u}}{\phi C C_{1} D}$ | | | | | $C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l}$ | | | $D_{\text {min }}=\frac{\Omega P}{C C}$ | | $l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$ | | | |
| where
 $P=$ required force, P_{u} or P_{a}, kips
 $D=$ number of sixteenths-of-an-inch in the fillet weld size
 $l=$ characteristic length of weld group, in.
 $a=e_{X} / l$
 $e_{X}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in.
 $C=$ coefficient tabulated below
 $C_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes) | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |
| a | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | 1.2 | 1.4 | 1.6 | 1.8 | 2.0 |
| 0.00 | 5.47 | 5.83 | 6.22 | 6.60 | 6.99 | 7.37 | 7.76 | 8.14 | 8.53 | 8.91 | 9.30 | 10.1 | 10.8 | 11.6 | 12.4 | 13.1 |
| 0.10 | 4.38 | 4.75 | 5.14 | 5.59 | 6.06 | 6.54 | 7.02 | 7.48 | 7.93 | 8.38 | 8.82 | 9.67 | 10.5 | 11.3 | 12.1 | 12.9 |
| 0.15 | 3.97 | 4.32 | 4.71 | 5.13 | 5.60 | 6.09 | 6.58 | 7.07 | 7.55 | 8.01 | 8.47 | 9.35 | 10.2 | 11.0 | 11.8 | 12.7 |
| 0.20 | 3.60 | 3.94 | 4.32 | 4.75 | 5.19 | 5.67 | 6.16 | 6.66 | 7.16 | 7.64 | 8.12 | 9.05 | 9.93 | 10.8 | 11.6 | 12.4 |
| 0.25 | 3.29 | 3.60 | 3.98 | 4.39 | 4.84 | 5.29 | 5.77 | 6.27 | 6.77 | 7.27 | 7.76 | 8.72 | 9.65 | 10.5 | 11.4 | 12.2 |
| 0.30 | 3.01 | 3.31 | 3.67 | 4.07 | 4.51 | 4.95 | 5.42 | 5.91 | 6.40 | 6.90 | 7.40 | 8.39 | 9.34 | 10.3 | 11.2 | 12.0 |
| 0.40 | 2.55 | 2.82 | 3.16 | 3.53 | 3.94 | 4.37 | 4.81 | 5.26 | 5.74 | 6.22 | 6.72 | 7.71 | 8.70 | 9.67 | 10.6 | 11.5 |
| 0.50 | 2.20 | 2.45 | 2.75 | 3.10 | 3.47 | 3.87 | 4.30 | 4.73 | 5.17 | 5.63 | 6.10 | 7.08 | 8.06 | 9.05 | 10.0 | 11.0 |
| 0.60 | 1.92 | 2.15 | 2.43 | 2.75 | 3.09 | 3.46 | 3.86 | 4.27 | 4.69 | 5.12 | 5.57 | 6.50 | 7.46 | 8.44 | 9.41 | 10.4 |
| 0.70 | 1.71 | 1.91 | 2.17 | 2.46 | 2.78 | 3.12 | 3.49 | 3.88 | 4.28 | 4.69 | 5.11 | 5.99 | 6.92 | 7.87 | 8.83 | 9.79 |
| 0.80 | 1.53 | 1.72 | 1.95 | 2.22 | 2.52 | 2.84 | 3.18 | 3.54 | 3.92 | 4.31 | 4.71 | 5.54 | 6.42 | 7.34 | 8.28 | 9.23 |
| 0.90 | 1.38 | 1.56 | 1.78 | 2.03 | 2.30 | 2.60 | 2.92 | 3.25 | 3.61 | 3.98 | 4.35 | 5.15 | 5.99 | 6.86 | 7.77 | 8.70 |
| 1.0 | 1.26 | 1.42 | 1.63 | 1.86 | 2.12 | 2.39 | 2.69 | 3.01 | 3.34 | 3.69 | 4.05 | 4.80 | 5.59 | 6.44 | 7.31 | 8.20 |
| 1.2 | 1.07 | 1.21 | 1.39 | 1.59 | 1.82 | 2.06 | 2.32 | 2.60 | 2.90 | 3.21 | 3.53 | 4.21 | 4.93 | 5.70 | 6.48 | 7.30 |
| 1.4 | 0.931 | 1.05 | 1.21 | 1.39 | 1.59 | 1.81 | 2.04 | 2.29 | 2.55 | 2.83 | 3.12 | 3.74 | 4.40 | 5.09 | 5.80 | 6.56 |
| 1.6 | 0.822 | 0.932 | 1.07 | 1.23 | 1.41 | 1.61 | 1.82 | 2.04 | 2.28 | 2.53 | 2.79 | 3.36 | 3.96 | 4.60 | 5.25 | 5.93 |
| 1.8 | 0.735 | 0.834 | 0.961 | 1.11 | 1.27 | 1.45 | 1.64 | 1.84 | 2.06 | 2.29 | 2.53 | 3.04 | 3.59 | 4.18 | 4.78 | 5.42 |
| 2.0 | 0.665 | 0.755 | 0.870 | 1.00 | 1.15 | 1.31 | 1.49 | 1.68 | 1.87 | 2.08 | 2.30 | 2.78 | 3.29 | 3.83 | 4.39 | 4.98 |
| 2.2 | 0.607 | 0.690 | 0.795 | 0.918 | 1.05 | 1.20 | 1.37 | 1.54 | 1.72 | 1.91 | 2.12 | 2.55 | 3.03 | 3.53 | 4.05 | 4.60 |
| 2.4 | 0.558 | 0.634 | 0.732 | 0.845 | 0.972 | 1.11 | 1.26 | 1.42 | 1.59 | 1.77 | 1.96 | 2.36 | 2.80 | 3.27 | 3.76 | 4.27 |
| 2.6 | 0.516 | 0.587 | 0.678 | 0.783 | 0.901 | 1.03 | 1.17 | 1.32 | 1.47 | 1.64 | 1.82 | 2.20 | 2.61 | 3.05 | 3.50 | 3.99 |
| 2.8 | 0.480 | 0.546 | 0.631 | 0.730 | 0.840 | 0.960 | 1.09 | 1.23 | 1.38 | 1.53 | 1.70 | 2.05 | 2.44 | 2.85 | 3.28 | 3.73 |
| 3.0 | 0.449 | 0.511 | 0.591 | 0.683 | 0.786 | 0.899 | 1.02 | 1.15 | 1.29 | 1.44 | 1.59 | 1.93 | 2.29 | 2.67 | 3.08 | 3.51 |
| Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4. | | | | | | | | | | | | | | | | |

Table 8-7 (continued) Coefficients, C, rically Loaded Weld Groups Angle $=30^{\circ}$																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with$R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$																
LRFD								ASD								
$C_{\text {min }}=\frac{P_{u}}{\phi C_{1} D l} \quad D_{\text {min }}=\frac{P_{u}}{\phi C C_{1} l} \quad l_{\text {min }}=\frac{P_{u}}{\phi C C_{1} D}$			$D_{\text {min }}=\frac{P_{u}}{\phi C C_{1} l} \quad l_{\text {min }}=\frac{P_{u}}{\phi C C_{1} D}$					$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l}$			$D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l} \quad l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$					
where $P=$ required force, P_{u} or P_{a}, kips $D=$ number of sixteenths-of-an-inch in the fillet weld size $l=$ characteristic length of weld group, in. $a=e_{x} / l$ $e_{x}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in. $C=$ coefficient tabulated below $\mathcal{C}_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes)																
3 ${ }^{\text {a }}$																
a	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0.00	5.21	5.58	6.01	6.45	6.89	7.33	7.76	8.20	8.64	9.07	9.51	10.4	11.3	12.1	13.0	13.9
0.10	4.49	4.93	5.36	5.81	6.28	6.77	7.26	7.75	8.24	8.72	9.20	10.1	11.1	12.0	12.9	13.8
0.15	4.09	4.51	4.94	5.38	5.84	6.32	6.82	7.33	7.84	8.35	8.85	9.83	10.8	11.7	12.7	13.6
0.20	3.76	4.15	4.56	4.99	5.43	5.90	6.40	6.91	7.42	7.94	8.46	9.47	10.5	11.4	12.4	13.3
0.25	3.47	3.83	4.22	4.64	5.07	5.52	6.01	6.51	7.03	7.55	8.06	9.09	10.1	11.1	12.1	13.0
0.30	3.21	3.54	3.92	4.32	4.75	5.20	5.67	6.16	6.67	7.19	7.70	8.73	9.75	10.8	11.7	12.7
0.40	2.76	3.06	3.40	3.77	4.19	4.62	5.08	5.55	6.03	6.53	7.03	8.06	9.08	10.1	11.1	12.1
0.50	2.40	2.67	2.98	3.33	3.72	4.14	4.57	5.02	5.48	5.95	6.44	7.43	8.44	9.45	10.4	11.4
0.60	2.11	2.35	2.64	2.98	3.34	3.73	4.14	4.56	5.00	5.45	5.91	6.87	7.85	8.82	9.81	10.8
0.70	1.88	2.10	2.37	2.68	3.02	3.38	3.77	4.17	4.59	5.02	5.46	6.37	7.29	8.24	9.20	10.2
0.80	1.69	1.89	2.14	2.43	2.75	3.09	3.45	3.83	4.22	4.63	5.05	5.92	6.80	7.71	8.64	9.59
0.90	1.53	1.72	1.95	2.22	2.52	2.84	3.18	3.53	3.91	4.30	4.70	5.52	6.36	7.23	8.13	9.05
1.0	1.40	1.57	1.79	2.04	2.32	2.62	2.94	3.28	3.63	4.00	4.38	5.17	5.96	6.79	7.66	8.56
1.2	1.19	1.34	1.53	1.76	2.00	2.27	2.55	2.85	3.17	3.50	3.85	4.56	5.30	6.05	6.84	7.68
1.4	1.03	1.17	1.34	1.54	1.76	2.00	2.25	2.52	2.81	3.11	3.42	4.07	4.75	5.45	6.17	6.94
1.6	0.914	1.03	1.19	1.37	1.56	1.78	2.01	2.25	2.51	2.79	3.07	3.67	4.30	4.94	5.61	6.32
1.8	0.818	0.927	1.07	1.23	1.41	1.60	1.81	2.04	2.27	2.52	2.78	3.33	3.92	4.51	5.14	5.80
2.0	0.740	0.840	0.966	1.11	1.28	1.46	1.65	1.86	2.07	2.30	2.54	3.05	3.59	4.15	4.74	5.35
2.2	0.675	0.767	0.884	1.02	1.17	1.34	1.51	1.70	1.90	2.12	2.34	2.81	3.31	3.83	4.39	4.97
2.4	0.621	0.706	0.814	0.939	1.08	1.23	1.40	1.57	1.76	1.96	2.16	2.61	3.07	3.56	4.08	4.63
2.6	0.575	0.653	0.754	0.871	1.00	1.14	1.30	1.46	1.64	1.82	2.01	2.43	2.87	3.32	3.81	4.33
2.8	0.535	0.608	0.702	0.812	0.934	1.07	1.21	1.37	1.53	1.70	1.88	2.27	2.68	3.11	3.57	4.06
3.0	0.500	0.569	0.657	0.760	0.874	1.00	1.14	1.28	1.43	1.59	1.77	2.13	2.52	2.93	3.36	3.83
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.																

Table Coe rically																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with$R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$																
LRFD								ASD								
$C_{\text {min }}=\frac{P_{u}}{\phi C_{1} D l} \quad D_{\text {min }}=\frac{P_{u}}{\phi C C_{1} l} \quad l_{\text {min }}=\frac{P_{u}}{\phi C C_{1} D}$			$D_{\text {min }}=\frac{P_{u}}{\phi C C_{1} l} \quad l_{\text {min }}=\frac{P_{u}}{\phi C C_{1} D}$					$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l}$			$D_{\text {min }}=\frac{\Omega P}{C C}$		$l_{\min }=\frac{\Omega P_{a}}{C C_{1} D}$			
wher $P=$ $D=$ $l=$ $a=$ $e_{x}=$ $C=$ $c_{1}=$	required number characte e_{x} / l horizonta with resp coefficie 1.0 for	force, P of sixtee ristic len al compo pect to nt tabula strength E70XX e	P_{u} or P_{a}, enths-of ngth of onent of centroid ated bel th coeffic lectrode	kips f-an-inch weld gro f eccentri of weld low ficient from es)	in the oup, in. ricity of group, Tab	fillet we P in. e 8-3	ld size		\mathfrak{Y}		1	e_{x}		1		
a									k							
a	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0.00	4.82	5.14	5.61	6.08	6.54	7.01	7.48	7.95	8.41	8.88	9.35	10.3	11.2	12.2	13.1	14.0
0.10	4.49	4.99	5.48	5.96	6.45	6.94	7.43	7.92	8.41	8.90	9.39	10.4	11.4	12.3	13.3	14.3
0.15	4.18	4.69	5.19	5.67	6.16	6.65	7.15	7.65	8.15	8.65	9.14	10.1	11.1	12.1	13.1	14.1
0.20	3.92	4.39	4.87	5.36	5.84	6.33	6.83	7.33	7.84	8.34	8.85	9.86	10.9	11.9	12.9	13.9
0.25	3.70	4.13	4.58	5.05	5.52	6.01	6.50	7.00	7.50	8.02	8.53	9.54	10.6	11.6	12.6	13.6
0.30	3.49	3.89	4.32	4.76	5.22	5.70	6.18	6.67	7.18	7.69	8.20	9.21	10.2	11.3	12.3	13.3
0.40	3.10	3.45	3.84	4.25	4.68	5.13	5.60	6.07	6.56	7.06	7.57	8.56	9.57	10.6	11.6	12.7
0.50	2.75	3.07	3.42	3.81	4.22	4.65	5.10	5.56	6.03	6.52	7.01	7.96	8.94	9.96	11.0	12.0
0.60	2.46	2.75	3.08	3.44	3.83	4.24	4.67	5.11	5.58	6.05	6.52	7.43	8.38	9.37	10.4	11.4
0.70	2.21	2.48	2.78	3.12	3.49	3.88	4.30	4.73	5.17	5.62	6.08	6.96	7.87	8.83	9.81	10.8
0.80	2.01	2.25	2.53	2.85	3.20	3.57	3.97	4.39	4.81	5.25	5.69	6.54	7.42	8.34	9.29	10.3
0.90	1.83	2.06	2.32	2.62	2.95	3.31	3.69	4.08	4.49	4.91	5.33	6.16	7.01	7.89	8.81	9.76
1.0	1.68	1.89	2.13	2.42	2.73	3.08	3.44	3.81	4.20	4.60	5.01	5.81	6.63	7.48	8.38	9.30
1.2	1.44	1.62	1.84	2.10	2.38	2.69	3.02	3.36	3.71	4.08	4.46	5.20	5.97	6.77	7.60	8.47
1.4	1.25	1.41	1.61	1.84	2.10	2.38	2.68	2.99	3.32	3.65	4.00	4.69	5.41	6.17	6.95	7.76
1.6	1.11	1.25	1.43	1.64	1.88	2.13	2.40	2.69	2.99	3.30	3.62	4.27	4.94	5.65	6.38	7.15
1.8	0.996	1.13	1.29	1.48	1.70	1.93	2.18	2.44	2.72	3.00	3.30	3.90	4.53	5.20	5.89	6.62
2.0	0.902	1.02	1.17	1.35	1.55	1.76	1.99	2.23	2.49	2.75	3.03	3.59	4.18	4.81	5.46	6.15
2.2	0.824	0.934	1.07	1.24	1.42	1.62	1.83	2.06	2.29	2.54	2.80	3.32	3.88	4.47	5.09	5.74
2.4	0.758	0.860	0.990	1.14	1.31	1.49	1.69	1.90	2.12	2.36	2.60	3.09	3.62	4.17	4.76	5.37
2.6	0.702	0.797	0.918	1.06	1.22	1.39	1.57	1.77	1.98	2.19	2.42	2.89	3.38	3.91	4.46	5.05
2.8	0.653	0.742	0.855	0.987	1.14	1.30	1.47	1.66	1.85	2.05	2.27	2.71	3.18	3.67	4.20	4.76
3.0	0.611	0.694	0.801	0.925	1.06	1.22	1.38	1.55	1.74	1.93	2.13	2.55	2.99	3.47	3.97	4.50
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.																

Table 8-7 (continued) Coefficients, C, rically Loaded Weld Groups Angle $=60^{\circ}$																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with$R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$																
LRFD								ASD								
$C_{\text {min }}=\frac{P_{u}}{\phi C_{1} D l} \quad D_{\text {min }}=\frac{P_{u}}{\phi C C_{1} l} \quad l_{\text {min }}=\frac{P_{u}}{\phi C C_{1} D}$			$D_{\text {min }}=\frac{P_{u}}{\phi C C_{1} l} \quad l_{\text {min }}=\frac{P_{u}}{\phi C C_{1} D}$					$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l}$			$D_{\text {min }}=\frac{\Omega P}{C C}$		$l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$			
where $P=$ required force, P_{u} or P_{a}, kips $D=$ number of sixteenths-of-an-inch in the fillet weld size $l=$ characteristic Iength of weld group, in. $a=e_{x} / l$ $e_{x}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in. $C=$ coefficient tabulated below $C_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes)																
a	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7 0.8		0.9	1.0	1.4		1.6	1.8 2.0	
0.00	4.37	4.89	5.40	5.91	6.43	6.94	7.46	7.97	8.48	9.00	9.51	10.5	11.6	12.6	13.6	14.7
0.10	4.26	4.79	5.31	5.82	6.34	6.85	7.37	7.88	8.40	8.91	9.43	10.5	11.5	12.5	13.6	14.6
0.15	4.12	4.67	5.19	5.71	6.22	6.73	7.24	7.75	8.26	8.77	9.28	10.3	11.3	12.4	13.4	14.5
0.20	3.97	4.51	5.05	5.57	6.07	6.58	7.08	7.58	8.09	8.59	9.10	10.1	11.1	12.2	13.2	14.2
0.25	3.86	4.36	4.88	5.39	5.90	6.40	6.90	7.39	7.89	8.39	8.89	9.90	10.9	11.9	13.0	14.0
0.30	3.74	4.22	4.72	5.22	5.72	6.21	6.70	7.19	7.68	8.17	8.67	9.67	10.7	11.7	12.7	13.8
0.40	3.51	3.94	4.40	4.88	5.36	5.84	6.32	6.79	7.25	7.73	8.21	9.19	10.2	11.2	12.2	13.3
0.50	3.26	3.66	4.09	4.54	5.00	5.47	5.94	6.40	6.86	7.32	7.78	8.73	9.70	10.7	11.7	12.7
0.60	3.02	3.39	3.79	4.21	4.66	5.11	5.57	6.03	6.48	6.93	7.38	8.30	9.25	10.2	11.2	12.2
0.70	2.80	3.14	3.51	3.91	4.33	4.77	5.23	5.68	6.12	6.56	7.01	7.91	8.84	9.78	10.8	11.8
0.80	2.59	2.91	3.26	3.64	4.04	4.47	4.90	5.35	5.79	6.22	6.65	7.54	8.45	9.38	10.3	11.3
0.90	2.40	2.70	3.03	3.39	3.78	4.19	4.61	5.05	5.48	5.90	6.33	7.20	8.09	9.01	9.95	10.9
1.0	2.23	2.51	2.82	3.17	3.54	3.93	4.34	4.77	5.20	5.61	6.03	6.88	7.76	8.67	9.59	10.5
1.2	1.94	2.19	2.47	2.79	3.13	3.50	3.88	4.28	4.69	5.09	5.49	6.31	7.15	8.02	8.92	9.84
1.4	1.72	1.94	2.19	2.48	2.80	3.14	3.50	3.88	4.27	4.64	5.02	5.80	6.61	7.45	8.31	9.20
1.6	1.53	1.73	1.96	2.23	2.52	2.85	3.19	3.54	3.90	4.26	4.62	5.36	6.13	6.94	7.77	8.62
1.8	1.38	1.56	1.77	2.02	2.30	2.60	2.92	3.25	3.59	3.92	4.26	4.97	5.71	6.48	7.28	8.10
2.0	1.25	1.42	1.62	1.85	2.11	2.39	2.69	3.00	3.32	3.63	3.96	4.62	5.33	6.07	6.83	7.63
2.2	1.15	1.30	1.49	1.70	1.94	2.21	2.49	2.78	3.08	3.38	3.68	4.32	4.99	5.70	6.43	7.20
2.4	1.06	1.20	1.37	1.58	1.80	2.05	2.31	2.59	2.87	3.15	3.44	4.05	4.69	5.37	6.07	6.81
2.6	0.983	1.11	1.28	1.47	1.68	1.91	2.16	2.42	2.69	2.96	3.23	3.81	4.42	5.07	5.75	6.45
2.8	0.917	1.04	1.19	1.37	1.57	1.79	2.03	2.27	2.53	2.78	3.04	3.59	4.18	4.80	5.45	6.13
3.0	0.858	0.973	1.12	1.29	1.48	1.69	1.91	2.14	2.38	2.62	2.87	3.40	3.96	4.55	5.18	5.84

[^42]| Table 8-7 (continued) Coefficients, C, rically Loaded Weld Groups Angle $=75^{\circ}$ | | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with$R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$ | | | | | | | | | | | | | | | | |
| LRFD | | | | | | | | ASD | | | | | | | | |
| | ¢ ${ }_{\text {c }}$ | $P_{u}{ }_{1}{ }^{\text {Dl }}$ | $D_{\text {min }}$ | $=\frac{}{\phi C}$ | $P_{u} C_{1} l$ | $=\frac{}{\phi}$ | $\frac{P_{u}}{C C_{1} D}$ | $C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l} \quad D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l} \quad l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$ | | | | | | | | |
| where
 $P=$ required force, P_{u} or P_{a}, kips
 $D=$ number of sixteenths-of-an-inch in the fillet weld size
 $l=$ characteristic length of weld group, in.
 $a=e_{x} / l$
 $e_{x}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in.
 $c=$ coefficient tabulated below
 $C_{1}=$ electrode strength coeficieient from Table 8-3
 (1.0 for E70XX electrodes) | | | | | | | | | | | | | | | | |
| $3{ }^{3}$ | | | | | | | | | | | | | | | | |
| a | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | 1.2 | 1.4 | 1.6 | 1.8 | 2.0 |
| 0.00 | 3.96 | 4.39 | 4.94 | 5.48 | 6.03 | 6.57 | 7.12 | 7.66 | 8.21 | 8.75 | 9.30 | 10.4 | 11.5 | 12.6 | 13.7 | 14.7 |
| 0.10 | 3.82 | 4.36 | 4.90 | 5.44 | 5.99 | 6.53 | 7.07 | 7.62 | 8.16 | 8.70 | 9.25 | 10.3 | 11.4 | 12.5 | 13.6 | 14.7 |
| 0.15 | 3.85 | 4.32 | 4.86 | 5.41 | 5.95 | 6.49 | 7.03 | 7.57 | 8.11 | 8.65 | 9.20 | 10.3 | 11.4 | 12.4 | 13.5 | 14.6 |
| 0.20 | 3.84 | 4.26 | 4.81 | 5.36 | 5.90 | 6.44 | 6.98 | 7.52 | 8.05 | 8.59 | 9.13 | 10.2 | 11.3 | 12.4 | 13.4 | 14.5 |
| 0.25 | 3.83 | 4.23 | 4.75 | 5.30 | 5.84 | 6.38 | 6.91 | 7.45 | 7.98 | 8.52 | 9.05 | 10.1 | 11.2 | 12.3 | 13.3 | 14.4 |
| 0.30 | 3.82 | 4.22 | 4.72 | 5.24 | 5.77 | 6.30 | 6.84 | 7.37 | 7.90 | 8.43 | 8.96 | 10.0 | 11.1 | 12.1 | 13.2 | 14.3 |
| 0.40 | 3.78 | 4.21 | 4.68 | 5.18 | 5.68 | 6.18 | 6.69 | 7.21 | 7.72 | 8.24 | 8.76 | 9.81 | 10.9 | 11.9 | 13.0 | 14.0 |
| 0.50 | 3.72 | 4.17 | 4.63 | 5.11 | 5.59 | 6.08 | 6.57 | 7.07 | 7.57 | 8.07 | 8.58 | 9.59 | 10.6 | 11.7 | 12.7 | 13.7 |
| 0.60 | 3.65 | 4.10 | 4.56 | 5.02 | 5.49 | 5.96 | 6.44 | 6.92 | 7.41 | 7.90 | 8.40 | 9.39 | 10.4 | 11.4 | 12.4 | 13.5 |
| 0.70 | 3.56 | 4.00 | 4.46 | 4.91 | 5.37 | 5.83 | 6.30 | 6.77 | 7.25 | 7.73 | 8.21 | 9.19 | 10.2 | 11.2 | 12.2 | 13.2 |
| 0.80 | 3.46 | 3.89 | 4.34 | 4.78 | 5.23 | 5.69 | 6.14 | 6.61 | 7.07 | 7.54 | 8.02 | 8.98 | 9.96 | 10.9 | 11.9 | 12.9 |
| 0.90 | 3.35 | 3.76 | 4.20 | 4.65 | 5.09 | 5.54 | 5.98 | 6.44 | 6.90 | 7.36 | 7.83 | 8.77 | 9.74 | 10.7 | 11.7 | 12.7 |
| 1.0 | 3.23 | 3.64 | 4.06 | 4.51 | 4.94 | 5.38 | 5.82 | 6.27 | 6.72 | 7.17 | 7.63 | 8.57 | 9.52 | 10.5 | 11.5 | 12.5 |
| 1.2 | 3.00 | 3.38 | 3.79 | 4.21 | 4.64 | 5.06 | 5.49 | 5.92 | 6.36 | 6.80 | 7.25 | 8.16 | 9.10 | 10.0 | 11.0 | 12.0 |
| 1.4 | 2.78 | 3.13 | 3.51 | 3.92 | 4.34 | 4.75 | 5.17 | 5.59 | 6.01 | 6.44 | 6.88 | 7.77 | 8.69 | 9.62 | 10.6 | 11.5 |
| 1.6 | 2.57 | 2.90 | 3.26 | 3.64 | 4.05 | 4.46 | 4.86 | 5.27 | 5.69 | 6.11 | 6.53 | 7.41 | 8.30 | 9.22 | 10.2 | 11.1 |
| 1.8 | 2.38 | 2.69 | 3.02 | 3.39 | 3.78 | 4.19 | 4.58 | 4.98 | 5.38 | 5.79 | 6.21 | 7.06 | 7.94 | 8.85 | 9.77 | 10.7 |
| 2.0 | 2.21 | 2.50 | 2.81 | 3.16 | 3.54 | 3.93 | 4.32 | 4.70 | 5.10 | 5.50 | 5.90 | 6.74 | 7.61 | 8.49 | 9.40 | 10.3 |
| 2.2 | 2.05 | 2.32 | 2.63 | 2.96 | 3.32 | 3.70 | 4.08 | 4.45 | 4.84 | 5.23 | 5.62 | 6.44 | 7.29 | 8.16 | 9.06 | 9.97 |
| 2.4 | 1.92 | 2.17 | 2.46 | 2.77 | 3.12 | 3.48 | 3.86 | 4.22 | 4.59 | 4.97 | 5.36 | 6.16 | 7.00 | 7.85 | 8.74 | 9.64 |
| 2.6 | 1.80 | 2.03 | 2.30 | 2.61 | 2.94 | 3.29 | 3.66 | 4.01 | 4.37 | 4.74 | 5.12 | 5.91 | 6.72 | 7.56 | 8.43 | 9.32 |
| 2.8 | 1.69 | 1.91 | 2.17 | 2.46 | 2.78 | 3.12 | 3.47 | 3.82 | 4.17 | 4.53 | 4.90 | 5.66 | 6.4 | 7.2 | 8.1 | 9.01 |
| 3.0 | 1.59 | 1.80 | 2.05 | 2.32 | 2.63 | 2.96 | 3.30 | 3.64 | 3.98 | 4.33 | 4.69 | 5.44 | 6.22 | 7.02 | 7.86 | 8.7 |

[^43]

Table 8-8 (continued) Coefficients, C, rically Loaded Weld Groups Angle $=15^{\circ}$																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with$R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$																
LRFD									ASD							
$C_{\text {min }}=\frac{P_{u}}{\phi C_{1} D l} \quad D_{\text {min }}=\frac{P_{u}}{\phi C C_{1} l} \quad l_{\text {min }}=\frac{P_{u}}{\phi C C_{1} D}$									$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l} \quad D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l} \quad l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$							
where $P=$ required force, P_{u} or P_{a}, kips $D=$ number of sixteenths-of-an-inch in the fillet weld size $l=$ characteristic length of weld group, in. $a=e_{X} / l$ $e_{x}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in. $C=$ coefficient tabulated below $C_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes) Note: Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.																
a	k															
	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0.00	1.98	2.47	3.01	3.56	4.10	4.65	5.19	5.74	6.28	6.83	7.37	8.46	9.55	10.6	11.7	12.8
0.10	1.90	2.35	2.87	3.41	3.95	4.50	5.05	5.60	6.15	6.70	7.24	8.34	9.43	10.5	11.6	12.7
0.15	1.84	2.30	2.79	3.30	3.81	4.33	4.86	5.39	5.92	6.45	6.98	8.06	9.13	10.2	11.3	12.4
0.20	1.76	2.21	2.68	3.16	3.65	4.15	4.65	5.16	5.67	6.18	6.69	7.72	8.76	9.80	10.9	11.9
0.25	1.65	2.08	2.54	3.00	3.47	3.94	4.42	4.91	5.39	5.89	6.38	7.38	8.39	9.40	10.4	11.5
0.30	1.55	1.95	2.39	2.82	3.27	3.72	4.18	4.64	5.11	5.58	6.06	7.03	8.01	9.00	10.0	11.0
0.40	1.34	1.69	2.07	2.47	2.88	3.28	3.70	4.12	4.55	4.99	5.43	6.34	7.27	8.23	9.19	10.2
0.50	1.16	1.47	1.80	2.16	2.53	2.89	3.27	3.66	4.05	4.46	4.87	5.73	6.62	7.53	8.46	9.41
0.60	1.01	1.28	1.58	1.89	2.23	2.56	2.91	3.26	3.63	4.00	4.39	5.20	6.04	6.91	7.81	8.73
0.70	0.895	1.13	1.40	1.68	1.98	2.29	2.60	2.93	3.27	3.62	3.98	4.74	5.54	6.38	7.24	8.13
0.80	0.799	1.01	1.25	1.50	1.77	2.06	2.35	2.65	2.96	3.29	3.63	4.35	5.11	5.91	6.74	7.60
0.90	0.720	0.912	1.12	1.35	1.60	1.87	2.14	2.42	2.71	3.01	3.33	4.01	4.74	5.50	6.29	7.11
1.0	0.654	0.829	1.02	1.23	1.46	1.70	1.96	2.22	2.49	2.78	3.08	3.72	4.40	5.12	5.88	6.67
1.2	0.552	0.700	0.863	1.04	1.24	1.45	1.67	1.90	2.14	2.40	2.66	3.23	3.84	4.49	5.18	5.90
1.4	0.477	0.604	0.746	0.902	1.07	1.26	1.46	1.66	1.87	2.10	2.34	2.84	3.39	3.98	4.61	5.27
1.6	0.420	0.531	0.656	0.794	0.946	1.11	1.29	1.47	1.66	1.86	2.08	2.53	3.03	3.57	4.14	4.75
1.8	0.374	0.474	0.585	0.709	0.845	0.995	1.16	1.32	1.49	1.68	1.87	2.28	2.74	3.23	3.75	4.32
2.0	0.338	0.427	0.528	0.640	0.764	0.900	1.05	1.19	1.35	1.52	1.70	2.08	2.49	2.94	3.43	3.95
2.2	0.308	0.389	0.481	0.583	0.696	0.822	0.956	1.09	1.24	1.39	1.55	1.90	2.28	2.70	3.16	3.64
2.4	0.282	0.357	0.441	0.535	0.640	0.756	0.880	1.00	1.14	1.28	1.43	1.75	2.11	2.50	2.92	3.37
2.6	0.261	0.330	0.408	0.495	0.592	0.699	0.814	0.931	1.05	1.19	1.32	1.63	1.96	2.32	2.72	3.14
2.8	0.242	0.307	0.379	0.460	0.551	0.651	0.758	0.866	0.982	1.10	1.23	1.51	1.83	2.17	2.54	2.94
3.0	0.226	0.286	0.354	0.430	0.515	0.609	0.709	0.810	0.918	1.03	1.15	1.42	1.71	2.03	2.38	2.76
\boldsymbol{x}	0.000	0.008	0.029	0.056	0.089	0.125	0.164	0.204	0.246	0.289	0.333	0.424	0.516	0.610	0.704	0.800

Table 8-8 (continued) Coefficients, C, rically Loaded Weld Groups																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with$R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$																
LRFD									ASD							
$C_{\text {min }}=\frac{P_{u}}{\phi C_{1} D l} \quad D_{\text {min }}=\frac{P_{u}}{\phi C C_{1} l} \quad l_{\text {min }}=\frac{P_{u}}{\phi C C_{1} D}$									$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l} \quad D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l} \quad l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$							
where $P=$ required force, P_{u} or P_{a}, kips $D=$ number of sixteenths-of-an-inch in the fillet weld size $l=$ characteristic length of weld group, in. $a=e_{X} / l$ $e_{x}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in. $C=$ coefficient tabulated below $C_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes) Note: Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.																
a	,															
	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9 1.0 1.1 .2				1.6	1.8	2.0
0.00	2.18	2.70	3.21	3.73	4.24	4.76	5.27	5.78	6.30	6.81	7.33	8.35	9.38	10.4	11.4	12.5
0.10	2.02	2.57	3.10	3.62	4.14	4.67	5.19	5.71	6.23	6.75	7.28	8.32	9.37	10.4	11.5	12.5
0.15	1.92	2.43	2.95	3.47	3.98	4.49	5.00	5.52	6.03	6.54	7.05	8.09	9.12	10.2	11.2	12.2
0.20	1.82	2.29	2.79	3.29	3.78	4.28	4.77	5.27	5.77	6.27	6.77	7.78	8.80	9.83	10.9	11.9
0.25	1.71	2.15	2.62	3.10	3.58	4.06	4.53	5.01	5.49	5.97	6.46	7.45	8.45	9.47	10.5	11.5
0.30	1.61	2.01	2.45	2.91	3.37	3.83	4.29	4.75	5.21	5.68	6.15	7.11	8.09	9.10	10.1	11.1
0.40	1.41	1.76	2.15	2.55	2.97	3.40	3.83	4.26	4.69	5.13	5.57	6.49	7.42	8.38	9.36	10.4
0.50	1.23	1.54	1.88	2.24	2.62	3.01	3.41	3.81	4.22	4.63	5.05	5.92	6.82	7.74	8.68	9.65
0.60	1.08	1.36	1.66	1.99	2.33	2.68	3.06	3.43	3.81	4.20	4.60	5.42	6.28	7.17	8.09	9.03
0.70	0.964	1.21	1.48	1.77	2.08	2.41	2.75	3.11	3.46	3.83	4.20	4.99	5.81	6.67	7.56	8.47
0.80	0.865	1.09	1.33	1.60	1.88	2.18	2.50	2.83	3.16	3.51	3.86	4.61	5.40	6.22	7.07	7.95
0.90	0.783	0.986	1.21	1.45	1.71	1.99	2.29	2.60	2.91	3.23	3.57	4.28	5.03	5.81	6.63	7.47
1.0	0.714	0.900	1.10	1.33	1.57	1.83	2.10	2.39	2.69	3.00	3.31	3.98	4.70	5.45	6.23	7.04
1.2	0.606	0.764	0.939	1.13	1.34	1.57	1.81	2.07	2.33	2.60	2.89	3.49	4.13	4.81	5.53	6.29
1.4	0.525	0.663	0.815	0.983	1.17	1.37	1.58	1.81	2.05	2.29	2.55	3.09	3.67	4.30	4.96	5.66
1.6	0.463	0.584	0.719	0.868	1.03	1.21	1.41	1.61	1.82	2.04	2.27	2.77	3.30	3.87	4.49	5.13
1.8	0.414	0.522	0.643	0.777	0.925	1.09	1.27	1.45	1.64	1.84	2.05	2.50	2.99	3.52	4.09	4.69
2.0	0.374	0.472	0.581	0.703	0.838	0.988	1.15	1.32	1.49	1.67	1.87	2.28	2.73	3.22	3.75	4.31
2.2	0.341	0.430	0.530	0.642	0.766	0.903	1.05	1.21	1.37	1.53	1.71	2.09	2.51	2.97	3.46	3.98
2.4	0.313	0.395	0.487	0.590	0.705	0.832	0.970	1.11	1.26	1.41	1.58	1.93	2.32	2.75	3.21	3.70
2.6	0.289	0.365	0.451	0.546	0.653	0.771	0.899	1.03	1.17	1.31	1.47	1.80	2.16	2.56	2.99	3.45
2.8	0.269	0.340	0.419	0.508	0.608	0.718	0.838	0.960	1.09	1.22	1.37	1.68	2.02	2.39	2.80	3.24
3.0	0.251	0.317	0.392	0.475	0.569	0.672	0.784	0.899	1.02	1.15	1.28	1.57	1.89	2.25	2.63	3.04
\boldsymbol{x}	0.000	0.008	0.029	0.056	0.089	0.125	0.164	0.204	0.246	0.289	0.333	0.424	0.516	0.610	0.704	0.800

Table 8-8 (continued) Coefficients, C, rically Loaded Weld Groups																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with$R_{n}=C C_{1} D l \quad(\phi=0.75, \Omega=2.00)$																
LRFD									ASD							
	$C_{\text {min }}=$	$\frac{P_{u}}{\phi C_{1} D l}$	D	$=\frac{}{\phi C}$	$\frac{P_{u}}{C C C_{1} l}$	$l_{\text {min }}=$	$=\frac{}{\phi C}$		$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l} \quad D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l} \quad l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$							
where $P=$ required force, P_{u} or P_{a}, kips $D=$ number of sixteenths-of-an-inch in the fillet weld size $l=$ characteristic length of weld group, in. $a=e_{\chi} / l$ $e_{x}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in. $C=$ coefficient tabulated below $G_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes) Note: Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.																
a	k															
	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0.00	2.41	2.80	3.27	3.74	4.21	4.67	5.14	5.61	6.08	6.54	7.01	7.95	8.88	9.82	10.8	11.7
0.10	2.24	2.74	3.24	3.73	4.23	4.73	5.22	5.72	6.21	6.71	7.20	8.19	9.17	10.1	11.1	12.1
0.15	2.09	2.60	3.09	3.58	4.07	4.57	5.06	5.56	6.06	6.55	7.05	8.04	9.03	10.0	11.0	12.0
0.20	1.96	2.44	2.92	3.40	3.88	4.37	4.86	5.36	5.85	6.35	6.84	7.83	8.83	9.82	10.8	11.8
0.25	1.85	2.29	2.75	3.21	3.68	4.16	4.64	5.13	5.62	6.11	6.60	7.58	8.58	9.58	10.6	11.6
0.30	1.74	2.16	2.59	3.03	3.48	3.94	4.42	4.89	5.38	5.86	6.34	7.32	8.31	9.32	10.3	11.3
0.40	1.55	1.91	2.30	2.70	3.12	3.55	3.99	4.44	4.91	5.37	5.83	6.77	7.75	8.76	9.77	10.8
0.50	1.38	1.70	2.05	2.42	2.80	3.20	3.62	4.04	4.48	4.93	5.37	6.27	7.22	8.20	9.20	10.2
0.60	1.23	1.52	1.84	2.18	2.53	2.90	3.29	3.70	4.11	4.54	4.96	5.83	6.73	7.68	8.65	9.65
0.70	1.11	1.38	1.66	1.97	2.30	2.65	3.01	3.40	3.79	4.20	4.61	5.44	6.30	7.21	8.15	9.12
0.80	1.00	1.25	1.51	1.80	2.11	2.43	2.77	3.13	3.51	3.91	4.29	5.08	5.91	6.78	7.69	8.64
0.90	0.915	1.14	1.39	1.65	1.94	2.24	2.56	2.91	3.27	3.64	4.01	4.76	5.56	6.39	7.27	8.19
1.0	0.839	1.05	1.28	1.52	1.79	2.08	2.38	2.71	3.05	3.40	3.75	4.47	5.24	6.04	6.89	7.77
1.2	0.719	0.900	1.10	1.31	1.55	1.80	2.08	2.37	2.68	3.00	3.31	3.98	4.68	5.43	6.22	7.04
1.4	0.627	0.786	0.961	1.15	1.36	1.59	1.84	2.11	2.39	2.67	2.96	3.57	4.22	4.91	5.65	6.42
1.6	0.555	0.697	0.854	1.03	1.22	1.42	1.65	1.89	2.15	2.40	2.67	3.23	3.83	4.48	5.16	5.88
1.8	0.498	0.625	0.767	0.923	1.10	1.29	1.49	1.72	1.95	2.18	2.42	2.94	3.50	4.10	4.74	5.42
2.0	0.451	0.567	0.696	0.839	0.997	1.17	1.36	1.57	1.78	1.99	2.22	2.70	3.22	3.78	4.38	5.02
2.2	0.412	0.518	0.636	0.768	0.914	1.08	1.25	1.44	1.63	1.83	2.04	2.49	2.97	3.50	4.07	4.67
2.4	0.379	0.477	0.586	0.708	0.844	0.995	1.16	1.33	1.51	1.70	1.89	2.31	2.76	3.26	3.79	4.36
2.6	0.351	0.442	0.543	0.657	0.784	0.924	1.08	1.24	1.40	1.58	1.76	2.15	2.58	3.05	3.55	4.09
2.8	0.327	0.411	0.506	0.612	0.731	0.863	1.01	1.16	1.31	1.47	1.64	2.01	2.42	2.86	3.33	3.84
3.0	0.306	0.385	0.474	0.573	0.685	0.809	0.943	1.09	1.23	1.38	1.54	1.89	2.27	2.69	3.14	3.63
\boldsymbol{x}	0.000	0.008	0.029	0.056	0.089	0.125	0.164	0.204	0.246	0.289	0.333	0.424	0.516	0.610	0.704	0.800

Table 8-8 (continued) Coefficients, C, rically Loaded Weld Groups Angle $=60^{\circ}$																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with$R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$																
LRFD									ASD							
$C_{\text {min }}=\frac{P_{u}}{\phi C_{1} D l} \quad D_{\text {min }}=\frac{P_{u}}{\phi C C_{1} l} \quad l_{\text {min }}=\frac{P_{u}}{\phi C C_{1} D}$									$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l} \quad D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l} \quad l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$							
where $P=$ required force, P_{μ} or P_{a}, kips $D=$ number of sixteenths-of-an-inch in the fillet weld size $l=$ characteristic Iength of weld group, in. $a=e_{x} / l$ $e_{x}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in. $C=$ coefficient tabulated below $C_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes) Note: Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.																
a																
	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9 1.0 1.2			1.4		1.8	2.0
0.00	2.60	3.01	3.44	3.88	4.32	4.76	5.19	5.63	6.07	6.50	6.94	7.82	8.69	9.56	10.4	11.3
0.10	2.43	2.86	3.30	3.75	4.21	4.68	5.14	5.61	6.07	6.53	6.99	7.89	8.79	9.67	10.5	11.4
0.15	2.31	2.74	3.17	3.62	4.07	4.54	5.01	5.49	5.96	6.44	6.90	7.83	8.74	9.64	10.5	11.4
0.20	2.18	2.61	3.04	3.47	3.93	4.39	4.86	5.34	5.83	6.31	6.79	7.73	8.66	9.57	10.5	11.4
0.25	2.07	2.49	2.91	3.33	3.77	4.23	4.70	5.18	5.67	6.16	6.64	7.61	8.55	9.48	10.4	11.3
0.30	1.97	2.37	2.78	3.20	3.63	4.07	4.54	5.02	5.51	6.00	6.49	7.46	8.42	9.36	10.3	11.2
0.40	1.79	2.16	2.55	2.94	3.35	3.77	4.22	4.69	5.17	5.66	6.15	7.14	8.12	9.09	10.0	11.0
0.50	1.63	1.98	2.34	2.71	3.10	3.50	3.93	4.38	4.85	5.33	5.82	6.80	7.79	8.77	9.73	10.7
0.60	1.49	1.81	2.15	2.50	2.87	3.26	3.67	4.10	4.55	5.02	5.50	6.48	7.46	8.42	9.38	10.3
0.70	1.37	1.67	1.99	2.32	2.67	3.05	3.44	3.86	4.29	4.74	5.21	6.16	7.11	8.07	9.04	10.0
0.80	1.26	1.54	1.84	2.16	2.50	2.85	3.23	3.63	4.05	4.48	4.94	5.85	6.78	7.73	8.69	9.65
0.90	1.17	1.43	1.71	2.02	2.34	2.68	3.04	3.43	3.83	4.25	4.68	5.57	6.47	7.40	8.35	9.31
1.0	1.08	1.33	1.60	1.89	2.19	2.52	2.87	3.24	3.63	4.03	4.45	5.30	6.18	7.09	8.03	8.98
1.2	0.946	1.17	1.41	1.67	1.95	2.25	2.58	2.92	3.28	3.65	4.04	4.82	5.65	6.52	7.42	8.35
1.4	0.837	1.04	1.25	1.49	1.75	2.03	2.33	2.65	2.98	3.33	3.69	4.42	5.19	6.01	6.87	7.77
1.6	0.748	0.930	1.13	1.34	1.58	1.84	2.12	2.42	2.73	3.05	3.38	4.07	4.79	5.56	6.38	7.24
1.8	0.676	0.842	1.02	1.22	1.44	1.68	1.94	2.22	2.51	2.81	3.12	3.76	4.45	5.17	5.95	6.77
2.0	0.616	0.768	0.936	1.12	1.32	1.55	1.79	2.05	2.32	2.60	2.90	3.50	4.14	4.83	5.56	6.34
2.2	0.565	0.706	0.861	1.03	1.22	1.43	1.66	1.90	2.15	2.42	2.69	3.26	3.87	4.53	5.22	5.96
2.4	0.522	0.653	0.797	0.958	1.14	1.33	1.55	1.77	2.01	2.26	2.52	3.05	3.63	4.25	4.91	5.62
2.6	0.485	0.607	0.742	0.893	1.06	1.25	1.44	1.66	1.88	2.12	2.36	2.87	3.42	4.01	4.64	5.31
2.8	0.453	0.567	0.694	0.835	0.994	1.17	1.36	1.56	1.77	1.99	2.22	2.70	3.22	3.79	4.39	5.03
3.0	0.424	0.531	0.651	0.785	0.934	1.10	1.28	1.47	1.67	1.88	2.09	2.55	3.05	3.59	4.17	4.78
\boldsymbol{x}	0.000	0.008	0.029	0.056	0.089	0.125	0.164	0.204	0.246	0.289	0.333	0.424	0.516	0.610	0.704	0.800

Table 8-8 (continued) Coefficients, C, rically Loaded Weld Groups																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with $R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$																
LRFD									ASD							
$C_{\text {min }}=\frac{P_{u}}{\phi C_{1} D l} \quad D_{\text {min }}=\frac{P_{u}}{\phi C C_{1} l} \quad l_{\text {min }}=\frac{P_{u}}{\phi C C_{1} D}$									$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l} \quad D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l} \quad l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$							
where $P=$ required force, P_{u} or P_{a}, kips $D=$ number of sixteenths-of-an-inch in the fillet weld size $l=$ characteristic length of weld group, in. $a=e_{X} / l$ $e_{x}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in. $C=$ coefficient tabulated below $C_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes) Note: Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.																
a																
	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	 0.9 1.0 1.2				1.6	1.8 2.0	
0.00	2.74	3.11	3.49	3.88	4.26	4.65	5.03	5.42	5.80	6.19	6.57	7.34	8.11	8.88	9.65	10.4
0.10	2.59	2.95	3.34	3.75	4.16	4.58	4.99	5.40	5.80	6.20	6.59	7.37	8.15	8.92	9.69	10.5
0.15	2.50	2.87	3.26	3.67	4.09	4.51	4.94	5.35	5.76	6.17	6.57	7.36	8.14	8.91	9.69	10.5
0.20	2.43	2.79	3.18	3.59	4.01	4.44	4.87	5.29	5.71	6.13	6.53	7.33	8.12	8.90	9.67	10.4
0.25	2.35	2.72	3.10	3.51	3.93	4.36	4.80	5.23	5.66	6.08	6.49	7.30	8.09	8.88	9.66	10.4
0.30	2.28	2.65	3.03	3.43	3.85	4.28	4.72	5.16	5.59	6.02	6.44	7.26	8.06	8.85	9.63	10.4
0.40	2.16	2.52	2.88	3.27	3.69	4.12	4.57	5.01	5.45	5.88	6.31	7.15	7.97	8.78	9.57	10.4
0.50	2.05	2.40	2.75	3.13	3.54	3.97	4.41	4.86	5.30	5.75	6.18	7.04	7.86	8.68	9.48	10.3
0.60	1.94	2.28	2.63	3.00	3.40	3.82	4.26	4.71	5.16	5.61	6.06	6.93	7.77	8.59	9.39	10.2
0.70	1.85	2.18	2.52	2.88	3.26	3.68	4.11	4.56	5.02	5.47	5.92	6.81	7.67	8.51	9.32	10.1
0.80	1.75	2.08	2.41	2.76	3.14	3.54	3.97	4.42	4.87	5.33	5.79	6.69	7.57	8.42	9.25	10.1
0.90	1.67	1.98	2.31	2.65	3.02	3.42	3.84	4.28	4.73	5.19	5.64	6.56	7.45	8.32	9.16	9.98
1.0	1.59	1.90	2.21	2.55	2.91	3.30	3.71	4.14	4.59	5.04	5.50	6.42	7.33	8.21	9.07	9.91
1.2	1.45	1.74	2.04	2.36	2.71	3.08	3.47	3.89	4.32	4.77	5.22	6.15	7.07	7.97	8.86	9.72
1.4	1.33	1.60	1.89	2.20	2.53	2.88	3.26	3.66	4.07	4.51	4.95	5.87	6.79	7.71	8.62	9.51
1.6	1.22	1.48	1.75	2.05	2.37	2.71	3.06	3.44	3.85	4.27	4.70	5.60	6.52	7.44	8.36	9.27
1.8	1.13	1.37	1.63	1.91	2.22	2.54	2.89	3.25	3.64	4.04	4.46	5.34	6.25	7.17	8.10	9.01
2.0	1.05	1.28	1.52	1.79	2.09	2.40	2.73	3.08	3.45	3.84	4.24	5.10	5.99	6.90	7.81	8.73
2.2	0.975	1.19	1.43	1.69	1.97	2.27	2.58	2.92	3.27	3.65	4.04	4.87	5.74	6.62	7.53	8.44
2.4	0.912	1.12	1.34	1.59	1.86	2.15	2.45	2.77	3.11	3.47	3.85	4.65	5.50	6.36	7.25	8.15
2.6	0.856	1.05	1.27	1.50	1.76	2.04	2.33	2.64	2.97	3.31	3.68	4.45	5.26	6.10	6.98	7.87
2.8	0.806	0.993	1.20	1.42	1.67	1.94	2.22	2.52	2.83	3.17	3.52	4.27	5.05	5.86	6.72	7.60
3.0	0.762	0.940	1.14	1.35	1.59	1.84	2.12	2.40	2.71	3.03	3.37	4.09	4.84	5.64	6.47	7.34
\boldsymbol{x}	0.000	0.008	0.029	0.056	0.089	0.125	0.164	0.204	0.246	0.289	0.333	0.424	0.516	0.610	0.704	0.800

Table 8-9 (continued) Coefficients, C, rically Loaded Weld Groups																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with$R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$																
LRFD									ASD							
$C_{\text {min }}=\frac{P_{u}}{\phi C_{1} D l} \quad D_{\text {min }}=\frac{P_{u}}{\phi C C_{1} l} \quad l_{\text {min }}=\frac{P_{u}}{\phi C C_{1} D}$									$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l} \quad D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l} \quad l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$							
where $P=$ required force, P_{u} or P_{a}, kips $D=$ number of sixteenths-of-an-inch in the fillet weld size $l=$ characteristic length of weld group, in. $a=e_{X} / l$ $e_{X}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in. $C=$ coefficient tabulated below $C_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes) Note: Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.																
a	k															
	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8		1.0		1.4	1.6		2.0
0.00	1.98	2.47	3.01	3.56	4.10	4.65	5.19	5.74	6.28	6.83	7.37	8.46	9.55	10.6	11.7	12.8
0.10	1.90	2.36	2.87	3.38	3.88	4.38	4.88	5.38	5.87	6.37	6.86	7.85	8.84	9.84	10.8	11.9
0.15	1.84	2.30	2.78	3.26	3.74	4.21	4.69	5.16	5.63	6.10	6.57	7.52	8.47	9.43	10.4	11.4
0.20	1.76	2.20	2.65	3.11	3.56	4.02	4.47	4.92	5.37	5.82	6.27	7.18	8.10	9.04	9.98	10.9
0.25	1.65	2.07	2.49	2.93	3.37	3.80	4.23	4.66	5.09	5.53	5.96	6.84	7.74	8.65	9.58	10.5
0.30	1.55	1.93	2.33	2.74	3.16	3.58	3.99	4.41	4.82	5.24	5.66	6.52	7.39	8.28	9.19	10.1
0.40	1.34	1.67	2.02	2.38	2.75	3.13	3.52	3.92	4.31	4.70	5.10	5.90	6.74	7.59	8.47	9.37
0.50	1.16	1.45	1.75	2.06	2.39	2.74	3.10	3.47	3.85	4.22	4.60	5.38	6.18	7.00	7.85	8.73
0.60	1.01	1.27	1.53	1.80	2.10	2.42	2.75	3.10	3.46	3.82	4.19	4.92	5.69	6.48	7.30	8.15
0.70	0.895	1.12	1.35	1.60	1.88	2.17	2.48	2.80	3.14	3.48	3.83	4.53	5.26	6.02	6.81	7.62
0.80	0.799	0.997	1.21	1.44	1.69	1.96	2.25	2.55	2.86	3.19	3.52	4.19	4.89	5.61	6.37	7.15
0.90	0.720	0.898	1.09	1.31	1.54	1.79	2.05	2.33	2.63	2.94	3.25	3.89	4.56	5.25	5.97	6.73
1.0	0.654	0.816	0.996	1.20	1.41	1.64	1.89	2.15	2.43	2.72	3.02	3.63	4.26	4.92	5.62	6.34
1.2	0.552	0.689	0.845	1.02	1.21	1.41	1.63	1.86	2.10	2.36	2.63	3.18	3.76	4.37	5.01	5.68
1.4	0.477	0.596	0.733	0.886	1.05	1.23	1.43	1.63	1.85	2.08	2.32	2.83	3.36	3.91	4.50	5.12
1.6	0.420	0.525	0.646	0.782	0.933	1.10	1.27	1.45	1.65	1.86	2.08	2.54	3.03	3.54	4.08	4.66
1.8	0.374	0.468	0.577	0.700	0.836	0.983	1.14	1.31	1.49	1.68	1.88	2.30	2.75	3.23	3.73	4.27
2.0	0.338	0.423	0.522	0.633	0.757	0.891	1.04	1.19	1.35	1.53	1.71	2.10	2.52	2.96	3.43	3.93
2.2	0.308	0.385	0.476	0.578	0.692	0.815	0.948	1.09	1.24	1.40	1.57	1.93	2.32	2.73	3.17	3.64
2.4	0.282	0.354	0.437	0.532	0.636	0.750	0.873	1.00	1.14	1.29	1.45	1.79	2.15	2.54	2.95	3.39
2.6	0.261	0.327	0.404	0.492	0.589	0.695	0.809	0.931	1.06	1.20	1.34	1.66	2.00	2.36	2.75	3.17
2.8	0.242	0.304	0.376	0.458	0.548	0.647	0.754	0.868	0.989	1.12	1.25	1.54	1.87	2.21	2.58	2.97
3.0	0.226	0.284	0.352	0.428	0.513	0.606	0.706	0.812	0.926	1.04	1.17	1.45	1.75	2.08	2.43	2.80
\boldsymbol{x}	0.000	0.008	0.029	0.056	0.089	0.125	0.164	0.204	0.246	0.289	0.333	0.424	0.516	0.610	0.704	0.800

Table 8-9 (continued) Coefficients, C, ccentrically Loaded Weld Groups																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with $R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$																
LRFD									ASD							
	$C_{\text {min }}=$	$\frac{P_{u}}{\phi C_{1} D}$	$D_{m i}$	${ }_{\text {min }}=\frac{}{\phi}$	$\frac{P_{u}}{C C C_{1} l}$	$l_{\text {min }}$	$=\frac{}{\phi C}$		$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l} \quad D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l} \quad l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$							
$\begin{aligned} & \text { where } \\ & P=\text { required force, } P_{u} \text { or } P_{a} \text {, kips } \\ & D=\text { number of sixteenths-of-an-inch in the fillet weld size } \\ & l=\text { characteristic length of weld group, in. } \\ & a=e_{X} / l \\ & e_{X}=\text { horizontal component of eccentricity of } P \\ & \quad \text { with respect to centroid of weld group, in. } \\ & C=\text { coefficient tabulated below } \\ & C_{1}=\text { electrode strength coefficient from Table 8-3 } \\ & \text { (1.0 for E70XX electrodes) } \end{aligned}$ Note: Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.																
a	k															
	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0.00	2.18	2.70	3.21	3.73	4.24	4.76	5.27	5.78	6.30	6.81	7.33	8.35	9.38	10.4	11.4	12.5
0.10	2.02	2.56	3.06	3.54	4.02	4.50	4.98	5.46	5.94	6.43	6.92	7.90	8.89	9.89	10.9	11.9
0.15	1.92	2.41	2.90	3.37	3.83	4.28	4.73	5.19	5.65	6.12	6.58	7.54	8.51	9.50	10.5	11.5
0.20	1.82	2.27	2.72	3.16	3.60	4.03	4.46	4.89	5.34	5.78	6.23	7.16	8.11	9.08	10.1	11.1
0.25	1.71	2.13	2.55	2.97	3.37	3.78	4.19	4.60	5.02	5.46	5.90	6.79	7.72	8.68	9.66	10.7
0.30	1.61	1.99	2.38	2.77	3.16	3.55	3.94	4.34	4.75	5.18	5.61	6.48	7.38	8.31	9.27	10.2
0.40	1.41	1.74	2.08	2.43	2.78	3.14	3.50	3.89	4.29	4.70	5.12	5.95	6.81	7.69	8.61	9.54
0.50	1.23	1.52	1.82	2.13	2.45	2.79	3.14	3.51	3.89	4.28	4.69	5.50	6.31	7.16	8.04	8.94
0.60	1.08	1.34	1.60	1.88	2.18	2.50	2.83	3.18	3.54	3.92	4.30	5.09	5.88	6.69	7.53	8.40
0.70	0.964	1.20	1.43	1.69	1.96	2.26	2.57	2.90	3.25	3.60	3.97	4.73	5.48	6.26	7.07	7.91
0.80	0.865	1.07	1.29	1.53	1.79	2.06	2.35	2.66	2.99	3.32	3.67	4.40	5.13	5.88	6.66	7.47
0.90	0.783	0.970	1.17	1.40	1.64	1.89	2.16	2.45	2.76	3.08	3.41	4.11	4.81	5.53	6.29	7.07
1.0	0.714	0.885	1.07	1.28	1.51	1.75	2.00	2.28	2.56	2.87	3.18	3.85	4.53	5.22	5.94	6.70
1.2	0.606	0.753	0.918	1.10	1.30	1.51	1.74	1.98	2.24	2.51	2.80	3.40	4.03	4.67	5.34	6.05
1.4	0.525	0.653	0.800	0.963	1.14	1.33	1.53	1.75	1.98	2.23	2.49	3.04	3.63	4.22	4.84	5.50
1.6	0.463	0.577	0.708	0.854	1.01	1.19	1.37	1.57	1.78	2.00	2.24	2.74	3.29	3.84	4.42	5.03
1.8	0.414	0.516	0.634	0.767	0.913	1.07	1.24	1.42	1.61	1.81	2.03	2.49	3.00	3.51	4.05	4.63
2.0	0.374	0.467	0.574	0.695	0.829	0.974	1.13	1.29	1.47	1.66	1.85	2.28	2.75	3.23	3.74	4.28
2.2	0.341	0.426	0.525	0.636	0.759	0.893	1.04	1.19	1.35	1.52	1.71	2.11	2.54	2.99	3.47	3.97
2.4	0.313	0.392	0.483	0.586	0.699	0.823	0.956	1.10	1.25	1.41	1.58	1.95	2.36	2.78	3.23	3.71
2.6	0.289	0.362	0.447	0.542	0.649	0.764	0.888	1.02	1.16	1.31	1.47	1.82	2.20	2.60	3.02	3.47
2.8	0.269	0.337	0.416	0.505	0.604	0.713	0.829	0.953	1.09	1.23	1.38	1.70	2.06	2.44	2.84	3.27
3.0	0.251	0.315	0.389	0.473	0.566	0.667	0.777	0.894	1.02	1.15	1.29	1.60	1.93	2.29	2.68	3.08
\boldsymbol{x}	0.000	0.008	0.029	0.056	0.089	0.125	0.164	0.204	0.246	0.289	0.333	0.424	0.516	0.610	0.704	0.800

Table 8-9 (continued) Coefficients, C, rically Loaded Weld Groups Angle $=45^{\circ}$																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with $R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$																
LRFD									ASD							
$C_{\text {min }}=\frac{P_{u}}{\phi C_{1} D l} \quad D_{\text {min }}=\frac{P_{u}}{\phi C C_{1} l} \quad l_{\text {min }}=\frac{P_{u}}{\phi C C_{1} D}$									$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l} \quad D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l} \quad l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$							
where $P=$ required force, P_{u} or P_{a}, kips $D=$ number of sixteenths-of-an-inch in the fillet weld size $l=$ characteristic length of weld group, in. $a=e_{X} / l$ $e_{X}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in. $C=$ coefficient tabulated below $C_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes) Note: Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.																
a																
	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9 1.0 1.2				1.6	1.8	2.0
0.00	2.41	2.80	3.27	3.74	4.21	4.67	5.14	5.61	6.08	6.54	7.01	7.95	8.88	9.82	10.8	11.7
0.10	2.24	2.72	3.17	3.61	4.05	4.49	4.94	5.41	5.88	6.35	6.82	7.78	8.74	9.71	10.7	11.7
0.15	2.09	2.57	3.00	3.41	3.82	4.24	4.67	5.13	5.59	6.06	6.54	7.51	8.48	9.46	10.4	11.4
0.20	1.96	2.41	2.83	3.21	3.59	3.99	4.41	4.85	5.30	5.77	6.24	7.21	8.19	9.17	10.2	11.2
0.25	1.85	2.27	2.66	3.02	3.38	3.76	4.16	4.59	5.03	5.49	5.95	6.91	7.88	8.87	9.87	10.9
0.30	1.74	2.13	2.50	2.86	3.20	3.57	3.96	4.38	4.81	5.25	5.70	6.64	7.59	8.56	9.55	10.6
0.40	1.55	1.89	2.22	2.55	2.89	3.24	3.62	4.01	4.42	4.84	5.28	6.18	7.11	8.05	8.99	9.95
0.50	1.38	1.68	1.98	2.29	2.61	2.96	3.32	3.69	4.08	4.49	4.91	5.78	6.69	7.60	8.52	9.45
0.60	1.23	1.50	1.77	2.06	2.37	2.71	3.05	3.41	3.78	4.17	4.58	5.42	6.30	7.18	8.08	8.99
0.70	1.11	1.36	1.60	1.88	2.17	2.48	2.81	3.16	3.52	3.89	4.28	5.09	5.94	6.79	7.67	8.57
0.80	1.00	1.23	1.46	1.72	2.00	2.29	2.61	2.93	3.28	3.63	4.01	4.79	5.61	6.43	7.29	8.16
0.90	0.915	1.12	1.34	1.59	1.84	2.12	2.42	2.73	3.06	3.41	3.76	4.51	5.31	6.10	6.93	7.78
1.0	0.839	1.03	1.24	1.47	1.71	1.98	2.26	2.56	2.87	3.20	3.54	4.26	5.03	5.80	6.60	7.43
1.2	0.719	0.886	1.07	1.28	1.50	1.73	1.99	2.26	2.54	2.84	3.16	3.83	4.54	5.26	6.01	6.79
1.4	0.627	0.775	0.943	1.13	1.33	1.54	1.77	2.02	2.28	2.55	2.84	3.46	4.12	4.81	5.50	6.23
1.6	0.555	0.688	0.840	1.01	1.19	1.39	1.60	1.82	2.06	2.31	2.58	3.15	3.77	4.41	5.07	5.75
1.8	0.498	0.618	0.756	0.910	1.08	1.26	1.45	1.66	1.87	2.11	2.36	2.89	3.47	4.07	4.69	5.34
2.0	0.451	0.561	0.687	0.829	0.984	1.15	1.33	1.52	1.72	1.94	2.17	2.66	3.20	3.78	4.36	4.97
2.2	0.412	0.513	0.630	0.760	0.904	1.06	1.22	1.40	1.59	1.79	2.01	2.47	2.97	3.52	4.07	4.65
2.4	0.379	0.473	0.581	0.702	0.836	0.981	1.14	1.30	1.48	1.66	1.86	2.30	2.77	3.29	3.81	4.36
2.6	0.351	0.438	0.539	0.652	0.777	0.913	1.06	1.21	1.38	1.55	1.74	2.15	2.60	3.08	3.58	4.10
2.8	0.327	0.408	0.502	0.608	0.726	0.853	0.990	1.14	1.29	1.46	1.63	2.02	2.44	2.90	3.37	3.87
3.0	0.306	0.382	0.470	0.570	0.680	0.801	0.930	1.07	1.21	1.37	1.54	1.90	2.30	2.74	3.19	3.66
\boldsymbol{x}	0.000	0.008	0.029	0.056	0.089	0.125	0.164	0.204	0.246	0.289	0.333	0.424	0.516	0.610	0.704	0.800

Table 8-9 (continued) Coefficients, C, rically Loaded Weld Groups Angle $=60^{\circ}$																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with$R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$																
LRFD									ASD							
	$C_{\text {min }}=$	$\frac{P_{u}}{\phi C_{1} D l}$	$D_{\text {min }}=\frac{P_{u}}{\phi C C_{1} l} \quad l_{\text {min }}=\frac{P_{u}}{\phi C C_{1} D}$						$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l} \quad D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l} \quad l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$							
where $P=$ required force, P_{u} or P_{a}, kips $D=$ number of sixteenths-of-an-inch in the fillet weld size $l=$ characteristic length of weld group, in. $a=e_{\chi} / l$ $e_{x}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in. $C=$ coefficient tabulated below $C_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes) Note: Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.																
a																
	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0.00	2.60	3.01	3.44	3.88	4.32	4.76	5.19	5.63	6.07	6.50	6.94	7.82	8.69	9.56	10.4	11.3
0.10	2.43	2.84	3.23	3.62	4.04	4.47	4.91	5.36	5.81	6.26	6.71	7.61	8.51	9.40	10.3	11.2
0.15	2.31	2.70	3.07	3.44	3.84	4.26	4.69	5.14	5.59	6.05	6.51	7.43	8.34	9.25	10.2	11.1
0.20	2.18	2.58	2.92	3.27	3.65	4.06	4.48	4.92	5.37	5.83	6.30	7.23	8.16	9.08	9.99	10.9
0.25	2.07	2.46	2.79	3.12	3.49	3.89	4.30	4.73	5.17	5.62	6.08	7.01	7.95	8.89	9.81	10.7
0.30	1.97	2.34	2.67	3.00	3.36	3.75	4.15	4.58	5.01	5.45	5.90	6.81	7.73	8.68	9.62	10.6
0.40	1.79	2.13	2.45	2.78	3.12	3.49	3.89	4.30	4.72	5.16	5.60	6.49	7.39	8.30	9.22	10.1
0.50	1.63	1.95	2.25	2.57	2.91	3.27	3.65	4.05	4.46	4.89	5.33	6.21	7.11	8.01	8.92	9.82
0.60	1.49	1.79	2.08	2.39	2.72	3.06	3.43	3.82	4.22	4.64	5.07	5.95	6.85	7.75	8.65	9.56
0.70	1.37	1.64	1.92	2.22	2.54	2.88	3.23	3.60	4.00	4.40	4.83	5.70	6.59	7.49	8.40	9.30
0.80	1.26	1.52	1.78	2.07	2.38	2.71	3.05	3.41	3.79	4.19	4.60	5.45	6.33	7.23	8.14	9.05
0.90	1.17	1.41	1.66	1.94	2.24	2.55	2.88	3.23	3.60	3.98	4.38	5.22	6.09	6.98	7.89	8.80
1.0	1.08	1.31	1.56	1.82	2.11	2.41	2.73	3.07	3.42	3.79	4.18	5.00	5.85	6.74	7.64	8.54
1.2	0.946	1.15	1.38	1.62	1.88	2.16	2.46	2.78	3.11	3.46	3.82	4.59	5.41	6.27	7.15	8.04
1.4	0.837	1.02	1.23	1.46	1.70	1.96	2.23	2.53	2.84	3.17	3.51	4.24	5.02	5.84	6.69	7.56
1.6	0.748	0.919	1.11	1.32	1.54	1.78	2.04	2.32	2.61	2.91	3.24	3.92	4.66	5.45	6.27	7.10
1.8	0.676	0.832	1.01	1.20	1.41	1.64	1.88	2.13	2.41	2.69	3.00	3.65	4.35	5.09	5.88	6.67
2.0	0.616	0.760	0.924	1.11	1.30	1.51	1.73	1.97	2.23	2.50	2.79	3.40	4.07	4.78	5.52	6.28
2.2	0.565	0.699	0.852	1.02	1.21	1.40	1.61	1.84	2.08	2.33	2.60	3.19	3.82	4.49	5.20	5.93
2.4	0.522	0.647	0.790	0.948	1.12	1.31	1.51	1.72	1.94	2.19	2.44	2.99	3.59	4.24	4.91	5.61
2.6	0.485	0.602	0.735	0.885	1.05	1.22	1.41	1.61	1.82	2.05	2.30	2.82	3.39	4.00	4.65	5.32
2.8	0.453	0.562	0.688	0.829	0.983	1.15	1.33	1.52	1.72	1.94	2.17	2.66	3.21	3.79	4.42	5.05
3.0	0.424	0.528	0.646	0.779	0.926	1.08	1.25	1.43	1.62	1.83	2.05	2.52	3.04	3.60	4.20	4.81
\boldsymbol{x}	0.000	0.008	0.029	0.056	0.089	0.125	0.164	0.204	0.246	0.289	0.333	0.424	0.516	0.610	0.704	0.800

Table 8-9 (continued) Coefficients, C, rically Loaded Weld Groups Angle $=75^{\circ}$																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with$R_{n}=C C_{1} D l \quad(\phi=0.75, \Omega=2.00)$																
LRFD									ASD							
$C_{\text {min }}=\frac{P_{u}}{\phi C_{1} D l} \quad D_{\text {min }}=\frac{P_{u}}{\phi C C_{1} l} \quad l_{\text {min }}=\frac{P_{u}}{\phi C C_{1} D}$									$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l} \quad D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l} \quad l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$							
where $P=$ required force, P_{u} or P_{a}, kips $D=$ number of sixteenths-of-an-inch in the fillet weld size $l=$ characteristic length of weld group, in. $a=e_{X} / l$ $e_{x}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in. $C=$ coefficient tabulated below $C_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes) Note: Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.																
a																
a	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	$\begin{array}{l\|l} \hline 0.9 & 1.0 \\ \hline \end{array}$					2.0	
0.00	2.74	3.11	3.49	3.88	4.26	4.65	5.03	5.42	5.80	6.19	6.57	7.34	8.11	8.88	9.65	10.4
0.10	2.59	2.94	3.30	3.68	4.07	4.47	4.88	5.28	5.69	6.08	6.48	7.27	8.05	8.83	9.61	10.4
0.15	2.50	2.84	3.19	3.56	3.94	4.34	4.75	5.16	5.57	5.98	6.39	7.19	7.98	8.77	9.55	10.3
0.20	2.43	2.76	3.09	3.46	3.84	4.24	4.63	5.04	5.45	5.86	6.28	7.10	7.90	8.70	9.49	10.3
0.25	2.35	2.68	3.01	3.37	3.76	4.15	4.55	4.95	5.35	5.75	6.16	6.99	7.81	8.62	9.42	10.2
0.30	2.28	2.61	2.93	3.29	3.68	4.07	4.47	4.88	5.28	5.68	6.07	6.88	7.71	8.53	9.34	10.1
0.40	2.16	2.48	2.80	3.15	3.53	3.93	4.33	4.74	5.15	5.55	5.95	6.75	7.54	8.33	9.14	9.97
0.50	2.05	2.37	2.68	3.02	3.40	3.79	4.20	4.61	5.02	5.43	5.84	6.64	7.44	8.22	9.01	9.80
0.60	1.94	2.25	2.57	2.90	3.27	3.66	4.06	4.48	4.89	5.31	5.73	6.55	7.35	8.14	8.92	9.70
0.70	1.85	2.15	2.46	2.79	3.15	3.53	3.93	4.35	4.77	5.19	5.61	6.44	7.26	8.06	8.85	9.63
0.80	1.75	2.05	2.36	2.69	3.03	3.41	3.81	4.22	4.64	5.06	5.49	6.33	7.16	7.98	8.78	9.57
0.90	1.67	1.96	2.26	2.59	2.93	3.29	3.69	4.09	4.51	4.93	5.36	6.22	7.06	7.89	8.70	9.50
1.0	1.59	1.87	2.17	2.49	2.83	3.18	3.57	3.97	4.38	4.81	5.24	6.10	6.95	7.79	8.62	9.43
1.2	1.45	1.72	2.00	2.31	2.64	2.98	3.35	3.74	4.14	4.56	4.99	5.85	6.72	7.59	8.43	9.27
1.4	1.33	1.58	1.86	2.15	2.47	2.80	3.15	3.53	3.92	4.33	4.75	5.61	6.48	7.36	8.23	9.08
1.6	1.22	1.46	1.73	2.01	2.31	2.63	2.97	3.33	3.71	4.11	4.52	5.37	6.24	7.12	8.00	8.87
1.8	1.13	1.36	1.61	1.88	2.17	2.48	2.81	3.15	3.52	3.90	4.30	5.14	6.00	6.88	7.77	8.65
2.0	1.05	1.27	1.51	1.77	2.04	2.34	2.66	2.99	3.34	3.71	4.10	4.92	5.77	6.65	7.53	8.42
2.2	0.975	1.18	1.41	1.66	1.93	2.21	2.52	2.84	3.18	3.54	3.91	4.71	5.54	6.41	7.30	8.19
2.4	0.912	1.11	1.33	1.57	1.82	2.10	2.39	2.70	3.03	3.38	3.74	4.51	5.33	6.18	7.06	7.95
2.6	0.856	1.04	1.26	1.48	1.73	1.99	2.27	2.57	2.89	3.23	3.58	4.32	5.12	5.96	6.83	7.71
2.8	0.806	0.986	1.19	1.41	1.65	1.90	2.17	2.46	2.76	3.09	3.43	4.15	4.93	5.75	6.61	7.48
3.0	0.762	0.933	1.13	1.34	1.57	1.81	2.07	2.35	2.64	2.96	3.29	3.99	4.75	5.55	6.39	7.26
\boldsymbol{x}	0.000	0.008	0.029	0.056	0.089	0.125	0.164	0.204	0.246	0.289	0.333	0.424	0.516	0.610	0.704	0.800

Table 8-10 (continued) Coefficients, C, rically Loaded Weld Groups																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with$R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$																
LRFD								ASD								
	$\frac{1}{\phi}$	Dl	$D_{\text {min }}$	$=\frac{}{\phi}$	l	$l_{\text {min }}=$	$P_{u} C_{1} D$		$=$	l	D_{m}	$=$	l		$\frac{\Omega P_{a}}{C C_{1} D}$	
where $P=$ required force, P_{u} or P_{a}, kips $D=$ number of sixteenths-of-an-inch in the fillet weld size $l=$ characteristic length of weld group, in. $a=e_{X} / l$ $e_{X}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in. $C=$ coefficient tabulated below $C_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes) Note: Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification																
	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	. 0
0.00	1.98	2.20	2.47	2.74	3.01	3.29	3.56	3.83	4.10	4.38	4.65	5.19	5.74	6.28	6.83	7.37
0.10	1.90	2.13	2.41	2.68	2.97	3.25	3.53	3.81	4.09	4.36	4.64	5.18	5.73	6.28	6.83	7.37
0.15	1.84	2.10	2.35	2.62	2.88	3.15	3.42	3.69	3.96	4.23	4.50	5.04	5.58	6.12	6.66	7.20
0.20	1.76	1.99	2.26	2.52	2.77	3.02	3.28	3.53	3.79	4.05	4.31	4.84	5.37	5.90	6.44	6.98
0.25	1.65	1.87	2.11	2.37	2.63	2.87	3.11	3.36	3.60	3.85	4.10	4.61	5.13	5.66	6.19	6.72
0.30	1.55	1.75	1.97	2.20	2.45	2.69	2.93	3.16	3.40	3.64	3.88	4.38	4.89	5.41	5.93	6.46
0.40	1.34	1.51	1.69	1.89	2.10	2.33	2.56	2.77	2.99	3.21	3.44	3.91	4.41	4.91	5.42	5.94
0.50	1.16	1.31	1.46	1.63	1.81	2.01	2.21	2.42	2.63	2.83	3.05	3.50	3.97	4.45	4.95	5.46
0.60	1.01	1.14	1.27	1.42	1.58	1.75	1.93	2.13	2.32	2.51	2.71	3.14	3.59	4.06	4.54	5.04
0.70	0.895	1.01	1.12	1.25	1.39	1.54	1.71	1.89	2.07	2.25	2.44	2.84	3.26	3.71	4.18	4.66
0.80	0.799	0.898	1.00	1.11	1.24	1.38	1.53	1.69	1.86	2.03	2.21	2.58	2.99	3.41	3.86	4.32
0.90	0.720	0.809	0.901	1.00	1.11	1.24	1.38	1.53	1.69	1.85	2.01	2.36	2.75	3.15	3.58	4.03
1.0	0.654	0.735	0.818	0.910	1.01	1.13	1.25	1.39	1.54	1.69	1.85	2.18	2.54	2.92	3.33	3.76
1.2	0.552	0.620	0.690	0.767	0.854	0.951	1.06	1.18	1.31	1.45	1.58	1.87	2.20	2.54	2.92	3.31
1.4	0.477	0.535	0.596	0.662	0.737	0.822	0.918	1.03	1.14	1.26	1.38	1.64	1.93	2.25	2.58	2.94
1.6	0.420	0.471	0.524	0.582	0.648	0.724	0.809	0.905	1.01	1.11	1.22	1.46	1.72	2.01	2.32	2.65
1.8	0.374	0.420	0.467	0.519	0.578	0.646	0.723	0.809	0.902	0.997	1.09	1.31	1.55	1.81	2.09	2.40
2.0	0.338	0.378	0.421	0.468	0.522	0.583	0.653	0.731	0.816	0.902	0.991	1.19	1.41	1.65	1.91	2.19
2.2	0.308	0.345	0.383	0.426	0.475	0.532	0.596	0.666	0.744	0.824	0.905	1.08	1.29	1.51	1.75	2.01
2.4	0.282	0.316	0.352	0.391	0.436	0.488	0.547	0.612	0.684	0.757	0.833	0.999	1.19	1.39	1.62	1.86
2.6	0.261	0.292	0.325	0.362	0.403	0.451	0.506	0.566	0.632	0.701	0.771	0.925	1.10	1.29	1.50	1.73
2.8	0.242	0.272	0.302	0.336	0.375	0.420	0.470	0.526	0.588	0.652	0.717	0.862	1.03	1.21	1.40	1.62
3.0	0.226	0.254	0.282	0.314	0.350	0.392	0.439	0.492	0.549	0.610	0.671	0.806	0.960	1.13	1.32	1.52
x	0.000	0.005	0.017	0.035	0.057	0.083	0.113	0.144	0.178	0.213	0.250	0.327	0.408	0.492	0.579	0.667
y	0.500	0.455	0.417	0.385	0.357	0.333	0.313	0.294	0.278	0.263	0.250	0.227	0.208	0.192	0.179	0.167

Table 8-10 (continued) Coefficients, C, trically Loaded Weld Groups																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with$R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$																
LRFD								ASD								
	$=$	Dl	m	ϕ	l_{1}^{l}	$l_{\text {min }}=$	$\frac{P_{u}}{\phi C C_{1} D}$	$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l} \quad D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l} \quad l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$								
where $P=$ required force, P_{u} or P_{a}, kips $D=$ number of sixteenths-of-an-inch in the fillet weld size $l=$ characteristic length of weld group, in. $a=e_{X} / l$ $e_{x}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in. $C=$ coefficient tabulated below $C_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes) Note: Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.																
	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7		0.9				1.6	2.0	
0.00	2.18	2.44	2.70	2.96	3.21	3.47	3.73	3.98	4.24	4.50	4.76	5.27	5.78	6.30	6.81	7.33
0.10	2.02	2.35	2.66	2.96	3.24	3.52	3.79	4.06	4.33	4.59	4.86	5.38	5.90	6.43	6.95	7.47
0.15	1.92	2.22	2.53	2.84	3.13	3.41	3.69	3.96	4.23	4.49	4.76	5.29	5.81	6.34	6.86	7.38
0.20	1.82	2.09	2.38	2.67	2.97	3.26	3.53	3.80	4.07	4.33	4.60	5.13	5.65	6.18	6.71	7.23
0.25	1.71	1.96	2.22	2.50	2.78	3.06	3.34	3.60	3.87	4.13	4.39	4.92	5.45	5.98	6.51	7.05
0.30	1.61	1.83	2.07	2.32	2.59	2.86	3.13	3.40	3.65	3.91	4.17	4.70	5.23	5.76	6.30	6.83
0.40	1.41	1.59	1.79	2.01	2.23	2.47	2.72	2.98	3.24	3.48	3.72	4.23	4.75	5.28	5.82	6.37
0.50	1.23	1.39	1.56	1.74	1.94	2.15	2.37	2.61	2.85	3.09	3.32	3.80	4.30	4.83	5.36	5.90
0.60	1.08	1.22	1.37	1.53	1.70	1.89	2.09	2.30	2.53	2.75	2.97	3.43	3.91	4.41	4.94	5.47
0.70	0.964	1.09	1.21	1.35	1.51	1.67	1.86	2.05	2.26	2.48	2.68	3.12	3.58	4.06	4.56	5.07
0.80	0.865	0.974	1.09	1.21	1.35	1.50	1.66	1.84	2.04	2.24	2.44	2.84	3.28	3.74	4.22	4.72
0.90	0.783	0.881	0.983	1.09	1.22	1.36	1.51	1.67	1.85	2.04	2.23	2.61	3.03	3.47	3.93	4.40
1.0	0.714	0.803	0.896	0.997	1.11	1.24	1.38	1.53	1.70	1.88	2.05	2.41	2.80	3.22	3.66	4.12
1.2	0.606	0.681	0.759	0.844	0.940	1.05	1.17	1.30	1.45	1.61	1.76	2.08	2.43	2.81	3.22	3.64
1.4	0.525	0.590	0.657	0.731	0.814	0.908	1.02	1.13	1.26	1.40	1.53	1.82	2.14	2.49	2.86	3.25
1.6	0.463	0.520	0.579	0.644	0.717	0.801	0.897	1.00	1.12	1.24	1.36	1.62	1.91	2.23	2.57	2.92
1.8	0.414	0.464	0.517	0.575	0.641	0.716	0.802	0.897	1.00	1.11	1.22	1.46	1.72	2.01	2.32	2.66
2.0	0.374	0.419	0.467	0.519	0.579	0.647	0.725	0.811	0.905	1.01	1.11	1.32	1.57	1.83	2.12	2.43
2.2	0.341	0.382	0.425	0.473	0.528	0.590	0.661	0.740	0.826	0.919	1.01	1.21	1.44	1.68	1.95	2.24
2.4	0.313	0.351	0.391	0.434	0.485	0.543	0.608	0.680	0.760	0.845	0.930	1.12	1.32	1.55	1.80	2.07
2.6	0.289	0.324	0.361	0.402	0.448	0.502	0.562	0.629	0.703	0.782	0.861	1.03	1.23	1.44	1.67	1.92
2.8	0.269	0.302	0.336	0.373	0.417	0.467	0.523	0.585	0.654	0.727	0.801	0.963	1.15	1.35	1.56	1.80
3.0	0.251	0.282	0.314	0.349	0.389	0.436	0.489	0.547	0.611	0.680	0.749	0.901	1.07	1.26	1.47	1.69
\boldsymbol{x}	0.000	0.005	0.017	0.035	0.057	0.083	0.113	0.144	0.178	0.213	0.250	0.327	0.408	0.492	0.57	0.667
\boldsymbol{y}	0.500	0.455	0.417	0.385	0.357	0.333	0.313	0.294	0.278	0.263	0.250	0.227	0.208	0.192	0.179	0.167

Table 8-10 (continued) Coefficients, C, trically Loaded Weld Groups																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with$R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$																
LRFD								ASD								
	-	$D l$	$D_{\text {min }}$	¢	$l_{1} l$	$l_{\text {min }}=$	$\frac{P_{u}}{\phi C C_{1} D}$	$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l} \quad D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l} \quad l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$								
where $P=$ required force, P_{u} or P_{a}, kips $D=$ number of sixteenths-of-an-inch in the fillet weld size $l=$ characteristic length of weld group, in. $a=e_{\chi} / l$ $e_{x}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in. $C=$ coefficient tabulated below $C_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes) Note: Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.																
	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0.00	2.60	2.79	3.01	3.23	3.44	3.66	3.88	4.10	4.32	4.54	4.76	5.19	5.63	6.07	6.50	6.94
0.10	2.43	2.70	2.97	3.23	3.48	3.72	3.96	4.19	4.42	4.64	4.87	5.31	5.75	6.18	6.62	7.05
0.15	2.31	2.59	2.86	3.13	3.40	3.66	3.91	4.16	4.40	4.64	4.87	5.32	5.77	6.21	6.64	7.08
0.20	2.18	2.47	2.74	3.01	3.29	3.56	3.83	4.09	4.35	4.59	4.84	5.30	5.76	6.21	6.65	7.09
0.25	2.07	2.35	2.62	2.89	3.16	3.44	3.72	3.99	4.26	4.52	4.77	5.26	5.73	6.19	6.64	7.08
0.30	1.97	2.24	2.50	2.76	3.03	3.31	3.59	3.88	4.16	4.43	4.69	5.20	5.68	6.15	6.61	7.06
0.40	1.79	2.03	2.27	2.52	2.77	3.04	3.32	3.61	3.90	4.19	4.48	5.02	5.54	6.04	6.52	6.98
0.50	1.63	1.84	2.06	2.29	2.53	2.78	3.05	3.34	3.63	3.93	4.22	4.79	5.34	5.87	6.37	6.86
0.60	1.49	1.68	1.88	2.09	2.31	2.55	2.81	3.08	3.37	3.66	3.96	4.55	5.11	5.66	6.19	6.69
0.70	1.37	1.54	1.73	1.92	2.12	2.35	2.59	2.85	3.12	3.41	3.71	4.30	4.87	5.43	5.97	6.50
0.80	1.26	1.42	1.59	1.77	1.96	2.17	2.40	2.64	2.90	3.18	3.47	4.05	4.64	5.20	5.74	6.28
0.90	1.17	1.32	1.47	1.63	1.81	2.01	2.23	2.46	2.71	2.97	3.25	3.82	4.39	4.95	5.50	6.04
1.0	1.08	1.22	1.36	1.52	1.69	1.87	2.08	2.30	2.53	2.78	3.05	3.60	4.15	4.71	5.26	5.80
1.2	0.946	1.07	1.19	1.32	1.47	1.64	1.82	2.02	2.23	2.46	2.70	3.21	3.72	4.26	4.80	5.34
1.4	0.837	0.942	1.05	1.17	1.30	1.45	1.62	1.80	1.99	2.20	2.42	2.88	3.36	3.86	4.38	4.92
1.6	0.748	0.842	0.939	1.04	1.16	1.30	1.45	1.61	1.79	1.98	2.18	2.60	3.04	3.52	4.02	4.53
1.8	0.676	0.760	0.847	0.943	1.05	1.17	1.31	1.46	1.62	1.80	1.98	2.37	2.78	3.23	3.70	4.19
2.0	0.616	0.692	0.772	0.859	0.958	1.07	1.20	1.33	1.48	1.64	1.82	2.18	2.55	2.97	3.42	3.88
2.2	0.565	0.635	0.708	0.788	0.879	0.983	1.10	1.23	1.36	1.51	1.67	2.01	2.36	2.75	3.17	3.61
2.4	0.522	0.586	0.653	0.728	0.812	0.908	1.02	1.13	1.26	1.40	1.55	1.86	2.19	2.56	2.95	3.37
2.6	0.485	0.544	0.607	0.675	0.754	0.844	0.944	1.05	1.17	1.30	1.44	1.74	2.05	2.39	2.76	3.16
2.8	0.453	0.508	0.566	0.630	0.704	0.787	0.881	0.984	1.10	1.22	1.35	1.63	1.92	2.24	2.59	2.97
3.0	0.424	0.476	0.530	0.590	0.659	0.738	0.826	0.923	1.03	1.14	1.26	1.53	1.80	2.11	2.44	2.80
\boldsymbol{x}	0.000	0.005	0.017	0.035	0.057	0.083	0.113	0.144	0.178	0.213	0.250	0.327	0.408	0.492	0.579	0.667
y	0.500	0.455	0.417	0.385	0.357	0.333	0.313	0.294	0.278	0.263	0.250	0.227	0.208	0.192	0.179	0.167

Table 8-10 (continued) Coefficients, C, rically Loaded Weld Groups Angle $=75^{\circ}$																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with$R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$																
LRFD								ASD								
	¢	Dl	$D_{\text {min }}=\frac{P_{u}}{\phi C C_{1} l} \quad l_{\text {min }}=\frac{P_{u}}{\phi C C_{1} D}$					$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l} \quad D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l} \quad l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$								
where $P=$ required force, P_{u} or P_{a}, kips $D=$ number of sixteenths-of-an-inch in the fillet weld size $l=$ characteristic length of weld group, in. $a=e_{x} / l$ $e_{x}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in. $C=$ coefficient tabulated below $\mathcal{C}_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes) Note: Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.																
	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0.00	2.74	2.92	3.11	3.30	3.49	3.69	3.88	4.07	4.26	4.46	4.65	5.03	5.42	5.80	6.19	6.57
0.10	2.59	2.86	3.11	3.31	3.50	3.69	3.88	4.07	4.27	4.46	4.65	5.04	5.42	5.81	6.20	6.58
15	2.50	2.78	3.04	3.28	3.50	3.70	3.90	4.09	4.28	4.47	4.67	5.05	5.44	5.83	6.21	6.60
0.20	2.43	2.69	2.96	3.22	3.46	3.68	3.89	4.09	4.29	4.48	4.68	5.06	5.45	5.84	6.22	6.61
0.25	2.35	2.62	2.88	3.14	3.40	3.63	3.86	4.07	4.28	4.48	4.68	5.07	5.46	5.84	6.23	6.61
0.30	2.28	2.55	2.80	3.07	3.33	3.58	3.82	4.04	4.26	4.46	4.67	5.06	5.46	5.84	6.23	6.62
0.40	2.16	2.41	2.66	2.92	3.19	3.45	3.71	3.95	4.18	4.41	4.62	5.04	5.44	5.83	6.23	6.61
0.50	2.05	2.29	2.53	2.78	3.05	3.32	3.58	3.84	4.09	4.32	4.55	4.99	5.40	5.81	6.21	6.60
0.60	1.94	2.18	2.41	2.64	2.90	3.18	3.45	3.72	3.97	4.22	4.46	4.92	5.35	5.77	6.17	6.57
0.70	1.85	2.07	2.29	2.52	2.77	3.04	3.31	3.58	3.85	4.11	4.36	4.83	5.28	5.71	6.12	6.53
0.80	1.75	1.97	2.18	2.40	2.64	2.90	3.18	3.45	3.73	3.99	4.25	4.74	5.20	5.64	6.06	6.48
0.90	1.67	1.87	2.08	2.29	2.52	2.77	3.04	3.32	3.60	3.87	4.14	4.65	5.12	5.57	6.00	6.42
1.0	1.59	1.79	1.98	2.19	2.41	2.65	2.92	3.19	3.47	3.75	4.02	4.55	5.04	5.50	5.94	6.37
1.2	1.45	1.63	1.81	2.00	2.21	2.44	2.68	2.95	3.22	3.50	3.78	4.33	4.85	5.34	5.81	6.25
1.4	1.33	1.49	1.66	1.84	2.03	2.24	2.47	2.72	2.99	3.27	3.55	4.11	4.65	5.16	5.65	6.12
1.6	1.22	1.37	1.53	1.69	1.88	2.07	2.29	2.53	2.78	3.05	3.32	3.88	4.43	4.97	5.48	5.96
1.8	1.13	1.27	1.41	1.57	1.74	1.93	2.13	2.35	2.59	2.85	3.11	3.66	4.22	4.76	5.29	5.79
2.0	1.05	1.18	1.31	1.46	1.62	1.79	1.99	2.20	2.42	2.67	2.92	3.46	4.01	4.56	5.09	5.61
2.2	0.975	1.10	1.22	1.36	1.51	1.68	1.86	2.06	2.27	2.50	2.75	3.27	3.81	4.36	4.90	5.42
2.4	0.912	1.03	1.14	1.27	1.41	1.57	1.74	1.93	2.14	2.36	2.59	3.09	3.62	4.16	4.70	5.23
2.6	0.856	0.963	1.07	1.19	1.33	1.48	1.64	1.82	2.02	2.22	2.45	2.93	3.44	3.97	4.50	5.03
2.8	0.806	0.906	1.01	1.12	1.25	1.39	1.55	1.72	1.90	2.10	2.32	2.78	3.28	3.79	4.30	4.83
3.0	0.762	0.856	0.954	1.06	1.18	1.32	1.47	1.63	1.80	2.00	2.20	2.64	3.12	3.61	4.12	4.64
x	0.000	0.005	0.017	0.035	0.057	0.083	0.113	0.144	0.178	0.213	0.250	0.327	0.408	0.492	0.579	0.667
y	0.500	0.455	0.417	0.385	0.357	0.333	0.313	0.294	0.278	0.263	0.250	0.227	0.208	0.192	0.179	0.167

Table 8-10a (continued) Coefficients, C, trically Loaded Weld Groups																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with$R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$																
LRFD								ASD								
		${ }_{u} D l$	$D_{\text {min }}=$	$\frac{P_{u}}{\phi C C}$	$P_{u} C_{1} l$	$l_{\text {min }}=$	${ }^{\text {Pu }}{ }_{\text {c }}$ D	$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l}$			$D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l}$			$l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$		
where $P=$ required force, P_{u} or P_{a}, kips $D=$ number of sixteenths-of-an-inch in the fillet weld size $l=$ characteristic length of weld group, in. $a=e_{X} / l$ $e_{x}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in. $C=$ coefficient tabulated below $C_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes) Note: Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.																
	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0.00	2.18	2.44	2.70	2.96	3.21	3.47	3.73	3.98	4.24	4.50	4.76	5.27	5.78	6.30	6.81	7.33
0.10	2.02	2.24	2.47	2.70	2.94	3.18	3.43	3.69	3.95	4.21	4.48	5.01	5.56	6.11	6.65	7.20
0.15	1.92	2.13	2.34	2.55	2.77	3.00	3.23	3.47	3.71	3.96	4.21	4.73	5.27	5.82	6.37	6.93
0.20	1.82	2.02	2.23	2.43	2.64	2.85	3.07	3.29	3.52	3.76	4.00	4.50	5.01	5.55	6.09	6.64
0.25	1.71	1.91	2.11	2.31	2.50	2.70	2.91	3.12	3.34	3.57	3.80	4.28	4.78	5.30	5.83	6.37
0.30	1.61	1.79	1.98	2.18	2.37	2.56	2.75	2.96	3.17	3.39	3.61	4.08	4.57	5.08	5.60	6.13
0.40	1.41	1.57	1.74	1.92	2.10	2.28	2.45	2.64	2.84	3.04	3.26	3.71	4.18	4.67	5.18	5.69
0.50	1.23	1.38	1.53	1.70	1.87	2.03	2.19	2.36	2.55	2.74	2.94	3.37	3.83	4.30	4.80	5.30
0.60	1.08	1.22	1.36	1.51	1.66	1.81	1.96	2.13	2.30	2.48	2.67	3.08	3.52	3.98	4.46	4.95
0.70	0.964	1.08	1.21	1.35	1.49	1.63	1.77	1.92	2.08	2.26	2.44	2.83	3.25	3.69	4.15	4.64
0.80	0.865	0.974	1.09	1.22	1.34	1.48	1.61	1.75	1.90	2.06	2.23	2.60	3.01	3.44	3.89	4.35
0.90	0.783	0.882	0.989	1.10	1.22	1.34	1.47	1.60	1.74	1.90	2.06	2.41	2.80	3.21	3.64	4.09
1.0	0.714	0.805	0.904	1.01	1.11	1.23	1.35	1.48	1.61	1.75	1.91	2.24	2.61	3.00	3.42	3.86
1.2	0.606	0.684	0.769	0.852	0.944	1.05	1.16	1.27	1.39	1.52	1.66	1.96	2.29	2.65	3.04	3.44
1.4	0.525	0.593	0.665	0.737	0.818	0.908	1.01	1.11	1.22	1.34	1.46	1.73	2.04	2.37	2.72	3.09
1.6	0.463	0.523	0.585	0.649	0.720	0.801	0.892	0.990	1.09	1.19	1.30	1.55	1.83	2.13	2.46	2.80
1.8	0.414	0.468	0.522	0.579	0.644	0.717	0.799	0.890	0.978	1.07	1.18	1.40	1.66	1.93	2.23	2.56
2.0	0.374	0.423	0.471	0.523	0.581	0.648	0.724	0.807	0.889	0.977	1.07	1.28	1.51	1.77	2.05	2.35
2.2	0.341	0.386	0.429	0.476	0.530	0.591	0.661	0.738	0.814	0.895	0.982	1.17	1.39	1.63	1.89	2.17
2.4	0.313	0.354	0.394	0.437	0.487	0.543	0.608	0.679	0.750	0.825	0.906	1.08	1.29	1.51	1.75	2.02
2.6	0.289	0.327	0.364	0.404	0.450	0.503	0.562	0.628	0.696	0.766	0.841	1.01	1.20	1.40	1.63	1.88
2.8	0.269	0.304	0.338	0.376	0.418	0.467	0.523	0.585	0.648	0.714	0.784	0.940	1.12	1.31	1.53	1.76
3.0	0.251	0.284	0.316	0.351	0.391	0.437	0.489	0.547	0.607	0.668	0.734	0.881	1.05	1.23	1.44	1.66
x	0.000	0.005	0.017	0.035	0.057	0.083	0.113	0.144	0.178	0.213	0.250	0.327	0.408	0.492	0.579	0.667
y	0.500	0.455	0.417	0.385	0.357	0.333	0.313	0.294	0.278	0.263	0.250	0.227	0.208	0.192	0.179	0.167

Table 8-10a (continued) Coefficients, C, trically Loaded Weld Groups																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with$R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$																
LRFD								ASD								
	-	Dl	$D_{\text {min }}$	¢C	$P_{u} C_{1} l$	$l_{\text {min }}=$	P_{u}	$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l} \quad D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l} \quad l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$								
where $P=$ required force, P_{u} or P_{a}, kips $D=$ number of sixteenths-of-an-inch in the fillet weld size $l=$ characteristic length of weld group, in. $a=e_{\chi} / l$ $e_{x}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in. $C=$ coefficient tabulated below $C_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes) Note: Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.																
	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0.00	2.41	2.57	2.80	3.04	3.27	3.51	3.74	3.97	4.21	4.44	4.67	5.14	5.61	6.08	6.54	7.01
0.10	2.24	2.44	2.65	2.86	3.07	3.29	3.52	3.76	4.00	4.24	4.49	5.01	5.53	6.06	6.59	7.12
0.15	2.09	2.28	2.48	2.68	2.89	3.11	3.33	3.56	3.79	4.03	4.28	4.79	5.32	5.85	6.40	6.94
0.20	1.96	2.14	2.33	2.54	2.74	2.95	3.16	3.38	3.61	3.84	4.08	4.58	5.10	5.64	6.19	6.74
0.25	1.85	2.02	2.21	2.40	2.61	2.81	3.01	3.22	3.44	3.67	3.90	4.39	4.90	5.43	5.98	6.53
0.30	1.74	1.91	2.09	2.28	2.47	2.67	2.87	3.07	3.29	3.51	3.73	4.21	4.72	5.24	5.78	6.33
0.40	1.55	1.70	1.87	2.04	2.23	2.42	2.60	2.80	3.00	3.21	3.43	3.89	4.38	4.89	5.41	5.95
0.50	1.38	1.52	1.67	1.84	2.01	2.19	2.36	2.55	2.74	2.94	3.15	3.60	4.07	4.57	5.09	5.62
0.60	1.23	1.36	1.50	1.66	1.82	1.99	2.16	2.33	2.51	2.70	2.90	3.33	3.80	4.28	4.79	5.31
0.70	1.11	1.23	1.36	1.50	1.66	1.82	1.97	2.13	2.31	2.49	2.68	3.10	3.55	4.02	4.52	5.03
0.80	1.00	1.12	1.24	1.37	1.52	1.67	1.81	1.97	2.13	2.31	2.49	2.89	3.33	3.79	4.27	4.77
0.90	0.915	1.02	1.13	1.26	1.39	1.54	1.67	1.82	1.98	2.14	2.32	2.71	3.12	3.57	4.04	4.53
1.0	0.839	0.938	1.04	1.16	1.29	1.42	1.55	1.69	1.84	2.00	2.17	2.54	2.94	3.37	3.83	4.30
1.2	0.719	0.805	0.900	1.00	1.12	1.24	1.35	1.48	1.61	1.76	1.91	2.25	2.62	3.02	3.45	3.90
1.4	0.627	0.704	0.788	0.880	0.979	1.08	1.19	1.31	1.43	1.56	1.70	2.01	2.36	2.73	3.13	3.54
1.6	0.555	0.624	0.700	0.783	0.868	0.962	1.07	1.17	1.28	1.40	1.53	1.82	2.14	2.48	2.85	3.24
1.8	0.498	0.560	0.629	0.701	0.778	0.864	0.961	1.06	1.16	1.27	1.39	1.66	1.95	2.27	2.61	2.98
2.0	0.451	0.508	0.571	0.635	0.704	0.784	0.873	0.964	1.06	1.16	1.27	1.52	1.79	2.09	2.41	2.75
2.2	0.412	0.464	0.522	0.579	0.643	0.716	0.799	0.885	0.974	1.07	1.17	1.40	1.65	1.93	2.23	2.55
2.4	0.379	0.428	0.480	0.532	0.592	0.660	0.736	0.818	0.900	0.989	1.08	1.30	1.53	1.79	2.08	2.38
2.6	0.351	0.396	0.444	0.493	0.548	0.611	0.683	0.760	0.837	0.920	1.01	1.21	1.43	1.67	1.94	2.23
2.8	0.327	0.369	0.413	0.458	0.510	0.569	0.636	0.709	0.781	0.859	0.943	1.13	1.34	1.57	1.82	2.10
3.0	0.306	0.345	0.386	0.428	0.477	0.532	0.595	0.665	0.733	0.806	0.885	1.06	1.26	1.48	1.72	1.98
\boldsymbol{x}	0.000	0.005	0.017	0.035	0.057	0.083	0.113	0.144	0.178	0.213	0.250	0.327	0.408	0.492	0.579	0.667
y	0.500	0.455	0.417	0.385	0.357	0.333	0.313	0.294	0.278	0.263	0.250	0.227	0.208	0.192	0.179	0.167

Table 8-10a (continued) Coefficients, C, trically Loaded Weld Groups																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with$R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$																
LRFD								ASD								
	$=$	Dl	$D_{\text {min }}=\frac{P_{u}}{\phi C C_{1} l} \quad l_{\text {min }}=\frac{P_{u}}{\phi C C_{1} D}$					$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l} \quad D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l} \quad l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$								
where $P=$ required force, P_{u} or P_{a}, kips $D=$ number of sixteenths-of-an-inch in the fillet weld size $l=$ characteristic length of weld group, in. $a=e_{x} / l$ $e_{x}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in. $C=$ coefficient tabulated below $\mathcal{C}_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes) Note: Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.																
	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0.00	2.60	2.79	3.01	3.23	3.44	3.66	3.88	4.10	4.32	4.54	4.76	5.19	5.63	6.07	6.50	6.94
0.10	2.43	2.59	2.76	2.94	3.14	3.35	3.57	3.80	4.03	4.28	4.52	5.04	5.56	6.07	6.56	7.03
0.15	2.31	2.45	2.62	2.80	3.00	3.21	3.43	3.66	3.89	4.13	4.38	4.89	5.43	5.96	6.48	6.97
0.20	2.18	2.32	2.49	2.67	2.87	3.08	3.30	3.52	3.75	3.99	4.23	4.75	5.28	5.83	6.37	6.88
0.25	2.07	2.21	2.38	2.56	2.75	2.96	3.17	3.40	3.62	3.86	4.10	4.60	5.14	5.69	6.24	6.78
0.30	1.97	2.11	2.27	2.45	2.64	2.84	3.06	3.28	3.50	3.73	3.97	4.47	5.00	5.55	6.11	6.66
0.40	1.79	1.93	2.08	2.25	2.44	2.64	2.84	3.06	3.27	3.50	3.73	4.22	4.74	5.28	5.84	6.41
0.50	1.63	1.76	1.91	2.08	2.26	2.45	2.65	2.86	3.06	3.28	3.51	3.99	4.50	5.03	5.58	6.15
0.60	1.49	1.62	1.76	1.92	2.09	2.28	2.47	2.67	2.87	3.08	3.30	3.77	4.28	4.80	5.35	5.91
0.70	1.37	1.49	1.63	1.78	1.95	2.12	2.31	2.50	2.70	2.90	3.12	3.58	4.07	4.59	5.13	5.68
0.80	1.26	1.38	1.51	1.66	1.82	1.99	2.17	2.35	2.54	2.74	2.95	3.39	3.88	4.39	4.92	5.46
0.90	1.17	1.28	1.41	1.55	1.70	1.86	2.04	2.21	2.39	2.58	2.79	3.23	3.70	4.20	4.72	5.25
1.0	1.08	1.19	1.31	1.45	1.59	1.75	1.92	2.08	2.26	2.45	2.64	3.07	3.53	4.02	4.53	5.05
1.2	0.946	1.05	1.16	1.28	1.41	1.56	1.71	1.87	2.03	2.20	2.39	2.79	3.22	3.69	4.17	4.68
1.4	0.837	0.928	1.03	1.14	1.27	1.40	1.54	1.68	1.83	2.00	2.17	2.54	2.96	3.40	3.86	4.34
1.6	0.748	0.832	0.926	1.03	1.14	1.27	1.40	1.53	1.67	1.82	1.98	2.33	2.72	3.14	3.58	4.04
1.8	0.676	0.754	0.840	0.936	1.04	1.16	1.28	1.40	1.53	1.67	1.82	2.15	2.52	2.91	3.33	3.77
2.0	0.616	0.688	0.768	0.857	0.957	1.07	1.17	1.29	1.41	1.54	1.68	1.99	2.34	2.71	3.11	3.53
2.2	0.565	0.632	0.707	0.790	0.883	0.981	1.08	1.19	1.30	1.43	1.56	1.85	2.18	2.53	2.91	3.31
2.4	0.522	0.585	0.655	0.733	0.818	0.909	1.01	1.11	1.21	1.33	1.46	1.73	2.04	2.37	2.73	3.11
2.6	0.485	0.544	0.609	0.682	0.760	0.845	0.940	1.03	1.13	1.24	1.36	1.62	1.91	2.23	2.57	2.93
2.8	0.453	0.508	0.570	0.638	0.709	0.789	0.879	0.969	1.06	1.17	1.28	1.53	1.80	2.10	2.43	2.78
3.0	0.424	0.476	0.535	0.598	0.665	0.740	0.825	0.911	1.00	1.10	1.21	1.44	1.70	1.99	2.30	2.63
x	0.000	0.005	0.017	0.035	0.057	0.083	0.113	0.144	0.178	0.213	0.250	0.327	0.408	0.492	0.579	0.667
y	0.500	0.455	0.417	0.385	0.357	0.333	0.313	0.294	0.278	0.263	0.250	0.227	0.208	0.192	0.179	0.167

Table 8-10a (continued) Coefficients, C, trically Loaded Weld Groups																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with$R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$																
LRFD								ASD								
	$=$	Dl	mi	ϕ	$l_{1} l$	=	$P_{u} C_{1} D$	$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l} \quad D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l} \quad l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$								
where $P=$ required force, P_{u} or P_{a}, kips $D=$ number of sixteenths-of-an-inch in the fillet weld size $l=$ characteristic length of weld group, in. $a=e_{\chi} / l$ $e_{X}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in. $C=$ coefficient tabulated below $C_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes) Note: Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.																
a	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0.00	2.74	2.92	3.11	3.30	3.49	3.69	3.88	4.07	4.26	4.46	4.65	5.03	5.42	5.80	6.19	6.57
0.10	2.59	2.68	2.81	2.97	3.16	3.36	3.58	3.82	4.07	4.33	4.58	5.06	5.50	5.91	6.31	6.69
0.15	2.50	2.60	2.74	2.90	3.08	3.29	3.51	3.75	4.00	4.26	4.52	5.02	5.48	5.90	6.30	6.69
0.20	2.43	2.53	2.66	2.83	3.01	3.22	3.44	3.68	3.93	4.19	4.46	4.98	5.45	5.88	6.29	6.69
0.25	2.35	2.46	2.60	2.76	2.94	3.15	3.37	3.61	3.86	4.12	4.39	4.92	5.42	5.86	6.28	6.68
0.30	2.28	2.39	2.53	2.69	2.88	3.09	3.31	3.54	3.79	4.05	4.32	4.86	5.37	5.84	6.26	6.67
0.40	2.16	2.27	2.41	2.57	2.76	2.96	3.18	3.42	3.66	3.92	4.19	4.72	5.27	5.77	6.22	6.64
0.50	2.05	2.16	2.30	2.46	2.64	2.85	3.06	3.30	3.54	3.80	4.06	4.59	5.13	5.66	6.15	6.59
0.60	1.94	2.05	2.19	2.35	2.54	2.73	2.95	3.18	3.42	3.68	3.93	4.46	5.00	5.54	6.06	6.54
0.70	1.85	1.96	2.10	2.25	2.43	2.63	2.84	3.07	3.31	3.56	3.81	4.33	4.87	5.42	5.95	6.45
0.80	1.75	1.87	2.00	2.16	2.34	2.53	2.74	2.97	3.20	3.45	3.69	4.21	4.75	5.30	5.84	6.35
0.90	1.67	1.78	1.92	2.07	2.25	2.44	2.65	2.87	3.10	3.34	3.58	4.09	4.62	5.17	5.72	6.24
1.0	1.59	1.70	1.84	1.99	2.16	2.35	2.55	2.77	3.00	3.24	3.47	3.97	4.50	5.05	5.60	6.13
1.2	1.45	1.56	1.69	1.84	2.00	2.18	2.38	2.60	2.82	3.04	3.27	3.76	4.27	4.81	5.37	5.91
1.4	1.33	1.43	1.56	1.70	1.86	2.04	2.23	2.44	2.65	2.86	3.08	3.55	4.06	4.59	5.13	5.68
1.6	1.22	1.32	1.45	1.58	1.74	1.91	2.09	2.29	2.49	2.69	2.91	3.37	3.86	4.37	4.91	5.46
1.8	1.13	1.23	1.35	1.48	1.63	1.79	1.97	2.16	2.34	2.54	2.75	3.19	3.67	4.17	4.70	5.24
2.0	1.05	1.14	1.26	1.38	1.52	1.68	1.85	2.03	2.21	2.40	2.60	3.03	3.50	3.99	4.50	5.03
2.2	0.975	1.07	1.18	1.30	1.44	1.59	1.75	1.92	2.09	2.27	2.47	2.88	3.33	3.81	4.31	4.83
2.4	0.912	1.00	1.11	1.22	1.35	1.50	1.66	1.82	1.98	2.16	2.34	2.74	3.18	3.64	4.13	4.64
2.6	0.856	0.943	1.04	1.15	1.28	1.42	1.57	1.72	1.88	2.05	2.23	2.62	3.04	3.49	3.96	4.46
2.8	0.806	0.890	0.986	1.09	1.21	1.35	1.49	1.64	1.79	1.95	2.12	2.50	2.91	3.35	3.81	4.29
3.0	0.762	0.842	0.934	1.04	1.15	1.28	1.42	1.56	1.70	1.86	2.03	2.39	2.78	3.21	3.66	4.13
\boldsymbol{x}	0.000	0.005	0.017	0.035	0.057	0.083	0.113	0.144	0.178	0.213	0.250	0.327	0.408	0.492	0.579	0.667
y	0.500	0.455	0.417	0.385	0.357	0.333	0.313	0.294	0.278	0.263	0.250	0.227	0.208	0.192	0.179	0.167

Table 8-11 (continued) Coefficients, C, trically Loaded Weld Groups																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with$R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$																
LRFD								ASD								
	$\frac{}{\phi C}$	${ }_{u}$ Dl	$D_{\text {min }}=\frac{P_{u}}{\phi C C_{1} l} \quad l_{\text {min }}=\frac{P_{u}}{\phi C C_{1} D}$					$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l} \quad D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l} \quad l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$								
where $P=$ required force, P_{u} or P_{a}, kips $D=$ number of sixteenths-of-an-inch in the fillet weld size $l=$ characteristic length of weld group, in. $a=e_{X} / l$ $e_{x}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in. $C=$ coefficient tabulated below $C_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes) Note: Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.																
a	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0.00	1.98	2.20	2.47	2.74	3.01	3.29	3.56	3.83	4.10	4.38	4.65	5.19	5.74	6.28	6.83	7.37
0.10	1.90	2.09	2.32	2.55	2.79	3.02	3.26	3.49	3.71	3.94	4.16	4.60	5.04	5.49	5.95	6.42
0.15	1.84	2.05	2.26	2.48	2.70	2.92	3.13	3.35	3.56	3.77	3.98	4.40	4.83	5.27	5.72	6.18
0.20	1.76	1.96	2.17	2.38	2.58	2.78	2.99	3.19	3.38	3.58	3.78	4.19	4.61	5.05	5.49	5.95
0.25	1.65	1.85	2.05	2.25	2.44	2.63	2.82	3.01	3.20	3.39	3.58	3.99	4.41	4.84	5.28	5.74
0.30	1.55	1.74	1.92	2.10	2.28	2.46	2.64	2.82	3.01	3.21	3.40	3.81	4.22	4.65	5.09	5.54
0.40	1.34	1.51	1.67	1.82	1.97	2.12	2.29	2.48	2.67	2.87	3.08	3.47	3.88	4.29	4.73	5.17
0.50	1.16	1.31	1.44	1.58	1.71	1.86	2.02	2.19	2.37	2.56	2.77	3.17	3.57	3.97	4.39	4.83
0.60	1.01	1.14	1.26	1.38	1.51	1.65	1.79	1.95	2.12	2.31	2.50	2.91	3.29	3.69	4.09	4.51
0.70	0.895	1.01	1.12	1.23	1.34	1.47	1.61	1.75	1.91	2.09	2.27	2.66	3.04	3.43	3.82	4.23
0.80	0.799	0.897	0.995	1.10	1.21	1.32	1.45	1.59	1.74	1.90	2.07	2.44	2.83	3.19	3.58	3.97
0.90	0.720	0.809	0.897	0.991	1.09	1.20	1.32	1.45	1.59	1.74	1.90	2.26	2.63	2.99	3.36	3.74
1.0	0.654	0.735	0.816	0.902	0.996	1.10	1.21	1.33	1.46	1.60	1.76	2.09	2.45	2.80	3.16	3.53
1.2	0.552	0.621	0.689	0.763	0.845	0.936	1.03	1.14	1.25	1.38	1.52	1.82	2.15	2.48	2.81	3.16
1.4	0.477	0.536	0.595	0.660	0.733	0.813	0.900	0.994	1.10	1.21	1.33	1.60	1.90	2.22	2.53	2.85
1.6	0.420	0.471	0.523	0.581	0.646	0.718	0.796	0.881	0.974	1.08	1.19	1.43	1.70	2.00	2.29	2.59
1.8	0.374	0.420	0.467	0.519	0.577	0.642	0.713	0.790	0.874	0.967	1.07	1.29	1.54	1.81	2.09	2.37
2.0	0.338	0.379	0.421	0.468	0.521	0.580	0.645	0.716	0.793	0.877	0.969	1.18	1.41	1.66	1.92	2.19
2.2	0.308	0.345	0.384	0.426	0.475	0.529	0.589	0.654	40.725	0.803	0.888	1.08	1.29	1.52	1.77	2.02
2.4	0.282	0.317	0.352	0.391	0.436	0.486	0.542	0.602	0.668	0.739	0.818	0.994	1.19	1.41	1.64	1.88
2.6	0.261	0.292	0.325	0.362	0.403	0.450	0.501	0.557	0.619	0.685	0.758	0.923	1.11	1.31	1.52	1.75
2.8	0.242	0.272	0.302	0.336	0.375	0.418	0.466	0.519	0.576	0.638	0.707	0.860	1.03	1.22	1.42	1.64
3.0	0.226	0.254	0.282	0.314	0.350	0.391	0.436	0.485	0.539	0.598	0.662	0.806	0.967	1.14	1.33	1.53
\boldsymbol{x}	0.000	0.005	0.017	0.035	0.057	0.083	0.113	0.144	0.178	0.213	0.250	0.327	0.408	0.492	0.579	0.667
y	0.500	0.455	0.417	0.385	0.357	0.333	0.313	0.294	0.278	0.263	0.250	0.227	0.208	0.192	0.179	0.167

Table 8-11 (continued) Coefficients, C, rically Loaded Weld Groups																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with$R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$																
LRFD								ASD								
	¢	Dl		ϕ	l	$=$	$P_{u} C_{1} D$	$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l}$			$D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l}$			$l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$		
where $P=$ required force, P_{u} or P_{a}, kips $D=$ number of sixteenths-of-an-inch in the fillet weld size $l=$ characteristic length of weld group, in. $a=e_{\chi} / l$ $e_{X}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in. $C=$ coefficient tabulated below $C_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes) Note: Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.																
	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0.00	2.18	2.44	2.70	2.96	3.21	3.47	3.73	3.98	4.24	4.50	4.76	5.27	5.78	6.30	6.81	7.33
0.10	2.02	2.24	2.47	2.70	2.93	3.17	3.40	3.63	3.87	4.10	4.34	4.82	5.31	5.80	6.30	6.81
0.15	1.92	2.12	2.33	2.54	2.76	2.98	3.20	3.42	3.64	3.86	4.09	4.55	5.02	5.51	6.01	6.53
0.20	1.82	2.01	2.21	2.41	2.62	2.83	3.03	3.24	3.46	3.67	3.89	4.33	4.79	5.26	5.74	6.24
0.25	1.71	1.90	2.08	2.28	2.47	2.67	2.88	3.08	3.28	3.49	3.70	4.13	4.57	5.03	5.50	5.99
0.30	1.61	1.78	1.96	2.14	2.32	2.52	2.72	2.91	3.11	3.31	3.51	3.93	4.37	4.82	5.29	5.76
0.40	1.41	1.56	1.72	1.87	2.05	2.24	2.43	2.63	2.82	3.01	3.21	3.62	4.04	4.48	4.93	5.39
0.50	1.23	1.37	1.50	1.66	1.82	2.00	2.19	2.37	2.56	2.75	2.95	3.34	3.75	4.18	4.62	5.06
0.60	1.08	1.21	1.33	1.48	1.63	1.80	1.96	2.13	2.31	2.51	2.71	3.10	3.50	3.91	4.33	4.77
0.70	0.964	1.07	1.19	1.33	1.47	1.62	1.77	1.93	2.10	2.28	2.48	2.87	3.26	3.66	4.08	4.50
0.80	0.865	0.965	1.07	1.20	1.33	1.46	1.60	1.75	1.92	2.09	2.27	2.67	3.05	3.44	3.84	4.25
0.90	0.783	0.874	0.976	1.09	1.21	1.33	1.46	1.60	1.76	1.92	2.10	2.47	2.85	3.23	3.62	4.03
1.0	0.714	0.798	0.893	0.997	1.10	1.22	1.34	1.48	1.62	1.77	1.94	2.30	2.68	3.04	3.42	3.81
1.2	0.606	0.678	0.761	0.847	0.938	1.04	1.15	1.27	1.39	1.53	1.68	2.01	2.37	2.71	3.07	3.44
1.4	0.525	0.589	0.661	0.734	0.815	0.904	1.00	1.11	1.22	1.35	1.48	1.78	2.10	2.44	2.77	3.12
1.6	0.463	0.520	0.582	0.647	0.719	0.799	0.887	0.982	1.09	1.20	1.32	1.59	1.89	2.21	2.52	2.85
1.8	0.414	0.465	0.520	0.577	0.642	0.715	0.795	0.882	0.975	1.08	1.19	1.43	1.71	2.01	2.31	2.61
2.0	0.374	0.421	0.469	0.521	0.580	0.647	0.720	0.799	0.885	0.978	1.08	1.31	1.56	1.84	2.12	2.41
2.2	0.341	0.384	0.427	0.475	0.529	0.590	0.657	0.730	0.809	0.895	0.989	1.20	1.44	1.69	1.96	2.24
2.4	0.313	0.353	0.392	0.436	0.486	0.542	0.604	0.672	0.745	0.825	0.912	1.11	1.32	1.56	1.81	2.08
2.6	0.289	0.326	0.363	0.403	0.450	0.502	0.559	0.622	0.690	0.765	0.845	1.03	1.23	1.45	1.68	1.94
2.8	0.269	0.303	0.337	0.375	0.418	0.467	0.520	0.579	0.643	0.712	0.788	0.958	1.15	1.35	1.57	1.81
3.0	0.251	0.283	0.315	0.350	0.391	0.436	0.487	0.542	0.602	0.667	0.738	0.898	1.07	1.26	1.47	1.70
\boldsymbol{x}	0.000	0.005	0.017	0.035	0.057	0.083	0.113	0.144	0.178	0.213	0.250	0.327	0.408	0.492	0.579	0.667
y	0.500	0.455	0.417	0.385	0.357	0.333	0.313	0.294	0.278	0.263	0.250	0.227	0.208	0.192	0.179	0.167

Table 8-11 (continued) Coefficients, C, trically Loaded Weld Groups																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with$R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$																
LRFD								ASD								
	$\frac{}{\phi C}$	${ }_{u}$ Dl	$D_{\text {min }}=\frac{P_{u}}{\phi C C_{1} l} \quad l_{\text {min }}=\frac{P_{u}}{\phi C C_{1} D}$					$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l}$			$D_{\text {min }}=\frac{\Omega P}{C C}$		$l l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$			
where $P=$ required force, P_{u} or P_{a}, kips $D=$ number of sixteenths-of-an-inch in the fillet weld size $l=$ characteristic length of weld group, in. $a=e_{X} / l$ $e_{x}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in. $C=$ coefficient tabulated below $\mathcal{C}_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes) Note: Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.																
a	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0.00	2.41	2.57	2.80	3.04	3.27	3.51	3.74	3.97	4.21	4.44	4.67	5.14	5.61	6.08	6.54	7.0
0.10	2.24	2.44	2.65	2.87	3.09	3.32	3.56	3.79	4.03	4.26	4.50	4.99	5.47	5.96	6.45	6.94
0.15	2.09	2.28	2.48	2.69	2.91	3.14	3.38	3.62	3.85	4.09	4.33	4.83	5.32	5.82	6.31	6.81
0.20	1.96	2.14	2.32	2.51	2.72	2.94	3.17	3.42	3.66	3.90	4.15	4.65	5.15	5.65	6.15	6.65
0.25	1.85	2.02	2.19	2.37	2.56	2.76	2.98	3.21	3.45	3.70	3.95	4.45	4.95	5.46	5.97	6.47
0.30	1.74	1.90	2.06	2.23	2.41	2.61	2.82	3.04	3.26	3.50	3.74	4.24	4.75	5.26	5.77	6.28
0.40	1.55	1.69	1.84	1.99	2.17	2.36	2.56	2.77	2.99	3.22	3.44	3.89	4.36	4.86	5.37	5.88
0.50	1.38	1.51	1.64	1.80	1.97	2.15	2.35	2.56	2.77	2.98	3.20	3.63	4.07	4.54	5.02	5.52
0.60	1.23	1.35	1.48	1.63	1.79	1.97	2.16	2.36	2.57	2.78	2.99	3.41	3.84	4.28	4.74	5.21
0.70	1.11	1.22	1.34	1.48	1.64	1.81	1.99	2.19	2.38	2.59	2.80	3.20	3.62	4.05	4.50	4.95
0.80	1.00	1.11	1.22	1.36	1.51	1.67	1.84	2.03	2.22	2.42	2.62	3.01	3.42	3.84	4.28	4.72
0.90	0.915	1.01	1.12	1.25	1.39	1.54	1.71	1.88	2.07	2.25	2.44	2.84	3.24	3.65	4.07	4.51
1.0	0.839	0.929	1.03	1.15	1.29	1.43	1.59	1.75	1.92	2.10	2.28	2.68	3.07	3.47	3.88	4.31
1.2	0.719	0.799	0.891	0.997	1.12	1.25	1.38	1.52	1.67	1.83	2.00	2.37	2.76	3.14	3.53	3.94
1.4	0.627	0.699	0.782	0.877	0.981	1.09	1.21	1.34	1.47	1.62	1.78	2.11	2.49	2.86	3.23	3.62
1.6	0.555	0.620	0.695	0.781	0.870	0.967	1.07	1.19	1.31	1.45	1.59	1.90	2.24	2.61	2.97	3.34
1.8	0.498	0.557	0.625	0.701	0.780	0.868	0.965	1.07	1.18	1.31	1.44	1.72	2.04	2.38	2.73	3.09
2.0	0.451	0.505	0.568	0.634	0.706	0.786	0.875	0.972	1.08	1.19	1.31	1.57	1.86	2.18	2.53	2.86
2.2	0.412	0.462	0.520	0.579	0.644	0.718	0.800	0.889	0.986	1.09	1.20	1.44	1.72	2.01	2.33	2.67
2.4	0.379	0.426	0.479	0.532	0.593	0.661	0.737	0.819	0.909	1.01	1.11	1.33	1.59	1.87	2.17	2.49
2.6	0.351	0.394	0.443	0.492	0.549	0.612	0.682	0.760	0.843	0.933	1.03	1.24	1.48	1.74	2.02	2.32
2.8	0.327	0.367	0.412	0.458	0.510	0.570	0.635	0.707	0.786	0.870	0.961	1.16	1.38	1.63	1.89	2.18
3.0	0.306	0.344	0.385	0.428	0.477	0.533	0.594	0.662	0.735	0.814	0.900	1.09	1.29	1.53	1.78	2.05
\boldsymbol{x}	0.000	0.005	0.017	0.035	0.057	0.083	0.113	0.144	0.178	0.213	0.250	0.327	0.408	0.492	0.579	0.667
\boldsymbol{y}	0.500	0.455	0.417	0.385	0.357	0.333	0.313	0.294	0.278	0.263	0.250	0.227	0.208	0.192	0.179	0.167

Table 8-11 (continued) Coefficients, C, trically Loaded Weld Groups																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with$R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$																
LRFD								ASD								
	¢	Dl		ф	${ }_{1}$	$=$	$P_{u} C_{1} D$	$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l}$			$D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l}$			$l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$		
where $P=$ required force, P_{u} or P_{a}, kips $D=$ number of sixteenths-of-an-inch in the fillet weld size $l=$ characteristic length of weld group, in. $a=e_{X} / l$ $e_{X}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in. $C=$ coefficient tabulated below $C_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes) Note: Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.																
	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0.00	2.60	2.79	3.01	3.23	3.44	3.66	3.88	4.10	4.32	4.54	4.76	5.19	5.63	6.07	6.50	6.94
0.10	2.43	2.59	2.76	2.94	3.14	3.36	3.59	3.83	4.07	4.30	4.54	5.00	5.46	5.92	6.37	6.82
0.15	2.31	2.45	2.61	2.79	2.98	3.20	3.42	3.67	3.91	4.16	4.41	4.89	5.36	5.82	6.28	6.74
0.20	2.18	2.32	2.48	2.64	2.83	3.04	3.27	3.51	3.75	4.00	4.25	4.76	5.24	5.72	6.19	6.65
0.25	2.07	2.21	2.35	2.51	2.70	2.91	3.14	3.38	3.62	3.87	4.11	4.61	5.11	5.60	6.08	6.55
0.30	1.97	2.10	2.24	2.40	2.59	2.79	3.01	3.25	3.50	3.75	3.99	4.48	4.97	5.47	5.96	6.44
0.40	1.79	1.92	2.05	2.21	2.39	2.59	2.81	3.03	3.27	3.52	3.77	4.26	4.75	5.23	5.71	6.20
0.50	1.63	1.75	1.88	2.04	2.22	2.42	2.63	2.85	3.07	3.31	3.55	4.06	4.55	5.04	5.52	5.99
0.60	1.49	1.61	1.74	1.89	2.07	2.26	2.47	2.68	2.90	3.13	3.36	3.85	4.36	4.85	5.34	5.81
0.70	1.37	1.48	1.61	1.76	1.93	2.12	2.32	2.53	2.75	2.97	3.20	3.67	4.16	4.67	5.16	5.64
0.80	1.26	1.37	1.49	1.64	1.81	1.99	2.18	2.39	2.60	2.82	3.04	3.51	3.98	4.48	4.98	5.47
0.90	1.17	1.27	1.39	1.53	1.69	1.87	2.06	2.26	2.46	2.68	2.90	3.35	3.82	4.30	4.79	5.29
1.0	1.08	1.18	1.30	1.44	1.59	1.76	1.94	2.14	2.34	2.55	2.76	3.21	3.67	4.13	4.61	5.11
1.2	0.946	1.04	1.15	1.27	1.41	1.57	1.74	1.92	2.11	2.30	2.49	2.92	3.37	3.83	4.29	4.75
1.4	0.837	0.921	1.02	1.14	1.27	1.41	1.57	1.74	1.90	2.07	2.26	2.66	3.09	3.55	4.00	4.45
1.6	0.748	0.827	0.920	1.03	1.15	1.28	1.43	1.58	1.73	1.89	2.06	2.43	2.84	3.28	3.74	4.17
1.8	0.676	0.749	0.836	0.935	1.05	1.17	1.31	1.44	1.58	1.72	1.88	2.23	2.62	3.04	3.49	3.92
2.0	0.616	0.684	0.765	0.856	0.961	1.08	1.20	1.32	1.45	1.59	1.73	2.06	2.43	2.83	3.25	3.69
2.2	0.565	0.629	0.704	0.790	0.887	0.991	1.10	1.22	1.34	1.47	1.61	1.91	2.26	2.64	3.04	3.46
2.4	0.522	0.582	0.652	0.732	0.822	0.916	1.02	1.13	1.24	1.36	1.49	1.78	2.11	2.47	2.85	3.26
2.6	0.485	0.541	0.607	0.682	0.763	0.851	0.948	1.05	1.16	1.27	1.39	1.67	1.98	2.32	2.68	3.07
2.8	0.453	0.506	0.568	0.638	0.712	0.794	0.885	0.984	1.08	1.19	1.31	1.57	1.86	2.18	2.53	2.90
3.0	0.424	0.475	0.533	0.599	0.667	0.744	0.830	0.923	1.02	1.12	1.23	1.47	1.75	2.06	2.39	2.74
\boldsymbol{x}	0.000	0.005	0.017	0.035	0.057	0.083	0.113	0.144	0.178	0.213	0.250	0.327	0.408	0.492	0.579	0.667
y	0.500	0.455	0.417	0.385	0.357	0.333	0.313	0.294	0.278	0.263	0.250	0.227	0.208	0.192	0.179	0.167

Table 8-11 (continued) Coefficients, C, rically Loaded Weld Groups																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with$R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$																
LRFD								ASD								
	${ }_{\phi}$	${ }_{u}$ Dl	$D_{\text {min }}=\frac{P_{u}}{\phi C C_{1} l} \quad l_{\text {min }}=\frac{P_{u}}{\phi C C_{1} D}$					$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l}$			$D_{\text {min }}=\frac{\Omega P_{a}}{C C_{l} l}$			$l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$		
where $P=$ required force, P_{u} or P_{a}, kips $D=$ number of sixteenths-of-an-inch in the fillet weld size $l=$ characteristic length of weld group, in. $a=e_{X} / l$ $e_{X}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in. $C=$ coefficient tabulated below $C_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes) Note: Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.																
a	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0.00	2.74	2.92	3.11	3.30	3.49	3.69	3.88	4.07	4.26	4.46	4.65	5.03	5.42	5.80	6.19	6.57
0.10	2.59	2.67	2.78	2.93	3.12	3.32	3.53	3.75	3.96	4.17	4.38	4.78	5.22	5.64	6.06	6.46
0.15	2.50	2.59	2.70	2.86	3.05	3.26	3.48	3.70	3.92	4.13	4.34	4.74	5.15	5.58	6.01	6.42
0.20	2.43	2.52	2.63	2.79	2.98	3.19	3.42	3.64	3.87	4.09	4.30	4.71	5.11	5.52	5.95	6.37
0.25	2.35	2.44	2.56	2.73	2.92	3.13	3.36	3.59	3.82	4.04	4.26	4.68	5.08	5.48	5.89	6.31
0.30	2.28	2.38	2.50	2.66	2.85	3.07	3.30	3.53	3.77	4.00	4.22	4.65	5.06	5.45	5.85	6.26
0.40	2.16	2.25	2.38	2.55	2.74	2.95	3.17	3.41	3.66	3.90	4.13	4.58	5.00	5.41	5.80	6.19
0.50	2.05	2.14	2.27	2.44	2.63	2.83	3.06	3.30	3.55	3.79	4.04	4.50	4.94	5.35	5.76	6.15
0.60	1.94	2.04	2.17	2.34	2.52	2.73	2.95	3.19	3.43	3.69	3.94	4.42	4.87	5.30	5.71	6.11
0.70	1.85	1.94	2.08	2.24	2.42	2.63	2.85	3.08	3.32	3.58	3.83	4.33	4.80	5.24	5.66	6.07
0.80	1.75	1.85	1.99	2.15	2.33	2.53	2.75	2.98	3.22	3.47	3.73	4.23	4.72	5.17	5.60	6.02
0.90	1.67	1.77	1.90	2.06	2.24	2.44	2.66	2.89	3.12	3.37	3.62	4.14	4.63	5.10	5.54	5.97
1.0	1.59	1.69	1.82	1.98	2.16	2.36	2.57	2.80	3.03	3.27	3.52	4.04	4.54	5.02	5.47	5.91
1.2	1.45	1.55	1.68	1.83	2.00	2.20	2.40	2.62	2.85	3.09	3.33	3.83	4.35	4.85	5.33	5.78
1.4	1.33	1.43	1.55	1.70	1.86	2.05	2.25	2.47	2.69	2.92	3.15	3.64	4.15	4.67	5.16	5.64
1.6	1.22	1.32	1.44	1.58	1.74	1.92	2.11	2.32	2.54	2.76	2.98	3.45	3.96	4.48	4.99	5.48
1.8	1.13	1.22	1.34	1.47	1.63	1.80	1.99	2.19	2.40	2.61	2.82	3.27	3.76	4.28	4.81	5.31
2.0	1.05	1.14	1.25	1.38	1.53	1.69	1.87	2.07	2.27	2.46	2.67	3.11	3.58	4.09	4.61	5.14
2.2	0.975	1.06	1.17	1.30	1.44	1.60	1.77	1.95	2.14	2.33	2.53	2.95	3.41	3.90	4.42	4.95
2.4	0.912	0.998	1.10	1.22	1.36	1.51	1.68	1.85	2.03	2.21	2.40	2.81	3.25	3.73	4.23	4.75
2.6	0.856	0.940	1.04	1.15	1.29	1.43	1.59	1.76	1.92	2.09	2.28	2.67	3.11	3.57	4.06	4.57
2.8	0.806	0.887	0.983	1.09	1.22	1.36	1.51	1.67	1.83	1.99	2.17	2.55	2.97	3.42	3.90	4.40
3.0	0.762	0.839	0.932	1.04	1.16	1.29	1.44	1.59	1.74	1.90	2.07	2.44	2.84	3.28	3.75	4.24
\boldsymbol{x}	0.000	0.005	0.017	0.035	0.057	0.083	0.113	0.144	0.178	0.213	0.250	0.327	0.408	0.492	0.579	0.667
y	0.500	0.455	0.417	0.385	0.357	0.333	0.313	0.294	0.278	0.263	0.250	0.227	0.208	0.192	0.179	0.167

Table 8-11a (continued) Coefficients, C, trically Loaded Weld Groups																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with$R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$																
LRFD								ASD								
		Dl	$D_{m i}$	$\frac{1}{\phi}$	$l_{1} l$	=	$\frac{P_{u}}{\phi C C_{1} D}$	$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l} \quad D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l} \quad l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$								
where $P=$ required force, P_{u} or P_{a}, kips $D=$ number of sixteenths-of-an-inch in the fillet weld size $l=$ characteristic length of weld group, in. $a=e_{X} / l$ $e_{x}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in. $C=$ coefficient tabulated below $C_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes) Note: Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.																
a	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0.00	2.18	2.44	2.70	2.96	3.21	3.47	3.73	3.98	4.24	4.50	4.76	5.27	5.78	6.30	6.81	7.33
0.10	2.02	2.34	2.61	2.86	3.08	3.27	3.46	3.66	3.86	4.08	4.31	4.78	5.27	5.76	6.26	6.77
0.15	1.92	2.20	2.46	2.68	2.88	3.05	3.23	3.42	3.63	3.85	4.07	4.54	5.03	5.52	6.02	6.52
0.20	1.82	2.07	2.30	2.50	2.68	2.85	3.02	3.21	3.41	3.63	3.86	4.33	4.81	5.30	5.79	6.29
0.25	1.71	1.93	2.14	2.33	2.50	2.66	2.83	3.02	3.22	3.43	3.65	4.12	4.61	5.09	5.58	6.07
0.30	1.61	1.81	1.99	2.16	2.32	2.49	2.66	2.84	3.04	3.25	3.47	3.93	4.41	4.89	5.38	5.87
0.40	1.41	1.57	1.72	1.87	2.02	2.18	2.35	2.53	2.72	2.92	3.13	3.58	4.05	4.53	5.01	5.49
0.50	1.23	1.37	1.50	1.63	1.78	1.93	2.09	2.26	2.45	2.64	2.84	3.27	3.73	4.20	4.67	5.14
0.60	1.08	1.21	1.33	1.45	1.57	1.72	1.88	2.04	2.21	2.40	2.59	3.00	3.45	3.91	4.36	4.82
0.70	0.964	1.08	1.18	1.29	1.41	1.54	1.69	1.85	2.01	2.19	2.37	2.77	3.19	3.64	4.08	4.53
0.80	0.865	0.965	1.06	1.17	1.28	1.40	1.54	1.68	1.84	2.01	2.18	2.56	2.97	3.40	3.83	4.27
0.90	0.783	0.873	0.964	1.06	1.16	1.28	1.40	1.54	1.69	1.85	2.02	2.38	2.77	3.19	3.60	4.03
1.0	0.714	0.796	0.881	0.971	1.07	1.17	1.29	1.42	1.56	1.71	1.87	2.22	2.59	2.99	3.39	3.81
1.2	0.606	0.676	0.749	0.828	0.914	1.01	1.11	1.23	1.35	1.49	1.63	1.95	2.29	2.66	3.04	3.42
1.4	0.525	0.586	0.650	0.720	0.797	0.881	0.974	1.08	1.19	1.31	1.44	1.73	2.04	2.38	2.74	3.10
1.6	0.463	0.516	0.574	0.636	0.706	0.782	0.865	0.958	1.06	1.17	1.29	1.55	1.84	2.15	2.49	2.82
1.8	0.414	0.462	0.513	0.570	0.633	0.702	0.778	0.862	0.955	1.06	1.17	1.41	1.67	1.96	2.27	2.59
2.0	0.374	0.417	0.464	0.515	0.573	0.637	0.706	0.783	0.868	0.961	1.06	1.28	1.53	1.80	2.09	2.39
2.2	0.341	0.380	0.423	0.470	0.523	0.582	0.646	0.717	0.795	0.881	0.974	1.18	1.41	1.66	1.93	2.21
2.4	0.313	0.349	0.389	0.432	0.481	0.536	0.595	0.661	0.733	0.813	0.900	1.09	1.30	1.54	1.79	2.06
2.6	0.289	0.323	0.360	0.400	0.445	0.496	0.552	0.613	0.680	0.755	0.836	1.01	1.21	1.44	1.67	1.92
2.8	0.269	0.300	0.334	0.372	0.415	0.462	0.514	0.571	0.634	0.704	0.780	0.947	1.14	1.34	1.56	1.80
3.0	0.251	0.281	0.313	0.348	0.388	0.432	0.481	0.535	0.594	0.659	0.731	0.889	1.07	1.26	1.47	1.69
\boldsymbol{x}	0.000	0.005	0.017	0.035	0.057	0.083	0.113	0.144	0.178	0.213	0.250	0.327	0.408	0.492	0.579	0.667
y	0.500	0.455	0.417	0.385	0.357	0.333	0.313	0.294	0.278	0.263	0.250	0.227	0.208	0.192	0.179	0.167

Table 8-11a (continued) Coefficients, C, trically Loaded Weld Groups																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with$R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$																
LRFD								ASD								
	ϕ	$\frac{P_{u}}{C_{1} D l}$	D^{\prime}	$\frac{P_{u}}{\phi C C}$	$P_{u} C_{1} l$	$l_{\text {min }}=$	$\frac{P_{u}}{\phi C C_{1} D}$	$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l} \quad D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l} \quad l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$								
where $P=$ required force, P_{u} or P_{a}, kips $D=$ number of sixteenths-of-an-inch in the fillet weld size $l=$ characteristic length of weld group, in. $a=e_{X} / l$ $e_{X}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in. $C=$ coefficient tabulated below $C_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes) Note: Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.																
	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0.00	2.41	2.57	2.80	3.04	3.27	3.51	3.74	3.97	4.21	4.44	4.67	5.14	5.61	6.08	6.54	7.01
0.10	2.24	2.52	2.76	2.97	3.17	3.37	3.58	3.80	4.02	4.25	4.49	4.98	5.47	5.96	6.45	6.94
0.15	2.09	2.38	2.61	2.80	2.98	3.17	3.37	3.58	3.81	4.04	4.28	4.77	5.27	5.77	6.27	6.77
0.20	1.96	2.23	2.45	2.63	2.80	2.98	3.18	3.39	3.61	3.84	4.08	4.57	5.06	5.57	6.08	6.59
0.25	1.85	2.10	2.30	2.47	2.63	2.81	3.00	3.21	3.44	3.67	3.90	4.39	4.88	5.38	5.88	6.39
0.30	1.74	1.97	2.16	2.33	2.49	2.65	2.84	3.05	3.27	3.50	3.73	4.22	4.71	5.21	5.71	6.22
0.40	1.55	1.73	1.90	2.06	2.22	2.38	2.56	2.76	2.97	3.19	3.43	3.91	4.40	4.90	5.41	5.91
0.50	1.38	1.54	1.68	1.83	1.99	2.15	2.32	2.51	2.71	2.92	3.15	3.62	4.12	4.62	5.12	5.62
0.60	1.23	1.38	1.51	1.64	1.79	1.95	2.11	2.29	2.48	2.69	2.90	3.36	3.85	4.34	4.84	5.35
0.70	1.11	1.24	1.36	1.48	1.62	1.77	1.93	2.10	2.28	2.48	2.68	3.13	3.60	4.09	4.59	5.09
0.80	1.00	1.12	1.23	1.35	1.48	1.62	1.77	1.94	2.11	2.29	2.49	2.92	3.38	3.85	4.34	4.84
0.90	0.915	1.02	1.13	1.24	1.36	1.49	1.64	1.79	1.96	2.13	2.32	2.73	3.17	3.64	4.12	4.60
1.0	0.839	0.937	1.04	1.14	1.25	1.38	1.51	1.66	1.82	1.99	2.17	2.56	2.99	3.44	3.90	4.38
1.2	0.719	0.802	0.889	0.982	1.08	1.19	1.31	1.45	1.59	1.75	1.91	2.27	2.66	3.09	3.53	3.98
1.4	0.627	0.700	0.777	0.860	0.950	1.05	1.16	1.28	1.41	1.55	1.70	2.03	2.40	2.79	3.20	3.64
1.6	0.555	0.620	0.689	0.764	0.846	0.935	1.03	1.14	1.27	1.40	1.53	1.84	2.17	2.54	2.93	3.34
1.8	0.498	0.556	0.618	0.686	0.761	0.843	0.933	1.03	1.14	1.26	1.39	1.67	1.98	2.32	2.69	3.08
2.0	0.451	0.504	0.560	0.622	0.691	0.766	0.849	0.942	1.04	1.15	1.27	1.53	1.82	2.14	2.48	2.85
2.2	0.412	0.460	0.512	0.569	0.632	0.702	0.779	0.864	0.959	1.06	1.17	1.41	1.69	1.98	2.30	2.65
2.4	0.379	0.423	0.471	0.524	0.583	0.648	0.719	0.798	0.886	0.982	1.08	1.31	1.57	1.84	2.15	2.47
2.6	0.351	0.392	0.436	0.485	0.540	0.601	0.668	0.741	0.823	0.913	1.01	1.22	1.46	1.72	2.01	2.31
2.8	0.327	0.365	0.406	0.452	0.503	0.560	0.623	0.692	0.768	0.852	0.943	1.14	1.37	1.62	1.88	2.17
3.0	0.306	0.341	0.380	0.423	0.471	0.525	0.584	0.649	0.720	0.799	0.885	1.07	1.29	1.52	1.77	2.04
\boldsymbol{x}	0.000	0.005	0.017	0.035	0.057	0.083	0.113	0.144	0.178	0.213	0.250	0.327	0.408	0.492	0.579	0.667
y	0.500	0.455	0.417	0.385	0.357	0.333	0.313	0.294	0.278	0.263	0.250	0.227	0.208	0.192	0.179	0.167

Table 8-11a (continued) Coefficients, C, trically Loaded Weld Groups																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with$R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$																
LRFD								ASD								
	$=$	$D l$	$D_{\text {min }}=\frac{P_{u}}{\phi C C_{1} l} \quad l_{\text {min }}=\frac{P_{u}}{\phi C C_{1} D}$					$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l}$			$D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l} \quad l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$					
where $P=$ required force, P_{u} or P_{a}, kips $D=$ number of sixteenths-of-an-inch in the fillet weld size $l=$ characteristic length of weld group, in. $a=e_{X} / l$ $e_{X}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in. $C=$ coefficient tabulated below $C_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes) Note: Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.																
a	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7 0.8			1.0	1.2	1.4	1.6	1.8	2.0
0.00	2.60	2.79	3.01	3.23	3.44	3.66	3.88	4.10	4.32	4.54	4.76	5.19	5.63	6.07	6.50	6.94
0.10	2.43	2.68	2.91	3.12	3.34	3.56	3.79	4.01	4.24	4.46	4.69	5.14	5.58	6.02	6.47	6.91
0.15	2.31	2.56	2.77	2.97	3.18	3.40	3.62	3.85	4.08	4.32	4.55	5.01	5.47	5.93	6.38	6.83
0.20	2.18	2.44	2.63	2.82	3.02	3.24	3.46	3.69	3.92	4.15	4.39	4.87	5.34	5.81	6.27	6.73
0.25	2.07	2.32	2.50	2.68	2.88	3.09	3.31	3.54	3.77	4.01	4.24	4.71	5.19	5.67	6.15	6.61
0.30	1.97	2.21	2.39	2.56	2.75	2.96	3.18	3.41	3.64	3.88	4.11	4.58	5.05	5.53	6.01	6.49
0.40	1.79	2.00	2.19	2.35	2.53	2.72	2.94	3.16	3.40	3.64	3.88	4.35	4.83	5.29	5.76	6.23
0.50	1.63	1.82	1.99	2.16	2.33	2.51	2.72	2.94	3.17	3.41	3.65	4.14	4.62	5.10	5.57	6.03
0.60	1.49	1.67	1.82	1.99	2.15	2.33	2.52	2.74	2.97	3.20	3.44	3.94	4.43	4.91	5.39	5.86
0.70	1.37	1.53	1.68	1.83	2.00	2.17	2.35	2.55	2.77	3.01	3.24	3.74	4.23	4.73	5.21	5.69
0.80	1.26	1.41	1.55	1.70	1.85	2.02	2.20	2.39	2.60	2.83	3.06	3.55	4.04	4.54	5.03	5.52
0.90	1.17	1.30	1.44	1.57	1.73	1.89	2.06	2.24	2.44	2.66	2.89	3.37	3.86	4.36	4.86	5.35
1.0	1.08	1.21	1.34	1.47	1.61	1.77	1.93	2.11	2.30	2.51	2.73	3.20	3.69	4.18	4.68	5.18
1.2	0.946	1.06	1.17	1.29	1.42	1.56	1.71	1.88	2.06	2.25	2.45	2.89	3.36	3.85	4.35	4.84
1.4	0.837	0.935	1.04	1.15	1.26	1.39	1.53	1.69	1.85	2.03	2.22	2.63	3.08	3.55	4.04	4.53
1.6	0.748	0.837	0.929	1.03	1.13	1.25	1.38	1.53	1.68	1.85	2.02	2.41	2.83	3.28	3.75	4.23
1.8	0.676	0.756	0.840	0.931	1.03	1.14	1.26	1.39	1.54	1.69	1.85	2.21	2.61	3.04	3.49	3.96
2.0	0.616	0.689	0.766	0.850	0.941	1.04	1.15	1.28	1.41	1.56	1.71	2.05	2.42	2.83	3.26	3.71
2.2	0.565	0.632	0.703	0.781	0.866	0.960	1.06	1.18	1.30	1.44	1.58	1.90	2.26	2.64	3.05	3.49
2.4	0.522	0.584	0.650	0.722	0.802	0.889	0.986	1.09	1.21	1.34	1.47	1.77	2.11	2.48	2.87	3.28
2.6	0.485	0.542	0.604	0.671	0.746	0.828	0.918	1.02	1.13	1.25	1.38	1.66	1.98	2.33	2.70	3.10
2.8	0.453	0.506	0.563	0.626	0.697	0.774	0.859	0.954	1.06	1.17	1.29	1.56	1.86	2.19	2.55	2.93
3.0	0.424	0.474	0.528	0.587	0.653	0.727	0.807	0.896	0.995	1.10	1.22	1.47	1.76	2.07	2.41	2.77
\boldsymbol{x}	0.000	0.005	0.017	0.035	0.057	0.083	0.113	0.144	0.178	0.213	0.250	0.327	0.408	0.492	0.579	0.667
y	0.500	0.455	0.417	0.385	0.357	0.333	0.313	0.294	0.278	0.263	0.250	0.227	0.208	0.192	0.179	0.167

Table 8-11a (continued) Coefficients, C, trically Loaded Weld Groups																
Available strength of a weld group, ϕR_{n} or R_{n} / Ω, is determined with$R_{n}=C C_{1} D l(\phi=0.75, \Omega=2.00)$																
LRFD								ASD								
	$=\frac{P^{\prime}}{\phi C}$	${ }_{u}$ Dl	m	$\frac{\phi}{\phi}$	${ }_{1} l$	$=$	$\frac{P_{u}}{\phi C C_{1} D}$	$C_{\text {min }}=\frac{\Omega P_{a}}{C_{1} D l} \quad D_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} l} \quad l_{\text {min }}=\frac{\Omega P_{a}}{C C_{1} D}$								
where $P=$ required force, P_{u} or P_{a}, kips $D=$ number of sixteenths-of-an-inch in the fillet weld size $l=$ characteristic length of weld group, in. $a=e_{x} / l$ $e_{x}=$ horizontal component of eccentricity of P with respect to centroid of weld group, in. $C=$ coefficient tabulated below $C_{1}=$ electrode strength coefficient from Table 8-3 (1.0 for E70XX electrodes) Note: Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.																
	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0.00	2.74	2.92	3.11	3.30	3.49	3.69	3.88	4.07	4.26	4.46	4.65	5.03	5.42	5.80	6.19	6.57
0.10	2.59	2.86	3.11	3.30	3.49	3.69	3.88	4.07	4.26	4.46	4.65	5.03	5.42	5.80	6.19	6.57
0.15	2.50	2.76	3.02	3.26	3.48	3.68	3.88	4.07	4.26	4.45	4.65	5.03	5.42	5.80	6.19	6.57
0.20	2.43	2.67	2.92	3.17	3.40	3.63	3.84	4.05	4.25	4.45	4.64	5.03	5.41	5.80	6.18	6.57
0.25	2.35	2.59	2.83	3.07	3.30	3.53	3.76	3.97	4.19	4.39	4.59	4.99	5.39	5.78	6.17	6.56
0.30	2.28	2.52	2.74	2.97	3.21	3.44	3.67	3.89	4.10	4.32	4.53	4.93	5.34	5.73	6.13	6.52
0.40	2.16	2.39	2.59	2.81	3.04	3.27	3.50	3.73	3.95	4.16	4.37	4.79	5.21	5.62	6.02	6.42
0.50	2.05	2.27	2.46	2.67	2.89	3.13	3.36	3.60	3.82	4.04	4.25	4.67	5.07	5.48	5.90	6.31
0.60	1.94	2.16	2.35	2.54	2.76	2.99	3.23	3.47	3.70	3.93	4.15	4.58	4.99	5.38	5.78	6.18
0.70	1.85	2.05	2.24	2.43	2.64	2.86	3.10	3.34	3.58	3.82	4.05	4.49	4.91	5.32	5.71	6.11
0.80	1.75	1.95	2.14	2.32	2.52	2.74	2.98	3.22	3.46	3.71	3.95	4.40	4.84	5.25	5.66	6.05
0.90	1.67	1.86	2.04	2.22	2.41	2.63	2.86	3.10	3.35	3.59	3.84	4.31	4.76	5.19	5.60	6.00
1.0	1.59	1.77	1.95	2.13	2.31	2.52	2.75	2.98	3.23	3.48	3.73	4.21	4.67	5.11	5.54	5.95
1.2	1.45	1.62	1.78	1.95	2.13	2.32	2.54	2.77	3.01	3.26	3.51	4.01	4.49	4.96	5.40	5.83
1.4	1.33	1.48	1.64	1.80	1.97	2.15	2.35	2.57	2.81	3.05	3.30	3.81	4.31	4.79	5.25	5.70
1.6	1.22	1.36	1.51	1.66	1.82	2.00	2.19	2.40	2.62	2.86	3.11	3.61	4.12	4.61	5.09	5.55
1.8	1.13	1.26	1.40	1.54	1.69	1.86	2.04	2.24	2.45	2.68	2.92	3.42	3.93	4.43	4.92	5.40
2.0	1.05	1.17	1.30	1.43	1.58	1.74	1.91	2.10	2.30	2.52	2.75	3.24	3.75	4.25	4.75	5.23
2.2	0.975	1.09	1.21	1.34	1.48	1.63	1.80	1.97	2.17	2.38	2.60	3.07	3.57	4.07	4.58	5.07
2.4	0.912	1.02	1.13	1.26	1.39	1.53	1.69	1.86	2.05	2.25	2.46	2.92	3.41	3.91	4.41	4.90
2.6	0.856	0.959	1.07	1.18	1.31	1.44	1.59	1.76	1.94	2.13	2.33	2.78	3.25	3.74	4.24	4.74
2.8	0.806	0.903	1.00	1.11	1.23	1.36	1.51	1.67	1.84	2.02	2.21	2.64	3.11	3.59	4.08	4.58
3.0	0.762	0.853	0.949	1.05	1.17	1.29	1.43	1.58	1.74	1.92	2.11	2.52	2.97	3.44	3.93	4.42
\boldsymbol{x}	0.000	0.005	0.017	0.035	0.057	0.083	0.113	0.144	0.178	0.213	0.250	0.327	0.408	0.492	0.579	0.667
y	0.500	0.455	0.417	0.385	0.357	0.333	0.313	0.294	0.278	0.263	0.250	0.227	0.208	0.192	0.179	0.167

		prox Pas	ble 8ate N for	umber Nelds	of	
Weld Size* in.	Fillet Welds	Single-Bevel Groove Welds (Back-Up Weld not Included)		Single-V Groove Welds (Back-Up Weld not Included)		
		$\begin{gathered} 30^{\circ} \\ \text { Bevel } \end{gathered}$	$\begin{gathered} 45^{\circ} \\ \text { Bevel } \end{gathered}$	$\begin{gathered} 30^{\circ} \\ \text { Groove Angle } \end{gathered}$	$\begin{gathered} 60^{\circ} \\ \text { Groove Angle } \end{gathered}$	$\begin{gathered} 90^{\circ} \\ \text { Groove Angle } \end{gathered}$
3/16	1	-	-	-	-	-
1/4	1	1	1	2	3	3
5/16	1	1	1	2	3	3
3/8	3	2	2	3	4	6
7/16	4	2	2	3	4	6
1/2	4	2	2	4	5	7
5/8	6	3	3	4	6	8
$3 / 4$	8	4	5	4	7	9
7/8	-	5	8	5	10	10
1	-	5	11	5	13	22
$11 / 8$	-	7	11	9	15	27
$11 / 4$	-	8	11	12	16	32
$13 / 8$	-	9	15	13	21	36
11/2	-	9	18	13	25	40
$1^{3 / 4}$	-	11	21	13	25	40
*Indicates plate thickness for groove welds.						

PART 9
 DESIGN OF CONNECTING ELEMENTS

SCOPE 9-3
GROSS AREA, EFFECTIVE NET AREA, AND WHITMORE SECTION 9-3
Gross Area 9-3
Effective Net Area 9-3
Whitmore Section (Effective Width) 9-3
CONNECTING ELEMENTS SUBJECT TO COMBINED LOADING 9-3
CONNECTING ELEMENTS SUBJECT TO TENSION 9-4
CONNECTING ELEMENTS SUBJECT TO SHEAR 9-5
CONNECTING ELEMENTS SUBJECT TO BLOCK SHEAR RUPTURE 9-5
CONNECTING ELEMENT RUPTURE STRENGTH AT WELDS 9-5
CONNECTING ELEMENTS SUBJECT TO COMPRESSION YIELDING AND BUCKLING 9-6
AFFECTED AND CONNECTING ELEMENTS SUBJECT TO FLEXURE 9-6
Yielding, Lateral-Torsional Buckling, and Local Buckling 9-6
Rupture 9-6
Coped Beam Strength 9-6
BEARING LIMIT STATES 9-10
Bearing and Tearout Strength at Bolt Holes 9-10
Steel-on-Steel Bearing Strength (Other Than at Bolt Holes) 9-10
Bearing Strength on Concrete or Masonry 9-10
OTHER SPECIFICATION REQUIREMENTS AND DESIGN CONSIDERATIONS $9-10$
Prying Action 9-10
Plate Elements Subjected to Out-of Plane Loads 9-14
Rotational Ductility 9-17
Concentrated Forces 9-19
Shims and Fillers 9-19
Copes, Blocks and Cuts 9-19
Web Reinforcement of Coped Beams 9-20
DESIGN TABLE DISCUSSION 9-21
PART 9 REFERENCES 9-25
DESIGN TABLES 9-27
Table 9-1. Reduction in Area for Holes, in. ${ }^{2}$ 9-27
Table 9-2. Elastic Section Modulus for Coped W-Shapes 9-28
Table 9-3a. Block Shear Tension Rupture Component 9-37
Table 9-3b. Block Shear Shear Yielding Component 9-38
Table 9-3c. Block Shear Shear Rupture Component 9-40
Table 9-4. Beam Bearing Constants 9-44

SCOPE

The specification requirements and other design considerations summarized in this Part apply to the design of connecting elements (angles, plates, tees, gussets, etc.) used to transfer load from one structural member to another, as well as the affected elements of the connected members (beam webs, beam flanges, column webs, column flanges, etc.). For design considerations for bolts and welds, see Parts 7 and 8 , respectively. For design provisions specific to particular connection configurations, see Parts 10 through 15.

GROSS AREA, EFFECTIVE NET AREA, AND WHITMORE SECTION

In the determination of the available axial strength of connecting elements, the gross area, A_{g}, is used for the yielding limit states, and the effective net area, A_{e}, is used for the rupture limit states. In either case, the Whitmore section may limit the effective width to less than the overall dimension of a connecting element. See Thornton and Lini (2011) for further information.

Gross Area

The gross area, A_{g}, is determined as specified in AISC Specification Section B4.3, subject to the limitations given in the following for the Whitmore section.

Effective Net Area

The effective net area, A_{e}, is determined as specified in AISC Specification Section J4.1, subject to the limitations given in the following for the Whitmore section. The reduction in area for bolt holes can be determined using Table 9-1.

Whitmore Section (Effective Width)

When connecting elements are large in comparison to the bolted or welded joints within them, the Whitmore section may limit the gross and net areas of the connecting element to less than the full area (Whitmore, 1952). As illustrated in Figure 9-1, the width of the Whitmore section, l_{w}, is determined at the end of the joint by spreading the force from the start of the joint 30° to each side in the connecting element along the line of force. The Whitmore section may spread across the joint between connecting elements, but cannot spread beyond an unconnected edge.

CONNECTING ELEMENTS SUBJECT TO COMBINED LOADING

Connection design has traditionally been based on simple shear, axial and flexural stresses calculated using beam theory and other models using a first yield criterion. Usually, combinations of these stresses were not required because the maximum stress for each type of loading occurred at different locations on the cross section. Designs using beam theory, and other models that are based on a first yield criterion, underestimate the strength of connection elements. Because the AISC Specification is based on strength design, the combination of connection design loads based on a plastic strength approach is appropriate.

Many connection elements can be modeled as rectangular members under various combinations of shear, flexural, torsional and axial loads. For rectangular connection elements with in-plane and out-of-plane loads, a plastic interaction equation for any possible load combination was developed by Dowswell (2015). For the more common case of in-plane loading only, the solution reduces to Equation 9-1, which was originally developed by Neal (1961) and later simplified by Astaneh (1998):

$$
\begin{equation*}
\frac{M_{r}}{M_{c}}+\left(\frac{P_{r}}{P_{c}}\right)^{2}+\left(\frac{V_{r}}{V_{c}}\right)^{4} \leq 1.0 \tag{9-1}
\end{equation*}
$$

When the required shear load is low, the shear term in Equation 9-1 makes up only a small portion of the total interaction ratio. For $V_{r} / V_{c} \leq 0.40$, it is acceptable to neglect the shear term in Equation 9-1,
where
$M_{c}=$ available flexural strength, determined in accordance with AISC Specification Chapter F, kip-in.
$M_{r}=$ required flexural strength, determined in accordance with AISC Specification Chapter C, using LRFD or ASD load combinations, kip-in.
$P_{c}=$ available axial strength, kips
$P_{r}=$ required axial strength, determined in accordance with AISC Specification Chapter C, using LRFD or ASD load combinations, kips
$V_{c}=$ available shear strength, determined in accordance with AISC Specification Chapter G, kips
$V_{r}=$ required shear strength, determined in accordance with AISC Specification Chapter C, using LRFD or ASD load combinations, kips

CONNECTING ELEMENTS SUBJECT TO TENSION

The available strength due to tension yielding and tension rupture, ϕR_{n} or R_{n} / Ω, which must equal or exceed the required tensile strength, R_{u} or R_{a}, respectively, is determined in accordance with AISC Specification Section J4.1.

Fig. 9-1. Illustration of the width of the Whitmore section.

CONNECTING ELEMENTS SUBJECT TO SHEAR

The available strength due to shear yielding and shear rupture, ϕR_{n} or R_{n} / Ω, which must equal or exceed the required shear strength, R_{u} or R_{a}, respectively, are determined in accordance with AISC Specification Section J4.2. If a wide-flange beam is uncoped it does not need to be checked for shear rupture.

CONNECTING ELEMENTS SUBJECT TO BLOCK SHEAR RUPTURE

The available strength due to block shear rupture, ϕR_{n} or R_{n} / Ω, which must equal or exceed the required strength, R_{u} or R_{a}, respectively, is determined in accordance with AISC Specification Section J4.3. The values tabulated in Table 9-3 are used to calculate the available block shear rupture strength.

CONNECTING ELEMENT RUPTURE STRENGTH AT WELDS

In many cases, the load path from a weld to the connecting element is such that the strength of the connecting element can be evaluated directly, for example, the wall of an HSS subject to tensile force. However, in some cases, the available strength of the connecting element is not directly calculable. For example, while the strength of the beam-web welds for a double-angle connection can be directly calculated, the strength of the beam web at this weld cannot. In cases such as these, it is often convenient to calculate the minimum base metal thickness that will match the available shear rupture strength of the base metal to the available shear rupture strength of the weld(s).

For fillet welds with $F_{E X X}=70 \mathrm{ksi}$ only on one side of an element, the minimum base metal thickness required to match the shear rupture strength of the weld is

$$
\begin{align*}
t_{\min } & =\frac{0.60 F_{E X X}\left(\frac{\sqrt{2}}{2}\right)\left(\frac{D}{16}\right)}{0.6 F_{u}} \tag{9-2}\\
& =\frac{3.09 D}{F_{u}}
\end{align*}
$$

where
$D=$ required number of sixteenths of an inch in the weld size on each side of the connecting element
$F_{u}=$ specified minimum tensile strength of the base metal, ksi
For fillet welds with $F_{E X X}=70 \mathrm{ksi}$ on both sides of an element, the minimum base metal thickness required to match the shear rupture strength of the weld is

$$
\begin{equation*}
t_{\min }=\frac{6.19 D}{F_{u}} \tag{9-3}
\end{equation*}
$$

There is no limit on the fillet weld size where one of the elements is subject to a tensile force and that element is not in the plane of the element being connected. Examples are the wall of an HSS to a base plate or a built-up tee-hanger web to a flange plate. For such cases, the fillet welds need only be sized to resist the tensile force and a base metal check is not required.

CONNECTING ELEMENTS SUBJECT TO COMPRESSION YIELDING AND BUCKLING

When connecting elements are subject to compression, the available compressive strength, ϕP_{n} or P_{n} / Ω, which must equal or exceed the required compressive strength, P_{u} or P_{a}, respectively, is determined in accordance with AISC Specification Section J4.4.

AFFECTED AND CONNECTING ELEMENTS SUBJECT TO FLEXURE

Affected and connecting elements are normally short enough and thick enough that flexural effects, if present at all, do not impact the design. When such elements are long enough and thin enough that flexural effects must be considered, the following provisions are used for determining the available strength.

Yielding, Lateral-Torsional Buckling, and Local Buckling

Generally, the available flexural strength, ϕM_{n} or M_{n} / Ω, which must equal or exceed the required flexural strength of affected and connecting elements, M_{u} or M_{a}, respectively, is determined in accordance with AISC Specification Section J4.5 and Chapter F. The Table User Note in AISC Specification Section F1.1 provides guidance based upon cross-section shape for the applicable Chapter F section.

Treatment of coped beams is provided in the following.

Rupture

For rolled or built-up shapes with bolt holes in the tension flange, see AISC Specification Section F13.1. For affected and connecting elements, the available flexural rupture strength, $\phi_{b} M_{n}$ or M_{n} / Ω_{b}, is

$$
\begin{gather*}
M_{n}=F_{u} Z_{\text {net }} \tag{9-4}\\
\phi_{b}=0.75 \quad \Omega_{b}=2.00
\end{gather*}
$$

where
$Z_{\text {net }}=$ net plastic section modulus of the affected or connecting element, in. ${ }^{3}$

Coped Beam Strength

For beam ends with short copes no greater than the length of the connection angle(s), plate (except extended single-plate connections), or tee, flexural local web buckling will generally not occur. Otherwise, the end reaction for a coped beam may be limited by the flexural limit states of yielding, rupture, flexural local buckling, or lateral-torsional buckling. The strength of coped beams with bolted shear connections as shown in Part 10 will rarely be governed by flexural rupture. For a coped beam laterally braced at the end of the uncoped section, the required flexural strength is

LRFD	ASD		
$M_{u}=R_{u} e$	$(9-5 \mathrm{a})$	$M_{a}=R_{a} e$	$(9-5 \mathrm{~b})$

where
R_{u} or $R_{a}=$ beam end reaction (LRFD or ASD), kips
$e \quad=$ distance from the face of the supporting member to the face of the cope, unless a lower value can be justified, in.

The available flexural local buckling strength of a beam coped at the top flange or both the top and bottom flanges must equal or exceed the required strength. The available strength, $\phi_{b} M_{n}$ or M_{n} / Ω_{b}, is determined as follows.

1. For beams coped at the top flange only as shown in Figure 9-2, the connection element should be located near the coped edge. The minimum length of the connection elements is one-half of the reduced beam depth, h_{o}. The flexural strength at the coped section is as follows.

When $\lambda \leq \lambda_{p}$

$$
\begin{equation*}
M_{n}=M_{p} \tag{9-6}
\end{equation*}
$$

When $\lambda_{p}<\lambda \leq 2 \lambda_{p}$

$$
\begin{equation*}
M_{n}=M_{p}-\left(M_{p}-M_{y}\right)\left(\frac{\lambda}{\lambda_{p}}-1\right) \tag{9-7}
\end{equation*}
$$

When $\lambda>2 \lambda_{p}$

$$
\begin{equation*}
M_{n}=F_{c r} S_{n e t} \tag{9-8}
\end{equation*}
$$

where
$F_{c r}=$ critical stress, ksi

$$
\begin{equation*}
=\frac{0.903 E k_{1}}{\lambda^{2}} \tag{9-9}
\end{equation*}
$$

$E=$ modulus of elasticity of steel
$=29,000 \mathrm{ksi}$
$F_{y}=$ specified minimum yield stress, ksi
$M_{p}=$ plastic bending moment, kip-in.
$=F_{y} Z_{\text {net }}$
$M_{y}=$ flexural yield moment, kip-in.

$$
=F_{y} S_{n e t}
$$

$S_{\text {net }}=$ elastic section modulus at the cope, in. ${ }^{3}$
$Z_{\text {net }}=$ plastic section modulus at the cope, in. ${ }^{3}$
$k_{1}=$ modified plate buckling coefficient
$=f k \geq 1.61$
$\lambda=$ web slenderness

$$
\begin{equation*}
=\frac{h_{o}}{t_{w}} \tag{9-11}
\end{equation*}
$$

$\lambda_{p}=$ limiting slenderness for a compact web

$$
\begin{equation*}
=0.475 \sqrt{\frac{k_{1} E}{F_{y}}} \tag{9-12}
\end{equation*}
$$

$\phi_{b}=0.90$
$\Omega_{b}=1.67$
The plate buckling coefficient, k, is determined as follows.
When $\frac{c}{h_{o}} \leq 1.0$

$$
\begin{equation*}
k=2.2\left(\frac{h_{o}}{c}\right)^{1.65} \tag{9-13a}
\end{equation*}
$$

When $\frac{c}{h_{o}}>1.0$

$$
\begin{equation*}
k=2.2\left(\frac{h_{o}}{c}\right) \tag{9-13b}
\end{equation*}
$$

The buckling adjustment factor, f, is determined as follows.
When $\frac{c}{d} \leq 1.0$

$$
\begin{equation*}
f=2\left(\frac{c}{d}\right) \tag{9-14a}
\end{equation*}
$$

Fig. 9-2. Flexural local buckling of beam web coped at top flange only.

When $\frac{c}{d}>1.0$

$$
\begin{equation*}
f=1+\frac{c}{d} \leq 3 \tag{9-14b}
\end{equation*}
$$

c = cope length, in.
d = beam depth, in.
$h_{o}=$ depth of coped section, in.
$t_{w}=$ web thickness, in.
2. For a beam that is coped at both flanges, the local flexural strength is determined in accordance with AISC Specification Section F11 (Dowswell and Whyte, 2014). Refer to Figure 9-3.
(a) When the bottom (tension) cope is equal to or longer than the length of the top cope

$$
\begin{equation*}
C_{b}=\left[3+\ln \left(\frac{L_{b}}{d}\right)\right]\left(1-\frac{d_{c t}}{d}\right) \leq 1.84 \tag{9-15}
\end{equation*}
$$

where
$C_{b}=$ lateral-torsional buckling modification factor
$L_{b}=c_{t}$, in.
$c_{t}=$ length of top cope, in.
$d=$ depth of beam, in.
$d_{c t}=$ cope depth at top flange as illustrated in Figure 9-3, in.
Yielding should also be checked at the end of the bottom cope.

Fig. 9-3. Flexural local buckling of beam web coped at both flanges.
(b) When the top cope is longer than the bottom cope

$$
\begin{equation*}
C_{b}=\left(\frac{c_{b}}{c_{t}}\right)\left[3+\ln \left(\frac{L_{b}}{d}\right)\right]\left(1-\frac{d_{c t}}{d}\right) \leq 1.84 \tag{9-16}
\end{equation*}
$$

where

$$
\begin{aligned}
& L_{b}=\frac{c_{t}+c_{b}}{2}, \text { in. } \\
& c_{b}=\text { length of bottom cope, in. }
\end{aligned}
$$

BEARING LIMIT STATES

Bearing Strength and Tearout at Bolt Holes

For available bearing and tearout strength at bolt holes, see Part 7.

Steel-on-Steel Bearing Strength (Other Than at Bolt Holes)

Bearing strength for applications other than at bolt holes is determined in accordance with AISC Specification Section J7. The fabrication and erection requirements in AISC Specification Sections M2.6, M2.8 and M4.4 are applicable to connecting elements that transfer load by contact bearing on steel.

Bearing Strength on Concrete or Masonry

The bearing strength of concrete is determined in accordance with AISC Specification Section J8. For bearing on masonry, see Building Code Requirements for Masonry Structures, ACI 530/ASCE 5/TMS 402 (ACI/ASCE/TMS, 2013a) and Specification for Masonry Structures, ACI 530.1/ASCE 6/TMS 602 (ACI/ASCE/TMS, 2013b). The fabrication and erection requirements in AISC Specification Sections M2.8 and M4.1 are applicable to connecting elements that transfer load by contact bearing on concrete or masonry.

OTHER SPECIFICATION REQUIREMENTS AND DESIGN CONSIDERATIONS

Other design considerations may apply and may be required by the AISC Specification. Some considerations are described in the following using concepts that have proven effective. Other rational methods may also be used.

Prying Action

Prying action is a phenomenon (in bolted construction only, and only in connections with tensile bolt forces) whereby the deformation of a connecting element under a tensile force increases the tensile force in the bolt above that due to the direct tensile force alone. Proper design for prying action includes the selection of bolt diameter and fitting thickness, t, such that there is sufficient stiffness and strength in the connecting element and strength in the bolt. The following discussion of prying action is similar to what has been considered in the past, except that the design basis has been changed to calculate strength in terms of F_{u}, which provides better correlation with available test data than previous design methods. For the development of the prying action equations presented here, see Thornton (1992) and Swanson (2002).

The dimensions b and b^{\prime}, in Figure 9-4, are measured from the face of the tee stem or the center of the angle leg. These values are valid for tees and for angles if the load, $2 T_{r}$ (T_{u} for LRFD and T_{a} for ASD), is delivered symmetrically and the angle shown represents one of a pair of back-to-back angles. When the angles are not back-to-back and connected to a relatively flexible support, the effective eccentricity may be increased and a distance measured to the heel of the angle or possibly somewhat larger might be warranted. It is common to assume there is no moment transfer between the flange and the element to which it is attached; that is, all of the moment required for equilibrium of the flange is assumed to be taken at the bolt line. This discussion is not intended to be applied to asymmetrical conditions. When the load is delivered asymmetrically, an even greater moment will result. For instance, if the angle is attached to only one flange of a wide-flange member used as a hanger and the hanger is not restrained from rotating about the bolt line, then the eccentricity would be measured from the centerline of the hanger or to the point of application of the load.

Consider the tee or angle used in a hanger connection as shown in Figure 9-4. The deformation of the connected tee flange or angle leg is assumed to be in double curvature if prying forces exist. In Figure 9-4, T_{r} is the required tension force per bolt using LRFD or ASD load combinations and q_{r} is the corresponding prying force.

Fig. 9-4. Illustration of variables in prying action calculations.

The required thickness to eliminate prying action, $t_{n p}$ is:
$\left.\begin{array}{|cc|c|}\hline \text { LRFD } & \text { ASD } \\ \hline t_{n p}=\sqrt{\frac{4 T_{u} b^{\prime}}{\phi p F_{u}}} & (9-17 \mathrm{a}) & t_{n p}=\sqrt{\frac{\Omega 4 T_{a} b^{\prime}}{p F_{u}}}\end{array} \quad(9-17 \mathrm{~b})\right]$
where
$F_{u}=$ specified minimum tensile strength of connecting element, ksi
$T_{a}=$ required tension force per bolt using ASD load combinations, kips
$T_{u}=$ required tension force per bolt using LRFD load combinations, kips
$b^{\prime}=\left(b-\frac{d_{b}}{2}\right)$
b = for a tee-type connecting element, the distance from bolt centerline to the face of the tee stem, in.; for an angle-type connecting element, the distance from bolt centerline to centerline of angle leg, in.
$d_{b}=$ bolt diameter, in.
$p=$ tributary length, based on yield line theory [see Dowswell (2011) and Wheeler et al. (1998)] or conservatively taken as $3.5 b$, but $\leq s$, in.
$s=$ bolt spacing, in.
$\phi=0.90$
$\Omega=1.67$
When the resulting fitting thickness is reasonable, no further check of prying action is necessary as long as the required bolt force, T_{r}, does not exceed the available bolt strength, T_{c}. In this solution, the additional force in the bolt due to prying action, q_{r}, is essentially zero and the flange or angle leg is in single curvature.

Alternatively, it is usually possible to determine a lesser required thickness by designing the connecting element and bolted joint for the actual effects of prying action with q_{r} greater than zero; however, a larger required bolt diameter may result.

The thickness required to ensure an acceptable combination of fitting strength and stiffness and bolt strength, $t_{\text {min }}$, is:

LRFD	ASD	
$t_{\min }=\sqrt{\frac{4 T_{u} b^{\prime}}{\phi p F_{u}\left(1+\delta \alpha^{\prime}\right)}}$	$(9-19 \mathrm{a})$	$t_{\min }=\sqrt{\frac{\Omega 4 T_{a} b^{\prime}}{p F_{u}\left(1+\delta \alpha^{\prime}\right)}}$

where

$$
\begin{equation*}
\delta=1-\frac{d^{\prime}}{p} \tag{9-20}
\end{equation*}
$$

$=1-$ ratio of the net length at bolt line to gross length at the face of the stem or leg of angle
$d^{\prime}=$ width of the hole along the length of the fitting, in.
$\alpha^{\prime}=1.0$ if $\beta \geq 1$
$=$ lesser of 1 and $\frac{1}{\delta}\left(\frac{\beta}{1-\beta}\right)$ if $\beta<1$

$$
\begin{align*}
& \beta=\frac{1}{\rho}\left(\frac{B_{c}}{T_{r}}-1\right) \tag{9-21}\\
& \rho=\frac{b^{\prime}}{a^{\prime}} \tag{9-22}\\
& a^{\prime}=\left(a+\frac{d_{b}}{2}\right) \leq\left(1.25 b+\frac{d_{b}}{2}\right) \tag{9-23}
\end{align*}
$$

$a=$ distance from the bolt centerline to the edge of the fitting, in.
$B_{c}=$ available tension per bolt based on the limit state of tension only or the combined limit states of tension and shear rupture, ϕr_{n} or r_{n} / Ω, kips
$\phi=0.90$
$\Omega=1.67$
If $t_{\text {min }} \leq t$, the preliminary fitting thickness is satisfactory. Otherwise, a fitting with a thicker flange, or a change in geometry (i.e., b and p) is required.

Although it is not necessary to do so, if desired, the prying force per bolt, q_{r}, can be determined as

$$
\begin{equation*}
q_{r}=B_{c}\left[\delta \alpha \rho\left(\frac{t}{t_{c}}\right)^{2}\right] \tag{9-24}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=\frac{1}{\delta}\left[\frac{T_{r}}{B_{c}}\left(\frac{t_{c}}{t}\right)^{2}-1\right] \text { with } 0 \leq \alpha \leq 1.0 \tag{9-25}
\end{equation*}
$$

The flange or angle thickness, t_{c}, required to develop the available strength of the bolt, B_{c}, with no prying action is:

LRFD	ASD	
$t_{c}=\sqrt{\frac{4 B_{c} b^{\prime}}{\phi p F_{u}}}$	(9-26a)	$t_{c}=\sqrt{\frac{\Omega 4 B_{c} b^{\prime}}{p F_{u}}}$

The parameter α is the ratio of the moment at the bolt line to the moment at the face of the tee stem, or at the center of the unconnected angle leg thickness. When $\alpha=0$, the connection is strong enough to prevent prying action. When $\alpha>1$, the connection is not adequate. The total force per bolt including the effects of prying action is then $T_{r}+q_{r}$.

Alternatively, when the fitting geometry is known, the available tensile strength per bolt, B_{c}, determined per AISC Specification Sections J3.6 or J3.7, is multiplied by Q to determine the available tensile strength including the effects of prying action, T_{c}, as follows:

$$
\begin{equation*}
T_{c}=B_{c} Q \tag{9-27}
\end{equation*}
$$

where
$Q=1$ if $\alpha^{\prime}<0$, which means that the fitting has sufficient strength and stiffness to develop the full available tensile strength of the bolt.
$=\left(\frac{t}{t_{c}}\right)^{2}\left(1+\delta \alpha^{\prime}\right)$ if $0 \leq \alpha^{\prime} \leq 1$, which means that the fitting has sufficient strength to develop the full bolt available tensile strength, but insufficient strength to prevent prying action.
$=\left(\frac{t}{t_{c}}\right)^{2}(1+\delta)$ if $\alpha^{\prime}>1$, which means that the fitting has insufficient strength to develop the full bolt available tensile strength.

$$
\begin{equation*}
\alpha^{\prime}=\frac{1}{\delta(1+\rho)}\left[\left(\frac{t_{c}}{t}\right)^{2}-1\right] \tag{9-28}
\end{equation*}
$$

$=$ value of α that either maximizes the bolt available tensile strength for a given thickness or minimizes the thickness required for a given bolt available tensile strength.

Plate Elements Subjected to Out-of-Plane Loads

Generally out-of-plane loading of elements, such as the webs of wide-flange members, is avoided. However, when such loading is unavoidable or the loads are relatively small, the strength of the plate element can be determined based on shear and weak-axis bending of the element per AISC Specification Section J10.10. The available shear strength is ϕR_{n} or R_{n} / Ω, and the available flexural strength is ϕM_{n} or M_{n} / Ω, where $\phi=1.00$ and $\Omega=1.50$.

A punching shear approach is typically used to determine the shear strength of the element. The nominal punching shear strength can be obtained from the product of the shear stress, the element thickness, and the punching perimeter. Using the definitions provided in Figure 9-5:

$$
\begin{equation*}
R_{n}=0.6 F_{y} t_{p}\left(2 c_{e f f}+2 L\right) \tag{9-29}
\end{equation*}
$$

where
$F_{y}=$ specified minimum yield stress of element, ksi
$L=$ length over which the load is delivered, measured parallel to the supported edges, in.
$c_{e f f}=$ effective width of the attached element accounting for uneven stress distribution, in.
$t_{p}=$ thickness of element, in.

(a) Transverse load

(b) In-plane moment

(c) Out-of-plane moment

Fig. 9-5. Yield-line analysis.

The effective width, $c_{e f f}$, for an element attaching to the face of a rectangular HSS is determined in accordance with AISC Specification Equation K1-1:

$$
\begin{equation*}
c_{e f f}=B_{e}=\left(\frac{10 t}{B}\right)\left(\frac{F_{y} t}{F_{y b} t_{b}}\right) B_{b} \leq B_{b} \tag{Spec.Eq.K1-1}
\end{equation*}
$$

This same approach should also be applicable to a wide-flange member where both the flanges are restrained against rotation. If the branch is welded to the web of a wide-flange and the flanges are not restrained, then the effective width, $c_{e f f}$, is the T-dimension of the wide-flange.

A yield-line approach is typically used to determine the weak-axis flexural strength of the plate element. The yield line analysis is a work-energy method in which assumed patterns of flexural mechanisms (the yield lines) are used to determine the strength of the element. The AISC Engineering Journal has published several articles describing the yield line approach (Abolitz and Warner, 1965; Kapp, 1974; Stockwell, 1974; Dranger, 1977). Several solutions dependent on loadings and boundary conditions are presented in the text to follow.

The yield-line approach to establishing the weak-axis flexural strength of elements serves to limit connection deformations and is known to be well below the ultimate connection strength. When the load is applied over a width that exceeds 85% of the plate element width, this yield-line failure mechanism will result in a noncritical design load. The effective width approach, per AISC Specification Section K1.2a, is used to determine the effective punching shear perimeter, with the total perimeter being an upper limit on this length.

Note the factor, Q_{f}, reduces the local strength at the connection due to the global forces in the member. This factor has historically not been applied to wide-flange members, perhaps because a greater portion of the area in a wide-flange member is generally located at the flanges and because the local reduction does not induce any eccentricity.

For rectangular HSS of the material specified in AISC Specification Section A3.1, where the wall slenderness, b / t, is less than or equal to $30, Q_{f}$ can be determined as:
$Q_{f}=1$ for HSS (connecting surface) in tension
$=1.0-0.3 U(1+U)$ for HSS (connecting surface) in compression
(Spec. Eq. K2-3)
where
$U=\left|\frac{P_{r o}}{F_{c} A_{g}}+\frac{M_{r o}}{F_{c} S}\right|$
$A_{g}=$ gross cross-sectional area of the member, in. ${ }^{2}$
$F_{c}=$ available stress in main member, ksi
$=F_{y}$ for LRFD; $0.60 F_{y}$ for ASD
$M_{r o}=$ required moment of the HSS, determined in accordance with AISC Specification Chapter C, based on the LRFD $\left(M_{u}\right)$ or ASD $\left(M_{a}\right)$ load combinations, kip-in.
$P_{r o}=$ required strength of the HSS, determined in accordance with AISC Specification Chapter C, based on the LRFD $\left(P_{u}\right)$ or ASD $\left(P_{a}\right)$ load combinations, kips
$S=$ elastic section modulus about the axis of bending, in. ${ }^{3}$
$P_{r o}$ and $M_{r o}$ are determined on the side of the joint that has the lower compressive stress.

For out-of-plane transverse loads

For rectangular HSS, the edges of the HSS wall are generally assumed to be clamped:

$$
\begin{equation*}
R_{n}=\frac{t^{2} F_{y}}{2}\left[\frac{(a+b)\left(4 \sqrt{\frac{T a b}{a+b}}+L\right)}{a b}\right] Q_{f} \tag{9-30}
\end{equation*}
$$

When the concentrated force is applied at a distance from the member end that is less than $2 \sqrt{\frac{T a b}{a+b}}, R_{n}$ is reduced by 50%.

For wide-flange sections, the edges of the column web are generally assumed to be pinned:

$$
\begin{equation*}
R_{n}=\frac{t_{w}{ }^{2} F_{y}}{4}\left[\frac{4 \sqrt{2 T a b(a+b)}+L(a+b)}{a b}\right] \tag{9-31}
\end{equation*}
$$

When the concentrated force is applied at a distance from the member end that is less than $\sqrt{\frac{8 T a b}{a+b}}, R_{n}$ is reduced by 50%,
where
T = width of element, in. (width of HSS, depth of wide-flange minus k-dimension)
$a=$ distance measured along width of element from one edge of connected element to nearest support, in.
$b=$ distance measured along width of plate element from one edge of connected element to farthest support, in.

For in-plane moments

Plastification need not be checked when the rotation is self-limiting, such as at framed, simple beam end connections.

For rectangular HSS, the edges of the HSS wall are generally assumed to be clamped:

$$
\begin{equation*}
M_{n}=\frac{t^{2} F_{y}}{4}\left(\frac{2 T}{L}+\frac{4 L}{T-c}+8 \sqrt{\frac{T}{T-c}}\right) L Q_{f} \tag{9-32}
\end{equation*}
$$

For wide-flange sections, the edges of the web are generally assumed to be pinned:

$$
\begin{equation*}
M_{n}=\frac{t^{2} F_{y}}{4}\left(\frac{2 T}{L}+\frac{2 L}{T-c}+4 \sqrt{\frac{2 T}{T-c}}\right) L \tag{9-33}
\end{equation*}
$$

For out-of-plane moments

Plastification need not be checked when the rotation is self-limiting, such as at framed, simple-beam end connections.

For rectangular HSS, the edges of the HSS wall are generally assumed to be clamped:

$$
\begin{equation*}
M_{n}=\frac{t^{2} F_{y}}{4}\left(\frac{4 \sqrt{a b c T \rho}+L \rho}{a b}\right) Q_{f} \tag{9-34}
\end{equation*}
$$

For wide-flange sections, the edges of the web are generally assumed to be pinned:

$$
\begin{equation*}
M_{n}=\frac{t^{2} F_{y}}{4}\left(\frac{4 \sqrt{2 a b c T \rho}+L \rho}{2 a b}\right) Q_{f} \tag{9-35}
\end{equation*}
$$

where
$L=$ distance over which the load is delivered, measured along the longer dimension of the plate element, in.
$a=$ distance measured along width of the plate element from one edge of connected element to nearest support, in.
$b=$ distance measured along width of the plate element from one edge of connected element to farthest support, in.
$c=$ distance over which the load is delivered, measured along the shorter dimension of the plate element, in.
$\rho=2 a b+a c+b c$

Rotational Ductility

Simple shear connections provide for the rotational ductility required by AISC Specification Section J1.2 as follows:

1. For double-angle, shear end-plate, single-angle, and tee shear connections, the geometry and thickness of the connecting elements attached to the support (angle legs, plate, or tee flange) are configured so that flexing of those connecting elements accommodates the simple-beam end rotation.
2. For unstiffened and stiffened seated connections, the geometry and thickness of the top or side stability angle is configured so that flexing of that connecting element accommodates the simple-beam end rotation.
3. For single-plate connections, the geometry and thickness of the plate are configured so that the connecting material or beam web will yield, bolt group will rotate, and/or the bolt holes in the connecting material or beam web will elongate at failure prior to the failure of the welds or bolts.

For each of the simple-shear connections in Part 10, except tee shear connections, prescriptive guidance is provided to ensure adequate rotational ductility. Rotational ductility can be ensured for tee shear connections as follows. Note that this approach can also be used to demonstrate adequate rotational ductility in other simple shear connections that flex to accommodate the simple-beam end rotation, but with configurations that differ from those prescribed in Part 10.

When the flanges of the tee stub are welded to the support and bolted to the supported beam, weld size, w, with $F_{E X X}=70 \mathrm{ksi}$, must be such that the minimum weld size, $w_{\min }$, is

$$
\begin{equation*}
w_{\min }=0.0155 \frac{F_{y} t_{f}^{2}}{b}\left(\frac{b^{2}}{l^{2}}+2\right) \tag{9-37}
\end{equation*}
$$

but need not exceed $(5 / 8) t_{s w}$ (Thornton, 1996),
where
$b=$ flexible width in connecting element as illustrated in Figure 9-6, in.
$l=$ length of connecting element as illustrated in Figure 9-6, in.
$t_{f}=$ thickness of the tee flange, in.
$t_{s w}=$ thickness of the tee stem, or supported beam web, in.
For a tee bolted to the support and bolted or welded to the supported beam, the minimum diameter for bolts through the tee flange for ductility is

$$
\begin{equation*}
d_{\min }=0.163 t_{f} \sqrt{\frac{F_{y}}{b}\left(\frac{b^{2}}{l^{2}}+2\right)} \tag{9-38}
\end{equation*}
$$

but need not exceed $0.69 \sqrt{t_{s w}}$. Alternatively, to provide for rotational ductility when the tee stem is bolted to the supported beam, the maximum tee stem thickness or beam web is

$$
\begin{equation*}
t_{s w}=\frac{d}{2}+{ }^{1} / 16 \mathrm{in} . \tag{9-39}
\end{equation*}
$$

where
$d=$ bolt diameter, in.
When the tee stem is welded to the supported beam, there is no perceived ductility problem for this weld. Connections satisfying the parameters discussed in the foregoing can be expected to accommodate rotations in the range of 0.03 rad . The checks are intended for use with connections between 6 in. and 36 in. deep and configured similarly to the connections shown in Part 10. The use of deeper connections, smaller offset distances between the supported and supporting members, or smaller edge distances can affect the ability of connections to accommodate large rotations in a ductile manner. Connections satisfying these parameters satisfy the intent of AISC Specification Section B3.4a for simple connections.

Note: Weld returns on top of tee per User Note in AISC Specification Section J2.2b(g).
(a) Welded flange
(b) Bolted flange

Fig. 9-6. Illustration of variables in shear connection ductility checks.

Concentrated Forces

If the connecting element delivers a concentrated force to a member or other connecting element, see AISC Specification Section J10 or Section K2, as appropriate. See also AISC Design Guide 13, Stiffening of Wide-Flange Columns at Moment Connections: Wind and Seismic Applications (Carter, 1999).

Shims and Fillers

Shims are furnished to the erector for use in filling the spaces allowed for field clearance that might be present at connections, such as simple shear connections, PR and FR moment connections, column base plates, and column splices. These shims, illustrated in Figure 9-7, may be either strip shims with round punched holes or finger shims with slots cut through the edge. Whereas strip shims are less expensive to fabricate, finger shims may be laterally inserted and eliminate the need to remove erection bolts or pins already in place.

Finger shims, when inserted fully against the bolt shank, are acceptable for slip-critical connections and are not to be considered as an internal ply with the slotted hole determining the available strength of the connection. This is because less than 25% of the contact surface is lost, which is not enough to affect the performance of the joint.

A filler is furnished to occupy spaces that will be present because of dimensional separations between elements of a connection across which load transfer occurs. Examples where fillers might be used are beams framing off center on a column and raised beams.

For the effect of fillers and shims on available joint strength, see AISC Specification Sections J3.8 and J5.2.

Copes, Blocks and Cuts

When structural members frame together, a minimum clearance of $1 / 2$ in. should be provided, when possible. In cases where material removal is necessary to provide such a clearance, material may be removed by coping, blocking or cutting, as illustrated in Figure 9-8.

Material removal is costly and should be avoided when possible. In some cases, it may be feasible to do so by setting the elevations of the tops of infill beams a sufficient distance below the tops of girders to clear the girder fillet radius. Alternatively, a connection such as that illustrated in Figure 9-9 could be used.

When material removal is necessary, coping is usually the most economical method to remove material. The recommended practices for coping are illustrated in Figure 9-10. The potential notch left by the first cut will occur in waste material and will subsequently be removed by the second cut. All re-entrant corners must be shaped notch-free, per AWS D1.1, to a radius. An approximate minimum radius to which this corner must be shaped is $1 / 2 \mathrm{in}$.

(a) Strip

(b) Finger

Fig. 9-7. Shims.

Copes, blocks and cuts can significantly reduce the available strengths of members and may require web reinforcement; it may be more economical to use a heavier member than to provide such reinforcement.

Web Reinforcement of Coped Beams

When the strength of a coped beam is inadequate, either a different beam with a thicker web can be selected to eliminate the need for reinforcement, or reinforcement can be provided to increase the strength. In spite of the increase in material cost, the former solution may be the most economical option due to the appreciable labor cost associated with adding stiffeners and/or doubler plates. When the latter solution is required, some typical reinforcing details are illustrated in Figure 9-11.

Fig. 9-8. Copes, blocks and cuts.

Fig. 9-9. Eliminating coping requirements.

The doubler plate illustrated in Figure 9-11(a) and the longitudinal stiffener illustrated in Figure $9-11$ (b) are used with rolled sections where $h / t_{w} \leq 60$. When a doubler plate is used, the required doubler-plate thickness, t_{d} req, is determined by substituting the quantity ($t_{w}+t_{d}$ req $)$ for t_{w} in the available strength calculations for flexural yielding and web local buckling. To prevent local crippling of the beam web, the doubler plate must be extended at least a distance d_{c} (depth of cope) beyond the cope as illustrated in Figure 9-11(a). When longitudinal stiffening is used, the stiffening elements must be proportioned to meet the width-to-thickness ratios specified in AISC Specification Table B4.1b. The stiffened cross section must then be checked for flexural yielding, but web local buckling need not be checked. To prevent local crippling of the beam web, the longitudinal stiffening must be extended a minimum distance of d_{c} beyond the cope as illustrated in Figure 9-11(b).

The combination of longitudinal and transverse stiffeners shown in Figure 9-11(c) may be required for thin-web plate girders, where $h / t_{w}>60$. When longitudinal and transverse stiffening is used, the stiffening elements must be proportioned to meet the width-to-thickness ratios specified in AISC Specification Table B4.1b. The stiffened cross section must then be checked for flexural yielding, but web local buckling need not be checked. To prevent local crippling of the beam web, longitudinal stiffeners must be extended a minimum distance of $c / 3$ beyond the cope, as illustrated in Figure 9-11(c).

DESIGN TABLE DISCUSSION

Table 9-1. Reduction in Area for Holes

Area reduction for standard, oversized, short-slotted and long-slotted holes in material thicknesses from ${ }^{3} / 16$ in. to 1 in . are given in Table $9-1$. For material thicknesses not listed, the tabular value for 1 -in. thickness can be multiplied by the actual thickness. The table is based on a net area using a width that is $1 / 16$ in. greater than the actual hole width.

Table 9-2. Elastic Section Modulus for Coped W-Shapes

Values are given for the gross and net elastic section modulus for coped W -shapes, as illustrated in the table header.

Fig. 9-10. Recommended coping practices.

Tables 9-3. Block Shear Rupture

The terms in AISC Specification Equation J4-5 are tabulated in Tables 9-3a, 9-3b and 9-3c. The indicated values are given per inch of material thickness.

Table 9-4. Beam Bearing Constants

At beam ends and at any location on beams or columns where concentrated loads occur, the available strength for web local yielding and web local crippling, ϕR_{n} or R_{n} / Ω, at concentrated loads is determined per AISC Specification Sections J10.2 and J10.3. Values of R_{n} are given for a bearing length, $l_{b}=3^{1 / 4} \mathrm{in}$. The equations for web local yielding (AISC Specification Equations J10-2 and J10-3) and web local crippling (AISC Specification Equations J10-4, J10-5a and J10-5b) can be simplified using the bearing length, l_{b}, and the constants R_{1} through R_{6} as follows.

(a) Doubler plate

(b) Longitudinal stiffener

(c) Combination longitudinal and transverse stiffeners

Fig. 9-11. Web reinforcement of coped beams.

$$
\begin{gather*}
R_{1}=2.5 k F_{y w} t_{w} \tag{9-40}\\
R_{2}=F_{y w} t_{w} \tag{9-41}\\
R_{3}=0.40 t_{w}^{2} \sqrt{\frac{E F_{y w} t_{f}}{t_{w}}} \tag{9-42}\\
R_{4}=0.40 t_{w}^{2}\left(\frac{3}{d}\right)\left(\frac{t_{w}}{t_{f}}\right)^{1.5} \sqrt{\frac{E F_{y w} t_{f}}{t_{w}}} \tag{9-43}\\
R_{5}=0.40 t_{w}^{2}\left[1-0.2\left(\frac{t_{w}}{t_{f}}\right)^{1.5}\right] \sqrt{\frac{E F_{y w} t_{f}}{t_{w}}} \tag{9-44}\\
R_{6}=0.40 t_{w}^{2}\left(\frac{4}{d}\right)\left(\frac{t_{w}}{t_{f}}\right)^{1.5} \sqrt{\frac{E F_{y w} t_{f}}{t_{w}}} \tag{9-45}
\end{gather*}
$$

Web Local Yielding

The available strength for web local yielding, ϕR_{n} or R_{n} / Ω, is determined per AISC Specification Section J10.2 using Equations J10-2 or J10-3, which can be simplified using the constants R_{1} and R_{2} from Table $9-4$ as follows, where $\phi=1.00$ and $\Omega=1.50$.

When the compressive force to be resisted is applied at a distance, x, from the member end that is less than or equal to the depth of the member $(x \leq d)$:

LRFD	ASD	
$\phi R_{n}=\phi R_{1}+l_{b}\left(\phi R_{2}\right)$	$(9-46 \mathrm{a})$	$R_{n} / \Omega=R_{1} / \Omega+l_{b}\left(R_{2} / \Omega\right) \quad(9-46 \mathrm{~b})$

When the compressive force to be resisted is applied at a distance, x, from the member end that is greater than the depth of the member $(x>d)$:

LRFD	ASD	
$\phi R_{n}=2\left(\phi R_{1}\right)+l_{b}\left(\phi R_{2}\right)$	$(9-47 \mathrm{a})$	$R_{n} / \Omega=2\left(R_{1} / \Omega\right)+l_{b}\left(R_{2} / \Omega\right)(9-47 \mathrm{~b})$

Note that the minimum length of bearing, l_{b}, is k, per AISC Specification Section J10.2 for end beam reactions, where $k=k_{\text {des }}$ for W-shapes.

Web Local Crippling

The available strength for web local crippling, ϕR_{n} or R_{n} / Ω, is determined per AISC Specification Section J10.3 using Equations J10-4, J10-5a or J10-5b, which can be simplified using constants R_{3}, R_{4}, R_{5} and R_{6} from Table $9-4$ as follows, where $\phi=0.75$ and $\Omega=$ 2.00 .

When the compressive force to be resisted is applied at a distance, x, from the member end that is less than one-half of the depth of the member $(x<d / 2)$:

For $l_{b} / d \leq 0.2$

LRFD	ASD		
$\phi R_{n}=\phi R_{3}+l_{b}\left(\phi R_{4}\right)$	$(9-48 \mathrm{a})$	$R_{n} / \Omega=R_{3} / \Omega+l_{b}\left(R_{4} / \Omega\right)$	$(9-48 \mathrm{~b})$

For $l_{b} / d>0.2$

LRFD	ASD		
$\phi R_{n}=\phi R_{5}+l_{b}\left(\phi R_{6}\right)$	$(9-49 \mathrm{a})$	$R_{n} / \Omega=R_{5} / \Omega+l_{b}\left(R_{6} / \Omega\right)$	$(9-49 \mathrm{~b})$

When the compressive force to be resisted is applied at a distance, x, from the member end that is greater than or equal to one-half of the depth of the member $(x \geq d / 2)$:

LRFD	ASD
$\phi R_{n}=2\left[\phi R_{3}+l_{b}\left(\phi R_{4}\right)\right] \quad(9-50 \mathrm{a})$	$R_{n} / \Omega=2\left[R_{3} / \Omega+l_{b}\left(R_{4} / \Omega\right)\right] \quad(9-50 \mathrm{~b})$

PART 9 REFERENCES

Abolitz, A.L. and Warner, M.E. (1965), "Bending Under Seated Connections," Engineering Journal, AISC, Vol. 2, No. 1, pp. 1-5.
ACI/ASCE/TMS (2013a), Building Code Requirements for Masonry Structures, ACI 530/ASCE 5/TMS 402, Farmington Hills, MI.
ACI/ASCE/TMS (2013b), Specification for Masonry Structures, ACI 530.1/ASCE 6/ TMS 602, Farmington Hills, MI.
Astaneh, A. (1998), "Seismic Behavior and Design of Gusset Plates," Steel Tips, Structural Steel Educational Council, December.
Carter, C.J. (1999), Stiffening of Wide-Flange Columns at Moment Connections: Wind and Seismic Applications, Design Guide 13, AISC, Chicago, IL.
Dowswell, B. (2011), "A Yield Line Component Method for Bolted Flange Connections," Engineering Journal, AISC, Vol. 48, No. 2, pp. 93-116.
Dowswell, B. and Whyte, R. (2014), "Local Stability of Double-Coped Beams," Engineering Journal, AISC, Vol. 51, No. 1, pp. 43-52.
Dowswell, B. (2015), "Plastic Strength of Connection Elements," Engineering Journal, AISC, Vol. 52, No. 1, pp. 47-66.
Dranger, T.S. (1977), "Yield Line Analysis of Bolted Hanging Connections," Engineering Journal, AISC, Vol. 14, No. 3, pp. 92-97.
Kapp, R.H. (1974), "Yield Line Analysis of a Web Connection in Direct Tension," Engineering Journal, AISC, Vol. 11, No. 2, pp. 38-41.
Neal, B.G. (1961), "The Effect of Shear and Normal Forces on the Fully Plastic Moment of a Beam of Rectangular Cross Section," Journal of Applied Mechanics, Vol. 28, pp. 269-274.
Stockwell, F.W. (1974), "Yield Line Analysis of Column Webs with Welded Beam Connections," Engineering Journal, AISC, Vol. 11, No. 1, pp. 12-17.
Swanson, J.A. (2002), "Ultimate Strength Prying Models for Bolted T-Stub Connections," Engineering Journal, AISC, Vol. 39, No. 3, pp. 136-147.
Thornton, W.A. (1992), "Strength and Serviceability of Hanger Connections," Engineering Journal, AISC, Vol. 29, No. 4, pp. 145-149, Chicago, IL. See also ERRATA, Engineering Journal, Vol. 33, No. 1, 1996, pp. 39, 40.
Thornton, W.A. (1996), "Rational Design of Tee Shear Connections," Engineering Journal, AISC, Vol. 33, No. 1, pp. 34-37.
Thornton, W.A. and Lini, C. (2011), "The Whitmore Section," Modern Steel Construction, AISC, July.
Wheeler, A.T., Clarke, M.J., Hancock, G.J. and Murray, T.M. (1998), "Design Model for Bolted Moment End-Plate Connections Joining Rectangular Hollow Sections," Journal of Structural Engineering, ASCE, Vol. 124, No. 2.
Whitmore, R.E. (1952), "Experimental Investigation of Stresses in Gusset Plates," Bulletin No. 16, Civil Engineering, The University of Tennessee Engineering Experiment Station, Knoxville, TN.

Table 9-1
 Reduction in Area for Holes, in. ${ }^{2}$

Thickness, t, in.	$\boldsymbol{A} \times \boldsymbol{t}$							$B \times t$						
	Bolt Diameter, d, in.							Bolt Diameter, d, in.						
	3/4	7/8	1	11/8	11/4	13/8	11/2	3/4	7/8	1	11/8	11/4	13/8	11/2
3/16	0.164	0.188	0.223	0.246	0.270	0.293	0.316	0.188	0.211	0.246	0.281	0.305	0.328	0.352
$1 / 4$	0.219	0.250	0.297	0.328	0.359	0.391	0.422	0.250	0.281	0.328	0.375	0.406	0.438	0.469
5/16	0.273	0.313	0.371	0.410	0.449	0.488	0.527	0.313	0.352	0.410	0.469	0.508	0.547	0.586
3/8	0.328	0.375	0.445	0.492	0.539	0.586	0.633	0.375	0.422	0.492	0.563	0.609	0.656	0.703
7/16	0.383	0.438	0.520	0.574	0.629	0.684	0.738	0.438	0.492	0.574	0.656	0.711	0.766	0.820
1/2	0.438	0.500	0.594	0.656	0.719	0.781	0.844	0.500	0.563	0.656	0.750	0.813	0.875	0.938
9/16	0.492	0.563	0.668	0.738	0.809	0.879	0.949	0.563	0.633	0.738	0.844	0.914	0.984	1.05
5/8	0.547	0.625	0.742	0.820	0.898	0.977	1.05	0.625	0.703	0.820	0.938	1.02	1.09	1.17
11/16	0.602	0.688	0.816	0.902	0.988	1.07	1.16	0.688	0.773	0.902	1.03	1.12	1.20	1.29
$3 / 4$	0.656	0.750	0.891	0.984	1.08	1.17	1.27	0.750	0.844	0.984	1.13	1.22	1.31	1.41
13/16	0.711	0.813	0.965	1.07	1.17	1.27	1.37	0.813	0.914	1.07	1.22	1.32	1.42	1.52
7/8	0.766	0.875	1.04	1.15	1.26	1.37	1.48	0.875	0.984	1.15	1.31	1.42	1.53	1.64
15/16	0.820	0.938	1.11	1.23	1.35	1.46	1.58	0.938	1.05	1.23	1.41	1.52	1.64	1.76
1	0.875	1.00	1.19	1.31	1.44	1.56	1.69	1.00	1.13	1.31	1.50	1.63	1.75	1.88
	$\boldsymbol{C} \times \boldsymbol{t}$							$D \times t$						
ness,	Bolt Diameter, d, in.							Bolt Diameter, d, in.						
in.	3/4	7/8	1	11/8	11/4	13/8	11/2	3/4	7/8	1	11/8	11/4	13/8	11/2
3/16	0.199	0.223	0.258	0.293	0.316	0.340	0.	0.363	0.422	0.480	0.539	0.598	0.656	0.715
1/4	0.266	0.297	0.344	0.391	0.422	0.453	0.484	0.484	0.563	0.641	0.719	0.797	0.875	0.953
5/16	0.332	0.371	0.430	0.488	0.5	0.566	0.605	0.605	0.703	0.801	0.898	0.996	1.09	1.19
3/8	0.398	0.445	0.516	0.586	0.633	0.680	0.727	0.727	0.844	0.961	1.08	1.20	1.31	1.43
7/16	0.465	0.520	0.602	0.684	0.738	0.793	0.848	0.848	0.984	1.12	1.26	1.39	1.53	1.67
1/2	0.531	0.594	0.688	0.781	0.844	0.906	0.969	0.969	1.13	1.28	1.44	1.59	1.75	1.91
9/16	0.598	0.668	0.773	0.879	0.949	1.02	1.09	1.09	1.27	1.44	1.62	1.79	1.97	2.14
5/8	0.664	0.742	0.859	0.977	1.05	1.13	1.21	1.21	1.41	1.60	1.80	1.99	2.19	2.38
11/16	0.730	0.816	0.945	1.07	1.16	1.25	1.33	1.33	1.55	1.76	1.98	2.19	2.41	2.62
$3 / 4$	0.797	0.891	1.03	1.17	1.27	1.36	1.45	1.45	1.69	1.92	2.16	2.39	2.63	2.86
13/16	0.863	0.965	1.12	1.27	1.37	1.47	1.57	1.57	1.83	2.08	2.34	2.59	2.84	3.10
7/8	0.930	1.04	1.20	1.37	1.48	1.59	1.70	1.70	1.97	2.24	2.52	2.79	3.06	3.34
15/16	0.996	1.11	1.29	1.46	1.58	1.70	1.82	1.82	2.11	2.40	2.70	2.99	3.28	3.57
1	1.06	1.19	1.38	1.56	1.69	1.81	1.94	1.94	2.25	2.56	2.88	3.19	3.50	3.81

Table 9-2
 Elastic Section Modulus for Coped W-Shapes

- Indicates that cope depth is less than flange thickness.

Table 9-2 (continued) Elastic Section Modulus for Coped W-Shapes

d		$\overline{\underline{0}}$		d	$-$	$\begin{aligned} & 1 \\ & 1 \\ & S_{0} \end{aligned}$	$=$	$d_{1}^{d_{c}}$		$\begin{array}{\|} 1 \\ \hline \end{array}$			
Shape	$\begin{aligned} & d, \\ & \text { in. } \end{aligned}$	$\begin{aligned} & t_{t,}, \\ & \text { in. } \end{aligned}$	$\begin{aligned} & S_{x}, \\ & \text { in. }{ }^{3} \end{aligned}$	$\begin{aligned} & S_{0}, \\ & \text { in. }{ }^{3} \end{aligned}$	$S_{\text {net }}, \mathrm{in}^{3}{ }^{\text {a }}$								
					d_{c}, in.								
					2	3	4	5	6	7	8	9	10
W36×925	43.1	4.53	3390	1320	-	-	-	1040	984	933	883	835	788
$\times 853$	43.1	4.53	3250	1130	-	-	-	887	842	799	756	714	673
$\times 802$	42.6	4.29	3040	1050	-	-	-	820	778	737	697	658	620
$\times 723$	41.8	3.90	2740	925	-	-	761	723	685	648	612	577	543
$\times 652$	41.1	3.54	2460	816	-	-	669	635	601	568	536	505	475
$\times 529$	39.8	2.91	1990	636	-	547	519	491	464	438	413	388	364
$\times 487$	39.3	2.68	1830	581	-	499	473	448	423	399	375	352	330
$\times 441$	38.9	2.44	1650	518	-	444	420	398	375	354	332	312	292
$\times 395$	38.4	2.20	1490	457	-	391	370	350	330	311	292	274	256
$\times 361$	38.0	2.01	1350	412	-	352	333	315	297	279	262	246	230
$\times 330$	37.7	1.85	1240	371	335	317	300	283	267	251	235	220	206
$\times 302$	37.3	1.68	1130	338	305	289	273	258	243	228	214	200	187
$\times 282$	37.1	1.57	1050	314	283	268	253	239	225	211	198	185	173
$\times 262$	36.9	1.44	972	294	264	250	236	223	210	197	185	172	161
$\times 247$	36.7	1.35	913	277	249	236	223	210	198	185	174	162	151
$\times 231$	36.5	1.26	854	260	234	222	209	197	186	174	163	152	142
W 36×256	37.4	1.73	895	329	297	281	266	251	237	223	209	196	183
$\times 232$	37.1	1.57	809	295	266	251	238	224	211	199	186	174	163
$\times 210$	36.7	1.36	719	272	245	232	219	207	195	183	172	161	150
$\times 194$	36.5	1.26	664	249	224	212	201	189	178	167	157	146	137
$\times 182$	36.3	1.18	623	234	211	199	188	178	167	157	147	137	128
$\times 170$	36.2	1.10	581	218	196	185	175	165	155	146	137	128	119
$\times 160$	36.0	1.02	542	206	185	175	165	156	147	138	129	120	112
$\times 150$	35.9	0.940	504	195	176	166	157	148	139	130	122	114	106
$\times 135$	35.6	0.790	439	181	163	154	145	137	129	121	113	105	98.1
W 33×387	36.0	2.28	1350	413	-	349	329	310	291	272	254	237	220
$\times 354$	35.6	2.09	1240	373	-	315	297	279	262	245	229	213	198
$\times 318$	35.2	1.89	1110	330	295	278	262	246	230	216	201	187	173
$\times 291$	34.8	1.73	1020	300	268	253	238	223	209	195	182	169	157
$\times 263$	34.5	1.57	919	268	239	226	212	199	186	174	162	151	139
$\times 241$	34.2	1.40	831	250	223	210	197	185	173	162	150	140	129
$\times 221$	33.9	1.28	759	230	205	193	181	170	159	148	138	128	118
$\times 201$	33.7	1.15	686	209	186	175	165	154	144	135	125	116	107

- Indicates that cope depth is less than flange thickness.

Table 9-2 (continued)
 Elastic Section Modulus for Coped W-Shapes

d		$=$	$\{$			$\begin{aligned} & 1 \\ & \\ & \hline \end{aligned}$		$\frac{d_{c}}{d_{1}}$					
Shape	$\begin{aligned} & d, \\ & \text { in. } \end{aligned}$	$\begin{aligned} & t_{f}, \\ & \text { in. } \end{aligned}$	$\begin{aligned} & S_{x,} \\ & \text { in. }{ }^{3} \end{aligned}$	$\begin{gathered} S_{0}, \\ \text { in. }{ }^{3} \end{gathered}$	$\frac{S_{n e t}, \text { in. }^{3}}{d_{c}, \text { in. }}$								
					2	3	4	5	6	7	8	9	10
W33×169	33.8	1.22	549	191	170	161	151	141	132	124	115	107	98.6
$\times 152$	33.5	1.06	487	176	157	148	139	130	122	114	106	97.9	90.5
$\times 141$	33.3	0.960	448	165	147	139	130	122	114	106	98.8	91.6	84.6
$\times 130$	33.1	0.855	406	155	138	130	122	114	107	99.6	92.5	85.7	79.2
$\times 118$	32.9	0.740	359	143	128	120	113	106	98.6	91.9	85.4	79.1	73.0
W30×391	33.2	2.44	1250	378	-	315	295	276	257	239	222	205	188
$\times 357$	32.8	2.24	1140	339	-	282	264	246	230	213	197	182	167
$\times 326$	32.4	2.05	1040	305	-	254	237	221	206	191	177	163	150
$\times 292$	32.0	1.85	930	269	238	223	208	194	180	167	155	142	130
$\times 261$	31.6	1.65	829	240	212	198	185	172	160	148	137	126	115
$\times 235$	31.3	1.50	748	211	186	174	163	152	141	130	120	110	101
$\times 211$	30.9	1.32	665	192	170	159	148	138	128	118	109	99.8	91.2
$\times 191$	30.7	1.19	600	174	153	143	133	124	115	106	97.7	89.6	81.8
$\times 173$	30.4	1.07	541	158	139	130	121	112	104	96.1	88.4	81.0	73.9
W30×148	30.7	1.18	436	152	134	125	117	109	101	93.3	86.0	78.9	72.1
$\times 132$	30.3	1.00	380	139	123	115	107	99.3	92.1	85.1	78.3	71.8	65.5
$\times 124$	30.2	0.930	355	131	115	108	100	93.4	86.5	79.9	73.6	67.4	61.5
$\times 116$	30.0	0.850	329	124	109	102	95.3	88.6	82.1	75.8	69.7	63.9	58.2
$\times 108$	29.8	0.760	299	118	103	96.5	89.9	83.6	77.4	71.4	65.7	60.1	54.8
$\times 99$	29.7	0.670	269	110	96.4	90.0	83.9	77.9	72.1	66.5	61.1	56.0	51.0
$\times 90$	29.5	0.610	245	98.7	86.7	80.9	75.4	70.0	64.8	59.7	54.9	50.2	45.7
W27×539	32.5	3.54	1570	509	-	-	394	367	341	316	292	269	247
$\times 368$	30.4	2.48	1060	321	-	262	244	226	209	193	177	162	147
$\times 336$	30.0	2.28	972	287	-	234	218	202	186	172	157	143	130
$\times 307$	29.6	2.09	887	259	-	211	196	181	167	154	141	128	116
$\times 281$	29.3	1.93	814	233	203	189	176	162	150	137	126	114	104
$\times 258$	29.0	1.77	745	212	185	172	159	147	136	124	114	103	93.3
$\times 235$	28.7	1.61	677	193	168	156	145	134	123	113	103	93.2	84.2
$\times 217$	28.4	1.50	627	174	152	141	130	120	111	101	92.3	83.7	75.5
$\times 194$	28.1	1.34	559	155	134	125	115	106	97.6	89.3	81.3	73.6	66.3
$\times 178$	27.8	1.19	505	145	126	117	108	99.7	91.5	83.6	76.1	68.8	61.9
$\times 161$	27.6	1.08	458	131	113	105	97.2	89.5	82.0	74.9	68.1	61.5	55.3
$\times 146$	27.4	0.975	414	118	102	95.0	87.7	80.7	74.0	67.5	61.3	55.3	49.7

[^44]| Table 9-2 (continued) |
| :---: |
| Elastic Section Modulus for Coped W-Shapes |

		x_{x}	\mathcal{E}			$\begin{array}{l:l} 1 \\ S_{0} \end{array}$	$\{$	d		$\begin{aligned} & \frac{1}{1} \\ & 1 S_{n} \\ & 1 \\ & 1 \\ & \hline 1 \end{aligned}$			
Shape	$\begin{aligned} & d, \\ & \text { in. } \end{aligned}$	$\begin{aligned} & t_{f}, \\ & \text { in. } \end{aligned}$	$\begin{aligned} & S_{X,}, \\ & \text { in. } \end{aligned}$	$\begin{aligned} & S_{o,} \\ & \text { in. }{ }^{3} \end{aligned}$	$S_{\text {net, }}$ in. ${ }^{3}$								
					d_{c}, in.								
					2	3	4	5	6	7	8	9	10
W27×129	27.6	1.10	345	117	101	94.0	86.9	80.1	73.5	67.2	61.1	55.3	49.7
$\times 114$	27.3	0.930	299	106	91.6	84.9	78.4	72.2	66.2	60.5	54.9	49.6	44.6
$\times 102$	27.1	0.830	267	94.2	81.6	75.6	69.8	64.2	58.9	53.7	48.8	44.0	39.5
$\times 94$	26.9	0.745	243	88.0	76.2	70.6	65.1	59.9	54.9	50.1	45.4	41.0	36.8
$\times 84$	26.7	0.640	213	80.5	69.7	64.5	59.5	54.7	50.1	45.7	41.4	37.4	33.5
W 24×370	28.0	2.72	957	295	-	237	219	201	184	168	153	138	124
$\times 335$	27.5	2.48	864	261	-	209	193	177	162	147	133	120	108
$\times 306$	27.1	2.28	789	234	-	186	172	157	144	131	118	106	94.9
$\times 279$	26.7	2.09	718	210	-	167	154	141	128	116	105	94.3	84.0
$\times 250$	26.3	1.89	644	184	158	146	134	123	112	101	91.2	81.7	72.6
$\times 229$	26.0	1.73	588	167	143	132	121	111	101	91.0	81.8	73.1	64.9
$\times 207$	25.7	1.57	531	149	127	117	107	98.0	89.0	80.4	72.2	64.4	57.0
$\times 192$	25.5	1.46	491	136	117	107	98.2	89.5	81.2	73.3	65.8	58.6	51.8
$\times 176$	25.2	1.34	450	124	106	97.6	89.4	81.4	73.8	66.5	59.6	53.0	46.8
$\times 162$	25.0	1.22	414	115	98.0	90.0	82.3	74.9	67.9	61.1	54.7	48.6	42.8
$\times 146$	24.7	1.09	371	104	88.5	81.2	74.2	67.5	61.1	54.9	49.1	43.6	38.3
$\times 131$	24.5	0.960	329	94.4	80.3	73.7	67.3	61.1	55.3	49.7	44.3	39.3	34.5
$\times 117$	24.3	0.850	291	84.4	71.7	65.7	60.0	54.5	49.2	44.2	39.4	34.8	30.5
$\times 104$	24.1	0.750	258	75.4	64.1	58.7	53.5	48.6	43.8	39.3	35.0	30.9	27.1
W24×103	24.5	0.980	245	82.9	70.7	64.9	59.3	53.9	48.8	43.9	39.2	34.8	30.6
$\times 94$	24.3	0.875	222	76.2	64.9	59.5	54.3	49.4	44.6	40.1	35.8	31.7	27.9
$\times 84$	24.1	0.770	196	68.3	58.0	53.2	48.6	44.1	39.8	35.8	31.9	28.2	24.8
$\times 76$	23.9	0.680	176	62.6	53.2	48.7	44.5	40.4	36.4	32.7	29.1	25.8	22.6
$\times 68$	23.7	0.585	154	57.5	48.8	44.7	40.8	37.0	33.4	29.9	26.6	23.5	20.6
W24×62	23.7	0.590	131	56.9	48.3	44.3	40.4	36.7	33.1	29.7	26.5	23.4	20.5
$\times 55$	23.6	0.505	114	51.1	43.4	39.7	36.2	32.9	29.7	26.6	23.7	20.9	18.3
W 21×275	24.1	2.19	638	179	-	138	126	114	102	91.4	81.1	71.4	62.2
$\times 248$	23.7	1.99	576	158	133	121	110	99.3	89.1	79.5	70.3	61.6	53.5
$\times 223$	23.4	1.79	520	141	118	108	97.7	88.1	79.0	70.3	62.0	54.3	47.0
$\times 201$	23.0	1.63	461	125	105	95.2	86.2	77.6	69.4	61.6	54.2	47.3	40.8
$\times 182$	22.7	1.48	417	111	93.3	84.8	76.6	68.8	61.4	54.4	47.8	41.6	35.8
$\times 166$	22.5	1.36	380	99.3	83.0	75.3	68.0	61.0	54.4	48.1	42.2	36.6	31.4
$\times 147$	22.1	1.15	329	91.2	76.1	68.9	62.1	55.7	49.5	43.7	38.2	33.1	28.2
$\times 132$	21.8	1.04	295	81.0	67.5	61.1	55.0	49.2	43.7	38.5	33.6	29.0	24.7
$\times 122$	21.7	0.960	273	74.1	61.6	55.7	50.2	44.8	39.8	35.0	30.5	26.3	22.4
$\times 111$	21.5	0.875	249	67.1	55.7	50.4	45.3	40.4	35.9	31.5	27.4	23.6	20.1
$\times 101$	21.4	0.800	227	60.4	50.1	45.3	40.7	36.3	32.1	28.2	24.5	21.1	17.9

[^45]
Table 9-2 (continued) Elastic Section Modulus for Coped W-Shapes

- Indicates that cope depth is less than flange thickness.

Note: Values are omitted when cope depth exceeds $d / 2$.

Table 9-2 (continued)
 Elastic Section Modulus for Coped W-Shapes

- Indicates that cope depth is less than flange thickness.

Note: Values are omitted when cope depth exceeds $d / 2$.

Table 9-2 (continued) Elastic Section Modulus for Coped W-Shapes

- Indicates that cope depth is less than flange thickness.

Note: Values are omitted when cope depth exceeds $d / 2$.

Table 9-2 (continued)
 Elastic Section Modulus for Coped W-Shapes

[^46]Table 9-2 (continued)
Elastic Section Modulus for Coped W-Shapes

[^47]| $U_{b s}=1.0$ | Table 9-3a Block Shear
 Tension Rupture Component
 per inch of thickness, kip/in. | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F_{u} | 58 ksi | | | | | |
| $l_{\text {eh }}, \mathrm{in}$. | Bolt diameter, d, in. ${ }^{\text {a }}$ | | | | | |
| | $3 / 4$ | | 7/8 | | 1 | |
| | $\frac{F_{u} A_{n t}}{\Omega t}$ | $\frac{\phi F_{u} A_{n t}}{t}$ | $\frac{F_{u} A_{n t}}{\Omega t}$ | $\frac{\phi F_{u} A_{n t}}{t}$ | $\frac{F_{u} A_{n t}}{\Omega t}$ | $\frac{\phi F_{u} A_{n t}}{t}$ |
| | ASD | LRFD | ASD | LRFD | ASD | LRFD |
| 1 | 16.3 | 24.5 | 14.5 | 21.8 | 11.8 | 17.7 |
| 1118 | 19.9 | 29.9 | 18.1 | 27.2 | 15.4 | 23.1 |
| 111/4 | 23.6 | 35.3 | 21.8 | 32.6 | 19.0 | 28.5 |
| 13/8 | 27.2 | 40.8 | 25.4 | 38.1 | 22.7 | 34.0 |
| 11/2 | 30.8 | 46.2 | 29.0 | 43.5 | 26.3 | 39.4 |
| 15/8 | 34.4 | 51.7 | 32.6 | 48.9 | 29.9 | 44.9 |
| $13 / 4$ | 38.1 | 57.1 | 36.3 | 54.4 | 33.5 | 50.3 |
| 17/8 | 41.7 | 62.5 | 39.9 | 59.8 | 37.2 | 55.7 |
| 2 | 45.3 | 68.0 | 43.5 | 65.3 | 40.8 | 61.2 |
| 21/4 | 52.6 | 78.8 | 50.7 | 76.1 | 48.0 | 72.0 |
| 21/2 | 59.8 | 89.7 | 58.0 | 87.0 | 55.3 | 82.9 |
| 23/4 | 67.1 | 101 | 65.3 | 97.9 | 62.5 | 93.8 |
| 3 | 74.3 | 111 | 72.5 | 109 | 69.8 | 105 |
| F_{u} | 65 ksi | | | | | |
| $l_{\text {eh, }}$, in. | Bolt diameter, d, in. ${ }^{\text {a }}$ | | | | | |
| | $3 / 4$ | | 7/8 | | 1 | |
| | $\frac{F_{u} A_{n t}}{\Omega t}$ | $\frac{\phi F_{u} A_{n t}}{\boldsymbol{t}}$ | $\frac{F_{u} A_{n t}}{\Omega t}$ | $\frac{\phi F_{u} A_{n t}}{t}$ | $\frac{F_{u} A_{n t}}{\Omega t}$ | $\frac{\phi F_{u} A_{n t}}{t}$ |
| | ASD | LRFD | ASD | LRFD | ASD | LRFD |
| 1 | 18.3 | 27.4 | 16.3 | 24.4 | 13.2 | 19.8 |
| 11/8 | 22.3 | 33.5 | 20.3 | 30.5 | 17.3 | 25.9 |
| $11 / 4$ | 26.4 | 39.6 | 24.4 | 36.6 | 21.3 | 32.0 |
| 13/8 | 30.5 | 45.7 | 28.4 | 42.7 | 25.4 | 38.1 |
| $11 / 2$ | 34.5 | 51.8 | 32.5 | 48.8 | 29.5 | 44.2 |
| 15/8 | 38.6 | 57.9 | 36.6 | 54.8 | 33.5 | 50.3 |
| 13/4 | 42.7 | 64.0 | 40.6 | 60.9 | 37.6 | 56.4 |
| 17/8 | 46.7 | 70.1 | 44.7 | 67.0 | 41.6 | 62.5 |
| 2 | 50.8 | 76.2 | 48.8 | 73.1 | 45.7 | 68.6 |
| 21/4 | 58.9 | 88.4 | 56.9 | 85.3 | 53.8 | 80.7 |
| 21/2 | 67.0 | 101 | 65.0 | 97.5 | 62.0 | 92.9 |
| $23 / 4$ | 75.2 | 113 | 73.1 | 110 | 70.1 | 105 |
| 3 | 83.3 | 125 | 81.3 | 122 | 78.2 | 117 |
| ASD ${ }^{\text {L }}$ LRFD | ${ }^{\text {a }}$ Values are for standard hole types. | | | | | |
| $\Omega=\mathbf{2 . 0 0} \quad \phi=0.75$ | | | | | | |

			per	Blo Shea Co inch o	able 9 ck S ar Yie mpo f thick		ar ing nt s, kip	n bolt 3" spa in.		
$l_{\text {ev }}$, in.	n	F_{y}, ksi				n	F_{y}, ksi			
		36		50			36		50	
		$\frac{0.6 F_{y} A_{g v}}{\Omega t}$	$\frac{\phi 0.6 F_{y} A_{g v}}{\boldsymbol{t}}$	$\frac{0.6 F_{y} A_{g v}}{\Omega t}$	$\frac{\phi 0.6 F_{y} A_{g v}}{t}$		$\frac{0.6 F_{y} A_{g v}}{\Omega t}$	$\frac{\phi 0.6 F_{y} A_{g v}}{t}$	$\frac{0.6 F_{y} A_{g v}}{\Omega t}$	$\frac{\phi 0.6 F_{y} A_{g v}}{t}$
		ASD	LRFD	ASD	LRFD		ASD	LRFD	ASD	LRFD
1114	12	370	555	514	771	9	273	409	379	568
13/8		371	557	516	773		274	411	381	571
1112		373	559	518	776		275	413	383	574
15/8		374	561	519	779		277	415	384	577
13/4		375	563	521	782		278	417	386	579
17/8		377	565	523	785		279	419	388	582
2		378	567	525	788		281	421	390	585
21/4		381	571	529	793		284	425	394	591
2112		383	575	533	799		286	429	398	596
23/4		386	579	536	804		289	433	401	602
3		389	583	540	810		292	437	405	608
11/4	11	337	506	469	703	8	240	360	334	501
13/8		339	508	471	706		242	362	336	503
1112		340	510	473	709		243	364	338	506
15/8		342	512	474	712		244	367	339	509
13/4		343	514	476	714		246	369	341	512
17/8		344	516	478	717		247	371	343	515
2		346	518	480	720		248	373	345	518
21/4		348	522	484	726		251	377	349	523
2112		351	526	488	731		254	381	353	529
23/4		354	531	491	737		257	385	356	534
3		356	535	495	743		259	389	360	540
11/4	10	305	458	424	636		208	312	289	433
13/8		306	460	426	638		209	314	291	436
11/2		308	462	428	641		211	316	293	439
15/8		309	464	429	644		212	318	294	442
13/4		310	466	431	647		213	320	296	444
17/8		312	468	433	650	7	215	322	298	447
2		313	470	435	653		216	324	300	450
21/4		316	474	439	658		219	328	304	456
21/2		319	478	443	664		221	332	308	461
23/4		321	482	446	669		224	336	311	467
3		324	486	450	675		227	340	315	473
ASD	LRFD									
$\Omega=2.00$	0 0 0.75									

Shear Rupture Component per inch of thickness, kip/in.													
F_{u}, ksi		58						65					
n	$l_{\text {ev }}$, in.	Bolt diameter, d, in. ${ }^{\text {a }}$											
		$3 / 4$		7/8		1		$3 / 4$		$7 / 8$		1	
		${ }^{0.6 F_{u} A_{n v}}{ }_{\text {at }}$	${ }^{\phi 0.6 F_{u} A_{n v}}$	$\frac{0.6 F_{u} A_{n v}}{\Omega t}$	${ }_{\phi 0.6 F_{u} A_{n v}}$	$\frac{0.6 F_{u} A_{n v}}{\Omega t}$	${ }^{\phi 0.6 F_{u} A_{n v}}$	$\frac{0.6 F_{\Lambda} A_{n v}}{\Omega t}$	${ }_{\underline{\phi} 0.6 F_{u} A_{n v}}$	$\frac{0.6 F_{u} A_{n v}}{\Omega t}$	${ }_{\underline{\phi} 0^{6} F_{u} A_{n v}}$	${ }^{0.6 F_{\nu} A_{n v}}{ }_{\text {at }}$	${ }_{\underline{\phi} 0.6 F_{u} A_{n v}}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
12	11/4	421	631	396	594	358	537	472	707	444	665	402	602
	$1^{3 / 8}$	423	635	398	597	361	541	474	711	446	669	404	606
	11/2	425	638	400	600	363	544	477	715	449	673	406	610
	15/8	427	641	402	604	365	547	479	718	451	676	409	613
	13/4	430	644	405	607	367	551	481	722	453	680	411	617
	17/8	432	648	407	610	369	554	484	726	456	684	414	621
	2	434	651	409	613	371	557	486	729	458	687	416	624
	21/4	438	657	413	620	376	564	491	737	463	695	421	632
	21/2	443	664	418	626	380	570	496	744	468	702	426	639
	$2^{3 / 4}$	447	670	422	633	384	577	501	751	473	709	431	646
	3	451	677	426	639	389	583	506	759	478	717	436	654
11	1114	384	576	361	542	327	490	430	645	405	607	366	549
	13/8	386	579	363	545	329	493	433	649	407	611	369	553
	1112	388	582	365	548	331	497	435	653	410	614	371	557
	15/8	390	586	368	551	333	500	438	656	412	618	374	560
	13/4	393	589	370	555	335	503	440	660	414	622	376	564
	17/8	395	592	372	558	338	507	442	664	417	625	378	568
	2	397	595	374	561	340	510	445	667	419	629	381	571
	21/4	401	602	378	568	344	516	450	675	424	636	386	579
	2112	406	608	383	574	349	523	455	682	429	644	391	586
	23/4	410	615	387	581	353	529	459	689	434	651	395	593
	3	414	622	391	587	357	536	464	697	439	658	400	601
10	$11 / 4$	347	520	326	489	295	443	389	583	366	548	331	496
	13/8	349	524	328	493	297	446	391	587	368	552	333	500
	1112	351	527	331	496	300	449	394	590	371	556	336	504
	15/8	353	530	333	499	302	453	396	594	373	559	338	507
	13/4	356	533	335	502	304	456	399	598	375	563	341	511
	17/8	358	537	337	506	306	459	401	601	378	567	343	515
	2	360	540	339	509	308	462	403	605	380	570	346	518
	21/4	364	546	344	515	313	469	408	612	385	578	350	526
	2112	369	553	348	522	317	476	413	620	390	585	355	533
	23/4	373	560	352	529	321	482	418	627	395	592	360	540
	3	377	566	357	535	326	489	423	634	400	600	365	548
ASD	LRFD		${ }^{\text {a }}$ Values are for standard hole types.										
$\Omega=2.00$		$\phi=0.75$											

				er in	ble 9 Blo Shear Co nch o		(con Sh Rup one ckne	tinue ear ture nt SS,	d) e kip/in	n bo 3" sp	\qquad	$$	
$F_{u}, \mathbf{k s i}$		58						65					
n	$l_{\text {ev }}$, in.	Bolt diameter, d, in. ${ }^{\text {a }}$											
		3/4		$7 / 8$		1		$3 / 4$		7/8		1	
		${ }^{0.6 F_{\Lambda} A_{n v}}{ }^{\text {at }}$	$\frac{\phi 0.6 F_{u} A_{n v}}{t}$	$\frac{0.6 F_{u} A_{n v}}{\Omega t}$	$\frac{\phi 0.6 F_{u} A_{n v}}{t}$	$\frac{0.6 F_{u} A_{n v}}{\Omega t}$	$\frac{\phi 0.6 F_{u} A_{n v}}{t}$	$\frac{0.6 F_{\mu} A_{n v}}{\Omega t}$	$\frac{\phi 0.6 F_{u} A_{n v}}{t}$	$\frac{0.6 F_{L} A_{n v}}{\Omega t}$	$\frac{\phi 0.6 F_{u} A_{\text {Iv }}}{t}$	$\frac{0.6 F_{u} A_{n v}}{\Omega t}$	$\frac{\phi 0.6 F_{u} A_{n v}}{t}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
9	11/4	310	465	291	437	264	396	347	521	327	490	296	443
	13/8	312	468	294	440	266	399	350	525	329	494	298	447
	$11 / 2$	314	471	296	444	268	402	352	528	332	497	300	451
	15/8	316	475	298	447	270	405	355	532	334	501	303	454
	13/4	319	478	300	450	272	409	357	536	336	505	305	458
	17/8	321	481	302	453	275	412	360	539	339	508	308	462
	2	323	484	305	457	277	415	362	543	341	512	310	465
	21/4	327	491	309	463	281	422	367	550	346	519	315	473
	21/2	332	498	313	470	285	428	372	558	351	527	320	480
	23/4	336	504	318	476	290	435	377	565	356	534	325	487
	3	340	511	322	483	294	441	381	572	361	541	330	495
8	$11 / 4$	273	409	257	385	232	348	306	459	288	431	260	390
	13/8	275	413	259	388	234	352	308	463	290	435	263	394
	$11 / 2$	277	416	261	392	237	355	311	466	293	439	265	398
	15/8	279	419	263	395	239	358	313	470	295	442	268	401
	13/4	282	422	265	398	241	361	316	473	297	446	270	405
	17/8	284	426	268	401	243	365	318	477	300	450	272	409
	2	286	429	270	405	245	368	321	481	302	453	275	412
	21/4	290	436	274	411	250	374	325	488	307	461	280	420
	21/2	295	442	278	418	254	381	330	495	312	468	285	427
	23/4	299	449	283	424	258	387	335	503	317	475	289	434
	3	303	455	287	431	263	394	340	510	322	483	294	441
7	1114	236	354	222	333	201	301	264	397	249	373	225	337
	$13 / 8$	238	357	224	336	203	304	267	400	251	377	227	341
	$11 / 2$	240	361	226	339	205	307	269	404	254	380	230	345
	15/8	243	364	228	343	207	311	272	408	256	384	232	348
	13/4	245	367	231	346	209	314	274	411	258	388	235	352
	17\%8	247	370	233	349	212	317	277	415	261	391	237	356
	2	249	374	235	352	214	321	279	419	263	395	239	359
	21/4	253	380	239	359	218	327	284	426	268	402	244	367
	21/2	258	387	244	365	222	334	289	433	273	410	249	374
	23/4	262	393	248	372	227	340	294	441	278	417	254	381
	3	266	400	252	378	231	347	299	448	283	424	259	388
ASD	LRFD		${ }^{\text {a }}$ Values are for standard hole types.										
$\Omega=2.00 \quad \phi=0.75$													

Shear Rupture Component per inch of thickness, kip/in.													
F_{u}, ksi		58						65					
n	$l_{\text {ev }}$, in.	Bolt diameter, d, in. ${ }^{\text {a }}$											
		$3 / 4$		7/8		1		$3 / 4$		$7 / 8$		1	
		$\frac{0.6 F_{\Lambda} A_{n v}}{\Omega t}$	$\frac{\phi 0.6 F_{u} A_{n v}}{\boldsymbol{t}}$	$\frac{0.6 F_{u} A_{n v}}{\Omega t}$	$\frac{\phi 0.6 F_{u} A_{n v}}{t}$	$\frac{0.6 F_{u} A_{n v}}{\Omega t}$	$\frac{\phi 0.6 F_{u} A_{n v}}{t}$	$\frac{0.6 F_{\Lambda} A_{n v}}{\Omega t}$	$\frac{\phi 0.6 F_{u} A_{n v}}{t}$	$\frac{0.6 F_{u} A_{n v}}{\Omega t}$	$\frac{\phi 0.6 F_{u} A_{n v}}{t}$	$\frac{0.6 F_{\Lambda} A_{n v}}{\Omega t}$	$\frac{\phi 0.6 F_{u} A_{n v}}{t}$
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
6	11/4	199	299	187	281	169	254	223	335	210	314	190	284
	13/8	201	302	189	284	171	257	225	338	212	318	192	288
	$11 / 2$	203	305	191	287	173	260	228	342	215	322	194	292
	15/8	206	308	194	290	176	263	230	346	217	325	197	295
	13/4	208	312	196	294	178	267	233	349	219	329	199	299
	17/8	210	315	198	297	180	270	235	353	222	333	202	303
	2	212	318	200	300	182	273	238	356	224	336	204	306
	21/4	216	325	204	307	187	280	243	364	229	344	209	314
	21/2	221	331	209	313	191	286	247	371	234	351	214	321
	23/4	225	338	213	320	195	293	252	378	239	358	219	328
	3	229	344	217	326	200	299	257	386	244	366	224	335
5	$11 / 4$	162	243	152	228	138	206	182	272	171	256	154	231
	13/8	164	246	154	232	140	210	184	276	173	260	157	235
	$11 / 2$	166	250	157	235	142	213	186	280	176	263	159	239
	15/8	169	253	159	238	144	216	189	283	178	267	161	242
	13/4	171	256	161	241	146	219	191	287	180	271	164	246
	17/8	173	259	163	245	148	223	194	291	183	274	166	250
	2	175	263	165	248	151	226	196	294	185	278	169	253
	21/4	179	269	170	254	155	232	201	302	190	285	174	261
	21/2	184	276	174	261	159	239	206	309	195	293	179	268
	23/4	188	282	178	268	164	246	211	316	200	300	183	275
	3	192	289	183	274	168	252	216	324	205	307	188	282
4	1114	125	188	117	176	106	159	140	210	132	197	119	178
	$13 / 8$	127	191	120	179	108	162	143	214	134	201	121	182
	$11 / 2$	129	194	122	183	110	166	145	218	137	205	124	186
	15/8	132	197	124	186	113	169	147	221	139	208	126	189
	13/4	134	201	126	189	115	172	150	225	141	212	129	193
	17/8	136	204	128	192	117	175	152	229	144	216	131	197
	2	138	207	131	196	119	179	155	232	146	219	133	200
	21/4	142	214	135	202	123	185	160	239	151	227	138	207
	2112	147	220	139	209	128	192	165	247	156	234	143	215
	23/4	151	227	144	215	132	198	169	254	161	241	148	222
	3	156	233	148	222	136	205	174	261	166	249	153	229
ASD	LRFD ${ }^{\text {a }}$		${ }^{\text {a }}$ Values are for standard hole types.										
$\Omega=2.00 \quad \phi=0.75$													

Table 9-4 (continued) Beam Bearing Constants									
Shape		R_{1} / Ω	$\phi \boldsymbol{R}_{1}$	R_{2} / Ω	$\phi \boldsymbol{R}_{2}$	R_{3} / Ω	$\phi \boldsymbol{R}_{3}$	R_{4} / Ω	$\phi \boldsymbol{R}_{4}$
		kips	kips	kip/in.	kip/in.	kips	kips	kip/in.	kip/in.
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
W36×925		1330	1990	101	151	2690	4040	102	153
$\times 853$		1110	1660	84.0	126	2050	3080	59.2	88.8
$\times 802$		1000	1500	79.3	119	1830	2750	53.3	79.9
$\times 723$		841	1260	72.3	109	1520	2280	45.3	67.9
$\times 652$		737	1110	65.7	98.5	1250	1880	38.0	56.9
$\times 529$		518	777	53.7	80.5	839	1260	26.0	39.1
$\times 487$		454	681	50.0	75.0	724	1090	23.2	34.7
$\times 441$		384	576	45.3	68.0	597	895	19.1	28.7
$\times 395$		320	480	40.7	61.0	481	722	15.5	23.3
$\times 361$		276	414	37.3	56.0	405	607	13.3	19.9
$\times 330$		238	357	34.0	51.0	337	506	11.0	16.5
$\times 302$		207	311	31.5	47.3	287	430	9.73	14.6
$\times 282$		186	279	29.5	44.3	251	377	8.60	12.9
$\times 262$		167	251	28.0	42.0	222	334	8.06	12.1
+247		153	230	26.7	40.0	200	300	7.47	11.2
$\times 231$		140	210	25.3	38.0	179	269	6.90	10.3
W36×256		198	298	32.0	48.0	298	447	9.88	14.8
$\times 232$		168	252	29.0	43.5	245	367	8.17	12.3
$\times 210$		146	219	27.7	41.5	212	319	8.28	12.4
$\times 194$		128	192	25.5	38.3	181	271	7.03	10.5
$\times 182$		117	175	24.2	36.3	161	242	6.43	9.64
$\times 170$		105	157	22.7	34.0	142	212	5.71	8.56
$\times 160$		95.9	144	21.7	32.5	127	191	5.40	8.11
$\times 150$		88.0	132	20.8	31.3	115	173	5.23	7.84
$\times 135{ }^{\text {v }}$		77.0	116	20.0	30.0	99.5	149	5.55	8.32
W 33×387		322	484	42.0	63.0	514	771	17.6	26.4
$\times 354$		278	418	38.7	58.0	435	652	15.2	22.7
$\times 318$		232	348	34.7	52.0	351	527	12.2	18.3
+291		202	302	32.0	48.0	298	447	10.6	15.9
$\times 263$		171	257	29.0	43.5	245	367	8.78	13.2
$\times 241$		151	227	27.7	41.5	215	323	8.63	12.9
$\times 221$		133	200	25.8	38.8	186	279	7.75	11.6
$\times 201$		116	173	23.8	35.8	156	234	6.81	10.2
W 33×169		107	161	22.3	33.5	146	219	5.27	7.90
$\times 152$		93.1	140	21.2	31.8	125	188	5.21	7.81
$\times 141$		83.7	126	20.2	30.3	111	167	5.00	7.51
$\times 130$		75.4	113	19.3	29.0	98.4	148	4.98	7.47
$\times 118^{v}$		66.0	99.0	18.3	27.5	84.5	127	4.94	7.41
For R_{1} and R_{2}		For R_{3}, R_{4}, R_{5} and R_{6}		For $V_{n x}$		${ }^{v}$ Shape does not meet the h / t_{w} limit for shear in AISC Specification Section G2.1(a) with $F_{y}=50$ ksi ; therefore, $\phi_{v}=0.90$ and $\Omega_{v}=1.67$.			
ASD	LRFD	ASD	LRFD	ASD	LRFD				
$\Omega=1.50$	$\phi=1.00$	$\Omega=2.00$	$\phi=0.75$	$\Omega_{v}=1.50$	$\phi_{V}=1.00$				

Table 9-4 (continued) Beam Bearing Constants												
Nominal Wt.	R_{5} / Ω	${ }^{\prime} \boldsymbol{R}_{5}$	R_{6} / Ω	${ }_{\phi} \boldsymbol{R}_{6}$	$l_{b}=31 / 4 \mathrm{in}$.						$V_{n x} / \Omega_{v}$	$\phi_{v} \mathbf{V}_{n x}$
					$x<d / 2$		$d / 2 \leq x \leq d$		$x>d$			
					R_{n} / Ω	$\phi \boldsymbol{R}_{\boldsymbol{n}}$	R_{n} / Ω	$\phi \boldsymbol{R}_{\boldsymbol{n}}$	R_{n} / Ω	$\phi \boldsymbol{R}_{\boldsymbol{n}}$		
	kips	kips	kip/in.	kip/in.	kips	kips	kips	kips	kips	kips	kips	kips
lb/ft	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
925	2400	3600	136	204	-	-	-	-	2990	4470	2600	3900
853	1880	2820	79.0	118	-	-	-	-	2490	3730	2170	3260
802	1680	2520	71.1	107	-	-	-	-	2260	3390	2030	3040
723	1390	2090	60.4	90.6	-	-	-	-	1920	2870	1810	2720
652	1150	1720	50.6	75.9	-	-	-	-	1690	2540	1620	2430
529	770	1160	34.7	52.1	-	-	-	-	1210	1820	1280	1920
487	664	995	30.9	46.3	-	-	-	-	1070	1610	1180	1770
441	547	820	25.5	38.3	-	-	-	-	915	1370	1060	1590
395	442	662	20.7	31.1	452	678	452	678	772	1160	937	1410
361	371	557	17.7	26.6	397	596	397	596	673	1010	851	1280
330	310	465	14.7	22.0	349	523	349	523	587	880	769	1150
302	263	394	13.0	19.5	309	465	309	465	516	776	705	1060
282	230	345	11.5	17.2	279	419	282	423	468	702	657	985
262	203	304	10.7	16.1	248	373	258	388	425	639	620	930
247	182	273	9.96	14.9	224	336	240	360	393	590	587	881
231	162	243	9.19	13.8	201	302	222	334	362	544	555	832
256	273	410	13.2	19.8	302	454	302	454	500	752	718	1080
232	225	337	10.9	16.3	262	393	262	393	430	645	646	968
210	192	288	11.0	16.6	236	354	236	354	382	573	609	914
194	164	246	9.38	14.1	204	305	211	316	339	508	558	838
182	146	219	8.57	12.9	182	273	196	293	313	468	526	790
170	128	192	7.61	11.4	161	240	179	268	284	425	492	738
160	114	172	7.20	10.8	145	217	166	250	262	394	468	702
150	103	154	6.97	10.5	132	198	156	234	244	366	449	673
135	86.3	129	7.40	11.1	118	176	142	214	219	330	384	577
387	472	708	23.5	35.2	459	689	459	689	781	1170	907	1360
354	399	599	20.2	30.3	404	607	404	607	682	1020	826	1240
318	322	484	16.3	24.4	345	517	345	517	577	865	732	1100
291	273	410	14.2	21.2	306	458	306	458	508	760	668	1000
263	225	337	11.7	17.6	265	398	265	398	436	655	600	900
241	196	294	11.5	17.3	241	362	241	362	392	589	568	852
221	168	253	10.3	15.5	211	317	217	326	350	526	525	788
201	141	211	9.09	13.6	178	267	193	289	309	462	482	723
169	134	201	7.03	10.5	163	245	179	270	286	431	453	679
152	114	171	6.95	10.4	142	213	162	243	255	383	425	638
141	99.9	150	6.67	10.0	127	191	149	224	233	350	403	604
130	87.4	131	6.64	9.96	115	172	138	207	214	320	384	576
118	73.7	111	6.58	9.87	101	151	125	188	191	287	325	489
- Indicates that $3^{1 / 1 / 4}$-in. bearing length is insufficient for end beam reactions since $l_{b}<k$. $l_{b}=$ length of bearing, in. $x=$ location of concentrated force with respect to the member end, in.												

Table 9-4 (continued) Beam Bearing Constants												
Nom- inal Wt.	R_{5} / Ω	ϕR_{5}	R_{6} / Ω	${ }_{\phi} \boldsymbol{R}_{6}$	$l_{b}=31 / 4 \mathrm{in}$.						$V_{n x} / \Omega_{v}$	$\phi_{V} V_{n x}$
					$x<d / 2$		$\boldsymbol{d} / 2 \leq x \leq d$		$\boldsymbol{x}>\boldsymbol{d}$			
					R_{n} / Ω	$\phi \boldsymbol{R}_{n}$	R_{n} / Ω	$\phi \boldsymbol{R}_{\boldsymbol{n}}$	R_{n} / Ω	$\phi \boldsymbol{R}_{n}$		
	kips	kips	kip/in.	kip/in.	kips	kips	kips	kips	kips	kips	kips	kips
lb/ft	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
93	92.5	139	9.36	14.0	126	188	132	198	201	302	251	376
83	73.5	110	7.36	11.0	99.2	149	113	170	171	256	220	331
73	57.5	86.2	5.78	8.68	77.7	117	96.4	145	143	215	193	289
68	50.6	75.9	5.30	7.95	69.1	104	89.1	134	132	198	181	272
62	42.8	64.2	4.77	7.16	59.4	89.2	80.5	121	118	177	168	252
55	35.1	52.6	4.68	7.02	51.4	77.0	72.5	109	103	154	156	234
48	27.9	41.8	4.66	6.99	44.1	66.2	65.1	97.6	88.2	132	144	216
57	45.1	67.7	4.67	7.00	61.4	92.2	82.7	124	121	182	171	256
50	36.3	54.5	4.75	7.13	52.9	79.3	74.2	111	106	159	158	237
44	28.9	43.3	4.43	6.65	44.3	66.4	65.7	98.5	88.6	133	145	217
311	685	1030	55.4	83.1	575	863	575	863	985	1480	678	1020
283	578	867	48.3	72.4	502	753	502	753	852	1280	613	920
258	485	728	40.9	61.3	427	640	427	640	715	1070	550	826
234	401	602	33.8	50.7	369	553	369	553	612	917	490	734
211	333	500	29.0	43.5	319	478	319	478	523	784	439	658
192	275	413	23.9	35.8	276	414	276	414	448	672	392	588
175	234	350	21.4	32.0	245	366	245	366	393	587	356	534
158	193	289	18.0	27.1	212	318	212	318	336	504	319	479
143	158	238	14.6	21.8	184	276	184	276	289	433	285	427
130	133	199	12.5	18.8	162	243	162	243	251	377	259	388
119	119	178	13.4	20.2	151	227	151	227	230	347	249	373
106	95.3	143	11.3	16.9	130	195	130	195	196	293	221	331
97	79.4	119	9.12	13.7	110	165	114	172	171	257	199	299
86	63.4	95.0	7.52	11.3	88.6	132	98.8	148	146	218	177	265
76	49.6	74.4	5.98	8.96	69.6	104	84.5	127	123	184	155	232
71	68.3	102	7.80	11.7	94.5	142	104	156	153	230	183	275
65	57.1	85.7	6.36	9.54	78.5	118	91.9	138	135	203	166	248
60	48.7	73.1	5.44	8.16	67.0	100	82.9	125	121	182	151	227
55	42.0	63.0	5.01	7.52	58.8	88.1	75.8	114	109	164	141	212
50	34.7	52.0	4.20	6.30	48.7	73.1	67.2	101	96.0	144	128	192
46	36.7	55.1	4.10	6.16	50.5	75.7	69.3	104	99.6	150	130	195
40	28.0	42.0	3.20	4.81	38.7	58.0	58.4	87.9	77.4	116	113	169
35	22.7	34.1	3.46	5.19	34.2	51.3	53.2	79.8	68.4	103	106	159
100	97.2	146	11.5	17.3	131	197	131	197	199	299	199	298
89	77.7	117	9.48	14.2	109	164	113	169	169	253	176	265
77	58.5	87.7	7.24	10.9	82.0	123	93.4	140	137	206	150	225
67	44.3	66.4	5.48	8.22	62.2	93.1	78.1	117	113	170	129	193
$l_{b}=$ length of bearing, in. $x=$ location of concentrated force with respect to the member end, in.												

Table 9-4 (continued) Beam Bearing Constants									
Shape		R_{1} / Ω	$\phi \boldsymbol{R}_{1}$	R_{2} / Ω	$\phi \boldsymbol{R}_{2}$	R_{3} / Ω	$\phi \boldsymbol{R}_{3}$	R_{4} / Ω	$\phi \boldsymbol{R}_{4}$
		kips	kips	kip/in.	kip/in.	kips	kips	kip/in.	kip/in.
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
W16×57		40.1	60.2	14.3	21.5	57.4	86.1	4.90	7.35
$\times 50$		32.6	48.9	12.7	19.0	44.8	67.2	3.86	5.79
$\times 45$		27.8	41.7	11.5	17.3	36.7	55.0	3.26	4.89
$\times 40$		23.1	34.6	10.2	15.3	28.8	43.2	2.54	3.81
$\times 36$		20.5	30.7	9.83	14.8	25.3	38.0	2.71	4.07
W16×31		19.3	28.9	9.17	13.8	23.0	34.6	2.15	3.22
$\times 26^{v}$		15.6	23.3	8.33	12.5	17.7	26.5	2.08	3.13
W14×873		2000	3000	131	197	4420	6630	340	510
$\times 808$		1780	2670	125	187	3940	5910	324	486
$\times 730$		1410	2110	102	154	2870	4310	190	285
$\times 665$		1210	1810	94.3	142	2440	3660	168	252
$\times 605$		1030	1550	86.7	130	2060	3090	146	219
$\times 550$		877	1310	79.3	119	1730	2590	126	189
$\times 500$		748	1120	73.0	110	1460	2190	111	166
$\times 455$		641	962	67.3	101	1240	1860	97.6	146
$\times 426$		569	853	62.7	94.0	1080	1620	84.4	127
$\times 398$		507	761	59.0	88.5	957	1440	76.8	115
$\times 370$		451	676	55.3	83.0	840	1260	69.4	104
$\times 342$		394	591	51.3	77.0	723	1090	61.0	91.6
$\times 311$		336	504	47.0	70.5	606	909	52.4	78.6
$\times 283$		287	431	43.0	64.5	508	762	44.9	67.3
$\times 257$		245	367	39.3	59.0	424	637	38.3	57.4
+257$\times 233$		207	310	35.7	53.5	350	524	32.2	48.2
$\times 211$		176	265	32.7	49.0	292	438	27.8	41.6
$\times 193$		151	227	29.7	44.5	243	364	22.8	34.2
$\times 176$		132	198	27.7	41.5	208	313	20.7	31.1
$\times 159$		111	167	24.8	37.3	169	253	16.7	25.1
$\times 145$		95.8	144	22.7	34.0	141	211	14.1	21.1
W 14×132		87.6	131	21.5	32.3	127	190	12.8	19.2
$\times 120$		75.7	114	19.7	29.5	106	159	10.9	16.3
$\times 109$		63.9	95.8	17.5	26.3	85.0	127	8.50	12.8
$\times 99$		55.8	83.7	16.2	24.3	71.8	108	7.44	11.2
$\times 90$		48.0	72.1	14.7	22.0	59.2	88.8	6.19	9.29
W14×82		61.6	92.4	17.0	25.5	81.1	122	7.84	11.8
$\times 74$		51.8	77.6	15.0	22.5	64.4	96.6	5.91	8.86
$\times 68$		45.3	68.0	13.8	20.8	54.6	81.9	5.12	7.68
$\times 61$		38.8	58.1	12.5	18.8	44.4	66.6	4.25	6.37
For R_{1} and R_{2}		For R_{3}, R_{4}, R_{5} and R_{6}		For $V_{n x}$		${ }^{v}$ Shape does not meet the h / t_{w} limit for shear in AISC Specification Section G2.1(a) with $F_{y}=50$ ksi ; therefore, $\phi_{v}=0.90$ and $\Omega_{v}=1.67$.			
ASD	LRFD	ASD	LRFD	ASD	LRFD				
$\Omega=1.50$	$\phi=1.00$	$\Omega=2.00$	$\phi=0.75$	$\Omega_{v}=1.50$	$\phi_{V}=1.00$				

Table 9-4 (continued) Beam Bearing Constants												
Nom- inal Wt.	R_{5} / Ω	$\phi \boldsymbol{R}_{5}$	R_{6} / Ω	${ }_{\phi} \boldsymbol{R}_{6}$	$l_{b}=3^{1 / 4} \mathrm{in}$.						$V_{n x} / \Omega_{v}$	$\phi_{V} V_{n x}$
					$x<d / 2$		$\boldsymbol{d} / 2 \leq \boldsymbol{x} \leq \boldsymbol{d}$		$x>d$			
					R_{n} / Ω	$\phi \boldsymbol{R}_{n}$	R_{n} / Ω	$\phi \boldsymbol{R}_{\boldsymbol{n}}$	R_{n} / Ω	$\phi \boldsymbol{R}_{\boldsymbol{n}}$		
	kips	kips	kip/in.	kip/in.	kips	kips	kips	kips	kips	kips	kips	kips
lb/ft	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
57	52.1	78.1	6.53	9.80	73.3	110	86.6	130	127	190	141	212
50	40.6	60.9	5.15	7.72	57.3	86.0	73.9	111	106	160	124	186
45	33.2	49.8	4.35	6.52	47.3	71.0	65.2	97.9	93.0	140	111	167
40	26.1	39.2	3.38	5.07	37.1	55.7	56.3	84.3	74.1	111	97.6	146
36	22.4	33.6	3.62	5.43	34.2	51.2	52.4	78.8	68.2	102	93.8	141
31	20.8	31.1	2.86	4.30	30.1	45.1	49.1	73.8	60.0	90.1	87.5	131
26	15.5	23.3	2.78	4.17	24.5	36.9	42.7	63.9	48.9	73.3	70.5	106
873	3890	5830	453	680	-	-	-	-	4430	6640	1860	2790
808	3450	5170	432	648	-	-	-	-	3970	5950	1710	2560
730	2590	3880	253	380	-	-	-	-	3150	4720	1380	2060
665	2200	3290	224	335	-	-	-	-	2730	4080	1220	1830
605	1860	2780	195	292	-	-	-	-	2340	3520	1090	1630
550	1560	2340	168	252	-	-	-	-	2010	3010	962	1440
500	1320	1970	147	221	-	-	-	-	1730	2600	858	1290
455	1120	1670	130	195	-	-	-	-	1500	2250	768	1150
426	977	1470	113	169	-	-	-	-	1340	2010	703	1050
398	864	1300	102	154	-	-	-	-	1210	1810	648	972
370	757	1140	92.5	139	-	-	-	-	1080	1620	594	891
342	652	978	81.4	122	561	841	561	841	955	1430	539	809
311	546	820	69.9	105	489	733	489	733	825	1240	482	723
283	458	687	59.8	89.7	427	641	427	641	714	1070	431	646
257	383	574	51.1	76.6	373	559	373	559	618	926	387	581
233	315	473	42.9	64.3	323	484	323	484	530	794	342	514
211	263	394	37.0	55.5	282	424	282	424	458	689	308	462
193	219	329	30.4	45.6	248	372	248	372	399	599	276	414
176	187	281	27.7	41.5	222	333	222	333	354	531	252	378
159	152	228	22.3	33.5	192	288	192	288	303	455	224	335
145	127	191	18.8	28.2	170	255	170	255	265	399	201	302
132	114	171	17.1	25.6	157	236	157	236	245	367	190	284
120	95.3	143	14.5	21.8	140	210	140	210	215	324	171	257
109	76.9	115	11.3	17.0	114	170	121	181	185	277	150	225
99	64.8	97.2	9.92	14.9	97.0	146	108	163	164	246	138	207
90	53.4	80.2	8.26	12.4	80.2	121	95.8	144	144	216	123	185
82	73.6	110	10.5	15.7	108	161	117	175	178	268	146	219
74	58.8	88.2	7.88	11.8	84.4	127	101	151	152	228	128	192
68	49.9	74.8	6.83	10.2	72.1	108	90.2	136	135	204	116	174
61	40.5	60.7	5.67	8.50	58.9	88.3	79.4	119	116	175	104	156
- Indicates that $3^{1 / 1 / 4-i n . ~ b e a r i n g ~ l e n g t h ~ i s ~ i n s u f f i c i e n t ~ f o r ~ e n d ~ b e a m ~ r e a c t i o n s ~ s i n c e ~} l_{b}<k$. $l_{b}=$ length of bearing, in. $x=$ location of concentrated force with respect to the member end, in.												

Table 9-4 (continued) Beam Bearing Constants									
Shape		R_{1} / Ω	$\phi \boldsymbol{R}_{1}$	R_{2} / Ω	$\phi \boldsymbol{R}_{2}$	R_{3} / Ω	$\phi \boldsymbol{R}_{3}$	R_{4} / Ω	$\phi \boldsymbol{R}_{4}$
		kips	kips	kip/in.	kip/in.	kips	kips	kip/in.	kip/in.
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
$\begin{array}{r} W 14 \times 53 \\ \times 48 \\ \times 43 \end{array}$		38.5	57.8	12.3	18.5	44.0	66.1	3.99	5.98
		33.7	50.6	11.3	17.0	36.8	55.2	3.46	5.19
		28.5	42.7	10.2	15.3	29.5	44.3	2.82	4.23
$\begin{array}{r} \mathrm{W} 14 \times 38 \\ \times 34 \\ \times 30 \end{array}$		23.6	35.5	10.3	15.5	29.8	44.7	2.96	4.45
		20.3	30.5	9.50	14.3	24.7	37.1	2.63	3.94
		17.7	26.5	9.00	13.5	21.0	31.4	2.68	4.01
$\begin{array}{r} \mathrm{W} 14 \times 26 \\ \times 22 \end{array}$		17.4	26.1	8.50	12.8	20.1	30.1	2.05	3.08
		14.1	21.1	7.67	11.5	15.4	23.1	1.92	2.87
W12×336		527	790	59.3	89.0	984	1480	81.9	123
$\times 305$		448	672	54.3	81.5	825	1240	70.8	106
$\times 279$		391	587	51.0	76.5	716	1070	65.9	98.8
$\times 252$		333	499	46.7	70.0	598	898	57.2	85.8
$\times 230$		287	431	43.0	64.5	508	762	49.6	74.4
$\times 210$		246	369	39.3	59.0	426	638	42.5	63.8
$\times 190$		206	309	35.3	53.0	347	520	34.3	51.5
$\times 170$		173	259	32.0	48.0	283	424	29.3	43.9
$\times 152$		145	218	29.0	43.5	231	347	24.8	37.2
$\times 136$		122	183	26.3	39.5	189	284	21.3	31.9
$\times 120$		101	151	23.7	35.5	152	228	17.8	26.7
$\times 106$		80.8	121	20.3	30.5	114	171	12.8	19.3
$\times 96$		68.8	103	18.3	27.5	93.2	140	10.5	15.8
$\times 87$		60.5	90.8	17.2	25.8	80.1	120	9.75	14.6
$\times 79$		52.1	78.1	15.7	23.5	66.5	99.8	8.23	12.3
$\times 72$		45.5	68.3	14.3	21.5	55.6	83.4	6.97	10.5
$\times 65$		39.0	58.5	13.0	19.5	45.6	68.4	5.85	8.78
W12×58		37.2	55.8	12.0	18.0	41.6	62.4	4.32	6.48
$\times 5$		33.9	50.9	11.5	17.3	37.0	55.5	4.26	6.40
W12×50		35.2	52.7	12.3	18.5	43.4	65.0	4.69	7.03
$\times 45$		30.2	45.2	11.2	16.8	35.4	53.1	3.90	5.86
$\times 40$		25.1	37.6	9.83	14.8	27.7	41.5	3.03	4.54
W12×35		20.5	30.8	10.0	15.0	28.5	42.8	3.00	4.50
$\times 30$		16.0	24.1	8.67	13.0	21.2	31.8	2.35	3.52
$\times 26$		13.0	19.6	7.67	11.5	16.4	24.6	1.90	2.84
W 12×22		15.7	23.6	8.67	13.0	20.8	31.2	2.43	3.64
$\times 19$		12.7	19.1	7.83	11.8	16.2	24.3	2.20	3.29
$\times 16$		10.4	15.5	7.33	11.0	12.8	19.2	2.42	3.63
$\times 14^{v}$		8.75	13.1	6.67	10.0	10.2	15.3	2.16	3.24
For R_{1} and R_{2}		For R_{3}, R_{4}, R_{5} and R_{6}		For $V_{n x}$		${ }^{v}$ Shape does not meet the h / t_{w} limit for shear in AISC Specification Section G2.1(a) with $F_{y}=50$ ksi ; therefore, $\phi_{v}=0.90$ and $\Omega_{v}=1.67$.			
ASD	LRFD	ASD	LRFD	ASD	LRFD				
$\Omega=1.50$	$\phi=1.00$	$\Omega=2.00$	$\phi=0.75$	$\Omega_{v}=1.50$	$\phi_{V}=1.00$				

Table 9-4 (continued) Beam Bearing Constants												
Nom- inal Wt.	R_{5} / Ω	$\phi \boldsymbol{R}_{5}$	R_{6} / Ω	${ }_{\phi} \boldsymbol{R}_{6}$	$l_{b}=3^{1 / 4} \mathrm{in}$.						$V_{n x} / \Omega_{v}$	$\phi_{v} V_{n x}$
					$x<d / 2$		$\boldsymbol{d} / 2 \leq x \leq d$		$x>d$			
					R_{n} / Ω	$\phi \boldsymbol{R}_{\boldsymbol{n}}$	R_{n} / Ω	$\phi \boldsymbol{R}_{\boldsymbol{n}}$	R_{n} / Ω	$\phi \boldsymbol{R}_{\boldsymbol{n}}$		
	kips	kips	kip/in.	kip/in.	kips	kips	kips	kips	kips	kips	kips	kips
lb/ft	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
53	40.3	60.5	5.32	7.98	57.6	86.4	78.5	118	114	171	103	154
48	33.6	50.5	4.61	6.92	48.6	73.0	70.4	106	96.1	144	93.8	141
43	27.0	40.4	3.76	5.65	39.2	58.8	61.7	92.4	77.3	116	83.6	125
38	27.0	40.6	3.95	5.93	39.8	59.9	57.1	85.9	78.8	118	87.4	131
34	22.3	33.4	3.50	5.25	33.7	50.5	51.2	77.0	66.5	99.8	79.8	120
30	18.5	27.8	3.57	5.35	30.1	45.2	47.0	70.4	59.4	88.9	74.5	112
26	18.2	27.3	2.74	4.10	27.1	40.6	45.0	67.7	53.5	80.2	70.9	106
22	13.6	20.4	2.55	3.83	21.9	32.8	39.0	58.5	43.3	64.9	63.0	94.5
336	892	1340	109	164	-	-	-	-	1250	1870	598	897
305	748	1120	94.4	142	-	-	-	-	1070	1610	531	797
279	646	970	87.9	132	557	836	557	836	948	1420	487	730
252	540	809	76.3	114	485	727	485	727	818	1230	431	647
230	458	687	66.2	99.2	427	641	427	641	714	1070	390	584
210	384	576	56.7	85.0	374	561	374	561	620	930	347	520
190	314	471	45.8	68.7	321	481	321	481	527	790	305	458
170	256	383	39.0	58.5	277	415	277	415	450	674	269	403
152	209	313	33.1	49.6	239	359	239	359	384	577	238	358
136	170	255	28.4	42.5	207	311	207	311	329	494	212	318
120	136	204	23.7	35.6	178	266	178	266	279	417	186	279
106	103	155	17.1	25.7	147	220	147	220	228	341	157	236
96	84.3	126	14.0	21.0	128	192	128	192	197	295	140	210
87	72.0	108	13.0	19.5	114	171	116	175	177	265	129	193
79	59.7	89.6	11.0	16.5	95.5	143	103	154	155	233	117	175
72	49.9	74.8	9.29	13.9	80.1	120	92.0	138	137	206	106	159
65	40.9	61.4	7.81	11.7	66.3	99.4	81.3	122	120	180	94.4	142
58	38.1	57.2	5.76	8.63	56.8	85.2	76.2	114	111	167	87.8	132
53	33.6	50.3	5.69	8.53	52.1	78.0	71.3	107	102	153	83.5	125
50	39.5	59.3	6.25	9.37	59.8	89.8	75.2	113	110	166	90.3	135
45	32.3	48.4	5.21	7.81	49.2	73.8	66.6	99.8	96.2	144	81.1	122
40	25.3	37.9	4.04	6.05	38.4	57.6	57.0	85.7	75.1	113	70.2	105
35	26.0	39.1	4.00	6.00	39.0	58.6	53.0	79.6	73.5	110	75.0	113
30	19.3	28.9	3.13	4.69	29.5	44.1	44.2	66.4	57.7	86.5	64.0	95.9
26	14.8	22.3	2.53	3.79	23.0	34.6	37.9	57.0	45.2	67.7	56.1	84.2
22	18.8	28.2	3.24	4.86	29.3	44.0	43.9	65.9	57.4	86.1	64.0	95.9
19	14.4	21.7	2.93	4.39	23.9	36.0	38.1	57.5	46.7	70.0	57.3	86.0
16	10.9	16.3	3.23	4.84	21.4	32.0	34.2	51.3	41.3	62.0	52.8	79.2
14	8.51	12.8	2.88	4.32	17.9	26.8	30.4	45.6	34.4	51.7	42.8	64.3
- Indicates that $3^{1 / 1 / 4}$-in. bearing length is insufficient for end beam reactions since $l_{b}<k$. $l_{b}=$ length of bearing, in. $x=$ location of concentrated force with respect to the member end, in.												

PART 10
 DESIGN OF SIMPLE SHEAR CONNECTIONS

SCOPE 10-4
FORCE TRANSFER 10-4
COMPARING CONNECTION ALTERNATIVES 10-5
Two-Sided Connections 10-5
Seated Connections 10-5
One-Sided Connections 10-5
CONSTRUCTABILITY CONSIDERATIONS 10-5
Double Connections 10-5
Accessibility in Column Webs 10-6
Field-Welded Connections 10-7
Recommended Connection Length (Riding the Fillet) 10-7
DOUBLE-ANGLE CONNECTIONS 10-7
Available Strength and Flexibility $10-8$
Shop and Field Practices 10-9
DESIGN TABLE DISCUSSION (TABLES 10-1, 10-2 AND 10-3) 10-9
Table 10-1. All-Bolted Double-Angle Connections 10-13
Table 10-2. Available Weld Strength of Bolted/Welded Double-Angle Connections $10-31$
Table 10-3. Available Weld Strength of All-Welded Double-Angle Connections $10-32$
SHEAR END-PLATE CONNECTIONS $10-34$
Design Checks 10-34
Recommended End-Plate Thickness 10-34
Shop and Field Practices $10-34$
DESIGN TABLE DISCUSSION (TABLE 10-4) $10-35$
Table 10-4. Bolted/Welded Shear End-Plate Connections 10-36
UNSTIFFENED SEATED CONNECTIONS 10-69
Design Checks $10-70$
Shop and Field Practices 10-70
Bolted/Welded Unstiffened Seated Connections $10-70$
DESIGN TABLE DISCUSSION (TABLES 10-5 AND 10-6) 10-71
Table 10-5. All-Bolted Unstiffened Seated Connections 10-74
Table 10-6. All-Welded Unstiffened Seated Connections 10-76
STIFFENED SEATED CONNECTIONS 10-78
Design Checks 10-79
Shop and Field Practices 10-80
DESIGN TABLE DISCUSSION (TABLES 10-7 AND 10-8) 10-80
Table 10-7. All-Bolted Stiffened Seated Connections 10-82
Table 10-8. Bolted/Welded Stiffened Seated Connections 10-83
SINGLE-PLATE CONNECTIONS 10-87
Design Checks 10-87
Conventional Configuration 10-87
Table 10-9. Design Values for Conventional Single-Plate Shear Connections 10-88
Dimensional Limitations 10-88
Design Checks 10-89
Extended Configuration 10-89
Dimensional Limitations 10-89
Design Checks 10-89
Shop and Field Practices 10-91
DESIGN TABLE DISCUSSION (TABLE 10-10) 10-91
Table 10-10a. Single-Plate Connections, 36-ksi Plate 10-92
Table 10-10b. Single-Plate Connections, 50-ksi Plate 10-104
SINGLE-ANGLE CONNECTIONS 10-116
Design Checks 10-116
Recommended Angle Thickness 10-116
Shop and Field Practices 10-116
DESIGN TABLE DISCUSSION (TABLES 10-11 AND 10-12) 10-118
Table 10-11. All-Bolted Single-Angle Connections 10-120
Table 10-12. Bolted/Welded Single-Angle Connections 10-121
TEE CONNECTIONS 10-123
Design Checks 10-123
Recommended Tee Length and Flange and Web Thicknesses 10-124
Shop and Field Practices 10-124
SHEAR SPLICES 10-124
SPECIAL CONSIDERATIONS FOR SIMPLE SHEAR CONNECTIONS 10-126
Simple Shear Connections Subject to Axial Forces 10-126
Simple Shear Connections at Stiffened Column-Web Locations 10-127
Eccentric Effect of Extended Gages 10-127
Column-Web Supports 10-127
Girder-Web Supports 10-131
Alternative Treatment of Eccentric Moment 10-132
Double Connections 10-132
Supported Beams of Different Nominal Depths 10-132
Supported Beams Offset Laterally 10-132
Beams Offset from Column Centerline 10-132
Framing to the Column Flange from the Strong Axis 10-132
Framing to the Column Flange from the Weak Axis 10-135
Framing to the Column Web 10-138
Connections for Raised Beams 10-139
Non-Rectangular Simple Shear Connections 10-142
Skewed Connections 10-144
Sloped Connections 10-147
Canted Connections 10-149
Inclines in Two or More Directions (Hip and Valley Framing) 10-151
DESIGN CONSIDERATIONS FOR SIMPLE SHEAR CONNECTIONS TO HSS COLUMNS 10-151
Double-Angle Connections to HSS 10-152
Single-Plate Connections to HSS 10-153
Unstiffened Seated Connections to HSS 10-153
Stiffened Seated Connections to HSS 10-153
Through-Plate Connections 10-154
Single-Angle Connections 10-155
DESIGN TABLE DISCUSSION (TABLES 10-13, 10-14A, 10-14B, 10-14C AND 10-15) 10-156
Table 10-13. Minimum Inside Radius for Cold-Bending 10-157
Table 10-14A. Clearances for All-Bolted Skewed Connections 10-158
Table 10-14B. Clearances for Bolted/Welded Skewed Connections 10-159
Table 10-14C. Weld Details for Skewed Single-Plate Connections 10-161
Table 10-15. Required Length and Thickness for Stiffened Seated Connections to HSS 10-164
PART 10 REFERENCES 10-167

SCOPE

The specification requirements and other design considerations summarized in this Part apply to the design of simple shear connections. For the design of partially restrained moment connections, see Part 11. For the design of fully restrained (FR) moment connections, see Part 12.

FORCE TRANSFER

The required strength (end reaction), R_{u} or R_{a}, is determined by analysis as indicated in AISC Specification Section B3. Per AISC Specification Section J1.2, the ends of members with simple shear connections are normally assumed to be free to rotate under load. While simple shear connections do actually possess some rotational restraint (see curve A in Figure 10-1), this small amount can be neglected and the connection idealized as completely flexible. The simple shear connections shown in this Manual are suitable to accommodate the end rotations required per AISC Specification Section J1.2.

Support rotation is acceptably limited for most framing details involving simple shear connections without explicit consideration. The case of a bare spandrel girder supporting infill beams, however, may require consideration to verify that an acceptable level of support rotational stiffness is present. Sumner (2003) showed that a nominal interconnection between the top flange of the girder and the top flange of the framing beam is sufficient to limit support rotation.

(A)

Fig. 10-1. Illustration of typical moment rotation curve for simple shear connections.

COMPARING CONNECTION ALTERNATIVES

Two-Sided Connections

Two-sided connections, such as double-angle and shear end-plate connections, offer the following advantages:

1. Suitability for use when the end reaction is large
2. Compact connections (usually, the entire connection is contained within the flanges of the supported beam)
3. Eccentricity perpendicular to the beam axis need not be considered for workable gages (see Table 1-7A)

Note that two-sided connections may require additional consideration for erectability, as discussed in the following section, "Constructability Considerations".

Seated Connections

Unstiffened and stiffened seated connections offer the following advantages:

1. Seats can be shop attached to the support, simplifying erection
2. Ample erection clearance is provided
3. Excellent safety during erection since double connections often can be eliminated
4. The bay length of the structure is easily maintained (seated connections may be preferable when maintaining bay length is a concern for repetitive bays of framing)

One-Sided Connections

One-sided connections such as single-plate, single-angle and tee connections offer the following advantages:

1. Shop attachment of connection elements to the support, simplifying shop fabrication and erection
2. Reduced material and shop labor requirements
3. Ample erection clearance is provided
4. Excellent safety during erection since double connections often can be eliminated

CONSTRUCTABILITY CONSIDERATIONS

Double Connections

A double connection occurs in field-bolted construction when beams or girders frame opposite each other. Double connections are a safety concern when they occur in the web of a column (see Figure 10-2) or the web of a beam that frames continuously over the top of a column and all field bolts take the same open holes. A positive connection must be made and maintained for the first member to be erected while the second member to be erected is brought into its final position ${ }^{1}$. OSHA requirements prohibit the condition where one beam is temporarily hung on a partially inserted bolt or drift pin.

[^48]Framing details can be configured using staggered angles or other similar details to provide a means to make a positive connection for the first member while the second member is brought into its final position. Alternatively, a temporary erection seat, as shown in Figure 10-2, can be provided. The erection seat, usually an angle, is sized and attached to the column web to support the dead weight of the member, unless additional loading is indicated in the contract documents. The clearance shown in Figure 10-2 is located to clear the bottom flange of the supported member by approximately $3 / 8$ in. to accommodate mill, fabrication and erection tolerances.

The sequence of erection is most important in determining the need for erection seats. If the erection sequence is known, the erection seat is provided on the side needing the support. If the erection sequence is not known, a seat can be provided on both sides of the column web. Temporary erection seats may be reused at other locations after the connection(s) are made, but need not be removed unless they create an interference or removal is required in the contract documents.

See also the discussion under "Special Considerations for Simple Shear Connections."

Accessibility in Column Webs

Because of bolting and welding clearances, double-angle, shear end-plate, single-plate, single-angle, and tee shear connections may not be suitable for connections to the webs of W-shape and similar columns, particularly for W8 columns, unless gages are reduced. Such connections may be impossible for W6, W5 and W4 columns.

There is also an accessibility concern for entering and tightening the field bolts when the connection material is shop-attached to the supporting column web and contained within the column flanges.

Fig. 10-2. Erection seat.

Field-Welded Connections

In field-welded connections, temporary erection bolts are usually provided to support the member until final welding is performed. A minimum of two bolts (one bolt in bracing members) must be placed for erection safety per OSHA requirements. Additional erection bolts may be required for loads during erection, to assist in pulling the connection angles up tightly against the web of the supporting beam prior to welding or for other reasons. Temporary erection bolts may be reused at other locations after final welding, but need not be removed unless they create an interference or removal is required in the contract documents.

Recommended Connection Length (Riding the Fillet)

It is recommended that the minimum length of simple shear framed connections be one-half the T-dimension of the beam to be supported. This provides for beam end stability during erection. When a beam is otherwise restrained against rotation about its longitudinal axis, such as is the case for a composite beam, the torsional end restraint is not critical.

The detailed dimensions of connection elements must be compatible with the T-dimension of an uncoped beam and the remaining web depth of a coped beam. Note that the element may encroach upon the fillet(s), as given in Figure 10-3.

DOUBLE-ANGLE CONNECTIONS

A double-angle connection is made with two angles, one on each side of the web of the beam to be supported, as illustrated in Figure 10-4. These angles may be bolted or welded to the supported beam as well as to the supporting member.

When the angles are welded to the support, adequate flexibility must be provided in the connection. As illustrated in Figure 10-4(c), line welds are placed along the toes of the angles with a return at the top limited by AISC Specification Section J2.2b. Note that welding across the entire top of the angles must be avoided as it inhibits the flexibility and, therefore, the necessary end rotation of the connection. The performance of the resulting connection would not be as intended for simple shear connections.

Fig. 10-3. Fillet encroachment (riding the fillet).

Available Strength and Flexibility

The available strength of a double-angle connection is determined from the applicable limit states for bolts (see Part 7), welds (see Part 8), and connecting elements (see Part 9). In all cases, the available strength, ϕR_{n} or R_{n} / Ω, must equal or exceed the required strength, R_{u} or R_{a}.

(a) All-bolted

(b) Bolted/welded, angles welded to support beam

Note: Weld returns on top of angles per Specification Section J2.2b
(c) Bolted/welded, angles welded to support

Fig. 10-4. Double-angle connections.

The eccentricity on the supported side of double-angle connections may be neglected for connections with a single vertical row of bolts through standard or short-slotted holes with dimension a [see Figure 10-4(a)] not exceeding 3 in . The eccentricity should be considered for the design of double-angle connections with two or more vertical rows of bolts on the supported side of the connection and for the design of double-angle connections welded to the supported member.

To provide for flexibility, the maximum angle thickness for use with workable gages should be limited to $5 / 8$ in. Alternatively, the shear-connection ductility checks illustrated in Part 9 can be used to justify other combinations of gage and angle thickness.

Shop and Field Practices

When framing to a girder web, both angles are usually shop-attached to the web of the supported beam. When framing to a column web, both angles should be shop-attached to the supported beam, when possible, and the associated constructability considerations should be addressed (see the preceding discussion under "Constructability Considerations").

When framing to a column flange, both angles can be shop-attached to the column flange or the supported beam. In the former case, as illustrated in Figure 10-4(c), this is a knifed connection, which requires coping the bottom flange of the supported beam and an erection clearance as shown in Figure 10-5(a). Also, provision must be made for possible mill variation in the depth of the columns, particularly in fairly long runs (i.e., six or more bays of framing). If both angles are shop-attached to the beam web, the beam length can be shortened to provide for mill overrun with shims furnished at the appropriate intervals to fill the resulting gaps or to provide for mill underrun. If both angles are shop-attached to the column flange, the erected beam is knifed into place and play in the open holes is normally sufficient to provide for the necessary adjustment. Alternatively, short-slotted holes can also be used.

When special requirements preclude the use of any of the foregoing practices, one angle could be shop-attached to the support and the other shipped loose. In this case, the spread between the outstanding legs should equal the decimal beam web thickness plus a clearance that will produce an opening to the next higher $1 / 16$-in. increment, as illustrated in Figure 105(b). Alternatively, short-slotted holes in the support leg of the angle eliminate the need to provide for variations in web thickness and also allow for minor adjustment during erection. Note that the practice of shipping one angle loose is not desirable because it requires additional material handling as well as added erection costs and complexity.

DESIGN TABLE DISCUSSION (TABLES 10-1, 10-2 AND 10-3)

Table 10-1. All-Bolted Double-Angle Connections

Table $10-1$ is a design aid for all-bolted double-angle connections. Available strengths are tabulated for supporting angle material with $F_{y}=36 \mathrm{ksi}$ and $F_{u}=58 \mathrm{ksi}$. All values, including slip-critical bolt available strengths, are for comparison with the governing LRFD or ASD load combination.

Tabulated bolt and angle available strengths consider the limit states of bolt shear, slip resistance for slip-critical bolts, bolt bearing and tearout on the angles, shear yielding of the angles, shear rupture of the angles, and block shear rupture of the angles. Values are tabulated for 2 through 12 rows of $3 / 4$-in.-, $7 / 8$-in.- and 1 -in.-diameter Group A and Group B bolts (as
defined in AISC Specification Section J3.1) at 3-in. spacing. For calculation purposes, angle vertical edge distance, $l_{e v}$, is assumed to be $1^{1 / 1 / 4} \mathrm{in}$. and horizontal edge distance, $l_{e h}$, is assumed to be $1^{3 / 8}$ in. For bearing-type bolts, tabulated strengths in Table 10-1 are based on short-slotted holes transverse to the direction of load in the support angle leg. Table 10-1 can be conservatively used when standard holes are employed in the support angle leg.

Available beam web strength can be determined as the lesser of the limit states of block shear rupture, shear yielding, shear rupture, and the sum of the effective strengths of the individual fasteners. The effective strength of an individual fastener is the lesser of the fastener shear strength per AISC Specification Section J3.6 (or slip resistance for slipcritical bolts per Section J3.8) and fastener bearing and tearout strength at the hole per AISC Specification Section J3.10. For coped members, the limit states of flexural yielding

(a) Both angles shop attached to the column flange (beam knifed into place)

Provide erection clearance so that spread is the next larger multiple of $1 / 16 \mathrm{in}$. greater then the beam web thickness
(b) One angle shop attached to the column flange, other angle shipped loose

Fig. 10-5. Erection clearances for double-angle connections.
and local buckling must be checked independently per Part 9 . When required, web reinforcement of coped members is treated in Part 9.

Note that resistance and safety factors are not noted in these tables, as they vary by limit state.

Table 10-2. Available Weld Strength of Bolted/Welded Double-Angle Connections

Table 10-2 is a design aid arranged to permit substitution of welds for bolts in connections designed with Table 10-1. Electrode strength is assumed to be 70 ksi . Holes for erection bolts may be placed as required in angle legs that are to be field-welded.

Welds A may be used in place of bolts through the supported-beam web legs of the double angles or welds B may be used in place of bolts through the support legs of the double angles. Although it is permissible to use welds A and B from Table 10-2 in combination to obtain all-welded connections, it is recommended that such connections be selected from Table 10-3. This table will allow increased flexibility in the selection of angle lengths and connection strengths because Table 10-2 conforms to the bolt spacing and edge distance requirements for the all-bolted double-angle connections of Table 10-1.

Weld available strengths are tabulated for the limit state of weld shear. Available strengths for welds A are determined by the instantaneous center of rotation method using Table 8-8 with $\theta=0^{\circ}$. Available strengths for welds B are determined by the elastic method. With the neutral axis assumed at one-sixth the depth of the angles measured downward and the tops of the angles in compression against each other through the beam web, the available strength, ϕR_{n} or R_{n} / Ω, of these welds is determined by

LRFD	ASD
$\phi R_{n}=2\left(\frac{1.392 D l}{\sqrt{1+\frac{12.96 e^{2}}{l^{2}}}}\right) \quad(10-1 \mathrm{a})$	$\frac{R_{n}}{\Omega}=2\left(\frac{0.928 D l}{\sqrt{1+\frac{12.96 e^{2}}{l^{2}}}}\right) \quad$ (10-1b)

where
$D=$ number of sixteenths-of-an-inch in the weld size
$e=$ width of the leg of the connection angle attached to the support, in.
$l=$ length of the connection angles, in.
Note that $\phi=0.75$ is included in the right hand side of Equation $10-1$ a and $\Omega=2.00$ is included in the right hand side of Equation 10-1b.

The tabulated minimum thicknesses of the supported beam web for welds A and the support for welds B match the shear rupture strength of these elements with the strength of the weld metal. As derived in Part 9, the minimum supported beam web thickness for welds A (two lines of weld) is

$$
\begin{equation*}
t_{\min }=\frac{6.19 D}{F_{u}} \tag{9-3}
\end{equation*}
$$

and the minimum supporting flange or web thickness for welds B (one line of weld) is

$$
\begin{equation*}
t_{\min }=\frac{3.09 D}{F_{u}} \tag{9-2}
\end{equation*}
$$

When welds B line up on opposite sides of the support, the minimum thickness is the sum of the thicknesses required for each weld. In either case, when less than the minimum material thickness is present, the tabulated weld available strength must be reduced by the ratio of the thickness provided to the minimum thickness.

When Table $10-2$ is used, the minimum angle thickness is the weld size plus $1 / 16$ in., but not less than the angle thickness determined from Table 10-1. The angle length, l, must be as tabulated in Table 10-2. The width of outstanding legs in Case II (web legs bolted and outstanding legs welded) may be optionally reduced from 4 in . to 3 in. for values of l from $5^{1 / 2}$ through $17^{1} / 2 \mathrm{in}$.

Interpolation between values in this table may produce an incorrect result.

Table 10-3. Available Weld Strength of All-Welded Double-Angle Connections

Table 10-3 is a design aid for all-welded double-angle connections. Electrode strength is assumed to be 70 ksi . Holes for erection bolts may be placed as required in angle legs that are to be field-welded.

Weld available strengths are tabulated for the limit state of weld shear. Available strengths for welds A are determined by the instantaneous center of rotation method using Table 8-8 with $\theta=0^{\circ}$. Available strengths for welds B are determined by the elastic method as discussed previously for bolted/welded double-angle connections.

The tabulated minimum thicknesses of the supported beam web for welds A and the support for welds B match the shear rupture strength of these elements with the strength of the weld metal and are determined as discussed previously for Table 10-2. When welds B line up on opposite sides of the support, the minimum thickness is the sum of the thicknesses required for each weld. When less than the minimum material thickness is present, the tabulated weld available strength must be reduced by the ratio of the thickness provided to the minimum thickness.

When Table $10-3$ is used, the minimum angle thickness must be equal to the weld size plus $1 / 16$ in. The angle length, l, must be as tabulated in Table $10-3.2 \mathrm{~L} 4 \times 3^{1 / 2}$ should be used for angle lengths equal to or greater than 18 in . For angle length less than 18 in ., the 4 -in. leg can be reduced to 3 in.

$F_{y}=36 \mathrm{ksi}$ Angles	Table 10-1 All-Bolted Double-Angle Connections								$\begin{aligned} & 3 / 4 \text {-in. } \\ & \text { Bolts } \end{aligned}$					
Bolt and Angle Available Strength, kips														
12 Rows	Bolt Group	Thread Cond.	Hole Type	Angle Thickness, in.										
				1/4		5/16		$3 / 8$		1/2				
W44				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD			
	$\begin{gathered} \text { Group } \\ \mathrm{A} \end{gathered}$	$\begin{aligned} & \hline N \\ & \mathrm{X} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { STD/SSLT } \\ & \text { STD/SSLT } \end{aligned}$	197 197	296 296	246 246	370 370	284 296	427 444	286 360	429 540			
		$\begin{aligned} & \text { SC } \\ & \text { Class A } \end{aligned}$	$\begin{aligned} & \hline \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \end{aligned}$	152 129 152	228 194 228	152 129 152 24	228 194 228 2	152 129 152	228 194 228	152 129 152	228 194 228			
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	STD	197	296	246	370	253	380	253	380			
			OVS	197	296	215	321	216	323	216	323			
			SSLT	197	296	246	370	253	380	253	380			
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	N	STD/SSLT	197	296	246	370	296	444	360	540			
		X	STD/SSLT	197	296	246	370	296	444	394	592			
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	STD	189	283	190	285	190	285	190	285			
			OVS	162	242	162	242	162	242	162	242			
			SSLT	189	283	190	285	190	285	190	285			
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	STD	197	296	246	370	296	444	316	475			
			OVS	197	296	246	370	268	400	270	403			
			SSLT	197	296	246	370	296	444	316	475			
Bolt and Angle Available Strength, kips														
$\begin{aligned} & 11 \text { Rows } \\ & \hline \text { W44, } 40 \end{aligned}$	Bolt Group	Thread Cond.	$\begin{aligned} & \text { Hole } \\ & \text { Type } \end{aligned}$	Angle Thickness, in.										
				1/4		5/16		3/8		1/2				
				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD			
	$\begin{gathered} \text { Group } \\ \text { A } \end{gathered}$	$\begin{aligned} & \hline N \\ & \mathrm{~N} \end{aligned}$	STD/SSLT STD/SSLT	$\begin{aligned} & \hline 181 \\ & 181 \end{aligned}$	$\begin{aligned} & \hline 271 \\ & 271 \end{aligned}$	$\begin{aligned} & \hline 226 \\ & 226 \end{aligned}$	$\begin{aligned} & 339 \\ & 339 \end{aligned}$	$\begin{aligned} & 261 \\ & 271 \end{aligned}$	391 407	$\begin{aligned} & 262 \\ & 330 \end{aligned}$	394 495			
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	STD	139	209	139	209	139	209	139	209			
			OVS	119	178	119	178	119	178	119	178			
			SSLT	139	209	139	209	139	209	139	209			
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	STD	181	271	226	339	232	348	232	348			
			OVS	181	271	197	294	198	296	198	296			
			SSLT	181	271	226	339	232	348	232	348			
	$\begin{array}{\|c} \text { Group } \\ \text { B } \end{array}$	N	STD/SSLT	181	271	226	339	271	407	330	495			
		X	STD/SSLT	181	271	226	339	271	407	362	543			
		SC Class A	STD	173	259	174	261	174	261	174	261			
			OVS	148	222	148	222	148	222	148	222			
			SSLT	173	259	174	261	174	261	174	261			
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	STD	181	271	226	339	271	407	290	435			
			OVS	181	271	226	339	245	367	247	370			
			SSLT	181	271	226	339	271	407	290	435			
Notes: Slip-critical bolt values assume no more than one filler has been provided.														

$F_{y}=36 \mathrm{ksi}$ Angles	Table 10-1 (continued) All-Bolted Double-Angle Connections								$\begin{aligned} & 3 / 4 \text {-in. } \\ & \text { Bolts } \end{aligned}$		
	Bolt and Angle Available Strength, kips										
8 Rows	Bolt Group	Thread Cond.	Hole Type	Angle Thickness, in.							
				1/4		5/16		3/8		1/2	
W44, 40, 36, 33, 30				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	$\begin{gathered} \text { Group } \\ \text { A } \end{gathered}$	$\begin{aligned} & \hline N \\ & X \end{aligned}$	STD/SSLT STD/SSLT	$\begin{aligned} & \hline 132 \\ & 132 \end{aligned}$	$\begin{aligned} & 199 \\ & 199 \end{aligned}$	$\begin{aligned} & 165 \\ & 165 \end{aligned}$	248 248	$\begin{aligned} & \hline 189 \\ & 199 \end{aligned}$	$\begin{aligned} & 284 \\ & 298 \end{aligned}$	$\begin{aligned} & \hline 191 \\ & 240 \end{aligned}$	$\begin{aligned} & 286 \\ & 359 \end{aligned}$
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	$\begin{aligned} & \hline \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \\ & \hline \end{aligned}$	$\begin{gathered} \hline 101 \\ 86.3 \\ 101 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 152 \\ & 129 \\ & 152 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 101 \\ 86.3 \\ 101 \\ \hline \end{gathered}$	152 129 152	$\begin{array}{\|c\|} \hline 101 \\ 86.3 \\ 101 \\ \hline \end{array}$	152 129 152	$\begin{gathered} \hline 101 \\ 86.3 \\ 101 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 152 \\ & 129 \\ & 152 \\ & \hline \end{aligned}$
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	$\begin{aligned} & \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 132 \\ & 132 \\ & 132 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 199 \\ & 199 \\ & 199 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 165 \\ 143 \\ 165 \\ \hline \end{array}$	248 214 248	$\begin{array}{\|l\|} \hline 169 \\ 144 \\ 169 \\ \hline \end{array}$	$\begin{aligned} & \hline 253 \\ & 215 \\ & 253 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 169 \\ 144 \\ 169 \\ \hline \end{array}$	$\begin{aligned} & \hline 253 \\ & 215 \\ & 253 \\ & \hline \end{aligned}$
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	$\begin{aligned} & \hline N \\ & X \end{aligned}$	$\begin{aligned} & \hline \text { STD/SSLT } \\ & \text { STD/SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 132 \\ 132 \\ \hline \end{array}$	199	165 165	248	199 199	298	$\begin{aligned} & 240 \\ & 265 \end{aligned}$	$\begin{aligned} & 359 \\ & 397 \end{aligned}$
			STD	125	188	127	190	127	190	127	190
			OVS	108	161	108	161	108	161	108	161
			SSLT	125	188	127	190	127	190	127	190
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	$\begin{aligned} & \hline \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 132 \\ 132 \\ 132 \\ \hline \end{array}$	$\begin{aligned} & \hline 199 \\ & 199 \\ & 199 \\ & \hline \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 165 \\ 165 \\ 165 \\ \hline \end{array}$	$\begin{aligned} & \hline 248 \\ & 248 \\ & 248 \\ & \hline \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 199 \\ 178 \\ 199 \\ \hline \end{array}$	$\begin{aligned} & \hline 298 \\ & 266 \\ & 298 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 211 \\ 180 \\ 211 \\ \hline \end{array}$	$\begin{aligned} & \hline 316 \\ & 269 \\ & 316 \\ & \hline \hline \end{aligned}$
Bolt and Angle Available Strength, kips											
7 Rows	Bolt Group	Thread Cond.	Hole Type	Angle Thickness, in.							
W44, 40, 36, 33, 30,				1/4		5/16		3/8		1/2	
27,24				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	$\begin{gathered} \text { Group } \\ \text { A } \end{gathered}$	$\begin{aligned} & \hline N \\ & X \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { STD/SSLT } \\ & \text { STD/SSLT } \end{aligned}$	$\begin{aligned} & 116 \\ & 116 \end{aligned}$	$\begin{aligned} & \hline 174 \\ & 174 \end{aligned}$	$\begin{aligned} & 145 \\ & 145 \end{aligned}$	218 218	$\begin{aligned} & \hline 165 \\ & 174 \end{aligned}$	$\begin{aligned} & 248 \\ & 261 \end{aligned}$	$\begin{aligned} & 167 \\ & 210 \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 314 \end{aligned}$
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	$\begin{aligned} & \hline \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \\ & \hline \end{aligned}$	$\begin{aligned} & 88.6 \\ & 75.5 \\ & 88.6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 133 \\ & 113 \\ & 133 \\ & \hline \end{aligned}$	$\begin{aligned} & 88.6 \\ & 75.5 \\ & 88.6 \\ & \hline \end{aligned}$	133 113 133 1	$\begin{aligned} & 88.6 \\ & 75.5 \\ & 88.6 \\ & \hline \end{aligned}$	133 113 133	88.6 75.5 88.6	133 113 133 1
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	$\begin{aligned} & \hline \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 116 \\ & 116 \\ & 116 \end{aligned}$	$\begin{aligned} & 174 \\ & 174 \\ & 174 \end{aligned}$	$\begin{aligned} & 145 \\ & 125 \\ & 145 \end{aligned}$	$\begin{aligned} & 217 \\ & 187 \\ & 217 \\ & \hline \end{aligned}$	$\begin{aligned} & 148 \\ & 126 \\ & 148 \end{aligned}$	$\begin{aligned} & 221 \\ & 188 \\ & 221 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 148 \\ 126 \\ 148 \end{array}$	$\begin{aligned} & 221 \\ & 188 \\ & 221 \\ & \hline \end{aligned}$
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	$\begin{aligned} & \hline \mathrm{N} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \hline \text { STD/SSLT } \\ & \text { STD/SSLT } \end{aligned}$	$\begin{aligned} & \hline 116 \\ & 116 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 174 \\ & 174 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 145 \\ 145 \\ \hline \end{array}$	218	$\begin{array}{\|l\|} \hline 174 \\ 174 \\ \hline \end{array}$	$\begin{aligned} & \hline 261 \\ & 261 \\ & \hline \end{aligned}$	$\begin{aligned} & 210 \\ & 232 \\ & \hline \end{aligned}$	$\begin{aligned} & 314 \\ & 349 \end{aligned}$
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	$\begin{aligned} & \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \\ & \hline \end{aligned}$	$\begin{array}{\|c} 110 \\ 94.4 \\ 110 \\ \hline \end{array}$	$\begin{array}{r} 164 \\ 141 \\ 164 \\ \hline \end{array}$	$\begin{gathered} 111 \\ 94.4 \\ 111 \end{gathered}$	166 141 166	$\begin{gathered} 111 \\ 94.4 \\ 111 \end{gathered}$	$\begin{array}{r} 166 \\ 141 \\ 166 \\ \hline \end{array}$	$\begin{array}{\|c} 111 \\ 94.4 \\ 111 \\ \hline \end{array}$	166 141 166 277
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	$\begin{aligned} & \hline \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & \hline 116 \\ & 116 \\ & 116 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 174 \\ & 174 \\ & 174 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 145 \\ 145 \\ 145 \\ \hline \end{array}$	$\begin{aligned} & 218 \\ & 218 \\ & 218 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 174 \\ 155 \\ 174 \\ \hline \end{array}$	$\begin{aligned} & 261 \\ & 232 \\ & 261 \end{aligned}$	$\begin{array}{\|l\|} \hline 185 \\ 157 \\ 185 \\ \hline \end{array}$	$\begin{aligned} & 277 \\ & 235 \\ & 277 \\ & \hline \end{aligned}$
Notes: Slip-critical bolt values assume no more than one filler has been provided.											

$F_{y}=36 \mathrm{ksi}$ Angles	Table 10-1 (continued) All-Bolted Double-Angle Connections								$\begin{aligned} & 3 / 4 \text {-in. } \\ & \text { Bolts } \end{aligned}$		
Bolt and Angle Available Strength, kips											
6 Rows	Bolt Group	Thread Cond.	Hole Type	Angle Thickness, in.							
W40, 36, 33, 30, 27,				1/4		5/16		3/8		1/2	
$24,21$				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	$\begin{gathered} \text { Group } \\ \text { A } \end{gathered}$	$\begin{aligned} & \hline N \\ & X \end{aligned}$	$\begin{aligned} & \hline \text { STD/SSLT } \\ & \text { STD/SSLT } \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & \hline 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \end{aligned}$	$\begin{aligned} & 187 \\ & 187 \end{aligned}$	$\begin{aligned} & \hline 141 \\ & 150 \end{aligned}$	$\begin{aligned} & 212 \\ & 225 \end{aligned}$	$\begin{aligned} & \hline 143 \\ & 180 \end{aligned}$	$\begin{aligned} & 215 \\ & 269 \end{aligned}$
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	$\begin{aligned} & \hline \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \\ & \hline \end{aligned}$	$\begin{aligned} & 75.9 \\ & 64.7 \\ & 75.9 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 114 \\ 96.8 \\ 114 \\ \hline \end{array}$	$\begin{array}{r} 75.9 \\ 64.7 \\ 75.9 \\ \hline \end{array}$	114 96.8 114 186	75.9 64.7 75.9	$\begin{array}{\|c\|} \hline 114 \\ 96.8 \\ 114 \\ \hline \end{array}$	$\begin{array}{r} 75.9 \\ 64.7 \\ 75.9 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 114 \\ 96.8 \\ 114 \\ \hline \end{array}$
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	$\begin{aligned} & \hline \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 100 \\ 100 \\ 100 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 150 \\ 150 \\ 150 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 124 \\ 107 \\ 124 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 186 \\ 160 \\ 186 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 127 \\ 108 \\ 127 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 190 \\ 161 \\ 190 \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 127 \\ 108 \\ 127 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 190 \\ 161 \\ 190 \\ \hline \end{array}$
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	$\begin{aligned} & \hline N \\ & X \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { STD/SSLT } \\ & \text { STD/SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 100 \\ 100 \\ \hline \end{array}$	150 150	$\begin{array}{\|l\|} \hline 125 \\ 125 \\ \hline \end{array}$	187 187	$\begin{array}{\|l\|} \hline 150 \\ 150 \\ \hline \end{array}$	225 225	$\begin{array}{\|l\|} \hline 180 \\ 200 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 269 \\ 300 \\ \hline \end{array}$
			STD	93.8	141	94.9	142	94.9	142	94.9	142
			OVS	80.9	121	80.9	121	80.9	121	80.9	121
			SSLT	93.8	141	94.9	142	94.9	142	94.9	142
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	$\begin{aligned} & \hline \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \\ & \hline \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 100 \\ 100 \\ 100 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 150 \\ 150 \\ 150 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 125 \\ 125 \\ 125 \\ \hline \end{array}$	$\begin{aligned} & \hline 187 \\ & 187 \\ & 187 \end{aligned}$	$\begin{array}{\|l\|} \hline 150 \\ 133 \\ 150 \\ \hline \hline \end{array}$	$\begin{array}{\|l} \hline 225 \\ 199 \\ 225 \\ \hline \end{array}$	$\begin{aligned} & \hline 158 \\ & 135 \\ & 158 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 237 \\ 202 \\ 237 \\ \hline \end{array}$
Bolt and Angle Available Strength, kips											
5 Rows	Bolt Group	Thread Cond.	Hole Type	Angle Thickness, in.							
				1/4		5/16		3/8		1/2	
W30, 27, 24, 21, 18				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	$\begin{gathered} \text { Group } \\ \text { A } \end{gathered}$	$\begin{aligned} & \hline N \\ & X \\ & \hline \end{aligned}$	STD/SSLT STD/SSLT	$\begin{aligned} & \hline 83.8 \\ & 83.8 \end{aligned}$	126 126	105 105	$\begin{aligned} & \hline 157 \\ & 157 \\ & \hline \end{aligned}$	$\begin{aligned} & 117 \\ & 126 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 176 \\ 189 \\ \hline \end{array}$	$\begin{aligned} & 119 \\ & 150 \end{aligned}$	$\begin{aligned} & \hline 179 \\ & 224 \\ & \hline \end{aligned}$
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	$\begin{aligned} & \hline \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 63.3 \\ & 53.9 \\ & 63.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 94.9 \\ & 80.7 \\ & 94.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 63.3 \\ & 53.9 \\ & 63.3 \\ & \hline \end{aligned}$	94.9 80.7 94.9	63.3 53.9 63.3	94.9 80.7 94.9	63.3 53.9 63.3	94.9 80.7 94.9
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	$\begin{aligned} & \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 83.8 \\ & 82.7 \\ & 83.8 \end{aligned}$	$\begin{array}{\|l\|} \hline 126 \\ 124 \\ 126 \\ \hline \end{array}$	$\begin{gathered} 103 \\ 88.9 \\ 103 \end{gathered}$	$\begin{array}{\|l\|} \hline 154 \\ 133 \\ 154 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 105 \\ 89.9 \\ 105 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 158 \\ 134 \\ 158 \\ \hline \end{array}$	$\begin{gathered} 105 \\ 89.9 \\ 105 \end{gathered}$	$\begin{array}{\|l} \hline 158 \\ 134 \\ 158 \\ \hline \end{array}$
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	$\begin{aligned} & \hline N \\ & X \end{aligned}$	$\begin{aligned} & \hline \text { STD/SSLT } \\ & \text { STD/SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 83.8 \\ 83.8 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 126 \\ 126 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 105 \\ 105 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 157 \\ 157 \\ \hline \end{array}$	$\begin{aligned} & 126 \\ & 126 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 189 \\ 189 \\ \hline \end{array}$	$\begin{aligned} & \hline 150 \\ & 168 \\ & \hline \end{aligned}$	$\begin{aligned} & 224 \\ & 251 \\ & \hline \end{aligned}$
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	$\begin{aligned} & \hline \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \\ & \hline \end{aligned}$	$\begin{aligned} & 78.0 \\ & 67.4 \\ & 78.0 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 117 \\ 101 \\ 117 \\ \hline \end{array}$	$\begin{aligned} & 79.1 \\ & 67.4 \\ & 79.1 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 119 \\ 101 \\ 119 \\ \hline \end{array}$	$\begin{aligned} & \hline 79.1 \\ & 67.4 \\ & 79.1 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 119 \\ 101 \\ 119 \\ \hline \end{array}$	$\begin{aligned} & 79.1 \\ & 67.4 \\ & 79.1 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 119 \\ 101 \\ 119 \\ \hline \end{array}$
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	$\begin{aligned} & \hline \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 83.8 \\ & 82.7 \\ & 83.8 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 126 \\ 124 \\ 126 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 105 \\ 103 \\ 105 \\ \hline \end{array}$	$\begin{aligned} & 157 \\ & 155 \\ & 157 \end{aligned}$	$\begin{array}{\|l} \hline 126 \\ 110 \\ 126 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 189 \\ 165 \\ 189 \\ \hline \end{array}$	$\begin{aligned} & 132 \\ & 112 \\ & 132 \end{aligned}$	$\begin{aligned} & 198 \\ & 168 \\ & 198 \end{aligned}$
Notes: Slip-critical bolt values assume no more than one filler has been provided.											

$F_{y}=36 \mathrm{ksi}$ Angles	Table 10-1 (continued) All-Bolted Double-Angle Connections									$3 / 4$ Bol	-in. ts
Bolt and Angle Available Strength, kips											
4 Rows	Bolt Group	Thread Cond.	$\begin{aligned} & \text { Hole } \\ & \text { Type } \end{aligned}$	Angle Thickness, in.							
				1/4		5/16		$3 / 8$		1/2	
W24, 21, 18, 16				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	$\begin{gathered} \text { Group } \\ \mathrm{A} \end{gathered}$	$\begin{aligned} & \hline N \\ & \mathrm{X} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { STD/SSLT } \\ & \text { STD/SSLT } \end{aligned}$	$\begin{aligned} & \hline 67.6 \\ & 67.6 \end{aligned}$	$\begin{aligned} & \hline 101 \\ & 101 \end{aligned}$	84.5 84.5	$\begin{aligned} & \hline 127 \\ & 127 \end{aligned}$	$\begin{gathered} 93.6 \\ 101 \end{gathered}$	$\begin{aligned} & \hline 140 \\ & 152 \\ & \hline \end{aligned}$		$\begin{array}{\|l} 143 \\ 179 \\ \hline \end{array}$
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	$\begin{aligned} & \hline \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 50.6 \\ 43.1 \\ 50.6 \\ \hline \end{array}$	$\begin{aligned} & 75.9 \\ & 64.5 \\ & 75.9 \end{aligned}$	$\begin{aligned} & \hline 50.6 \\ & 43.1 \\ & 50.6 \\ & \hline \end{aligned}$	75.9 64.5 75.9	50.6 43.1 50.6	75.9 64.5 75.9	50.6 43.1 50.6	75.9 64.5 75.9 127
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	$\begin{aligned} & \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 67.6 \\ 65.3 \\ 67.6 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 101 \\ 97.9 \\ 101 \\ \hline \end{array}$	$\begin{aligned} & \hline 81.6 \\ & 70.9 \\ & 81.6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 122 \\ & 106 \\ & 122 \\ & \hline \end{aligned}$	84.4 71.9 84.4	$\begin{array}{\|l\|} \hline 127 \\ 108 \\ 127 \\ \hline \end{array}$	$\begin{aligned} & \hline 84.4 \\ & 71.9 \\ & 84.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 127 \\ & 108 \\ & 127 \\ & \hline \end{aligned}$
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	$\begin{aligned} & \hline \mathrm{N} \\ & \mathrm{X} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { STD/SSLT } \\ & \text { STD/SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 67.6 \\ 67.6 \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 101 \\ 101 \\ \hline \end{array}$	$\begin{aligned} & 84.5 \\ & 84.5 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 127 \\ 127 \\ \hline \end{array}$	$\begin{aligned} & 101 \\ & 101 \\ & \hline \end{aligned}$	$\begin{aligned} & 152 \\ & 152 \\ & \hline \end{aligned}$	$\begin{aligned} & 119 \\ & 135 \\ & \hline \end{aligned}$	$\begin{aligned} & 179 \\ & 203 \\ & \hline \end{aligned}$
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	$\begin{aligned} & \hline \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 62.1 \\ 53.9 \\ 62.1 \\ \hline \end{array}$	$\begin{aligned} & 93.2 \\ & 80.7 \\ & 9.2 \end{aligned}$	63.3 53.9 63.3 84	94.9 80.7 94.9	63.3 53.9 63.3	94.9 80.7 94.9	63.3 53.9 63.3	94.9 80.7 94.9
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	$\begin{aligned} & \hline \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 67.6 \\ 65.3 \\ 67.6 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 101 \\ 97.9 \\ 101 \\ \hline \end{array}$	$\begin{aligned} & \hline 84.5 \\ & 81.6 \\ & 84.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 127 \\ 122 \\ 127 \\ \hline \end{array}$	101 87.8 101	$\begin{array}{\|l\|} \hline 152 \\ 131 \\ 152 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 105 \\ 89.9 \\ 105 \end{array}$	$\begin{aligned} & 158 \\ & 134 \\ & 158 \end{aligned}$
Bolt and Angle Available Strength, kips											
3 Rows	Bolt Group	Thread Cond.	$\begin{aligned} & \text { Hole } \\ & \text { Type } \end{aligned}$	Angle Thickness, in.							
W18, 16, 14, 12, 10 + Ltd. to W10x12, 15, 17,				1/4		5/16		3/8		1/2	
19, 22, 26, 30				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	$\begin{gathered} \text { Group } \\ \text { A } \end{gathered}$	$\begin{aligned} & \hline \mathrm{N} \\ & \mathrm{X} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { STD/SSLT } \\ & \text { STD/SSLT } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 51.1 \\ 51.1 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 76.7 \\ 76.7 \\ \hline \end{array}$	$\begin{aligned} & \hline 63.9 \\ & 63.9 \end{aligned}$	$\begin{array}{\|l\|} \hline 95.8 \\ 95.8 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 69.7 \\ 76.7 \\ \hline \end{array}$	$\begin{aligned} & 105 \\ & 115 \\ & \hline \end{aligned}$	$\begin{array}{\|} \hline 71.6 \\ 89.4 \\ \hline \end{array}$	$\begin{aligned} & 107 \\ & 134 \\ & \hline \end{aligned}$
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	$\begin{aligned} & \hline \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 38.0 \\ 32.4 \\ 38.0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 57.0 \\ 48.4 \\ 57.0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 38.0 \\ 32.4 \\ 38.0 \\ \hline \end{array}$	57.0 48.4 57.0	38.0 32.4 38.0	57.0 48.4 57.0	38.0 32.4 38.0	57.0 48.4 57.0
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	$\begin{aligned} & \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 51.1 \\ 47.9 \\ 51.1 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 76.7 \\ 71.8 \\ 76.7 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 60.5 \\ 52.9 \\ 60.5 \\ \hline \end{array}$	90.8 79.3 90.8 9	63.3 53.9 63.3 6	94.9 80.7 94.9	63.3 53.9 63.3	94.9 80.7 94.9
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	$\begin{aligned} & \hline N \\ & X \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { STD/SSLT } \\ & \text { STD/SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 51.1 \\ 51.1 \\ \hline \end{array}$	$\begin{aligned} & \hline 76.7 \\ & 76.7 \end{aligned}$	$\begin{aligned} & 63.9 \\ & 63.9 \\ & \hline \end{aligned}$	95.8 95.8	$\begin{array}{\|l\|} \hline 76.7 \\ 76.7 \\ \hline \end{array}$	$\begin{aligned} & 115 \\ & 115 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 89.4 \\ 102 \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 134 \\ 153 \\ \hline \end{array}$
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	$\begin{aligned} & \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 46.3 \\ 40.4 \\ 46.3 \\ \hline \end{array}$	$\begin{aligned} & 69.5 \\ & 60.5 \\ & 69.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 47.5 \\ 40.4 \\ 47.5 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 71.2 \\ 60.5 \\ 71.2 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 47.5 \\ 40.4 \\ 47.5 \end{array}$	71.2 60.5 71.2	$\begin{aligned} & \hline 47.5 \\ & 40.4 \\ & 47.5 \end{aligned}$	$\begin{aligned} & \hline 71.2 \\ & 60.5 \\ & 71.2 \end{aligned}$
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	$\begin{aligned} & \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 51.1 \\ 47.9 \\ 51.1 \\ \hline \end{array}$	$\begin{aligned} & \hline 76.7 \\ & 71.8 \\ & 76.7 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 63.9 \\ 59.8 \\ 63.9 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 95.8 \\ 89.7 \\ 95.8 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 74.8 \\ 65.3 \\ 74.8 \\ \hline \end{array}$	$\begin{aligned} & \hline 112 \\ & 97.8 \\ & 112 \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline 79.1 \\ 67.4 \\ 79.1 \\ \hline \end{array}$	$\begin{aligned} & \hline 119 \\ & 101 \\ & 119 \\ & \hline \end{aligned}$
Notes: to direction of load Slip-critical bolt values assume no more than one filler has been provided											

$\begin{gathered} F_{y}=36 \mathrm{ksi} \\ \text { Angles } \end{gathered}$	Table 10-1 (continued) All-Bolted Double-Angle Connections								$\begin{aligned} & 3 / 4 \text {-in. } \\ & \text { Bolts } \end{aligned}$				
	Bolt and Angle Available Strength, kips												
2 Rows	Bolt Group	Thread Cond.	Hole Type	Angle Thickness, in.									
				1/4		5/16		3/8		1/2			
W12, 10, 8				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD		
	$\begin{gathered} \text { Group } \\ \text { A } \end{gathered}$	N	STD/SSLT	32.6	48.9	40.8	61.2	45.9	68.8	47.7	71.6		
		X	STD/SSLT	32.6	48.9	40.8	61.2	48.9	73.4	59.4	89.1		
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	STD	25.3	38.0	25.3	38.0	25.3	38.0	25.3	38.0		
			OVS	21.6	32.3	21.6	32.3	21.6	32.3	21.6	32.3		
			SSLT	25.3	38.0	25.3	38.0	25.3	38.0	25.3	38.0		
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	STD	32.6	48.9	39.4	59.2	42.2	63.3	42.2	63.3		
			OVS	30.5	45.7	35.0	52.4	36.0	53.8	36.0	53.8		
			SSLT	32.6	48.9	39.4	59.2	42.2	63.3	42.2	63.3		
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	N	STD/SSLT	32.6	48.9	40.8	61.2	48.9	73.4	59.4	89.1		
		X	STD/SSLT	32.6	48.9	40.8	61.2	48.9	73.4	65.3	97.9		
			STD	30.5	45.8	31.6	47.5	31.6	47.5	31.6	47.5		
			OVS	27.0	40.3	27.0	40.3	27.0	40.3	27.0	40.3		
			SSLT	30.5	45.8	31.6	47.5	31.6	47.5	31.6	47.5		
			STD	32.6	48.9	40.8	61.2	48.4	72.6	52.7	79.1		
			OVS	30.5	45.7	38.1	57.1	42.9	64.2	44.9	67.2		
		Class B	SSLT	32.6	48.9	40.8	61.2	48.4	72.6	52.7	79.1		
$\begin{aligned} & \text { STD }=\text { Standard holes } \\ & \text { OVS }=\text { Oversized holes } \end{aligned}$			$N=$ Threads included										
SSLT = Short-slotted holes transverse to direction of load			SC = Slip critical										
Slip-critical bolt values assume no more than one filler has been provided.													

$\begin{gathered} F_{y}=36 \mathrm{ksi} \\ \text { Angles } \end{gathered}$	Table 10-1 (continued) All-Bolted Double-Angle Connections										in. ts			
Bolt and Angle Available Strength, kips														
	Bolt Group	Thread Cond.	$\begin{aligned} & \text { Hole } \\ & \text { Type } \end{aligned}$	Angle Thickness, in.										
				1/4		5/16		3/8		1/2				
				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD			
	$\begin{gathered} \text { Group } \\ \text { A } \end{gathered}$	$\begin{aligned} & \hline \mathrm{N} \\ & \mathrm{X} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { STD/SSLT } \\ & \text { STD/SSLT } \end{aligned}$	196 196	$\begin{aligned} & 294 \\ & 294 \end{aligned}$	$\begin{aligned} & 245 \\ & 245 \end{aligned}$	368 368	294	442 442	384 393	577 589			
		$\begin{aligned} & \text { SC } \\ & \text { Class A } \end{aligned}$	$\begin{aligned} & \hline \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \end{aligned}$	196 178 196 1	294 266 294	211 180 211	316 270 316	212 180 212	317 270 317	212 180 212	317 270 317			
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	STD	196	294	245	368	294	442	350	526			
			OVS	191	287	239	359	287	431	300	450			
			SSLT	196	294	245	368	294	442	350	526			
	$\begin{array}{\|c} \text { Group } \\ \text { B } \end{array}$	$\begin{aligned} & \hline N \\ & X \end{aligned}$	STD/SSLT STD/SSLT	196 196	294	245 245	368 368	294 294	442 442	393 393	589 589			
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	STD	196	294	245	368	264	396	266	399			
			OVS	191	287	223	334	226	339	227	339			
			SSLT	196	294	245	368	264	396	266	399			
		SC Class B	STD	196	294	245	368	294	442	393	589			
			OVS	191	287	239	359	287	431	371	555			
			SSLT	196	294	245	368	294	442	393	589			
Bolt and Angle Available Strength, kips														
11 Rows W44, 40	Bolt Group	Thread Cond.	$\begin{aligned} & \text { Hole } \\ & \text { Type } \end{aligned}$	Angle Thickness, in.										
				$1 / 4$		5/16		$3 / 8$		1/2				
				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD			
	$\begin{array}{\|c} \text { Group } \\ \text { A } \end{array}$	$\begin{aligned} & \hline N \\ & \mathrm{X} \\ & \hline \end{aligned}$	STD/SSLT STD/SSLT	$\begin{aligned} & 180 \\ & 180 \end{aligned}$	270	$\begin{aligned} & \hline 225 \\ & 225 \end{aligned}$	$\begin{aligned} & 338 \\ & 338 \end{aligned}$	$\begin{aligned} & 270 \\ & 270 \end{aligned}$	405 405	$\begin{aligned} & \hline 352 \\ & 360 \end{aligned}$	528 540			
			STD	180	270	193	290	194	291	194	291			
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	OVS	163	244	165	247	165	247	165	247			
			SSLT	180	270	193	290	194	291	194	291			
			STD	180	270	225	338	270	405	321	481			
		Class B	OVS	175	263	219	328	263	394	275	412			
			SSLT	180	270	225	338	270	405	321	481			
	$\begin{array}{\|c} \text { Group } \\ \text { B } \end{array}$	N	STD/SSLT	180	270	225	338	270	405	360	540			
		X	STD/SSLT	180	270	225	338	270	405	360	540			
			STD	180	270	225	338	242	363	244	365			
			OVS	175	263	204	306	208	311	208	311			
			SSLT	180	270	225	338	242	363	244	365			
			STD	180	270	225	338	270	405	360	540			
		SC	OVS	175	263	219	328	263	394	340	508			
			SSLT	180	270	225	338	270	405	360	540			
Notes: Slip-critical bolt values assume no more than one filler has been provided.														

$F_{y}=36 \mathrm{ksi}$ Angles	Table 10-1 (continued) All-Bolted Double-Angle Connections										-in. ts
	Bolt and Angle Available Strength, kips										
$\begin{gathered} 10 \text { Rows } \\ \hline \text { W44, 40, } 36 \end{gathered}$	Bolt Group	Thread Cond.	Hole Type	Angle Thickness, in.							
				1/4		5/16		3/8		1/2	
				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	$\begin{gathered} \text { Group } \\ \text { A } \end{gathered}$	$\begin{aligned} & \hline N \\ & X \end{aligned}$	$\begin{aligned} & \hline \text { STD/SSLT } \\ & \text { STD/SSLT } \end{aligned}$	$\begin{aligned} & 164 \\ & 164 \end{aligned}$	246	205	307 307	246 246	369 369	319 328	479 492
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	$\begin{gathered} \text { STD } \\ \text { OVS } \\ \text { SSLT } \\ \hline \end{gathered}$	$\begin{aligned} & 164 \\ & 148 \\ & 164 \\ & \hline \end{aligned}$	246 221 246	176 150 176 205	263 225 263	176 150 176	264 225 264	176 150 176	264 225 264
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	$\begin{aligned} & \hline \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & \hline 164 \\ & 159 \\ & 164 \\ & \hline \end{aligned}$	246 238 246	205 198 205	307 298 307	246 238 246	369 357 369	292 250 292	437 375 437
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	$\begin{aligned} & \hline N \\ & X \end{aligned}$	$\begin{aligned} & \hline \text { STD/SSLT } \\ & \text { STD/SSLT } \end{aligned}$	164 164	246	205	307 307	246 246	369 369	328 328	492 492
			STD	164	246	205	307	220	330	221	332
			OVS	159	238	186	278	189	282	189	282
			SSLT	164	246	205	307	220	330	221	332
			STD	164	246	205	307	246	369	328	492
			OVS	159	238	198	298	238	357	308	461
		Class B	SSLT	164	246	205	307	246	369	328	492
Bolt and Angle Available Strength, kips											
9 Rows	Bolt Group	Thread Cond.	Hole Type	Angle Thickness, in.							
				1/4		5/16		3/8		1/2	
W44, 40, 36, 33				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	$\begin{gathered} \text { Group } \\ \text { A } \end{gathered}$	$\begin{aligned} & \hline \mathrm{N} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \hline \text { STD/SSLT } \\ & \text { STD/SSLT } \end{aligned}$	$\begin{aligned} & 148 \\ & 148 \end{aligned}$	$\begin{aligned} & 222 \\ & 222 \end{aligned}$	185 185	$\begin{aligned} & 277 \\ & 277 \end{aligned}$	222	$\begin{aligned} & 332 \\ & 332 \end{aligned}$	$\begin{aligned} & 287 \\ & 295 \end{aligned}$	430 443
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	$\begin{aligned} & \hline \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & \hline 148 \\ & 133 \\ & 148 \\ & \hline \end{aligned}$	222 199 222	158 135 158	237 202 237	159 135 159	238 202 238	159 135 159	238 202 238
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	$\begin{aligned} & \hline \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \\ & \hline \end{aligned}$	$\begin{aligned} & 148 \\ & 142 \\ & 148 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 222 \\ & 214 \\ & 222 \\ & \hline \end{aligned}$	$\begin{aligned} & 185 \\ & 178 \\ & 185 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 277 \\ & 267 \\ & 277 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 222 \\ 214 \\ 222 \\ \hline \end{array}$	$\begin{aligned} & \hline 332 \\ & 321 \\ & 332 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 262 \\ & 225 \\ & 262 \\ & \hline \end{aligned}$	393 337 393 4
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	$\begin{aligned} & \hline \mathrm{N} \\ & \mathrm{X} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { STD/SSLT } \\ & \text { STD/SSLT } \end{aligned}$	$\begin{aligned} & 148 \\ & 148 \end{aligned}$	$\begin{aligned} & \hline 222 \\ & 222 \\ & \hline \end{aligned}$	185 185	277 277	222	332 332	295 295	443 443
			STD	148	222	185	277	198	296	199	299
			OVS	142	214	167	249	170	254	170	254
			SSLT	148	222	185	277	198	296	199	299
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	$\begin{aligned} & \hline \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 148 \\ & 142 \\ & 148 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 222 \\ & 214 \\ & 222 \\ & \hline \end{aligned}$	$\begin{aligned} & 185 \\ & 178 \\ & 185 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 277 \\ & 267 \\ & 277 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 222 \\ & 214 \\ & 222 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 332 \\ & 321 \\ & 332 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 295 \\ 277 \\ 295 \\ \hline \end{array}$	$\begin{aligned} & \hline 443 \\ & 414 \\ & 443 \\ & \hline \end{aligned}$
Notes: Slip-critical bolt values assume no more than one filler has been provided.											

$\begin{gathered} F_{y}=36 \mathrm{ksi} \\ \text { Angles } \end{gathered}$	Table 10-1 (continued) All-Bolted Double-Angle Connections										in.			
Bolt and Angle Available Strength, kips														
8 Rows	Bolt Group	Thread Cond.	Hole Type	Angle Thickness, in.										
				1/4		5/16		3/8		1/2				
W44, 40, 36, 33, 30				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD			
	$\begin{gathered} \text { Group } \\ \mathrm{A} \end{gathered}$	N	STD/SSLT	131	197	164	247	197	296	254	382			
		X	STD/SSLT	131	197	164	247	197	296	263	394			
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	STD	131	197	140	211	141	212	141	212			
			OVS	118	176	120	180	120	180	120	180			
			SSLT	131	197	140	211	141	212	141	212			
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	STD	131	197	164	247	197	296	233	349			
			OVS	126	189	158	237	189	284	200	300			
			SSLT	131	197	164	247	197	296	233	349			
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	N	STD/SSLT	131	197	164	247	197	296	263	394			
		X	STD/SSLT	131	197	164	247	197	296	263	394			
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	STD	131	197	164	247	175	263	177	266			
			OVS	126	189	148	221	151	226	151	226			
			SSLT	131	197	164	247	175	263	177	266			
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	STD	131	197	164	247	197	296	263	394			
			OVS	126	189	158	237	189	284	245	367			
			SSLT	131	197	164	247	197	296	263	394			
Bolt and Angle Available Strength, kips														
$\begin{array}{\|c} 7 \text { Rows } \\ \hline \text { W44, 40, 36, 33, 30, } \\ 27,24 \\ \hline \end{array}$	Bolt Group	Thread Cond.	Hole Type	Angle Thickness, in.										
				1/4		5/16		$3 / 8$		1/2				
				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD			
	$\begin{gathered} \text { Group } \\ \mathrm{A} \end{gathered}$	N	STD/SSLT	115	173	144	216	173	259	222	333			
		X	STD/SSLT	115	173	144	216	173	259	231	346			
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	STD	115	173	123	184	123	185	123	185			
			OVS	103	154	105	157	105	157	105	157			
			SSLT	115	173	123	184	123	185	123	185			
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	STD	115	173	144	216	173	259	203	305			
			OVS	110	165	137	206	165	247	175	262			
			SSLT	115	173	144	216	173	259	203	305			
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	N	STD/SSLT	115	173	144	216	173	259	231	346			
		X	STD/SSLT	115	173	144	216	173	259	231	346			
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	STD	115	173	144	216	153	230	155	233			
			OVS	110	165	129	193	132	198	132	198			
			SSLT	115	173	144	216	153	230	155	233			
		SC Class B	STD	115	173	144	216	173	259	231	346			
			OVS	110	165	137	206	165	247	214	320			
			SSLT	115	173	144	216	173	259	231	346			
Notes: Slip-critical bolt values assume no more than one filler has been provided.														

$F_{y}=36 \mathrm{ksi}$ Angles	Table 10-1 (continued) All-Bolted Double-Angle Connections										in. ts			
Bolt and Angle Available Strength, kips														
6 Rows	Bolt Group	Thread Cond.	Hole Type	Angle Thickness, in.										
W40, 36, 33, 30, 27,				1/4		5/16		3/8		1/2				
24, 21				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD			
	$\begin{gathered} \text { Group } \\ \mathrm{A} \end{gathered}$	N	STD/SSLT	99.1	149	124	186	149	223	190	284			
		X	STD/SSLT	99.1	149	124	186	149	223	198	297			
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	STD	99.1	149	105	158	106	159	106	159			
			OVS	87.6	131	90.1	135	90.1	135	90.1	135			
			SSLT	99.1	149	105	158	106	159	106	159			
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	STD	99.1	149	124	186	149	223	174	261			
			OVS	93.5	140	117	175	140	210	150	225			
				99.1	149	124	186	149	223	174	261			
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	N	STD/SSLT	99.1	149	124	186	149	223	198	297			
		X	STD/SSLT	99.1	149	124	186	149	223	198	297			
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	STD	99.1	149	124	186	131	197	133	199			
			OVS	93.5	140	110	165	113	169	113	169			
			SSLT	99.1	149	124	186	131	197	133	199			
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	STD	99.1	149	124	186	149	223	198	297			
			OVS	93.5	140	117	175	140	210	182	273			
			SSLT	99.1	149	124	186	149	223	198	297			
Bolt and Angle Available Strength, kips														
5 Rows	Bolt Group	Thread Cond.	Hole Type	Angle Thickness, in.										
W30, 27, 24, 21, 18				1/4		5/16		3/8		1/2				
				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD			
	Group A	N	STD/SSLT	82.7	124	103	155	124	186	157	23			
		X	STD/SSLT	82.7	124	103	155	124	186	165	248			
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	STD	82.7	124	87.5	131	88.1	132	88.1	132			
			OVS	72.6	109	75.1	112	75.1	112	75.1	112			
			SSLT	82.7	124	87.5	131	88.1	132	88.1	132			
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	STD	82.7	124	103	155	124	186	145	217			
			OVS	77.2	116	96.5	145	116	174	125	187			
			SSLT	82.7	124	103	155	124	186	145	217			
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	N	STD/SSLT	82.7	124	103	155	124	186	165	248			
		X	STD/SSLT	82.7	124	103	155	124	186	165	248			
			STD	82.7	124	103	155	109	163	111	166			
			OVS	77.2	116	91.1	136	94.3	141	94.4	141			
			SSLT	82.7	124	103	155	109	163	111	166			
			STD	82.7	124	103	155	124	186	165	248			
			OVS	77.2	116	96.5	145	116	174	151	226			
		Class B	SSLT	82.7	124	103	155	124	186	165	248			
Notes: $\begin{array}{rrr} \text { STD } & =\text { Standard holes } & \mathrm{N}=\text { Threads included } \\ \text { OVS } & =\text { Oversized holes } & \mathrm{X}=\text { Threads excluded } \\ \text { SSLT } & =\text { Short-slotted holes transverse } & \text { SC }=\text { Slip critical } \\ & \text { to direction of load } & \end{array}$ Slip-critical bolt values assume no more than one filler has been provided.														

$F_{y}=36 \mathrm{ksi}$ Angles	Table 10-1 (continued) All-Bolted Double-Angle Connections									7/8 Bol	-in. ts
Bolt and Angle Available Strength, kips											
4 Rows	Bolt Group	Thread Cond.	$\begin{aligned} & \text { Hole } \\ & \text { Type } \end{aligned}$	Angle Thickness, in.							
				1/4		5/16		$3 / 8$		1/2	
W24, 21, 18, 16				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	$\begin{gathered} \text { Group } \\ \mathrm{A} \end{gathered}$	$\begin{aligned} & \hline N \\ & \mathrm{X} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { STD/SSLT } \\ & \text { STD/SSLT } \\ & \hline \end{aligned}$	$\begin{aligned} & 65.3 \\ & 65.3 \end{aligned}$	$\begin{array}{\|l\|} \hline 97.9 \\ 97.9 \\ \hline \end{array}$	81.6 81.6	$\begin{aligned} & \hline 122 \\ & 122 \\ & \hline \end{aligned}$	97.9 97.9	$\begin{aligned} & 147 \\ & 147 \\ & \hline \end{aligned}$	$\begin{aligned} & 125 \\ & 131 \end{aligned}$	$\begin{aligned} & 187 \\ & 196 \\ & \hline \end{aligned}$
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	$\begin{aligned} & \hline \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 65.3 \\ 57.6 \\ 65.3 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 97.9 \\ 86.2 \\ 97.9 \\ \hline \end{array}$	$\begin{aligned} & \hline 69.9 \\ & 60.1 \\ & 69.9 \end{aligned}$	$\begin{array}{\|c\|} \hline 105 \\ 89.9 \\ 105 \\ \hline \end{array}$	$\begin{aligned} & 70.5 \\ & 60.1 \\ & 70.5 \end{aligned}$	106 89.9 106 147	$\begin{aligned} & 70.5 \\ & 60.1 \\ & 70.5 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 106 \\ 89.9 \\ 106 \\ \hline \end{array}$
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	$\begin{aligned} & \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 65.3 \\ 60.9 \\ 65.3 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 97.9 \\ 91.4 \\ 97.9 \\ \hline \end{array}$	$\begin{aligned} & 81.6 \\ & 76.1 \\ & 81.6 \end{aligned}$	$\begin{array}{\|l\|} \hline 122 \\ 114 \\ 122 \\ \hline \end{array}$	$\begin{aligned} & 97.9 \\ & 91.4 \\ & 97.9 \end{aligned}$	$\begin{array}{\|l\|} \hline 147 \\ 137 \\ 147 \\ \hline \end{array}$	$\begin{aligned} & 115 \\ & 100 \\ & 115 \end{aligned}$	$\begin{aligned} & 173 \\ & 150 \\ & 173 \\ & \hline \end{aligned}$
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	$\begin{aligned} & \hline N \\ & \mathrm{X} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { STD/SSLT } \\ & \text { STD/SSLT } \end{aligned}$	$\begin{aligned} & 65.3 \\ & 65.3 \end{aligned}$	$\begin{aligned} & 97.9 \\ & 97.9 \end{aligned}$	$\begin{aligned} & \hline 81.6 \\ & 81.6 \end{aligned}$	$\begin{aligned} & 122 \\ & 122 \end{aligned}$	97.9 97.9	$\begin{aligned} & 147 \\ & 147 \end{aligned}$	$\begin{aligned} & 131 \\ & 131 \\ & \hline \end{aligned}$	$\begin{aligned} & 196 \\ & 196 \end{aligned}$
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	$\begin{aligned} & \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 65.3 \\ 60.9 \\ 65.3 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 97.9 \\ 91.4 \\ 97.9 \\ \hline \end{array}$	81.6 72.3 81.6	$\begin{aligned} & \hline 122 \\ & 108 \\ & 122 \end{aligned}$	86.8 75.4 86.8 97	$\begin{aligned} & 130 \\ & 113 \\ & 130 \\ & \hline \end{aligned}$	$\begin{aligned} & 88.6 \\ & 75.5 \\ & 88.6 \end{aligned}$	$\begin{aligned} & 133 \\ & 113 \\ & 133 \end{aligned}$
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	$\begin{aligned} & \hline \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 65.3 \\ 60.9 \\ 65.3 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 97.9 \\ 91.4 \\ 97.9 \\ \hline \end{array}$	$\begin{aligned} & \hline 81.6 \\ & 76.1 \\ & 81.6 \end{aligned}$	$\begin{array}{\|l\|} \hline 122 \\ 114 \\ 122 \\ \hline \end{array}$	$\begin{aligned} & 97.9 \\ & 91.4 \\ & 97.9 \end{aligned}$	$\begin{array}{\|l\|} \hline 147 \\ 137 \\ 147 \\ \hline \end{array}$	$\begin{aligned} & 131 \\ & 119 \\ & 131 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 196 \\ 179 \\ 196 \\ \hline \end{array}$
Bolt and Angle Available Strength, kips											
3 Rows + +tdd to $W 10 \times 12,15,17$, 19, 22, 26, 30	$\begin{gathered} \text { Bolt } \\ \text { Group } \end{gathered}$	Thread Cond.	$\begin{aligned} & \text { Hole } \\ & \text { Type } \end{aligned}$	Angle Thickness, in.							
				1/4		5/16		3/8		1/2	
				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	$\begin{gathered} \text { Group } \\ \mathrm{A} \end{gathered}$	$\begin{aligned} & \hline N \\ & \mathrm{X} \\ & \hline \end{aligned}$	STD/SSLT STD/SSLT	$\begin{aligned} & 47.9 \\ & 47.9 \end{aligned}$	$\begin{array}{\|l\|} \hline 71.8 \\ 71.8 \end{array}$	$\begin{aligned} & 59.8 \\ & 59.8 \end{aligned}$	$\begin{array}{\|l\|} \hline 89.7 \\ 89.7 \end{array}$	$\begin{aligned} & \hline 71.8 \\ & 71.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 108 \\ & 108 \end{aligned}$	$\begin{array}{\|l\|} \hline 92.1 \\ 95.7 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 138 \\ 144 \\ \hline \end{array}$
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	$\begin{aligned} & \hline \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 47.9 \\ 42.6 \\ 47.9 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 71.8 \\ 63.7 \\ 71.8 \\ \hline \end{array}$	$\begin{aligned} & \hline 52.2 \\ & 45.1 \\ & 52.2 \end{aligned}$	78.4 67.4 78.4 8.7	52.9 45.1 52.9	79.3 67.4 79.3	$\begin{array}{\|l\|} \hline 52.9 \\ 45.1 \\ 52.9 \\ \hline \end{array}$	79.3 67.4 79.3
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	$\begin{aligned} & \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 47.9 \\ 44.6 \\ 47.9 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 71.8 \\ 66.9 \\ 71.8 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 59.8 \\ 55.7 \\ 59.8 \\ \hline \end{array}$	89.7 83.6 89.7 8.7	71.8 66.9 71.8	$\begin{aligned} & 108 \\ & 100 \\ & 108 \end{aligned}$	$\begin{array}{\|l\|} \hline 85.9 \\ 75.1 \\ 85.9 \\ \hline \end{array}$	$\begin{aligned} & 129 \\ & 112 \\ & 129 \end{aligned}$
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	$\begin{aligned} & \hline N \\ & X \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { STD/SSLT } \\ & \text { STD/SSLT } \end{aligned}$	$\begin{aligned} & 47.9 \\ & 47.9 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 71.8 \\ & 71.8 \end{aligned}$	$\begin{aligned} & 59.8 \\ & 59.8 \\ & \hline \end{aligned}$	89.7 89.7	71.8 71.8	$\begin{aligned} & 108 \\ & 108 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 95.7 \\ 95.7 \\ \hline \end{array}$	$\begin{aligned} & \hline 144 \\ & 144 \end{aligned}$
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	$\begin{aligned} & \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 47.9 \\ 44.6 \\ 47.9 \\ \hline \end{array}$	$\begin{aligned} & 71.8 \\ & 66.9 \\ & 71.8 \end{aligned}$	$\begin{aligned} & \hline 59.8 \\ & 53.4 \\ & 59.8 \end{aligned}$	$\begin{array}{\|l\|} \hline 89.7 \\ 79.9 \\ 89.7 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 64.7 \\ 56.5 \\ 64.7 \\ \hline \end{array}$	97.0 84.6 97.0	$\begin{array}{\|l\|} \hline 66.4 \\ 56.6 \\ 66.4 \end{array}$	$\begin{aligned} & 99.7 \\ & 84.7 \\ & 99.7 \end{aligned}$
		SC Class B	$\begin{aligned} & \hline \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 47.9 \\ 44.6 \\ 47.9 \end{array}$	$\begin{aligned} & 71.8 \\ & 66.9 \end{aligned}$	$\begin{aligned} & 59.8 \\ & 55.7 \\ & 59.8 \end{aligned}$	$\begin{array}{\|l\|} \hline 89.7 \\ 83.6 \\ 89.7 \end{array}$	$\begin{array}{\|l\|} \hline 71.8 \\ 66.9 \\ 71.8 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 108 \\ 100 \\ 108 \end{array}$	$\begin{array}{\|l\|} \hline 95.7 \\ 87.9 \\ 95.7 \end{array}$	$\begin{aligned} & 144 \\ & 132 \\ & 144 \end{aligned}$
Notes: Slip-critical bolt values assume no more than one filler has been provided											

$F_{y}=36 \mathrm{ksi}$ Angles	Table 10-1 (continued) All-Bolted Double-Angle Connections										in. ts
	Bolt and Angle Available Strength, kips										
2 Rows	Bolt Group	Thread Cond.	Hole Type	Angle Thickness, in.							
				1/4		5/16		3/8		1/2	
W12, 10, 8				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	$\begin{gathered} \text { Group } \\ \text { A } \end{gathered}$	N	STD/SSLT	30.5	45.7	38.1	57.1	45.7	68.5	59.7	89.5
		X	STD/SSLT	30.5	45.7	38.1	57.1	45.7	68.5	60.9	91.4
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	STD	30.5	45.7	34.6	51.9	35.3	52.9	35.3	52.9
			OVS	27.5	41.2	30.0	45.0	30.0	45.0	30.0	45.0
			SSLT	30.5	45.7	34.6	51.9	35.3	52.9	35.3	52.9
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	STD	30.5	45.7	38.1	57.1	45.7	68.5	56.6	84.9
			OVS	28.3	42.4	35.3	53.0	42.4	63.6	50.1	74.9
			SSLT	30.5	45.7	38.1	57.1	45.7	68.5	56.6	84.9
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	N	STD/SSLT	30.5	45.7	38.1	57.1	45.7	68.5	60.9	91.4
		X	STD/SSLT	30.5	45.7	38.1	57.1	45.7	68.5	60.9	91.4
			STD	30.5	45.7	38.1	57.1	42.5	63.8	44.3	66.4
			OVS	28.3	42.4	34.5	51.7	37.6	56.4	37.8	56.5
			SSLT	30.5	45.7	38.1	57.1	42.5	63.8	44.3	66.4
			STD	30.5	45.7	38.1	57.1	45.7	68.5	60.9	91.4
			OVS	28.3	42.4	35.3	53.0	42.4	63.6	56.5	84.6
		Class B	SSLT	30.5	45.7	38.1	57.1	45.7	68.5	60.9	91.4
Notes:											
$\begin{aligned} & \text { STD }=\text { Standard holes } \\ & \text { OVS }=\text { Oversized holes } \end{aligned}$			N = Threads included								
			$X=\text { Threads }$	xcluded							
SSLT = Short-slotted holes transverse to direction of load			SC = Slip critical								
Note: Slip-critical bolt values assume no more than one filler has been provided.											

$\begin{gathered} F_{y}=36 \mathrm{ksi} \\ \text { Angles } \end{gathered}$	Table 10-1 (continued) All-Bolted Double-Angle Connections													
Bolt and Angle Available Strength, kips														
12 Rows	Bolt Group	Thread Cond.	Hole Type	Angle Thickness, in.										
				1/4		5/16		3/8		1/2				
W44				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD			
	$\begin{gathered} \text { Group } \\ \mathrm{A} \end{gathered}$	N	STD/SSLT	185	277	231	347	277	416	370	555			
		X	STD/SSLT	185	277	231	347	277	416	370	555			
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	STD	185	277	231	347	272	407	277	415			
			OVS	172	258	215	322	232	348	236	353			
			SSLT	185	277	231	347	272	407	277	415			
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	STD	185	277	231	347	277	416	370	555			
			OVS	172	258	215	322	258	387	344	515			
			SSLT	185	277	231	347	277	416	370	555			
	$\begin{array}{\|c} \text { Group } \\ \text { B } \end{array}$	N	STD/SSLT	185	277	231	347	277	416	370	555			
		X	STD/SSLT	185	277	231	347	277	416	370	555			
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	STD	185	277	231	347	277	416	342	513			
			OVS	172	258	215	322	258	387	293	438			
			SSLT	185	277	231	347	277	416	342	513			
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	STD	185	277	231	347	277	416	370	555			
			OVS	172	258	215	322	258	387	344	515			
			SSLT	185	277	231	347	277	416	370	555			
Bolt and Angle Available Strength, kips														
$11 \text { Rows }$	Bolt Group	Thread Cond.	Hole Type	Angle Thickness, in.										
				$1 / 4$		5/16		3/8		1/2				
W44, 40				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD			
	$\begin{gathered} \text { Group } \\ \mathrm{A} \end{gathered}$	N	STD/SSLT	169	254	211	317	254	380	338	507			
		X	STD/SSLT	169	254	211	317	254	380	338	507			
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	STD	169	254	211	317	248	373	254	380			
			OVS	157	236	196	295	213	318	216	323			
			SSLT	169	254	211	317	248	373	254	380			
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	STD	169	254	211	317	254	380	338	507			
			OVS	157	236	196	295	236	354	314	471			
			SSLT	169	254	211	317	254	380	338	507			
	$\begin{gathered} \text { Group } \\ B \end{gathered}$	N	STD/SSLT	169	254	211	317	254	380	338	507			
		X	STD/SSLT	169	254	211	317	254	380	338	507			
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	STD	169	254	211	317	254	380	313	470			
			OVS	157	236	196	295	236	354	268	401			
			SSLT	169	254	211	317	254	380	313	470			
		SC Class B	STD	169	254	211	317	254	380	338	507			
			OVS	157	236	196	295	236	354	314	471			
			SSLT	169	254	211	317	254	380	338	507			
Notes: STD = Standard holes OVS = Oversized holes $\quad \mathrm{X}=$ Threads excluded SSLT $=$ Short-slotted holes transverse \quad SC $=$ Slip critical to direction of load Slip-critical bolt values assume no more than one filler has been provided.														

$F_{y}=36 \mathrm{ksi}$ Angles	Table 10-1 (continued) All-Bolted Double-Angle Connections													
	Bolt and Angle Available Strength, kips													
$\begin{gathered} 10 \text { Rows } \\ \hline \text { W44, 40, } 36 \end{gathered}$	Bolt Group	Thread Cond.	Hole Type	Angle Thickness, in.										
				1/4		5/16		3/8		1/2				
				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD			
	$\begin{gathered} \text { Group } \\ \text { A } \end{gathered}$	$\begin{aligned} & \hline N \\ & X \end{aligned}$	$\begin{aligned} & \hline \text { STD/SSLT } \\ & \text { STD/SSLT } \end{aligned}$	$\begin{aligned} & 153 \\ & 153 \end{aligned}$	230 230	192 192	288	230 230	345 345	307 307	460 460			
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	$\begin{aligned} & \hline \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \\ & \hline \end{aligned}$	153 142 153	230 214 230	192 178 192	288 267 288	225 193 225	338 289 338	231 196 231	346 294 346			
			STD	153	230	192	288	230	345	307	460			
			OVS	142	214	178	267	214	321	285	427			
				153	230	192	288	230	345	307	460			
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	N	STD/SSLT	153	230	192	288	230	345	307	460			
		X	STD/SSLT	153	230	192	288	230	345	307	460			
			STD	153	230	192	288	230	345	284	426			
		Class A	OVS	142	214	178	267	214	321	244	365			
			SSLT	153	230	192	288	230	345	284	426			
			STD	153	230	192	288	230	345	307	460			
			OVS	142	214	178	267	214	321	285	427			
			SSLT	153	230	192	288	230	345	307	460			
Bolt and Angle Available Strength, kips														
9 Rows	Bolt Group	Thread Cond.	Hole Type	Angle Thickness, in.										
				1/4		5/16		3/8		1/2				
W44, 40, 36, 33				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD			
	Group A	$\begin{aligned} & \mathrm{N} \\ & \mathrm{X} \end{aligned}$	STD/SSLT STD/SSLT	$\begin{aligned} & 138 \\ & 138 \end{aligned}$	$\begin{aligned} & 206 \\ & 206 \end{aligned}$	$\begin{aligned} & 172 \\ & 172 \end{aligned}$	258 258	206	310 310	$\begin{aligned} & 275 \\ & 275 \end{aligned}$	413 413			
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	$\begin{aligned} & \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 138 \\ & 128 \\ & 138 \\ & \hline \end{aligned}$	206 192 206	172 160 172 172	258 240 258 25	202 173 202 206	304 260 304 310	207 177 207	311 265 311 1			
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	STD OVS SSLT STDISLT	$\begin{aligned} & 138 \\ & 128 \\ & 138 \end{aligned}$	$\begin{aligned} & 206 \\ & 192 \\ & 206 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 172 \\ & 160 \\ & 172 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 258 \\ & 240 \\ & 258 \\ & \hline \end{aligned}$	206 192 206	310 288 310 310	275 256 275 275	413 383 413			
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	$\begin{aligned} & \hline \mathrm{N} \\ & \mathrm{X} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { STD/SSLT } \\ & \text { STD/SSLT } \end{aligned}$	138 138	206	172	258	206	310 310	275 275	413 413			
			STD	138	206	172	258	206	310	255	383			
			OVS	128	192	160	240	192	288	219	328			
			SSLT	138	206	172	258	206	310	255	383			
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	$\begin{aligned} & \hline \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 138 \\ & 128 \\ & 138 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 206 \\ & 192 \\ & 206 \\ & \hline \end{aligned}$	$\begin{aligned} & 172 \\ & 160 \\ & 172 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 258 \\ & 240 \\ & 258 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 206 \\ 192 \\ 206 \\ \hline \end{array}$	$\begin{aligned} & \hline 310 \\ & 288 \\ & 310 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 275 \\ 256 \\ 275 \\ \hline \end{array}$	413 383 413			
Notes: $\begin{array}{rlr} \text { STD } & =\text { Standard holes } & \mathrm{N}=\text { Threads included } \\ \text { OVS } & =\text { Oversized holes } & \mathrm{X}=\text { Threads excluded } \\ \text { SSLT } & =\text { Short-slotted holes transverse } & \text { SC }=\text { Slip critical } \\ & \text { to direction of load } & \end{array}$ Slip-critical bolt values assume no more than one filler has been provided.														

$F_{y}=36 \mathrm{ksi}$ Angles	Table 10-1 (continued) All-Bolted Double-Angle Connections													
	Bolt and Angle Available Strength, kips													
6 Rows	Bolt Group	Thread Cond.	Hole Type	Angle Thickness, in.										
W40, 36, 33, 30, 27,				1/4		5/16		3/8		1/2				
$\begin{array}{r}\text { 24, } 21 \\ \hline\end{array}$				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD			
	$\begin{gathered} \text { Group } \\ \mathrm{A} \end{gathered}$	N	STD/SSLT	90.3	135	113	169	135	203	181	271			
		X	STD/SSLT	90.3	135	113	169	135	203	181	271			
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	STD	90.3	135	113	169	133	200	138	207			
			OVS	83.7	126	105	157	115	171	118	176			
			SSLT	90.3	135	113	169	133	200	138	207			
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	STD	90.3	135	113	169	135	203	181	271			
			OVS	83.7	126	105	157	126	188	167	251			
			SSLT	90.3	135	113	169	135	203	181	271			
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	N	STD/SSLT	90.3	135	113	169	135	203	181	271			
		X	STD/SSLT	90.3	135	113	169	135	203	181	271			
			STD	90.3	135	113	169	135	203	169	253			
			OVS	83.7	126	105	157	126	188	145	217			
			SSLT	90.3	135	113	169	135	203	169	253			
			STD	90.3	135	113	169	135	203	181	271			
			OVS	83.7	126	105	157	126	188	167	251			
			SSLT	90.3	135	113	169	135	203	181	271			
Bolt and Angle Available Strength, kips														
5 Rows	Bolt Group	Thread Cond.	Hole Type	Angle Thickness, in.										
				1/4		5/16		3/8		1/2				
W30, 27, 24, 21, 18				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD			
	$\begin{gathered} \text { Group } \\ \text { A } \end{gathered}$	N	STD/SSLT	74.5	112	93.1	140	112	168	149	223			
		X	STD/SSLT	74.5	112	93.1	140	112	168	149	223			
			STD	74.5	112	93.1	140	110	165	115	173			
			OVS	69.1	104	86.3	129	94.9	142	98.2	147			
			SSLT	74.5	112	93.1	140	110	165	115	173			
			STD	74.5	112	93.1	140	112	168	149	223			
		SC	OVS	69.1	104	86.3	129	104	155	138	207			
		Class B	SSLT	74.5	112	93.1	140	112	168	149	223			
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	N	STD/SSLT	74.5	112	93.1	140	112	168	149	223			
		X	STD/SSLT	74.5	112	93.1	140	112	168	149	223			
			STD	74.5	112	93.1	140	112	168	140	209			
			OVS	69.1	104	86.3	129	104	155	120	180			
			SSLT	74.5	112	93.1	140	112	168	140	209			
			STD	74.5	112	93.1	140	112	168	149	223			
			OVS	69.1	104	86.3	129	104	155	138	207			
			SSLT	74.5	112	93.1	140	112	168	149	223			
Notes: $\begin{array}{rrr} \text { STD } & =\text { Standard holes } & \mathrm{N}=\text { Threads included } \\ \text { OVS } & =\text { Oversized holes } & \mathrm{X}=\text { Threads excluded } \\ \text { SSLT } & =\text { Short-slotted holes transverse } & \text { SC }=\text { Slip critical } \\ & \text { to direction of load } & \end{array}$ Note: Slip-critical bolt values assume no more than one filler has been provided.														

$F_{y}=36 \mathrm{ksi}$ Angles	Table 10-1 (continued) All-Bolted Double-Angle Connections										
Bolt and Angle Available Strength, kips											
4 Rows	Bolt Group	Thread Cond.	$\begin{aligned} & \text { Hole } \\ & \text { Type } \end{aligned}$	Angle Thickness, in.							
				1/4		5/16		3/8		1/2	
W24, 21, 18, 16				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	$\begin{gathered} \text { Group } \\ \mathrm{A} \end{gathered}$	$\begin{aligned} & \hline N \\ & \mathrm{X} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { STD/SSLT } \\ & \text { STD/SSLT } \end{aligned}$	$\begin{aligned} & 58.7 \\ & 58.7 \end{aligned}$	$\begin{aligned} & 88.1 \\ & 88.1 \end{aligned}$	73.4 73.4	110 110	88.1 88.1	132 132	$\begin{aligned} & 117 \\ & 117 \end{aligned}$	176 176
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	$\begin{aligned} & \hline \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 58.7 \\ 54.4 \\ 58.7 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 88.1 \\ 81.6 \\ 88.1 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 73.4 \\ 68.0 \\ 73.4 \\ \hline \end{array}$	$\begin{aligned} & \hline 110 \\ & 102 \\ & 110 \\ & \hline \end{aligned}$	87.1 75.3 87.1 88.	131 113 131	$\begin{aligned} & 92.2 \\ & 78.6 \\ & 92.2 \end{aligned}$	138 118 138 178
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	$\begin{aligned} & \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 58.7 \\ 54.4 \\ 58.7 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 88.1 \\ 81.6 \\ 88.1 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 73.4 \\ 68.0 \\ 73.4 \\ \hline \end{array}$	$\begin{aligned} & \hline 110 \\ & 102 \\ & 110 \end{aligned}$	$\begin{aligned} & 88.1 \\ & 81.6 \\ & 88.1 \end{aligned}$	$\begin{aligned} & 132 \\ & 122 \\ & 132 \end{aligned}$	$\begin{aligned} & \hline 117 \\ & 109 \\ & 117 \end{aligned}$	176 163 176 176
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \hline \text { STD/SSLT } \\ & \text { STD/SSLT } \end{aligned}$	$\begin{aligned} & 58.7 \\ & 58.7 \end{aligned}$	$\begin{aligned} & 88.1 \\ & 88.1 \end{aligned}$	73.4 73.4	110	88.1 88.1	132 132	$\begin{aligned} & 117 \\ & 117 \end{aligned}$	176 176
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	$\begin{aligned} & \hline \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 58.7 \\ 54.4 \\ 58.7 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 88.1 \\ 81.6 \\ 88.1 \\ \hline \end{array}$	73.4 68.0 73.4	110 102 110 10	88.1 81.6 88.1 8.1	132 122 132	$\begin{array}{\|c\|} \hline 111 \\ 95.7 \\ 111 \\ \hline \end{array}$	166 143 166 17
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	$\begin{aligned} & \hline \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 58.7 \\ 54.4 \\ 58.7 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 88.1 \\ 81.6 \\ 88.1 \\ \hline \end{array}$	$\begin{array}{r} 73.4 \\ 68.0 \\ 73.4 \\ \hline \hline \end{array}$	$\begin{array}{\|l\|} \hline 110 \\ 102 \\ 110 \\ \hline \end{array}$	$\begin{aligned} & 88.1 \\ & 81.6 \\ & 88.1 \end{aligned}$	132 122 132	$\begin{aligned} & 117 \\ & 109 \\ & 117 \end{aligned}$	176 163 176
Bolt and Angle Available Strength, kips											
W18, 16, 14, 12, 10 ${ }^{+}$ + +tdd. to $\mathbf{W} 10 \times 12,15,17$, 19, 22, 26, 30	$\begin{gathered} \text { Bolt } \\ \text { Group } \end{gathered}$	Thread Cond.	$\begin{aligned} & \text { Hole } \\ & \text { Type } \end{aligned}$	Angle Thickness, in.							
				1/4		5/16		3/8		1/2	
				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	$\begin{gathered} \text { Group } \\ \text { A } \end{gathered}$	$\begin{aligned} & \hline \mathrm{N} \\ & \mathrm{X} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { STD/SSLT } \\ & \text { STD/SSLT } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 43.0 \\ & 43.0 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 64.4 \\ 64.4 \\ \hline \end{array}$	$\begin{array}{\|l} 53.7 \\ 53.7 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 80.5 \\ 80.5 \\ \hline \end{array}$	$\begin{aligned} & \hline 64.4 \\ & 64.4 \\ & \hline \end{aligned}$	96.7 96.7	$\begin{array}{\|l\|} \hline 85.9 \\ 85.9 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 129 \\ 129 \\ \hline \end{array}$
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	$\begin{aligned} & \hline \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 43.0 \\ 39.7 \\ 43.0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 64.4 \\ 59.5 \\ 64.4 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 53.7 \\ 49.6 \\ 53.7 \\ \hline \end{array}$	80.5 74.4 80.5 8.5	64.0 55.6 64.0	96.1 83.3 96.1	$\begin{array}{\|l\|} \hline 69.2 \\ 58.9 \\ 69.2 \\ \hline \end{array}$	104 88.2 104
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	$\begin{aligned} & \hline \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 43.0 \\ 39.7 \\ 43.0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 64.4 \\ 59.5 \\ 64.4 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 53.7 \\ 49.6 \\ 53.7 \\ \hline \end{array}$	80.5 74.4 80.5 80.5	64.4 59.5 64.4 64.	96.7 89.3 96.7	$\begin{array}{\|l\|} \hline 85.9 \\ 79.4 \\ 85.9 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 129 \\ 119 \\ 129 \end{array}$
	$\begin{array}{\|c} \text { Group } \\ B \end{array}$	$\begin{aligned} & \hline N \\ & X \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { STD/SSLT } \\ & \text { STD/SSLT } \end{aligned}$	$\begin{aligned} & 43.0 \\ & 43.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 64.4 \\ & 64.4 \end{aligned}$	$\begin{array}{\|l} 53.7 \\ 53.7 \\ \hline \end{array}$	80.5 80.5	64.4 64.4	96.7 96.7	$\begin{array}{\|l\|} \hline 85.9 \\ 85.9 \\ \hline \end{array}$	$\begin{aligned} & 129 \\ & 129 \\ & \hline \end{aligned}$
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	$\begin{aligned} & \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 43.0 \\ 39.7 \\ 43.0 \\ \hline \end{array}$	$\begin{aligned} & \hline 64.4 \\ & 59.5 \\ & 64.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 53.7 \\ & 49.6 \\ & 5.7 \end{aligned}$	$\begin{array}{\|l\|} \hline 80.5 \\ 74.4 \\ 80.5 \\ \hline \end{array}$	$\begin{aligned} & 64.4 \\ & 59.5 \\ & 64.4 \end{aligned}$	96.7 89.3 96.7	$\begin{array}{\|l\|} \hline 81.8 \\ 71.1 \\ 81.8 \\ \hline \end{array}$	$\begin{aligned} & 123 \\ & 106 \\ & 123 \end{aligned}$
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	$\begin{aligned} & \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 43.0 \\ 39.7 \\ 43.0 \\ \hline \end{array}$	$\begin{aligned} & 64.4 \\ & 59.5 \\ & 64.4 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 53.7 \\ 49.6 \\ 53.7 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 80.5 \\ 74.4 \\ 80.5 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 64.4 \\ 59.5 \\ 64.4 \\ \hline \end{array}$	96.7 89.3 96.7	$\begin{array}{\|l\|} \hline 85.9 \\ 79.4 \\ 85.9 \\ \hline \end{array}$	$\begin{aligned} & \hline 129 \\ & 119 \\ & 129 \\ & \hline \end{aligned}$
Notes: to direction of load Slip-critical bolt values assume no more than one filler has been provided											

$F_{y}=36 \mathrm{ksi}$ Angles	Table 10-1 (continued) All-Bolted Double-Angle Connections									-in. Bolts				
	Bolt and Angle Available Strength, kips													
$\begin{gathered} 2 \text { Rows } \\ \hline \text { W12, 10, } 8 \end{gathered}$	Bolt Group	Thread Cond.	Hole Type	Angle Thickness, in.										
				1/4		5/16		3/8		1/2				
				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD			
	$\begin{gathered} \text { Group } \\ \text { A } \end{gathered}$	$\begin{aligned} & \hline N \\ & X \end{aligned}$	$\begin{aligned} & \hline \text { STD/SSLT } \\ & \text { STD/SSLT } \end{aligned}$	27.2 27.2	40.8 40.8	34.0 34.0	51.0 51.0	40.8 40.8	61.2 61.2 8	54.4	$\begin{aligned} & \hline 81.6 \\ & 81.6 \end{aligned}$			
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	STD	27.2	40.8	34.0	51.0	40.8	61.2	46.1	69.2			
			OVS	25.0	37.5	31.3	46.9	36.0	53.9	39.3	58.8			
			SSLT	27.2	40.8	34.0	51.0	40.8	61.2	46.1	69.2			
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$		27.2	40.8	34.0	51.0	40.8	61.2	54.4	81.6			
			OVS	25.0	37.5	31.3	46.9	37.5	56.3	50.0	75.0			
			SSLT	27.2	40.8	34.0	51.0	40.8	61.2	54.4	81.6			
	Group B	N	STD/SSLT	27.2	40.8	34.0	51.0	40.8	61.2	54.4	81.6			
		X	STD/SSLT	27.2	40.8	34.0	51.0	40.8	61.2	54.4	81.6			
		$\begin{gathered} \text { SC } \\ \text { Class A } \end{gathered}$	STD	27.2	40.8	34.0	51.0	40.8	61.2	52.9	79.3			
			OVS	25.0	37.5	31.3	46.9	37.5	56.3	46.4	69.5			
			SSLT	27.2	40.8	34.0	51.0	40.8	61.2	52.9	79.3			
		$\begin{gathered} \text { SC } \\ \text { Class B } \end{gathered}$	STD	27.2	40.8	34.0	51.0	40.8	61.2	54.4	81.6			
			OVS	25.0	37.5	31.3	46.9	37.5	56.3	50.0	75.0			
			SSLT	27.2	40.8	34.0	51.0	40.8	61.2	54.4	81.6			
Notes: $\begin{array}{rrr} \text { STD } & =\text { Standard holes } & \mathrm{N}=\text { Threads included } \\ \text { OVS } & =\text { Oversized holes } & \mathrm{X}=\text { Threads excluded } \\ \text { SSLT } & =\text { Short-slotted holes transverse } & \text { SC }=\text { Slip critical } \\ & \text { to direction of load } & \end{array}$ Slip-critical bolt values assume no more than one filler has been provided.														

Table 10-3 Available Weld Strength of All-Double-Angle Connections								
l, in.	Welds A (70 ksi)				Welds B (70 ksi)			
	Weld Size, in.	R_{n} / Ω	$\phi \boldsymbol{R}_{\boldsymbol{n}}$	Minimum Web Thickness, in.	Weld Size, in.	R_{n} / Ω	$\phi \boldsymbol{R}_{\boldsymbol{n}}$	Minimum Support Thickness, in.
		kips	kips			kips	kips	
		ASD	LRFD			ASD	LRFD	
36	5/16	397	596	0.476	$3 / 8$	372	558	0.286
	$1 / 4$	318	477	0.381	5/16	310	465	0.238
	3/16	238	357	0.286	$1 / 4$	248	372	0.190
34	5/16	379	568	0.476	$3 / 8$	349	523	0.286
	$1 / 4$	303	455	0.381	5/16	291	436	0.238
	3/16	227	341	0.286	$1 / 4$	232	349	0.190
32	5/16	360	541	0.476	3/8	325	487	0.286
	$1 / 4$	288	432	0.381	5/16	271	406	0.238
	3/16	216	324	0.286	$1 / 4$	217	325	0.190
30	5/16	341	512	0.476	$3 / 8$	301	452	0.286
	1/4	273	410	0.381	5/16	251	377	0.238
	3/16	205	307	0.286	$1 / 4$	201	301	0.190
28	5/16	323	484	0.476	$3 / 8$	277	416	0.286
	$1 / 4$	258	387	0.381	5/16	231	347	0.238
	3/16	194	291	0.286	$1 / 4$	185	277	0.190
26	5/16	304	457	0.476	$3 / 8$	253	380	0.286
	$1 / 4$	243	365	0.381	5/16	211	317	0.238
	3/16	183	274	0.286	$1 / 4$	169	253	0.190
24	5/16	286	429	0.476	3/8	229	344	0.286
	$1 / 4$	229	343	0.381	5/16	191	286	0.238
	3/16	171	257	0.286	$1 / 4$	153	229	0.190
22	5/16	267	401	0.476	$3 / 8$	205	308	0.286
	$1 / 4$	214	321	0.381	5/16	171	256	0.238
	3/16	160	240	0.286	$1 / 4$	137	205	0.190
20	5/16	248	372	0.476	$3 / 8$	181	271	0.286
	$1 / 4$	198	297	0.381	5/16	151	226	0.238
	3/16	149	223	0.286	$1 / 4$	121	181	0.190
18	5/16	227	341	0.476	$3 / 8$	157	235	0.286
	$1 / 4$	182	273	0.381	5/16	130	196	0.238
	3/16	136	205	0.286	$1 / 4$	104	157	0.190
16	5/16	207	310	0.476	3/8	148	222	0.286
	1/4	166	248	0.381	5/16	123	185	0.238
	3/16	124	186	0.286	$1 / 4$	98.5	148	0.190
ASD	LRFD						Beam	
$\Omega=2.00$	$\phi=0.75$						$F_{y}=50$	$F_{u}=65 \mathrm{ksi}$

	Avail		Tab Nel leLength $2 \times$ wel Welds B in. for $l \geq$ in. for $l<$	10-3 (co Streng ngle turn		All tio <Welds	$\begin{aligned} & \text { Nel } \\ & \text { IS } \end{aligned}$	led
l, in.	Welds A (70 ksi)				Welds B (70 ksi)			
	Weld Size, in.	R_{n} / Ω	$\phi \boldsymbol{R}_{n}$	$\begin{gathered} \begin{array}{c} \text { Minimum } \\ \text { Web } \\ \text { Thickness, in. } \end{array} \end{gathered}$	Weld Size, in.	R_{n} / Ω	$\phi \boldsymbol{R}_{\boldsymbol{n}}$	Minimum Support Thickness, in.
		kips	kips			kips	kips	
		ASD	LRFD			ASD	LRFD	
14	5/16	186	279	0.476	3/8	123	185	0.286
	$1 / 4$	149	223	0.381	5/16	103	154	0.238
	3/16	111	167	0.286	$1 / 4$	82.3	123	0.190
12	5/16	164	246	0.476	3/8	99.3	149	0.286
	$1 / 4$	131	197	0.381	5/16	82.8	124	0.238
	3/16	98.5	148	0.286	$1 / 4$	66.2	99.3	0.190
10	5/16	141	211	0.476	$3 / 8$	75.7	113	0.286
	$1 / 4$	112	169	0.381	5/16	63.1	94.6	0.238
	3/16	84.3	127	0.286	$1 / 4$	50.4	75.7	0.190
9	5/16	129	193	0.476	$3 / 8$	64.2	96.3	0.286
	$1 / 4$	103	154	0.381	5/16	53.5	80.2	0.238
	3/16	77.2	116	0.286	$1 / 4$	42.8	64.2	0.190
8	5/16	116	174	0.476	$3 / 8$	53.0	79.5	0.286
	$1 / 4$	92.9	139	0.381	5/16	44.2	66.3	0.238
	3/16	69.7	105	0.286	$1 / 4$	35.4	53.0	0.190
7	5/16	103	155	0.476	$3 / 8$	42.4	63.6	0.286
	$1 / 4$	82.6	124	0.381	5/16	35.3	53.0	0.238
	3/16	62.0	92.9	0.286	$1 / 4$	28.3	42.4	0.190
6	5/16	90.4	136	0.476	$3 / 8$	32.5	48.7	0.286
	$1 / 4$	72.3	108	0.381	5/16	27.0	40.6	0.238
	3/16	54.2	81.3	0.286	$1 / 4$	21.6	32.5	0.190
5	5/16	77.1	116	0.476	$3 / 8$	23.4	35.1	0.286
	$1 / 4$	61.7	92.6	0.381	5/16	19.5	29.2	0.238
	3/16	46.3	69.4	0.286	$1 / 4$	15.6	23.4	0.190
4 ASD	5/16	64.2	96.3	0.476	$3 / 8$	15.5	23.2	0.286
	$1 / 4$	51.4	77.0	0.381	5/16	12.9	19.3	0.238
	3/16	38.5	57.8	0.286	$1 / 4$	10.3	15.5	0.190
	LRFD						Beam	
$\Omega=2.00$	$\phi=0$						$F_{y}=50$	$F_{u}=65 \mathrm{ksi}$

SHEAR END-PLATE CONNECTIONS

A shear end-plate connection is made with a plate length less than the supported beam depth, as illustrated in Figure 10-6. The end plate is always shop-welded to the beam web with fillet welds on each side and usually field-bolted to the supporting member. Welds connecting the end plate to the beam web should not be returned across the thickness of the beam web at the top or bottom of the end plate because of the danger of creating a notch in the beam web.

If the end plate is field-welded to the support, adequate flexibility must be provided in the connection. Line welds are placed along the vertical edges of the plate with a return at the top per AISC Specification Section J2.2b. Note that welding across the entire top of the plate must be avoided as it would inhibit the flexibility and, therefore, the necessary end rotation of the connection. The performance of the resulting connection would not be as intended for simple shear connections.

Design Checks

The available strength of a shear end-plate connection is determined from the applicable limit states for bolts (see Part 7), welds (see Part 8), and connecting elements (see Part 9). Note that the limit state of shear rupture of the beam web must be checked along the length of weld connecting the end plate to the beam web. In all cases, the available strength, ϕR_{n} or R_{n} / Ω, must equal or exceed the required strength, R_{u} or R_{a}.

Recommended End-Plate Thickness

To provide for flexibility, the combination of plate thickness and gage should be consistent with the recommendations given previously for a double-angle connection of similar thickness and gage.

Shop and Field Practices

When framing to a column web, the associated constructability considerations should be addressed (see the preceding discussion under "Constructability Considerations").

When framing to a column flange, provision must be made for possible mill variation in the depth of the columns, tolerance in column/foundation placement, particularly in fairly

Fig. 10-6. Shear end-plate connections.
long runs (i.e., six or more bays of framing). The beam length can be shortened to provide for mill overrun with shims furnished at the appropriate intervals to fill the resulting gaps or to provide for mill underrun. Shear end-plate connections require close control in cutting the beam to the proper length and in squaring the beam ends such that both end plates are parallel, particularly when beams are cambered.

DESIGN TABLE DISCUSSION (TABLE 10-4)

Table 10-4. Bolted/Welded Shear End-Plate Connections

Table 10-4 is a design aid for shear end-plate connections bolted to the supporting member and welded to the supported beam. Available strengths are tabulated for supported and supporting member material with $F_{y}=50 \mathrm{ksi}$ and $F_{u}=65 \mathrm{ksi}$, and end-plate material with $F_{y}=36 \mathrm{ksi}$ and $F_{u}=58 \mathrm{ksi}$. Electrode strength is assumed to be 70 ksi . All values, including slip-critical bolt available strengths, are for comparison with the governing LRFD or ASD load combination.

Tabulated bolt and end-plate available strengths consider the limit states of bolt shear, slip resistance for slip-critical bolts, bolt bearing and tearout on the end plate, shear yielding of the end plate, shear rupture of the end plate, and block shear rupture of the end plate. Values are included for 2 through 12 rows of $3 / 4$-in.-, $7 / 8$-in.- and 1 -in.-diameter Group A and Group B bolts at $3-\mathrm{in}$. spacing. End-plate edge distances, $l_{e v}$ and $l_{e h}$, are assumed to be $1^{1 / 1} 4 \mathrm{in}$. The total end plate length, l, is based on this bolt spacing and edge distance, $l_{e v}$.

Tabulated weld available strengths consider the limit state of weld shear assuming an effective weld length equal to the end-plate length minus twice the weld size. The tabulated minimum beam web thickness matches the shear rupture strength of the web material to the strength of the weld metal. As derived in Part 9, the minimum supported beam web thickness for two lines of weld is

$$
\begin{equation*}
t_{\min }=\frac{6.19 D}{F_{u}} \tag{9-3}
\end{equation*}
$$

where D is the number of sixteenths-of-an-inch in the weld size. When less than the minimum material thickness is present, the tabulated weld available strength must be reduced by the ratio of the thickness provided to the minimum thickness.

Tabulated supporting member available strengths, per in. of flange or web thickness, consider the limit state of bolt bearing only.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{\begin{tabular}{ccc}
\& Table 10-4 (continued) \& \(3 / 4\)-in. Bolts \\
W44, 40 \& Bolted/Welded \& 4near End-Plate
\end{tabular}} \\
\hline \multicolumn{9}{|c|}{Bolt and End-Plate Available Strength, kips} \\
\hline \multirow{3}{*}{Bolt Group} \& \multirow[t]{3}{*}{Thread Cond.} \& \multirow[t]{3}{*}{\begin{tabular}{l}
Hole \\
Type
\end{tabular}} \& \multicolumn{6}{|c|}{End-Plate Thickness, in.} \\
\hline \& \& \& \multicolumn{2}{|c|}{\(1 / 4\)} \& \multicolumn{2}{|l|}{5/16} \& \multicolumn{2}{|c|}{3/8} \\
\hline \& \& \& ASD \& LRFD \& ASD \& LRFD \& ASD \& LRFD \\
\hline \multirow{3}{*}{Group A} \& \[
\begin{aligned}
\& \mathrm{N} \\
\& \mathrm{X}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { STD } \\
\& \text { STD }
\end{aligned}
\] \& \[
\begin{aligned}
\& 181 \\
\& 181
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 271 \\
\& 271
\end{aligned}
\] \& \[
\begin{aligned}
\& 226 \\
\& 226
\end{aligned}
\] \& \[
\begin{aligned}
\& 338 \\
\& 338
\end{aligned}
\] \& \[
\begin{aligned}
\& 261 \\
\& 271
\end{aligned}
\] \& \[
\begin{aligned}
\& 391 \\
\& 406
\end{aligned}
\] \\
\hline \& SC Class A \& \[
\begin{gathered}
\hline \text { STD } \\
\text { OVS } \\
\text { SSLT }
\end{gathered}
\] \& \[
\begin{aligned}
\& 139 \\
\& 119 \\
\& 139
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 209 \\
\& 178 \\
\& 209
\end{aligned}
\] \& \[
\begin{aligned}
\& 139 \\
\& 119 \\
\& 139
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 209 \\
\& 178 \\
\& 209
\end{aligned}
\] \& \[
\begin{aligned}
\& 139 \\
\& 119 \\
\& 139
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 209 \\
\& 178 \\
\& 209
\end{aligned}
\] \\
\hline \& SC Class B \& \[
\begin{gathered}
\text { STD } \\
\text { OVS } \\
\text { SSLT }
\end{gathered}
\] \& \[
\begin{aligned}
\& 181 \\
\& 180 \\
\& 179
\end{aligned}
\] \& \[
\begin{aligned}
\& 271 \\
\& 269 \\
\& 269
\end{aligned}
\] \& \[
\begin{aligned}
\& 226 \\
\& 197 \\
\& 224
\end{aligned}
\] \& \[
\begin{aligned}
\& 338 \\
\& 294 \\
\& 336
\end{aligned}
\] \& \[
\begin{aligned}
\& 232 \\
\& 198 \\
\& 232
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 348 \\
\& 296 \\
\& 348
\end{aligned}
\] \\
\hline \multirow{3}{*}{Group B} \& \[
\begin{aligned}
\& \mathrm{N} \\
\& \mathrm{X}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { STD } \\
\& \text { STD }
\end{aligned}
\] \& \[
\begin{aligned}
\& 181 \\
\& 181
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 271 \\
\& 271 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 226 \\
\& 226
\end{aligned}
\] \& \[
\begin{aligned}
\& 338 \\
\& 338
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 271 \\
\& 271
\end{aligned}
\] \& \[
\begin{aligned}
\& 406 \\
\& 406
\end{aligned}
\] \\
\hline \& SC Class A \& \[
\begin{aligned}
\& \text { STD } \\
\& \text { OVS } \\
\& \text { SSLT } \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 173 \\
\& 148 \\
\& 173 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 259 \\
\& 222 \\
\& 259 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 174 \\
\& 148 \\
\& 174 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 261 \\
\& 222 \\
\& 261 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 174 \\
\& 148 \\
\& 174
\end{aligned}
\] \& \[
\begin{aligned}
\& 261 \\
\& 222 \\
\& 261 \\
\& \hline
\end{aligned}
\] \\
\hline \& SC Class B \& \[
\begin{aligned}
\& \text { STD } \\
\& \text { OVS } \\
\& \text { SSLT }
\end{aligned}
\] \& \[
\begin{aligned}
\& 181 \\
\& 180 \\
\& 179
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 271 \\
\& 269 \\
\& 269
\end{aligned}
\] \& \[
\begin{aligned}
\& 226 \\
\& 225 \\
\& 224
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 338 \\
\& 337 \\
\& 336
\end{aligned}
\] \& \[
\begin{aligned}
\& 271 \\
\& 245 \\
\& 269 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 406 \\
\& 367 \\
\& 403
\end{aligned}
\] \\
\hline \multicolumn{6}{|c|}{Weld and Beam Web Available Strength, kips} \& \multicolumn{3}{|c|}{\multirow[t]{2}{*}{Support Available Strength per Inch Thickness, kip/in.}} \\
\hline \multirow[t]{2}{*}{70-ksi Weld Size, in.} \& \multicolumn{3}{|c|}{\multirow[t]{2}{*}{Minimum Beam Web Thickness, in.}} \& \begin{tabular}{l}
\(R_{n} / \Omega\) \\
\hline kips \\
\hline
\end{tabular} \& \begin{tabular}{c}
\(\phi \boldsymbol{R}_{\boldsymbol{n}}\) \\
\hline kips
\end{tabular} \& \& \& \\
\hline \& \& \& \& ASD \& LRFD \& AS \& \& RFD \\
\hline \[
\begin{aligned}
\& 3 / 16 \\
\& 1 / 4 \\
\& 5 / 16 \\
\& 3 / 8
\end{aligned}
\] \& \multicolumn{2}{|r|}{\[
\begin{aligned}
\& 0.286 \\
\& 0.381 \\
\& 0.476 \\
\& 0.571
\end{aligned}
\]} \& \& \[
\begin{aligned}
\& 179 \\
\& 238 \\
\& 296 \\
\& 354
\end{aligned}
\] \& \[
\begin{aligned}
\& 268 \\
\& 356 \\
\& 444 \\
\& 530
\end{aligned}
\] \& 129 \& \& 930 \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
STD = Standard holes \\
OVS = Oversized holes \\
SSLT = Short-slotted holes transverse \\
to direction of load
\end{tabular}} \& \multicolumn{3}{|c|}{\[
\begin{aligned}
\mathrm{N} \& =\text { Threads included } \\
\mathrm{X} \& =\text { Threads excluded } \\
\text { SC } \& =\text { Slip critical }
\end{aligned}
\]} \& \& End-P

$F_{y}=36$

$F_{u}=58$ \& \& | eam |
| :--- |
| 50 ks 65 ks |

\hline \multicolumn{9}{|l|}{Note: Slip-critical bolt values assume no more than one filler has been provided.}

\hline
\end{tabular}

3/4 $4^{-\mathrm{in} \text {. Bolts }}$ 10 Rows $l=291 / 2 \mathrm{in} .$ Table 10-4 (continued) Bolted/Welded W44, 40, Shear End-Plate								
Bolt and End-Plate Available Strength, kips								
Bolt Group	Thread Cond.	Hole Type	End-Plate Thickness, in.					
			$1 / 4$		5/16		3/8	
			ASD	LRFD	ASD	LRFD	ASD	LRFD
Group A	$\begin{aligned} & \mathrm{N} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \text { STD } \\ & \text { STD } \end{aligned}$	$\begin{aligned} & 164 \\ & 164 \end{aligned}$	$\begin{aligned} & 246 \\ & 246 \end{aligned}$	$\begin{aligned} & 205 \\ & 205 \end{aligned}$	$\begin{aligned} & 308 \\ & 308 \end{aligned}$	$\begin{aligned} & 237 \\ & 246 \end{aligned}$	$\begin{aligned} & 355 \\ & 370 \end{aligned}$
	SC Class A	$\begin{aligned} & \hline \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 127 \\ & 108 \\ & 127 \end{aligned}$	$\begin{aligned} & \hline 190 \\ & 161 \\ & 190 \end{aligned}$	$\begin{aligned} & 127 \\ & 108 \\ & 127 \end{aligned}$	$\begin{aligned} & 190 \\ & 161 \\ & 190 \end{aligned}$	$\begin{aligned} & 127 \\ & 108 \\ & 127 \end{aligned}$	$\begin{aligned} & \hline 190 \\ & 161 \\ & 190 \end{aligned}$
	SC Class B	$\begin{gathered} \text { STD } \\ \text { OVS } \\ \text { SSLT } \end{gathered}$	$\begin{aligned} & \hline 164 \\ & 163 \\ & 163 \end{aligned}$	$\begin{aligned} & 246 \\ & 245 \\ & 244 \end{aligned}$	$\begin{aligned} & 205 \\ & 179 \\ & 204 \end{aligned}$	$\begin{aligned} & \hline 308 \\ & 268 \\ & 306 \end{aligned}$	$\begin{aligned} & \hline 211 \\ & 180 \\ & 211 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 316 \\ & 269 \\ & 316 \end{aligned}$
Group B	$\begin{aligned} & \mathrm{N} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \hline \text { STD } \\ & \text { STD } \end{aligned}$	$\begin{aligned} & 164 \\ & 164 \end{aligned}$	$\begin{aligned} & 246 \\ & 246 \end{aligned}$	$\begin{aligned} & 205 \\ & 205 \end{aligned}$	$\begin{aligned} & 308 \\ & 308 \end{aligned}$	$\begin{aligned} & \hline 246 \\ & 246 \\ & \hline \end{aligned}$	$\begin{aligned} & 370 \\ & 370 \end{aligned}$
	SC Class A	$\begin{aligned} & \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 157 \\ & 135 \\ & 157 \end{aligned}$	$\begin{aligned} & \hline 236 \\ & 202 \\ & 236 \\ & \hline \end{aligned}$	$\begin{aligned} & 158 \\ & 135 \\ & 158 \end{aligned}$	$\begin{aligned} & 237 \\ & 202 \\ & 237 \end{aligned}$	$\begin{aligned} & 158 \\ & 135 \\ & 158 \end{aligned}$	$\begin{aligned} & \hline 237 \\ & 202 \\ & 237 \end{aligned}$
	SC Class B	$\begin{aligned} & \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & \hline 164 \\ & 163 \\ & 163 \end{aligned}$	$\begin{aligned} & 246 \\ & 245 \\ & 244 \end{aligned}$	$\begin{aligned} & 205 \\ & 204 \\ & 204 \end{aligned}$	$\begin{aligned} & \hline 308 \\ & 306 \\ & 306 \end{aligned}$	$\begin{aligned} & 246 \\ & 223 \\ & 244 \end{aligned}$	$\begin{aligned} & \hline 370 \\ & 333 \\ & 367 \end{aligned}$
Weld and Beam Web Available Strength, kips						Support Available Strength per Inch Thickness, kip/in.		
70-ksi Weld Size, in.	Minimum Beam Web Thickness, in.			R_{n} / Ω kips	$\begin{gathered} \phi \boldsymbol{R}_{\boldsymbol{n}} \\ \hline \text { kips } \end{gathered}$			
				ASD	LRFD	AS		RFD
$\begin{gathered} 3 / 16 \\ 1 / 4 \\ 5 / 16 \\ 3 / 8 \end{gathered}$	$\begin{aligned} & 0.286 \\ & 0.381 \\ & 0.476 \\ & 0.571 \end{aligned}$			$\begin{aligned} & 162 \\ & 215 \\ & 268 \\ & 320 \end{aligned}$	$\begin{aligned} & 243 \\ & 323 \\ & 402 \\ & 480 \end{aligned}$	117		1760
$\begin{aligned} \text { STD } & =\text { Standard holes } \\ \text { OVS } & =\text { Oversized holes } \\ \text { SSLT } & =\text { Short-slotted holes transverse } \\ & \text { to direction of load } \end{aligned}$		$\begin{aligned} \mathrm{N} & =\text { Threads included } \\ \mathrm{X} & =\text { Threads excluded } \\ \text { SC } & =\text { Slip critical } \end{aligned}$				End-P $F_{y}=36$ $F_{u}=58$		eam 50 ks 65 ks
Note: Slip-critical bolt values assume no more than one filler has been provided.								

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{\begin{tabular}{ccc}
\& Table 10-4 (continued) \& \(3 / 4\)-in. Bolts \\
W44, 40, \& Bolted/Welded \& 4nderelate \\
36,33 \& Shear End-P
\end{tabular}} \\
\hline \multicolumn{9}{|c|}{Bolt and End-Plate Available Strength, kips} \\
\hline \multirow{3}{*}{Bolt Group} \& \multirow[t]{3}{*}{Thread Cond.} \& \multirow[t]{3}{*}{\begin{tabular}{l}
Hole \\
Type
\end{tabular}} \& \multicolumn{6}{|c|}{End-Plate Thickness, in.} \\
\hline \& \& \& \multicolumn{2}{|c|}{1/4} \& \multicolumn{2}{|c|}{5/16} \& \multicolumn{2}{|c|}{3/8} \\
\hline \& \& \& ASD \& LRFD \& ASD \& LRFD \& ASD \& LRFD \\
\hline \multirow{3}{*}{Group A} \& \[
\begin{aligned}
\& \mathrm{N} \\
\& \mathrm{X}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { STD } \\
\& \text { STD }
\end{aligned}
\] \& \[
\begin{aligned}
\& 148 \\
\& 148
\end{aligned}
\] \& \[
\begin{aligned}
\& 222 \\
\& 222
\end{aligned}
\] \& \[
\begin{aligned}
\& 185 \\
\& 185
\end{aligned}
\] \& \[
\begin{aligned}
\& 278 \\
\& 278
\end{aligned}
\] \& \[
\begin{aligned}
\& 213 \\
\& 222
\end{aligned}
\] \& \[
\begin{aligned}
\& 319 \\
\& 333
\end{aligned}
\] \\
\hline \& SC Class A \& \[
\begin{aligned}
\& \hline \text { STD } \\
\& \text { OVS } \\
\& \text { SSLT }
\end{aligned}
\] \& \[
\begin{gathered}
114 \\
97.1 \\
114 \\
\hline
\end{gathered}
\] \& \[
\begin{aligned}
\& \hline 171 \\
\& 145 \\
\& 171 \\
\& \hline
\end{aligned}
\] \& \[
\begin{gathered}
114 \\
97.1 \\
114 \\
\hline
\end{gathered}
\] \& \[
\begin{aligned}
\& \hline 171 \\
\& 145 \\
\& 171
\end{aligned}
\] \& \[
\begin{gathered}
114 \\
97.1 \\
114
\end{gathered}
\] \& \[
\begin{aligned}
\& \hline 171 \\
\& 145 \\
\& 171
\end{aligned}
\] \\
\hline \& SC Class B \& \[
\begin{gathered}
\text { STD } \\
\text { OVS } \\
\text { SSLT }
\end{gathered}
\] \& \[
\begin{aligned}
\& \hline 148 \\
\& 147 \\
\& 147
\end{aligned}
\] \& \[
\begin{aligned}
\& 222 \\
\& 221 \\
\& 220
\end{aligned}
\] \& \[
\begin{aligned}
\& 185 \\
\& 161 \\
\& 183
\end{aligned}
\] \& \[
\begin{aligned}
\& 278 \\
\& 241 \\
\& 275
\end{aligned}
\] \& \[
\begin{aligned}
\& 190 \\
\& 162 \\
\& 190
\end{aligned}
\] \& \[
\begin{aligned}
\& 285 \\
\& 242 \\
\& 285
\end{aligned}
\] \\
\hline \multirow{3}{*}{Group B} \& \[
\begin{aligned}
\& \mathrm{N} \\
\& \mathrm{X}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { STD } \\
\& \text { STD }
\end{aligned}
\] \& \[
\begin{aligned}
\& 148 \\
\& 148
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 222 \\
\& 222
\end{aligned}
\] \& \[
\begin{aligned}
\& 185 \\
\& 185
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 278 \\
\& 278
\end{aligned}
\] \& \[
\begin{aligned}
\& 222 \\
\& 222
\end{aligned}
\] \& \[
\begin{aligned}
\& 333 \\
\& 333
\end{aligned}
\] \\
\hline \& SC Class A \& \[
\begin{aligned}
\& \text { STD } \\
\& \text { OVS } \\
\& \text { SSLT } \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 141 \\
\& 121 \\
\& 141
\end{aligned}
\] \& \[
\begin{aligned}
\& 212 \\
\& 182 \\
\& 212 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 142 \\
\& 121 \\
\& 142 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 214 \\
\& 182 \\
\& 214 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 142 \\
\& 121 \\
\& 142
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 214 \\
\& 182 \\
\& 214 \\
\& \hline
\end{aligned}
\] \\
\hline \& SC Class B \& \[
\begin{aligned}
\& \text { STD } \\
\& \text { OVS } \\
\& \text { SSLT }
\end{aligned}
\] \& \[
\begin{aligned}
\& 148 \\
\& 147 \\
\& 147
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 222 \\
\& 221 \\
\& 220
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 185 \\
\& 184 \\
\& 183
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 278 \\
\& 276 \\
\& 275 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 222 \\
\& 200 \\
\& 220 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 333 \\
\& 300 \\
\& 330
\end{aligned}
\] \\
\hline \multicolumn{6}{|c|}{Weld and Beam Web Available Strength, kips} \& \multicolumn{3}{|c|}{\multirow[t]{2}{*}{Support Available Strength per Inch Thickness, kip/in.}} \\
\hline \multirow[t]{2}{*}{70-ksi Weld Size, in.} \& \multicolumn{3}{|c|}{\multirow[t]{2}{*}{Minimum Beam Web Thickness, in.}} \& \begin{tabular}{c}
\(R_{n} / \Omega\) \\
\hline kips \\
\hline
\end{tabular} \& \begin{tabular}{c}
\(\phi \boldsymbol{R}_{\boldsymbol{n}}\) \\
\hline \(\mathbf{k i p s}\)
\end{tabular} \& \& \& \\
\hline \& \& \& \& ASD \& LRFD \& AS \& \& RFD \\
\hline \[
\begin{aligned}
\& 3 / 16 \\
\& 1 / 4 \\
\& 5 / 16 \\
\& 3 / 8
\end{aligned}
\] \& \multicolumn{2}{|r|}{\[
\begin{aligned}
\& 0.286 \\
\& 0.381 \\
\& 0.476 \\
\& 0.571
\end{aligned}
\]} \& \& \[
\begin{aligned}
\& 145 \\
\& 193 \\
\& 240 \\
\& 287
\end{aligned}
\] \& \[
\begin{aligned}
\& 218 \\
\& 290 \\
\& 360 \\
\& 430
\end{aligned}
\] \& 105 \& \& 580 \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
\text { STD } \& =\text { Standard holes } \\
\text { OVS } \& =\text { Oversized holes } \\
\text { SSLT } \& =\text { Short-slotted holes transverse } \\
\& \text { to direction of load }
\end{aligned}
\]} \& \multicolumn{3}{|c|}{\[
\begin{aligned}
\mathrm{N} \& =\text { Threads included } \\
\mathrm{X} \& =\text { Threads excluded } \\
\text { SC } \& =\text { Slip critical }
\end{aligned}
\]} \& \& End-P

$F_{y}=3$

$F_{u}=5$ \& \& | eam |
| :--- |
| 50 ks 65 ks |

\hline \multicolumn{9}{|l|}{Note: Slip-critical bolt values assume no more than one filler has been provided.}

\hline
\end{tabular}

$3 / 4$-in. Bolts Bable 10-4 (continued) 8 Rows Shear End-Plate 36,40, $l=231 / 2$ in. Connections 30								
Bolt and End-Plate Available Strength, kips								
Bolt Group	Thread Cond.	Hole Type	End-Plate Thickness, in.					
			1/4		5/16		3/8	
			ASD	LRFD	ASD	LRFD	ASD	LRFD
Group A	$\begin{aligned} & \mathrm{N} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \hline \text { STD } \\ & \text { STD } \end{aligned}$	$\begin{aligned} & 132 \\ & 132 \end{aligned}$	$\begin{aligned} & 198 \\ & 198 \end{aligned}$	$\begin{aligned} & 165 \\ & 165 \end{aligned}$	$\begin{aligned} & 247 \\ & 247 \end{aligned}$	$\begin{aligned} & 189 \\ & 198 \end{aligned}$	$\begin{aligned} & 284 \\ & 297 \end{aligned}$
	SC Class A	$\begin{aligned} & \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \end{aligned}$	$\begin{gathered} 101 \\ 86.3 \\ 101 \end{gathered}$	$\begin{aligned} & \hline 152 \\ & 129 \\ & 152 \end{aligned}$	$\begin{gathered} 101 \\ 86.3 \\ 101 \end{gathered}$	$\begin{aligned} & 152 \\ & 129 \\ & 152 \end{aligned}$	$\begin{gathered} \hline 101 \\ 86.3 \\ 101 \end{gathered}$	$\begin{aligned} & 152 \\ & 129 \\ & 152 \end{aligned}$
	SC Class B	$\begin{gathered} \text { STD } \\ \text { OVS } \\ \text { SSLT } \end{gathered}$	$\begin{aligned} & 132 \\ & 131 \\ & 131 \end{aligned}$	$\begin{aligned} & \hline 198 \\ & 197 \\ & 196 \end{aligned}$	$\begin{aligned} & 165 \\ & 143 \\ & 163 \end{aligned}$	$\begin{aligned} & 247 \\ & 214 \\ & 245 \end{aligned}$	$\begin{aligned} & 169 \\ & 144 \\ & 169 \end{aligned}$	$\begin{aligned} & \hline 253 \\ & 215 \\ & 253 \end{aligned}$
Group B	$\begin{aligned} & \mathrm{N} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \hline \text { STD } \\ & \text { STD } \end{aligned}$	$\begin{aligned} & 132 \\ & 132 \end{aligned}$	$\begin{aligned} & 198 \\ & 198 \end{aligned}$	$\begin{aligned} & 165 \\ & 165 \end{aligned}$	$\begin{aligned} & \hline 247 \\ & 247 \end{aligned}$	$\begin{aligned} & 198 \\ & 198 \end{aligned}$	$\begin{aligned} & 297 \\ & 297 \end{aligned}$
	SC Class A	$\begin{gathered} \text { STD } \\ \text { OVS } \\ \text { SSLT } \end{gathered}$	$\begin{aligned} & 125 \\ & 108 \\ & 125 \end{aligned}$	$\begin{aligned} & \hline 188 \\ & 161 \\ & 188 \end{aligned}$	$\begin{aligned} & 127 \\ & 108 \\ & 127 \end{aligned}$	$\begin{aligned} & 190 \\ & 161 \\ & 190 \end{aligned}$	$\begin{aligned} & 127 \\ & 108 \\ & 127 \end{aligned}$	$\begin{aligned} & 190 \\ & 161 \\ & 190 \end{aligned}$
	SC Class B	$\begin{gathered} \text { STD } \\ \text { OVS } \\ \text { SSLT } \end{gathered}$	$\begin{aligned} & 132 \\ & 131 \\ & 131 \end{aligned}$	$\begin{aligned} & 198 \\ & 197 \\ & 196 \end{aligned}$	$\begin{aligned} & \hline 165 \\ & 164 \\ & 163 \end{aligned}$	$\begin{aligned} & 247 \\ & 246 \\ & 245 \end{aligned}$	$\begin{aligned} & \hline 198 \\ & 178 \\ & 196 \end{aligned}$	$\begin{aligned} & \hline 297 \\ & 266 \\ & 294 \end{aligned}$
Weld and Beam Web Available Strength, kips						Support Available Strength per Inch Thickness, kip/in.		
70-ksi Weld Size, in.	Minimum Beam Web Thickness, in.			R_{n} / Ω kips	$\begin{aligned} & \hline \phi \boldsymbol{R}_{\boldsymbol{n}} \\ & \hline \text { kips } \end{aligned}$			
				ASD	LRFD	AS		RFD
$\begin{gathered} 3 / 16 \\ 1 / 4 \\ 5 / 16 \\ 3 / 8 \end{gathered}$	$\begin{aligned} & 0.286 \\ & 0.381 \\ & 0.476 \\ & 0.571 \end{aligned}$			$\begin{aligned} & 129 \\ & 171 \\ & 212 \\ & 253 \end{aligned}$	$\begin{aligned} & 193 \\ & 256 \\ & 318 \\ & 380 \end{aligned}$	936		1400
STD $=$ Standard holes OVS $=$ Oversized holes SSLT $=$ Short-slotted holes transverse to direction of load		$\begin{aligned} \mathrm{N} & =\text { Threads included } \\ \mathrm{X} & =\text { Threads excluded } \\ \text { SC } & =\text { Slip critical } \end{aligned}$				$\begin{aligned} & F_{y}=36 \mathrm{ksi} \\ & F_{u}=58 \mathrm{ksi} \end{aligned}$		$\begin{aligned} & F_{y}=50 \mathrm{ksi} \\ & F_{u}=65 \mathrm{ksi} \end{aligned}$
Note: Slip-critical bolt values assume no more than one filler has been provided.								

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{\begin{tabular}{l}
3/4 \\
4 Rows \(l=11^{1 / 2}\) in. \\
Table 10-4 (continued) \\
Bolted/Welded \\
W24, 21, \\
Shear End-Plate 18, 16 Connections
\end{tabular}} \\
\hline \multicolumn{9}{|c|}{Bolt and End-Plate Available Strength, kips} \\
\hline \multirow{3}{*}{Bolt Group} \& \multirow{3}{*}{Thread Cond.} \& \multirow{3}{*}{\begin{tabular}{l}
Hole \\
Type
\end{tabular}} \& \multicolumn{6}{|c|}{End-Plate Thickness, in.} \\
\hline \& \& \& \multicolumn{2}{|c|}{1/4} \& \multicolumn{2}{|r|}{5/16} \& \multicolumn{2}{|c|}{3/8} \\
\hline \& \& \& ASD \& LRFD \& ASD \& LRFD \& ASD \& LRFD \\
\hline \multirow{3}{*}{Group A} \& \[
\begin{aligned}
\& \mathrm{N} \\
\& \mathrm{X}
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline \text { STD } \\
\& \text { STD }
\end{aligned}
\] \& \[
\begin{aligned}
\& 67.1 \\
\& 67.1
\end{aligned}
\] \& \[
\begin{aligned}
\& 101 \\
\& 101
\end{aligned}
\] \& \[
\begin{aligned}
\& 83.9 \\
\& 83.9
\end{aligned}
\] \& \[
\begin{aligned}
\& 126 \\
\& 126
\end{aligned}
\] \& \[
\begin{gathered}
93.6 \\
101
\end{gathered}
\] \& \[
\begin{aligned}
\& 140 \\
\& 151
\end{aligned}
\] \\
\hline \& SC Class A \& \[
\begin{aligned}
\& \text { STD } \\
\& \text { OVS } \\
\& \text { SSLT }
\end{aligned}
\] \& \[
\begin{aligned}
\& 50.6 \\
\& 43.1 \\
\& 50.6
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 75.9 \\
\& 64.5 \\
\& 75.9
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 50.6 \\
\& 43.1 \\
\& 50.6
\end{aligned}
\] \& \[
\begin{aligned}
\& 75.9 \\
\& 64.5 \\
\& 75.9
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 50.6 \\
\& 43.1 \\
\& 50.6
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 75.9 \\
\& 64.5 \\
\& 75.9
\end{aligned}
\] \\
\hline \& SC Class B \& \[
\begin{gathered}
\text { STD } \\
\text { OVS } \\
\text { SSLT }
\end{gathered}
\] \& \[
\begin{aligned}
\& 67.1 \\
\& 65.3 \\
\& 65.8
\end{aligned}
\] \& \[
\begin{gathered}
101 \\
97.9 \\
98.7
\end{gathered}
\] \& \[
\begin{aligned}
\& \hline 81.6 \\
\& 70.9 \\
\& 81.6
\end{aligned}
\] \& \[
\begin{aligned}
\& 122 \\
\& 106 \\
\& 122
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 84.4 \\
\& 71.9 \\
\& 84.4
\end{aligned}
\] \& \[
\begin{aligned}
\& 127 \\
\& 108 \\
\& 127
\end{aligned}
\] \\
\hline \multirow{3}{*}{Group B} \& \[
\begin{aligned}
\& \mathrm{N} \\
\& \mathrm{X}
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline \text { STD } \\
\& \text { STD }
\end{aligned}
\] \& \[
\begin{aligned}
\& 67.1 \\
\& 67.1
\end{aligned}
\] \& \[
\begin{aligned}
\& 101 \\
\& 101
\end{aligned}
\] \& \[
\begin{aligned}
\& 83.9 \\
\& 83.9
\end{aligned}
\] \& \[
\begin{aligned}
\& 126 \\
\& 126
\end{aligned}
\] \& \[
\begin{aligned}
\& 101 \\
\& 101
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 151 \\
\& 151
\end{aligned}
\] \\
\hline \& SC Class A \& \[
\begin{gathered}
\text { STD } \\
\text { OVS } \\
\text { SSLT }
\end{gathered}
\] \& \[
\begin{aligned}
\& 62.1 \\
\& 53.9 \\
\& 62.1
\end{aligned}
\] \& \[
\begin{aligned}
\& 93.2 \\
\& 80.7 \\
\& 93.2
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 63.3 \\
\& 53.9 \\
\& 63.3
\end{aligned}
\] \& \[
\begin{aligned}
\& 94.9 \\
\& 80.7 \\
\& 94.9
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 63.3 \\
\& 53.9 \\
\& 63.3
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 94.9 \\
\& 80.7 \\
\& 94.9
\end{aligned}
\] \\
\hline \& SC Class B \& \[
\begin{gathered}
\text { STD } \\
\text { OVS } \\
\text { SSLT }
\end{gathered}
\] \& \[
\begin{aligned}
\& \hline 67.1 \\
\& 65.3 \\
\& 65.8
\end{aligned}
\] \& \[
\begin{gathered}
101 \\
97.9 \\
98.7
\end{gathered}
\] \& \[
\begin{aligned}
\& \hline 83.9 \\
\& 81.6 \\
\& 82.2
\end{aligned}
\] \& \[
\begin{aligned}
\& 126 \\
\& 122 \\
\& 123
\end{aligned}
\] \& \[
\begin{gathered}
101 \\
87.8 \\
98.7 \\
\hline
\end{gathered}
\] \& \[
\begin{aligned}
\& \hline 151 \\
\& 131 \\
\& 148
\end{aligned}
\] \\
\hline \multicolumn{6}{|c|}{Weld and Beam Web Available Strength, kips} \& \multicolumn{3}{|c|}{\multirow[t]{2}{*}{Support Available Strength per Inch Thickness, kip/in.}} \\
\hline \multirow[t]{2}{*}{70-ksi Weld Size, in.} \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Minimum Beam Web Thickness, in.}} \& \begin{tabular}{c}
\(R_{n} / \Omega\) \\
\hline kips \\
\hline
\end{tabular} \& \[
\begin{aligned}
\& \hline \phi \boldsymbol{R}_{\boldsymbol{n}} \\
\& \hline \text { kips }
\end{aligned}
\] \& \& \& \\
\hline \& \& \& \& ASD \& LRFD \& ASD \& \& RFD \\
\hline \[
\begin{gathered}
3 / 16 \\
1 / 4 \\
5 / 16 \\
3 / 8
\end{gathered}
\] \& \multicolumn{2}{|r|}{\[
\begin{aligned}
\& 0.286 \\
\& 0.381 \\
\& 0.476 \\
\& 0.571
\end{aligned}
\]} \& \& \[
\begin{gathered}
61.9 \\
81.7 \\
101 \\
120
\end{gathered}
\] \& \[
\begin{gathered}
92.9 \\
123 \\
151 \\
180
\end{gathered}
\] \& 468 \& \& 702 \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{rl}
\hline STD \& \(=\) Standard holes \\
OVS \& \(=\) Oversized holes \\
SSLT \& \(=\) Short-slotted holes transverse \\
\& to direction of load
\end{tabular}} \& \multicolumn{3}{|r|}{\[
\begin{aligned}
\mathrm{N} \& =\text { Threads included } \\
\mathrm{X} \& =\text { Threads excluded } \\
\text { SC } \& =\text { Slip critical }
\end{aligned}
\]} \& \& End-P

$F_{y}=36$

$F_{u}=58$ \& \& | eam |
| :--- |
| 50 ks |
| 65 ks |

\hline \multicolumn{9}{|l|}{Note: Slip-critical bolt values assume no more than one filler has been provided.}

\hline
\end{tabular}

3/4 $4^{\text {-in. Bolts }}$ 2 Rows $l=51 / 2 \mathrm{in}$. Table 10-4 (continued) Bolted/Welded Shear End-Plate Connections W12, 10, 8								
Bolt and End-Plate Available Strength, kips								
Bolt Group	Thread Cond.	Hole Type	End-Plate Thickness, in.					
			$1 / 4$		5/16		3/8	
			ASD	LRFD	ASD	LRFD	ASD	LRFD
Group A	$\begin{aligned} & \mathrm{N} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \hline \text { STD } \\ & \text { STD } \end{aligned}$	$\begin{aligned} & 32.6 \\ & 32.6 \end{aligned}$	$\begin{aligned} & 48.9 \\ & 48.9 \end{aligned}$	$\begin{aligned} & 40.8 \\ & 40.8 \end{aligned}$	$\begin{aligned} & 61.2 \\ & 61.2 \end{aligned}$	$\begin{aligned} & 45.9 \\ & 48.9 \end{aligned}$	$\begin{aligned} & 68.8 \\ & 73.4 \end{aligned}$
	SC Class A	$\begin{gathered} \text { STD } \\ \text { OVS } \\ \text { SSLT } \end{gathered}$	$\begin{aligned} & 25.3 \\ & 21.6 \\ & 25.3 \end{aligned}$	$\begin{aligned} & \hline 38.0 \\ & 32.3 \\ & 38.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 25.3 \\ & 21.6 \\ & 25.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 38.0 \\ & 32.3 \\ & 38.0 \end{aligned}$	$\begin{aligned} & 25.3 \\ & 21.6 \\ & 25.3 \end{aligned}$	$\begin{aligned} & \hline 38.0 \\ & 32.3 \\ & 38.0 \\ & \hline \end{aligned}$
	SC Class B	$\begin{gathered} \text { STD } \\ \text { OVS } \\ \text { SSLT } \end{gathered}$	$\begin{aligned} & \hline 32.6 \\ & 30.5 \\ & 32.6 \end{aligned}$	$\begin{aligned} & 48.9 \\ & 45.7 \\ & 48.9 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 39.4 \\ & 35.0 \\ & 39.4 \end{aligned}$	$\begin{aligned} & 59.2 \\ & 52.4 \\ & 59.2 \end{aligned}$	$\begin{aligned} & 42.2 \\ & 36.0 \\ & 42.2 \end{aligned}$	$\begin{aligned} & \hline 63.3 \\ & 53.8 \\ & 63.3 \end{aligned}$
Group B	$\begin{aligned} & \mathrm{N} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \text { STD } \\ & \text { STD } \end{aligned}$	$\begin{aligned} & \hline 32.6 \\ & 32.6 \end{aligned}$	$\begin{aligned} & 48.9 \\ & 48.9 \end{aligned}$	$\begin{aligned} & 40.8 \\ & 40.8 \end{aligned}$	$\begin{aligned} & 61.2 \\ & 61.2 \end{aligned}$	$\begin{aligned} & 48.9 \\ & 48.9 \end{aligned}$	$\begin{aligned} & 73.4 \\ & 73.4 \end{aligned}$
	SC Class A	$\begin{gathered} \text { STD } \\ \text { OVS } \\ \text { SSLT } \end{gathered}$	$\begin{aligned} & \hline 30.5 \\ & 27.0 \\ & 30.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 45.8 \\ & 40.3 \\ & 45.8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 31.6 \\ & 27.0 \\ & 31.6 \end{aligned}$	$\begin{aligned} & 47.5 \\ & 40.3 \\ & 47.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 31.6 \\ & 27.0 \\ & 31.6 \end{aligned}$	$\begin{aligned} & 47.5 \\ & 40.3 \\ & 47.5 \end{aligned}$
	SC Class B	$\begin{gathered} \text { STD } \\ \text { OVS } \\ \text { SSLT } \end{gathered}$	$\begin{aligned} & \hline 32.6 \\ & 30.5 \\ & 32.6 \end{aligned}$	$\begin{aligned} & \hline 48.9 \\ & 45.7 \\ & 48.9 \end{aligned}$	$\begin{aligned} & \hline 40.8 \\ & 38.1 \\ & 40.8 \end{aligned}$	$\begin{aligned} & \hline 61.2 \\ & 57.1 \\ & 61.2 \end{aligned}$	$\begin{aligned} & 48.4 \\ & 42.9 \\ & 48.4 \end{aligned}$	$\begin{aligned} & 72.6 \\ & 64.2 \\ & 72.6 \end{aligned}$
Weld and Beam Web Available Strength, kips						Support Available Strength per Inch Thickness, kip/in.		
70-ksi Weld Size, in.	Minimum Beam Web Thickness, in.			R_{n} / Ω kips	$\phi \boldsymbol{R}_{\boldsymbol{n}}$ $\mathbf{k i p s}$			
				ASD	LRFD	AS		FD
$\begin{gathered} 3 / 16 \\ 1 / 4 \\ 5 / 16 \\ 3 / 8 \end{gathered}$	$\begin{aligned} & 0.286 \\ & 0.381 \\ & 0.476 \\ & 0.571 \end{aligned}$			$\begin{aligned} & 28.5 \\ & 37.1 \\ & 45.2 \\ & 52.9 \end{aligned}$	$\begin{aligned} & 42.8 \\ & 55.7 \\ & 67.9 \\ & 79.4 \end{aligned}$	23		51
$\begin{aligned} \text { STD } & =\text { Standard holes } \\ \text { OVS } & =\text { Oversized holes } \\ \text { SSLT } & =\text { Short-slotted holes transverse } \\ & \text { to direction of load } \end{aligned}$		$\begin{aligned} \mathrm{N} & =\text { Threads included } \\ \mathrm{X} & =\text { Threads excluded } \\ \text { SC } & =\text { Slip critical } \end{aligned}$				End-P $F_{y}=36$ $F_{u}=58$		am 50 ks 65 ks
Note: Slip-critical bolt values assume no more than one filler has been provided.								

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{\begin{tabular}{ccc}
\& Table 10-4 (continued) \& \(7 / 8\)-in. Bolts \\
W44 \& Bolted/Melded \& 12 Rows \\
\& Shear End-plate \& \(l=351 / 2\) in.
\end{tabular}} \\
\hline \multicolumn{9}{|c|}{Bolt and End-Plate Available Strength, kips} \\
\hline \multirow{3}{*}{Bolt Group} \& \multirow{3}{*}{Thread Cond.} \& \multirow{3}{*}{\begin{tabular}{l}
Hole \\
Type
\end{tabular}} \& \multicolumn{6}{|c|}{End-Plate Thickness, in.} \\
\hline \& \& \& \multicolumn{2}{|c|}{1/4} \& \multicolumn{2}{|c|}{5/16} \& \multicolumn{2}{|c|}{3/8} \\
\hline \& \& \& ASD \& LRFD \& ASD \& LRFD \& ASD \& LRFD \\
\hline \multirow{3}{*}{Group A} \& \[
\begin{aligned}
\& \mathrm{N} \\
\& \mathrm{X}
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline \text { STD } \\
\& \text { STD }
\end{aligned}
\] \& \[
\begin{aligned}
\& 196 \\
\& 196
\end{aligned}
\] \& \[
\begin{aligned}
\& 294 \\
\& 294
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 245 \\
\& 245
\end{aligned}
\] \& \[
\begin{aligned}
\& 367 \\
\& 367
\end{aligned}
\] \& \[
\begin{aligned}
\& 294 \\
\& 294
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 441 \\
\& 441
\end{aligned}
\] \\
\hline \& SC Class A \& \begin{tabular}{l}
STD \\
OVS \\
SSLT
\end{tabular} \& \[
\begin{aligned}
\& \hline 196 \\
\& 178 \\
\& 194
\end{aligned}
\] \& \[
\begin{aligned}
\& 294 \\
\& 266 \\
\& 292
\end{aligned}
\] \& \[
\begin{aligned}
\& 211 \\
\& 180 \\
\& 211
\end{aligned}
\] \& \[
\begin{aligned}
\& 316 \\
\& 270 \\
\& 316
\end{aligned}
\] \& \[
\begin{aligned}
\& 212 \\
\& 180 \\
\& 212
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 317 \\
\& 270 \\
\& 317
\end{aligned}
\] \\
\hline \& SC Class B \& \[
\begin{aligned}
\& \hline \text { STD } \\
\& \text { OVS } \\
\& \text { SSLT }
\end{aligned}
\] \& \[
\begin{aligned}
\& 196 \\
\& 191 \\
\& 194
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 294 \\
\& 287 \\
\& 292
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 245 \\
\& 239 \\
\& 243
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 367 \\
\& 359 \\
\& 365
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 294 \\
\& 287 \\
\& 292
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 441 \\
\& 431 \\
\& 438 \\
\& \hline
\end{aligned}
\] \\
\hline \multirow{3}{*}{Group B} \& \[
\begin{aligned}
\& \mathrm{N} \\
\& \mathrm{X}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { STD } \\
\& \text { STD }
\end{aligned}
\] \& \[
\begin{aligned}
\& 196 \\
\& 196
\end{aligned}
\] \& \[
\begin{aligned}
\& 294 \\
\& 294
\end{aligned}
\] \& \[
\begin{aligned}
\& 245 \\
\& 245
\end{aligned}
\] \& \[
\begin{aligned}
\& 367 \\
\& 367
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 294 \\
\& 294
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 441 \\
\& 441
\end{aligned}
\] \\
\hline \& SC Class A \& \[
\begin{aligned}
\& \hline \text { STD } \\
\& \text { OVS } \\
\& \text { SSLT }
\end{aligned}
\] \& \[
\begin{aligned}
\& 196 \\
\& 191 \\
\& 194
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 294 \\
\& 287 \\
\& 292
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 245 \\
\& 223 \\
\& 243
\end{aligned}
\] \& \[
\begin{aligned}
\& 367 \\
\& 334 \\
\& 365
\end{aligned}
\] \& \[
\begin{aligned}
\& 264 \\
\& 226 \\
\& 264
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 396 \\
\& 339 \\
\& 396
\end{aligned}
\] \\
\hline \& SC Class B \& \[
\begin{gathered}
\text { STD } \\
\text { OVS } \\
\text { SSLT }
\end{gathered}
\] \& \[
\begin{aligned}
\& \hline 196 \\
\& 191 \\
\& 194
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 294 \\
\& 287 \\
\& 292
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 245 \\
\& 239 \\
\& 243
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 367 \\
\& 359 \\
\& 365
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 294 \\
\& 287 \\
\& 292
\end{aligned}
\] \& \[
\begin{aligned}
\& 441 \\
\& 431 \\
\& 438
\end{aligned}
\] \\
\hline \multicolumn{6}{|c|}{Weld and Beam Web Available Strength, kips} \& \multicolumn{3}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Support Available \\
Strength per Inch \\
Thickness, kip/in.
\end{tabular}}} \\
\hline \multirow[t]{2}{*}{70-ksi Weld Size, in.} \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Minimum Beam Web Thickness, in.}} \& \begin{tabular}{|c|}
\hline\(R_{n} / \Omega\) \\
\hline kips \\
\hline
\end{tabular} \& \begin{tabular}{c}
\(\phi \boldsymbol{R}_{\boldsymbol{n}}\) \\
\hline kips
\end{tabular} \& \& \& \\
\hline \& \& \& \& ASD \& LRFD \& AS \& \& RFD \\
\hline \[
\begin{gathered}
3 / 16 \\
1 / 4 \\
5 / 16 \\
3 / 8
\end{gathered}
\] \& \multicolumn{2}{|r|}{\[
\begin{aligned}
\& 0.286 \\
\& 0.381 \\
\& 0.476 \\
\& 0.571
\end{aligned}
\]} \& \& \[
\begin{aligned}
\& 196 \\
\& 260 \\
\& 324 \\
\& 387
\end{aligned}
\] \& \[
\begin{aligned}
\& 293 \\
\& 390 \\
\& 486 \\
\& 581
\end{aligned}
\] \& 16 \& \& 460 \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
\text { STD } \& =\text { Standard holes } \\
\text { OVS } \& =\text { Oversized holes } \\
\text { SSLT } \& =\text { Short-slotted holes transverse } \\
\& \text { to direction of load }
\end{aligned}
\]} \& \multicolumn{3}{|r|}{\[
\begin{aligned}
\mathrm{N} \& =\text { Threads included } \\
\mathrm{X} \& =\text { Threads excluded } \\
\text { SC } \& =\text { Slip critical }
\end{aligned}
\]} \& \& End-

$F_{y}=3$

$F_{u}=5$ \& \& | eam |
| :--- |
| 50 ks |
| 65 ks |

\hline \multicolumn{9}{|l|}{Note: Slip-critical bolt values assume no more than one filler has been provided.}

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{\begin{tabular}{l}
7/8 \\
\(8^{-i n .}\) Bolts \\
11 Rows
\[
l=32^{1 / 2} \text { in. }
\] \\
Table 10-4 (continued) \\
Bolted/Welded \\
Shear End-Plate Connections \\
W44, 40
\end{tabular}} \\
\hline \multicolumn{9}{|c|}{Bolt and End-Plate Available Strength, kips} \\
\hline \multirow{3}{*}{Bolt Group} \& \multirow{3}{*}{Thread Cond.} \& \multirow{3}{*}{\begin{tabular}{l}
Hole \\
Type
\end{tabular}} \& \multicolumn{6}{|c|}{End-Plate Thickness, in.} \\
\hline \& \& \& \multicolumn{2}{|c|}{1/4} \& \multicolumn{2}{|r|}{5/16} \& \multicolumn{2}{|c|}{3/8} \\
\hline \& \& \& ASD \& LRFD \& ASD \& LRFD \& ASD \& LRFD \\
\hline \multirow{3}{*}{Group A} \& \[
\begin{aligned}
\& \mathrm{N} \\
\& \mathrm{X}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { STD } \\
\& \text { STD }
\end{aligned}
\] \& \[
\begin{aligned}
\& 180 \\
\& 180
\end{aligned}
\] \& \[
\begin{aligned}
\& 269 \\
\& 269
\end{aligned}
\] \& \[
\begin{aligned}
\& 225 \\
\& 225
\end{aligned}
\] \& \[
\begin{aligned}
\& 337 \\
\& 337
\end{aligned}
\] \& \[
\begin{aligned}
\& 269 \\
\& 269
\end{aligned}
\] \& 404
404 \\
\hline \& SC Class A \& \[
\begin{aligned}
\& \hline \text { STD } \\
\& \text { OVS } \\
\& \text { SSLT }
\end{aligned}
\] \& \[
\begin{aligned}
\& 180 \\
\& 163 \\
\& 178
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 269 \\
\& 244 \\
\& 267
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 193 \\
\& 165 \\
\& 193
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 290 \\
\& 247 \\
\& 290 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 194 \\
\& 165 \\
\& 194
\end{aligned}
\] \& 291
247
291 \\
\hline \& SC Class B \& \[
\begin{gathered}
\text { STD } \\
\text { OVS } \\
\text { SSLT }
\end{gathered}
\] \& \[
\begin{aligned}
\& 180 \\
\& 175 \\
\& 178
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 269 \\
\& 263 \\
\& 267
\end{aligned}
\] \& \[
\begin{aligned}
\& 225 \\
\& 219 \\
\& 223
\end{aligned}
\] \& \[
\begin{aligned}
\& 337 \\
\& 328 \\
\& 334
\end{aligned}
\] \& \[
\begin{aligned}
\& 269 \\
\& 263 \\
\& 267
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 404 \\
\& 394 \\
\& 401 \\
\& \hline
\end{aligned}
\] \\
\hline \multirow{3}{*}{Group B} \& \[
\begin{aligned}
\& \mathrm{N} \\
\& \mathrm{X}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { STD } \\
\& \text { STD }
\end{aligned}
\] \& \[
\begin{aligned}
\& 180 \\
\& 180
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 269 \\
\& 269
\end{aligned}
\] \& \[
\begin{aligned}
\& 225 \\
\& 225
\end{aligned}
\] \& \[
\begin{aligned}
\& 337 \\
\& 337
\end{aligned}
\] \& \[
\begin{aligned}
\& 269 \\
\& 269
\end{aligned}
\] \& 404
404 \\
\hline \& SC Class A \& \[
\begin{aligned}
\& \hline \text { STD } \\
\& \text { OVS } \\
\& \text { SSLT }
\end{aligned}
\] \& \[
\begin{aligned}
\& 180 \\
\& 175 \\
\& 178
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 269 \\
\& 263 \\
\& 267
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 225 \\
\& 204 \\
\& 223
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 337 \\
\& 306 \\
\& 334
\end{aligned}
\] \& \[
\begin{aligned}
\& 242 \\
\& 208 \\
\& 242
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 363 \\
\& 311 \\
\& 363
\end{aligned}
\] \\
\hline \& SC Class B \& \[
\begin{gathered}
\hline \text { STD } \\
\text { OVS } \\
\text { SSLT }
\end{gathered}
\] \& \[
\begin{aligned}
\& 180 \\
\& 175 \\
\& 178
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 269 \\
\& 263 \\
\& 267
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 225 \\
\& 219 \\
\& 223
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 337 \\
\& 328 \\
\& 334
\end{aligned}
\] \& \[
\begin{aligned}
\& 269 \\
\& 263 \\
\& 267
\end{aligned}
\] \& \[
\begin{aligned}
\& 404 \\
\& 394 \\
\& 401
\end{aligned}
\] \\
\hline \multicolumn{6}{|c|}{Weld and Beam Web Available Strength, kips} \& \multicolumn{3}{|c|}{\multirow[t]{2}{*}{Support Available Strength per Inch Thickness, kip/in.}} \\
\hline \multirow[t]{2}{*}{70-ksi Weld Size, in.} \& \multicolumn{3}{|c|}{\multirow[t]{2}{*}{Minimum Beam Web Thickness, in.}} \& \begin{tabular}{c}
\(R_{n} / \Omega\) \\
\hline kips \\
\hline
\end{tabular} \& \[
\begin{gathered}
\hline \phi \boldsymbol{R}_{\boldsymbol{n}} \\
\hline \text { kips }
\end{gathered}
\] \& \& \& \\
\hline \& \& \& \& ASD \& LRFD \& AS \& \& FD \\
\hline \[
\begin{gathered}
3 / 16 \\
1 / 4 \\
5 / 16 \\
3 / 8
\end{gathered}
\] \& \multicolumn{2}{|r|}{\[
\begin{aligned}
\& 0.286 \\
\& 0.381 \\
\& 0.476 \\
\& 0.571
\end{aligned}
\]} \& \& \[
\begin{aligned}
\& 179 \\
\& 238 \\
\& 296 \\
\& 354
\end{aligned}
\] \& \[
\begin{aligned}
\& 268 \\
\& 356 \\
\& 444 \\
\& 530
\end{aligned}
\] \& 1500 \& \multicolumn{2}{|r|}{2250} \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
\text { STD } \& =\text { Standard holes } \\
\text { OVS } \& =\text { Oversized holes } \\
\text { SSLT } \& =\text { Short-slotted holes transverse } \\
\& \text { to direction of load }
\end{aligned}
\]} \& \multicolumn{3}{|r|}{\[
\begin{aligned}
\mathrm{N} \& =\text { Threads included } \\
\mathrm{X} \& =\text { Threads excluded } \\
\text { SC } \& =\text { Slip critical }
\end{aligned}
\]} \& \& End-P

$F_{y}=36$

$F_{u}=5$ \& \& | am |
| :--- |
| 50 ks 65 ks |

\hline \multicolumn{9}{|l|}{Note: Slip-critical bolt values assume no more than one filler has been provided.}

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{\begin{tabular}{ccc}
\& Table 10-4 (continued) \& \\
7/in. Bolts \& Bolted/Welded \& W44, 40, \\
9 Rows \& Shear End-Plate \& 36,33 \\
\(l=261 / 2\) in. \& Connections \&
\end{tabular}} \\
\hline \multicolumn{9}{|c|}{Bolt and End-Plate Available Strength, kips} \\
\hline \multirow{3}{*}{Bolt Group} \& \multirow{3}{*}{Thread Cond.} \& \multirow{3}{*}{\begin{tabular}{l}
Hole \\
Type
\end{tabular}} \& \multicolumn{6}{|c|}{End-Plate Thickness, in.} \\
\hline \& \& \& \multicolumn{2}{|c|}{1/4} \& \multicolumn{2}{|r|}{5/16} \& \multicolumn{2}{|c|}{3/8} \\
\hline \& \& \& ASD \& LRFD \& ASD \& LRFD \& ASD \& LRFD \\
\hline \multirow{3}{*}{Group A} \& \[
\begin{aligned}
\& \mathrm{N} \\
\& \mathrm{X}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { STD } \\
\& \text { STD }
\end{aligned}
\] \& \[
\begin{aligned}
\& 147 \\
\& 147
\end{aligned}
\] \& \[
\begin{aligned}
\& 221 \\
\& 221
\end{aligned}
\] \& \[
\begin{aligned}
\& 184 \\
\& 184
\end{aligned}
\] \& \[
\begin{aligned}
\& 276 \\
\& 276
\end{aligned}
\] \& \[
\begin{aligned}
\& 221 \\
\& 221
\end{aligned}
\] \& \[
\begin{aligned}
\& 331 \\
\& 331
\end{aligned}
\] \\
\hline \& SC Class A \& \[
\begin{aligned}
\& \text { STD } \\
\& \text { OVS } \\
\& \text { SSLT }
\end{aligned}
\] \& \[
\begin{aligned}
\& 147 \\
\& 133 \\
\& 146
\end{aligned}
\] \& \[
\begin{aligned}
\& 221 \\
\& 199 \\
\& 219
\end{aligned}
\] \& \[
\begin{aligned}
\& 158 \\
\& 135 \\
\& 158
\end{aligned}
\] \& \[
\begin{aligned}
\& 237 \\
\& 202 \\
\& 237
\end{aligned}
\] \& \[
\begin{aligned}
\& 159 \\
\& 135 \\
\& 159
\end{aligned}
\] \& \[
\begin{aligned}
\& 238 \\
\& 202 \\
\& 238
\end{aligned}
\] \\
\hline \& SC Class B \& \begin{tabular}{l}
STD \\
OVS \\
SSLT
\end{tabular} \& \[
\begin{aligned}
\& 147 \\
\& 142 \\
\& 146
\end{aligned}
\] \& \[
\begin{aligned}
\& 221 \\
\& 214 \\
\& 219
\end{aligned}
\] \& \[
\begin{aligned}
\& 184 \\
\& 178 \\
\& 182
\end{aligned}
\] \& \[
\begin{aligned}
\& 276 \\
\& 267 \\
\& 273 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 221 \\
\& 214 \\
\& 219
\end{aligned}
\] \& \[
\begin{aligned}
\& 331 \\
\& 321 \\
\& 328
\end{aligned}
\] \\
\hline \multirow{3}{*}{Group B} \& \[
\begin{aligned}
\& \mathrm{N} \\
\& \mathrm{X}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { STD } \\
\& \text { STD }
\end{aligned}
\] \& \[
\begin{aligned}
\& 147 \\
\& 147
\end{aligned}
\] \& \[
\begin{aligned}
\& 221 \\
\& 221
\end{aligned}
\] \& \[
\begin{aligned}
\& 184 \\
\& 184
\end{aligned}
\] \& \[
\begin{aligned}
\& 276 \\
\& 276
\end{aligned}
\] \& \[
\begin{aligned}
\& 221 \\
\& 221
\end{aligned}
\] \& \[
\begin{aligned}
\& 331 \\
\& 331
\end{aligned}
\] \\
\hline \& SC Class A \& \[
\begin{aligned}
\& \text { STD } \\
\& \text { OVS } \\
\& \text { SSLT }
\end{aligned}
\] \& \[
\begin{aligned}
\& 147 \\
\& 142 \\
\& 146
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 221 \\
\& 214 \\
\& 219
\end{aligned}
\] \& \[
\begin{aligned}
\& 184 \\
\& 167 \\
\& 182 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 276 \\
\& 249 \\
\& 273
\end{aligned}
\] \& \[
\begin{aligned}
\& 198 \\
\& 170 \\
\& 198 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 296 \\
\& 254 \\
\& 296
\end{aligned}
\] \\
\hline \& SC Class B \& \[
\begin{aligned}
\& \text { STD } \\
\& \text { OVS } \\
\& \text { SSLT }
\end{aligned}
\] \& \[
\begin{aligned}
\& 147 \\
\& 142 \\
\& 146
\end{aligned}
\] \& \[
\begin{aligned}
\& 221 \\
\& 214 \\
\& 219
\end{aligned}
\] \& \[
\begin{aligned}
\& 184 \\
\& 178 \\
\& 182
\end{aligned}
\] \& \[
\begin{aligned}
\& 276 \\
\& 267 \\
\& 273
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 221 \\
\& 214 \\
\& 219
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 331 \\
\& 321 \\
\& 328
\end{aligned}
\] \\
\hline \multicolumn{6}{|c|}{Weld and Beam Web Available Strength, kips} \& \multicolumn{3}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Support Available \\
Strength per Inch \\
Thickness, kip/in.
\end{tabular}}} \\
\hline \multirow[t]{2}{*}{70-ksi Weld Size, in.} \& \multicolumn{3}{|c|}{\multirow[t]{2}{*}{Minimum Beam Web Thickness, in.}} \& \begin{tabular}{c}
\(R_{n} / \Omega\) \\
\hline kips
\end{tabular} \& \begin{tabular}{c}
\(\phi \boldsymbol{R}_{\boldsymbol{n}}\) \\
\hline \(\mathbf{k i p s}\) \\
\hline
\end{tabular} \& \& \& \\
\hline \& \& \& \& ASD \& LRFD \& ASD \& \& RFD \\
\hline \[
\begin{gathered}
3 / 16 \\
1 / 4 \\
5 / 16 \\
3 / 8
\end{gathered}
\] \& \multicolumn{2}{|r|}{\[
\begin{aligned}
\& 0.286 \\
\& 0.381 \\
\& 0.476 \\
\& 0.571
\end{aligned}
\]} \& \& \[
\begin{aligned}
\& 145 \\
\& 193 \\
\& 240 \\
\& 287
\end{aligned}
\] \& \[
\begin{aligned}
\& 218 \\
\& 290 \\
\& 360 \\
\& 430
\end{aligned}
\] \& 123 \& \& 1840 \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
STD = Standard holes \\
OVS = Oversized holes \\
SSLT = Short-slotted holes transvers \\
to direction of load
\end{tabular}} \& \multicolumn{3}{|r|}{\[
\begin{aligned}
\mathrm{N} \& =\text { Threads included } \\
\mathrm{X} \& =\text { Threads excluded } \\
\text { SC } \& =\text { Slip critical }
\end{aligned}
\]} \& \& End-P

$F_{y}=36$

$F_{u}=58$ \& \& | eam |
| :--- |
| 50 ks |
| 65 ks |

\hline \multicolumn{9}{|l|}{Note: Slip-critical bolt values assume no more than one filler has been provided.}

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{\begin{tabular}{ccc}
\& Table 10-4 (continued) \& 7/8-in. Bolts \\
W44, 40, \& Bolted/Welded \& 8 -in. \\
36, 33, \& Shear End-Plate \& 8 Rows \\
30 \& Shed
\end{tabular}} \\
\hline \multicolumn{9}{|c|}{Bolt and End-Plate Available Strength, kips} \\
\hline \multirow{3}{*}{Bolt Group} \& \multirow[t]{3}{*}{Thread Cond.} \& \multirow[t]{3}{*}{\begin{tabular}{l}
Hole \\
Type
\end{tabular}} \& \multicolumn{6}{|c|}{End-Plate Thickness, in.} \\
\hline \& \& \& \multicolumn{2}{|c|}{1/4} \& \multicolumn{2}{|c|}{5/16} \& \multicolumn{2}{|c|}{3/8} \\
\hline \& \& \& ASD \& LRFD \& ASD \& LRFD \& ASD \& LRFD \\
\hline \multirow{3}{*}{Group A} \& \[
\begin{aligned}
\& \hline \mathrm{N} \\
\& \mathrm{X} \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline \text { STD } \\
\& \text { STD } \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 131 \\
\& 131 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 197 \\
\& 197 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 164 \\
\& 164 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 246 \\
\& 246 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 197 \\
\& 197 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 295 \\
\& 295 \\
\& \hline
\end{aligned}
\] \\
\hline \& SC Class A \& \[
\begin{aligned}
\& \hline \text { STD } \\
\& \text { OVS } \\
\& \text { SSLT }
\end{aligned}
\] \& \[
\begin{aligned}
\& 131 \\
\& 118 \\
\& 130 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 197 \\
\& 176 \\
\& 194
\end{aligned}
\] \& \[
\begin{aligned}
\& 140 \\
\& 120 \\
\& 140
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 211 \\
\& 180 \\
\& 211 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 141 \\
\& 120 \\
\& 141 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 212 \\
\& 180 \\
\& 212 \\
\& \hline
\end{aligned}
\] \\
\hline \& SC Class B \& \[
\begin{gathered}
\text { STD } \\
\text { OVS } \\
\text { SSLT }
\end{gathered}
\] \& \[
\begin{aligned}
\& 131 \\
\& 126 \\
\& 130
\end{aligned}
\] \& \[
\begin{aligned}
\& 197 \\
\& 189 \\
\& 194
\end{aligned}
\] \& \[
\begin{aligned}
\& 164 \\
\& 158 \\
\& 162
\end{aligned}
\] \& \[
\begin{aligned}
\& 246 \\
\& 237 \\
\& 243
\end{aligned}
\] \& \[
\begin{aligned}
\& 197 \\
\& 189 \\
\& 194
\end{aligned}
\] \& \[
\begin{aligned}
\& 295 \\
\& 284 \\
\& 292
\end{aligned}
\] \\
\hline \multirow{3}{*}{Group B} \& \[
\begin{aligned}
\& \mathrm{N} \\
\& \mathrm{X}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { STD } \\
\& \text { STD }
\end{aligned}
\] \& \[
\begin{aligned}
\& 131 \\
\& 131
\end{aligned}
\] \& \[
\begin{aligned}
\& 197 \\
\& 197
\end{aligned}
\] \& \[
\begin{aligned}
\& 164 \\
\& 164
\end{aligned}
\] \& \[
\begin{aligned}
\& 246 \\
\& 246
\end{aligned}
\] \& \[
\begin{aligned}
\& 197 \\
\& 197
\end{aligned}
\] \& \[
\begin{aligned}
\& 295 \\
\& 295
\end{aligned}
\] \\
\hline \& SC Class A \& \[
\begin{aligned}
\& \hline \text { STD } \\
\& \text { OVS } \\
\& \text { SSLT }
\end{aligned}
\] \& \[
\begin{aligned}
\& 131 \\
\& 126 \\
\& 130 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 197 \\
\& 189 \\
\& 194 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 164 \\
\& 148 \\
\& 162 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 246 \\
\& 221 \\
\& 243 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 175 \\
\& 151 \\
\& 175
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 263 \\
\& 226 \\
\& 263 \\
\& \hline
\end{aligned}
\] \\
\hline \& SC Class B \& \[
\begin{aligned}
\& \text { STD } \\
\& \text { OVS } \\
\& \text { SSLT }
\end{aligned}
\] \& \[
\begin{aligned}
\& 131 \\
\& 126 \\
\& 130
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 197 \\
\& 189 \\
\& 194
\end{aligned}
\] \& \[
\begin{aligned}
\& 164 \\
\& 158 \\
\& 162
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 246 \\
\& 237 \\
\& 243
\end{aligned}
\] \& \[
\begin{aligned}
\& 197 \\
\& 189 \\
\& 194
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 295 \\
\& 284 \\
\& 292
\end{aligned}
\] \\
\hline \multicolumn{6}{|c|}{Weld and Beam Web Available Strength, kips} \& \multicolumn{3}{|c|}{\multirow[t]{2}{*}{Support Available Strength per Inch Thickness, kip/in.}} \\
\hline \multirow[t]{2}{*}{70-ksi Weld Size, in.} \& \multicolumn{3}{|c|}{\multirow[t]{2}{*}{Minimum Beam Web Thickness, in.}} \& \begin{tabular}{l}
\(R_{n} / \Omega\) \\
\hline kips \\
\hline
\end{tabular} \& \begin{tabular}{c}
\(\phi \boldsymbol{R}_{\boldsymbol{n}}\) \\
\hline kips
\end{tabular} \& \& \& \\
\hline \& \& \& \& ASD \& LRFD \& AS \& \& RFD \\
\hline \[
\begin{aligned}
\& 3 / 16 \\
\& 1 / 4 \\
\& 5 / 16 \\
\& 3 / 8
\end{aligned}
\] \& \multicolumn{2}{|r|}{\[
\begin{aligned}
\& 0.286 \\
\& 0.381 \\
\& 0.476 \\
\& 0.571
\end{aligned}
\]} \& \& \[
\begin{aligned}
\& 129 \\
\& 171 \\
\& 212 \\
\& 253
\end{aligned}
\] \& \[
\begin{aligned}
\& 193 \\
\& 256 \\
\& 318 \\
\& 380
\end{aligned}
\] \& 10 \& \& 640 \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
STD = Standard holes \\
OVS = Oversized holes \\
SSLT = Short-slotted holes transverse \\
to direction of load
\end{tabular}} \& \multicolumn{3}{|c|}{\[
\begin{aligned}
\mathrm{N} \& =\text { Threads included } \\
\mathrm{X} \& =\text { Threads excluded } \\
\text { SC } \& =\text { Slip critical }
\end{aligned}
\]} \& \& End-P

$F_{y}=3$

$F_{u}=5$ \& \& | eam |
| :--- |
| 50 ks |
| 65 ks |

\hline \multicolumn{9}{|l|}{Note: Slip-critical bolt values assume no more than one filler has been provided.}

\hline
\end{tabular}

W44, 40, Bolted/Welded $7 / 8$-in. Bolts 36,33, Bhear End-Plate 6 Rows 30,27, $l=171 / 2$ in.								
Bolt and End-Plate Available Strength, kips								
Bolt Group	Thread Cond.	Hole Type	End-Plate Thickness, in.					
			1/4		5/16		3/8	
			ASD	LRFD	ASD	LRFD	ASD	LRFD
Group A	$\begin{aligned} & \mathrm{N} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \text { STD } \\ & \text { STD } \end{aligned}$	$\begin{aligned} & 98.6 \\ & 98.6 \end{aligned}$	$\begin{aligned} & 148 \\ & 148 \end{aligned}$	$\begin{aligned} & 123 \\ & 123 \end{aligned}$	$\begin{aligned} & 185 \\ & 185 \end{aligned}$	$\begin{aligned} & 148 \\ & 148 \end{aligned}$	$\begin{aligned} & 222 \\ & 222 \end{aligned}$
	SC Class A	$\begin{aligned} & \hline \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & \hline 98.6 \\ & 87.6 \\ & 97.3 \end{aligned}$	$\begin{aligned} & \hline 148 \\ & 131 \\ & 146 \end{aligned}$	$\begin{gathered} 105 \\ 90.1 \\ 105 \end{gathered}$	$\begin{aligned} & \hline 158 \\ & 135 \\ & 158 \end{aligned}$	$\begin{gathered} 106 \\ 90.1 \\ 106 \end{gathered}$	$\begin{aligned} & \hline 159 \\ & 135 \\ & 159 \end{aligned}$
	SC Class B	$\begin{gathered} \text { STD } \\ \text { OVS } \\ \text { SSLT } \end{gathered}$	$\begin{aligned} & 98.6 \\ & 93.5 \\ & 97.3 \end{aligned}$	$\begin{aligned} & 148 \\ & 140 \\ & 146 \end{aligned}$	$\begin{aligned} & 123 \\ & 117 \\ & 122 \end{aligned}$	$\begin{aligned} & 185 \\ & 175 \\ & 182 \end{aligned}$	$\begin{aligned} & 148 \\ & 140 \\ & 146 \end{aligned}$	$\begin{aligned} & 222 \\ & 210 \\ & 219 \end{aligned}$
Group B	$\begin{aligned} & \mathrm{N} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \text { STD } \\ & \text { STD } \end{aligned}$	$\begin{aligned} & 98.6 \\ & 98.6 \end{aligned}$	$\begin{aligned} & \hline 148 \\ & 148 \end{aligned}$	$\begin{aligned} & 123 \\ & 123 \end{aligned}$	$\begin{aligned} & 185 \\ & 185 \end{aligned}$	$\begin{aligned} & 148 \\ & 148 \end{aligned}$	$\begin{aligned} & \hline 222 \\ & 222 \end{aligned}$
	SC Class A	$\begin{aligned} & \hline \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & \hline 98.6 \\ & 93.5 \\ & 97.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 148 \\ & 140 \\ & 146 \\ & \hline \end{aligned}$	$\begin{aligned} & 123 \\ & 110 \\ & 122 \end{aligned}$	$\begin{aligned} & \hline 185 \\ & 165 \\ & 182 \\ & \hline \end{aligned}$	$\begin{aligned} & 131 \\ & 113 \\ & 131 \end{aligned}$	$\begin{aligned} & \hline 197 \\ & 169 \\ & 197 \\ & \hline \end{aligned}$
	SC Class B	$\begin{aligned} & \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & \hline 98.6 \\ & 93.5 \\ & 97.3 \end{aligned}$	$\begin{aligned} & \hline 148 \\ & 140 \\ & 146 \end{aligned}$	$\begin{aligned} & 123 \\ & 117 \\ & 122 \end{aligned}$	$\begin{aligned} & \hline 185 \\ & 175 \\ & 182 \end{aligned}$	$\begin{aligned} & 148 \\ & 140 \\ & 146 \end{aligned}$	$\begin{aligned} & \hline 222 \\ & 210 \\ & 219 \end{aligned}$
Weld and Beam Web Available Strength, kips						Support Available Strength per Inch Thickness, kip/in.		
70-ksi Weld Size, in.	Minimum Beam Web Thickness, in.			R_{n} / Ω $\mathbf{k i p s}$	$\phi \boldsymbol{R}_{\boldsymbol{n}}$ kips			
				ASD	LRFD	AS		RFD
$\begin{gathered} 3 / 16 \\ 1 / 4 \\ 5 / 16 \\ 3 / 8 \end{gathered}$	$\begin{aligned} & 0.286 \\ & 0.381 \\ & 0.476 \\ & 0.571 \end{aligned}$			$\begin{gathered} 95.4 \\ 126 \\ 157 \\ 187 \end{gathered}$	$\begin{aligned} & 143 \\ & 189 \\ & 235 \\ & 280 \end{aligned}$	819		1230
$\begin{aligned} \text { STD } & =\text { Standard holes } \\ \text { OVS } & =\text { Oversized holes } \\ \text { SSLT } & =\text { Short-slotted holes transverse } \\ & \text { to direction of load } \end{aligned}$		$\begin{aligned} \mathrm{N} & =\text { Threads included } \\ \mathrm{X} & =\text { Threads excluded } \\ \text { SC } & =\text { Slip critical } \end{aligned}$				$\begin{aligned} & F_{y}=36 \mathrm{ksi} \\ & F_{u}=58 \mathrm{ksi} \end{aligned}$		$\begin{aligned} & F_{y}=50 \mathrm{ksi} \\ & F_{u}=65 \mathrm{ksi} \end{aligned}$
Note: Slip-critical bolt values assume no more than one filler has been provided.								

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{\begin{tabular}{ccc}
\& Table 10-4 (continued) \& \\
\(7 / 8\)-in. Bolts \& Bolted/Welded \& w30, 27, \\
5 Rows \& Shear End-Plate \& 24,21, \\
\(l=141 / 2\) in. \& Connections \&
\end{tabular}} \\
\hline \multicolumn{9}{|c|}{Bolt and End-Plate Available Strength, kips} \\
\hline \multirow{3}{*}{Bolt Group} \& \multirow{3}{*}{Thread Cond.} \& \multirow{3}{*}{\begin{tabular}{l}
Hole \\
Type
\end{tabular}} \& \multicolumn{6}{|c|}{End-Plate Thickness, in.} \\
\hline \& \& \& \multicolumn{2}{|c|}{\(1 / 4\)} \& \multicolumn{2}{|l|}{5/16} \& \multicolumn{2}{|c|}{3/8} \\
\hline \& \& \& ASD \& LRFD \& ASD \& LRFD \& ASD \& LRFD \\
\hline \multirow{3}{*}{Group A} \& \[
\begin{aligned}
\& \mathrm{N} \\
\& \mathrm{X}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { STD } \\
\& \text { STD }
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 82.4 \\
\& 82.4
\end{aligned}
\] \& \[
\begin{aligned}
\& 124 \\
\& 124
\end{aligned}
\] \& \[
\begin{aligned}
\& 103 \\
\& 103
\end{aligned}
\] \& \[
\begin{aligned}
\& 155 \\
\& 155
\end{aligned}
\] \& \[
\begin{aligned}
\& 124 \\
\& 124
\end{aligned}
\] \& \[
\begin{aligned}
\& 185 \\
\& 185
\end{aligned}
\] \\
\hline \& SC Class A \& \[
\begin{aligned}
\& \hline \text { STD } \\
\& \text { OVS } \\
\& \text { SSLT }
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 82.4 \\
\& 72.6 \\
\& 81.1
\end{aligned}
\] \& \[
\begin{aligned}
\& 124 \\
\& 109 \\
\& 122
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 87.5 \\
\& 75.1 \\
\& 87.5
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 131 \\
\& 112 \\
\& 131
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 88.1 \\
\& 75.1 \\
\& 88.1
\end{aligned}
\] \& \[
\begin{aligned}
\& 132 \\
\& 112 \\
\& 132
\end{aligned}
\] \\
\hline \& SC Class B \& \[
\begin{gathered}
\text { STD } \\
\text { OVS } \\
\text { SSLT }
\end{gathered}
\] \& \[
\begin{aligned}
\& \hline 82.4 \\
\& 77.2 \\
\& 81.1
\end{aligned}
\] \& \[
\begin{aligned}
\& 124 \\
\& 116 \\
\& 122
\end{aligned}
\] \& \[
\begin{gathered}
103 \\
96.5 \\
101
\end{gathered}
\] \& \[
\begin{aligned}
\& 155 \\
\& 145 \\
\& 152
\end{aligned}
\] \& \[
\begin{aligned}
\& 124 \\
\& 116 \\
\& 122
\end{aligned}
\] \& \[
\begin{aligned}
\& 185 \\
\& 174 \\
\& 182
\end{aligned}
\] \\
\hline \multirow{3}{*}{Group B} \& \[
\begin{aligned}
\& \mathrm{N} \\
\& \mathrm{X}
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline \text { STD } \\
\& \text { STD }
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 82.4 \\
\& 82.4
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 124 \\
\& 124
\end{aligned}
\] \& \[
\begin{aligned}
\& 103 \\
\& 103
\end{aligned}
\] \& \[
\begin{aligned}
\& 155 \\
\& 155
\end{aligned}
\] \& \[
\begin{aligned}
\& 124 \\
\& 124
\end{aligned}
\] \& \[
\begin{aligned}
\& 185 \\
\& 185
\end{aligned}
\] \\
\hline \& SC Class A \& \[
\begin{aligned}
\& \text { STD } \\
\& \text { OVS } \\
\& \text { SSLT }
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 82.4 \\
\& 77.2 \\
\& 81.1
\end{aligned}
\] \& \[
\begin{aligned}
\& 124 \\
\& 116 \\
\& 122
\end{aligned}
\] \& \[
\begin{gathered}
103 \\
91.1 \\
101 \\
\hline
\end{gathered}
\] \& \[
\begin{aligned}
\& \hline 155 \\
\& 136 \\
\& 152
\end{aligned}
\] \& \[
\begin{gathered}
109 \\
94.3 \\
109
\end{gathered}
\] \& \[
\begin{aligned}
\& 163 \\
\& 141 \\
\& 163
\end{aligned}
\] \\
\hline \& SC Class B \& \[
\begin{aligned}
\& \text { STD } \\
\& \text { OVS } \\
\& \text { SSLT }
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 82.4 \\
\& 77.2 \\
\& 81.1
\end{aligned}
\] \& \[
\begin{aligned}
\& 124 \\
\& 116 \\
\& 122
\end{aligned}
\] \& \[
\begin{gathered}
103 \\
96.5 \\
101
\end{gathered}
\] \& \[
\begin{aligned}
\& 155 \\
\& 145 \\
\& 152
\end{aligned}
\] \& \[
\begin{aligned}
\& 124 \\
\& 116 \\
\& 122
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 185 \\
\& 174 \\
\& 182
\end{aligned}
\] \\
\hline \multicolumn{6}{|c|}{Weld and Beam Web Available Strength, kips} \& \multicolumn{3}{|c|}{\multirow[t]{2}{*}{Support Available Strength per Inch Thickness, kip/in.}} \\
\hline \multirow[t]{2}{*}{70-ksi Weld Size, in.} \& \multicolumn{3}{|c|}{\multirow[t]{2}{*}{Minimum Beam Web Thickness, in.}} \& \begin{tabular}{|l|}
\hline\(R_{n} / \Omega\) \\
\hline kips \\
\hline
\end{tabular} \& \[
\begin{gathered}
\phi \boldsymbol{R}_{\boldsymbol{n}} \\
\hline \text { kips }
\end{gathered}
\] \& \& \& \\
\hline \& \& \& \& ASD \& LRFD \& ASD \& \& RFD \\
\hline \[
\begin{gathered}
3 / 16 \\
1 / 4 \\
5 / 16 \\
3 / 8
\end{gathered}
\] \& \multicolumn{2}{|r|}{\[
\begin{aligned}
\& 0.286 \\
\& 0.381 \\
\& 0.476 \\
\& 0.571
\end{aligned}
\]} \& \& \[
\begin{gathered}
78.7 \\
104 \\
129 \\
153
\end{gathered}
\] \& \[
\begin{aligned}
\& 118 \\
\& 156 \\
\& 193 \\
\& 230
\end{aligned}
\] \& 683 \& \& 1020 \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
STD = Standard holes \\
OVS = Oversized holes \\
SSLT = Short-slotted holes transverse \\
to direction of load
\end{tabular}} \& \multicolumn{3}{|c|}{\[
\begin{aligned}
\mathrm{N} \& =\text { Threads included } \\
\mathrm{X} \& =\text { Threads excluded } \\
\text { SC } \& =\text { Slip critical }
\end{aligned}
\]} \& \& End-P

$F_{y}=36$

$F_{u}=58$ \& \& | eam |
| :--- |
| 50 ksi 65 ksi |

\hline \multicolumn{9}{|l|}{Note: Slip-critical bolt values assume no more than one filler has been provided.}

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{\begin{tabular}{ccc}
\& Table 10-4 (continued) \& 7/8-in. Bolts \\
W24, 21, \& Bolted/Welded \& 8-indere \\
18,16 \& Shear End-Plate \& 4 Rows \\
\& \& \(l=111 / 2\) in.
\end{tabular}} \\
\hline \multicolumn{9}{|c|}{Bolt and End-Plate Available Strength, kips} \\
\hline \multirow{3}{*}{Bolt Group} \& \multirow{3}{*}{Thread Cond.} \& \multirow{3}{*}{\begin{tabular}{l}
Hole \\
Type
\end{tabular}} \& \multicolumn{6}{|c|}{End-Plate Thickness, in.} \\
\hline \& \& \& \multicolumn{2}{|c|}{1/4} \& \multicolumn{2}{|c|}{5/16} \& \multicolumn{2}{|c|}{\(3 / 8\)} \\
\hline \& \& \& ASD \& LRFD \& ASD \& LRFD \& ASD \& LRFD \\
\hline \multirow{3}{*}{Group A} \& \[
\begin{aligned}
\& \mathrm{N} \\
\& \mathrm{X}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { STD } \\
\& \text { STD }
\end{aligned}
\] \& \[
\begin{aligned}
\& 65.3 \\
\& 65.3
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 97.9 \\
\& 97.9
\end{aligned}
\] \& \[
\begin{aligned}
\& 81.6 \\
\& 81.6
\end{aligned}
\] \& \[
\begin{aligned}
\& 122 \\
\& 122
\end{aligned}
\] \& \[
\begin{aligned}
\& 97.9 \\
\& 97.9
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 147 \\
\& 147
\end{aligned}
\] \\
\hline \& SC Class A \& \[
\begin{aligned}
\& \hline \text { STD } \\
\& \text { OVS } \\
\& \text { SSLT }
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 65.3 \\
\& 57.6 \\
\& 64.9 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 97.9 \\
\& 86.2 \\
\& 97.3 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 69.9 \\
\& 60.1 \\
\& 69.9 \\
\& \hline
\end{aligned}
\] \& \[
\begin{gathered}
\hline 105 \\
89.9 \\
105 \\
\hline
\end{gathered}
\] \& \[
\begin{aligned}
\& \hline 70.5 \\
\& 60.1 \\
\& 70.5 \\
\& \hline
\end{aligned}
\] \& \[
\begin{gathered}
\hline 106 \\
89.9 \\
106 \\
\hline
\end{gathered}
\] \\
\hline \& SC Class B \& \[
\begin{aligned}
\& \text { STD } \\
\& \text { OVS } \\
\& \text { SSLT }
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 65.3 \\
\& 60.9 \\
\& 64.9
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 97.9 \\
\& 91.4 \\
\& 97.3
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 81.6 \\
\& 76.1 \\
\& 81.1
\end{aligned}
\] \& \[
\begin{aligned}
\& 122 \\
\& 114 \\
\& 122
\end{aligned}
\] \& \[
\begin{aligned}
\& 97.9 \\
\& 91.4 \\
\& 97.3
\end{aligned}
\] \& \[
\begin{aligned}
\& 147 \\
\& 137 \\
\& 146
\end{aligned}
\] \\
\hline \multirow{3}{*}{Group B} \& \[
\begin{aligned}
\& \mathrm{N} \\
\& \mathrm{X}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { STD } \\
\& \text { STD }
\end{aligned}
\] \& \[
\begin{aligned}
\& 65.3 \\
\& 65.3
\end{aligned}
\] \& \[
\begin{aligned}
\& 97.9 \\
\& 97.9
\end{aligned}
\] \& \[
\begin{aligned}
\& 81.6 \\
\& 81.6
\end{aligned}
\] \& \[
\begin{aligned}
\& 122 \\
\& 122
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 97.9 \\
\& 97.9
\end{aligned}
\] \& \[
\begin{aligned}
\& 147 \\
\& 147
\end{aligned}
\] \\
\hline \& SC Class A \& \[
\begin{gathered}
\hline \text { STD } \\
\text { OVS } \\
\text { SSLT }
\end{gathered}
\] \& \[
\begin{aligned}
\& \hline 65.3 \\
\& 60.9 \\
\& 64.9
\end{aligned}
\] \& \[
\begin{aligned}
\& 97.9 \\
\& 91.4 \\
\& 97.3
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 81.6 \\
\& 72.3 \\
\& 81.1
\end{aligned}
\] \& \[
\begin{aligned}
\& 122 \\
\& 108 \\
\& 122
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 86.8 \\
\& 75.4 \\
\& 86.8
\end{aligned}
\] \& \[
\begin{aligned}
\& 130 \\
\& 113 \\
\& 130
\end{aligned}
\] \\
\hline \& SC Class B \& \[
\begin{aligned}
\& \hline \text { STD } \\
\& \text { OVS } \\
\& \text { SSLT }
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 65.3 \\
\& 60.9 \\
\& 64.9
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 97.9 \\
\& 91.4 \\
\& 97.3
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 81.6 \\
\& 76.1 \\
\& 81.1
\end{aligned}
\] \& \[
\begin{aligned}
\& 122 \\
\& 114 \\
\& 122
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 97.9 \\
\& 91.4 \\
\& 97.3
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 147 \\
\& 137 \\
\& 146
\end{aligned}
\] \\
\hline \multicolumn{6}{|c|}{Weld and Beam Web Available Strength, kips} \& \multicolumn{3}{|c|}{\multirow[t]{2}{*}{Support Available Strength per Inch Thickness, kip/in.}} \\
\hline \multirow[t]{2}{*}{70-ksi Weld Size, in.} \& \multicolumn{3}{|c|}{\multirow[t]{2}{*}{Minimum Beam Web Thickness, in.}} \& \begin{tabular}{|c|}
\hline\(R_{n} / \Omega\) \\
\hline kips \\
\hline
\end{tabular} \& \[
\begin{aligned}
\& \phi \boldsymbol{R}_{\boldsymbol{n}} \\
\& \hline \text { kips }
\end{aligned}
\] \& \& \& \\
\hline \& \& \& \& ASD \& LRFD \& ASD \& \& RFD \\
\hline \[
\begin{gathered}
3 / 16 \\
1 / 4 \\
5 / 16 \\
3 / 8
\end{gathered}
\] \& \multicolumn{2}{|r|}{\[
\begin{aligned}
\& 0.286 \\
\& 0.381 \\
\& 0.476 \\
\& 0.571
\end{aligned}
\]} \& \& \[
\begin{gathered}
61.9 \\
81.7 \\
101 \\
120
\end{gathered}
\] \& \[
\begin{gathered}
92.9 \\
123 \\
151 \\
180
\end{gathered}
\] \& 546 \& \multicolumn{2}{|r|}{819} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
STD = Standard holes \\
OVS = Oversized holes \\
SSLT = Short-slotted holes transverse to direction of load
\end{tabular}} \& \multicolumn{3}{|r|}{\[
\begin{aligned}
\mathrm{N} \& =\text { Threads included } \\
\mathrm{X} \& =\text { Threads excluded } \\
\text { SC } \& =\text { Slip critical }
\end{aligned}
\]} \& \& End-P

$F_{y}=36$

$F_{u}=58$ \& \& | eam |
| :--- |
| 50 ks |
| 65 ks |

\hline \multicolumn{9}{|l|}{Note: Slip-critical bolt values assume no more than one filler has been provided.}

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{\begin{tabular}{ccc}
\& Table 10-4 (continued) \& \\
7/in. Bolts \& Bolted/Welded \& w18, 16, \\
3 Rows \& Shear End-Plate \& 14,12, \\
\(l=81 / 2\) in. \& Connections \&
\end{tabular}} \\
\hline \multicolumn{9}{|c|}{Bolt and End-Plate Available Strength, kips} \\
\hline \multirow{3}{*}{Bolt Group} \& \multirow{3}{*}{Thread Cond.} \& \multirow{3}{*}{\begin{tabular}{l}
Hole \\
Type
\end{tabular}} \& \multicolumn{6}{|c|}{End-Plate Thickness, in.} \\
\hline \& \& \& \multicolumn{2}{|c|}{1/4} \& \multicolumn{2}{|r|}{5/16} \& \multicolumn{2}{|c|}{3/8} \\
\hline \& \& \& ASD \& LRFD \& ASD \& LRFD \& ASD \& LRFD \\
\hline \multirow{3}{*}{Group A} \& \[
\begin{aligned}
\& \mathrm{N} \\
\& \mathrm{X}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { STD } \\
\& \text { STD }
\end{aligned}
\] \& \[
\begin{aligned}
\& 47.9 \\
\& 47.9
\end{aligned}
\] \& \[
\begin{aligned}
\& 71.8 \\
\& 71.8
\end{aligned}
\] \& \[
\begin{aligned}
\& 59.8 \\
\& 59.8
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 89.7 \\
\& 89.7
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 71.8 \\
\& 71.8
\end{aligned}
\] \& \[
\begin{aligned}
\& 108 \\
\& 108
\end{aligned}
\] \\
\hline \& SC Class A \& \[
\begin{gathered}
\text { STD } \\
\text { OVS } \\
\text { SSLT }
\end{gathered}
\] \& \[
\begin{aligned}
\& 47.9 \\
\& 42.6 \\
\& 47.9
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 71.8 \\
\& 63.7 \\
\& 71.8
\end{aligned}
\] \& \[
\begin{aligned}
\& 52.2 \\
\& 45.1 \\
\& 52.2
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 78.4 \\
\& 67.4 \\
\& 78.4 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 52.9 \\
\& 45.1 \\
\& 52.9
\end{aligned}
\] \& 79.3
67.4
79.3 \\
\hline \& SC Class B \& \begin{tabular}{l}
STD \\
OVS \\
SSLT
\end{tabular} \& \[
\begin{aligned}
\& 47.9 \\
\& 44.6 \\
\& 47.9
\end{aligned}
\] \& \[
\begin{aligned}
\& 71.8 \\
\& 66.9 \\
\& 71.8
\end{aligned}
\] \& \[
\begin{aligned}
\& 59.8 \\
\& 55.7 \\
\& 59.8
\end{aligned}
\] \& \[
\begin{aligned}
\& 89.7 \\
\& 83.6 \\
\& 89.7
\end{aligned}
\] \& \[
\begin{aligned}
\& 71.8 \\
\& 66.9 \\
\& 71.8
\end{aligned}
\] \& \[
\begin{aligned}
\& 108 \\
\& 100 \\
\& 108
\end{aligned}
\] \\
\hline \multirow{3}{*}{Group B} \& \[
\begin{aligned}
\& \mathrm{N} \\
\& \mathrm{X}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { STD } \\
\& \text { STD }
\end{aligned}
\] \& \[
\begin{aligned}
\& 47.9 \\
\& 47.9
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 71.8 \\
\& 71.8
\end{aligned}
\] \& \[
\begin{aligned}
\& 59.8 \\
\& 59.8
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 89.7 \\
\& 89.7
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 71.8 \\
\& 71.8
\end{aligned}
\] \& \[
\begin{aligned}
\& 108 \\
\& 108
\end{aligned}
\] \\
\hline \& SC Class A \& \begin{tabular}{l}
STD \\
OVS \\
SSLT
\end{tabular} \& \[
\begin{aligned}
\& 47.9 \\
\& 44.6 \\
\& 47.9 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 71.8 \\
\& 66.9 \\
\& 71.8 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 59.8 \\
\& 53.4 \\
\& 59.8 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 89.7 \\
\& 79.9 \\
\& 89.7 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 64.7 \\
\& 56.5 \\
\& 64.7 \\
\& \hline
\end{aligned}
\] \& 97.0
84.6
97.0 \\
\hline \& SC Class B \& \[
\begin{aligned}
\& \text { STD } \\
\& \text { OVS } \\
\& \text { SSLT }
\end{aligned}
\] \& \[
\begin{aligned}
\& 47.9 \\
\& 44.6 \\
\& 47.9
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 71.8 \\
\& 66.9 \\
\& 71.8
\end{aligned}
\] \& \[
\begin{aligned}
\& 59.8 \\
\& 55.7 \\
\& 59.8
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 89.7 \\
\& 83.6 \\
\& 89.7
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 71.8 \\
\& 66.9 \\
\& 71.8
\end{aligned}
\] \& \[
\begin{aligned}
\& 108 \\
\& 100 \\
\& 108
\end{aligned}
\] \\
\hline \multicolumn{6}{|c|}{Weld and Beam Web Available Strength, kips} \& \multicolumn{3}{|c|}{\multirow[t]{2}{*}{Support Available Strength per Inch Thickness, kip/in.}} \\
\hline \multirow[t]{2}{*}{70-ksi Weld Size, in.} \& \multicolumn{3}{|c|}{\multirow[t]{2}{*}{Minimum Beam Web Thickness, in.}} \& \begin{tabular}{c}
\(R_{n} / \Omega\) \\
\hline kips
\end{tabular} \& \begin{tabular}{c}
\(\phi \boldsymbol{R}_{\boldsymbol{n}}\) \\
\hline kips
\end{tabular} \& \& \& \\
\hline \& \& \& \& ASD \& LRFD \& AS \& \& FD \\
\hline \[
\begin{gathered}
3 / 16 \\
1 / 4 \\
5 / 16 \\
3 / 8
\end{gathered}
\] \& \multicolumn{2}{|r|}{\[
\begin{aligned}
\& 0.286 \\
\& 0.381 \\
\& 0.476 \\
\& 0.571
\end{aligned}
\]} \& \& \[
\begin{aligned}
\& 45.2 \\
\& 59.4 \\
\& 73.1 \\
\& 86.3
\end{aligned}
\] \& \[
\begin{gathered}
67.9 \\
89.1 \\
110 \\
129
\end{gathered}
\] \& 409 \& \& 614 \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
STD = Standard holes \\
OVS = Oversized holes \\
SSLT = Short-slotted holes transvers \\
to direction of load
\end{tabular}} \& \multicolumn{3}{|r|}{\[
\begin{aligned}
\mathrm{N} \& =\text { Threads included } \\
\mathrm{X} \& =\text { Threads excluded } \\
\text { SC } \& =\text { Slip critical }
\end{aligned}
\]} \& \& End-P

$F_{y}=36$

$F_{u}=58$ \& \& | am |
| :--- |
| 50 ks |
| 65 ks |

\hline \multicolumn{9}{|l|}{| *Limited to W10×12, 15, 17, 19, 22, 26, 30 |
| :--- |
| Note: Slip-critical bolt values assume no more than one filler has been provided. |}

\hline
\end{tabular}

$\begin{gathered} 1 \text {-in. B } \\ 12 \text { Ro } \\ l=35^{1} / \end{gathered}$		Tab						
		olt and	Plat	able	gth, kip			
					-Plate	ckness		
Bolt Group	Thread Cond.	Hole Type						
			ASD	LRFD	ASD	LRFD	ASD	LRFD
	$\begin{aligned} & \mathrm{N} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \hline \text { STD } \\ & \text { STD } \end{aligned}$	$\begin{aligned} & 185 \\ & 185 \end{aligned}$	$\begin{aligned} & \hline 277 \\ & 277 \end{aligned}$	$\begin{aligned} & 231 \\ & 231 \end{aligned}$	$\begin{aligned} & \hline 347 \\ & 347 \end{aligned}$	$\begin{aligned} & \hline 277 \\ & 277 \end{aligned}$	$\begin{aligned} & 416 \\ & 416 \end{aligned}$
Group A	SC Class A	$\begin{aligned} & \text { STD } \\ & \text { OVS } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 185 \\ & 172 \\ & 185 \end{aligned}$	$\begin{aligned} & \hline 277 \\ & 258 \\ & 277 \end{aligned}$	$\begin{aligned} & \hline 231 \\ & 215 \\ & 231 \end{aligned}$	$\begin{aligned} & \hline 347 \\ & 322 \\ & 347 \end{aligned}$	$\begin{aligned} & 272 \\ & 232 \\ & 272 \end{aligned}$	$\begin{aligned} & \hline 407 \\ & 348 \\ & 407 \end{aligned}$
	SC Class B	$\begin{gathered} \text { STD } \\ \text { OVS } \\ \text { SSLT } \end{gathered}$	$\begin{aligned} & 185 \\ & 172 \\ & 185 \end{aligned}$	$\begin{aligned} & 277 \\ & 258 \\ & 277 \end{aligned}$	$\begin{aligned} & 231 \\ & 215 \\ & 231 \end{aligned}$	$\begin{aligned} & 347 \\ & 322 \\ & 347 \end{aligned}$	$\begin{aligned} & 277 \\ & 258 \\ & 277 \end{aligned}$	$\begin{aligned} & 416 \\ & 387 \\ & 416 \end{aligned}$
	$\begin{aligned} & \mathrm{N} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \text { STD } \\ & \text { STD } \end{aligned}$	$\begin{aligned} & 185 \\ & 185 \end{aligned}$	$\begin{aligned} & 277 \\ & 277 \end{aligned}$	$\begin{aligned} & 231 \\ & 231 \end{aligned}$	$\begin{aligned} & \hline 347 \\ & 347 \end{aligned}$	$\begin{aligned} & 277 \\ & 277 \end{aligned}$	$\begin{aligned} & 416 \\ & 416 \end{aligned}$
Group B	SC Class A	$\begin{gathered} \text { STD } \\ \text { OVS } \\ \text { SSLT } \end{gathered}$	$\begin{aligned} & 185 \\ & 172 \\ & 185 \\ & \hline \end{aligned}$	$\begin{aligned} & 277 \\ & 258 \\ & 277 \end{aligned}$	$\begin{aligned} & \hline 231 \\ & 215 \\ & 231 \end{aligned}$	$\begin{aligned} & 347 \\ & 322 \\ & 347 \end{aligned}$	$\begin{aligned} & 277 \\ & 258 \\ & 277 \end{aligned}$	$\begin{aligned} & 416 \\ & 387 \\ & 416 \end{aligned}$
	SC Class B	$\begin{gathered} \text { STD } \\ \text { OVS } \\ \text { SSLT } \end{gathered}$	$\begin{aligned} & 185 \\ & 172 \\ & 185 \end{aligned}$	$\begin{aligned} & \hline 277 \\ & 258 \\ & 277 \end{aligned}$	$\begin{aligned} & 231 \\ & 215 \\ & 231 \end{aligned}$	$\begin{aligned} & \hline 347 \\ & 322 \\ & 347 \end{aligned}$	$\begin{aligned} & 277 \\ & 258 \\ & 277 \end{aligned}$	$\begin{aligned} & \hline 416 \\ & 387 \\ & 416 \end{aligned}$
Weld and Beam Web Available Strength, kips						Support Available Strength per Inch Thickness, kip/in.		
70-ksi Weld Size, in.	Minimum Beam Web Thickness, in.			$\begin{aligned} & \hline R_{n} / \Omega \\ & \hline \text { kips } \end{aligned}$	$\begin{gathered} \phi \boldsymbol{R}_{\boldsymbol{n}} \\ \hline \text { kips } \end{gathered}$			
				ASD	LRFD	ASD		LRFD
$\begin{aligned} & 3 / 16 \\ & 1 / 4 \end{aligned}$	$\begin{aligned} & 0.286 \\ & 0.381 \\ & 0.476 \\ & 0.571 \end{aligned}$			$\begin{aligned} & 196 \\ & 260 \end{aligned}$	$\begin{aligned} & 293 \\ & 390 \end{aligned}$	1760 STD/	2650 STD/	
$\begin{aligned} & 5 / 16 \\ & 3 / 8 \end{aligned}$				$\begin{aligned} & 324 \\ & 387 \end{aligned}$	$\begin{aligned} & 486 \\ & 581 \end{aligned}$	1660 OVS	2490 OVS	
STD = Standard holes OVS = Oversized holes SSLT $=$ Short-slotted holes transverse to direction of load		$\begin{aligned} \mathrm{N} & =\text { Threads included } \\ \mathrm{X} & =\text { Threads excluded } \\ \text { SC } & =\text { Slip critical } \end{aligned}$				$\begin{aligned} & F_{y}=36 \mathrm{ksi} \\ & F_{u}=58 \mathrm{ksi} \end{aligned}$		$\begin{aligned} & F_{y}=50 \mathrm{ksi} \\ & F_{u}=65 \mathrm{ksi} \end{aligned}$
Note: Slip-critical bolt values assume no more than one filler has been provided.								

W44, 40		Table 10-4 (continued) Bolted/Welded Shear End-Plate Connections						
Bolt and End-Plate Available Strength, kips								
Bolt Group	Thread Cond.	$\begin{aligned} & \text { Hole } \\ & \text { Type } \end{aligned}$	End-Plate Thickness, in.					
			$1 / 4$		5/16		3/8	
			ASD	LRFD	ASD	LRFD	ASD	LRFD
Group A	N	STD	169	254	211	317	254	380
	X	STD	169	254	211	317	254	380
	SC Class A	STD	169	254	211	317	248	373
		OVS	157	236	196	295	213	318
		SSLT	169	254	211	317	248	373
	SC Class B	STD	169	254	211	317	254	380
		OVS	157	236	196	295	236	354
		SSLT	169	254	211	317	254	380
Group B	N	STD	169	254	211	317	254	380
	X	STD	169	254	211	317	254	380
	SC Class A	STD	169	254	211	317	254	380
		OVS	157	236	196	295	236	354
		SSLT	169	254	211	317	254	380
	SC Class B	STD	169	254	211	317	254	380
		OVS	157	236	196	295	236	354
		SSLT	169	254	211	317	254	380
Weld and Beam Web Available Strength, kips						Support Available Strength per Inch Thickness, kip/in.		
70-ksi Weld Size, in.	Minimum Beam Web Thickness, in.			R_{n} / Ω	$\phi \boldsymbol{R}_{n}$			
				kips	kips			
				ASD	LRFD	ASD		LRFD
$\begin{aligned} & 3 / 16 \\ & 1 / 4 \end{aligned}$	$\begin{aligned} & 0.286 \\ & 0.381 \end{aligned}$			$\begin{aligned} & 179 \\ & 238 \end{aligned}$	$\begin{aligned} & 268 \\ & 356 \end{aligned}$	1620		STD/ SSLT
5/16	$\begin{aligned} & 0.476 \\ & 0.571 \end{aligned}$			296	444			
						1520		OVS
$\begin{aligned} \text { STD } & =\text { Standard holes } \\ \text { OVS } & =\text { Oversized holes } \\ \text { SSLT } & =\text { Short-slotted holes transvers } \\ & \text { to direction of load } \end{aligned}$		$\begin{aligned} & \mathrm{N}=\text { Threads included } \\ & \mathrm{X}=\text { Threads excluded } \\ & \text { SC }=\text { Slip critical } \end{aligned}$				End-P		eam
			$\begin{aligned} & F_{y}=36 \\ & F_{u}=58 \end{aligned}$		$\begin{aligned} & =50 \mathrm{ksi} \\ & =65 \mathrm{ksi} \end{aligned}$			
Note: Slip-critical bolt values assume no more than one filler has been provided.								

Table 10-4 (continued) 1 -in. Bolts Bolted/Welded 10 Rows Shear End-Plate $l=291 / 2 \mathrm{in}$. Connections								
Bolt and End-Plate Available Strength, kips								
Bolt Group	Thread Cond.	Hole Type	End-Plate Thickness, in.					
			$1 / 4$		5/16		$3 / 8$	
			ASD	LRFD	ASD	LRFD	ASD	LRFD
Group A	N	STD	153	230	192	288	230	345
	X	STD	153	230	192	288	230	345
	SC Class A	STD	153	230	192	288	225	338
		OVS	142	214	178	267	193	289
		SSLT	153	230	192	288	225	338
	SC Class B	STD	153	230	192	288	230	345
		OVS	142	214	178	267	214	321
		SSLT	153	230	192	288	230	345
Group B	N	STD	153	230	192	288	230	345
	X	STD	153	230	192	288	230	345
	SC Class A	STD	153	230	192	288	230	345
		OVS	142	214	178	267	214	321
		SSLT	153	230	192	288	230	345
	SC Class B	STD	153	230	192	288	230	345
		OVS	142	214	178	267	214	321
		SSLT	153	230	192	288	230	345
Weld and Beam Web Available Strength, kips						Support Available Strength per Inch Thickness, kip/in.		
70-ksi Weld Size, in.	Minimum Beam Web Thickness, in.			R_{n} / Ω	$\phi \boldsymbol{R}_{n}$			
				kips	kips			
				ASD	LRFD	AS		FD
$\begin{aligned} & 3 / 16 \\ & 1 / 4 \end{aligned}$	$\begin{aligned} & 0.286 \\ & 0.381 \\ & 0.476 \\ & 0.571 \end{aligned}$			$\begin{aligned} & 162 \\ & 215 \end{aligned}$	243 323	1470		STD/
5/16				268	402			
3/8				320	480	1380		OVS
STD = Standard holes OVS = Oversized holes SSLT $=$ Short-slotted holes transvers to direction of load		$\begin{aligned} \mathrm{N} & =\text { Threads included } \\ \mathrm{X} & =\text { Threads excluded } \\ \text { SC } & \text { Slip critical } \end{aligned}$				End-P		m
			$\begin{aligned} & F_{y}=36 \\ & F_{u}=58 \end{aligned}$		50 ksi 65 ksi			
Note: Slip-critical bolt values assume no more than one filler has been provided.								

$\begin{aligned} & 1 \text {-in. B } \\ & 8 \text { Rou } \\ & l=23^{1} / 2 \end{aligned}$							$\begin{gathered} W \\ 3 \end{gathered}$	$\begin{aligned} & 40, \\ & 33 \end{aligned}$
		olt and	Plate	lable S	gth, kip			
					-Plate	ckness		
	Cond	Hole						
			ASD	LRFD	ASD	LRFD	ASD	LRFD
	$\begin{aligned} & \mathrm{N} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \hline \text { STD } \\ & \text { STD } \end{aligned}$	$\begin{aligned} & 122 \\ & 122 \end{aligned}$	$\begin{aligned} & 183 \\ & 183 \end{aligned}$	$\begin{aligned} & 152 \\ & 152 \end{aligned}$	$\begin{aligned} & 228 \\ & 228 \end{aligned}$	$\begin{aligned} & 183 \\ & 183 \end{aligned}$	$\begin{aligned} & \hline 274 \\ & 274 \end{aligned}$
Group A	SC Class A	$\begin{gathered} \text { STD } \\ \text { OVS } \\ \text { SSLT } \end{gathered}$	$\begin{aligned} & 122 \\ & 113 \\ & 122 \end{aligned}$	$\begin{aligned} & 183 \\ & 170 \\ & 183 \end{aligned}$	$\begin{aligned} & 152 \\ & 141 \\ & 152 \end{aligned}$	$\begin{aligned} & \hline 228 \\ & 212 \\ & 228 \end{aligned}$	$\begin{aligned} & 179 \\ & 154 \\ & 179 \end{aligned}$	$\begin{aligned} & 269 \\ & 230 \\ & 269 \end{aligned}$
	SC Class B	$\begin{gathered} \text { STD } \\ \text { OVS } \\ \text { SSLT } \end{gathered}$	$\begin{aligned} & 122 \\ & 113 \\ & 122 \end{aligned}$	$\begin{aligned} & \hline 183 \\ & 170 \\ & 183 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 152 \\ & 141 \\ & 152 \end{aligned}$	$\begin{aligned} & \hline 228 \\ & 212 \\ & 228 \end{aligned}$	$\begin{aligned} & 183 \\ & 170 \\ & 183 \end{aligned}$	$\begin{aligned} & \hline 274 \\ & 254 \\ & 274 \end{aligned}$
	$\begin{aligned} & \mathrm{N} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \text { STD } \\ & \text { STD } \end{aligned}$	$\begin{aligned} & 122 \\ & 122 \end{aligned}$	$\begin{aligned} & 183 \\ & 183 \end{aligned}$	$\begin{aligned} & 152 \\ & 152 \end{aligned}$	$\begin{aligned} & 228 \\ & 228 \end{aligned}$	$\begin{aligned} & 183 \\ & 183 \end{aligned}$	$\begin{aligned} & \hline 274 \\ & 274 \end{aligned}$
Group B	SC Class A	$\begin{gathered} \text { STD } \\ \text { OVS } \\ \text { SSLT } \end{gathered}$	$\begin{aligned} & 122 \\ & 113 \\ & 122 \end{aligned}$	$\begin{aligned} & 183 \\ & 170 \\ & 183 \end{aligned}$	$\begin{aligned} & 152 \\ & 141 \\ & 152 \end{aligned}$	$\begin{aligned} & \hline 228 \\ & 212 \\ & 228 \\ & \hline \end{aligned}$	$\begin{aligned} & 183 \\ & 170 \\ & 183 \\ & \hline \end{aligned}$	$\begin{aligned} & 274 \\ & 254 \\ & 274 \end{aligned}$
	SC Class B	$\begin{gathered} \text { STD } \\ \text { OVS } \\ \text { SSLT } \end{gathered}$	$\begin{aligned} & 122 \\ & 113 \\ & 122 \end{aligned}$	$\begin{aligned} & 183 \\ & 170 \\ & 183 \end{aligned}$	$\begin{aligned} & \hline 152 \\ & 141 \\ & 152 \end{aligned}$	$\begin{aligned} & \hline 228 \\ & 212 \\ & 228 \end{aligned}$	$\begin{aligned} & 183 \\ & 170 \\ & 183 \end{aligned}$	$\begin{aligned} & \hline 274 \\ & 254 \\ & 274 \end{aligned}$
Weld and Beam Web Available Strength, kips						Support Available Strength per Inch Thickness, kip/in.		
70-ksi Weld Size, in.	Minimum Beam Web Thickness, in.			R_{n} / Ω kips	$\phi \boldsymbol{R}_{\boldsymbol{n}}$ $\mathbf{k i p s}$			
				ASD	LRFD	ASD		LRFD
$\begin{aligned} & 3 / 16 \\ & 1 / 4 \end{aligned}$	$\begin{aligned} & 0.286 \\ & 0.381 \\ & 0.476 \\ & 0.571 \end{aligned}$			$\begin{aligned} & 129 \\ & 171 \end{aligned}$	$\begin{aligned} & 193 \\ & 256 \end{aligned}$	1180 STD/		1770 STD/
$\begin{aligned} & 5 / 16 \\ & 3 / 8 \end{aligned}$				$\begin{aligned} & 212 \\ & 253 \end{aligned}$	$\begin{aligned} & 318 \\ & 380 \end{aligned}$	1110 OVS		1670 OVS
STD = Standard holes OVS = Oversized holes SSLT = Short-slotted holes transverse to direction of load		$\begin{aligned} \mathrm{N} & =\text { Threads included } \\ \mathrm{X} & =\text { Threads excluded } \\ \text { SC } & =\text { Slip critical } \end{aligned}$				$\begin{aligned} & F_{y}=36 \mathrm{ksi} \\ & F_{u}=58 \mathrm{ksi} \end{aligned}$		$\begin{aligned} & F_{y}=50 \mathrm{ksi} \\ & F_{u}=65 \mathrm{ksi} \end{aligned}$
Note: Slip-critical bolt values assume no more than one filler has been provided.								

$\begin{aligned} & 1 \text {-in. B } \\ & 4 \text { Rov } \\ & l=11^{1} / 2 \end{aligned}$								$\begin{gathered} 21, \\ 16 \end{gathered}$
		olt and	Plate	lable	gth, ki			
					d-Plate	kness		
Bolt Group	Thread Cond.	Hole Type						
			ASD	LRFD	ASD	LRFD	ASD	LRFD
	$\begin{aligned} & \mathrm{N} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \hline \text { STD } \\ & \text { STD } \end{aligned}$	$\begin{aligned} & 58.7 \\ & 58.7 \end{aligned}$	$\begin{aligned} & \hline 88.1 \\ & 88.1 \end{aligned}$	$\begin{aligned} & 73.4 \\ & 73.4 \end{aligned}$	$\begin{aligned} & 110 \\ & 110 \end{aligned}$	$\begin{aligned} & 88.1 \\ & 88.1 \end{aligned}$	$\begin{aligned} & 132 \\ & 132 \end{aligned}$
Group A	SC Class A	$\begin{gathered} \text { STD } \\ \text { OVS } \\ \text { SSLT } \end{gathered}$	$\begin{aligned} & 58.7 \\ & 54.4 \\ & 58.7 \end{aligned}$	$\begin{aligned} & \hline 88.1 \\ & 81.6 \\ & 88.1 \end{aligned}$	$\begin{aligned} & \hline 73.4 \\ & 68.0 \\ & 73.4 \end{aligned}$	$\begin{aligned} & \hline 110 \\ & 102 \\ & 110 \end{aligned}$	$\begin{aligned} & \hline 87.1 \\ & 75.3 \\ & 87.1 \end{aligned}$	$\begin{aligned} & 131 \\ & 113 \\ & 131 \end{aligned}$
	SC Class B	$\begin{gathered} \text { STD } \\ \text { OVS } \\ \text { SSLT } \end{gathered}$	$\begin{aligned} & 58.7 \\ & 54.4 \\ & 58.7 \end{aligned}$	$\begin{aligned} & \hline 88.1 \\ & 81.6 \\ & 88.1 \end{aligned}$	$\begin{aligned} & \hline 73.4 \\ & 68.0 \\ & 73.4 \end{aligned}$	$\begin{aligned} & \hline 110 \\ & 102 \\ & 110 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 88.1 \\ & 81.6 \\ & 88.1 \end{aligned}$	$\begin{aligned} & 132 \\ & 122 \\ & 132 \end{aligned}$
	$\begin{aligned} & \mathrm{N} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \text { STD } \\ & \text { STD } \end{aligned}$	$\begin{aligned} & 58.7 \\ & 58.7 \end{aligned}$	$\begin{aligned} & \hline 88.1 \\ & 88.1 \end{aligned}$	$\begin{aligned} & 73.4 \\ & 73.4 \end{aligned}$	$\begin{aligned} & 110 \\ & 110 \end{aligned}$	$\begin{aligned} & 88.1 \\ & 88.1 \end{aligned}$	$\begin{aligned} & 132 \\ & 132 \end{aligned}$
Group B	SC Class A	$\begin{gathered} \text { STD } \\ \text { OVS } \\ \text { SSLT } \end{gathered}$	$\begin{aligned} & 58.7 \\ & 54.4 \\ & 58.7 \end{aligned}$	$\begin{aligned} & \hline 88.1 \\ & 81.6 \\ & 88.1 \end{aligned}$	$\begin{aligned} & \hline 73.4 \\ & 68.0 \\ & 73.4 \end{aligned}$	$\begin{aligned} & \hline 110 \\ & 102 \\ & 110 \end{aligned}$	$\begin{aligned} & \hline 88.1 \\ & 81.6 \\ & 88.1 \end{aligned}$	$\begin{aligned} & 132 \\ & 122 \\ & 132 \end{aligned}$
	SC Class B	$\begin{gathered} \text { STD } \\ \text { OVS } \\ \text { SSLT } \end{gathered}$	$\begin{aligned} & 58.7 \\ & 54.4 \\ & 58.7 \end{aligned}$	$\begin{aligned} & 88.1 \\ & 81.6 \\ & 88.1 \end{aligned}$	$\begin{aligned} & 73.4 \\ & 68.0 \\ & 73.4 \end{aligned}$	$\begin{aligned} & 110 \\ & 102 \\ & 110 \end{aligned}$	$\begin{aligned} & \hline 88.1 \\ & 81.6 \\ & 88.1 \end{aligned}$	$\begin{aligned} & 132 \\ & 122 \\ & 132 \end{aligned}$
Weld and Beam Web Available Strength, kips						Support Available Strength per Inch Thickness, kip/in.		
70-ksi Weld Size, in.	Minimum Beam Web Thickness, in.			R_{n} / Ω kips	$\phi \boldsymbol{R}_{\boldsymbol{n}}$ $\mathbf{k i p s}$			
				ASD	LRFD	ASD		LRFD
$\begin{aligned} & 3 / 16 \\ & 1 / 4 \end{aligned}$	$\begin{aligned} & 0.286 \\ & 0.381 \\ & 0.476 \\ & 0.571 \end{aligned}$			$\begin{aligned} & 61.9 \\ & 81.7 \end{aligned}$	$\begin{gathered} 92.9 \\ 123 \end{gathered}$	$595 \begin{aligned} & \text { STD/ } \\ & \text { SSLT }\end{aligned}$		892 STD/
$\begin{aligned} & 5 / 16 \\ & 3 / 8 \end{aligned}$				$\begin{aligned} & 101 \\ & 120 \end{aligned}$	$\begin{aligned} & 151 \\ & 180 \end{aligned}$	566 OVS		848 OVS
STD = Standard holes OVS = Oversized holes SSLT = Short-slotted holes transverse to direction of load		$\begin{aligned} \mathrm{N} & =\text { Threads included } \\ \mathrm{X} & =\text { Threads excluded } \\ \text { SC } & =\text { Slip critical } \end{aligned}$				$\begin{aligned} & F_{y}=36 \mathrm{ksi} \\ & F_{u}=58 \mathrm{ksi} \end{aligned}$		$\begin{aligned} & F_{y}=50 \mathrm{ksi} \\ & F_{u}=65 \mathrm{ksi} \end{aligned}$
Note: Slip-critical bolt values assume no more than one filler has been provided.								

$\begin{gathered} \text { W18, 16, } \\ 14,12, \\ 10^{*} \end{gathered}$		Table 10-4 (continued) Bolted/Welded Shear End-Plate Connections						
Bolt and End-Plate Available Strength, kips								
Bolt Group	Thread Cond.	Hole Type	End-Plate Thickness, in.					
			$1 / 4$		5/16		3/8	
			ASD	LRFD	ASD	LRFD	ASD	LRFD
Group A	N	STD	43.0	64.4	53.7	80.5	64.4	96.7
	X	STD	43.0	64.4	53.7	80.5	64.4	96.7
	SC Class A	STD	43.0	64.4	53.7	80.5	64.0	96.1
		OVS	39.7	59.5	49.6	74.4	55.6	83.3
		SSLT	43.0	64.4	53.7	80.5	64.0	96.1
	SC Class B	STD	43.0	64.4	53.7	80.5	64.4	96.7
		OVS	39.7	59.5	49.6	74.4	59.5	89.3
		SSLT	43.0	64.4	53.7	80.5	64.4	96.7
Group B	N	STD	43.0	64.4	53.7	80.5	64.4	96.7
	X	STD	43.0	64.4	53.7	80.5	64.4	96.7
	SC Class A	STD	43.0	64.4	53.7	80.5	64.4	96.7
		OVS	39.7	59.5	49.6	74.4	59.5	89.3
		SSLT	43.0	64.4	53.7	80.5	64.4	96.7
	SC Class B	STD	43.0	64.4	53.7	80.5	64.4	96.7
		OVS	39.7	59.5	49.6	74.4	59.5	89.3
				64.4	53.7	80.5	64.4	96.7
Weld and Beam Web Available Strength, kips						Support Available Strength per Inch Thickness, kip/in.		
70-ksi Weld Size, in.	Minimum Beam Web Thickness, in.			R_{n} / Ω	$\phi \boldsymbol{R}_{n}$			
				kips	kips			
				ASD	LRFD	ASD		LRFD
$\begin{aligned} & 3 / 16 \\ & 1 / 4 \end{aligned}$	$\begin{aligned} & 0.286 \\ & 0.381 \\ & 0.476 \\ & 0.571 \end{aligned}$			$\begin{aligned} & 45.2 \\ & 59.4 \end{aligned}$	$\begin{aligned} & 67.9 \\ & 89.1 \end{aligned}$	449		STD/ SSLT
5/16				73.1	110			
						429		OVS
$\begin{array}{\|l} \hline \text { STD }=\text { Standard holes } \\ \text { OVS }=\text { Oversized holes } \\ \text { SSLT } \end{array}$		$\begin{aligned} & N=\text { Threads included } \\ & X=\text { Threadd excluded } \\ & \text { SC }=\text { Slip critical } \end{aligned}$				End-P		eam
			$\begin{aligned} & F_{y}=36 \\ & F_{u}=5 \ell \end{aligned}$		50 ksi 65 ksi			
*Limited to W10×12, 15, 17, 19, 22, 26, 30 Note: Slip-critical bolt values assume no more than one filler has been provided.								

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{\begin{tabular}{lcc}
\& Table 10-4 (continued) \& \\
1 -in. Bolts \& Bolted/Welded \& W12, 10, \\
2 Rows \& Shear End-Plate \& 8 \\
\(l=51 / 2\) in. \& Connections \&
\end{tabular}} \\
\hline \multicolumn{9}{|c|}{Bolt and End-Plate Available Strength, kips} \\
\hline \multirow{3}{*}{Bolt Group} \& \multirow{3}{*}{Thread Cond.} \& \multirow{3}{*}{\begin{tabular}{l}
Hole \\
Type
\end{tabular}} \& \multicolumn{6}{|c|}{End-Plate Thickness, in.} \\
\hline \& \& \& \multicolumn{2}{|c|}{1/4} \& \multicolumn{2}{|c|}{5/16} \& \multicolumn{2}{|c|}{3/8} \\
\hline \& \& \& ASD \& LRFD \& ASD \& LRFD \& ASD \& LRFD \\
\hline \multirow{3}{*}{Group A} \& \[
\begin{aligned}
\& \mathrm{N} \\
\& \mathrm{X}
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline \text { STD } \\
\& \text { STD }
\end{aligned}
\] \& \[
\begin{aligned}
\& 27.2 \\
\& 27.2
\end{aligned}
\] \& \[
\begin{aligned}
\& 40.8 \\
\& 40.8
\end{aligned}
\] \& \[
\begin{aligned}
\& 34.0 \\
\& 34.0
\end{aligned}
\] \& \[
\begin{aligned}
\& 51.0 \\
\& 51.0
\end{aligned}
\] \& \[
\begin{aligned}
\& 40.8 \\
\& 40.8
\end{aligned}
\] \& \[
\begin{aligned}
\& 61.2 \\
\& 61.2
\end{aligned}
\] \\
\hline \& SC Class A \& \[
\begin{aligned}
\& \text { STD } \\
\& \text { OVS } \\
\& \text { SSLT }
\end{aligned}
\] \& \[
\begin{aligned}
\& 27.2 \\
\& 25.0 \\
\& 27.2
\end{aligned}
\] \& \[
\begin{aligned}
\& 40.8 \\
\& 37.5 \\
\& 40.8
\end{aligned}
\] \& \[
\begin{aligned}
\& 34.0 \\
\& 31.3 \\
\& 34.0
\end{aligned}
\] \& \[
\begin{aligned}
\& 51.0 \\
\& 46.9 \\
\& 51.0
\end{aligned}
\] \& \[
\begin{aligned}
\& 40.8 \\
\& 36.0 \\
\& 40.8
\end{aligned}
\] \& \[
\begin{aligned}
\& 61.2 \\
\& 53.9 \\
\& 61.2
\end{aligned}
\] \\
\hline \& SC Class B \& \begin{tabular}{l}
STD \\
OVS \\
SSLT
\end{tabular} \& \[
\begin{aligned}
\& 27.2 \\
\& 25.0 \\
\& 27.2
\end{aligned}
\] \& \[
\begin{aligned}
\& 40.8 \\
\& 37.5 \\
\& 40.8
\end{aligned}
\] \& \[
\begin{aligned}
\& 34.0 \\
\& 31.3 \\
\& 34.0
\end{aligned}
\] \& \[
\begin{aligned}
\& 51.0 \\
\& 46.9 \\
\& 51.0
\end{aligned}
\] \& \[
\begin{aligned}
\& 40.8 \\
\& 37.5 \\
\& 40.8
\end{aligned}
\] \& \[
\begin{aligned}
\& 61.2 \\
\& 56.3 \\
\& 61.2
\end{aligned}
\] \\
\hline \multirow{3}{*}{Group B} \& \[
\begin{aligned}
\& \mathrm{N} \\
\& \mathrm{X}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { STD } \\
\& \text { STD }
\end{aligned}
\] \& \[
\begin{aligned}
\& 27.2 \\
\& 27.2
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 40.8 \\
\& 40.8
\end{aligned}
\] \& \[
\begin{aligned}
\& 34.0 \\
\& 34.0
\end{aligned}
\] \& \[
\begin{aligned}
\& 51.0 \\
\& 51.0
\end{aligned}
\] \& \[
\begin{aligned}
\& 40.8 \\
\& 40.8
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 61.2 \\
\& 61.2
\end{aligned}
\] \\
\hline \& SC Class A \& \begin{tabular}{l}
STD \\
OVS \\
SSLT
\end{tabular} \& \[
\begin{aligned}
\& 27.2 \\
\& 25.0 \\
\& 27.2 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 40.8 \\
\& 37.5 \\
\& 40.8 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 34.0 \\
\& 31.3 \\
\& 34.0 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 51.0 \\
\& 46.9 \\
\& 51.0 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 40.8 \\
\& 37.5 \\
\& 40.8 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 61.2 \\
\& 56.3 \\
\& 61.2
\end{aligned}
\] \\
\hline \& SC Class B \& \[
\begin{gathered}
\text { STD } \\
\text { OVS } \\
\text { SSLT }
\end{gathered}
\] \& \[
\begin{aligned}
\& 27.2 \\
\& 25.0 \\
\& 27.2
\end{aligned}
\] \& \[
\begin{aligned}
\& 40.8 \\
\& 37.5 \\
\& 40.8
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 34.0 \\
\& 31.3 \\
\& 34.0
\end{aligned}
\] \& \[
\begin{aligned}
\& 51.0 \\
\& 46.9 \\
\& 51.0
\end{aligned}
\] \& \[
\begin{aligned}
\& 40.8 \\
\& 37.5 \\
\& 40.8
\end{aligned}
\] \& \[
\begin{aligned}
\& 61.2 \\
\& 56.3 \\
\& 61.2
\end{aligned}
\] \\
\hline \multicolumn{6}{|c|}{Weld and Beam Web Available Strength, kips} \& \multicolumn{3}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Support Available \\
Strength per Inch \\
Thickness, kip/in.
\end{tabular}}} \\
\hline \multirow[t]{2}{*}{70-ksi Weld Size, in.} \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Minimum Beam Web Thickness, in.}} \& \begin{tabular}{c}
\(R_{n} / \Omega\) \\
\hline kips
\end{tabular} \& \begin{tabular}{c}
\(\phi \boldsymbol{R}_{\boldsymbol{n}}\) \\
\hline \(\mathbf{k i p s}\) \\
\hline
\end{tabular} \& \& \& \\
\hline \& \& \& \& ASD \& LRFD \& AS \& \& FD \\
\hline \[
\begin{aligned}
\& 3 / 16 \\
\& 1 / 4
\end{aligned}
\] \& \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\[
\begin{aligned}
\& 0.286 \\
\& 0.381 \\
\& 0.476 \\
\& 0.571
\end{aligned}
\]}} \& \& \[
\begin{aligned}
\& 28.5 \\
\& 37.1
\end{aligned}
\] \& \[
\begin{aligned}
\& 42.8 \\
\& 55.7
\end{aligned}
\] \& 302 \& \& STD/
SSLT \\
\hline \[
\begin{aligned}
\& 5 / 16 \\
\& 3 / 8
\end{aligned}
\] \& \& \& \& \[
\begin{aligned}
\& 45.2 \\
\& 52.9
\end{aligned}
\] \& \[
\begin{aligned}
\& 67.9 \\
\& 79.4
\end{aligned}
\] \& 293 \& \& OVS \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
\text { STD } \& =\text { Standard holes } \\
\text { OVS } \& =\text { Oversized holes } \\
\text { SSLT } \& =\text { Short-slotted holes transverse } \\
\& \text { to direction of load }
\end{aligned}
\]} \& \multicolumn{3}{|r|}{\[
\begin{aligned}
\mathrm{N} \& =\text { Threads included } \\
\mathrm{X} \& =\text { Threads excluded } \\
\text { SC } \& =\text { Slip critical }
\end{aligned}
\]} \& \& End-P

$F_{y}=36$

$F_{u}=58$ \& \& | am |
| :--- |
| 50 ksi 65 ks |

\hline \multicolumn{9}{|l|}{Note: Slip-critical bolt values assume no more than one filler has been provided.}

\hline
\end{tabular}

UNSTIFFENED SEATED CONNECTIONS

An unstiffened seated connection is made with a seat angle and a top angle, as illustrated in Figure 10-7. These angles may be bolted or welded to the supported beam as well as to the supporting member.

While the seat angle is assumed to carry the entire end reaction of the supported beam, the top angle must be placed as shown or in the optional side location for satisfactory performance and stability (Roeder and Dailey, 1989). The top angle and its connections are not usually sized for any calculated strength requirement. A $1 / 4$-in.-thick angle with a 4-in. vertical leg dimension will generally be adequate. It may be bolted with two bolts

(a) All-bolted

(b) All-welded

Fig. 10-7. Unstiffened seated connections.
through each leg or welded with minimum size welds to either the supported or the supporting members.

When the top angle is welded to the support and/or the supported beam, adequate flexibility must be provided in the connection. As illustrated in Figure 10-7(b), line welds are placed along the toe of each angle leg. Note that welding along the sides of the vertical angle leg must be avoided as it would inhibit the flexibility and, therefore, the necessary end rotation of the connection. The performance of such a connection would not be as intended for unstiffened seated connections.

Design Checks

The available strength of an unstiffened seated connection is determined from the applicable limit states for bolts (see Part 7), welds (see Part 8), and connecting elements (see Part 9). Additionally, the strength of the supported beam web must be checked for the limit states of web local yielding and web local crippling. In all cases, the available strength, ϕR_{n} or R_{n} / Ω, must equal or exceed the required strength, R_{u} or R_{a}. The available strength for web local yielding and web local crippling, ϕR_{n} or R_{n} / Ω, is determined per AISC Specification Sections J10.2 and J10.3, respectively, which is simplified using the constants in Table 9-4. For further information, see Carter et al. (1997).

Shop and Field Practices

Unstiffened seated connections may be made to the webs and flanges of supporting columns. If adequate clearance exists, unstiffened seated connections may also be made to the webs of supporting girders.

To provide for overrun in beam length, the nominal setback for the beam end is $\frac{1}{2}$ in. To provide for underrun in beam length, this setback is assumed to be $3 / 4 \mathrm{in}$. for calculation purposes.

The seat angle is preferably shop-attached to the support. Since the bottom flange typically establishes the plane of reference for seated connections, mill variation in beam depth may result in variation in the elevation of the top flange. Such variation is usually of no consequence with concrete slab and metal deck floors, but may be a concern when a grating or steel-plate floor is used. Unless special care is required, the usual mill tolerances for member depth of $1 / 8$ in. to $1 / 4 \mathrm{in}$. are ignored. However, when the top angle is shopattached to the supported beam and field bolted to the support, mill variation in beam depth must be considered. Slotted holes, as illustrated in Figure 10-8(a), will accommodate both overrun and underrun in the beam depth and are the preferred method for economy and convenience to both the fabricator and erector. Alternatively, the angle could be shipped loose with clearance provided, as shown in Figure 10-8(b). When the top angle is to be fieldwelded to the support, no provision for mill variation in the beam depth is necessary.

When the top angle is shop-attached to the support, an appropriate erection clearance is provided, as illustrated in Figure 10-8(c).

Bolted/Welded Unstiffened Seated Connections

Tables 10-5 and 10-6 may be used in combination to design unstiffened seated connections that are welded to the supporting member and bolted to the supported beam.

DESIGN TABLE DISCUSSION (TABLES 10-5 AND 10-6)

Table 10-5. All-Bolted Unstiffened Seated Connections

Table $10-5$ is a design aid for all-bolted unstiffened seats. Seat available strengths are tabulated, assuming a 4-in. outstanding leg, for angle material with $F_{y}=36 \mathrm{ksi}$ and $F_{u}=58$ ksi and beam material with $F_{y}=50 \mathrm{ksi}$ and $F_{u}=65 \mathrm{ksi}$. All values are for comparison with the governing LRFD or ASD load combination.

Tabulated seat available strengths consider the limit states of shear yielding and flexural yielding of the outstanding angle leg. The required bearing length, $l_{b, \text { req }}$, is determined by the designer as the larger value of l_{b} required for the limit states of local yielding and crippling of the beam web. As noted in AISC Specification Section J10.2, the length of bearing must not be less than k for end beam reactions. A nominal beam setback of $1 / 2 \mathrm{in}$. is assumed in these tables. However, this setback is increased to $3 / 4 \mathrm{in}$. for calculation purposes in determining the tabulated values to account for the possibility of underrun in beam length.

(a) Vertical slots

(b) Loose angle with
clearance as shown

(c) Shop-attached to column flange with clearance as shown

Fig. 10-8. Providing for variation in beam depth with seated connections.

Bolt available strengths are tabulated for the seat types illustrated in Figure 10-7(a) with $3 / 4$-in.-, $7 / 8$-in.- and 1 -in.-diameter Group A and Group B bolts. Vertical spacing of bolts and gages in seat angles may be arranged to suit conditions, provided the edge distance and spacing requirements in AISC Specification Section J3 are met. Where thick angles are used, larger entering and tightening clearances may be required in the outstanding angle leg. The suitability of angle sizes and thicknesses for the seat types illustrated in Figure 10-7(a) is also listed in Table 10-5.

Table 10-6. All-Welded Unstiffened Seated Connections

Table $10-6$ is a design aid for all-welded unstiffened seats (exception: the beam is bolted to the seat). Seat available strengths are tabulated, assuming either a $3^{1 / 2} 2$-in. or 4 -in. outstanding leg (as indicated in the table), for angle material with $F_{y}=36 \mathrm{ksi}$ and $F_{u}=58 \mathrm{ksi}$ and beam material with $F_{y}=50 \mathrm{ksi}$ and $F_{u}=65 \mathrm{ksi}$. Electrode strength is assumed to be 70 ksi .

Tabulated seat available strengths consider the limit states of shear yielding and flexural yielding of the outstanding angle leg. The required bearing length, $l_{b, \text { req }}$, is to be determined by the designer as the larger value of l_{b} required for the limit states of local yielding and crippling of the beam web. As noted in AISC Specification Section J10.2, the length of bearing must not be less than k for end beam reactions. A nominal beam setback of $1 / 2 \mathrm{in}$. is assumed in these tables. However, this setback is increased to $3 / 4 \mathrm{in}$. for calculation purposes in determining the tabulated values to account for the possibility of underrun in beam length.

Tabulated weld available strengths are determined using the elastic method. The minimum and maximum angle thickness for each case is also tabulated. While these tabular values are based upon 70-ksi electrodes, they may be used for other electrodes, provided the tabular values are adjusted for the electrodes used (e.g., for 60-ksi electrodes, the tabular values are to be multiplied by $60 / 70=0.857$, etc.) and the welds and base metal meet the available strength provisions of AISC Specification Table J2.5. Should combinations of material thickness and weld size selected from Table 10-6 exceed the limits in AISC Specification Section J2.2, the weld size or material thickness should be increased as required. Table 8-4 is not applicable to the design of these welds in this type of connection.

As can be seen from the following, reduction of the tabulated weld strength is not normally required when unstiffened seats line up on opposite sides of the supporting web. From Salmon et al. (2009), the available strength, ϕR_{n} or R_{n} / Ω, of the welds to the support is

LRFD	ASD
$\phi R_{n}=2\left(\frac{1.392 D l}{\sqrt{1+\frac{20.25 e^{2}}{l^{2}}}}\right) \quad(10-2 \mathrm{a})$	$\frac{R_{n}}{\Omega}=2\left(\frac{0.928 D l}{\sqrt{1+\frac{20.25 e^{2}}{l^{2}}}}\right) \quad(10-2 \mathrm{~b})$

where
$D=$ number of sixteenths-of-an-inch in the weld size
$e=$ eccentricity of the beam end reaction with respect to the weld lines, in.
$l=$ vertical leg dimension of the seat angle, in.

The term in the denominator that accounts for the eccentricity, e, increases the weld size far beyond what is required for shear alone, but with seats on both sides of the supporting member web, the forces due to eccentricity react against each other and have no effect on the web. Furthermore, as illustrated in Figure 10-9, there are actually two shear planes per weld; one at each weld toe and heel for a total of four shear planes. Thus, for an 8 -in.-long $L 7 \times 4 \times 1$ seat angle supporting an LRFD required strength of 70 kips or an equivalent ASD required strength of 46.7 kips , the minimum support thickness is determined as follows:

LRFD	ASD
$\frac{70 \mathrm{kips}}{0.75(0.60)(65 \mathrm{ksi})(7 \mathrm{in} .)(4 \text { planes })}=0.0855 \mathrm{in}$.	$\frac{2.00(46.7 \mathrm{kips})}{0.60(65 \mathrm{ksi})(7 \mathrm{in} .)(4 \mathrm{planes})}=0.0855 \mathrm{in}$.

For the identical connection on both sides of the support, the minimum support thickness is less than ${ }^{3 / 16}$ in. Thus, the supporting web thickness is generally not a concern.

(a) Plan view

(b) Elevation

Fig. 10-9. Shear planes in column web for unstiffened seated connections.

Angle$F_{y}=36 \mathrm{ksi}$			Table 10-5 Ited Unstiffened d Connections															
Outstanding Angle Leg Length Strength, kips																		
Required Bearing Length $l_{b, r e q}$, in.		Angle Length, in.										Min. Angle Leg						
		6																
		Angle Thickness, in.																
		3/8		1/2		5/8		$3 / 4$		1								
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	in.						
1/2		18.2	27.3															
$9 / 16$$5 / 8$		16.2	24.3	43.2	64.8													
		14.6	21.9	43.1	64.8													
$5 / 8$$11 / 16$		13.2	19.9	37.0	55.5													
$3 / 4$		12.1	18.2	32.3	48.6													
13/16		11.2	16.8	28.7	43.2													
7/8		10.4	15.6	25.9	38.9													
15/16		9.70	14.6	23.5	35.3	54.0	81.0											
1		9.09	13.7	21.6	32.4	50.5	75.9											
$1^{1 / 16}$		8.56	12.9	19.9	29.9	44.9	67.5											
$1^{1 / 1 / 8}$		8.08	12.2	18.5	27.8	40.4	60.8											
$1^{3} / 16$		7.66	11.5	17.2	25.9	36.7	55.2											
$1^{1 / 4}$		7.28	10.9	16.2	24.3	33.7	50.6	64.8	97.2									
$1 / 4$$1^{5} / 16$		6.93	10.4	15.2	22.9	31.1	46.7	64.7	97.2			$3^{1 / 2}$						
$15 / 16$$1^{3 / 8}$		6.61	9.94	14.4	21.6	28.9	43.4	58.2	87.5									
$1^{7} / 16$		6.33	9.51	13.6	20.5	26.9	40.5	52.9	79.5									
$1^{1 / 2}$		6.06	9.11	12.9	19.4	25.3	38.0	48.5	72.9									
15/8		5.60	8.41	11.8	17.7	22.5	33.8	41.6	62.5									
$15 / 8$$13 / 4$		5.20	7.81	10.8	16.2	20.2	30.4	36.4	54.7									
$1^{7 / 8}$		4.85	7.29	10.0	15.0	18.4	27.6	32.3	48.6	86.4	130							
2		4.55	6.83	9.24	13.9	16.8	25.3	29.1	43.7	86.2	130							
$2^{1 / 8}$		4.28	6.43	8.62	13.0	15.5	23.4	26.5	39.8	73.9	111							
21/8$2^{1 / 4}$		4.04	6.08	8.08	12.2	14.4	21.7	24.3	36.5	64.7	97.2							
$2^{3 / 8}$		3.83	5.76	7.61	11.4	13.5	20.3	22.4	33.6	57.5	86.4							
$21 / 2$		3.64	5.47	7.19	10.8	12.6	19.0	20.8	31.2	51.7	77.8							
25/8		3.46	5.21	6.81	10.2	11.9	17.9	19.4	29.2	47.0	70.7							
$2^{3 / 4}$		-3.31	4.97	6.47	9.72	11.2	16.9	18.2	27.3	43.1	64.8							
$2^{7 / 8}$		- 3.16	4.75	$\overline{6} .16$	$9.2 \overline{6}$	10.6	16.0	17.1	25.7	39.8	59.8							
3		3.03	4.56	5.88	8.84	10.1	15.2	16.2	24.3	37.0	55.5							
$3^{1 / 8}$		2.91	4.37	5.62	8.45	9.62	14.5	15.3	23.0	34.5	51.8	4						
$3^{1 / 4}$		2.80	4.21	5.39	8.10	9.19	13.8	14.6	21.9	32.3	48.6							
Bolt Available Strength, kips									Available Angles									
Bolt Dia., in.	Bolt Group	Thread Cond.	Connection Type*						Connection Type*		Angle Size	$\begin{gathered} t \\ \text { in. } \end{gathered}$						
			A		B		C											
			ASD	LRFD	ASD	LRFD	ASD	LRFD										
$3 / 4$	Group	N	23.9	35.8	47.7	71.6	71.6	107	A		4×3	3/8-1/2						
	A	X	30.1	45.1	60.1	90.2	90.2	135			$4 \times 3^{1 / 2}$	$3 / 8-1 / 2$						
	Group	N	30.1	45.1	60.1	90.2	90.2	135			4×4	$3 / 8-3 / 4$						
	B	X	37.1	55.7	74.3	111	111	167	B		6×4	$3 / 8-3 / 4$						
7/8	Group	N	32.5	48.7	64.9	97.4	97.4	146			7×4	$3 / 8-3 / 4$						
	A	X	40.9	61.3	81.7	123	123	184			8×4	1/2-1						
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	N	40.9	61.3	81.7	123	123	184	$\mathrm{C}^{\text {a }}$		8×4	1/2-1						
		X	50.5	75.7	101	151	151	227	${ }^{\text {an }}$ Not suitable for use with 1-in.-diameter bolts.									
1	$\begin{gathered} \text { Group } \\ \text { A } \end{gathered}$	N	42.4	63.6	84.8	127	a	a										
		X	53.4	80.1	107	160	a	a										
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	N	53.4	80.1	107	160	a	a										
		X	65.9	98.9	132	198	a	a										
ASD		LRFD	For tabulated values above the heavy line, shear yielding of the angle leg controls the available strength. *Connection type shown in Figure 10-7(a).															
$\Omega=2.00$		$\phi=0.75$																

Angle$F_{y}=36 \mathrm{ksi}$			Table 10-5 (continued) -Bolted Unstiffened eated Connections															
Outstanding Angle Leg Length Strength, kips																		
Required Bearing Length $l_{b, r e q}$, in.		Angle Length, in.										Min. Angle Leg						
		8																
		Angle Thickness, in.																
		3/8		1/2		5/8		$3 / 4$		1								
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	in.						
1/2		24.3	36.5															
9/16		21.6	32.4	57.6	86.4													
5/8		19.4	29.2	57.5	86.4													
		17.6	26.5	49.3	74.1													
		16.2	24.3	43.1	64.8													
$3 / 4$$13 / 16$		14.9	22.4	38.3	57.6													
7/8		13.9	20.8	34.5	51.8													
15/16		12.9	19.4	31.4	47.1	72.0	108											
1		12.1	18.2	28.7	43.2	67.4	101											
11/16		11.4	17.2	26.5	39.9	59.9	90.0											
$11 / 8$		10.8	16.2	24.6	37.0	53.9	81.0											
$1^{3 / 16}$		10.2	15.3	23.0	34.6	49.0	73.6											
$1^{1 / 4}$		9.70	14.6	21.6	32.4	44.9	67.5	86.4	130									
15/16		9.24	13.9	20.3	30.5	41.5	62.3	86.2	130			$3^{1 / 2}$						
$1^{3 / 8}$		8.82	13.3	19.2	28.8	38.5	57.9	77.6	117									
$1^{7 / 16}$		8.44	12.7	18.2	27.3	35.9	54.0	70.5	106									
$1^{1 / 2}$		8.08	12.2	17.2	25.9	33.7	50.6	64.7	97.2									
$1^{5 / 8}$		7.46	11.2	15.7	23.6	29.9	45.0	55.4	83.3									
$1^{3 / 4}$		6.93	10.4	14.4	21.6	26.9	40.5	48.5	72.9									
$1^{7 / 8}$		6.47	9.72	13.3	19.9	24.5	36.8	43.1	64.8									
2		6.06	9.11	12.3	18.5	22.5	33.8	38.8	58.3	115	173							
$2^{1 / 8}$		5.71	8.58	11.5	17.3	20.7	31.2	35.3	53.0	98.5	148							
$2^{1 / 4}$		5.39	8.10	10.8	16.2	19.2	28.9	32.3	48.6	86.2	130							
23/8		5.11	7.67	10.1	15.2	18.0	27.0	29.8	44.9	76.6	115							
$2^{1 / 2}$		4.85	7.29	9.58	14.4	16.8	25.3	27.7	41.7	69.0	104							
25/8		4.62	6.94	9.08	13.6	15.9	23.8	25.9	38.9	62.7	94.3							
$2^{3 / 4}$		4.41	6.63	8.62	13.0	15.0	22.5	24.3	36.5	57.5	86.4							
$2^{7 / 8}$		4.22	6.34	8.21	12.3	14.2	21.3	22.8	34.3	53.1	79.8							
3		4.04	6.08	7.84	11.8	13.5	20.3	21.6	32.4	49.3	74.1	4						
$3^{1 / 8}$		3.88	5.83	7.50	11.3	12.8	19.3	20.4	30.7	46.0	69.1	4						
$3^{1 / 4}$		3.73	5.61	7.19	10.8	12.2	18.4	19.4	29.2	43.1	64.8							
Bolt Available Strength, kips									Available Angles									
Bolt Dia., in.	Bolt Group	Thread Cond.	Connection Type*						Connection Type*		$\begin{aligned} & \text { Angle } \\ & \text { Size } \end{aligned}$	$\begin{gathered} t, \\ \text { in. } \end{gathered}$						
			D		E		F											
			ASD	LRFD	ASD	LRFD	ASD	LRFD										
$3 / 4$	Group A	N	35.8	53.7	71.6	107	107	161	A, D		4×3	$3 / 8-1 / 2$						
		X	45.1	67.6	90.2	135	135	203			$4 \times 3^{1 / 2}$	$3 / 8-1 / 2$						
	Group B	N	45.1	67.6	90.2	135	135	203			4×4	$3 / 8-3 / 4$						
		X	55.7	83.5	111	167	167	251	B, E		6×4	3/8-3/4						
7/8	$\begin{gathered} \text { Group } \\ \text { A } \\ \hline \end{gathered}$	N	48.7	73.0	97.4	146	146	219			7×4	$3 / 8-3 / 4$						
		X	61.3	92.0	123	184	184	276			8×4	1/2-1						
	Group B	N	61.3	92.0	123	184	184	276	$\mathbf{C l}^{\text {a }}$, ${ }^{\text {a }}$		8×4	1/2-1						
		X	75.7	114	151	227	227	341	${ }^{\text {a }}$ Not suitable for use with 1-in.-diameter bolts.									
1	$\begin{gathered} \text { Group } \\ \text { A } \end{gathered}$	N	63.6	95.4	127	191	a	a										
		X	80.1	120	160	240	a	a										
	$\begin{gathered} \text { Group } \\ \text { B } \\ \hline \end{gathered}$	N	80.1	120	160	240	a	a										
		X	98.9	148	198	297	a	a										
ASD		LRFD	For tabulated values above the heavy line, shear yielding of the angle leg controls the available strength.															
$\Omega=2.00$		$\phi=0.75$																

STIFFENED SEATED CONNECTIONS

A stiffened seated connection is made with a seat plate and stiffening element (e.g., a plate, structural tee, or pair of angles) and a top angle, as illustrated in Figure 10-10. The top angle may be bolted or welded to the supported beam as well as to the supporting member and the stiffening element may be bolted or welded to the support. The supported beam is bolted to the seat plate.

*A structural tee may be used instead of a pair of angles
(a) All-bolted

Fig. 10-10. Stiffened seated connections.

The stiffening element is assumed to carry the entire end reaction of the supported beam applied at a distance equal to $0.8 W$, where W is the dimension of the stiffening element parallel to the beam web. The top angle must be placed as shown or in the optional side location for satisfactory performance and stability (Roeder and Dailey, 1989). The top angle and its connections are not usually sized for any calculated strength requirement. A $1 / 4$-in.thick angle with a 4-in. vertical leg dimension will generally be adequate. It may be fastened with two bolts through each leg or welded with minimum size welds to either the supported or the supporting members.

When the top angle is welded to the support and/or the supported beam, adequate flexibility must be provided in the connection. As illustrated in Figure 10-10(b), line welds are placed along the toe of each angle leg. Note that welding along the sides of the vertical angle leg must be avoided as it would inhibit the flexibility and, therefore, the necessary end rotation of the connection. The performance of such a connection would not be as intended for simple shear connections.

Design Checks

The available strength of a stiffened seated connection is determined from the applicable limit states for the bolts (see Part 7), welds (see Part 8), and connecting elements (see Part 9). Additionally, the strength of the supported beam web must be checked for the limit states of web local yielding and web local crippling. In all cases, the available strength, ϕR_{n} or R_{n} / Ω, must equal or exceed the required strength, R_{u} or R_{a}. The available strength for web local yielding and web local crippling, ϕR_{n} or R_{n} / Ω, is determined per AISC Specification Sections J10.2 and J10.3, respectively, which is simplified using the constants in Table 9-4.

When stiffened seated connections, such as the one shown in Figure 10-10(b), are made to one side of a supporting column web, the column web may also need to be investigated for resistance to punching shear. In lieu of a more detailed analysis, Sputo and Ellifritt (1991) showed that punching shear will not be critical if the design parameters following and those summarized graphically in Figure 10-10(b) are met.

1. This simplified approach is applicable to the following column sections:

$$
\begin{array}{lll}
\mathrm{W} 14 \times 43 \text { to } 873 & \mathrm{~W} 12 \times 40 \text { to } 336 & \mathrm{~W} 10 \times 33 \text { to } 112 \\
\mathrm{~W} 8 \times 24 \text { to } 67 & W 6 \times 20 \text { and } 25 & \mathrm{~W} 5 \times 16 \text { and } 19
\end{array}
$$

2. The supported beam must be bolted to the seat plate with high-strength bolts to account for the prying action caused by rotation of the connection. Welding the beam to the seat plate is not recommended because welds may lack the required strength and ductility. The centerline of the bolts should be located no more than the greater of W/2 or $2^{5} / 8$ in. from the column web face.
3. For seated connections where $W=8 \mathrm{in}$. or 9 in . and $3 \frac{1}{2} \mathrm{in}$. $<B \leq W / 2$, or where $W=7$ in. and 3 in. $<B \leq W / 2$ for a W 14×43 column, refer to Sputo and Ellifritt (1991).
4. The top angle may be bolted or welded, but must have a minimum $1 / 4$-in. thickness.
5. The seat plate should not be welded to the beam flange.

See also Ellifritt and Sputo (1999).

Shop and Field Practices

The comments for unstiffened seated connections are equally applicable to stiffened seated connections.

DESIGN TABLE DISCUSSION (TABLES 10-7 AND 10-8)

Table 10-7. All-Bolted Stiffened Seated Connections

Table $10-7$ is a design aid for all-bolted stiffened seats. Stiffener available strengths are tabulated for stiffener material with $F_{y}=36 \mathrm{ksi}$ and $F_{u}=58 \mathrm{ksi}$ and with $F_{y}=50 \mathrm{ksi}$ and $F_{u}=65 \mathrm{ksi}$.

Tabulated values consider the limit state of bearing on the stiffening material. The designer must independently check the available strength of the beam web based upon the limit states of web local yielding and web local crippling. A nominal beam setback of $1 / 2 \mathrm{in}$. is assumed in these tables. However, this setback is increased to $3 / 4 \mathrm{in}$. for calculation purposes in determining the tabulated values to account for the possibility of underrun in beam length.

Bolt available strengths are tabulated for two vertical rows of from three to seven $3 / 4$-in.-, $7 / 8$-in.- and 1-in.-diameter Group A and Group B bolts based upon the limit state of bolt shear. Vertical spacing of bolts and gages in seat angles may be arranged to suit conditions, provided the edge distance and spacing requirements in AISC Specification Section J3 are met.

Table 10-8. Bolted/Welded Stiffened Seated Connections

Table 10-8 is a design aid for stiffened seated connections welded to the support and bolted to the supported beam. Electrode strength is assumed to be 70 ksi .

Weld available strengths are tabulated using the elastic method. While these tabular values are based upon 70-ksi electrodes, they may be used for other electrodes, provided the tabular values are adjusted for the electrodes used (e.g., for $60-\mathrm{ksi}$ electrodes, the tabular values are multiplied by $60 / 70=0.857$, etc.) and the weld and base metal meet the required strength provisions of AISC Specification Table J2.5.

The thickness of the horizontal seat plate or tee flange should not be less than $3 / 8$ in. If the seat and stiffener are built up from separate plates, the stiffener should be finished to bear under the seat. In order to take advantage of the T-shaped weld to the column, the connection between the seat plate and stiffener must have a strength equal to or greater than that of the horizontal portion of the T-shaped weld.

The designer must independently check the beam web for web local yielding and web local crippling. The nominal beam setback of $1 / 2 \mathrm{in}$. should be assumed to be $3 / 4 \mathrm{in}$. for calculation purposes to account for possible underrun in beam length.

The stiffener thickness is conservatively determined as follows. The minimum stiffener plate thickness, t, for supported beams with unstiffened webs is the supported beam web thickness, t_{w}, multiplied by the ratio of F_{y} of the beam material to F_{y} of the stiffener material (e.g., $F_{y, \text { beam }}=50 \mathrm{ksi}, F_{y, \text { stiffener }}=36 \mathrm{ksi}, t=t_{w} \times 50 / 36$ minimum). Additionally, the minimum stiffener plate thickness, t, should be at least $2 w$ for stiffener material with
$F_{y}=36 \mathrm{ksi}$ or $1.5 w$ for stiffener material with $F_{y}=50 \mathrm{ksi}$, where w is the weld size for 70-ksi electrodes.

For 70-ksi electrodes, the minimum column web thickness is

$$
\begin{equation*}
t_{\min }=\frac{3.09 D}{F_{u}} \tag{9-2}
\end{equation*}
$$

where
$D=$ weld size in sixteenths of an inch
$F_{u}=$ specified minimum tensile strength of the connecting element, ksi
When welds line up on opposite sides of the support, the minimum thickness is the sum of the thicknesses required for each weld. In either case, when less than the minimum material thickness is present, the weld available strength must be reduced by the ratio of the thickness provided to the minimum thickness. As with unstiffened seated connections, the contribution of eccentricity to the required shear yielding strength is negligible. Should combinations of material thickness and weld size selected from Table 10-8 exceed the limits of AISC Specification Section J2.2, the weld size or material thickness must be increased.

Table 10-8 Bolted/Welded Stiffened Seated Connections Weld Available Strength, kips												
Width of Seat, W, in.												
l, in.	4								5			
	70-ksi Weld Size, in.								70-ksi Weld Size, in.			
	$1 / 4$		5/16		3/8		7/16		5/16		3/8	
	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
6	22.7	34.0	28.4	42.5	34.0	51.1	39.7	59.6	23.5	35.2	28.2	42.2
7	29.9	44.9	37.4	56.1	44.9	67.3	52.4	78.6	31.2	46.9	37.5	56.2
8	37.8	56.7	47.2	70.8	56.7	85.0	66.1	99.2	39.8	59.8	47.8	71.7
9	46.1	69.2	57.7	86.5	69.2	104	80.7	121	49.1	73.7	59.0	88.5
10	54.9	82.3	68.6	103	82.3	123	96.0	144	59.0	88.5	70.8	106
11	63.9	95.8	79.8	120	95.8	144	112	168	69.4	104	83.3	125
12	73.1	110	91.4	137	110	165	128	192	80.2	120	96.2	144
13	82.5	124	103	155	124	186	144	217	91.3	137	110	164
14	92.1	138	115	173	138	207	161	242	103	154	123	185
15	102	152	127	191	152	229	178	267	114	171	137	206
16	111	167	139	209	167	250	195	292	126	189	151	227
17	121	181	151	227	181	272	212	318	138	207	165	248
18	131	196	163	245	196	294	229	343	150	225	180	270
19	140	211	175	263	211	316	246	369	162	243	194	291
20	150	225	188	281	225	338	263	394	174	261	209	313
21	160	240	200	300	240	359	280	419	186	279	223	335
22	169	254	212	318	254	381	296	445	198	297	238	357
23	179	269	224	336	269	403	313	470	210	315	252	378
24	189	283	236	354	283	425	330	495	222	334	267	400
25	198	297	248	372	297	446	347	520	235	352	281	422
26	208	312	260	390	312	468	364	546	247	370	296	444
27	217	326	272	408	326	489	380	571	259	388	310	466
Limitations for Connections to Column Webs												
$B=\mathbf{2}^{5} / 8$ in. max									$B=2^{5} / 8$ in. \max			
$\begin{aligned} & \mathrm{W} 12 \times 40, \mathrm{~W} 14 \times 43 \\ & \text { for } l \geq 9 \mathrm{in} . \\ & \text { limit weld } \leq 1 / 4 \mathrm{in} . \end{aligned}$									None			
Notes: 1. Values shown assume 70 -ksi electrodes. For $60-\mathrm{ksi}$ electrodes, multiply tabular values by 0.857 , or enter table with 1.17 times the required strength, R_{u} or R_{a}. For 80 -ksi electrodes, multiply tabular values by 1.14 , or enter table with 0.875 times the required strength. 2. Tabulated values are valid for stiffeners with minimum thickness of $t_{\text {min }}=\left(\frac{F_{y, \text { beam }}}{F_{y, \text { stiffener }}}\right) t_{w}$ but not less than $2 w$ for stiffeners with $F_{y}=36$ ksi nor $1.5 w$ for stiffeners with $F_{y}=50 \mathrm{ksi}$. In the above, t_{w} is the thickness of the unstiffened supported beam web and w is the nominal weld size.												
3. Tabulated values may be limited by shear yielding of the stiffener, or bearing on the stiffener; refer to AISC Specification Sections J4.2 and J7, respectively.										ASD $\Omega=\mathbf{2 . 0 0}$		LRFD

Seated Connections Weld Available Strength, kips												
	Width of Seat, W, in.											
	5				6							
l, in.	70-ksi Weld Size, in.				70-ksi Weld Size, in.							
	7/16		1/2		5/16		3/8		7/16		1/2	
	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
6	32.8	49.3	37.5	56.3	19.9	29.9	23.9	35.9	27.9	41.9	31.9	47.8
7	43.7	65.6	50.0	75.0	26.7	40.1	32.0	48.1	37.4	56.1	42.7	64.1
8	55.8	83.7	63.8	95.6	34.3	51.4	41.1	61.7	48.0	72.0	54.8	82.2
9	68.8	103	78.6	118	42.5	63.8	51.1	76.6	59.6	89.3	68.1	102
10	82.6	124	94.4	142	51.4	77.2	61.7	92.6	72.0	108	82.3	123
11	97.2	146	111	167	60.9	91.3	73.1	110	85.3	128	97.4	146
12	112	168	128	192	70.8	106	85.0	127	99.2	149	113	170
13	128	192	146	219	81.2	122	97.4	146	114	170	130	195
14	144	216	164	246	91.9	138	110	165	129	193	147	220
15	160	240	183	274	103	154	123	185	144	216	165	247
16	176	265	202	302	114	171	137	205	160	240	183	274
17	193	290	221	331	126	188	151	226	176	264	201	301
18	210	315	240	360	137	206	165	247	192	288	219	329
19	227	340	259	388	149	223	179	268	208	313	238	357
20	244	365	278	417	161	241	193	289	225	337	257	386
21	260	391	298	446	173	259	207	311	242	362	276	414
22	277	416	317	476	185	277	222	332	258	388	295	443
23	294	442	336	505	197	295	236	354	275	413	315	472
24	311	467	356	534	209	313	250	376	292	438	334	501
25	328	492	375	563	221	331	265	397	309	464	353	530
26	345	518	395	592	233	349	280	419	326	489	373	559
27	362	543	414	621	245	368	294	441	343	515	392	588
Limitations for Connections to Column Webs												
$B=2^{5} / 8$ in. max					$B=3$ in. max							
None					None							
Notes: 1. Values shown assume 70 -ksi electrodes. For 60 -ksi electrodes, multiply tabular values by 0.857 , or enter table with 1.17 times the required strength, R_{u} or R_{a}. For 80 -ksi electrodes, multiply tabular values by 1.14 , or enter table with 0.875 times the required strength. 2. Tabulated values are valid for stiffeners with minimum thickness of $t_{\text {min }}=\left(\frac{F_{y, \text { beam }}}{F_{y, \text { stiffener }}}\right) t_{w}$ but not less than $2 w$ for stiffeners with $F_{y}=36$ ksi nor $1.5 w$ for stiffeners with $F_{y}=50 \mathrm{ksi}$. In the above, t_{w} is the thickness of the unstiffened supported beam web and w is the nominal weld size.												
3. Tabulated values may be limited by shear yielding of the stiffener, or bearing on the stiffener; refer to AISC Specification Sections J4.2 and J7, respectively.											D 2.00	LRFD

Seated Connections Weld Available Strength, kips												
l, in.	Width of Seat, W, in.											
	7								8			
	70-ksi Weld Size, in.								70-ksi Weld Size, in.			
	5/16		3/8		7/16		1/2		5/16		$3 / 8$	
	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
11	54.0	81.0	64.8	97.2	75.6	113	86.4	130	48.4	72.5	58.0	87.1
12	63.1	94.7	75.7	114	88.4	133	101	151	56.7	85.1	68.1	102
13	72.7	109	87.2	131	102	153	116	174	65.6	98.3	78.7	118
14	82.6	124	99.2	149	116	174	132	198	74.8	112	89.8	135
15	93.0	139	112	167	130	195	149	223	84.5	127	101	152
16	104	155	124	186	145	217	166	249	94.4	142	113	170
17	114	172	137	206	160	240	183	275	105	157	126	189
18	126	188	151	226	176	264	201	301	115	173	138	208
19	137	205	164	246	192	287	219	329	126	189	151	227
20	148	223	178	267	208	312	237	356	137	206	165	247
21	160	240	192	288	224	336	256	384	148	222	178	267
22	172	258	206	309	240	361	275	412	160	240	192	287
23	184	275	220	330	257	385	294	440	171	257	205	308
24	195	293	234	352	274	410	313	469	183	274	219	329
25	207	311	249	373	290	435	332	498	195	292	233	350
26	219	329	263	395	307	461	351	526	206	309	248	371
27	231	347	278	417	324	486	370	555	218	327	262	393
28	244	365	292	438	341	511	390	584	230	345	276	414
29	256	383	307	460	358	537	409	613	242	363	291	436
30	268	402	321	482	375	562	428	643	254	381	305	457
31	280	420	336	504	392	588	448	672	266	399	319	479
32	292	438	350	526	409	613	467	701	278	417	334	501
Limitations for Connections to Column Webs												
$B=31 / 2$ in. max									$B=31 / 2$ in. max			
W14×43, limit $B \leq 3 \mathrm{in}$. See item 3 in preceding discussion "Design Checks"									See item 3 in preceding discussion "Design Checks"			
Notes: 1. Values shown assume 70 -ksi electrodes. For $60-\mathrm{ksi}$ electrodes, multiply tabular values by 0.857 , or enter table with 1.17 times the required strength, R_{u} or R_{a}. For 80 -ksi electrodes, multiply tabular values by 1.14 , or enter table with 0.875 times the required strength. 2. Tabulated values are valid for stiffeners with minimum thickness of $t_{\text {min }}=\left(\frac{F_{y, \text { beam }}}{F_{y, \text { stifenerer }}}\right) t_{w}$ but not less than $2 w$ for stiffeners with $F_{y}=36$ ksi nor $1.5 w$ for stiffeners with $F_{y}=50 \mathrm{ksi}$. In the above, t_{w} is the thickness of the unstiffened supported beam web and w is the nominal weld size.												
3. Tabulated values may be limited by shear yielding of the stiffener, or bearing on the stiffener; refer to AISC Specification Sections J4.2 and J7, respectively.												LRFD

Seated Connections Weld Available Strength, kips												
l, in.	Width of Seat, W, in.											
	8				9							
	70-ksi Weld Size, in.				70-ksi Weld Size, in.							
	1/2		5/8		5/16		3/8		1/2		5/8	
	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
11	77.4	116	96.7	145	43.7	65.6	52.5	78.7	69.9	105	87.4	131
12	90.8	136	113	170	51.4	77.1	61.7	92.5	82.2	123	103	154
13	105	157	131	197	59.6	89.3	71.5	107	95.3	143	119	179
14	120	180	150	224	68.2	102	81.8	123	109	164	136	204
15	135	203	169	253	77.2	116	92.6	139	123	185	154	232
16	151	227	189	283	86.5	130	104	156	138	208	173	260
17	168	251	209	314	96.2	144	115	173	154	231	192	289
18	184	277	231	346	106	159	127	191	170	255	212	319
19	202	303	252	378	117	175	140	210	186	280	233	350
20	219	329	274	411	127	191	152	229	203	305	254	381
21	237	356	297	445	138	207	165	248	220	331	276	413
22	256	383	319	479	149	223	178	268	238	357	297	446
23	274	411	342	514	160	240	192	288	256	384	320	480
24	292	439	366	548	171	257	205	308	274	411	342	513
25	311	467	389	584	183	274	219	329	292	438	365	548
26	330	495	413	619	194	291	233	349	310	466	388	582
27	349	524	436	655	206	308	247	370	329	494	411	617
28	368	552	460	690	217	326	261	391	348	522	435	652
29	387	581	484	726	229	344	275	412	367	550	458	687
30	407	610	508	762	241	362	289	434	386	578	482	723
31	426	639	532	799	253	379	304	455	405	607	506	759
32	445	668	557	835	265	397	318	477	424	636	530	795
Limitations for Connections to Column Webs												
$B=31 / 2$ in. max					$B=31 / 2$ in. max							
See item 3 in preceding discussion "Design Checks"					See item 3 in preceeding discussion "Design Checks"							
Notes: 1. Values shown assume 70 -ksi electrodes. For 60 -ksi electrodes, multiply tabular values by 0.857 , or enter table with 1.17 times the required strength, R_{u} or R_{a}. For 80 -ksi electrodes, multiply tabular values by 1.14 , or enter table with 0.875 times the required strength. 2. Tabulated values are valid for stiffeners with minimum thickness of $t_{\text {min }}=\left(\frac{F_{y, \text { beam }}}{F_{y, \text { stiffener }}}\right) t_{w}$ but not less than $2 w$ for stiffeners with $F_{y}=36$ ksi nor $1.5 w$ for stiffeners with $F_{y}=50 \mathrm{ksi}$. In the above, t_{w} is the thickness of the unstiffened supported beam web and w is the nominal weld size.												
3. Tabulated values may be limited by shear yielding of the stiffener, or bearing on the stiffener; refer to AISC Specification Sections J4.2 and J7, respectively.											D 2.00	LRFD

SINGLE-PLATE CONNECTIONS

A single-plate connection is made with a plate, as illustrated in Figures 10-11 and 10-12. The plate must be welded to the support on both sides of the plate and bolted to the supported member.

Design Checks

The available strength of a single-plate connection is determined from the applicable limit states for the bolts (see Part 7), welds (see Part 8), and connecting elements (see Part 9). In all cases, the available strength, ϕR_{n} or R_{n} / Ω, must equal or exceed the required strength, R_{u} or R_{a}, respectively.

Single-plate shear connections that satisfy the corresponding dimensional limitations can be designed using the simplified design procedure for the "conventional" configuration. Other single-plate shear connections can be designed using the procedure for the "extended" configuration, which is applicable to any configuration of single-plate shear connections, regardless of connection geometry.

Both the conventional and extended configurations permit the use of Group A or Group B bolts. The procedure is valid for bolts that are snug-tightened, pretensioned or slip-critical. In both the conventional and extended configuration, the design recommendations are equally applicable to plate and beam web material with $F_{y}=36 \mathrm{ksi}$ or 50 ksi . In both cases, the weld between the single plate and the support should be sized as $(5 / 8) t_{p}$, which will develop the strength of either a $36-\mathrm{ksi}$ or 50 -ksi plate.

Conventional Configuration

The following method may be used when the dimensional and other limitations upon which it is based are satisfied. See Muir and Thornton (2011).

Fig. 10-11. Single-plate connection-Conventional Configuration.

Table 10-9			
Design Values for Conventional			
Single-Plate Shear Connections			
\boldsymbol{n}	Hole Type	\boldsymbol{e}, in.	Maximum t_{p} or t_{w}, in.
	SSLT	$a / 2$	None
	STD	$a / 2$	$d / 2+1 / 16$
6 to 12	SSLT	$a / 2$	$d / 2+1 / 16$
	STD	a	$d / 2-1 / 16$

Dimensional Limitations

1. Only a single vertical row of bolts is permitted. The number of bolts in the connection, n, must be between 2 and 12 .
2. The distance from the bolt line to the weld line, a, must be equal to or less than $3 \frac{1}{2}$ in.
3. Standard holes (STD) or short-slotted holes transverse to the direction of the supported member reaction (SSLT) are permitted to be used as noted in Table 10-9.
4. The vertical edge distance, $l_{e v}$, must satisfy AISC Specification Table J3.4 requirements. The horizontal edge distance, $l_{e h}$, should be greater than or equal to $2 d$ for both the plate and the beam web, where d is the bolt diameter.
5. Either the plate thickness, t_{p}, or the beam web thickness, t_{w}, must satisfy the maximum thickness requirement given in Table 10-9.

Fig. 10-12. Single-plate connection-Extended Configuration.

Design Checks

1. Bolt shear is checked in accordance with AISC Specification Section J3.6 assuming the eccentricity, e, shown in Table 10-9 and the effective number of bolts from Table 7-6.
2. Plate bearing and tearout are checked in accordance with AISC Specification Section J3.10 assuming the reaction is applied concentrically.
3. Plate buckling will not control for the conventional configuration.

Extended Configuration

The following method can be used when the dimensional and other limitations of the conventional method are not satisfied. This procedure can be used to determine the strength of single-plate shear connections with multiple vertical rows or in the extended configuration, as shown in Figure 10-12.

Dimensional Limitations

1. The number of bolts, n, is not limited.
2. The distance from the weld line to the bolt line closest to the support, a, is not limited.
3. The use of holes must satisfy AISC Specification Section J3.2 requirements.
4. The horizontal and vertical edge distances, $l_{e h}$ and $l_{e v}$, must satisfy AISC Specification Table J3.4 requirements.

Design Checks

1. Determine the bolt group required for bolt shear, bearing and tearout, with eccentricity e, where e is defined as the distance from the support to the centroid of the bolt group. Exception: Alternative considerations of the design eccentricity are acceptable when justified by rational analysis. For example, see Sherman and Ghorbanpoor (2002).
2. Determine the maximum plate thickness permitted such that the plate moment strength does not exceed the moment strength of the bolt group in shear, as follows:

$$
\begin{equation*}
t_{\max }=\frac{6 M_{\max }}{F_{y} l^{2}} \tag{10-3}
\end{equation*}
$$

where
$F_{y} \quad=$ specified minimum yield stress of plate, ksi
$M_{\max }=\frac{F_{n V}}{0.90}\left(A_{b} C^{\prime}\right)$
$\frac{F_{n V}}{0.90}=$ shear strength of an individual bolt from AISC Specification Table J3.2, ksi, distribution in end-loaded bolt groups (Kulak, 2002). The joint in question is not end-loaded.
$A_{b}=$ area of an individual bolt, in. ${ }^{2}$
$C^{\prime}=$ coefficient from Part 7 for the moment-only case (instantaneous center of rotation at the centroid of the bolt group)
$l \quad=$ depth of plate, in.

The foregoing check is made at the nominal strength level, since the check is to ensure ductility, not strength.

Exceptions:

a. For a single vertical row of bolts only, the foregoing criterion need not be satisfied if either the beam web or the plate satisfies the thickness requirements of Table 10-9 and both satisfy $l_{e h} \geq 2 d_{b}$.
b. For a double vertical row of bolts only, the foregoing criterion need not be satisfied if both the beam web and the plate satisfy the thickness requirements of Table $10-9$ and $l_{e h} \geq 2 d_{b}$.
3. Check the plate for the limit states of shear yielding, shear rupture, block shear rupture, and flexural rupture. Check the beam web for the same limit states, as applicable.
4. Check the plate for the limit states of shear yielding, shear buckling, and yielding due to flexure as follows:

$$
\begin{equation*}
\left(\frac{V_{r}}{V_{c}}\right)^{2}+\left(\frac{M_{r}}{M_{c}}\right)^{2} \leq 1.0 \tag{10-5}
\end{equation*}
$$

where

$$
\begin{aligned}
M_{c} & =\phi_{b} M_{n}(\mathrm{LRFD}) \text { or } M_{n} / \Omega_{b}(\mathrm{ASD}), \text { kip-in. } \\
M_{n} & =F_{y} Z_{p l}, \text { kip-in. } \\
M_{r} & =M_{u}(\mathrm{LRFD}) \text { or } M_{a}(\mathrm{ASD}) \\
& =V_{r} a, \text { kip-in. } \\
V_{c} & =\phi_{v} V_{n}(\mathrm{LRFD}) \text { or } V_{n} / \Omega_{v}(\mathrm{ASD}), \text { kips } \\
V_{n} & =0.6 F_{y} A_{g}, \text { kips } \\
A_{g} & =\text { gross cross-sectional area of the shear plate, in. }{ }^{2} \\
V_{r} & =V_{u}(\mathrm{LRFD}) \text { or } V_{a}(\mathrm{ASD}), \text { kips } \\
Z_{p l} & =\text { plastic section modulus of the shear plate, in. }{ }^{3} \\
a & =\text { distance from the support to the first line of bolts, in. } \\
\phi_{b} & =0.90 \\
\phi_{v} & =1.00 \\
\Omega_{b} & =1.67 \\
\Omega_{v} & =1.50
\end{aligned}
$$

5. Check the plate for the limit state of buckling using the double-coped beam procedure given in Part 9. This check assumes that beam is supported near the end of the plate as indicated in Step 6. For other conditions, see Thornton and Fortney (2011).
6. Ensure that the supported beam is braced at points of support.

The design procedure for extended single-plate shear connections permits the column to be designed for an axial force without eccentricity. In some cases, economy may be gained by considering alternative design procedures that allow the transfer of some moment into the column. A percentage of the column's weak-axis flexural strength, such as 5%, may be used as a mechanism to reduce the required eccentricity on the bolt group, provided that this moment is also considered in the design of the column. Larger percentages of the column's weak-axis flexural strength may be justified at the roof level.

Short-slotted holes can be used with the extended configuration with the bolts designed as bearing. Any slip of the bolts is a serviceability issue and does not affect the connection strength (Muir and Hewitt, 2009).

Shop and Field Practices

Conventional and extended single-plate connections may be made to the webs of supporting girders and to the flanges of supporting columns. Extended single-plate connections are suitable for connections to the webs of supporting columns when the bolt line is located a sufficient distance beyond the column flanges.

With the plate shop-attached to the support, side erection of the beam is permitted. Play in the open holes usually compensates for mill variation in column flange supports and other field adjustments.

DESIGN TABLE DISCUSSION (TABLE 10-10)

Table 10-10. Single-Plate Connections

Table 10-10 is a design aid for single-plate connections welded to the support and bolted to the supported beam. Available strengths are tabulated in Table 10-10a for plate material with $F_{y}=36 \mathrm{ksi}$ and Table 10-10b for plate material with $F_{y}=50 \mathrm{ksi}$.

Tabulated bolt and plate available strengths consider the limit states of bolt shear, bolt bearing and tearout on the plate, shear yielding of the plate, shear rupture of the plate, block shear rupture of the plate, and weld shear. Values are tabulated for two through twelve rows of $3 / 4$-in.-, $7 / 8$-in.-, 1 -in.- and $1 / 8$-in.-diameter Group A and Group B bolts at 3 -in. spacing. For calculation purposes, plate edge distance, $l_{e v}$, is consistent with conventional field practices and exceeds the requirements given in AISC Specification Section J3.10 and Table J3.4. Edge distance, $l_{e h}$, is provided as 2 times the diameter of the bolt, to match tested connections. Weld sizes are tabulated equal to $(5 / 8) t_{p}$.

While the tabular values are based on $a=3$ in., they may conservatively be used when the distance from the support to the bolt line, a, is between $2^{1} / 2 \mathrm{in}$. and 3 in . The tabulated values are valid for laterally supported beams in steel and composite construction, all types of loading, snug-tightened or pretensioned bolts, and for supported and supporting members of all grades of steel.

$F_{y}=36 \mathrm{ksi}$		Single-Plate Connections Bolt, Weld and Single-Plate Available Strengths, kips													
n	Bolt Group	Thread Cond.	Hole Type	Plate Thickness, in.											
				1/4		5/16		3/8		7/16		1/2		9/16	
				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
$\begin{gathered} 8 \\ \left(l=23^{1 / 2}\right) \end{gathered}$	Group A	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & \hline 67.8 \\ & 67.1 \end{aligned}$	102 101	$\begin{array}{\|l\|} 84.7 \\ 83.9 \end{array}$	$\begin{aligned} & \hline 127 \\ & 126 \end{aligned}$	-	-	-	${ }_{137}^{-}$	-	-	-	-
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 67.8 \\ & 67.1 \end{aligned}$	$\begin{aligned} & \hline 102 \\ & 101 \end{aligned}$	$\begin{aligned} & \hline 84.7 \\ & 83.9 \end{aligned}$	$\begin{aligned} & \hline 127 \\ & 126 \end{aligned}$	101	151	115	172	-	-	-	-
	Group B	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 67.8 \\ & 67.1 \end{aligned}$	$\begin{aligned} & \hline 102 \\ & 101 \end{aligned}$	$\begin{aligned} & 84.7 \\ & 83.9 \end{aligned}$	$\begin{aligned} & \hline 127 \\ & 126 \end{aligned}$	101	151	115	172	-	-	-	-
		X	$\begin{gathered} \text { STD } \\ \text { SSLT } \end{gathered}$	$\begin{aligned} & 67.8 \\ & 67.1 \end{aligned}$	$\begin{aligned} & \hline 102 \\ & 101 \end{aligned}$	$\begin{aligned} & 84.7 \\ & 83.9 \end{aligned}$	$\begin{aligned} & \hline 127 \\ & 126 \end{aligned}$	101	151	117	176	-	-	-	-
$\begin{gathered} 7 \\ \left(l=20^{1 / 2}\right) \end{gathered}$	Group A	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 59.7 \\ 59.0 \end{array}$	$\begin{aligned} & 89.5 \\ & 88.5 \end{aligned}$	$\begin{aligned} & 72.1 \\ & 73.7 \end{aligned}$	$\begin{aligned} & \hline 108 \\ & 111 \end{aligned}$	78.8	119	-	${ }_{119}^{-}$	-	-	-	-
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 59.7 \\ 59.0 \end{array}$	$\begin{aligned} & 89.5 \\ & 88.5 \end{aligned}$	$\begin{aligned} & 74.6 \\ & 73.7 \end{aligned}$	$\begin{aligned} & 112 \\ & 111 \end{aligned}$	-	133	-	- 149	-	-	-	-
	Group B	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 59.7 \\ & 59.0 \end{aligned}$	89.5 88.5 89.5	$\begin{aligned} & 74.6 \\ & 73.7 \end{aligned}$	$\begin{aligned} & 112 \\ & 111 \end{aligned}$	-	- 133	- ${ }^{-}$	- 149	-	-	-	-
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 59.7 \\ & 59.0 \end{aligned}$	$\begin{array}{\|l\|} \hline 89.5 \\ 88.5 \\ \hline \end{array}$	$\begin{aligned} & 74.6 \\ & 73.7 \end{aligned}$	$\begin{aligned} & \hline 112 \\ & 111 \end{aligned}$	-	133	103	155	-	-	-	-
$\begin{gathered} 6 \\ \left(l=17^{1} / 2\right) \end{gathered}$	Group A	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 51.6 \\ & 50.9 \end{aligned}$	$\begin{aligned} & 77.4 \\ & 76.3 \end{aligned}$	$\begin{aligned} & 59.3 \\ & 63.6 \end{aligned}$	$\begin{aligned} & 89.1 \\ & 95.4 \end{aligned}$	-	100	-	100	-	-	-	-
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 51.6 \\ & 50.9 \end{aligned}$	$\begin{aligned} & 77.4 \\ & 76.3 \end{aligned}$	$\begin{aligned} & 64.5 \\ & 63.6 \end{aligned}$	$\begin{aligned} & 96.7 \\ & 95.4 \end{aligned}$	76.3	115	-	- 126	-	-	-	-
	Group B	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 51.6 \\ & 50.9 \end{aligned}$	$\begin{aligned} & 77.4 \\ & 76.3 \end{aligned}$	$\begin{aligned} & 64.5 \\ & 63.6 \end{aligned}$	$\begin{aligned} & 96.7 \\ & 95.4 \end{aligned}$	76.3	115	84.2	- 126	-	-	-	-
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 51.6 \\ & 50.9 \end{aligned}$	$\begin{aligned} & 77.4 \\ & 76.3 \end{aligned}$	$\begin{aligned} & 64.5 \\ & 63.6 \end{aligned}$	$\begin{aligned} & 96.7 \\ & 95.4 \end{aligned}$	76.3	115	-	- 134	-	-	-	-
$\begin{gathered} 5 \\ \left(l=14^{1 / 2} 2\right) \end{gathered}$	Group A	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 43.5 \\ & 42.8 \end{aligned}$	$\begin{aligned} & 65.2 \\ & 64.2 \end{aligned}$	$\begin{array}{\|l\|} \hline 54.3 \\ 53.5 \end{array}$	$\begin{aligned} & 81.5 \\ & 80.2 \end{aligned}$	$\begin{aligned} & 54.5 \\ & 54.5 \end{aligned}$	$\begin{aligned} & 82.0 \\ & 82.0 \end{aligned}$	$\begin{aligned} & 54.5 \\ & 54.5 \end{aligned}$	82.0 82.0	54.5	82.0	$\begin{gathered} - \\ 54.5 \end{gathered}$	-
		X	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 43.5 \\ 42.8 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 65.2 \\ 64.2 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 54.3 \\ 53.5 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 81.5 \\ 80.2 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 65.2 \\ 64.2 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 97.8 \\ 96.3 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 68.7 \\ 68.7 \\ \hline \end{array}$	103 103	68.7	$\begin{gathered} - \\ 103 \\ \hline \end{gathered}$	68.7	- 103
	Group B	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 43.5 \\ & 42.8 \end{aligned}$	$\begin{aligned} & 65.2 \\ & 64.2 \end{aligned}$	$\begin{array}{\|l\|} \hline 54.3 \\ 53.5 \end{array}$	$\begin{array}{\|l\|} \hline 81.5 \\ 80.2 \end{array}$	$\begin{aligned} & 65.2 \\ & 64.2 \end{aligned}$	$\begin{aligned} & 97.8 \\ & 96.3 \end{aligned}$	$\begin{aligned} & 68.7 \\ & 68.7 \end{aligned}$	$\begin{aligned} & \hline 103 \\ & 103 \end{aligned}$	68.7	103	$\begin{gathered} - \\ 68.7 \end{gathered}$	$\begin{gathered} - \\ 103 \end{gathered}$
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 43.5 \\ & 42.8 \end{aligned}$	$\begin{aligned} & 65.2 \\ & 64.2 \end{aligned}$	$\begin{array}{\|l\|} \hline 54.3 \\ 53.5 \end{array}$	$\begin{aligned} & 81.5 \\ & 80.2 \end{aligned}$	$\begin{aligned} & 65.2 \\ & 64.2 \end{aligned}$	$\begin{aligned} & 97.8 \\ & 96.3 \end{aligned}$	$\begin{aligned} & 76.1 \\ & 74.9 \end{aligned}$	$\begin{aligned} & \hline 114 \\ & 112 \end{aligned}$	$\begin{gathered} - \\ 85.2 \end{gathered}$	127	$\begin{gathered} - \\ 85.2 \end{gathered}$	- 127
Weld Size, in.							4						16		/8
STD $=$ Standard holes $\mathrm{N}=$ Threads included SSLT = Short-slotted holes transverse to direction of load $\mathrm{X}=$ Threads excluded - Indicates that the plate thickness is greater than the maximum given in Table 10-9.															

$\begin{array}{cr} F_{y}=36 \text { ksi } & \text { Singl } \\ \text { Plate } & \text { Bolt } \end{array}$															
n	Bolt Group	Thread Cond.	Hole Type	Plate Thickness, in.											
				1/4		5/16		3/8		7/16		1/2		9/16	
				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
$\begin{gathered} 4 \\ \left(l=11^{1 / 2}\right) \end{gathered}$	Group A	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 34.8 \\ 34.7 \end{array}$	$\begin{aligned} & 52.2 \\ & 52.0 \end{aligned}$	$\begin{aligned} & 42.1 \\ & 42.1 \end{aligned}$	$\begin{aligned} & \hline 63.3 \\ & 63.3 \end{aligned}$	$\begin{aligned} & 42.1 \\ & 42.1 \end{aligned}$	$\begin{aligned} & 63.3 \\ & 63.3 \end{aligned}$	$\begin{aligned} & 42.1 \\ & 42.1 \end{aligned}$	$\begin{aligned} & 63.3 \\ & 63.3 \end{aligned}$	42.1	63.3	42.1	- ${ }_{-}$
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 34.8 \\ 34.7 \end{array}$	$\begin{array}{\|l\|} 52.2 \\ 52.0 \end{array}$	$\begin{aligned} & 43.5 \\ & 43.4 \end{aligned}$	$\begin{aligned} & \hline 65.3 \\ & 65.1 \end{aligned}$	$\begin{aligned} & 52.2 \\ & 52.0 \end{aligned}$	$\begin{aligned} & 78.3 \\ & 78.1 \end{aligned}$	$\begin{array}{\|l\|} \hline 53.0 \\ 53.0 \end{array}$	$\begin{aligned} & 79.5 \\ & 79.5 \end{aligned}$	53.0	$\begin{gathered} - \\ 79.5 \end{gathered}$	-	- 79.5
	Group B	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 34.8 \\ 34.7 \end{array}$	$\begin{array}{l\|} \hline 52.2 \\ 52.0 \end{array}$	$\begin{aligned} & 43.5 \\ & 43.4 \end{aligned}$	$\begin{aligned} & 65.3 \\ & 65.1 \end{aligned}$	$\begin{aligned} & 52.2 \\ & 52.0 \end{aligned}$	$\begin{aligned} & 78.3 \\ & 78.1 \end{aligned}$	$\begin{aligned} & 53.0 \\ & 53.0 \end{aligned}$	$\begin{aligned} & 79.5 \\ & 79.5 \end{aligned}$	53.0	79.5	53.0	- 79.5
		X	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 34.8 \\ 34.7 \end{array}$	$\begin{array}{\|l\|} \hline 52.2 \\ 52.0 \end{array}$	$\begin{aligned} & 43.5 \\ & 43.4 \end{aligned}$	$\begin{aligned} & \hline 65.3 \\ & 65.1 \end{aligned}$	$\begin{aligned} & 52.2 \\ & 52.0 \end{aligned}$	$\begin{array}{\|l\|} \hline 78.3 \\ 78.1 \end{array}$	$\begin{aligned} & 60.9 \\ & 60.7 \end{aligned}$	$\begin{aligned} & \hline 91.4 \\ & 91.1 \end{aligned}$	65.8	$\begin{gathered} - \\ 98.3 \end{gathered}$	65.8	-
$\begin{gathered} 3 \\ \left(l=8^{1 / 2}\right) \end{gathered}$	Group A	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 25.6 \\ & 25.6 \end{aligned}$	$\begin{aligned} & 38.3 \\ & 38.3 \end{aligned}$	$\begin{aligned} & 29.4 \\ & 29.4 \end{aligned}$	$\begin{aligned} & 44.2 \\ & 44.2 \end{aligned}$	$\begin{aligned} & 29.4 \\ & 29.4 \end{aligned}$	$\begin{aligned} & 44.2 \\ & 44.2 \end{aligned}$	$\begin{aligned} & 29.4 \\ & 29.4 \end{aligned}$	$\begin{aligned} & 44.2 \\ & 44.2 \end{aligned}$	29.4	44.2	29.4	-
		X	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 25.6 \\ & 25.6 \end{aligned}$	$\begin{array}{\|l\|} \hline 38.3 \\ 38.3 \end{array}$	$\begin{aligned} & 31.9 \\ & 31.9 \end{aligned}$	$\begin{aligned} & 47.9 \\ & 47.9 \end{aligned}$	$\begin{aligned} & 37.1 \\ & 37.1 \end{aligned}$	$\begin{array}{\|l\|} \hline 55.6 \\ 55.6 \end{array}$	$\begin{aligned} & 37.1 \\ & 37.1 \end{aligned}$	$\begin{array}{\|l\|} \hline 55.6 \\ 55.6 \end{array}$	37.1	$\begin{gathered} - \\ 55.6 \end{gathered}$	37.1	- 55.6
	Group B	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 25.6 \\ & 25.6 \end{aligned}$	$\begin{array}{l\|} 38.3 \\ 38.3 \end{array}$	$\begin{aligned} & 31.9 \\ & 31.9 \end{aligned}$	$\begin{aligned} & 47.9 \\ & 47.9 \end{aligned}$	$\begin{aligned} & 37.1 \\ & 37.1 \end{aligned}$	$\begin{array}{\|l\|} \hline 55.6 \\ 55.6 \end{array}$	$\begin{aligned} & 37.1 \\ & 37.1 \end{aligned}$	$\begin{array}{\|l\|} \hline 55.6 \\ 55.6 \\ \hline \end{array}$	37.1	55.6	37.1	- ${ }_{5}^{-}$
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 25.6 \\ & 25.6 \end{aligned}$	$\begin{array}{l\|} \hline 38.3 \\ 38.3 \end{array}$	$\begin{aligned} & 31.9 \\ & 31.9 \end{aligned}$	$\begin{aligned} & 47.9 \\ & 47.9 \end{aligned}$	$\begin{array}{\|l\|} \hline 38.3 \\ 38.3 \end{array}$	$\begin{aligned} & 57.5 \\ & 57.5 \end{aligned}$	$\left.\begin{aligned} & 44.7 \\ & 44.7 \end{aligned} \right\rvert\,$	$\begin{aligned} & \hline 67.1 \\ & 67.1 \end{aligned}$	45.9	68.7	-	- 68.7
$\begin{gathered} 2 \\ \left(l=5^{1 / 2}\right) \end{gathered}$	Group A	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 16.3 \\ & 16.3 \end{aligned}$	$\begin{aligned} & 24.5 \\ & 24.5 \end{aligned}$	$\begin{gathered} \hline 16.7 \\ 16.7 \end{gathered}$	$\begin{aligned} & 25.1 \\ & 2.1 \end{aligned}$	$\begin{aligned} & \hline 16.7 \\ & 16.7 \end{aligned}$	$\begin{aligned} & 25.1 \\ & 25.1 \end{aligned}$	$\begin{aligned} & 16.7 \\ & 16.7 \end{aligned}$	$\begin{aligned} & 25.1 \\ & 25.1 \end{aligned}$	16.7	25.1	16.7	-
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 16.3 \\ & 16.3 \end{aligned}$	$\begin{aligned} & 24.5 \\ & 24.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 20.4 \\ 20.4 \end{array}$	$\begin{aligned} & 30.6 \\ & 30.6 \end{aligned}$	$\begin{aligned} & 21.1 \\ & 21.1 \end{aligned}$	$\begin{aligned} & 31.6 \\ & 31.6 \end{aligned}$	$\begin{aligned} & 21.1 \\ & 21.1 \end{aligned}$	$\begin{aligned} & 31.6 \\ & 31.6 \end{aligned}$	21.1	$\begin{gathered} - \\ 31.6 \end{gathered}$	21.1	- ${ }^{-}$
	Group B	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & \hline 16.3 \\ & 16.3 \end{aligned}$	$\begin{aligned} & 24.5 \\ & 24.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 20.4 \\ 20.4 \end{array}$	$\begin{aligned} & 30.6 \\ & 30.6 \end{aligned}$	$\begin{aligned} & 21.1 \\ & 21.1 \end{aligned}$	$\begin{aligned} & 31.6 \\ & 31.6 \end{aligned}$	$\begin{aligned} & 21.1 \\ & 21.1 \end{aligned}$	$\begin{aligned} & 31.6 \\ & 31.6 \end{aligned}$	21.1	$\begin{gathered} - \\ 31.6 \end{gathered}$	21.1	$\begin{gathered} - \\ 31.6 \end{gathered}$
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 16.3 \\ 16.3 \\ \hline \end{array}$	$\begin{aligned} & 24.5 \\ & 24.5 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 20.4 \\ 20.4 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 30.6 \\ 30.6 \\ \hline \end{array}$	$\begin{aligned} & 24.5 \\ & 24.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 36.7 \\ 36.7 \\ \hline \end{array}$	$\begin{aligned} & 26.1 \\ & 26.1 \end{aligned}$	$\begin{array}{\|l\|} \hline 39.1 \\ 39.1 \end{array}$	26.1	$\begin{gathered} - \\ 39.1 \end{gathered}$	26.1	-
	Weld Siz	e, in.							/4						/8
STD = Standard holes SSLT = Short-slotted holes transverse to direction of load - Indicates that the plate thickness is greater than the maximum given in Table 10-9.												$\mathrm{N}=$ Threads included X = Threads excluded			

$F_{y}=36 \mathrm{ksi}$										10 te		,			
n	Bolt Group	Thread Cond.	Hole Type	Plate Thickness, in.											
				1/4		5/16		3/8		7/16		1/2		9/16	
				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
$\begin{gathered} 12 \\ (l=36) \end{gathered}$	Group A	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & \hline 102 \\ & 102 \end{aligned}$	\|153	128	192	153 152	$\begin{aligned} & 230 \\ & 228 \end{aligned}$	-	${ }_{2}^{-}$	-	-	-	-
		X	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & \hline 102 \\ & 102 \end{aligned}$	$\begin{aligned} & \hline 153 \\ & 152 \end{aligned}$	128 127	(192	153 152	$\begin{aligned} & 230 \\ & 228 \end{aligned}$	178	${ }_{267}^{-}$	-	-	-	-
	Group B	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & \hline 102 \\ & 102 \end{aligned}$	$\begin{aligned} & \hline 153 \\ & 152 \end{aligned}$	$\begin{aligned} & 128 \\ & 127 \end{aligned}$	$\begin{array}{\|l\|} \hline 192 \\ 190 \\ \hline \end{array}$	$\begin{aligned} & 153 \\ & 152 \end{aligned}$	$\begin{array}{\|l\|} \hline 230 \\ 228 \\ \hline \end{array}$	178	267	-	305	-	-
		X	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & \hline 102 \\ & 102 \end{aligned}$	$\begin{aligned} & 153 \\ & 152 \end{aligned}$	$\begin{aligned} & \hline 128 \\ & 127 \end{aligned}$	$\begin{aligned} & \hline 192 \\ & 190 \end{aligned}$	$\begin{aligned} & 153 \\ & 152 \end{aligned}$	$\begin{aligned} & 230 \\ & 228 \end{aligned}$	178	267	-	305	-	-
$\begin{gathered} 11 \\ (l=33) \end{gathered}$	Group A	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 94.1 \\ & 93.4 \end{aligned}$	$\begin{aligned} & \hline 141 \\ & 140 \end{aligned}$	$\begin{array}{\|l\|} \hline 118 \\ 117 \end{array}$	176 175	141 140	$\begin{aligned} & 212 \\ & 210 \end{aligned}$	164	-	-	-	-	-
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 94.1 \\ & 93.4 \end{aligned}$	$\begin{aligned} & \hline 141 \\ & 140 \end{aligned}$	118 117 18	176 175	141 140 141	$\begin{aligned} & \hline 212 \\ & 210 \end{aligned}$	-	-	- 187	-	-	-
	Group B	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 94.1 \\ & 93.4 \end{aligned}$	141 140 14	118 117 17	176 175	141 140 141	212 210	-	-	- 187	-	-	-
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 94.1 \\ & 93.4 \end{aligned}$	$\begin{aligned} & 141 \\ & 140 \end{aligned}$	$\begin{array}{\|l\|} 118 \\ 117 \end{array}$	176 175	141 140	$\begin{aligned} & 212 \\ & 210 \end{aligned}$	- 164	${ }_{2}^{-}$	- 187	280	-	-
$\begin{gathered} 10 \\ (l=30) \end{gathered}$	Group A	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 86.0 \\ & 85.3 \end{aligned}$	$\begin{aligned} & \hline 129 \\ & 128 \end{aligned}$	$\begin{aligned} & \hline 108 \\ & 107 \end{aligned}$	$\begin{aligned} & \hline 161 \\ & 160 \end{aligned}$	129 128	$\begin{aligned} & 194 \\ & 192 \end{aligned}$	- 149	-	-	234	-	-
		X	$\begin{gathered} \text { STD } \\ \text { SSLT } \end{gathered}$	$\begin{aligned} & 86.0 \\ & 85.3 \end{aligned}$	129 128	$\begin{aligned} & 108 \\ & 107 \end{aligned}$	$\begin{aligned} & \hline 161 \\ & 160 \end{aligned}$	129 128 129	$\begin{aligned} & 194 \\ & 192 \end{aligned}$	149	-	-	256	-	-
	Group B	N	$\begin{gathered} \text { STD } \\ \text { SSLT } \end{gathered}$	$\begin{aligned} & 86.0 \\ & 85.3 \end{aligned}$	$\begin{aligned} & \hline 129 \\ & 128 \end{aligned}$	$\begin{array}{\|l\|} \hline 108 \\ 107 \end{array}$	$\begin{array}{\|l\|} \hline 161 \\ 160 \\ \hline \end{array}$	129 128 128	$\begin{array}{\|l\|} \hline 194 \\ 192 \end{array}$	149	-	-	-	-	-
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 86.0 \\ & 85.3 \end{aligned}$	$\begin{array}{\|l\|} \hline 129 \\ 128 \end{array}$	$\begin{aligned} & \hline 108 \\ & 107 \end{aligned}$	$\begin{aligned} & \hline 161 \\ & 160 \end{aligned}$	$\begin{array}{\|l\|} \hline 129 \\ 128 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 194 \\ 192 \end{array}$	149	-	-	-	-	-
$\begin{gathered} 9 \\ (l=27) \end{gathered}$	Group A	N	$\begin{gathered} \text { STD } \\ \text { SSLT } \end{gathered}$	$\begin{aligned} & 77.9 \\ & 77.2 \end{aligned}$	117 116	97.4 96.5	146 145	117 116 17	$\begin{array}{\|l\|} \hline 175 \\ 174 \\ \hline \end{array}$	- 135	-	- 140	-	-	-
		X	$\begin{gathered} \hline \text { STD } \\ \text { SSLT } \end{gathered}$	$\begin{array}{\|l} \hline 77.9 \\ 77.2 \\ \hline \end{array}$	$\begin{array}{\|l} 117 \\ 116 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 97.4 \\ 96.5 \\ \hline \end{array}$	146 145	117 116 17	$\begin{aligned} & 175 \\ & 174 \\ & \hline \end{aligned}$	- 135	-	-	-	-	-
	Group B	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 77.9 \\ & 77.2 \end{aligned}$	$\begin{array}{\|l\|} \hline 117 \\ 116 \end{array}$	$\begin{aligned} & \hline 97.4 \\ & 96.5 \end{aligned}$	$\begin{aligned} & \hline 146 \\ & 145 \end{aligned}$	$\begin{aligned} & 117 \\ & 116 \end{aligned}$	$\begin{array}{\|l\|} \hline 175 \\ 174 \end{array}$	135	-	154	232	-	-
		X	$\begin{gathered} \text { STD } \\ \text { SSLT } \end{gathered}$	$\begin{aligned} & 77.9 \\ & 77.2 \end{aligned}$	$\begin{array}{\|l\|} \hline 117 \\ 116 \\ \hline \end{array}$	$\begin{aligned} & 97.4 \\ & 96.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 146 \\ 145 \\ \hline \end{array}$	$\begin{aligned} & 117 \\ & 116 \end{aligned}$	$\begin{array}{\|l\|} \hline 175 \\ 174 \\ \hline \end{array}$	135	203	154	232	-	-
Weld Size, in.							4		/				/16		/8
STD $=$ Standard holes $\mathrm{N}=$ Threads included SSLT = Short-slotted holes transverse to direction of load $\mathrm{X}=$ Threads excluded - Indicates that the plate thickness is greater than the maximum given in Table 10-9.															

$F_{y}=36 \mathrm{ksi}$		Table 10-10a (continued) gle-Plate Connections Bolt, Weld and Single-Plate Available Strengths, kips										$\begin{aligned} & 7 / 8 \text {-in. } \\ & \text { Bolts } \end{aligned}$			
n	Bolt Group	Thread Cond.	Hole Type	Plate Thickness, in.											
				1/4		5/16		$3 / 8$		7/16		1/2		9/16	
				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
$\begin{gathered} 8 \\ (l=24) \end{gathered}$	$\underset{\mathbf{A}}{\text { Group }}$	N	$\begin{gathered} \hline \text { STD } \\ \text { SSLT } \end{gathered}$	$\begin{aligned} & 69.6 \\ & 69.1 \end{aligned}$		$\begin{aligned} & 87.0 \\ & 86.4 \end{aligned}$	131 130	104 104	157	121	181	124	186	-	-
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 69.6 \\ & 69.1 \end{aligned}$	$\begin{aligned} & \hline 104 \\ & 104 \end{aligned}$	$\begin{array}{l\|} \hline 87.0 \\ 86.4 \end{array}$			157	121	181	138	207	-	-
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 69.6 \\ & 69.1 \end{aligned}$	$\begin{aligned} & 104 \\ & 104 \end{aligned}$	$\begin{aligned} & 87.0 \\ & 86.4 \end{aligned}$	131 130	104 104	157 156	121	181	138	207	-	-
		X	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 69.6 \\ & 69.1 \end{aligned}$	$\begin{aligned} & 104 \\ & 104 \end{aligned}$	$\begin{array}{\|l\|} \hline 87.0 \\ 86.4 \\ \hline \end{array}$	131 130	104 104	157 156	121	181	138	207	-	-
$\begin{gathered} 7 \\ (l=21) \end{gathered}$	$\underset{\mathbf{A}}{\text { Group }}$	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|c\|} \hline 60.9 \\ 60.9 \end{array}$	$\begin{array}{l\|} 91.4 \\ 91.4 \end{array}$	$\begin{array}{\|l\|} \hline 76.1 \\ 76.1 \end{array}$	114 114	91.4 91.4	137	107	160	107	161	-	-
		X	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 60.9 \\ & 60.9 \end{aligned}$	$\begin{aligned} & 91.4 \\ & 91.4 \end{aligned}$	$\begin{array}{\|l\|} \hline 76.1 \\ 76.1 \end{array}$	114 114	91.4 91.4	137	107	160	122	183	-	-
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 60.9 \\ 60.9 \end{array}$		76.1 76.1	114 114	91.4 91.4	137	107	160	122	183	-	-
		X	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 60.9 \\ 60.9 \end{array}$	$\begin{array}{l\|} \hline 91.4 \\ 91.4 \end{array}$	$\begin{array}{\|l\|} \hline 76.1 \\ 76.1 \end{array}$	114 114	91.4 91.4	137	-	160	122	183	-	-
$\begin{gathered} 6 \\ (l=18) \end{gathered}$	$\underset{\text { A }}{\text { Group }}$	N	$\begin{gathered} \hline \text { STD } \\ \text { SSLT } \end{gathered}$	$\begin{array}{\|l\|} \hline 52.2 \\ 52.2 \end{array}$	$\begin{array}{\|l\|} 78.3 \\ 78.3 \\ \hline \end{array}$	$\begin{aligned} & 65.3 \\ & 65.3 \end{aligned}$	$\begin{array}{ll} 37.9 \\ 97.9 \end{array}$		117	90.9	-	90.9	136	-	-
		X	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 52.2 \\ 52.2 \end{array}$	$\begin{array}{\|l\|} 78.3 \\ 78.3 \\ \hline \end{array}$	$\begin{aligned} & 65.3 \\ & 65.3 \end{aligned}$	97.9 97.9	78.3 78.3	117	- 91.	137	104	157	-	-
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & \hline 52.2 \\ & 52.2 \end{aligned}$	$\begin{aligned} & 78.3 \\ & 78.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 65.3 \\ & 65.3 \end{aligned}$	97.9 97.9	78.3 78.3	117	- 91.	137	104	157	-	-
		X	$\begin{gathered} \hline \text { STD } \\ \text { SSLT } \end{gathered}$	$\begin{aligned} & \hline 52.2 \\ & 52.2 \end{aligned}$	$\begin{aligned} & 78.3 \\ & 78.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 65.3 \\ & 65.3 \end{aligned}$	97.9 97.9	78.3 78.3	$\begin{aligned} & 117 \\ & 117 \end{aligned}$	- 91.	-	104	157	-	-
$\begin{gathered} 5 \\ (l=15) \end{gathered}$	$\underset{\text { A }}{\text { Group }}$	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 43.5 \\ & 43.5 \end{aligned}$	$\begin{aligned} & 65.3 \\ & 65.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 54.4 \\ & 54.4 \end{aligned}$	$\begin{array}{l\|l} \hline+ & 81.6 \\ 7 & 81.6 \end{array}$	$\begin{aligned} & \hline 65.3 \\ & 65.3 \end{aligned}$	$\begin{array}{l\|l} \hline 3 & 97.9 \\ 3 & 97.9 \end{array}$	74.2 74.2	$\begin{aligned} & 111 \\ & 111 \end{aligned}$	74.2	111	74.2	-
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 43.5 \\ 43.5 \end{array}$	$\begin{array}{\|l\|} 65.3 \\ 65.3 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 54.4 \\ 54.4 \\ \hline \end{array}$	$\begin{aligned} & 81.6 \\ & 81.6 \end{aligned}$	65.3 65.3	$\begin{array}{l\|l\|} \hline 3 & 97.9 \\ 3 & 97.9 \end{array}$	76.1 76.1	$\begin{aligned} & 114 \\ & 114 \end{aligned}$	87.0 87.0	$\begin{aligned} & \hline 131 \\ & 131 \end{aligned}$	93.4	-
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|c} 43.5 \\ 43.5 \end{array}$	$\begin{aligned} & 65.3 \\ & 65.3 \end{aligned}$	$\begin{array}{\|l\|} 54.4 \\ 54.4 \end{array}$	$\begin{aligned} & 81.6 \\ & 81.6 \end{aligned}$	$\begin{array}{\|l} 65.3 \\ 65.3 \end{array}$	$\begin{array}{ll} 3 & 97.9 \\ 3 & 97.9 \end{array}$		$\begin{aligned} & 114 \\ & 114 \end{aligned}$	87.0	131 131	93.4	-
		X	$\begin{gathered} \text { STD } \\ \text { SSLT } \\ \hline \end{gathered}$	$\begin{aligned} & 43.5 \\ & 43.5 \end{aligned}$	$\begin{aligned} & 65.3 \\ & 65.3 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 54.4 \\ 54.4 \\ \hline \end{array}$	$\begin{aligned} & +81.6 \\ & +81.6 \end{aligned}$	65.3	97.9 97.9	76.1 76.1	$\begin{aligned} & \hline 114 \\ & 114 \\ & \hline \end{aligned}$	87.0	131 131	97.9	-
Weld Size, in.					16		$1 / 4$		$1 / 4$		16		16		/8
$\begin{aligned} & \hline \text { STD = Standard holes } \\ & \text { SSLT = Short-slotted holes transverse to direction of load } \\ & \text { - Indicates that the plate thickness is greater than the maximum given in Table 10-9. } \end{aligned}$												$N=$ Threads included $X=$ hreads excluded			

$F_{y}=36 \mathrm{ksi}$ Plate		Single-Plate Connections Bolt, Weld and Single-Plate Available Strengths, kips													
n	Bolt Group	Thread Cond.	Hole Type	Plate Thickness, in.											
				$1 / 4$		5/16		$3 / 8$		7/16		1/2		9/16	
				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
$\begin{gathered} 12 \\ \left(l=36^{1 / 2}\right) \end{gathered}$	$\underset{\text { G }}{\text { Group }}$	N	$\begin{gathered} \hline \text { STD } \\ \text { SSLT } \end{gathered}$	$\begin{array}{\|l\|} \hline 96.8 \\ 96.8 \end{array}$	145 145	$\begin{aligned} & 121 \\ & 121 \end{aligned}$	181	145	$\begin{aligned} & 218 \\ & 218 \end{aligned}$	169	254 254	194	290	218	${ }_{-}^{-}$
		X	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 96.8 \\ 96.8 \end{array}$	$\begin{aligned} & 145 \\ & 145 \end{aligned}$	$\begin{aligned} & 121 \\ & 121 \end{aligned}$	$\begin{aligned} & 181 \\ & 181 \end{aligned}$	145	$\begin{aligned} & 218 \\ & 218 \end{aligned}$	169	254	-	-	-	-
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 96.8 \\ 96.8 \end{array}$	$\begin{aligned} & 145 \\ & 145 \end{aligned}$	$\begin{aligned} & 121 \\ & 121 \end{aligned}$	$\begin{aligned} & 181 \\ & 181 \end{aligned}$	145	$\begin{aligned} & 218 \\ & 218 \end{aligned}$	169	254	194	-	218	- 327
		X	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 96.8 \\ 96.8 \\ \hline \end{array}$	$\begin{aligned} & 145 \\ & 145 \end{aligned}$	$\begin{aligned} & 121 \\ & 121 \end{aligned}$	181	145	218	169	254 254	-	-	-	${ }_{-}^{-}$
$\begin{gathered} 11 \\ \left(l=33^{1 / 2}\right) \end{gathered}$	$\underset{\mathrm{A}}{\text { Group }}$		$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 88.9 \\ & 88.9 \end{aligned}$	133 133	111	167	133	200	156	233	- 178	-	- 200	-
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} 88.9 \\ 88.9 \end{array}$		111	167	133	200	156	233	-	-	- 200	-
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 88.9 \\ 88.9 \end{array}$	133 133	111 111	167	133	200	156	233	178	-	200	300
		X	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 88.9 \\ 88.9 \end{array}$	$\begin{aligned} & 133 \\ & 133 \end{aligned}$	$\begin{aligned} & \hline 111 \\ & 111 \end{aligned}$	$\begin{aligned} & 167 \\ & 167 \end{aligned}$	133	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	156	233 233	178		- 200	-
$\begin{gathered} 10 \\ \left(l=30^{1 / 2}\right) \end{gathered}$	$\begin{gathered} \text { Group } \\ \text { A } \end{gathered}$	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 81.0 \\ 81.0 \end{array}$	122 122	101	152	122	$\begin{aligned} & 182 \\ & 182 \end{aligned}$	142	213	-	${ }_{243}^{-}$	-	- 273
		X	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 81.0 \\ 81.0 \end{array}$	$\begin{aligned} & 122 \\ & 122 \end{aligned}$	$\begin{aligned} & 101 \\ & 101 \end{aligned}$	$\begin{aligned} & 152 \\ & 152 \end{aligned}$	122	$\begin{aligned} & 182 \\ & 182 \end{aligned}$	142	213	-	-	-	- 273
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 81.0 \\ 81.0 \end{array}$	122 122	$\begin{aligned} & 101 \\ & 101 \end{aligned}$	$\begin{aligned} & 152 \\ & 152 \end{aligned}$	122	$\begin{aligned} & 182 \\ & 182 \end{aligned}$	142	213	-	-	-	- 273
		X	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 81.0 \\ 81.0 \end{array}$	$\begin{aligned} & 122 \\ & 122 \end{aligned}$	$\begin{aligned} & 101 \\ & 101 \end{aligned}$	$\begin{aligned} & 152 \\ & 152 \end{aligned}$	122	$\begin{aligned} & 182 \\ & 182 \end{aligned}$	142	213	-	-	182	- 273
$\begin{gathered} 9 \\ \left(l=27^{1 / 2}\right) \end{gathered}$	$\underset{\text { A }}{\text { Group }}$	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 73.1 \\ & 73.1 \end{aligned}$	1110	$\begin{array}{\|l\|} \hline 91.4 \\ 91.4 \end{array}$	137	110	165	128	192 192	-	${ }_{219}$	-	- 247
		X	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 73.1 \\ & 73.1 \end{aligned}$	$\begin{array}{\|l\|} \hline 110 \\ 110 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 91.4 \\ 91.4 \\ \hline \end{array}$	137	110	165	128	192 192	${ }_{146}$	${ }_{219}$	165	- 247
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 73.1 \\ & 73.1 \end{aligned}$	$\begin{aligned} & 110 \\ & 110 \end{aligned}$	$\begin{array}{\|l\|} \hline 91.4 \\ 91.4 \end{array}$	$\begin{aligned} & 137 \\ & 137 \end{aligned}$	110	$\begin{aligned} & 165 \\ & 165 \end{aligned}$	128	192 192	-	-	-	- 247
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \\ & \hline \end{aligned}$	$\begin{aligned} & 73.1 \\ & 73.1 \end{aligned}$	$\begin{aligned} & 110 \\ & 110 \end{aligned}$	$\begin{aligned} & \hline 91.4 \\ & 91.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 137 \\ & 137 \\ & \hline \end{aligned}$	110	$\begin{aligned} & 165 \\ & 165 \\ & \hline \end{aligned}$	128	$\begin{aligned} & 192 \\ & 192 \\ & \hline \end{aligned}$	-	-	- 165	-
Weld Size, in.					16		/4		$1 / 4$		/16		16		\%
STD $=$ Standard holes $\mathrm{N}=$ Threads inclu SSLT $=$ Short-slotted holes transverse to direction of load $\mathrm{X}=$ Threads exclu - Indicates that the plate thickness is greater than the maximum given in Table 10-9.															

$F_{y}=36 \mathrm{ksi}$ Plate		Table 10-10a (continued) gle-Plate Connections Bolt, Weld and Single-Plate Available Strengths, kips										1-in. Bolts			
n	Bolt Group	Thread Cond.	Hole Type	Plate Thickness, in.											
				1/4		5/16		$3 / 8$		7/16		1/2		9/16	
				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	RF
$\begin{gathered} 8 \\ \left(l=24^{1 / 2}\right) \end{gathered}$	$\underset{\mathbf{A}}{\text { Group }}$	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 65.3 \\ 65.3 \end{array}$	97.9	81.6	122 122	97.9 97.9	147	114 114	171 171	131	196	147	-
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 65.3 \\ 65.3 \end{array}$	97.9 97.9	81.6 81.6	122	97.9 97.9	147	1114	171 171	131	196	147	- 220
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{l\|} \hline 65.3 \\ 65.3 \end{array}$	97.9 97.9	81.6 81.6	122 122	97.9 97.9	147	114 114	171 171	131	196	147	-
		X	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{l\|} \hline 65.3 \\ 65.3 \end{array}$	97.9 97.9	$\begin{array}{\|l\|} \hline 81.6 \\ 81.6 \end{array}$	122	97.9 97.9	147	114 114		131	196	- 147	-
$\begin{gathered} 7 \\ \left(l=21^{1} / 2\right) \end{gathered}$	$\underset{\text { A }}{\text { Group }}$	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 57.4 \\ 57.4 \end{array}$	86.0 86.0	$\begin{array}{\|l\|} \hline 71.7 \\ 71.7 \end{array}$	108	86.0 86.0	129	100 100	151 151	-	172	129	-
		X	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 57.4 \\ 57.4 \end{array}$	86.0	71.7 71.7	108	86.0 86.0	129	100 100	151 151	-	172	-	-
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \\ & \hline \end{aligned}$	$\begin{aligned} & 57.4 \\ & 57.4 \\ & \hline \end{aligned}$	86.0	71.7 71.7	108	86.0 86.0	129 129	100 100	151 151	- 115	172	129	-
		X	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & \hline 57.4 \\ & 57.4 \end{aligned}$	86.0	71.7 71.7	108	86.0 86.0	129	100	151 151	- 115	172	- 129	-
$\begin{gathered} 6 \\ \left(l=18^{1 / 2}\right) \end{gathered}$	$\begin{gathered} \text { Group } \\ \text { A } \end{gathered}$	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & \hline 49.5 \\ & 49.5 \end{aligned}$			92.8 92.8 1	74.2 74.2	111	86.6 86.6	130	99.0	148	111	- 167
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 49.5 \\ 49.5 \end{array}$	$\begin{array}{\|l\|} \hline 74.2 \\ 74.2 \\ \hline \end{array}$	$\begin{aligned} & 61.9 \\ & 61.9 \end{aligned}$						- 99.	148	111	-
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \\ & \hline \end{aligned}$	$\begin{aligned} & 49.5 \\ & 49.5 \end{aligned}$	74.2 74.2	$\begin{aligned} & 61.9 \\ & 61.9 \end{aligned}$	92.8 92.8	74.2 74.2	111	86.6 86.6	130 130	- 99.	148	- 111	-
		X	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 49.5 \\ & 49.5 \end{aligned}$	74.2 74.2	$\begin{aligned} & 61.9 \\ & 61.9 \end{aligned}$	92.8 92.8	74.2 74.2	111	86.6 86.6	130	- 99.0	148	- 111	- 167
$\begin{gathered} 5 \\ \left(l=15^{1} / 2\right) \end{gathered}$	Group A	N	$\begin{aligned} & \text { STD/ } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 41.6 \\ & 41.6 \end{aligned}$	62.4	$\begin{aligned} & 52.0 \\ & 52.0 \\ & \hline \end{aligned}$	78.0 78.0	62.4	93.6 93.6	72.8 72.8	109	83.2 83.2	125 125	93.6	140
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	N		$\begin{aligned} & 41.6 \\ & 41.6 \end{aligned}$	62.4	$\begin{aligned} & 52.0 \\ & 52.0 \\ & \hline \end{aligned}$		62.4 62.4	93.6 93.6	72.8 72.8	109 109	83.2 83.2	125 125	93.6 93.6	140 140
$\begin{gathered} 4 \\ \left(l=12^{1 / 2}\right) \end{gathered}$	$\underset{\mathbf{A}}{\text { Group }}$	N	$\begin{aligned} & \text { STD/ } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 33.7 \\ & 33.7 \end{aligned}$	70.6	$\begin{aligned} & 42.1 \\ & 42.1 \end{aligned}$	63.2 63.2	50.6 50.6	75.9 75.9	59.0 59.0	88.5 88.5	67.4 67.4	101 101	74.9	112
	$\begin{gathered} \text { Group } \\ \text { B } \\ \hline \end{gathered}$	N		$\begin{aligned} & 33.7 \\ & 33.7 \end{aligned}$	$\begin{array}{\|l\|} \hline 50.6 \\ 50.6 \end{array}$	$\begin{aligned} & 42.1 \\ & 42.1 \end{aligned}$		$\begin{array}{\|c\|} \hline 50.6 \\ 50.6 \\ \hline \end{array}$	$\begin{aligned} & 75.9 \\ & 75.9 \end{aligned}$	$\begin{array}{\|l\|} \hline 59.0 \\ 59.0 \end{array}$	88.5 88.5	67.4	101 101	75.9 75.9	114
Weld Size, in.					16		/4		14		16				
STD $=$ Standard holes $\mathrm{N}=$ Threads included SSLT $=$ Short-slotted holes transverse to direction of load $\mathrm{X}=$ Threads excluded STD/SSLT $=$ Standard holes or short-slotted holes transverse to direction of load - Indicates that the plate thickness is greater than the maximum given in Table 10-9. Tabulated values are grouped when available strength is independent of hole type.															

$\begin{array}{cc}F_{y}=36 \text { ksi Single-P } \\ \text { Plate } & \text { Bolt, We }\end{array}$																	
n	Bolt Group	Thread Cond.	Hole Type	Plate Thickness, in.													
				5/16		3/8		7/16		1/2		9/16		5/8			
				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD		
$\begin{gathered} 12 \\ (l=37) \end{gathered}$	Group A	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 116 \\ & 116 \end{aligned}$	173 173	139 139	208	162 162	243 243	$\begin{aligned} & 185 \\ & 185 \end{aligned}$	$\begin{array}{\|l\|} \hline 277 \\ 277 \\ \hline \end{array}$	208	-	-	- 347		
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & \hline 116 \\ & 116 \end{aligned}$	173 173	139 139	(208	162 162	243	$\begin{aligned} & 185 \\ & 185 \end{aligned}$	$\begin{aligned} & \hline 277 \\ & 277 \end{aligned}$	208	-	-	-		
	Group B	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 116 \\ 116 \end{array}$	$\begin{aligned} & \hline 173 \\ & 173 \end{aligned}$	139 139	$\begin{aligned} & \hline 208 \\ & 208 \end{aligned}$	162 162	$\begin{aligned} & 243 \\ & 243 \end{aligned}$	$\begin{aligned} & 185 \\ & 185 \end{aligned}$	$\begin{array}{\|l\|} \hline 277 \\ 277 \end{array}$	208	312	231	347		
		X	$\begin{gathered} \hline \text { STD } \\ \text { SSLT } \end{gathered}$	$\begin{aligned} & \hline 116 \\ & 116 \end{aligned}$	$\begin{aligned} & \hline 173 \\ & 173 \end{aligned}$	139 139	$\begin{aligned} & \hline 208 \\ & 208 \end{aligned}$	162 162 189	$\begin{aligned} & 243 \\ & 243 \end{aligned}$	$\begin{aligned} & \hline 185 \\ & 185 \end{aligned}$	$\begin{aligned} & \hline 277 \\ & 277 \end{aligned}$	208	312	231	-		
$\begin{gathered} 11 \\ (l=34) \end{gathered}$	Group A	N	$\begin{gathered} \text { STD } \\ \text { SSLT } \end{gathered}$	$\begin{array}{\|l\|} \hline 106 \\ 106 \end{array}$	$\begin{aligned} & \hline 160 \\ & 160 \end{aligned}$	128 128	$\begin{aligned} & \hline 191 \\ & 191 \end{aligned}$	149 149	$\begin{aligned} & 223 \\ & 223 \end{aligned}$	$\begin{aligned} & \hline 170 \\ & 170 \end{aligned}$	$\begin{aligned} & \hline 255 \\ & 255 \end{aligned}$	191	287	213	-		
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & \hline 106 \\ & 106 \end{aligned}$	160 160	128 128	$\begin{aligned} & 191 \\ & 191 \end{aligned}$	149 149	$\begin{aligned} & 223 \\ & 223 \end{aligned}$	$\begin{aligned} & \hline 170 \\ & 170 \end{aligned}$	$\begin{aligned} & 255 \\ & 255 \end{aligned}$	191	-	-	-		
	Group B	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & \hline 106 \\ & 106 \end{aligned}$	160 160 160	128 128 128	191 191	149 149	223 223	170 170	\|l	l		191	-	-	-
		X	$\begin{gathered} \text { STD } \\ \text { SSLT } \end{gathered}$	$\begin{aligned} & \hline 106 \\ & 106 \end{aligned}$	$\begin{aligned} & \hline 160 \\ & 160 \end{aligned}$	128 128 117	$\begin{aligned} & \hline 191 \\ & 191 \end{aligned}$	149 149	$\begin{aligned} & 223 \\ & 223 \end{aligned}$	$\begin{aligned} & \hline 170 \\ & 170 \end{aligned}$	$\begin{aligned} & \hline 255 \\ & 255 \end{aligned}$	191	287	213	-		
$\begin{gathered} 10 \\ (l=31) \end{gathered}$	Group A	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 97.2 \\ & 97.2 \end{aligned}$	$\begin{aligned} & \hline 146 \\ & 146 \end{aligned}$	117 117	$\begin{aligned} & \hline 175 \\ & 175 \end{aligned}$	136 136	$\begin{aligned} & 204 \\ & 204 \end{aligned}$	$\begin{aligned} & 156 \\ & 156 \end{aligned}$	$\begin{aligned} & 233 \\ & 233 \end{aligned}$	175	-	194	292		
		X	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 97.2 \\ 97.2 \\ \hline \end{array}$	146 146	117 117 17	175 175	136 136 136	$\begin{array}{r} \hline 204 \\ 204 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 156 \\ 156 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 233 \\ 233 \\ \hline \end{array}$	175	262	194	292		
	Group B	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 97.2 \\ & 97.2 \end{aligned}$	$\begin{aligned} & \hline 146 \\ & 146 \end{aligned}$	117 117	$\begin{aligned} & 175 \\ & 175 \end{aligned}$	$\begin{aligned} & 136 \\ & 136 \end{aligned}$	$\begin{aligned} & 204 \\ & 204 \end{aligned}$	$\begin{aligned} & 156 \\ & 156 \end{aligned}$	$\begin{aligned} & 233 \\ & 233 \end{aligned}$	175	-	194	-		
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 97.2 \\ & 97.2 \end{aligned}$	$\begin{array}{\|l\|} \hline 146 \\ 146 \end{array}$	117 117	$\begin{aligned} & \hline 175 \\ & 175 \end{aligned}$	136 136	$\begin{aligned} & 204 \\ & 204 \end{aligned}$	$\begin{aligned} & \hline 156 \\ & 156 \end{aligned}$	$\begin{array}{\|l\|} \hline 233 \\ 233 \end{array}$	175	-	194	- 292		
$\begin{gathered} 9 \\ (l=28) \end{gathered}$	Group A	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 88.0 \\ & 88.0 \end{aligned}$	132 132	106 106	158 158	123 123	185 185	141 141	$\begin{aligned} & 211 \\ & 211 \end{aligned}$	158	-	-	- 264		
		X	$\begin{gathered} \hline \text { STD } \\ \text { SSLT } \end{gathered}$	$\begin{array}{\|l\|} \hline 88.0 \\ 88.0 \\ \hline \end{array}$	$\begin{aligned} & 132 \\ & 132 \end{aligned}$	106 106	158 158	123 123	185 185	141 141	$\begin{array}{\|l\|} \hline 211 \\ 211 \\ \hline \end{array}$	158	-	176	- 264		
	Group B	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 88.0 \\ & 88.0 \end{aligned}$	$\begin{aligned} & 132 \\ & 132 \end{aligned}$	$\begin{aligned} & \hline 106 \\ & 106 \end{aligned}$	$\begin{aligned} & 158 \\ & 158 \end{aligned}$	$\begin{aligned} & \hline 123 \\ & 123 \end{aligned}$	$\begin{aligned} & \hline 185 \\ & 185 \end{aligned}$	$\begin{aligned} & 141 \\ & 141 \end{aligned}$	$\begin{aligned} & 211 \\ & 211 \end{aligned}$	158	-	176	- 264		
		X	$\begin{gathered} \text { STD } \\ \text { SSLT } \end{gathered}$	$\begin{aligned} & 88.0 \\ & 88.0 \end{aligned}$	$\begin{aligned} & \hline 132 \\ & 132 \end{aligned}$	$\begin{aligned} & \hline 106 \\ & 106 \end{aligned}$	$\begin{array}{\|l\|} \hline 158 \\ 158 \\ \hline \end{array}$	$\begin{aligned} & \hline 123 \\ & 123 \end{aligned}$	$\begin{array}{\|l\|} \hline 185 \\ 185 \\ \hline \end{array}$	$\begin{aligned} & 141 \\ & 141 \end{aligned}$	$\begin{aligned} & 211 \\ & 211 \end{aligned}$	158	238	176	264		
Weld Size, in.							/4										
STD $=$ Standard holes $\mathrm{N}=$ Threads included SSLT $=$ Short-slotted holes transverse to direction of load $\mathrm{X}=$ Threads excluded - Indicates that the plate thickness is greater than the maximum given in Table 10-9.																	

$\begin{gathered} F_{y}=36 \text { ksi } \mathrm{Si} \\ \text { Plate } \end{gathered}$															
n	Bolt Group	Thread Cond.	Hole Type	Plate Thickness, in.											
				5/16		3/8		7/16		1/2		9/16		5/8	
				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRF
$\begin{gathered} 8 \\ (l=25) \end{gathered}$	Group A	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 78.8 \\ & 78.8 \end{aligned}$	$\begin{aligned} & 118 \\ & 118 \end{aligned}$	$\begin{array}{\|l} 94.6 \\ 94.6 \end{array}$	$\begin{aligned} & 142 \\ & 142 \end{aligned}$	$\begin{aligned} & \hline 110 \\ & 110 \end{aligned}$	166	$\begin{aligned} & 126 \\ & 126 \end{aligned}$	$\begin{aligned} & 189 \\ & 189 \end{aligned}$	- 142	-	158	237
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\left\|\begin{array}{l} 78.8 \\ 78.8 \end{array}\right\|$	118	94.6 94.6	142 142	110 110	166 166	$\begin{aligned} & 126 \\ & 126 \end{aligned}$	$\begin{aligned} & 189 \\ & 189 \\ & \hline \end{aligned}$	-	-	- 158	237
	Group B	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 78.8 \\ & 78.8 \end{aligned}$	118	94.6 94.6	142	110 110	166	126 126	189 189	142	- 213	- 158	- 237
		X	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & \hline 78.8 \\ & 78.8 \end{aligned}$	$\begin{aligned} & \hline 118 \\ & 118 \end{aligned}$	94.6 94.6	142	110 110	166 166	$\begin{aligned} & \hline 126 \\ & 126 \end{aligned}$	$\begin{aligned} & \hline 189 \\ & 189 \end{aligned}$	- 142	-	158	237
$\begin{gathered} 7 \\ (l=22) \end{gathered}$	Group A	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 69.7 \\ & 69.7 \end{aligned}$	105 105	83.6 83.6	125	97.5 97.5	146 146	$\begin{aligned} & 111 \\ & 111 \end{aligned}$	$\begin{aligned} & 167 \\ & 167 \end{aligned}$	- 125	188	139	209
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l} 69.7 \\ 69.7 \end{array}$	$\begin{aligned} & 105 \\ & 105 \\ & \hline \end{aligned}$	83.6 83.6 88.6	125	97.5 97.5	146 146	$\begin{array}{\|l\|} \hline 111 \\ 111 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 167 \\ 167 \\ \hline \end{array}$	125	188	139	209
	Group B	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 69.7 \\ & 69.7 \end{aligned}$	$\begin{aligned} & 105 \\ & 105 \end{aligned}$	$\begin{array}{\|l\|} 83.6 \\ 83.6 \end{array}$	$\begin{aligned} & 125 \\ & 125 \end{aligned}$	$\begin{aligned} & 97.5 \\ & 97.5 \end{aligned}$	146 146	$\begin{aligned} & 111 \\ & 111 \end{aligned}$	$\begin{aligned} & \hline 167 \\ & 167 \end{aligned}$	125	188	139	- 209
		X	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{l\|} \hline 69.7 \\ 69.7 \end{array}$	$\begin{aligned} & 105 \\ & 105 \end{aligned}$	$\begin{aligned} & 83.6 \\ & 83.6 \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \end{aligned}$	$\begin{aligned} & 97.5 \\ & 97.5 \end{aligned}$	146 146	$\begin{aligned} & 111 \\ & 111 \end{aligned}$	$\begin{aligned} & 167 \\ & 167 \end{aligned}$	- 125	188	-	- 209
$\begin{gathered} 6 \\ (l=19) \end{gathered}$	Group A	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 60.5 \\ & 60.5 \end{aligned}$	90.7 90.7	72.6 72.6	109	84.7 84.7	127 127	96.8 96.8	145 145	- 109	- 163	- 121	181
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 60.5 \\ & 60.5 \end{aligned}$	90.7 90.7	72.6 72.6	109	84.7 84.7	127 127 127	96.8 96.8	145 145	- 109	- 163	- 121	- 181
	Group B	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 60.5 \\ & 60.5 \end{aligned}$	90.7 90.7	72.6	109	84.7 84.7	127 127	96.8 96.8	145	- 109	- 163	121	181
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 60.5 \\ & 60.5 \end{aligned}$	$\begin{array}{\|l} 90.7 \\ 90.7 \end{array}$	$\begin{array}{\|l\|} 72.6 \\ 72.6 \end{array}$	$\begin{aligned} & 109 \\ & 109 \end{aligned}$	$\begin{array}{\|l} 84.7 \\ 84.7 \end{array}$	127 127	$\begin{aligned} & 96.8 \\ & 96.8 \end{aligned}$	145 145	- 109	163	-	- 181
$\begin{gathered} 5 \\ (l=16) \end{gathered}$	Group A	N	$\begin{aligned} & \text { STD/ } \\ & \text { SSLT } \end{aligned}$	51.3 51.3	77.0 77.0	61.6 61.6	92.4 92.4	71.8	108	82.1 82.1	123 123	92.4 92.4	139 139	103 103	15
	Group B	N		$\begin{array}{\|l\|} 51.3 \\ 51.3 \\ \hline \end{array}$	77.0 77.0	61.6 61.6	92.4 92.4	71.8 71.8	108 108	82.1 82.1	123 123	92.4 92.4	139 139	103 103	154 154
$\begin{gathered} 4 \\ (l=13) \end{gathered}$	Group A	N	$\begin{aligned} & \text { STD/ } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 42.1 \\ & 42.1 \end{aligned}$	$\begin{aligned} & 63.2 \\ & 63.2 \end{aligned}$	50.6	75.9 75.9	59.0 59.0	(18.5	67.4 67.4	101 101	75.9 75.9 75.9	114	84.3 84.3	126 126 126
	Group B	N		$\begin{array}{\|l\|} 42.1 \\ 42.1 \end{array}$	$\begin{array}{\|l} 63.2 \\ 63.2 \\ \hline \end{array}$	$\begin{array}{\|l\|} 50.6 \\ 50.6 \\ \hline \end{array}$	$\begin{aligned} & 75.9 \\ & 75.9 \\ & \hline \end{aligned}$	59.0 59.0	$\begin{aligned} & 88.5 \\ & 88.5 \\ & \hline \end{aligned}$	67.4 67.4	101 101	75.9 75.9	114	84.3 84.3	126 126
Weld Size, in.															
STD = Standard holes $\mathrm{N}=$ Threads inc SSLT = Short-slotted holes transverse to direction of load $\mathrm{X}=$ Threads exc STD/SSLT = Standard holes or short-slotted holes transverse to direction of load - Indicates that the plate thickness is greater than the maximum given in Table 10-9. Tabulated values are grouped when available strength is independent of hole type.															

$\begin{gathered} F_{y}=50 \mathrm{ksi} \\ \text { Plate } \end{gathered}$		Table 10-10b Plate Connections Veld and Single-Plate able Strengths, kips												Its	
n	Bolt Group	Thread Cond.	Hole Type	Plate Thickness, in.											
				1/4		5/16		3/8		7/16		1/2		9/16	
				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
$\begin{gathered} 12 \\ \left(l=35^{1 / 2}\right) \end{gathered}$	Group A	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 122 \\ 122 \end{array}$	$\begin{aligned} & \hline 183 \\ & 183 \end{aligned}$	134	$\begin{aligned} & \hline 202 \\ & 208 \end{aligned}$	138	-	- 138	208	-	-	-	-
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 122 \\ 122 \end{array}$	$\begin{aligned} & \hline 183 \\ & 183 \end{aligned}$	152	$\begin{aligned} & \hline 229 \\ & 229 \end{aligned}$	174	-	174	261	-	-	-	-
	Group B	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 122 \\ & 122 \end{aligned}$	$\begin{aligned} & \hline 183 \\ & 183 \end{aligned}$	$\begin{aligned} & 152 \\ & 152 \end{aligned}$	$\begin{aligned} & 229 \\ & 229 \end{aligned}$	174	261	174	261	-		-	-
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{l\|} \hline 122 \\ 122 \end{array}$	$\begin{aligned} & \hline 183 \\ & 183 \end{aligned}$	$\begin{array}{\|l\|} \hline 152 \\ 152 \end{array}$	$\begin{aligned} & \hline 229 \\ & 229 \end{aligned}$	183	274	213	320	-	-	-	-
$\begin{gathered} 11 \\ \left(l=32^{1 / 2}\right) \end{gathered}$	Group A	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 112 \\ & 112 \end{aligned}$	$\begin{aligned} & \hline 167 \\ & 167 \end{aligned}$	$\begin{aligned} & 121 \\ & 126 \end{aligned}$	$\begin{aligned} & \hline 183 \\ & 190 \end{aligned}$	126	$\begin{gathered} - \\ 190 \end{gathered}$	126	190	-	-	-	-
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{l\|} \hline 112 \\ 112 \end{array}$	$\begin{aligned} & \hline 167 \\ & 167 \end{aligned}$	$\begin{aligned} & 139 \\ & 139 \end{aligned}$	$\begin{aligned} & \hline 209 \\ & 209 \end{aligned}$	159	-	159	- 239	-	-	-	-
	Group B	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{l\|} \hline 112 \\ 112 \end{array}$	$\begin{aligned} & \hline 167 \\ & 167 \end{aligned}$	139 139	$\begin{aligned} & 209 \\ & 209 \end{aligned}$	-	-	159	239	-	-	-	-
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\left.\begin{aligned} & 112 \\ & 112 \end{aligned} \right\rvert\,$	$\begin{array}{\|l\|} 167 \\ 167 \end{array}$	$\begin{array}{\|l\|} 139 \\ 139 \end{array}$	$\begin{aligned} & 209 \\ & 209 \end{aligned}$	167	-	195	293	-	-	-	-
$\begin{gathered} 10 \\ \left(l=29^{1 / 2}\right) \end{gathered}$	Group A	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & \hline 101 \\ & 101 \end{aligned}$	$\begin{aligned} & 152 \\ & 152 \end{aligned}$	$\begin{aligned} & \hline 110 \\ & 115 \end{aligned}$	$\begin{aligned} & \hline 165 \\ & 172 \end{aligned}$	115	172	115	172	-	-	-	-
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{l\|} \hline 101 \\ 101 \end{array}$	$\begin{aligned} & \hline 152 \\ & 152 \end{aligned}$	$\begin{aligned} & 126 \\ & 126 \end{aligned}$	$\begin{aligned} & \hline 190 \\ & 190 \end{aligned}$	$\begin{gathered} - \\ 145 \end{gathered}$	217	145	217	-	-	-	-
	Group B	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 101 \\ 101 \end{array}$	$\begin{aligned} & \hline 152 \\ & 152 \end{aligned}$	$\begin{array}{\|l\|} \hline 126 \\ 126 \end{array}$	$\begin{aligned} & \hline 190 \\ & 190 \end{aligned}$	145	${ }_{2}^{-}$	145	217	-	-	-	-
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 101 \\ 101 \end{array}$	$\begin{aligned} & \hline 152 \\ & 152 \end{aligned}$	$\begin{aligned} & 126 \\ & 126 \end{aligned}$	$\begin{aligned} & \hline 190 \\ & 190 \end{aligned}$	$\begin{gathered} - \\ 152 \end{gathered}$	228	177	266	-	-	-	-
$\begin{gathered} 9 \\ \left(l=26^{1 / 2}\right) \end{gathered}$	Group A	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 90.8 \\ & 90.8 \end{aligned}$	$\begin{aligned} & \hline 136 \\ & 136 \end{aligned}$	97.2 103	$\begin{array}{\|l\|} \hline 146 \\ 155 \\ \hline \end{array}$	103	- 155	- 103	- 155	-	-	-	-
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 90.8 \\ & 90.8 \end{aligned}$	$\begin{aligned} & \hline 136 \\ & 136 \end{aligned}$	$\begin{aligned} & 113 \\ & 113 \end{aligned}$	$\begin{aligned} & \hline 170 \\ & 170 \\ & \hline \end{aligned}$	130	${ }_{-}^{-}$	130	194	-	-	-	-
	Group B	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 90.8 \\ 90.8 \end{array}$	$\begin{aligned} & \hline 136 \\ & 136 \end{aligned}$	$\begin{aligned} & \hline 113 \\ & 113 \end{aligned}$	$\begin{aligned} & \hline 170 \\ & 170 \\ & \hline \end{aligned}$	130	194	130	194	-	-	-	-
		X	$\begin{gathered} \text { STD } \\ \text { SSLT } \end{gathered}$	$\begin{aligned} & 90.8 \\ & 90.8 \end{aligned}$	$\begin{aligned} & \hline 136 \\ & 136 \end{aligned}$	$\begin{array}{\|l\|} \hline 113 \\ 113 \end{array}$	$\begin{array}{\|l\|} \hline 170 \\ 170 \\ \hline \end{array}$	$\begin{gathered} - \\ 136 \end{gathered}$	204	159	$\begin{array}{\|c} - \\ 238 \\ \hline \end{array}$	-		-	-
Weld Size, in.				3/							16				8
STD = Standard holes SSLT = Short-slotted holes transverse to direction of load - Indicates that the plate thickness is greater than the maximum given in Table 10-9.												$\mathrm{N}=$ Threads included X $=$ Threads excluded			

$F_{y}=50 \mathrm{ksi}$			Tabl olt, Avai						ued ct Pla kip			$\begin{gathered} 3 / 4 \text {-in. } \\ \text { Bolts } \end{gathered}$			
n	Bolt Group	Thread Cond.	Hole Type	Plate Thickness, in.											
				1/4		5/16		3/8		7/16		1/2		9/16	
				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
$\begin{gathered} 8 \\ \left(l=23^{1 / 2}\right) \end{gathered}$	Group A	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 80.4 \\ & 80.4 \end{aligned}$	$\begin{aligned} & \hline 121 \\ & 121 \end{aligned}$	$\begin{aligned} & 84.7 \\ & 90.9 \end{aligned}$	$\begin{aligned} & 127 \\ & 137 \end{aligned}$	$\begin{gathered} - \\ 90.9 \\ \hline \end{gathered}$	137	90.9	137	-		-	-
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 80.4 \\ & 80.4 \end{aligned}$	$\begin{aligned} & 121 \\ & 121 \end{aligned}$	$\begin{aligned} & 101 \\ & 101 \end{aligned}$	$\begin{aligned} & \hline 151 \\ & 151 \end{aligned}$	115	172	115	172	-	-	-	-
	Group B	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 80.4 \\ & 80.4 \end{aligned}$	$\begin{aligned} & \hline 121 \\ & 121 \end{aligned}$	$\begin{aligned} & \hline 101 \\ & 101 \end{aligned}$	$\begin{aligned} & 151 \\ & 151 \end{aligned}$	115	172	115	172	-		-	-
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 80.4 \\ & 80.4 \end{aligned}$	$\begin{aligned} & \hline 121 \\ & 121 \end{aligned}$	$\begin{aligned} & \hline 101 \\ & 101 \end{aligned}$	$\begin{aligned} & \hline 151 \\ & 151 \end{aligned}$	121	181	141	211	-	-	-	-
$\begin{gathered} 7 \\ \left(l=20^{1 / 2}\right) \end{gathered}$	Group A	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 70.1 \\ & 70.1 \end{aligned}$	$\begin{aligned} & 105 \\ & 105 \end{aligned}$	$\begin{aligned} & 72.1 \\ & 78.8 \end{aligned}$	$\begin{aligned} & 108 \\ & 119 \end{aligned}$	$\begin{gathered} - \\ 78.8 \end{gathered}$	119	$\left\lvert\, \begin{gathered} - \\ 78.8 \end{gathered}\right.$	119	-	$\begin{aligned} & \text { - } \\ & \text { _ } \end{aligned}$	-	-
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 70.1 \\ 70.1 \end{array}$	$\begin{array}{\|l\|} \hline 105 \\ 105 \\ \hline \end{array}$	$\begin{aligned} & 87.6 \\ & 87.6 \end{aligned}$	$\begin{aligned} & 131 \\ & 131 \end{aligned}$	99.4	$\begin{gathered} - \\ 149 \end{gathered}$	99.4	149	-		-	-
	Group B	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 70.1 \\ & 70.1 \end{aligned}$	$\begin{aligned} & \hline 105 \\ & 105 \end{aligned}$	$\begin{aligned} & 87.6 \\ & 87.6 \end{aligned}$	$\begin{aligned} & 131 \\ & 131 \end{aligned}$	99.4	149	99.4	149	-	-	-	-
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 70.1 \\ & 70.1 \end{aligned}$	$\begin{aligned} & \hline 105 \\ & 105 \end{aligned}$	$\begin{aligned} & 87.6 \\ & 87.6 \end{aligned}$	$\begin{aligned} & 131 \\ & 131 \end{aligned}$	105	158	123	184	-	$\begin{aligned} & \text { - } \end{aligned}$	-	-
$\begin{gathered} 6 \\ \left(l=17^{1 / 2} 2\right) \end{gathered}$	Group A	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 59.3 \\ 59.7 \end{array}$	$\begin{aligned} & 89.1 \\ & 89.6 \end{aligned}$	$\begin{aligned} & 59.3 \\ & 66.5 \end{aligned}$	$\begin{aligned} & 89.1 \\ & 100 \end{aligned}$	-	100	66.8	100	-	-	-	-
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 59.7 \\ 59.7 \end{array}$	$\begin{aligned} & 89.6 \\ & 89.6 \end{aligned}$	$\begin{aligned} & 74.6 \\ & 74.6 \end{aligned}$	$\begin{aligned} & 112 \\ & 112 \\ & \hline \end{aligned}$	84.2	126	84.2	126	-		-	-
	Group B	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 59.7 \\ 59.7 \end{array}$	$\begin{aligned} & 89.6 \\ & 89.6 \end{aligned}$	$\begin{aligned} & 74.6 \\ & 74.6 \end{aligned}$	$\begin{aligned} & 112 \\ & 112 \\ & \hline \end{aligned}$	$\begin{gathered} - \\ 84.2 \end{gathered}$	126	84.2	126	-	$\begin{aligned} & \text { - } \\ & \text { _ } \end{aligned}$	-	-
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 59.7 \\ & 59.7 \end{aligned}$	$\begin{array}{\|l\|} \hline 89.6 \\ 89.6 \end{array}$	$\begin{aligned} & 74.6 \\ & 74.6 \end{aligned}$	$\begin{array}{\|l} \hline 112 \\ 112 \\ \hline \end{array}$	$\begin{gathered} - \\ 89.6 \end{gathered}$	134	104	156	-		-	-
$\begin{gathered} 5 \\ \left(l=14^{1 / 2}\right) \end{gathered}$	Group A	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 49.4 \\ & 49.4 \end{aligned}$	$\begin{aligned} & 74.0 \\ & 74.0 \end{aligned}$	$\begin{aligned} & 54.5 \\ & 54.5 \end{aligned}$	$\begin{aligned} & 82.0 \\ & 82.0 \end{aligned}$	$\begin{aligned} & \hline 54.5 \\ & 54.5 \end{aligned}$	$\begin{aligned} & 82.0 \\ & 82.0 \end{aligned}$	$\begin{aligned} & 54.5 \\ & 54.5 \end{aligned}$	$\begin{aligned} & 82.0 \\ & 82.0 \end{aligned}$	54.5	$\begin{array}{\|c} - \\ 82.0 \end{array}$	54.5	$\begin{gathered} - \\ 82.0 \end{gathered}$
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 49.4 \\ & 49.4 \end{aligned}$	$\begin{aligned} & 74.0 \\ & 74.0 \end{aligned}$	$\begin{aligned} & 61.7 \\ & 61.7 \end{aligned}$	$\begin{aligned} & 92.5 \\ & 92.5 \end{aligned}$	$\begin{aligned} & 68.7 \\ & 68.7 \end{aligned}$	$\begin{aligned} & 103 \\ & 103 \end{aligned}$	$\begin{aligned} & 68.7 \\ & 68.7 \end{aligned}$	$\begin{array}{\|l\|} \hline 103 \\ 103 \end{array}$	-	103	68.7	$\begin{gathered} - \\ 103 \end{gathered}$
	Group B	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 49.4 \\ & 49.4 \end{aligned}$	$\begin{aligned} & 74.0 \\ & 74.0 \end{aligned}$	$\begin{aligned} & \hline 61.7 \\ & 61.7 \end{aligned}$	$\begin{aligned} & 92.5 \\ & 92.5 \end{aligned}$	$\begin{aligned} & 68.7 \\ & 68.7 \end{aligned}$	$\begin{array}{\|l\|} \hline 103 \\ 103 \end{array}$	$\begin{aligned} & 68.7 \\ & 68.7 \end{aligned}$	$\begin{array}{\|l\|} \hline 103 \\ 103 \\ \hline \end{array}$	-	103	68.7	103
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 49.4 \\ & 49.4 \end{aligned}$	$\begin{aligned} & 74.0 \\ & 74.0 \end{aligned}$	$\begin{aligned} & \hline 61.7 \\ & 61.7 \end{aligned}$	$\begin{aligned} & 92.5 \\ & 92.5 \end{aligned}$	$\begin{aligned} & 74.0 \\ & 74.0 \end{aligned}$	$\begin{aligned} & \hline 111 \\ & 111 \end{aligned}$	$\begin{aligned} & 85.2 \\ & 85.2 \end{aligned}$	$\begin{array}{\|l\|} \hline 127 \\ 127 \\ \hline \end{array}$	85.2	127	85.2	127
Weld Size, in.							/4								/8
STD $=$ Standard holes $\mathrm{N}=$ Threads included SSLT = Short-slotted holes transverse to direction of load $\mathrm{X}=$ Threads excluded - Indicates that the plate thickness is greater than the maximum given in Table 10-9.															

$F_{y}=50 \mathrm{ksi}$		Single-Plate Connections Bolt, Weld and Single-Plate Available Strengths, kips										3/4-in. Bolts			
n	Bolt Group	Thread Cond.	Hole Type	Plate Thickness, in.											
				1/4		5/16		3/8		7/16		1/2		9/16	
				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
$\begin{gathered} 4 \\ \left(l=11^{1 / 2}\right) \end{gathered}$	Group A	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 39.0 \\ & 39.0 \end{aligned}$	$\begin{aligned} & 58.5 \\ & 58.5 \end{aligned}$	$\begin{aligned} & 42.1 \\ & 42.1 \end{aligned}$	$\begin{aligned} & 63.3 \\ & 63.3 \end{aligned}$	$\begin{aligned} & 42.1 \\ & 42.1 \end{aligned}$	$\begin{aligned} & 63.3 \\ & 63.3 \end{aligned}$	$\begin{aligned} & 42.1 \\ & 42.1 \end{aligned}$	$\begin{aligned} & 63.3 \\ & 63.3 \end{aligned}$	- 42.1	63.3	-	-
		X	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 39.0 \\ & 39.0 \end{aligned}$	$\begin{aligned} & 58.5 \\ & 58.5 \end{aligned}$	$\begin{aligned} & 48.8 \\ & 48.8 \end{aligned}$	$\begin{aligned} & \hline 73.1 \\ & 73.1 \end{aligned}$	$\begin{aligned} & 53.0 \\ & 53.0 \end{aligned}$	$\begin{aligned} & \hline 79.5 \\ & 79.5 \end{aligned}$	$\begin{aligned} & 53.0 \\ & 53.0 \end{aligned}$	$\begin{aligned} & 79.5 \\ & 79.5 \end{aligned}$	${ }_{53.0}^{-}$	79.5	-	- 79.5
	Group B	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 39.0 \\ & 39.0 \end{aligned}$	$\begin{aligned} & 58.5 \\ & 58.5 \end{aligned}$	$\begin{aligned} & 48.8 \\ & 48.8 \end{aligned}$	$\begin{aligned} & 73.1 \\ & 73.1 \end{aligned}$	$\begin{aligned} & 53.0 \\ & 53.0 \end{aligned}$	$\begin{aligned} & \hline 79.5 \\ & 79.5 \end{aligned}$	$\begin{aligned} & 53.0 \\ & 53.0 \end{aligned}$	$\begin{aligned} & 79.5 \\ & 79.5 \end{aligned}$	53.0	79.5	53.0	- 79.5
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 39.0 \\ & 39.0 \end{aligned}$	$\begin{aligned} & 58.5 \\ & 58.5 \end{aligned}$	$\begin{aligned} & 48.8 \\ & 48.8 \end{aligned}$	$\begin{aligned} & \hline 73.1 \\ & 73.1 \end{aligned}$	$\begin{array}{\|l\|} \hline 58.5 \\ 58.5 \end{array}$	$\begin{aligned} & 87.8 \\ & 87.8 \end{aligned}$	$\begin{aligned} & 65.8 \\ & 65.8 \end{aligned}$	$\begin{aligned} & 98.3 \\ & 98.3 \end{aligned}$	65.8	$\begin{gathered} - \\ 98.3 \end{gathered}$	65.8	- 98.3
$\begin{gathered} 3 \\ \left(l=8^{1} / 2\right) \end{gathered}$	Group A	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 28.6 \\ & 28.6 \end{aligned}$	$\begin{aligned} & 43.0 \\ & 43.0 \end{aligned}$	$\begin{aligned} & 29.4 \\ & 29.4 \end{aligned}$	$\begin{aligned} & 44.2 \\ & 44.2 \end{aligned}$	$\begin{aligned} & 29.4 \\ & 29.4 \end{aligned}$	$\begin{aligned} & 44.2 \\ & 44.2 \end{aligned}$	$\begin{aligned} & 29.4 \\ & 29.4 \end{aligned}$	$\begin{aligned} & \hline 44.2 \\ & 44.2 \end{aligned}$	29.4	44.2	29.4	-
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 28.6 \\ & 28.6 \end{aligned}$	$\begin{aligned} & 43.0 \\ & 43.0 \end{aligned}$	$\begin{array}{\|l\|} \hline 35.8 \\ 35.8 \end{array}$	$\begin{array}{\|l\|} \hline 53.7 \\ 53.7 \end{array}$	$\begin{aligned} & 37.1 \\ & 37.1 \end{aligned}$	$\begin{aligned} & 55.6 \\ & 55.6 \end{aligned}$	$\begin{array}{\|l\|} \hline 37.1 \\ 37.1 \end{array}$	$\begin{array}{\|l\|} \hline 55.6 \\ 55.6 \end{array}$	37.1	55.6	-	- 55.6
	Group B	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} 28.6 \\ 28.6 \end{array}$	$\left\|\begin{array}{l} 43.0 \\ 43.0 \end{array}\right\|$	$\begin{array}{\|l\|} \hline 35.8 \\ 35.8 \end{array}$	$\begin{aligned} & 53.7 \\ & 53.7 \end{aligned}$	$\begin{array}{\|l\|} \hline 37.1 \\ 37.1 \end{array}$	$\begin{aligned} & 55.6 \\ & 55.6 \end{aligned}$	$\begin{aligned} & 37.1 \\ & 37.1 \end{aligned}$	$\begin{aligned} & 55.6 \\ & 55.6 \end{aligned}$	37.1	55.6	-	-
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} 28.6 \\ 28.6 \end{array}$	$\left\lvert\, \begin{aligned} & 43.0 \\ & 43.0 \end{aligned}\right.$	$\begin{array}{\|l\|} 35.8 \\ 35.8 \end{array}$	$\begin{array}{\|l\|} 53.7 \\ 53.7 \end{array}$	$\begin{aligned} & 43.0 \\ & 43.0 \end{aligned}$	$\begin{aligned} & 64.4 \\ & 64.4 \end{aligned}$	$\left\lvert\, \begin{aligned} & 45.9 \\ & 45.9 \end{aligned}\right.$	$\begin{array}{\|l\|} 68.7 \\ 68.7 \end{array}$	45.9	$\begin{gathered} - \\ 68.7 \end{gathered}$	45.9	-
$\begin{gathered} 2 \\ \left(l=5^{1 / 2}\right) \end{gathered}$	Group A	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 16.7 \\ 16.7 \end{array}$	$\begin{array}{l\|} 25.1 \\ 25.1 \end{array}$	$\begin{array}{\|l} \hline 16.7 \\ 16.7 \end{array}$	$\begin{aligned} & 25.1 \\ & 25.1 \end{aligned}$	$\begin{aligned} & \hline 16.7 \\ & 16.7 \end{aligned}$	$\begin{aligned} & 25.1 \\ & 25.1 \end{aligned}$	$\begin{array}{l\|} \hline 16.7 \\ 16.7 \end{array}$	$\begin{aligned} & 25.1 \\ & 25.1 \end{aligned}$	16.7	$\begin{gathered} - \\ 25.1 \end{gathered}$	16.7	$\left\lvert\, \begin{gathered} - \\ 25.1 \end{gathered}\right.$
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 18.3 \\ & 18.3 \end{aligned}$	$\begin{aligned} & 27.4 \\ & 27.4 \end{aligned}$	$\begin{array}{\|l\|} \hline 21.1 \\ 21.1 \end{array}$	$\begin{aligned} & 31.6 \\ & 31.6 \end{aligned}$	$\begin{aligned} & 21.1 \\ & 21.1 \end{aligned}$	$\begin{aligned} & 31.6 \\ & 31.6 \end{aligned}$	$\begin{aligned} & 21.1 \\ & 21.1 \end{aligned}$	$\begin{aligned} & 31.6 \\ & 31.6 \end{aligned}$	21.1	$\begin{gathered} - \\ 31.6 \end{gathered}$	21.1	- 31.6
	Group B	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|c\|} \hline 18.3 \\ 18.3 \end{array}$	$\begin{aligned} & 27.4 \\ & 27.4 \end{aligned}$	$\begin{aligned} & 21.1 \\ & 21.1 \end{aligned}$	$\begin{aligned} & 31.6 \\ & 31.6 \end{aligned}$	$\begin{aligned} & 21.1 \\ & 21.1 \end{aligned}$	$\begin{aligned} & 31.6 \\ & 31.6 \end{aligned}$	$\begin{aligned} & 21.1 \\ & 21.1 \end{aligned}$	$\begin{aligned} & 31.6 \\ & 31.6 \end{aligned}$	21.1	$\begin{gathered} - \\ 31.6 \end{gathered}$	21.1	-
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 18.3 \\ 18.3 \end{array}$	$\begin{aligned} & 27.4 \\ & 22.4 \end{aligned}$	$\begin{aligned} & 22.9 \\ & 22.9 \end{aligned}$	$\begin{aligned} & 34.3 \\ & 34.3 \end{aligned}$	$\begin{aligned} & 26.1 \\ & 26.1 \end{aligned}$	$\begin{array}{\|l\|} \hline 39.1 \\ 39.1 \end{array}$	$\begin{aligned} & 26.1 \\ & 26.1 \end{aligned}$	$\begin{aligned} & 39.1 \\ & 39.1 \end{aligned}$	26.1	$\begin{gathered} - \\ 39.1 \end{gathered}$	26.1	-
	Weld Siz	e, in.							/4		16				/8
STD $=$ Standard holes $\mathrm{N}=$ Threads included SSLT = Short-slotted holes transverse to direction of load $\mathrm{X}=$ Threads excluded - Indicates that the plate thickness is greater than the maximum given in Table 10-9.															

$F_{y}=50 \mathrm{ksi}$		Table 10-10b (continued) ingle-Plate Connections Bolt, Weld and Single-Plate Available Strengths, kips												Its			
n	Bolt Group	Thread Cond.	Hole Type	Plate Thickness, in.													
				1/4		5/16		3/8		7/16		1/2		9/16			
				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD		
$\begin{gathered} 12 \\ (l=36) \end{gathered}$	Group A	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 117 \\ & 117 \end{aligned}$	176 176 176	146 146	219	176 176	$\begin{aligned} & \hline 263 \\ & 263 \end{aligned}$	188	-	-	-	-	-		
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 117 \\ & 117 \end{aligned}$	176 176 176	146 146 146	219	176 176	$\begin{aligned} & 263 \\ & 263 \end{aligned}$	-	-	-	-	-	-		
	Group B	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 117 \\ & 117 \end{aligned}$	176 176	146 146	\|l	l		176 176	$\begin{aligned} & \hline 263 \\ & 263 \end{aligned}$	-	-	-	351	-	-
		X	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 117 \\ & 117 \end{aligned}$	$\begin{array}{\|l\|} \hline 176 \\ 176 \end{array}$	146 146	$\begin{aligned} & \hline 219 \\ & 219 \end{aligned}$	$\begin{aligned} & \hline 176 \\ & 176 \end{aligned}$	$\begin{aligned} & \hline 263 \\ & 263 \end{aligned}$	-	307	-	351	-	-		
$\begin{gathered} 11 \\ (l=33) \end{gathered}$	Group A	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 107 \\ & 107 \end{aligned}$	$\begin{aligned} & \hline 161 \\ & 161 \end{aligned}$	134 134 134	$\begin{aligned} & \hline 201 \\ & 201 \end{aligned}$	$\begin{aligned} & 161 \\ & 161 \end{aligned}$	$\begin{aligned} & 241 \\ & 241 \end{aligned}$	172	258	172	258	-	-		
		X	$\begin{gathered} \text { STD } \\ \text { SSLT } \end{gathered}$	$\begin{aligned} & 107 \\ & 107 \end{aligned}$	161 161	134 134 134	$\begin{aligned} & \hline 201 \\ & 201 \end{aligned}$	161 161	$\begin{aligned} & 241 \\ & 241 \end{aligned}$	188	-	-	322	-	-		
	Group B	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 107 \\ & 107 \end{aligned}$	$\begin{aligned} & \hline 161 \\ & 161 \end{aligned}$	134 134	$\begin{aligned} & 201 \\ & 201 \end{aligned}$	161 161	$\begin{array}{\|l\|} \hline 241 \\ 241 \\ \hline \end{array}$	188	-	-	- 322	-	-		
		X	$\begin{gathered} \hline \text { STD } \\ \text { SSLT } \end{gathered}$	$\begin{array}{\|l\|} \hline 107 \\ 107 \\ \hline \end{array}$	161 161	134 134 1	201 201	161 161	$\begin{aligned} & 241 \\ & 241 \end{aligned}$	- 188	-	-	-	-	-		
$\begin{gathered} 10 \\ (l=30) \end{gathered}$	Group A	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 97.5 \\ & 97.5 \end{aligned}$	146 146	122 122	183 183 183	146 146 146	219 219	- 156	-	-	-	-	-		
		X	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 97.5 \\ & 97.5 \end{aligned}$	146 146	122 122	183 183 183	146 146 146	$\begin{aligned} & \hline 219 \\ & 219 \end{aligned}$	-	-	-	293	-	-		
	Group B	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 97.5 \\ & 97.5 \end{aligned}$	146 146	122 122	$\begin{aligned} & \hline 183 \\ & 183 \end{aligned}$	146 146 146	$\begin{aligned} & 219 \\ & 219 \end{aligned}$	-	${ }_{2}^{-}$	- 195	-	-	-		
		X	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 97.5 \\ & 97.5 \end{aligned}$	$\begin{aligned} & \hline 146 \\ & 146 \end{aligned}$	122 122 110	$\begin{aligned} & \hline 183 \\ & 183 \end{aligned}$	146 146	$\begin{array}{\|l\|} \hline 219 \\ 219 \\ \hline \end{array}$	171	-	- 195	293	-	-		
$\begin{gathered} 9 \\ (l=27) \end{gathered}$	Group A	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 87.8 \\ & 87.8 \end{aligned}$	$\begin{aligned} & \hline 132 \\ & 132 \end{aligned}$	110 110	$\begin{aligned} & \hline 165 \\ & 165 \end{aligned}$	$\begin{aligned} & 132 \\ & 132 \end{aligned}$	$\begin{aligned} & \hline 197 \\ & 197 \end{aligned}$	140	- 210	-	-	-	-		
		X	$\begin{gathered} \text { STD } \\ \text { SSLT } \end{gathered}$	$\begin{aligned} & 87.8 \\ & 87.8 \end{aligned}$	$\begin{aligned} & \hline 132 \\ & 132 \end{aligned}$	110 110 10	165 165	132 132	$\begin{aligned} & \hline 197 \\ & 197 \end{aligned}$	- 154	-	- 176	-	-	-		
	Group B	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 87.8 \\ & 87.8 \end{aligned}$	$\begin{aligned} & 132 \\ & 122 \end{aligned}$	110 110	$\begin{aligned} & 165 \\ & 165 \end{aligned}$	132 132	$\begin{aligned} & \hline 197 \\ & 197 \end{aligned}$	154	-	- 176	-	-	-		
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 87.8 \\ & 87.8 \end{aligned}$	$\begin{aligned} & \hline 132 \\ & 132 \end{aligned}$	$\begin{aligned} & 110 \\ & 110 \end{aligned}$	$\begin{aligned} & 165 \\ & 165 \end{aligned}$	$\begin{aligned} & 132 \\ & 132 \end{aligned}$	$\begin{aligned} & 197 \\ & 197 \end{aligned}$	154	230	- 176	263	-	-		
Weld Size, in.				3/16		$1 / 4$		1/4		5/16		5/16		$3 / 8$			
STD $=$ Standard holes $\mathrm{N}=$ Threads included SSLT $=$ Short-slotted holes transverse to direction of load $\mathrm{X}=$ Threads excluded - Indicates that the plate thickness is greater than the maximum given in Table 10-9.																	

$F_{y}=50 \mathrm{ksi}$		Single-Plate Connections Bolt, Weld and Single-Plate Available Strengths, kips													
n	Bolt Group	Thread Cond.	Hole Type	Plate Thickness, in.											
				1/4		5/16		$3 / 8$		7/16		1/2		9/16	
				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
$\begin{gathered} 8 \\ (l=24) \end{gathered}$	$\underset{\mathbf{A}}{\text { Group }}$	N	$\begin{gathered} \hline \text { STD } \\ \text { SSLT } \end{gathered}$	$\begin{aligned} & 78.0 \\ & 78.0 \end{aligned}$		97.5	146	1115	173	124	186	124	186	-	-
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|c\|} \hline 78.0 \\ 78.0 \end{array}$	$\begin{aligned} & 117 \\ & 117 \end{aligned}$	97.5	146		$\begin{aligned} & 176 \\ & 176 \end{aligned}$	- 137	205	-	234	-	-
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 78.0 \\ 78.0 \end{array}$	$\begin{aligned} & 117 \\ & 117 \end{aligned}$	97.5 97.5	146	117	176	137	205	156	234	-	-
		X	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 78.0 \\ 78.0 \end{array}$	$\begin{aligned} & 117 \\ & 117 \end{aligned}$	97.5 97.5	146	117	176	137	205	-	234	-	-
$\begin{gathered} 7 \\ (l=21) \end{gathered}$	$\begin{gathered} \text { Group } \\ \text { A } \end{gathered}$	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 68.3 \\ & 68.3 \end{aligned}$	$\begin{aligned} & 102 \\ & 102 \end{aligned}$	85.3 85.3	128	98.2 102	147 154	107	161	107	161	-	-
		X	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 68.3 \\ 68.3 \end{array}$		85.3 85.3	128	102 102 	154 154	119	179	135	203	-	-
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\left.\begin{array}{\|c} 68.3 \\ 68.3 \end{array} \right\rvert\,$	102	85.3 85.3	128	102 102	154	119	179	135	203	-	-
		X	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 68.3 \\ 68.3 \end{array}$	$\begin{aligned} & 102 \\ & 102 \end{aligned}$	85.3 85.3	128	102 102		-	179	137	205	-	-
$\begin{gathered} 6 \\ (l=18) \end{gathered}$	$\underset{\text { A }}{\text { Group }}$	N	$\begin{gathered} \hline \text { STD } \\ \text { SSLT } \end{gathered}$	$\begin{array}{\|c} 58.5 \\ 58.5 \end{array}$	$\begin{array}{\|l\|l\|} \hline 87.8 \\ 87.8 \\ \hline \end{array}$	73.1 73.1	110	80.7 87.8	$\begin{aligned} & 121 \\ & 132 \end{aligned}$	-	${ }_{136}$	90.9	136	-	-
		X	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|c} 58.5 \\ 58.5 \end{array}$	$\begin{array}{\|l\|} \hline 87.8 \\ 87.8 \end{array}$	73.1 73.1	110	87.8 87.8	132 132	-	-	114	172	-	-
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|c} 58.5 \\ 58.5 \end{array}$	$\begin{array}{\|l\|} \hline 87.8 \\ 87.8 \end{array}$	73.1 73.1	110	87.8 87.8 87	132 132	- 102	-	114	172	-	-
		X	$\begin{gathered} \hline \text { STD } \\ \text { SSLT } \end{gathered}$	$\begin{aligned} & 58.5 \\ & 58.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 87.8 \\ 87.8 \\ \hline \end{array}$	73.1 73.1	110	87.8 87.8	132 132	102	154	117	176	-	-
$\begin{gathered} 5 \\ (l=15) \end{gathered}$	$\underset{\text { A }}{\text { Group }}$	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 48.8 \\ 48.8 \end{array}$	$\begin{array}{\|l} 73.1 \\ 73.1 \\ \hline \end{array}$	$\begin{aligned} & 60.9 \\ & 60.9 \end{aligned}$	$\begin{aligned} & 91.4 \\ & 91.4 \end{aligned}$	$\begin{aligned} & 73.1 \\ & 73.1 \end{aligned}$	$\begin{aligned} & 110 \\ & 110 \end{aligned}$	74.2 74.2	$\begin{aligned} & 111 \\ & 111 \end{aligned}$	$\begin{aligned} & 74.2 \\ & 74.2 \end{aligned}$	111 111	74.2	-
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 48.8 \\ 48.8 \end{array}$	$\begin{aligned} & 73.1 \\ & 73.1 \end{aligned}$	$\begin{aligned} & 60.9 \\ & 60.9 \\ & \hline \end{aligned}$	91.4 91.4	$\begin{aligned} & 73.1 \\ & 73.1 \end{aligned}$	$\begin{aligned} & 110 \\ & 110 \end{aligned}$	85.3 85.3	$\begin{aligned} & 128 \\ & 128 \end{aligned}$	93.4 93.4	141 141	93.4	-
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\left.\begin{array}{\|c} 48.8 \\ 48.8 \end{array} \right\rvert\,$	$\begin{aligned} & 73.1 \\ & 73.1 \end{aligned}$	$\begin{aligned} & 60.9 \\ & 60.9 \end{aligned}$	91.4 91.4	$\begin{aligned} & 73.1 \\ & 73.1 \end{aligned}$	$\begin{aligned} & 110 \\ & 110 \end{aligned}$	$\begin{aligned} & 85.3 \\ & 85.3 \end{aligned}$	$\begin{array}{\|l\|l} 128 \\ 128 \end{array}$	$\begin{array}{\|l\|l} 93.4 \\ 93.4 \end{array}$	141 141	93.4	-
		X	$\begin{gathered} \text { STD } \\ \text { SSLT } \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 48.8 \\ 48.8 \end{array}$	$\begin{aligned} & 73.1 \\ & 73.1 \end{aligned}$	$\begin{aligned} & 60.9 \\ & 60.9 \end{aligned}$	$\begin{aligned} & 91.4 \\ & 91.4 \end{aligned}$	$\begin{array}{\|l\|} \hline 73.1 \\ 73.1 \end{array}$	$\begin{aligned} & 110 \\ & 110 \end{aligned}$	$\begin{array}{\|l\|} 85.3 \\ 85.3 \\ \hline \end{array}$	$\begin{array}{\|l} 128 \\ 128 \\ \hline \end{array}$	$\begin{aligned} & 97.5 \\ & 97.5 \end{aligned}$	146 146	110	-
Weld Size, in.					16		$1 / 4$		$1 / 4$		16		16		/8
$\begin{aligned} & \hline \text { STD = Standard holes } \\ & \text { SSLT = Short-slotted holes transverse to direction of load } \\ & \text { - Indicates that the plate thickness is greater than the maximum given in Table 10-9. } \end{aligned}$												$\begin{aligned} & \mathrm{N}=\text { Threads included } \\ & \mathrm{X}=\text { Threads excluded } \end{aligned}$			

$F_{y}=50 \mathrm{ksi}$ Single-Plate Connections Plate Bolt, Weld and Single-Plate															
n	Bolt Group	Thread Cond.	Hole Type	Plate Thickness, in.											
				1/4		5/16		3/8		7/16		1/2		9/16	
				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
$\begin{gathered} 12 \\ \left(l=36^{1 / 2}\right) \end{gathered}$	Group A	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & \hline 108 \\ & 108 \end{aligned}$	$\begin{aligned} & \hline 163 \\ & 163 \end{aligned}$	136	203	163 163	244	$\begin{aligned} & \hline 190 \\ & 190 \end{aligned}$	$\begin{aligned} & 285 \\ & 285 \end{aligned}$	- 217	325	- 244	-
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 108 \\ 108 \\ \hline \end{array}$	163 163	136 136	203 203	163 163	244 244	$\begin{array}{\|l} 190 \\ 190 \\ \hline \end{array}$	285 285	-	- 325	-	- 366
	Group B	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & \hline 108 \\ & 108 \end{aligned}$	163 163	136 136	203	163 163	244 244	190 190	285	-	325	-	- 366
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & \hline 108 \\ & 108 \end{aligned}$	$\begin{array}{\|l\|} \hline 163 \\ 163 \end{array}$	136 136	\|203	$\begin{aligned} & \hline 163 \\ & 163 \end{aligned}$	244 244	$\begin{aligned} & \hline 190 \\ & 190 \end{aligned}$	$\begin{aligned} & 285 \\ & 285 \end{aligned}$	217	325	244	-
$\begin{gathered} 11 \\ \left(l=33^{1 / 2}\right) \end{gathered}$	Group A	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 99.6 \\ & 99.6 \end{aligned}$	$\begin{aligned} & \hline 149 \\ & 149 \end{aligned}$	125 125	$\begin{aligned} & \hline 187 \\ & 187 \end{aligned}$	$\begin{aligned} & \hline 149 \\ & 149 \end{aligned}$	224 224	$\begin{array}{\|l\|} \hline 174 \\ 174 \\ \hline \end{array}$	$\begin{aligned} & 262 \\ & 262 \end{aligned}$	199	299	224	- 336
		X	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 99.6 \\ & 99.6 \end{aligned}$	$\begin{aligned} & \hline 149 \\ & 149 \end{aligned}$	125 125	187 187 187	149 149	224 224	$\begin{array}{\|l\|} \hline 174 \\ 174 \\ \hline \end{array}$	$\begin{aligned} & 262 \\ & 262 \end{aligned}$	199	299	224	- 336
	Group B	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 99.6 \\ & 99.6 \end{aligned}$	$\begin{aligned} & \hline 149 \\ & 149 \end{aligned}$	125 125	$\begin{aligned} & 187 \\ & 187 \end{aligned}$	149 149	224 224	$\begin{aligned} & 174 \\ & 174 \end{aligned}$	$\begin{array}{\|l\|} \hline 262 \\ 262 \\ \hline \end{array}$	- 199	299	-	- 336
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 99.6 \\ & 99.6 \end{aligned}$	$\begin{aligned} & \hline 149 \\ & 149 \end{aligned}$	125 125	$\begin{aligned} & \hline 187 \\ & 187 \end{aligned}$	149 149	224 224	$\begin{aligned} & \hline 174 \\ & 174 \end{aligned}$	$\begin{aligned} & 262 \\ & 262 \end{aligned}$	- 199	-	-	- 336
$\begin{gathered} 10 \\ \left(l=30^{1 / 2}\right) \end{gathered}$	Group A	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 90.8 \\ & 90.8 \end{aligned}$	136 136	113 113	170 170	136 136	204	159 159	238 238	-	-	-	- 306
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 90.8 \\ 90.8 \\ \hline \end{array}$	136 136	113 113 113	170 170 170	136 136	204 204	159 159	238 238	- 182	272	- 204	-
	Group B	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 90.8 \\ & 90.8 \end{aligned}$	$\begin{aligned} & 136 \\ & 136 \end{aligned}$	113 113	$\begin{aligned} & 170 \\ & 170 \end{aligned}$	$\begin{aligned} & 136 \\ & 136 \end{aligned}$	204 204	$\begin{aligned} & 159 \\ & 159 \end{aligned}$	$\begin{aligned} & 238 \\ & 238 \end{aligned}$	182	272	-	-
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 90.8 \\ 90.8 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 136 \\ 136 \\ \hline \end{array}$	$\begin{array}{\|l\|} 113 \\ 113 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 170 \\ 170 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 136 \\ 136 \\ \hline \end{array}$	204 204	$\begin{aligned} & 159 \\ & 159 \end{aligned}$	$\begin{array}{\|l\|} \hline 238 \\ 238 \end{array}$	182	272	-	- 306
$\begin{gathered} 9 \\ \left(l=27^{1 / 2}\right) \end{gathered}$	Group A	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 82.0 \\ & 82.0 \end{aligned}$	$\begin{aligned} & \hline 123 \\ & 123 \end{aligned}$	$\begin{aligned} & 102 \\ & 102 \end{aligned}$	$\begin{array}{\|l\|} \hline 154 \\ 154 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 123 \\ 123 \end{array}$	184 184	$\begin{aligned} & 143 \\ & 143 \end{aligned}$	$\begin{aligned} & 215 \\ & 215 \end{aligned}$	-	-	-	- 275
		X	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 82.0 \\ & 82.0 \end{aligned}$	$\begin{array}{\|l\|} \hline 123 \\ 123 \end{array}$	$\begin{aligned} & \hline 102 \\ & 102 \end{aligned}$	$\begin{aligned} & \hline 154 \\ & 154 \end{aligned}$	123 123	184 184	$\begin{aligned} & 143 \\ & 143 \end{aligned}$	215 215	${ }_{164}^{-}$	-	-	- 277
	Group B	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 82.0 \\ & 82.0 \end{aligned}$	$\begin{aligned} & \hline 123 \\ & 123 \end{aligned}$	102	\|154	123 123	184 184	$\begin{aligned} & 143 \\ & 143 \end{aligned}$	215	- 164	-	- 184	-
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 82.0 \\ 82.0 \end{array}$	$\begin{aligned} & \hline 123 \\ & 123 \end{aligned}$	$\begin{aligned} & 102 \\ & 102 \end{aligned}$	$\begin{aligned} & \hline 154 \\ & 154 \end{aligned}$	$\begin{aligned} & 123 \\ & 123 \end{aligned}$	$\begin{aligned} & \hline 184 \\ & 184 \\ & \hline \end{aligned}$	$\begin{aligned} & 143 \\ & 143 \end{aligned}$	$\begin{aligned} & 215 \\ & 215 \end{aligned}$	-	246	-	- 277
Weld Size, in.															
STD = Standard holes SSLT = Short-slotted holes transverse to direction of load - Indicates that the plate thickness is greater than the maximum given in Table 10-9.												$\mathrm{N}=$ Threads included $X=$ Threads excluded			

$F_{y}=50 \mathrm{ksi}$ Plate		Table 10-10b (continued) gle-Plate Connections Bolt, Weld and Single-Plate Available Strengths, kips													
n	Bolt Group	Thread Cond.	$\begin{aligned} & \text { Hole } \\ & \text { Type } \end{aligned}$	Plate Thickness, in.											
				$1 / 4$		5/16		$3 / 8$		7/16		/2		9/16	
				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRF
$\begin{gathered} 8 \\ \left(l=24^{1 / 2}\right) \end{gathered}$	$\underset{\mathbf{A}}{\text { Group }}$	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 73.1 \\ & 73.1 \end{aligned}$	110	91.4	137	110 110	165	128 128		146	219	162	243
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} 73.1 \\ 73.1 \end{array}$	110	91.4 91.4	137	110 110	165	128 128		146	219	165	247
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	N	$\begin{gathered} \hline \text { STD } \\ \text { SSLT } \end{gathered}$	$\begin{aligned} & 73.1 \\ & 73.1 \end{aligned}$	110 110	91.4 91.4	137	$\begin{aligned} & 110 \\ & 110 \end{aligned}$	165	$\begin{aligned} & 128 \\ & 128 \end{aligned}$		146	219	165	247
		X	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 73.1 \\ & 73.1 \end{aligned}$	$\begin{aligned} & 110 \\ & 110 \end{aligned}$	$\begin{array}{\|l\|} \hline 91.4 \\ 91.4 \\ \hline \end{array}$	$\begin{aligned} & 137 \\ & 137 \end{aligned}$	$\begin{aligned} & 110 \\ & 110 \end{aligned}$	$\begin{aligned} & 165 \\ & 165 \end{aligned}$	$\begin{aligned} & 128 \\ & 128 \end{aligned}$			219	165	${ }_{24}^{-}$
$\begin{gathered} 7 \\ \left(l=21^{1} / 2\right) \end{gathered}$	GroupA	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 64.3 \\ & 64.3 \end{aligned}$	$\begin{array}{\|l\|} \hline 96.4 \\ 96.4 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 80.4 \\ 80.4 \\ \hline \end{array}$	$\begin{aligned} & 121 \\ & 121 \end{aligned}$	$\begin{array}{\|l\|} \hline 96.4 \\ 96.4 \end{array}$	$\begin{aligned} & 145 \\ & 145 \end{aligned}$			- 129	193	140	${ }_{-}^{-}$
		X	$\begin{gathered} \hline \text { STD } \\ \text { SSLT } \\ \hline \end{gathered}$	$\begin{aligned} & 64.3 \\ & 64.3 \end{aligned}$	96.4 96.4	$\begin{array}{\|l\|} \hline 80.4 \\ 80.4 \\ \hline \end{array}$	$\begin{aligned} & 121 \\ & 121 \end{aligned}$	$\begin{array}{\|l\|} \hline 96.4 \\ 96.4 \end{array}$	$\begin{aligned} & 145 \\ & 145 \end{aligned}$				193	145	217
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 64.3 \\ & 64.3 \end{aligned}$	96.4	80.4 80.4	$\begin{aligned} & 121 \\ & 121 \end{aligned}$	$\begin{array}{\|l\|} \hline 96.4 \\ 96.4 \end{array}$	145	113 113			193	145	217
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} 64.3 \\ 64.3 \end{array}$	96.4	80.4 80.4	$\begin{aligned} & 121 \\ & 121 \end{aligned}$		145				193	145	217
$\begin{gathered} 6 \\ \left(l=18^{1 / 2}\right) \end{gathered}$	$\underset{\text { A }}{\text { Group }}$	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 55.5 \\ 55.5 \end{array}$	83.2	69.3 69.3	104	83.2 83.2	125 125	97.0 97.0	146 146	111	166	119	178
		X	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 55.5 \\ & 55.5 \end{aligned}$	83.2 83.2	69.3 69.3	104	83.2 83.2	125	97.0 97.0	146 146		166	125	187
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 55.5 \\ & 55.5 \end{aligned}$	83.2 83.2	69.3 69.3	104	83.2 83.2	125	97.0 97.0	146 146	- 111	166	125	-
		X	$\begin{gathered} \hline \text { STD } \\ \text { SSLT } \end{gathered}$	$\begin{aligned} & 55.5 \\ & 55.5 \end{aligned}$	83.2 83.2	69.3 69.3	$\begin{aligned} & 104 \\ & 104 \end{aligned}$	83.2 83.2	125	97.0 97.0	146 146	- 111	-	125	-
$\begin{gathered} 5 \\ \left(l=15^{1 / 2}\right) \end{gathered}$	$\begin{gathered} \text { Group } \\ \mathbf{A} \\ \hline \end{gathered}$	N	$\begin{aligned} & \text { STD/ } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 46.6 \\ & 46.6 \end{aligned}$	69.9	58.3	87.4 87.4	69.9 69.9	105	81.6 81.6	122 122	93.2 93.2	140 140	97.1 105	146 157
	Group	N		46.6	69.9	58.3	87.4	69.9	105	81.6	122	93.2	140	105	57
	B	X		46.6	69.9	58.3	87.4	69.9	105	81.6	122	93.2	140	105	157
$\begin{gathered} 4 \\ \left(l=12^{1 / 2}\right) \end{gathered}$	$\begin{gathered} \text { Group } \\ \text { A } \\ \hline \end{gathered}$	N	SSLT	37.8	56.7	47.2	70.8	56.7	85.0	66.1	99.2	74.9	112	74.9	112
		X		37.8	56.7	47.2	70.8	56.7	85.0	66.1	99.2	75.6	113	85.0	128
	$\begin{gathered} \text { Group } \\ \text { B } \\ \hline \end{gathered}$	N		37.8	56.7	47.2	70.8	56.7	85.0	66.1	99.2	75.6	113	85.0	128
		X		37.8	56.7	47.2	70.8	56.7	85.0	66.1	99.2	75.6	113	85.0	128
Weld Size, in.					16		$1 / 4$		$1 / 4$						
STD $=$ Standard holes $\mathrm{N}=$ Threads included SSLT = Short-Slotted holes transverse to direction of load $\mathrm{X}=$ Threads excluded STD/SSLT $=$ Standard holes or short-slotted holes transverse to direction of load - Indicates that the plate thickness is greater than the maximum given in Table 10-9. Tabulated values are grouped when available strength is independent of hole type.															

$\begin{array}{cc} F_{y}=50 \mathrm{ksi} & \text { Single } \\ \text { Plate } & \text { Bolt } \end{array}$																
n	Bolt Group	Thread Cond.	Hole Type	Plate Thickness, in.												
				5/16		3/8		7/16		1/2		9/16		5/8		
				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	
$\begin{gathered} 12 \\ (l=37) \end{gathered}$	Group A	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & \hline 129 \\ & 129 \end{aligned}$	194	155 155	233 233	181 181	$\begin{aligned} & 272 \\ & 272 \end{aligned}$	$\begin{aligned} & 207 \\ & 207 \end{aligned}$	$\begin{aligned} & 311 \\ & 311 \end{aligned}$	${ }^{-}$	-	${ }^{-}$	388	
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & \hline 129 \\ & 129 \end{aligned}$	194 194	155 155	233 233	181 181	$\begin{aligned} & 272 \\ & 272 \end{aligned}$	207 207	311 311	-	-	-	388	
	Group B	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 129 \\ & 129 \end{aligned}$	$\begin{aligned} & \hline 194 \\ & 194 \end{aligned}$	155 155	233 233	181 181	$\begin{aligned} & 272 \\ & 272 \end{aligned}$	$\begin{aligned} & 207 \\ & 207 \end{aligned}$	$\begin{aligned} & 311 \\ & 311 \end{aligned}$	233	350	259	388	
		X	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 129 \\ & 129 \end{aligned}$	$\begin{aligned} & \hline 194 \\ & 194 \end{aligned}$	$\begin{aligned} & 155 \\ & 155 \end{aligned}$	$\begin{aligned} & 233 \\ & 233 \end{aligned}$	181 181	$\begin{aligned} & \hline 272 \\ & 272 \end{aligned}$	$\begin{aligned} & \hline 207 \\ & 207 \end{aligned}$	$\begin{aligned} & 311 \\ & 311 \end{aligned}$	233	350	259	388	
$\begin{gathered} 11 \\ (l=34) \end{gathered}$	Group A	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 119 \\ & 119 \end{aligned}$	$\begin{aligned} & 179 \\ & 179 \end{aligned}$	143 143	215 215	167 167	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & \hline 191 \\ & 191 \end{aligned}$	$\begin{aligned} & \hline 286 \\ & 286 \end{aligned}$	215	322	238	358	
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l} \hline 119 \\ 119 \\ \hline \end{array}$	179 179	143 143	215 215	167 167	250	191 191	$\begin{aligned} & \hline 286 \\ & 286 \end{aligned}$	-	-	-	-	
	Group B	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 119 \\ 119 \end{array}$	179 179 179	143 143 143	215 215	167 167 167	\| 250	191 191 191	(286 286	-	-	-	- 358	
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & \hline 119 \\ & 119 \end{aligned}$	179 179	143 143	215 215	167 167	250	191 191 174	$\begin{array}{\|l\|} \hline 286 \\ 286 \\ \hline \end{array}$	215	-	238	358	
$\begin{gathered} 10 \\ (l=31) \end{gathered}$	Group A	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & \hline 109 \\ & 109 \end{aligned}$	\|l	163	131 131	196 196	152 152	229	174 174	261 261	-	-	-	- 327
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & \hline 109 \\ & 109 \end{aligned}$	$\begin{aligned} & \hline 163 \\ & 163 \end{aligned}$	131 131 1	196 196	152 152	$\begin{aligned} & 229 \\ & 229 \end{aligned}$	$\begin{array}{\|l\|} \hline 174 \\ 174 \\ \hline \end{array}$	$\begin{aligned} & 261 \\ & 261 \end{aligned}$	196	294	218	327	
	Group B	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & \hline 109 \\ & 109 \end{aligned}$	$\begin{aligned} & \hline 163 \\ & 163 \end{aligned}$	$\begin{array}{\|l\|} \hline 131 \\ 131 \end{array}$	$\begin{aligned} & \hline 196 \\ & 196 \end{aligned}$	152 152	$\begin{aligned} & 229 \\ & 229 \end{aligned}$	$\begin{aligned} & \hline 174 \\ & 174 \end{aligned}$	$\begin{aligned} & 261 \\ & 261 \end{aligned}$	196	294	218	327	
		X	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & \hline 109 \\ & 109 \end{aligned}$	$\begin{aligned} & \hline 163 \\ & 163 \end{aligned}$	$\begin{aligned} & 131 \\ & 131 \end{aligned}$	$\begin{aligned} & \hline 196 \\ & 196 \end{aligned}$	152 152 188	$\begin{aligned} & 229 \\ & 229 \end{aligned}$	$\begin{array}{\|l\|} \hline 174 \\ 174 \\ \hline \end{array}$	$\begin{aligned} & 261 \\ & 261 \end{aligned}$	196	294	218	327	
$\begin{gathered} 9 \\ (l=28) \end{gathered}$	Group A	N	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 98.6 \\ & 98.6 \end{aligned}$	$\begin{aligned} & \hline 148 \\ & 148 \end{aligned}$	118 118	178 178	138 138	$\begin{aligned} & \hline 207 \\ & 207 \end{aligned}$	$\begin{aligned} & 158 \\ & 158 \end{aligned}$	$\begin{aligned} & 237 \\ & 237 \end{aligned}$	178	${ }^{-}$	${ }_{-}^{-}$	- 296	
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 98.6 \\ & 98.6 \end{aligned}$	$\begin{aligned} & \hline 148 \\ & 148 \end{aligned}$	118 118	178 178 178	138 138 188	$\begin{aligned} & 207 \\ & 207 \end{aligned}$	158 158	$\begin{aligned} & 237 \\ & 237 \end{aligned}$	- 178	-	${ }_{197}^{-}$	- 296	
	Group B	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 98.6 \\ & 98.6 \end{aligned}$	$\begin{aligned} & \hline 148 \\ & 148 \end{aligned}$	118 118	$\begin{aligned} & \hline 178 \\ & 178 \end{aligned}$	138 138	$\begin{aligned} & \hline 207 \\ & 207 \end{aligned}$	$\begin{aligned} & 158 \\ & 158 \end{aligned}$	$\begin{aligned} & 237 \\ & 237 \end{aligned}$	178	${ }^{-}$	197	296	
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 98.6 \\ & 98.6 \end{aligned}$	$\begin{aligned} & \hline 148 \\ & 148 \end{aligned}$	$\begin{array}{\|l\|} \hline 118 \\ 118 \end{array}$	$\begin{array}{\|l\|} \hline 178 \\ 178 \end{array}$	$\begin{aligned} & 138 \\ & 138 \end{aligned}$	$\begin{aligned} & 207 \\ & 207 \end{aligned}$	$\begin{aligned} & 158 \\ & 158 \end{aligned}$	$\begin{array}{\|l\|} \hline 237 \\ 237 \end{array}$	178	$\begin{gathered} - \\ 266 \end{gathered}$	197	296	
Weld Size, in.															16	
STD = Standard holes N = Threads included SSLT = Short-slotted holes transverse to direction of load $\mathrm{X}=$ Threads excluded - Indicates that the plate thickness is greater than the maximum given in Table 10-9. Tabulated values are grouped when available strength is independent of hole type.																

$F_{y}=50 \mathrm{ksi}$		Single-Plate Connections Bolt, Weld and Single-Plate Available Strengths, kips													
n	Bolt Group	Thread Cond.	Hole Type	Plate Thickness, in.											
				5/16		3/8		7/16		1/2		9/16		5/8	
				ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	RFD	ASD	
$\begin{gathered} 8 \\ (l=25) \end{gathered}$	$\underset{\mathbf{A}}{\text { Group }}$	N	$\begin{gathered} \hline \text { STD } \\ \text { SSLT } \end{gathered}$	$\begin{aligned} & 88.4 \\ & 88.4 \end{aligned}$	133	106	159	124	186		212	159	239	- 177	265
		X	$\begin{gathered} \hline \text { STD } \\ \text { SSLT } \end{gathered}$	$\begin{array}{l\|} \hline 88.4 \\ 88.4 \end{array}$	133	$\begin{aligned} & 106 \\ & 106 \end{aligned}$	159	124	$\begin{aligned} & 186 \\ & 186 \end{aligned}$		212	159	239	-	265
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	N	$\begin{gathered} \hline \text { STD } \\ \text { SSLT } \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 88.4 \\ 88.4 \end{array}$	133	$\begin{aligned} & 106 \\ & 106 \end{aligned}$	159	124	$\begin{aligned} & 186 \\ & 186 \end{aligned}$		212	159	239	177	265
		X	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 88.4 \\ 88.4 \end{array}$	$\begin{aligned} & 133 \\ & 133 \end{aligned}$	$\begin{aligned} & 106 \\ & 106 \end{aligned}$	$\begin{aligned} & 159 \\ & 159 \end{aligned}$		$\begin{aligned} & 186 \\ & 186 \end{aligned}$	$\begin{aligned} & 141 \\ & 141 \end{aligned}$		159	239	-	265
$\begin{gathered} 7 \\ (l=22) \end{gathered}$	$\underset{A}{\text { Group }}$	N	$\begin{gathered} \hline \text { STD } \\ \text { SSLT } \end{gathered}$	$\begin{aligned} & 78.1 \\ & 78.1 \end{aligned}$	$\begin{aligned} & 117 \\ & 117 \end{aligned}$	$\begin{array}{\|l\|} \hline 93.7 \\ 93.7 \end{array}$	$\begin{aligned} & 141 \\ & 141 \end{aligned}$	109	$\begin{aligned} & 164 \\ & 164 \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \end{aligned}$	$\begin{aligned} & 187 \\ & 187 \end{aligned}$	141	-	-	234
		X	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 78.1 \\ & 78.1 \end{aligned}$	$\begin{aligned} & 117 \\ & 117 \end{aligned}$	$\begin{array}{\|l\|} \hline 93.7 \\ 93.7 \end{array}$	$\begin{aligned} & 141 \\ & 141 \end{aligned}$	109	$\begin{aligned} & 164 \\ & 164 \end{aligned}$	125 125	187 187	$\left\lvert\, \begin{gathered} - \\ 141 \end{gathered}\right.$	- 211	-	234
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 78.1 \\ & 78.1 \end{aligned}$	117	93.7 93.7	141	109	164	125 125	187 187	-	-	156	234
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} 78.1 \\ 78.1 \end{array}$		$\begin{aligned} & 93.7 \\ & 93.7 \end{aligned}$	141 141	109 109	164	125 125	187 187	141	211	156	234
$\begin{gathered} 6 \\ (l=19) \end{gathered}$	$\underset{A}{\text { Group }}$	N	$\begin{gathered} \hline \text { STD } \\ \text { SSLT } \end{gathered}$	$\begin{array}{\|l\|} \hline 67.8 \\ 67.8 \end{array}$		81.4 81.4	122	94.9 94.9	142	108 108	163	122	183	136	203
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{array}{\|l\|} \hline 67.8 \\ 67.8 \end{array}$		$\begin{array}{\|l\|} \hline 81.4 \\ 81.4 \end{array}$		94.9 94.9		108 108	163	122	-	-	203
	$\begin{gathered} \text { Group } \\ \text { B } \end{gathered}$	N	$\begin{aligned} & \hline \text { STD } \\ & \text { SSLT } \\ & \hline \end{aligned}$	$\begin{aligned} & 67.8 \\ & 67.8 \end{aligned}$				94.9 94.9		108 108	163	-	- 183	-	203
		X	$\begin{aligned} & \text { STD } \\ & \text { SSLT } \end{aligned}$	$\begin{aligned} & 67.8 \\ & 67.8 \end{aligned}$	$\begin{aligned} & 102 \\ & 102 \end{aligned}$	$\begin{array}{\|l\|} \hline 81.4 \\ 81.4 \end{array}$	$\begin{aligned} & 122 \\ & 122 \end{aligned}$		$\begin{aligned} & 142 \\ & 142 \end{aligned}$	108	163 163	-	- 183	136	203
$\begin{gathered} 5 \\ (l=16) \end{gathered}$	Group	N	$\begin{aligned} & \text { STD/ } \\ & \text { SSLT } \end{aligned}$	57.5	86.3	69.0	104	80.5	121	92.0	138	104	155	115	173
	A	X		57.5	86.3	69.0	104	80.5	121	92.0	138	104	155	115	173
	Gro	N		57.5	86.3	69.0	104	80.5	121	92.0	138	104	155	115	73
	B	X		57.5	86.3	69.0	104	80.5	121	92.0	138	104	155	115	73
$\begin{gathered} 4 \\ (l=13) \end{gathered}$	Grow	N	$\begin{aligned} & \text { STD/ } \\ & \text { SSLT } \end{aligned}$	47.2	70.8	56.7	85.0	66.1	99.2	75.6	113	85.0	128	94.5	142
	A	X		47.2	70.8	56.7	85.0	66.1	99.2	75.6	113	85.0	128	94.5	142
	Grow	N		47.2	70.8	56.7	85.0	66.1	99.2	75.6	113	85.0	128	94.5	142
	B	X		47.2	70.8	56.7	85.0	66.1	99.2	75.6	113	85.0	128	94.5	142
Weld Size, in.					14		1/4		16						
STD $=$ Standard holes SSLT = Short-slotted holes transverse to direction of load STD/SSLT = Standard holes or short-slotted holes transverse to direction of load - Indicates that the plate thickness is greater than the maximum given in Table 10-9. Tabulated values are grouped when available strength is independent of hole type.															

SINGLE-ANGLE CONNECTIONS

A single-angle connection is made with an angle on one side of the web of the beam to be supported, as illustrated in Figure 10-13. This angle is preferably shop-bolted or welded to the supporting member and field-bolted to the supported beam.

When the angle is welded to the support, adequate flexibility must be provided in the connection. As illustrated in Figure 10-13(c), the weld is placed along the toe and across the bottom of the angle with a return at the top limited by AISC Specification Section J2.2b. Note that welding across the entire top of the angle must be avoided as it would inhibit the flexibility and, therefore, the necessary end rotation of the connection. The performance of the resulting connection would not be as intended for simple shear connections.

Design Checks

The available strength of a single-angle connection is determined from the applicable limit states for bolts (see Part 7), welds (see Part 8), and connecting elements (see Part 9). In all cases, the available strength, ϕR_{n} or R_{n} / Ω, must equal or exceed the required strength, R_{u} or R_{a}.

As illustrated in Figure 10-14, the effect of eccentricity must be considered in the angle leg attached to the supporting member. Additionally, eccentricity must be considered if the eccentricity exceeds 3 in . (to the face of the supporting member) or if a double vertical row of bolts through the web of the supported member is used. Eccentricity must be considered in the design of welds for single-angle connections. Holes in the angle leg to the supporting member must be standard holes to facilitate erection and provide torsional resistance due to the nonconcentric loading in the connection. Holes in the angle leg to the supported member can be standard holes or horizontal short slots.

Recommended Angle Thickness

A minimum angle thickness of $3 / 8$-in. for ${ }^{3 / 4}$-in.- and $7 / 8$-in.-diameter bolts, and $1 / 2$-in. for 1 -in.-diameter bolts should be used. A 4×3 angle is normally selected for a single angle welded to the support with the $3-\mathrm{in}$. leg being the welded leg.

Shop and Field Practices

Single-angle connections may be easily erected to the webs of supporting girders and to the flanges of supporting columns. When framing to a column flange, provision must be made for possible mill variation in the depth of the column. Because the angle is usually shopattached to the column flange, horizontal short slots in the supported angle leg may be used to provide the necessary adjustment for any mill variations. Attaching the angle to the column flange offers the advantage of side erection of the beam. The same is true for a girder web or truss support. Additionally, proper bay dimensions may be maintained without the need for shims. This advantage is lost when the angle is shop-attached (bolted or welded) to the supported beam web.

(a) All-bolted

(b) Bolted/welded, angle welded to supported beam

(c) Bolted/welded, angle welded to support

Fig. 10-13. Single-angle connections.

DESIGN TABLE DISCUSSION (TABLES 10-11 AND 10-12)

Table 10-11. All-Bolted Single-Angle Connections

Table $10-11$ is a design aid for all-bolted single-angle connections. The tabulated eccentrically loaded bolt group coefficients, C, are used to determine the available strength of the bolt group, ϕR_{n} or R_{n} / Ω, where

$$
\begin{gather*}
R_{n}=C r_{n} \tag{10-6}\\
\phi=0.75 \quad \Omega=2.00
\end{gather*}
$$

where
$C=$ coefficient from Table 10-11
$r_{n}=$ nominal strength of one bolt in shear or bearing, kips
Case I single-angle connection coefficients are for a single vertical row of bolts assuming $2 \frac{1}{2}$ in. eccentricity. Case II single-angle connection coefficients are for a double vertical row of bolts assuming $4 \frac{1}{4}$ in. eccentricity. The eccentricities shown in the table include the supported beam half-web thickness, $t_{w} / 2$. If a greater eccentricity is required, the coefficient C must be recalculated from Part 7. If a lesser eccentricity exists, use of the table values will produce conservative results. Interpolation between values in this table may produce an incorrect result.

Table 10-12. Bolted/Welded Single-Angle Connections

Table 10-12 is a design aid for bolted/welded single-angle connections. Tabulated bolt and angle available strengths consider the limit states of bolt shear, bolt bearing and tearout on the angle, shear yielding of the angle, shear rupture of the angle, and block shear rupture of the angle. Values are tabulated for 2 through 12 rows of $3 / 4$-in.- and $7 / 8$-in.-diameter Group

Notes: E indicates that eccentricity must be considered in this leg. Gages g_{1}, g_{2} and g_{3} are workable gages as shown in Table 1-7A.

Fig. 10-14. Eccentricity in angles.

A bolts (as defined in AISC Specification Section J3.1) at 3-in. spacing. For calculation purposes, angle edge distances, $l_{e v}$ and $l_{e h}$, are assumed to be $1^{1 / 4} \mathrm{in}$. Electrode strength is assumed to be 70 ksi . Listed strengths are based on angle material with $F_{y}=36 \mathrm{ksi}$ and $F_{u}=58 \mathrm{ksi}$. In cases where a single-angle connection must be field-welded, erection bolts may be placed in the field-welded leg.

Weld available strengths are determined by the instantaneous center of rotation method using Table $8-10$ with $\theta=0^{\circ}$. The tabulated values assume a half-web thickness of $1 / 4 \mathrm{in}$. and may be used conservatively for lesser half-web thicknesses. For half-web thicknesses greater than $1 / 4 \mathrm{in}$., the tabulated values should be reduced proportionally by an amount up to 8% at a half-web thickness of $1 / 2 \mathrm{in}$. The tabulated minimum supporting flange or web thickness is the thickness that matches the strength of the support material to the strength of the weld material. In a manner similar to that illustrated previously for Table 10-2, the minimum material thickness (for one line of weld) is:

$$
\begin{equation*}
t_{\min }=\frac{3.09 D}{F_{u}} \tag{9-2}
\end{equation*}
$$

where D is the number of sixteenths in the weld size. When welds line up on opposite sides of the support, the minimum thickness is the sum of the thicknesses required for each weld. In either case, when less than the minimum material thickness is present, the tabulated weld available strength should be multiplied by the ratio of the thickness provided to the minimum thickness. Interpolation between values in this table may produce an incorrect result.

Table 10-11 All-Bolted Single-Angle Connections		
Eccentrically Loaded Bolt Group Coefficients, C		
Number of Bolts in One Vertical Row, n	Case I	Case II
12 11 10 9 8 7 6 5 4 3 2 1	$\begin{gathered} \hline 11.4 \\ 10.4 \\ 9.37 \\ 8.34 \\ 7.31 \\ 6.27 \\ 5.22 \\ 4.15 \\ 3.07 \\ 1.99 \\ 1.03 \\ - \end{gathered}$	$\begin{gathered} 21.5 \\ 19.4 \\ 17.3 \\ 15.2 \\ 13.0 \\ 10.9 \\ \\ 8.70 \\ 6.63 \\ 4.70 \\ \\ 2.94 \\ 1.61 \\ 0.518 \end{gathered}$
```\phi R where C = coefficient from Table 10-11 for eccentrically loaded bolt group \phirn = design strength of one bolt in shear, bearing or tearout, kips/bolt r```   Notes:   For eccentricities less than or equal to those shown above, tabulated values may be used. For greater eccentricities, coefficient $C$ should be recalculated from Part 7 .   Connection may be bearing-type or slip-critical.		


Table 10-12   Bolted/Welded Single-Angle Connections										
Number of Bolts in One Vertical Row	Bolt and Angle Strength, kips Group A Bolts				$\begin{gathered} \text { Angle } \\ \text { Size } \\ \left(F_{y}=36 \mathrm{ksi}\right) \end{gathered}$	Angle   Length, in.	Weld (70 ksi)			Minimum $t_{w}$ of Supporting Member with Angles Both Sides of Web, in.
					Size, w, in.		Available Strength, kips			
	3/4 in.		7/8 in.							
	ASD	LRFD	ASD	LRFD			ASD	LRFD		
12	143	215	144	216		$35^{1 / 2}$	$\begin{aligned} & 5 / 16 \\ & 1 / 4 \\ & 3 / 16 \end{aligned}$	$\begin{aligned} & 179 \\ & 143 \\ & 107 \end{aligned}$	$\begin{aligned} & \hline 268 \\ & 214 \\ & 161 \end{aligned}$	$\begin{aligned} & 0.475 \\ & 0.380 \\ & 0.285 \\ & \hline \end{aligned}$
11	131	197	132	198		$32^{1 / 2}$	$\begin{gathered} \hline 5 / 16 \\ 1 / 4 \\ 3 / 16 \end{gathered}$	$\begin{gathered} 165 \\ 132 \\ 98.8 \end{gathered}$	$\begin{aligned} & 247 \\ & 198 \\ & 148 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.475 \\ & 0.380 \\ & 0.285 \end{aligned}$
10	119	179	120	180	$\stackrel{\infty}{\infty} \underset{\sim}{\infty}$	291/2	$\begin{gathered} 5 / 16 \\ 1 / 4 \\ 3 / 16 \end{gathered}$	$\begin{gathered} 151 \\ 121 \\ 90.4 \end{gathered}$	$\begin{aligned} & 226 \\ & 181 \\ & 136 \end{aligned}$	$\begin{aligned} & 0.475 \\ & 0.380 \\ & 0.285 \end{aligned}$
9	107	161	108	162	$\begin{aligned} & \stackrel{\otimes}{\succ} \\ & \underset{\Delta}{ } \end{aligned}$	$26^{1 / 2}$	$\begin{aligned} & 5 / 16 \\ & 1 / 4 \\ & 3 / 16 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 137 \\ 110 \\ 82.2 \\ \hline \end{gathered}$	$\begin{aligned} & 205 \\ & 164 \\ & 123 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.475 \\ & 0.380 \\ & 0.285 \end{aligned}$
8	95.5	143	95.6	143		$23^{1 / 2}$	$\begin{gathered} \hline 5 / 16 \\ 1 / 4 \\ 3 / 16 \end{gathered}$	$\begin{gathered} 123 \\ 98.5 \\ 73.9 \end{gathered}$	$\begin{aligned} & 185 \\ & 148 \\ & 111 \end{aligned}$	$\begin{aligned} & 0.475 \\ & 0.380 \\ & 0.285 \end{aligned}$
7	83.5	125	83.4	125		$20^{1 / 2}$	$\begin{aligned} & \hline 5 / 16 \\ & 1 / 4 \\ & 3 / 16 \end{aligned}$	$\begin{gathered} 109 \\ 87.4 \\ 65.6 \end{gathered}$	$\begin{gathered} 164 \\ 131 \\ 98.4 \end{gathered}$	$\begin{aligned} & 0.475 \\ & 0.380 \\ & 0.285 \end{aligned}$

Notes:
Gage in angle leg attached to beam web as well as leg width may be decreased. 3-in. welded leg may not be increased or decreased.
Tabulated weld available strengths are based on a $1 / 4$-in. half web for the supported member. Smaller half webs will result in these values being conservative. For half webs over $1 / 4$ in., weld values must be reduced proportionally by an amount up to $8 \%$ for a $1 / 2$-in. half web or recalculated.

When the beam web thickness of the supporting member is less than the minimum and single-angle connections are back to back, either stagger the angles, or multiply the weld design strength by the ratio of the actual web thickness to the tabulated minimum thickness to determine the reduced weld design strength.

## Table 10-12 (continued) Bolted/Welded Single-Angle Connections

	w	w						ax.		
Number   of Bolts in One Vertical Row	Bolt and Angle Strength, kips Group A Bolts				$\begin{gathered} \text { Angle } \\ \text { Size } \\ \left(F_{y}=36 \mathrm{ksi}\right) \end{gathered}$	Angle   Length, in.	Weld (70 ksi)			Minimum $t_{w}$ of Supporting Member with Angles Both Sides of Web, in.
					Size, w, in.		Available Strength, kips			
	3/4 in.		7/8 in.							
	ASD	LRFD	ASD	LRFD			ASD	LRFD		
6	71.6	107	71.3	107		$17^{1 / 2}$	$\begin{gathered} 5 / 16 \\ 1 / 4 \\ 3 / 16 \end{gathered}$	$\begin{aligned} & 94.3 \\ & 75.5 \\ & 56.6 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 141 \\ 113 \\ 84.9 \\ \hline \end{gathered}$	$\begin{aligned} & 0.475 \\ & 0.380 \\ & 0.285 \\ & \hline \end{aligned}$
5	59.7	89.5	59.1	88.7		$14^{1 / 2}$	$\begin{aligned} & 5 / 16 \\ & 1 / 4 \\ & 3 / 16 \end{aligned}$	$\begin{aligned} & \hline 79.1 \\ & 63.3 \\ & 47.4 \\ & \hline \end{aligned}$	$\begin{gathered} 119 \\ 94.9 \\ 71.2 \end{gathered}$	$\begin{aligned} & 0.475 \\ & 0.380 \\ & 0.285 \end{aligned}$
4	47.6	71.4	47.0	70.4	$\begin{aligned} & \infty \\ & \underset{\sim}{x} \\ & \underset{\sim}{\triangleleft} \\ & \underset{\sim}{n} \end{aligned}$	$11^{1 / 2}$	$\begin{aligned} & 5 / 16 \\ & 1 / 4 \\ & 3 / 16 \end{aligned}$	$\begin{aligned} & 62.9 \\ & 50.3 \\ & 37.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 94.4 \\ & 75.5 \\ & 56.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.475 \\ & 0.380 \\ & 0.285 \end{aligned}$
3	35.5	53.2	34.8	52.2		81/2	$\begin{gathered} 5 / 16 \\ 1 / 4 \\ 3 / 16 \end{gathered}$	$\begin{aligned} & 45.7 \\ & 36.6 \\ & 27.4 \end{aligned}$	$\begin{aligned} & 68.5 \\ & 54.8 \\ & 41.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.475 \\ & 0.380 \\ & 0.285 \\ & \hline \end{aligned}$
2	23.3	35.0	22.7	34.0		$5^{1 ⁄ 2}$	$\begin{aligned} & \hline 5 / 16 \\ & 1 / 4 \\ & 3 / 16 \end{aligned}$	$\begin{aligned} & 28.2 \\ & 22.5 \\ & 16.9 \end{aligned}$	$\begin{aligned} & 42.2 \\ & 33.8 \\ & 25.3 \end{aligned}$	$\begin{aligned} & 0.475 \\ & 0.380 \\ & 0.285 \end{aligned}$

## Notes:

Gage in angle leg attached to beam web as well as leg width may be decreased. 3-in. welded leg may not be increased or decreased.
Tabulated weld available strengths are based on a $1 / 4$-in. half web for the supported member. Smaller half webs will result in these values being conservative. For half webs over $1 / 4$ in., weld values must be reduced proportionally by an amount up to $8 \%$ for a $1 / 2$-in. half web or recalculated.
When the beam web thickness of the supporting member is less than the minimum and single-angle connections are back to back, either stagger the angles, or multiply the weld design strength by the ratio of the actual web thickness to the tabulated minimum thickness to determine the reduced weld design strength.

## TEE CONNECTIONS

A tee connection is made with a structural tee, as illustrated in Figure 10-15. The tee is preferably shop-bolted or welded to the supporting member and field-bolted to the supported beam.

When the tee is welded to the support, adequate flexibility must be provided in the connection. As illustrated in Figure 10-15(b), line welds are placed along the toes of the tee flange with a return at the top per AISC Specification Section J2.2b. Note that welding across the entire top of the tee must be avoided as it would inhibit the flexibility and, therefore, the necessary end rotation of the connection. The performance of the resulting connection would not be as intended for simple shear connections.

## Design Checks

The available strength of a tee connection is determined from the applicable limit states for bolts (see Part 7), welds (see Part 8), and connecting elements (see Part 9). In all cases, the available strength, $\phi R_{n}$ or $R_{n} / \Omega$, must equal or exceed the required strength, $R_{u}$ or $R_{a}$.

Eccentricity must be considered when determining the available strength of tee connections. For a flexible support, the bolts or welds attaching the tee flange to the support


## (b) Bolted/welded

Fig. 10-15. Tee connections.
must be designed for the shear, $R_{u}$ or $R_{a}$. Also, the bolts through the tee stem must be designed for the shear and the eccentric moment, $R_{u} a$ or $R_{a} a$, where $a$ is the distance from the face of the support to the centroid of the bolt group through the tee stem.

For a rigid support, the bolts or welds attaching the tee flange to the support must be designed for the shear and the eccentric moment; the bolts through the tee stem must be designed for the shear.

## Recommended Tee Length and Flange and Web Thicknesses

To provide for stability during erection, it is recommended that the mimimum tee length be one-half the $T$-dimension of the beam to be supported. The maximum length of the tee must be compatible with the $T$-dimension of an uncoped beam and the remaining web depth, exclusive of fillets, of a coped beam. Note that the tee may encroach upon the fillet(s) as given in Figure 10-3.

To provide for flexibility, the tee selected should meet the ductility checks illustrated in Part 9. The flange thickness of tees used in simple shear connections should be held to a minimum to permit the flexure necessary to accommodate the end rotation of the beam, unless the tee stem connection is proportioned to meet the geometric requirements for single-plate connections.

## Shop and Field Practices

When framing to a column flange, provision must be made for possible mill variation in the depth of the columns. If the tee is shop-attached to the column flange, play in the open holes usually furnishes the necessary adjustment to compensate for the mill variation. This approach offers the advantage of side erection of the beam. Alternatively, if the tee is shopattached to the supported beam web, the beam length could be shortened to provide for mill overrun and shims could be furnished at the appropriate intervals to fill the resulting gaps or to provide for mill underrun.

When a single vertical row of bolts is used in a tee stem, a $4-\mathrm{in}$. or $5-\mathrm{in}$. stem is required to accommodate the end distance of the supported beam and possible overrun/underrun in beam length. A double vertical row of bolts will require a $7-\mathrm{in}$. or $8-\mathrm{in}$. tee stem. There is no maximum limit on $l_{e h}$ for the tee stem.

## SHEAR SPLICES

Shear splices are usually made with a single plate, as shown in Figure 10-16(a), or two plates, as shown in Figures 10-16(b) and 10-16(c). Although the rotational flexibility required at a shear splice is usually much less than that required at the end of a simple-span beam, when a highly flexible splice is desired, the splice utilizing four framing angles, shown in Figure $10-17$, is especially useful. These shear splices may be bolted and/or welded.

The available strength of a shear splice is determined from the applicable limit states for the bolts (see Part 7), welds (see Part 8), and connecting elements (see Part 9). In all cases, the available strength, $\phi R_{n}$ or $R_{n} / \Omega$, must equal or exceed the required strength, $R_{u}$ or $R_{a}$.

Eccentricity must be considered in the design of shear splices, with the exception of allbolted shear splices utilizing four framing angles, as illustrated in Figure 10-17. When the splice is symmetrical, as shown for the bolted splice in Figure 10-16(a), each side of the splice is equally restrained regardless of the relative flexibility of the spliced members.

Accordingly, as illustrated in Figure 10-18, the eccentricity of the shear to the center of gravity of either bolt group is equal to half the distance between the centroids of the bolt groups. Therefore, each bolt group can be designed for the shear, $R_{u}$ or $R_{a}$, and one-half the eccentric moment, $R_{u} e$ or $R_{a} e$ (Kulak and Green, 1990). This approach is also applicable to symmetrical welded splices.

When the splice is not symmetrical, as shown in Figures 10-16(b) and 10-16(c), one side of the splice will possess a higher degree of rigidity. For the splice shown in Figure 10-16(b), the right side is more rigid because the stiffness of the weld group exceeds the stiffness of the bolt group, even if the bolts are pretensioned or slip-critical. Also, for the splice shown in


Fig. 10-16. Plate-type shear splices.


Fig. 10-17. Angle-type shear splice.

Figure 10-16(c), the right side is more rigid since there are two vertical rows of bolts while the left side has only one. In these cases, it is conservative to design the side with the higher rigidity for the shear, $R_{u}$ or $R_{a}$, and the full eccentric moment, $R_{u} e$ or $R_{a} e$. The side with the lower rigidity can then be designed for the shear only. This approach is applicable regardless of the relative flexibility of the spliced members.

Some splices, such as those that occur at expansion joints, require special attention and are beyond the scope of this Manual.

## SPECIAL CONSIDERATIONS FOR SIMPLE SHEAR CONNECTIONS

## Simple Shear Connections Subject to Axial Forces

When simple shear connections are subjected to axial loading in addition to shear, additional limit states and connection behavior must be evaluated to provide proper performance of the connections. Additional applicable limit states and performance criteria may include prying action and plate/outstanding leg angle bending for end-plate and double-angle connections, which may require the plate or angle thickness to increase or gage to decrease (or both). These strength requirements may compromise the ability of the connection to remain flexible enough to accommodate the simple beam end rotation. The shear connection rotational ductility checks derived in Part 9 can be used to ensure that adequate ductility exists. There are also interaction checks required due to the orthogonal loading in the connection that must be evaluated in addition to the individual shear and axial loading limit states.

The AISC Design Examples companion to the Manual provides several connection design examples subject to axial loading in addition to shear. Double-angle knife connections, knife-plate connections, or single-angle connections are not well suited for axial loads in tension.


Fig. 10-18. Eccentricity in a symmetrical shear splice.

## Simple Shear Connections at Stiffened Column-Web Locations

Stiffeners are obstacles for direct connections to the column web. Figure 10-19 illustrates three examples of various means for connections. Figure 10-19(a) illustrates a plate extended beyond the column flanges with a shear tab welded to the plate for the connection. Figure 10-19(b) illustrates a seat angle extended beyond the column flange. Figure 10-19(c) is an extended shear tab and is also used quite frequently.

When applying a beam end reaction to the column flange toes, eccentricity must still be considered to the column centerline to avoid introducing weak-axis bending to the column. The eccentricity can be taken at the column flange toes if the column has been designed for the weak-axis bending due to the beam end reaction or the weak-axis bending applied to the column is less than $5 \%$ of the weak-axis available flexural strength of the column.

## Eccentric Effect of Extended Gages

Consider a simple shear connection to the web of a column that requires transverse stiffeners for two concurrent beam-to-column-flange moment connections. If it were not possible to eliminate the stiffeners by selection of a heavier column section, the field connection would have to be located clear of the column flanges, as shown in Figure 10-20, to provide for access and erectability.

The extension of the connection beyond normal gage lines results in an eccentric moment. While this eccentric moment is usually neglected in a connection framing to a column flange, the resistance of the column to weak-axis bending is typically only $20 \%$ to $50 \%$ of that in the strong axis. Thus the eccentric moment should be considered in this column-web connection, especially if the eccentricity, $e$, is large. Similarly, eccentricities larger than normal gages may also be a concern in connections to girder webs.

## Column-Web Supports

There are two components contributing to the total eccentric moment: (1) the eccentricity of the beam end reaction, $R e$; and (2) $M_{p r}$, the partial restraint of the connection. To determine what eccentric moment must be considered in the design, first assume that the column is part of a braced frame for weak-axis bending, is pinned-ended with $K=1$, and will be concentrically loaded, as illustrated in Figure 10-21. The beam is loaded before the column and will deflect under load as shown in Figure 10-22. Because of the partial restraint of the connection, a couple, $M_{p r}$, develops between the beam and column and adds to the eccentric couple, Re. Thus, $M_{c o n}=R e+M_{p r}$.

As the loading of the column begins, the assembly will deflect further in the same direction under load, as indicated in Figure 10-23, until the column load reaches some magnitude, $P_{s b r}$, when the rotation of the column will equal the simply supported beam end rotation. At this load, the rotation of the column negates $M_{p r}$ since it also relieves the partial restraint effect of the connection, and $M_{c o n}=R e$. As the column load is increased above $P_{s b r}$, the column rotation exceeds the simply supported beam end rotation and a moment $M_{p r}^{\prime}$ results such that $M_{c o n}=R e-M_{p r}^{\prime}$.

Note that the partial restraint of the connection now actually stabilizes the column and reduces its effective length factor, $K$, below the originally assumed value of 1 . Thus, since $M_{p r}^{\prime}$ must be greater than zero, it must also be true that $R e>M_{c o n}$. It is therefore conservative to design the connection for the shear, $R$, and the eccentric moment, $R e$.


Section A-A



Note: If seat is field welded, bolts are for erection only.
(a)


## Section A-A


(c)

Fig. 10-19. Simple shear connections at stiffened column-web locations.

The welds connecting the plate to the supporting column web should be designed to resist the full shear, $R$, only; the top and bottom plate-to-stiffener welds have minimal strength normal to their length, are not assumed to carry any calculated force, and may be of minimum size in accordance with AISC Specification Section J2.

If simple shear connections frame to both sides of the column web, as illustrated in Figure 10-21, each connection should be designed for its respective shear, $R_{1}$ and $R_{2}$, and the eccentric moment $\left|R_{2} e_{2}-R_{1} e_{1}\right|$ may be apportioned between the two simple shear connections as the designer sees fit. The total eccentric moment may be assumed to act on the larger connection, the moment may be divided proportionally among the connections according to the polar moments of inertia of the bolt groups (relative stiffness), or the moment may be divided proportionally between the connections according to the section moduli of the bolt groups (relative moment strength). If provision is made for ductility and


Fig. 10-20. Eccentric effect of extended gages.


Fig. 10-21. Column subject to dual eccentric moments.
stability, it follows from the lower bound theorem of limit states analysis that the distribution which yields the greatest strength is closest to the true strength. Note that the possibility exists that one of the beams may be devoid of live load at the same time that the opposite beam is fully loaded. This condition must be considered by the designer when apportioning the moment.


Fig. 10-22. Illustration of beam, column and connection behavior under loading of beam only.


Fig. 10-23. Illustration of beam, column and connection behavior under loading of beam and column.

## Girder-Web Supports

The girder-web support of Figure 10-24 usually provides only minimal torsional stiffness or strength. When larger-than-normal gages are used, the end rotation of the supported beam will usually be accommodated through rotation of the girder support. It follows that the bolt group should be designed to resist both the shear, $R$, and the eccentric moment, Re. The beam end reaction will then be carried through to the center of the supporting girder web.

The welds connecting the plate to the supporting girder web should be designed to resist the shear, $R$, only; the top and bottom plate-to-girder-flange welds have minimal strength normal to their length, are not assumed to carry any calculated force, and may be of minimum size in accordance with AISC Specification Section J2.

Similarly, for the girder illustrated in Figure 10-25 supporting two eccentric reactions, each connection should be designed for its respective shear, $R_{1}$ and $R_{2}$, and the eccentric moment, $\left|R_{2} e_{2}-R_{1} e_{1}\right|$, may be apportioned between the two simple shear connections as the designer sees fit.


Fig. 10-24. Eccentric moment on girder-web support.


Fig. 10-25. Girder-web support subject to dual eccentric moments.

## Alternative Treatment of Eccentric Moment

In the foregoing treatment of eccentric moments with column- and girder-web supports, it is possible to design the support (instead of the connection) for the eccentric moment, Re. The engineer of record may choose to use a rational approach based on engineering judgment and taking into consideration member strength and stiffness, composite slab interaction, and alternate load paths to resist the eccentric moment, $R e$. In these cases, the connection may be designed for the shear, $R$, only or the shear and a reduced eccentric moment.

## Double Connections

When beams frame opposite each other and are welded to the web of the supporting girder or column, there are usually no dimensional constraints imposed on one connection by the presence of the other connection unless erection bolts are common to each connection. When the connections are bolted to the web of the supporting column or girder, however, the close proximity of the connections requires that some or all fasteners be common to both connections. This is known as a double connection. See also the discussion under "Constructability Considerations" in an earlier section in this Part.

## Supported Beams of Different Nominal Depths

When beams of different nominal depths frame into a double connection, care must be taken to avoid interference from the bottom flange of the shallower beam with the entering and tightening clearances for the bolts of the connection for the deeper beam. Access to the bolts that will support the deeper beam may be provided by coping or blocking the bottom flange of the shallower beam. Alternatively, stagger may be used to favorably position the bolts around the bottom flange of the shallower beam.

## Supported Beams Offset Laterally

Frequently, beams do not frame exactly opposite each other, but are offset slightly, as illustrated in Figure 10-26. Several connection configurations are possible, depending on the offset dimension.

If the offset were equal to the gage on the support, the connection could be designed with all bolts on the same gage lines, as shown in Figure 10-26(b), and the angles arranged, as shown in Figure 10-26(d). If the offset were less than the gage on the support, staggering the bolts, as shown in Figure 10-26(c), would reduce the required gage and the angles could be arranged, as shown in Figure 10-26(c). In any case, each bolt transmits an equal share of its beam reaction(s) to the supporting member, with the bolts that are loaded in double shear ultimately carrying twice as much force as those loaded in single shear. Once the geometry of the connection has been determined, the distribution of the forces is patterned after that in the design of a typical connection. For normal gages, eccentricity may be ignored in this type of connection.

## Beams Offset From Column Centerline

## Framing to the Column Flange from the Strong Axis

As illustrated in Figure 10-27, beam-to-column-flange connections offset from the column centerline may be supported on a typical welded seat, stiffened or unstiffened, provided the welds for the seat can be spaced approximately equal on either side of the beam centerline.

Two such seats offset from the W $12 \times 65$ column centerline by $2^{1} / 4 \mathrm{in}$. and $3 \frac{1}{2}$ in. are shown in Figures 10-27(a) and 10-27(b), respectively. While not shown, top angles should be used with this connection.

Since the entire seat fits within the flange width of the column, the connection of Figure $10-27$ (a) is readily selected from the design aids presented previously. However, the larger beam offsets in Figures 10-27(b) and 10-27(c) require that one of the welds be made along the edge of the column flange against the back side of the seat angle. Note that the end return is omitted because weld returns should not be carried around such a corner.


Fig. 10-26. Offset beams connected to girder.

For the beam offset of $5^{1 / 2} \mathrm{in}$. shown in Figure 10-27(c), the seat angle overhangs the edge of the beam and the horizontal distance between the vertical welds is reduced to $3^{1 / 2}$ in.; the center of gravity of the weld group is located $1^{1 / 1} 4 \mathrm{in}$. to the left of the beam centerline. The force on each weld may be determined by statics. In this case, the larger force is in the righthand weld and may be determined by summing moments about the lefthand weld. Once the larger force has been determined, each weld should be designed to share the force in the more highly loaded weld.


Note A: End return is omitted because the AWS Code does not permit weld returns to be carried around the corner formed by the column flange toe and seat angle heel.
Note B: Beam and top angle not shown for clarity.

Fig. 10-27. Offset beams connected to column flanges.

## Framing to the Column Flange from the Weak Axis

Spandrel beams X and Y in the partial plan shown in Figure 10-28 are offset $4 \frac{1}{1 / 8}$ in. from the centerline of column C 1 , permitting the beam web to be connected directly to the column flange. At column B2, spandrel beam $X$ is offset $4^{5} / 8$ in. and requires a ${ }^{1 / 2}$-in. filler between the beam web and the column flange. Beams $X$ and $Y$ are both plain-punched beams, with flanges coped top and bottom, as noted in Figure 10-28(a), Section F-F.

In establishing gages, the requirements of other connections to the column at adjacent locations must be considered. The workable flange gage is 4 in . for the $\mathrm{W} 8 \times 28$ columns supporting the spandrel beams, for beams Z , the combination of a $4-\mathrm{in}$. column gage and $1^{1} / 2-\mathrm{in}$. stagger of fasteners is used to provide entering and tightening clearance for the field bolts and sufficient edge distance on the column flange, as illustrated in Figure 10-28(b). The $4-\mathrm{in}$. column gage also permits a $1^{1 / 2} 2$-in. edge distance at the ends of the spandrel beams, which will accommodate the normal length tolerance of $\pm 1 / 4 \mathrm{in}$. as specified in "Standard Mill Practice" in Part 1.

The notation, "Cope top and bottom flanges," is applicable to the spandrel beams shown in Sections E-E and F-F. The copes permit the beam web to lie flush against the column flange. The $2^{1} / 2 \times 1 / 2$-in. filler is required between the spandrel beam web and the flange of column B2 because of the $1 / 2$-in. offset. Accordingly, the filler provisions of AISC Specification Section J5 must be satisfied.

In the part plan in Figure $10-29(a)$, the $W 16 \times 40$ beam is offset $6^{1 / 4} \mathrm{in}$. from the centerline of column D1. This prevents the web of the W16×40 from being placed flush against the side of the column flange. A plate and filler are used to connect the beam to the column flange, as shown in Figure 10-29(b). Such a connection is eccentric and one group of fasteners must be designed for the eccentricity. Lack of space on the inner flange face of the column requires development of the moment induced by the eccentricity in the beam web fasteners.

To minimize the number of field fasteners, the plate in this case is shop-bolted to the beam and field-bolted to the column. A careful check must be made to ensure that the beam can be erected without interference from fittings on the column web. Some fabricators would elect to shop-attach the plate to the column to eliminate possible interference and permit use of plain-punched beams. Additionally, if the column were a heavy section, the fabricator may elect to shop-weld the plate to the column to avoid drilling the thick flanges. The welding of this plate to the column creates a much stiffer connection and the design should be modified to recognize the increased rigidity.

If the centerline of the W16 were offset $6^{1 / 16}$ in. from line 1 , it would be possible to cope or cut the flanges flush top and bottom and frame the web directly to the column flange with details similar to those shown in Figure 10-29. This type of framing also provides a connection with more rigidity than normally contemplated in simple construction. A coped connection of this type would create a bending moment at the root of the cope that might require reinforcement of the beam web.

One method frequently adopted to avoid moment transfer to the column because of beam connection rigidity is to use slotted holes and a bearing connection to provide some flexibility. The slotted holes would be provided in the connection plate only and would be in the field connection only. These slotted connections also would accommodate fabrication and erection tolerances.

(a)

(b)

Fig. 10-28. Offset beams connected to column.


Fig. 10-29. Offset beam connected to column.

The type of connection detailed in Figure 10-29 is similar to a coped beam and should be checked for buckling, as illustrated in Part 9. The following differences are apparent and should be recognized in the analysis:

1. The effective length of equivalent "cope" is longer by the amount of end distance to the first bolt gage line.
2. There is an inherent eccentricity due to the beam web and plate thickness. The ordinary web and plate thicknesses normally will not require an analysis for this condition, since the inelastic rotation allowed by the AISC Specification will relieve this secondary moment effect. Two plates may sometimes be required to counter this eccentricity when dimensions are significant.
3. The connection plate can be made of sufficient thickness as required for bending or buckling stresses with a minimum thickness of $3 / 8$ in.

## Framing to the Column Web

If the offset of the beam from the centerline of the column web is small enough that the connection may still be centered on or under the supported beam, no special considerations need be made. However, when the offset of the beam is too large to permit the centering of the connection under the beam, as in Figure 10-30, it may be necessary to consider the effect of eccentricity in the fastener group.


Fig. 10-30. Offset beam connected to column web.

The offset of the beam in Figure 10-30 requires that the top and bottom flanges be blocked to provide erection clearance at the column flange. Since only half of each flange, then, remains in which to punch holes, a $6-\mathrm{in}$. outstanding leg is used for both the seat and top angles of these connections; this permits the use of two field bolts to each of the seat and top angles, which are required by OSHA.

## Connections for Raised Beams

When raised beams are connected to column flanges or webs, there is usually no special consideration required. However, when the support is a girder, the differing tops of steel may preclude the use of typical connections. Figure 10-31 shows several typical details commonly used for such cases in bolted construction. Figure 10-32 shows several typical details commonly used in welded construction.

In Figure $10-31$ (a), since the top of the $\mathrm{W} 12 \times 35$ is located somewhat less than 12 in . above the top of the W18 supporting beam, a double-angle connection is used. This connection would be designed for the beam reaction and the shop bolts would be governed by double shear or bearing, just as if they were located in a vertical position. However, the field bolts are not required to carry any calculated force under gravity loading.

The maximum permissible distance, $m$, depends on the beam reaction, since the web remaining after the bottom cope must provide sufficient area to resist the vertical shear as well as the bending moment which would be critical at the end of the cope. The beam can be reinforced by extending the angles beyond the cope and adding additional shop bolts for development. The angle size and/or thickness can be increased to gain shear area or section modulus, if required. The effect of any eccentricity would be a matter of judgment, but could be neglected for small dimensions.

When this connection is used for flexure or for dynamic or cyclical loading, the web is subjected to high stress concentrations at the end of the cope, and it is good practice to extend the angles, as shown in Figure 10-31(a), to add at least two additional web fasteners.

Figure $10-31$ (b) covers the case where the bottom flange of the $\mathrm{W} 12 \times 35$ is located a few inches above the top of the W18. The beam bears directly upon fillers and is connected to the W18 by four field bolts which are not required to transmit a calculated gravity load. If the distance $m$ exceeds the thickest plate which can be punched, two or more plates may be used. Even though the fillers in this case need only be $61 / 2$-in. square, the amount of material required increases rapidly as $m$ increases. If $m$ exceeds 2 or 3 in ., another type of detail may be more economical.

The detail shown in Figure 10-31(c) is used frequently when $m$ is up to 6 or 7 in . The load on the shop bolts in this case is no greater than that in Figure 10-31(a). However, to provide more lateral stiffness, the fittings are cut from a 15 -in. channel and are detailed to overlap the beam web sufficiently to permit four shop bolts on two gage lines.

A stool or pedestal, cut from a rolled shape, can be used with or without fillers to provide for the necessary $m$ distance, as in Figure 10-31(d). A pair of connection angles and a tee will also serve a similar purpose, as shown in Figure 10-31(e). To provide adequate strength to carry the beam end reaction and to provide lateral stiffness, the web thickness of the pedestal in each of these cases should be at least as thick as the member being supported.

In Figure 10-32(a), welded framing angles are substituted for the bolted angles of Figure 10-31(a). In Figure 10-32(b), a single horizontal plate is shown replacing the pair of framing angles; this results in a savings in material and the amount of shop-welding. In this case, particular care must be taken in cutting the beam web and positioning the plate at right

(e)

Fig. 10-31. Bolted raised-beam connections.


Fig. 10-32. Welded raised-beam connections.
angles to the beam web. For this reason, if only a few connections of this type are to be made, some fabricators prefer to use the angles, as in Figure 10-32(a). If sufficient duplication were available to warrant making a simple jig to position the plate during welding, the solution of Figure 10-32(b) may be economical.

Figure 10-32(c) shows a tee centered on the beam web and welded to the bottom flange of the beam. The tee stem thickness should not be less than the beam web thickness. The welded solutions shown in Figures 10-32(d) and 10-32(e) are capable of providing good lateral stiffness. The latter two types also permit end rotation as the beam deflects under load. However, if the $m$ distance exceeds 3 or 4 in ., it is advisable to shop-weld a triangular bracket plate at one end of the beam, as indicated by the dashed lines, to prevent the beam from deflecting along its longitudinal axis.

Other equally satisfactory details may be devised to meet the needs of connections for raised beams. They will vary depending on the size of the supported beam and the distance $m$. When using this type of connection where the load is transmitted through bearing, the provisions of AISC Specification Sections J10.2 and J10.3 must be satisfied for both the supported and supporting members. For the detail of Figure 10-32(b), since the rolled fillet has been removed by the cut, the value of $k$ would be taken as the thickness of the plate plus the fillet weld size.

AISC Specification Appendix 6 requires stability and restraint against rotation about the beam's longitudinal axis. This provision is most easily accomplished with a floor on top of the supported beam. In the absence of a floor, the top flange may be supported by a strut or bracket attached to the supporting member. When the beam is encased in a wall, this stability may also be provided with wall anchors.

This discussion has considered that the field bolts which attach the beam to the pedestal or support beam are subject to no calculated load. It is important, however, to recognize that when the beam deflects about its neutral axis, a tensile force can be exerted on the outside bolts. The intensity of this tensile force is a function of the dimension $d$, indicated in Figure 10-31, the span length of the supported member, and the beam stiffness. If these forces are large, high-strength bolts should be used and the connection analyzed for the effects of prying action.

Raised-beam connections such as these are used frequently as equipment or machinery supports where it is important to maintain a true and level surface or elevation. When this tolerance becomes important, the dimension $d$ should be noted "keep" to advise the fabricator of this importance, as shown in Figure 10-31(b). Since the supporting beam is subject to certain camber/deflection tolerances, it also may be appropriate to furnish shim packs between the connection and the supporting member.

## Non-Rectangular Simple Shear Connections

It is often necessary to design connections for beams that do not frame into a support orthogonally. Such a beam may be inclined with respect to the supporting member in various directions. Depending upon the relative angular position that a beam assumes, the connection may be classified among three categories: skewed, sloped or canted. These conditions are illustrated in Figure 10-33 for beam-to-girder web connections; the same descriptions apply to beam-to-column-flange and web connections. Additionally, beams may be oriented in a combination of any or all of these conditions. For any condition of skewed, sloped or canted framing, the single-plate connection is generally the simplest and most economical of those illustrated in this text.


Fig. 10-33. Non-rectangular connections.

## Skewed Connections

A beam is said to be skewed when its flanges lie in a plane perpendicular to the plane of the face of the supporting member, but its web inclined to the face of the supporting member. The angle of skew, $A$, appears in Figure 10-33(a) and represents the horizontal bevel to which the fittings must be bent or set, or the direction of gage lines on a seated connection.

When the skew angle is less than $5^{\circ}$ (1-in- 12 slope), a pair of double angles can be bent inward or outward to make the connection, as shown in Figure 10-34. While bent angle sections are usually drawn as bending in a straight line from the heel, rolled angles will tend to bend about the root of the fillet (dimension $k$ in Manual Part 1). This produces a significant jog in the leg alignment, which is magnified by the amount of bend. Above this angle of skew, it becomes impractical to bend rolled angles.

For skews approximately greater than $5^{\circ}$ (1-in- 12 slope), a pair of bent plates, shown in Figure 10-35, may be a more practical solution. Bent plates are not subject to the deformation problem described for bent angles, but the radius and direction of the bend must be considered to avoid cracking during the cold-bending operation.


Fig. 10-34. Skewed beam connections with bent double angles.


Fig. 10-35. Skewed beam connections with double-bent plates.

Bent plates exhibit better ductility when bent perpendicular to the rolling direction and are, therefore, less likely to crack. Whenever possible, bent connection plates should be billed with the width dimension parallel to the bend line. The length of the plate is measured on its mid-thickness, without regard to the radius of the bend. While this will provide a plate that is slightly longer than necessary, this will be corrected when the bend is laid out to the proper radius prior to fabrication.

Before bending, special attention should be given to the condition of plate edges transverse to the bend lines. Flame-cut edges of hardenable steels should be machined or softened by heat treatment. Nicks should be ground out and sharp corners should be rounded.

The strength of bent angles and bent plate connections may be calculated in the same manner as for square framed beams, making due allowances for eccentricity. The load is assumed to be applied at the point where the skewed beam center line intersects the face of the supporting member.

As the angle of skew increases, entering and tightening clearances on the acutely angled side of the connection will require a larger gage on the support. If the gage were to become objectionable, a single bent plate, illustrated in Figure 10-36, may provide a better solution. Note that the single-bent plate may be of the conventional type, or a more compact connection may be developed by "wrapping" the single bent plate, as illustrated in Figure 10-36(c).

In all-bolted construction, both the shop and field bolts should be designed for shear and the eccentric moment. A C-shaped weld is preferable to avoid turning the beam during shop fabrication. Single bent plates should be checked for flexural strength.

(a) All-bolted


(b) Bolted/welded
(c) Configurations

Fig. 10-36. Skewed-beam connections with single-bent plates.

Skewed single-plate and skewed end-plate connections, shown in Figures 10-37 and 10-38, provide a simple, direct connection with a minimum of fittings and multiple punching requirements. When fillet-welded, these connections may be used for skews up to $30^{\circ}$ (or a slope of $6^{5} / 16$-in-12) provided the root opening formed does not exceed $3 / 16$ in. For skew angles greater than $30^{\circ}$, see AWS D1.1 clause 2.4.2.6.

The maximum beam-web thickness that may be supported is a function of the maximum root opening and the angle of skew. If the thickness of the beam web were such that a larger root opening were encountered, the skewed single plate or the web connecting to the skewed end plate may be beveled, as shown in Figures 10-37(b) and 10-38(b). Since no root opening occurs with the bevel, there is no limitation on the thickness of the beam web. However, beveling, especially of the beam web, requires careful finishing and is an expensive procedure that may outweigh its advantages.

The design of skewed end-plate connections is similar to that discussed previously in "Shear End-Plate Connections" in this Part. However, when the gage of the bolts is not centered on the beam web, this eccentric loading should be considered. The design of skewed single-plate connections is similar to that discussed previously in "Single-Plate Connections" in this Part.


Fig. 10-37. Skewed single-plate connections.


Fig. 10-38. Skewed shear end-plate connections.

When skewed, stiffened seated connections are used, the stiffening element should be located so as to cross the skewed beam centerline well out on the seat. This can be accomplished by shifting the stiffener to the left or right of center to support beams which skew to the left or to the right, respectively. Alternatively, it may be possible to skew the stiffening element.

## Sloped Connections

A beam is said to be sloped if the plane of its web is perpendicular to the plane of the face of the supporting member, but its flanges are not perpendicular to this face. The angle of slope, $B$, is shown in Figure 10-33(b) and represents the vertical angle to which the fittings must be set to the web of the sloped beam, or the amount that seat and top angles must be bent.

The design of sloped connections usually can be adapted directly from the rectangular connections covered earlier in this part, with consideration of the geometry of the connection to establish the location of fittings and fasteners. Note that sloped beams often require copes to clear supporting girders, as illustrated in Figure 10-39.

Figure 10-40 shows a sloped beam with double-angle connections, welded to the beam and bolted to the support. The design of this connection is essentially similar to that for rectangular double-angle connections. Alternatively, shear end-plate, tee, single-angle, single-plate, or seated connections could be used. Selection of a particular connection type may be influenced by fabrication economy, erectability, and/or by the types of connections used elsewhere in the structure.

Sloped seated beam connections may utilize either bent angles or plates, depending on the angle of slope. Dimensioning and entering and clearance requirements for sloped seated connections are generally similar to those for skewed connections. The bent seat and top plate shown in Figure 10-41 may be used for smaller bevels.


Fig. 10-39. Sloped all-bolted double-angle connection.


Fig. 10-40. Sloped bolted/welded double-angle connection.


Fig. 10-41. Sloped seated connections.

When the angle of slope is small, it is economical to place transverse holes in the beam web on lines perpendicular to the beam flange; this requires only one stroke of a multiple punch per line. Since non-standard hole arrangements, then, usually occur in the connecting materials (which are single-punched), this requires that sufficient dimensions be provided for the connecting material to contain fasteners with adequate edges and gages, and at the same time fit the angle to the web without encroaching on the flange fillets of the beam. For the end connection of the beam, this was accomplished by using a $6-\mathrm{in}$. angle leg; a 4 -in. or even a 5 -in. leg would not have furnished sufficient edge distance at the extreme fastener.

As the angle of slope increases, however, bolts for the end connections cannot conveniently be lined up to permit simultaneous punching of all holes in a transverse row. In this case, the fabricator may choose to disregard beam gage lines and arrange the hole-punching so that ordinary square-framed connection material can be used throughout, as shown in Figure 10-42.

## Canted Connections

A beam perpendicular to the face of a supporting member, but rotated so that its flanges are tilted with respect to those of the support, is said to be canted. The angle of cant, $C$, is shown in Figure 10-33(c).

The design of canted connections usually can be adapted directly from the rectangular connections covered earlier in this part. In Figure 10-43, a double-angle connection is used.


Fig. 10-42. Sloped beam with rectangular connections.

Alternatively, shear end-plate, seated, single-angle, single-plate, and tee connections may also be used.

For the channel in Figure 10-44, which is supported by a sloping member (not shown), to match the hole pattern in the supporting member, the holes in the connecting materials must be canted. As shown in Figure 10-44, the top flange of the channel and the connection angles, $d^{R}$ and $d^{L}$, are cut to clear the flanges of the supporting beam. In this detail, with a $3-\mathrm{in}-12$ angle of cant, $4-\mathrm{in}$. legs were wide enough to contain the pattern of hole-punching.

Since the multiple punching or drilling of column flanges requires strict adherence to column gage lines, punching is generally skewed in the fittings. When, for some reason, this is not possible, as in Figure 10-45, skewed reference lines are shown on the column to aid in matching connections.

When canted connecting materials are assembled on the beam, particular care must be used in determining the direction of skew for punching the connection angles. An error reversing this skew may permit matching of holes in both members, but the beam will be canted opposite to the intended direction.


Fig. 10-43. Canted double-angle connections.


Fig. 10-44. Canted connections to a sloping support.

Note the connection angles in Figure 10-45 are shown shop-welded to the beam. This was done to provide tightening clearance for $3 / 4-\mathrm{in}$. high-strength field bolts in the opposite leg. Had the shop fasteners been bolts, it would have been necessary to stagger the field and shop fasteners and provide longer angles for the increased spacing.

Canted seated beams, shown in Figure 10-46, present few problems other than those in ordinary square-end seated beams. Sufficient width and length of angle leg must be provided to contain the gage line punching or drilling in the column face, as well as the off-center location of the holes matching the punching in the beam flange. The elevation of the top flange centerline and the bevel of the beam flange may be given for reference on the beam detail, although the bevel shown will not affect the fabrication.

## Inclines in Two or More Directions (Hip and Valley Framing)

When a beam inclines in two or more directions with respect to the axis of its supporting member, it can be classified as a combination of those inclination directions. For example, the beam of Figure 10-33(d) is both skewed and sloped. Angle A shows the skew and angle $B$ shows the slope. Note that, since the inclined beam is foreshortened in the elevation, the true angle B appears only in the auxiliary projection, Section X-X. The development of these details is quite complicated and graphical solutions to this compound angle work can be found in any textbook on descriptive geometry. Accurate dimensions may then be determined with basic trigonometry.

## DESIGN CONSIDERATIONS FOR SIMPLE SHEAR CONNECTIONS TO HSS COLUMNS

Many of the familiar simple shear connections that are used to connect to wide-flange columns can be used with HSS columns. These include double and single angles, unstiffened and stiffened seats, single plates, and tee connections. One additional connection that is unique for HSS columns is the through-plate; note that this alternative is seldom required structurally and presents a significant economic penalty when a single-plate


Fig. 10-45. Canted connection to column flange.
connection would otherwise suffice. Variations in attachments are more limited with HSS columns since the connecting element will typically be shop-welded to the HSS and bolted to the supported beam. Except for seated connections, the bolting will be to the web of a wide-flange or other open profile section. Coping is not required except for bottom-flange copes that facilitate knifed erection with double-angle connections.

## Double-Angle Connections to HSS

Table $10-1$ is a design aid for double-angle connections. The table shows the compatible sizes of W-shapes for the various connection configurations. Based on maximum beam web thickness, maximum weld size, maximum HSS corner radius, and 4-in. outstanding angle legs, double-angle connections may be used with any HSS having a width greater than or equal to 12 in. If $3-\mathrm{in}$. outstanding angle legs are used for connections with six bolts or less, HSS with widths of 10 in . are acceptable for obtaining welds on the flat of the side. For smaller web thicknesses, welds and corner radii, it may be possible to fit the connection on widths of 10 in . if the outstanding angle legs are 4 in . and on widths of 8 in . for outstanding angle legs of 3 in . However, these dimensions must be verified for a particular case. See the tabulated workable flat dimensions for HSS in Part 1.


Fig. 10-46. Canted seated connections.

## Single-Plate Connections to HSS

As long as the HSS wall is not classified as a slender element, the local distortion caused by the single-plate connection will be insignificant in reducing the column strength of the HSS (Sherman, 1996). Therefore, single-plate connections may be used with rectangular HSS when $b / t \leq 1.40\left(E / F_{y}\right)^{0.5}$ or 33.7 for $F_{y}=50 \mathrm{ksi}$. Single-plate connections may also be used with round HSS as long as they are nonslender under axial load ( $D / t \leq 0.11 E / F_{y}$ ).

Yielding (plastification) of the HSS face has not been a governing limit state in physical tests. Punching shear (shear rupture), however, should be checked as follows:
$\left.\begin{array}{|c|c|}\hline \text { LRFD } & \text { ASD } \\ \hline R_{u} e \leq \frac{\phi F_{u} t l_{p}^{2}}{5} & (10-7 \mathrm{a}) \\ & R_{a} e \leq \frac{F_{u} t l_{p}^{2}}{5 \Omega}\end{array} \quad(10-7 \mathrm{~b})\right]$
where
$F_{u}=$ specified minimum tensile strength of the HSS member, ksi
$R_{a}=$ required shear strength (ASD), kips
$R_{u}=$ required shear strength (LRFD), kips
$e=$ eccentricity, taken as the distance from the HSS wall to the center of gravity of the bolt group, in.
$l_{p}=$ length of the single-plate shear connection, in.
$t=$ design wall thickness of HSS member, in.
$\phi=0.75$
$\Omega=2.00$

## Unstiffened Seated Connections to HSS

In order to properly attach seat angles to the flat of the HSS, the workable flat must be large enough to accommodate both the width of the seat angle and the welds. Seat widths are usually 6 in. or 8 in., but other widths may also be used. See the tabulated workable flat dimensions for HSS in Part 1.

Table 10-6 may be used for unstiffened seated connections to HSS. The minimum HSS thicknesses are established based on the weld strength. If the HSS thickness is less than the minimum value, the weld strength must be reduced proportionally.

## Stiffened Seated Connections to HSS

Tables 10-8 and 10-15 are design aids for stiffened seated connections (refer to Figure 10-47). Table $10-8$ is applicable to all member types and Table $10-14$ presents specific limits for HSS based on the yield-line mechanism limit state for HSS. Some values for small connection lengths, $l$, and large HSS widths, $B$, have been reduced to meet the limit state for a line load with a width of $0.4 l$ across the HSS, per AISC Specification Section K1.

The design procedure for stiffened seated connections to W-shape column webs (Sputo and Ellifritt, 1991) includes a yield line limit state based on an analysis by Abolitz and Warner (1965). This has been applied to the HSS wall which is also supported on two edges.

However, since the HSS side supports are the same thickness rather than much heavier as in the case of W-shape flanges, the equation (Abolitz and Warner, 1965) for rotationally free edge supports has been used instead of fixed edge supports.

The strength of the connection is obtained by multiplying the tabulated value for a particular HSS width and stiffener length by the square of the HSS thickness and dividing by the width of the seat. For combinations of $B$ and $l$ that are not listed in Table 10-14, the HSS does not have sufficient flat width to accommodate a weld to the seat that is $0.2 l$ on each side of the stiffener. Because the required width also depends on the stiffener thickness and the HSS corner radius, the HSS width must be checked even when the values are tabulated. See the tabulated workable flat dimensions for HSS in Part 1.

The minimum HSS thicknesses associated with the weld strengths of Table 10-8 are given in Table 10-14. If the HSS thickness is less than the minimum tabulated value, the weld strength must be reduced proportionally.

## Through-Plate Connections

In the through-plate connection shown in Figure 10-48, the front and rear faces of the HSS are slotted so that the plate can be passed completely through the HSS and welded to both faces. Through-plate connections should be used when the HSS wall is classified as a slender element $\left[b / t>1.40\left(E / F_{y}\right)^{0.5}\right.$ or 33.7 for $F_{y}=50 \mathrm{ksi}$ for rectangular HSS; $D / t>0.11 E / F_{y}$ for round HSS and Pipe] or does not satisfy the punching shear limit state. A single-plate connection is more economical and should be used if the HSS is neither slender nor inadequate for the punching shear rupture limit state.


Fig. 10-47. Stiffened seated connection to HSS column.

Through-plate connections have the same limit states as single-plate connections and Table 10-10 may be used to determine the size and number of bolts and the plate thickness. The welds, however, are subject to direct shear and may not have to be as large as those for singleplate connections. For equilibrium of the forces in Figure 10-48, the shear in the welds on the front face should not exceed the strength of the pair of welds. The HSS wall strength can be matched to the weld shear strength to determine the minimum thickness, as illustrated in Part 9. If the thickness of the HSS is less than the minimum, the weld strength must be reduced proportionally. Conservatively, the welds on the rear face may be the same size.

When a connection is made on both sides of the HSS with an extended through-plate, the portion of the plate inside the HSS is subject to a uniform bending moment. For long connections, this portion of the plate may buckle in a lateral-torsional mode prior to yielding, unless $H$ is very small. Using a thicker plate to prevent lateral-torsional buckling would restrict the rotational flexibility of the connection. Therefore, it must be recognized that the plate may buckle and that the moment will be shared with the HSS wall in a complex manner. However, if the HSS would be satisfactory for a single-plate connection, the lateraltorsional buckling limit state is not a critical concern involving loss of strength.

## Single-Angle Connections

For fillet welding on the flat of the HSS side, while keeping the center of the beam web in line with the center of the HSS, single-angle connections must be compatible with one-half the workable flat dimension provided in Part 1. Generally, the following HSS widths and thicknesses will work:

$$
\begin{aligned}
& b=8 \text { in. and } t \leq 1 / 4 \mathrm{in.} \\
& b=9 \mathrm{in.} \text { and } t \leq 3 / 8 \mathrm{in.} \\
& b \geq 10 \text { in. and any nominal thickness }
\end{aligned}
$$

Alternatively, single angles can be welded to narrow HSS with a flare-bevel weld.


Fig. 10-48. Shear forces in a through-plate connection.

## DESIGN TABLE DISCUSSION (TABLES 10-13, 10-14A, 10-14B, 10-14C AND 10-15)

## Table 10-13. Minimum Inside Radius for Cold-Bending

Table $10-13$ is a design aid providing generally accepted minimum inside-bending radius for a given plate thickness, $t$, for various grades of steel. Values are for bend lines transverse to the direction of final rolling (Brockenbrough, 2006). When bend lines are parallel to the direction of final rolling, the tabular values should be increased by $50 \%$. When bend lines are longer than 36 in., all radii may have to be increased if problems in bending are encountered.

## Table 10-14A. Clearances for All-Bolted Skewed Connections

Table $10-14 \mathrm{~A}$ is a design aid providing clearance dimensions for skewed bent double-angle connections and double and single-bent plate all-bolted connections, and specifies beam setbacks and gages. Since these dimensions are based on the maximum material thicknesses and fastener sizes indicated, it is suggested that in cases where many duplicate connections with less than maximum material or fasteners are required, savings can be realized if these dimensions are developed from specific bevels, beam sizes and fitting thicknesses.

## Table 10-14B. Clearances for Bolted/Welded Skewed Connections

Table 10-14B is a design aid providing clearance dimensions, beam setbacks and gages for skewed bent double-angle connections and double and single-bent plate bolted/welded connections. Table 10-13B also specifies the dimension $A$ which is added to the fillet weld size, $S$, to compensate for the root opening for skewed end-plate connections. This table is based conservatively on a gap of $1 / 8 \mathrm{in}$. For beam webs beveled to the appropriate skew, values of $H_{1}$ for the entire table are valid and $A=0$.

## Table 10-14C. Welding Details for Skewed Single-Plate Connections

Table 10-14C is one acceptable design aid providing weld information for skewed singleplate shear connections. Additionally, this table provides clearances and dimensions for groove-welded single-plate connections without backing bars for skews greater than $30^{\circ}$; refer to AWS D1.1/D1.1M for prequalified welds for both types of joints. The weld between the single plate and the support will develop the strength of either $36-\mathrm{ksi}$ or $50-\mathrm{ksi}$ plate.

## Table 10-15. Required Length and Thickness for Stiffened Seated Connections to HSS

Table $10-15$ is a design aid for stiffened seated connections to HSS. Specific limits are based on the yield-line mechanism limit state of the HSS wall. Some values for small connection lengths, $l$, and large HSS widths, $B$, have been reduced to meet the limit state for a line load with a width of $0.4 l$ across the HSS, per AISC Specification Section K1.

ASTM Designation ${ }^{2}$	mum Co	side Rad Bending ${ }^{1}$		$R(t)$   radius as a of plate s
	Thickness, $t$, in.			
	Up to 3/4	Over 3/4 to 1	Over 1 to 2	Over 2
A36, A572-42	$11 / 2 t$	$11 / 2 t$	$11 / 2 t$	$2 t$
$\begin{gathered} \text { A242, A529-50, A529-55, } \\ \text { A572-50, A588, A992 } \end{gathered}$	$11 / 2 t$	$11 / 2 t$	$2 t$	$2^{1 / 2} t$
A572-55, A852	$11 / 2 t$	$11 / 2 t$	$2^{1 / 2} t$	$3 t$
A572-60, A572-65	$11 / 2 t$	$11 / 2 t$	$3 t$	$31 / 2 t$
A514	$13 / 4 t$	21/4t	$41 / 2 t$	51/2t
${ }^{1}$ Values are for bend lines perpendicular to direction of final rolling. If bend lines are parallel to final rolling direction, multiply values by 1.5 .   ${ }^{2}$ The grade designation follows the dash; where no grade is shown, all grades and/or classes are included.				

The design procedure for stiffened seated connections to W-shape column webs (Sputo and Ellifritt, 1991) includes a yield limit state based on an analysis by Abolitz and Warner (1965). This has been applied to the HSS wall which is also supported on two edges. However, since the HSS side supports are the same thickness rather than much heavier, as in the case of W-shape column flanges compared to the column web, the equation for rotationally free edge supports has been used instead of fixed edge supports (Abolitz and Warner, 1965).

The strength of the connection is obtained by multiplying the tabulated value for a particular HSS width and stiffener length by the square of the HSS thickness and dividing by the width of the seat. For combinations of $B$ and $l$ that are not listed in Table 10-15, the HSS does not have sufficient flat width to accommodate a weld to the seat that is $0.2 l$ on each side of the stiffener. Since the required width also depends on the stiffener thickness and the HSS corner radius, the HSS width must be checked even when the values are tabulated. See the tabulated workable flat dimensions for HSS in Part 1.

Table 10-8 is applicable to all member types for stiffened seated connections. The minimum HSS thicknesses associated with the weld strengths of Table 10-8 are given in Table $10-15$. If the HSS thickness is less than the minimum tabulated value, the weld strength must be reduced proportionally.

Interpolation between values in this table may produce an incorrect result.

## Table 10-14A Clearances for All-Bolted Skewed Connections

Values given are for webs up to $3 / 4$ in. thick, angles up to $5 / 8$ in. thick, and bent plates up to $1 / 2$ in. thick. Bolts are either $7 / 8$-in. diameter or 1 in . diameter, as noted. Values will be conservative for material thinner than the maximums listed, or for work with smaller bolts, and may be reduced to suit conditions by calculation or layout. For thicker material or larger bolts, check entering, driving, and tightening clearances and increase $D$ and bolt gages as necessary. All dimensions are in inches. Enter bolts as shown.


## Table 10-14B Clearances for Bolted/Welded Skewed Connections

Values given are for webs up to $3 / 4$ in. thick, angles up to $5 / 8$ in. thick, and bent plates up to $1 / 2$ in. thick, with bolts 1 in. diameter maximum. Values will be conservative for thinner material and for work with smaller bolts, and may be reduced to suit conditions by calculation or layout. For thicker material or larger bolts, check entering and tightening clearances and increase beam setback $D$ and bolt gages as necessary. Enter bolts as shown. All dimensions are in inches.



Recommended range of skews

Double bent plates


Min. radius of cold bend for A 36 steel up to $1 / 2$ in. thick. For other bends see Table 10-13

Bevel	$D$	$H_{1}$	$H_{2}$
Over 3 to 4	$c+5 / 8$	$31 / 4$	$23 / 4$
Over 4 to 5	$c+11 / 16$	$31 / 2$	$21 / 2$
Over 5 to 6	$c+3 / 4$	$33 / 4$	$21 / 4$
Over 6 to 7	$c+13 / 16$	4	$21 / 4$
Over 7 to 8	$c+7 / 8$	$41 / 4$	$21 / 4$

$$
C=\frac{t_{w}}{2}+1 / 16^{\prime \prime}
$$

$\qquad$


## Table 10-14B (continued) Clearances for Bolted/Welded Skewed Connections

Values given are for material and bolt sizes noted below. See "Shear End-Plate Connections" in Part 10 for proportioning these connections. $S$ indicates weld size required for strength, or a size suitable to the thickness of material. When the beam web is cut square, only that portion of the table above the heavy lines is applicable. Dimension $A$ is added to the weld size to compensate for the root opening caused by the skew. When the beam web is beveled to the required skew, values of $H_{1}$ for the entire table are valid, and $A=0$. In either case, where weld strength is critical, increase the weld size to obtain the required throat dimension. Enter bolts as shown. All dimensions are in inches.


End plates

Bevel	$t=1 / 4$		$t=5 / 16$		$t=3 / 8$		$t=7 / 16$		$t=1 / 2$		$t=5 / 8$		$t=3 / 4$	
	$H_{1}$	A	$\mathrm{H}_{1}$	A	$\mathrm{H}_{1}$	A	$\mathrm{H}_{1}$	A	$H_{1}$	A	$H_{1}$	A	$H_{1}$	A
Up to $15 / 8$	13/4	0	13/4	0	$13 / 4$	$1 / 16$	13/4	$1 / 16$	13/4	$1 / 16$	17/8	1/8	17/8	1/8
Over $15 / 8$ to $21 / 8$	13/4	0	$13 / 4$	$1 / 16$	17/8	$1 / 16$	17/8	$1 / 16$	17/8	$1 / 8$	2	1/8	2	1/8
Over $21 / 8$ to $31 / 4$	17/8	$1 / 16$	17/8	1/8	2	$1 / 8$	2	1/8	2	1/8	21/8	0	21/8	0
Over $31 / 4$ to $43 / 8$	21/8	1/8	21/8	1/8	21/8	1/8	21/8	0	21/4	0	21/4	0	23/8	0
Over $43 / 8$ to $55 / 8$	21/4	1/8	21/4	1/8	23/8	0	23/8	0	23/8	0	21/2	0	$21 / 2$	0
Over $55 / 8$ to $615 / 16$	21/2	1/8	21/2	0	21⁄2	0	2112	0	25/8	0	25/8	0	23/4	0

Bolts: $7 / 8$-in.-diameter maximum
End plate thickness: $3 / 8$-in. maximum
Supporting web thickness: $3 / 4$-in. maximum
Use of fillet welds is limited to connections with bevels of $6^{15} / 16$ in 12 and less.
For greater bevels consider use of double or single bent plates.

Table 10-14C   Weld Details for Skewed Single-Plate Connections			
5/16- and $3 / 8$-in. Plate Thickness ${ }^{*}$			
For $\theta \leq 14.7^{\circ}$ from Perpendicular	For $14.7^{\circ}<\theta \leq 30^{\circ}$ from Perpendicular		
For $30^{\circ}<\theta<45^{\circ}$ from Perpendicular	Alternative for $\theta \leq 45^{\circ}$ from Perpendicular		
*Satisfies single-plate weld requirements for these thicknesses.			





HSS Wall Strength Factor, $R_{u} W / t^{2}$ or $R_{a} W / t^{2}$, kip/in.												
$l, \mathrm{in}$.	HSS Width, $B$, in.											
	10		12		14		16		18		20	
	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
6	534	802	552	830	561	843	491	737	437	656	393	590
7	614	922	625	940	644	968	667	1000	594	892	535	803
8	700	1050	704	1060	717	1080	736	1110	759	1140	699	1050
9	793	1190	787	1180	794	1190	809	1220	828	1240	851	1280
10	893	1340	876	1320	876	1320	885	1330	901	1350	920	1380
11	1000	1500	971	1460	962	1450	965	1450	976	1470	993	1490
12	1120	1680	1070	1610	1050	1580	1050	1580	1060	1590	1070	1600
13	1240	1870	1180	1770	1150	1730	1140	1710	1140	1710	1150	1720
14	1370	2070	1290	1940	1250	1880	1230	1850	1220	1840	1230	1840
15	1520	2280	1410	2120	1360	2040	1330	1990	1310	1980	1310	1970
16	1670	2510	1540	2320	1470	2210	1430	2150	1410	2120	1400	2100
17	1830	2760	1680	2520	1590	2390	1540	2310	1510	2260	1490	2240
18	2010	3020	1820	2740	1710	2570	1650	2470	1610	2420	1590	2380
19	2190	3300	1970	2970	1840	2770	1760	2650	1710	2580	1680	2530
20	2390	3600	2130	3210	1980	2980	1880	2830	1820	2740	1790	2680
21			2300	3460	2120	3190	2010	3020	1940	2910	1890	2840
22			2480	3730	2280	3420	2140	3220	2060	3090	2000	3010
23			2670	4020	2440	3660	2280	3430	2180	3280	2120	3180
24			2870	4310	2600	3910	2430	3650	2310	3480	2230	3360
25			3080	4630	2780	4170	2580	3880	2450	3680	2360	3540
26					2960	4450	2740	4110	2590	3890	2480	3730
27					3150	4730	2900	4360	2730	4110	2610	3930
28					3350	5030	3070	4620	2880	4330	2750	4130
29					3560	5340	3250	4890	3040	4570	2890	4340
30					3770	5660	3440	5160	3200	4810	3040	4560
31							3630	5450	3370	5070	3190	4790
32							3830	5750	3540	5330	3340	5020
Required HSS Thickness												
Weld Size, in.							Min. HSS Thickness, in.					
1/4							0.224					
5/16							0.280					
$3 / 8$							0.336					
7/16							0.392					
$1 / 2$							0.448					
$5 / 8$							0.560					


Table 10-15 (continued)   Required Length and Thickness for Stiffened Seated Connections to HSS												
HSS Wall Strength Factor, $R_{U} W / t^{2}$ or $R_{a} W / t^{2}$, kip/in.												
$l$, in.	HSS Width, $B$, in.											
	22		24		26		28		30		32	
	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
6	357	536	328	492	302	454	281	421	262	393	246	369
7	486	730	446	669	412	618	382	574	357	535	334	502
8	635	953	582	874	537	807	499	749	466	699	437	656
9	804	1210	737	1110	680	1020	632	948	590	885	553	830
10	943	1420	910	1370	840	1260	780	1170	728	1090	682	1020
11	1010	1520	1030	1560	1020	1530	944	1420	881	1320	826	1240
12	1080	1630	1100	1660	1130	1690	1120	1690	1050	1570	983	1470
13	1160	1740	1180	1770	1200	1800	1220	1830	1230	1850	1150	1730
14	1240	1860	1250	1880	1270	1910	1290	1940	1310	1970	1330	2010
15	1320	1980	1330	2000	1340	2020	1360	2040	1380	2070	1400	2110
16	1400	2100	1410	2120	1420	2130	1430	2160	1450	2180	1470	2210
17	1490	2230	1490	2240	1500	2250	1510	2270	1530	2290	1540	2320
18	1580	2370	1570	2370	1580	2370	1590	2390	1600	2410	1620	2430
19	1670	2510	1660	2500	1660	2500	1670	2510	1680	2520	1690	2540
20	1760	2650	1750	2630	1750	2630	1750	2630	1760	2640	1770	2660
21	1860	2800	1850	2770	1840	2760	1840	2760	1840	2770	1850	2780
22	1960	2950	1940	2920	1930	2900	1920	2890	1920	2890	1930	2900
23	2070	3110	2040	3070	2020	3040	2010	3030	2010	3020	2010	3030
24	2180	3280	2140	3220	2120	3190	2110	3170	2100	3160	2100	3150
25	2290	3450	2250	3380	2220	3340	2200	3310	2190	3290	2190	3290
26	2410	3620	2360	3540	2320	3490	2300	3450	2280	3430	2280	3420
27	2530	3800	2470	3710	2430	3650	2400	3600	2380	3570	2370	3560
28	2650	3990	2590	3890	2540	3810	2500	3760	2480	3720	2460	3700
29	2780	4180	2700	4060	2650	3980	2610	3920	2580	3870	2560	3840
30	2920	4380	2830	4250	2760	4150	2710	4080	2680	4030	2650	3990
31	3050	4590	2950	4440	2880	4330	2820	4250	2780	4180	2760	4140
32	3190	4800	3080	4630	3000	4510	2940	4420	2890	4350	2860	4300
Required HSS Thickness												
Weld Size, in.							Min. HSS Thickness, in.					
1/4							0.224					
5/16							0.280					
$3 / 8$							0.336					
7/16							0.392					
1/2							0.448					
5/8							0.560					

## PART 10 REFERENCES

Abolitz, A.L. and Warner, M.E. (1965), "Bending Under Seated Connections," Engineering Journal, AISC, January, pp. 1-5.
Astaneh, A., Call, S.M. and McMullin, K.M. (1989), "Design of Single-Plate Shear Connections," Engineering Journal, AISC, Vol. 26, No. 1, pp. 21-32.
Brockenbrough, R.L. (2006), Development of Fabrication Guidelines for Cold Bending of Plates, Engineering Journal, AISC, Vol. 43, No. 1, pp. 49-56.
Carter, C.J., Thornton, W.A. and Murray, T.M. (1997), "Discussion-The Behavior and Load-Carrying Capacity of Unstiffened Seated Beam Connections," Engineering Journal, AISC, Vol. 34, No. 4, pp. 151-156.
Ellifritt, D.S. and Sputo, T. (1999), "Design Criteria for Stiffened Seated Connections to Column Webs," Engineering Journal, AISC, Vol. 36, No. 4, pp. 160-167.
Kulak, G.L. (2002), High Strength Bolts-A Primer For Structural Engineers, Design Guide 17, AISC, Chicago, IL.
Kulak, G.L. and Green, D.L. (1990), "Design of Connectors in Web-Flange Beam or Girder Splices," Engineering Journal, AISC, Vol. 27, No. 2, pp. 41-48.
Muir, L.S. and Hewitt, C.M. (2009), "Design of Unstiffened Extended Single-Plate Shear Connections," Engineering Journal, AISC, Vol. 46, No. 2, pp. 67-79.
Muir, L.S. and Thornton, W.A. (2011), "The Development of a New Design Procedure for Conventional Single-Plate Shear Connections," Engineering Journal, AISC, Vol. 48, No. 2, pp. 141-152.
Roeder, C.W. and Dailey, R.H. (1989), "The Results of Experiments on Seated Beam Connections," Engineering Journal, AISC, Vol. 26, No. 3, pp. 90-95.
Salmon, C.G., Johnson, J.E. and Malhas, F.A. (2009), Steel Structures: Design and Behavior, 5th Ed., Prentice Hall, Upper Saddle River, NJ.
Sherman, D.R. (1996), "Designing With Structural Tubing," Engineering Journal, AISC, Vol. 33, No. 3, pp. 101-109.
Sherman, D.R. and Ghorbanpoor, A. (2002), "Design of Extended Shear Tabs," Final Report to the American Institute of Steel Construction, AISC.
Sputo, T. and Ellifritt, D.S. (1991), "Proposed Design Criteria for Stiffened Seated Connections to Column Webs," Proceedings of the 1991 National Steel Construction Conference, AISC, pp. 8.1-8.26.
Sumner, E.A. (2003), "North Carolina State Research Report on Single Plate Shear Connections," Report to the American Institute of Steel Construction, AISC.
Thornton, W.A. and Fortney, P. (2011), "On the Need for Stiffeners for and the Effect of Lap Eccentricity on Extended Shear Tabs," Engineering Journal, AISC, Vol. 48, No. 2, pp. 117-125.

## PART 11

## DESIGN OF PARTIALLY RESTRAINED MOMENT CONNECTIONS

SCOPE ..... 11-2
LOAD DETERMINATION ..... 11-2
Strength ..... 11-2
Stability ..... 11-3
FLANGE-ANGLE PR MOMENT CONNECTIONS ..... 11-3
FLANGE-PLATED PR MOMENT CONNECTIONS ..... 11-5
PART 11 REFERENCES ..... 11-6

## SCOPE

The specification requirements and other design considerations summarized in this Part apply to the design of partially restrained moment connections. For the design of simple shear connections, see Part 10. For the design of fully restrained moment connections, see Part 12.

## LOAD DETERMINATION

The behavior of partially restrained (PR) moment connections is intermediate in degree between the flexibility of simple shear connections and the full rigidity of fully restrained (FR) moment connections. AISC Specification Section B3.4b(b), Partially Restrained (PR) Moment Connections, defines PR connections as ones that transfer moment but for which the rotation between connected members is not negligible. When used, the analytical model of the PR connection must include the force-deformation characteristics of the specific connection. For further information on the use of PR moment connections, see Geschwindner (1991), Nethercot and Chen (1988), Gerstle and Ackroyd (1989), Deierlein et al. (1990), Goverdhan (1983), and Kishi and Chen (1986).

As an alternative, flexible moment connections (FMC) may be used as a simplified approach to PR moment connection design (Geschwindner and Disque, 2005), particularly for preliminary design. Using FMC, any end restraint that the connection may provide to the girder is assumed zero for gravity load because of the uncertainty of that restraint after repeated loading. The beam and its web connections are thus designed as simple, considering only the gravity loads. For lateral loads, the connection is assumed to behave as an FR moment connection for analysis and the full lateral load is carried by the assigned lateral frames. The resulting flexible moment connections are then designed as "fully restrained" for the calculated required strength due to lateral loads only.

## Strength

With PR moment connections, the full strength of the connection is accompanied by some definite amount of rotation between the connected members. The AISC Specification requires that the structural engineer have a reliable moment-rotation, $M-\theta$, curve before a design can proceed. These $M-\theta$ curves are generally taken directly from the results of multiple connection tests as found in compilations such as those presented by Goverdhan (1983) and Kishi and Chen (1986) or from normalized curves developed from these tests. For information on PR composite connections, see AISC Design Guide 8, Partially Restrained Composite Connections (Leon et al., 1996).

Although the $M-\theta$ curves are generally quite nonlinear in nature, as the connections undergo alternating cycles of loading and unloading, the connection "shakes down" so that its behavior may be modeled essentially as a linear relationship. This "shakedown" process is fully described in Rex and Goverdhan (2002) and Geschwindner and Disque (2005). Both the nonlinear behavior and the shakedown behavior of the connection must be included in the determination of the connection strength and stiffness for design.

PR moment connections deliver concentrated forces to the flanges of columns that must be accounted for in the design of the column and column panel-zone per AISC Specification Section J10. Either the column size can be selected with adequate flange and
web thicknesses to eliminate the need for column stiffening, or transverse stiffeners and/or web doubler plates can be provided. For further information, refer to AISC Design Guide 13, Stiffening of Wide-Flange Columns at Moment Connections: Wind and Seismic Applications (Carter, 1999).

## Stability

Stability and second-order effects for frames that include PR moment connections are evaluated by the same methods as provided in the AISC Specification for frames with simple pin connections and FR moment connections. These are the direct analysis method of Chapter C and the effective length and the first-order analysis methods of Appendix 7. Although the analysis and design of frames with PR moment connections may be more complex than frames with simple or FR moment connections, there may be situations where using the exact behavior of the connection will be advantageous to the designer.

For additional information on designing PR moment frames for stability, see the work of Chen and Lui (1991) and Chen et al. (1996).

## FLANGE-ANGLE PR MOMENT CONNECTIONS

Flange-angle PR moment connections are made with top and bottom angles and a simple shear connection.

The available strength of a flange-angle PR moment connection is determined from the applicable limit states for the bolts (see Part 7), welds (see Part 8), and connecting elements (see Part 9). In all cases, the available strength, $\phi R_{n}$ or $R_{n} / \Omega$, must equal or exceed the required strength, $R_{u}$ or $R_{a}$.

The tensile force is carried to the angle by the flange bolts, with the angle assumed to deform as illustrated in Figure 11-1. A point of inflection is assumed between the bolt gage line and the face of the connection angle, for use in calculating the local bending moment and the corresponding required angle thickness. The effect of prying action must also be considered.

The strength of this type of connection is often limited by the available angle thickness and the maximum number of fasteners that can be placed on a single gage line of the vertical

(a)

(b)

(c)

Fig. 11-1. Partially restrained moment connection behavior.
leg of the connection angle at the tension flange. Figure 11-2 illustrates the column flange deformation and shows that only the fasteners closest to the column web are fully effective in transferring forces.

(a)

(b)

Fig. 11-2. Illustration of deformations in partially restrained moment connections.


Fig. 11-3. Flange-plated partially restrained moment connections.

## FLANGE-PLATED PR MOMENT CONNECTIONS

Originally proposed by Blodgett (1966), and illustrated in Figure 11-3, a flange-plated PR moment connection consists of a simple shear connection and top and bottom flange plates that connect the flanges of the supported beam to the supporting column. These flange plates are welded to the supporting column and may be bolted or welded to the flanges of the supported beam. An unwelded length of $1 \frac{1}{2}$ times the flange-plate width, $b_{A}$, is normally assumed to permit the elongation of the plate necessary for PR moment connection behavior. Other flange-plated details are illustrated in Figures 11-4(a) and 11-4(b).

The available strength of a flange plated PR moment connection is determined from the applicable limit states for the bolts (see Part 7), welds (see Part 8), and connecting elements


Fig. 11-4. Typical flange-plated partially restrained moment connections.
(see Part 9). In all cases, the available strength, $\phi R_{n}$ or $R_{n} / \Omega$, must equal or exceed the required strength, $R_{u}$ or $R_{a}$.

The shop and field practices for flange-plated FR moment connections (see Part 12) are equally applicable to flange-plated PR moment connections.

## PART 11 REFERENCES

Blodgett, O.W. (1966), Design of Welded Structures, James F. Lincoln Arc Welding Foundation, Cleveland, OH.
Carter, C.J. (1999), Stiffening of Wide-Flange Columns at Moment Connections: Wind and Seismic Applications, Design Guide 13, AISC, Chicago, IL.
Chen, W.F., Goto, Y. and Liew, J.Y.R. (1996), Stability Design of Semi-Rigid Frames, John Wiley and Sons, Inc., New York, NY.
Chen, W.F. and Lui, E.M. (1991), Stability Design of Steel Frames, CRC Press, Boca Raton, FL.
Deierlein, G.G, Hsieh, S.H. and Shen, Y.J. (1990), "Computer-Aided Design of Steel Structures with Flexible Connections," Proceedings, National Steel Construction Conference, Kansas City, MO, AISC, pp. 9.1-9.21.
Gerstle, K.H. and Ackroyd, M.H. (1989), "Behavior and Design of Flexibly Connected Building Frames," Proceedings, National Steel Construction Conference, Nashville, TN, AISC, pp. 1.1-1.28.
Geschwindner, L.F. (1991), "A Simplified Look at Partially Restrained Connections," Engineering Journal, AISC, Vol. 28, No. 2, pp. 73-78.
Geschwindner, L.F. and Disque, R.O. (2005), "Flexible Moment Connections for Unbraced Frames Subject to Lateral Forces-A Return to Simplicity," Engineering Journal, AISC, Vol. 42, No. 2, pp. 99-112.
Goverdhan, A.V. (1983), "A Collection of Experimental Moment Rotation Curves and Evaluation of Prediction Equations for Semi-Rigid Connections," Master of Science Thesis, Vanderbilt University, Nashville, TN.
Kishi, N. and Chen, W.F. (1986), "Database of Steel Beam-to-Column Connections," CE-STR-86-26, Purdue University, School of Engineering, West Lafayette, IN.
Leon, R.T., Hoffman, J.J. and Staeger, T. (1996), Partially Restrained Composite Connections, Design Guide 8, AISC, Chicago, IL.
Nethercot, D.A. and Chen, W.F. (1988), "Effects of Connections on Columns," Journal of Constructional Steel Research, Elsevier, pp. 201-239.
Rex, C.O. and Goverdhan, A.V. (2002), "Design and Behavior of a Real PR Building," Connections in Steel Structures IV: Behavior Strength and Design, Proceedings of the Fourth Workshop on Connections in Steel Structures, Roanoke, VA, October 22-24, 2000, AISC, pp. 94-105.

## PART 12 <br> DESIGN OF FULLY RESTRAINED MOMENT CONNECTIONS

SCOPE ..... 12-2
FR MOMENT CONNECTIONS ..... 12-2
Load Determination ..... 12-2
Design Checks ..... 12-3
Temporary Support During Erection ..... 12-3
Welding Considerations for Fully Restrained Moment Connections ..... 12-4
FR CONNECTIONS WITH WIDE-FLANGE COLUMNS ..... 12-4
Flange-Plated FR Moment Connections ..... 12-4
Directly Welded Flange FR Moment Connections ..... 12-7
Extended End-Plate FR Moment Connections ..... 12-8
Shop and Field Practices ..... 12-9
Design Assumptions ..... 12-10
FR MOMENT SPLICES ..... 12-11
Location of Moment Splices ..... 12-11
Force Transfer in Moment Splices ..... 12-11
Flange-Plated FR Moment Splices ..... 12-11
Directly Welded Flange FR Moment Splices ..... 12-13
Extended End-Plate FR Moment Splices ..... 12-14
SPECIAL CONSIDERATIONS ..... 12-14
FR Moment Connections to Column Webs ..... 12-14
Recommended Details ..... 12-15
Ductility Considerations ..... 12-16
FR Moment Connections Across Girder Supports ..... 12-21
Top Flange Connection ..... 12-21
Bottom Flange Connection ..... 12-21
Web Connection ..... 12-21
FR CONNECTIONS WITH HSS ..... 12-23
HSS Through-Plate Flange-Plated FR Moment Connections ..... 12-23
HSS Cut-Out Plate Flange-Plated FR Moment Connections ..... 12-24
Design Considerations for HSS Directly Welded FR Moment Connections ..... 12-25
HSS Columns Above and Below Continuous Beams ..... 12-26
HSS Welded Tee Flange Connections ..... 12-27
HSS Diaphragm Plate Connections ..... 12-27
Additional Suggested Details for HSS to Wide-Flange Moment Connections ..... 12-28
PART 12 REFERENCES ..... 12-31

## SCOPE

The specification requirements and other design considerations summarized in this Part apply to the design of fully restrained (FR) moment connections. For the design of simple shear connections, see Part 10. For the design of partially restrained moment connections, see Part 11.

## FR MOMENT CONNECTIONS

## Load Determination

As defined in AISC Specification Section B3.6b, FR moment connections possess sufficient rigidity to maintain the angles between connected members at the strength limit states, as illustrated in Figure 12-1. While connections considered to be fully restrained seldom actually provide for zero rotation between members, the small amount of rotation present is usually neglected and the connection is idealized as one exhibiting zero end rotation.


Fig. 12-1. FR moment connection behavior.

End connections in FR construction are designed to carry the required forces and moments, except that some inelastic but self-limiting deformation of a part of the connection is permitted. Huang et al. (1973) showed that the moment can be resolved into an effective tension-compression couple acting as axial forces at the beam flanges. The flange force, $P_{u f}$ or $P_{a f}$, is determined as:

$\left.$| LRFD | ASD |  |
| :---: | :---: | :---: |
| $P_{u f}=\frac{M_{u}}{d_{m}}$ | $(12-1 \mathrm{a})$ | $P_{a f}=\frac{M_{a}}{d_{m}}$ |$\quad(12-1 \mathrm{~b}) \right\rvert\,$

where
$M_{u}$ or $M_{a}=$ required beam end moment, kip-in.
$d_{m} \quad=$ moment arm between the flange forces, in. (varies for all FR connections and for stiffener design)

Shear is transferred through the beam-web shear connection. Since, by definition, the angle between the beam and column in an FR moment connection remains unchanged under loading, eccentricity can be neglected entirely in the shear connection. Additionally, it is permissible to use bolts in bearing in either standard or slotted holes perpendicular to the line of force. Axial forces, if present, are normally assumed to be distributed uniformly across the beam flange cross-sectional area. However, if the beam-web connection has sufficient stiffness, it can also be assumed to participate in the transfer of beam axial force.

Moment connections deliver concentrated forces to the flanges of columns that must be accounted for in the design of the column and column panel-zone per AISC Specification Section J10. Either the column size can be selected with adequate flange and web thickness to eliminate the need for column stiffening, or transverse stiffeners and/or web doubler plates can be provided. For further information, refer to AISC Design Guide 13, Stiffening of Wide-Flange Columns at Moment Connections: Wind and Seismic Applications (Carter, 1999).

## Design Checks

The available strength of an FR moment connection is determined from the applicable limit states for the bolts (see Part 7), welds (see Part 8), and connecting elements (see Part 9). The effect of eccentricity in the shear connection can be neglected. Additionally, the strength of the supporting column (and thus the need for stiffening) must be checked. In all cases, the available strength, $\phi R_{n}$ or $R_{n} / \Omega$, must equal or exceed the required strength, $R_{u}$ or $R_{a}$.

## Temporary Support During Erection

Bolted construction provides a ready means to erect and temporarily connect members by use of the bolt holes. In contrast, FR moment connections in welded construction must be given special attention so that all pieces affecting the alignment of the welded joint may be erected, fitted and supported until the necessary welds are made. Temporary support can be provided in welded construction by furnishing holes for erection bolts, temporary seats, special lugs or by other means.

The effects of temporary erection aids on the finished structure should be considered, particularly on members subjected to tension loading or fatigue. They should be permitted to remain in place whenever possible since they seldom are reusable and the cost to remove them can be significant. If left in place, erection aids should be located so as not to cause a stress concentration. If, however, erection aids are to be removed, care should be taken so that the base metal is not damaged.

Temporary supports should be sufficient to carry any loads imposed by the erection process, such as the dead weight of the member, additional construction equipment, or material storage. Additionally, they must be flexible enough to allow plumbing of the structure, particularly in tier buildings.

## Welding Considerations for Fully Restrained Moment Connections

Field welding should be arranged for welding in the flat or horizontal position and preference should be given to fillet welds over groove welds, whenever possible. Additionally, the joint detail and welding procedure should be constructed to minimize distortion and the possibility of lamellar tearing.

The typical complete-joint-penetration (CJP) groove weld in a directly welded flange connection for a rolled beam can be expected to shrink about $1 / 16$ in. in the length dimension of the beam when it cools and contracts. Thicker welds, such as for welded plate-girder flanges, will shrink even more-up to $1 / 8 \mathrm{in}$. or $3 / 16 \mathrm{in}$. This amount of shrinkage can cause erection problems in locating and plumbing the columns along lines of continuous beams. A method of calculating weld shrinkage can be found in Lincoln Electric Company (1973). Unnecessarily thick stiffeners with CJP groove welds should be avoided since the accompanying weld shrinkage may contribute to lamellar tearing and distortion.

Weld shrinkage can best be controlled by fabricating the beam longer than required by the amount of the anticipated weld shrinkage. Alternatively, the weld-joint root opening can be increased. For further information, refer to AWS D1.1.

## FR CONNECTIONS WITH WIDE-FLANGE COLUMNS

## Flange-Plated FR Moment Connections

As illustrated in Figure 12-2, a flange-plated FR moment connection consists of a shear connection and top and bottom flange plates that connect the flanges of the supported beam to the supporting column. These flange plates are welded to the supporting column and may be bolted or welded to the flanges of the supported beam.

In a column-flange connection, the flange plates are usually located with respect to the column web centerline. Because of the column-flange mill tolerance on out-of-squareness with the web, it is desirable to shop-fit long flange plates from the theoretical column-web centerline to assure good field fit-up with the beam. Misalignment on short connections, as illustrated in Figure 12-3, can be accommodated by providing oversized holes in the plates. Since mill tolerances in both the beam and the column may cause significant shop and/or field assembly problems, it may be desirable to ship the flange plates loose for field attachment to the column.

(a) Column flange support, bolted flange plates

(b) Column web support, bolted flange plates

Fig. 12-2. Flange-plated FR moment connections.


Fig. 12-2. (continued) Flange-plated FR moment connections.


Note: The offset shown is exaggerated for the purpose of demonstration.

Fig. 12-3. Effect of mill tolerances on flange-plated connections.

## Directly Welded Flange FR Moment Connections

As illustrated in Figure 12-4, a directly welded flange FR moment connection consists of a shear connection and CJP groove welds, which directly connect the top and bottom flanges of the supported beam to the supporting column. Tests have shown that connections with beam flanges welded to column flanges and bearing bolts in horizontal short slots, as shown in Figure 12-4(a), can resist moments greater than the plastic bending moment of the beam, even when combined with shear loads approaching the shear yield strength of the beam (Dowswell and Muir, 2012). Note, in Figure 12-4(b), the stiffener extends beyond the toe of the column flange to eliminate the effects of triaxial stresses.


Fig. 12-4. Directly welded flange FR moment connections.

## Extended End-Plate FR Moment Connections

As illustrated in Figure 12-5, an extended end-plate moment connection consists of a plate of length greater than the beam depth, perpendicular to the longitudinal axis of the supported beam. The end plate is always welded to the web and flanges of the supported beam and bolted to the supporting member. The principal advantage of extended end-plate moment connections is that all welding is done in the shop; thus, the erection process is relatively fast and economical.

Figure 12-6 illustrates three commonly used extended end-plate connections. The connections are classified by the number of bolts at the tension flange and by the presence of end-plate to beam flange stiffeners. The four-bolt unstiffened and stiffened extended endplate connections, 4E and 4ES, of Figure 12-6(a) and 12-6(b) are generally limited by bolt strength and can be designed to develop the flexural design strength of nearly one-half of the available beam sections. Alternatively, the eight-bolt stiffened extended end-plate connection, 8ES, shown in Figure 12-6(c) can generally be designed to develop the flexural design strength of approximately $90 \%$ of the available beam sections.

A complete discussion of the design procedures, along with design examples for the 4E, 4ES and 8ES connections, are found in AISC Design Guide 4, Extended End-Plate Moment Connections-Seismic and Wind Applications (Murray and Sumner, 2003). Design procedures and example calculations for the $4 \mathrm{E}, 4 \mathrm{ES}$ and seven other end-plate connections, which are commonly used in the metal building industry, are found in AISC Design Guide 16, Flush and Extended Multiple-Row Moment End-Plate Connections (Murray and Shoemaker, 2002). The design procedures in both AISC Design Guides 4 and 16 are based on



Fig. 12-5. Extended end-plate FR moment connection.
yield-line analysis for determining end-plate thickness and modified tee-hanger analysis to determine required bolt strength. The procedures in AISC Design Guide 4 are for pretensioned bolts and "thick plates" and result in connections with the smallest possible bolt diameter. For these connections, prying forces are zero. The procedures in AISC Design Guide 16 allow for both "thick plate" and "thin plate" designs. A thin plate design results in the smallest possible end-plate thickness and the maximum bolt prying force. These connections can be designed using either pretensioned or snug-tight bolts, if Group A bolts are used. Group B bolts must be pretensioned. Column side design procedures are included in AISC Design Guide 4. Recommended shop and field erection practices and basic design assumptions follow.

## Shop and Field Practices

End-plate moment connections require extra care in shop fabrication and field erection. The fit-up of extended end-plate connections is sensitive to the column flange conditions and may be affected by column flange-to-web squareness, beam camber, or squareness of the beam end. The beam is frequently fabricated short to accommodate the column overrun tolerances with shims furnished to fill any gaps which might result.

As reported by Meng and Murray (1997), use of weld access holes can result in beam flange cracking, especially in high-seismic applications. If CJP groove welds are used, the weld cannot be inspected over the web; however, because this location is a relative "soft" spot in the connection, the weld can be considered to be an uninspected partial-joint-penetration (PJP) groove weld.

The heat from welding can cause the end plates to distort. Finger shims are an option to address gaps, and tests have shown that the use of finger shims between the end plate and the column flange do not affect the performance of the connection (Sumner et al., 2000). The erector should exercise judgment and may elect to pull the plies together when they are bolted. Using the bolts to pull the plies together in this manner will not reduce the strength of the bolts relative to applied shear or tension.

(a) $4 E$

(b) $4 E S$

(c) $8 E S$

Fig. 12-6. Configurations of extended end-plate FR moment connections.

## Design Assumptions

A summary of the assumptions made in AISC Design Guides 4 and 16 procedures follows:

1. Group A or Group B high-strength bolts of a diameter not greater than $1 \frac{1}{2}$ in. must be used.
2. The specified minimum yield stress of the end-plate material must be 50 ksi or less.
3. The procedures in AISC Design Guide 4 are applicable to static loads and the design of ordinary moment frames under the AISC Seismic Provisions. (Static loadings are considered to be wind, snow, temperature and low-seismic loadings.) For highseismic loading, the procedures in ANSI/AISC 358 supersede those in Design Guide 4. When the procedures in AISC Design Guide 16 are used, only static loading is permitted.
4. The recommended minimum distance from the face of the beam flange to the nearest bolt centerline (the vertical bolt pitch) is the bolt diameter, $d_{b}$, plus $1 / 2 \mathrm{in}$. if the bolt diameter is not greater than 1 in ., and plus $3 / 4$ in. for larger diameter bolts. However, many fabricators prefer to use a standard pitch dimension of 2 in . or $2^{1 / 2} \mathrm{in}$. for all bolt diameters.
5. All of the shear force at a connection is assumed to be resisted by the compression side bolts. End-plate connections need not be designed as slip-critical connections and it is noted that shear is rarely a major concern in the design of moment end-plate connections.
6. The end-plate width effective in resisting the applied moment must be taken as not greater than the beam flange width, $b_{f}$, plus 1 in ., or the end-plate thickness, whichever is greater.
7. The gage of the tension bolts (horizontal distance between vertical bolt lines) must not exceed the beam tension flange width.
8. When CJP groove welds are used, weld access holes should not be used, and the weld between beam flange-to-web fillets should be treated as a PJP groove weld relative to fabrication.
9. For static and low-seismic loadings, normally the flange to end-plate weld is designed to develop the yield strength of the connected beam flange. This is generally done with CJP groove welds but, alternatively, fillet welds or any combination of groove and fillet welds may be used. When the required moment is less than the available flexural strength of the beam, the beam flange to end-plate connections can be designed for the required moment, but it is recommended that the connections be designed for not less than $60 \%$ of the available flexural strength of the beam. This minimum demand is intended to account for uneven stress distributions that can occur across the flange at end-plate welds. Beam web to end-plate welds in the vicinity of the tension bolts should be designed using the same strength requirements as for the design of the flange to end-plate welds.
10. Only the web to end-plate weld between the mid-depth of the beam and the inside face of the beam compression flange, or the weld between the inner row of tension bolts plus two times the bolt diameter, $2 d_{b}$, and the inside face of the beam compression flange, whichever is smaller, is considered effective in resisting the beam end shear.

## FR MOMENT SPLICES

Beams and girders sometimes are spliced in locations where both shear and moment must be transferred across the splice. Per AISC Specification Section J6, the nominal strength of the smaller section being spliced must be developed in groove-welded butt splices. Other types of beam or girder splices must develop the strength required by the actual forces at the point of the splice.

## Location of Moment Splices

A careful analysis is particularly important in continuous structures where a splice may be located at or near the point of inflection. Since this inflection point can and does migrate under service loading, actual forces and moments may differ significantly from those assumed. Furthermore, since loading application and frequency can change in the lifetime of the structure, it is prudent for the designer to specify some minimum strength requirement at the splice. Hart and Milek (1965) propose that splices in fixed-ended beams be located at the one-sixth point of the span and be adequate to resist a moment equal to one-sixth of the flexural strength of the member, as a minimum.

## Force Transfer in Moment Splices

Force transfer in moment splices can be assumed to occur in a manner similar to that developed for FR moment connections. That is, the required shear, $R_{u}$ or $R_{a}$, is primarily transferred through the beam-web connection and the moment can be resolved into an effective tension-compression couple where the required force at each flange, $P_{u f}$ or $P_{a f}$, is determined by:
$\left.\begin{array}{|cc|c|}\hline \text { LRFD } & \text { ASD } \\ \hline P_{u f}=\frac{M_{u}}{d_{m}} & (12-2 \mathrm{a}) & P_{a f}=\frac{M_{a}}{d_{m}}\end{array} \quad(12-2 \mathrm{~b})\right]$
where
$M_{u}$ or $M_{a}=$ required moment in the beam at the splice, kip-in.
$d_{m} \quad=$ moment arm, in. (varies based upon actual connection geometry)
Axial forces, if present, are normally assumed to be distributed uniformly across the beam flange cross-sectional area. However, if the beam-web connection has sufficient stiffness, it can also be assumed to participate in the transfer of beam axial force.

## Flange-Plated FR Moment Splices

Moment splices can be designed as shown in Figure 12-7, to utilize flange plates and a web connection. The flange plates and web connection may be bolted or welded.

The splice and spliced beams should be checked in a manner similar to that described previously under "Flange-Plated FR Moment Connections," except that the web connection should be designed as illustrated previously for shear splices in Part 10 without consideration of eccentricity.

Figure 12-7 illustrates two types of splices-bolted and welded. Figure 12-7(a) illustrates the detail of a bolted flange-plated moment splice. For this case, the flange plates are normally made approximately the same width as the beam flange as shown in Figure 12-7(a).

Alternatively, Figure 12-7(b) illustrates the detail of a welded splice. As shown in Figure 12-7(b), the top plate is narrower and the bottom plate is wider than the beam flange, permitting the deposition of weld metal in the downhand or horizontal position without inverting the beam. While this is a benefit in shop fabrication (the beam does not have to be turned over), it is of extreme importance in the field where the weld can be made in the horizontal instead of the overhead position, since the beam cannot be turned over. This detail also provides tolerance for field alignment, since the joint gap can be opened or closed. When splices are field-welded, some means for temporary support must be provided as discussed previously in "Temporary Support During Erection."

If the beam or girder flange is thick and the flange forces are large, it may be desirable to place additional plates on the insides of the flanges. In a bolted splice [Figure 12-7(a)], the bolts are then loaded in double shear and a more compact joint may result. Note that these additional plates must have sufficient area to develop their share of the double-shear bolt load.

(a) Bolted

(b) Welded

Fig. 12-7. Flange-plated moment splice.

In a welded splice [Figure 12-7(b)], these additional plates must have sufficient area to match the strength of the welds that connect them. Additionally, these plates must be set away from the beam web a distance sufficient to permit deposition of weld metal as shown in Figure 12-8(a). This distance is a function of the beam depth and flange width, as well as the welding equipment to be used. A distance of 2 to $2 \frac{1}{2} \mathrm{in}$. or more may be required for this access. One alternative is to bevel the bottom edge of the plate to clear the beam fillet and place the plate tight to the beam web with a fillet weld as illustrated in Figure 12-8(a). The effects of this bevel on the area of the plate must be considered in determining the required plate width and thickness. Another alternative would be to use unbeveled inclined plates as shown in Figure 12-8(b).

## Directly Welded Flange FR Moment Splices

Moment splices can be designed, as shown in Figure 12-9, to utilize a CJP groove weld connecting the flanges of the members being spliced. The web connection may then be bolted or welded. The splice and spliced beams should be checked in a manner similar to that described previously under "Directly Welded Flange FR Moment Connections," except that the web connection should be designed as illustrated previously for shear splices in Part 10.


Fig. 12-8. Welding clearances for flange-plated moment splices.

Although rare in occurrence, some spliced members must be level on top. Where the depths of these spliced members differ, consideration should be given to the use of a flange plate of uniform thickness for the full length of the shallower member. This avoids the fabrication problems created by an inverted transition.

Frequently, the spliced shapes are different sizes, but of the same shape depth grouping. Because rolled shapes from the same shape depth grouping have the same dimension between the flanges, aligning the inside flange surfaces avoids a more difficult offset transition. Eccentricity resulting from differing flange thicknesses is usually ignored in the design. The web plates normally are aligned to their centerlines.

The groove- (butt-) welded splice preparation shown in Figure 12-9 may be used for either shop or field welding. Alternatively, for shop welding where the beam may be turned over, the joint preparation of the bottom flange could be inverted.

Sloped transitions as shown in Figure 12-10 are only required for splices subject to seismic and dynamic loads. In splices subjected to dynamic or fatigue loading, the backing bar should be removed and the weld should be ground flush when it is normal to the applied stress (AISC, 1977). The access holes should be free of notches and should provide a smooth transition at the juncture of the web and flange.

## Extended End-Plate FR Moment Splices

Moment splices loaded in one direction can be designed as shown in Figure 12-11 where a four-bolt unstiffened end-plate configuration is utilized to connect the tension flanges. It is usually possible to design this type of connection to reach the full plastic moment capacity of the beam, $\phi_{b} M_{p}$ or $M_{p} / \Omega_{b}$.

The splice and spliced beams should be checked in a manner similar to that described previously under "Extended End-Plate FR Moment Connections." The comments in that section are equally applicable to end-plate moment splices.

## SPECIAL CONSIDERATIONS

## FR Moment Connections to Column Webs

It is frequently required that FR moment connections be made to column webs. While the mechanics of analysis and design do not differ from FR moment connections to column


Fig. 12-9. Directly welded flange moment splice.
flanges, the details of the connection design as well as the ductility considerations required are significantly different.

## Recommended Details

When an FR moment connection is made to a column web, it is normal practice to stop the beam short and locate all bolts outside of the column flanges as illustrated in Figure 12-2(b). This simplifies the erection of the beam and permits the use of an impact wrench to tighten all bolts. It is also preferable to locate welds outside the column flanges to provide adequate clearance.


Fig. 12-10. Transitions at tension flange for directly welded flange moment splices, for seismically and dynamically loaded splices.


Fig. 12-11. Extended end-plate moment splice.

## Ductility Considerations

Driscoll and Beedle (1982) discuss the testing and failure of two FR moment connections to column webs: a directly welded flange connection and a bolted flange-plated connection, shown respectively in Figures 12-12(a) and 12-12(b). Although the connections in these tests were proportioned to be critical, they were expected to provide inelastic rotations at full plastic load. Failure occurred unexpectedly, however, on the first cycle of loading; brittle fracture occurred in the tension connection plate at the load corresponding to the plastic moment before significant inelastic rotation had occurred.

Examination and testing after the unexpected failure revealed that the welds were of proper size and quality and that the plate had normal strength and ductility. The following is quoted, with minor editorial changes relative to figure numbers, directly from Driscoll and Beedle (1982).

Calculations indicate that the failures occurred due to high strain concentrations. These concentrations are: (1) at the junction of the connection plate and the column flange tip and (2) at the edge of the butt weld joining the beam flange and the connection plate.

Figure 4 (Figure 12-13 here) illustrates the distribution of longitudinal stress across the width of the connection plate and the concentration of stress in the plate at the column flange tips. It also illustrates the uniform longitudinal stress distribution in the connection plate at some distance away from the connection.

(a) Directly welded flange FR connection

(b) Bolted flange-plated $F R$ connection

Fig. 12-12. Test specimens used by Driscoll and Beedle (1982).

The stress distribution shown represents schematically the values measured during the load tests and those obtained from finite element analysis. ( $\sigma_{o}$ is a nominal stress in the elastic range.) The results of the analyses are valid up to the loading that causes the combined stress to equal the yield point. Furthermore, the analyses indicate that localized yielding could begin when the applied uniform stress is less than one-third of the yield point. Another contribution of the nonuniformity is the fact that there is no back-up stiffener. This means that the welds to the web near its center are not fully effective.

The longitudinal stresses in the moment connection plate introduce strains in the transverse and the through-thickness directions (the Poisson effect). Because of the attachment of the connection plate to the column flanges, restraint is introduced; this causes tensile stresses in the transverse and the through-thickness directions. Thus, referring to Figure 12-13, tri-axial tensile stresses are present along Section A-A and they are at their maximum values at the intersections of Sections A-A and C-C. In such a situation, and when the magnitudes of the stresses are sufficiently high, materials that are otherwise ductile may fail by premature brittle fracture.

The results of nine simulated weak-axis FR moment connection tests performed by Driscoll et al. (1983) are summarized in Figure 12-14. In these tests, the beam flange was simulated by a plate measuring either $1 \mathrm{in} . \times 10 \mathrm{in}$. or $1^{1 / 8} \mathrm{in} . \times 9 \mathrm{in}$. The fracture strength exceeds the yield strength in every case, and sufficient ductility is provided in all cases except for that of Specimen D. Also, if the rolling direction in the first five specimens (A, $\mathrm{B}, \mathrm{C}, \mathrm{D}$ and E ) were parallel to the loading direction, which would more closely approximate an actual beam flange, the ductility ratios for these would be higher. The connections with extended connection plates (i.e., projection of 3 in .), with extensions either rectangular or tapered, appeared equally suitable for the static loads of the tests.


Fig. 12-13. Stress distributions in test specimens used by Driscoll and Beedle (1982).


Fig. 12-14. Results of weak-axis FR moment connection ductility tests performed by Driscoll et al. (1983).


Notes: ${ }^{\text {a } 3 / 4 " \text { dimension is estimated—no dimension provided in Driscoll et al. (1983). }}$
${ }^{\mathrm{b}}$ Ductility ratio estimated. Actual value not known due to malfunction in deflection gauge.

Fig. 12-14 (continued). Results of weak-axis FR moment connection ductility tests performed by Driscoll et al. (1983).

Based on the tests, Driscoll et al. (1983) report that those specimens with extended connection plates have better toughness and ductility and are preferred in design for seismic loads, even though the other connection types (except D ) may be deemed adequate to meet the requirements of many design situations.

In accordance with the preceding discussion, the following suggestions are made regarding the design of this type of connection:

1. For directly welded (butt) flange-to-plate connections, the connection plate should be thicker than the beam flange. This greater area accounts for shear lag and also provides for misalignment tolerances.

AWS D1.1 clause 5.21.3 restricts the misalignment of abutting parts such as this to $10 \%$ of the thickness, with $1 / 8$-in. maximum for a part restrained against bending due to eccentricity of alignment. Considering the various tolerances in mill rolling $( \pm 1 / 8 \mathrm{in}$. for W-shapes), fabrication and erection, it is prudent design to call for the connection plate thickness to be increased to accommodate these tolerances and avoid the subsequent problems encountered at erection. An increase of $1 / 8 \mathrm{in}$. to $1 / 4 \mathrm{in}$. generally is used.

Frequently, this connection plate also serves as the stiffener for a strong-axis FR or PR moment connection. The welds that attach the plate/stiffener to the column flange may then be subjected to combined tensile and shearing, or compression and shearing forces. Vector analysis is commonly used to determine weld size and stress.

It is good practice to use fillet welds whenever possible. Welds should not be made in the column $k$-area.
2. The connection plate should extend at least $3 / 4 \mathrm{in}$. beyond the column flange to avoid intersecting welds and to provide for strain elongation of the plate. The extension should also provide adequate room for runoff tabs when required.
3. Tapering an extended connection plate is only necessary when the connection plate is not welded to the column web (Specimen E, Figure 12-14). Tapering is not necessary if the flange force is always compressive (e.g., at the bottom flange of a cantilevered beam).
4. To provide for increased ductility under seismic loading, a tapered connection plate should extend 3 in. Alternatively, a backup stiffener and an untapered connection plate with 3-in. extension could be used.

Normal and acceptable quality of workmanship for connections involving gravity and wind loading in building construction would tolerate the following:

1. Runoff tabs and backing bars may be left for beams with flange thicknesses greater than 2 in . (subject to tensile stress only) where they are welded to columns or used as tension members in a truss.
2. Welds need not be ground, except as required for nondestructive testing.
3. Connection plates that are made thicker or wider for control of tolerances, tensile stress and shear lag need not be ground or cut to a transition thickness or width to match the beam flange to which they connect.
4. Connection plate edges may be sheared, or plasma- or gas-cut.
5. Intersections and transitions may be made without fillets or radii.
6. Flame-cut edges may have reasonable roughness and notches within AWS tolerances.

If a structure is subjected to loads other than gravity and wind loads, such as seismic, dynamic or fatigue loading, more stringent control of the quality of fabrication and erection with regard to stress risers, notches, transition geometry, welding and testing may be necessary; refer to the AISC Seismic Provisions.

## FR Moment Connections Across Girder Supports

Frequently, beam-to-girder-web connections must be made continuous across a girder-web support, as with continuous beams and with cantilevered beams at wall, roof-canopy or building lines. While the same principles of force transfer discussed previously for FR moment connections may be applied, the designer must carefully investigate the relative stiffness of the assembled members being subjected to moment or torsion and provide the fabricator and erector with reliable camber ordinates.

Additionally, the design should still provide some means for final field adjustment to accommodate the accumulated tolerances of mill production, fabrication and erection; it is very desirable that the details of field connections provide for some adjustment during erection. Figure 12-15 illustrates several details that have been used in this type of connection and the designer may select the desirable components of one or more of the sketches to suit a particular application. Therefore, these components are discussed here as a top flange, bottom flange and web connection.

## Top Flange Connection

As shown in Figure 12-15(a), the top flange connection may be directly welded to the top flange of the supporting girder. Figures 12-15(b) and 12-15(c) illustrate an independent splice plate that ties the two beams together by use of a longitudinal fillet weld or bolts. This tie plate does not require attachment to the girder flange, although it is sometimes so connected to control noise if the connection is subjected to vibration.

## Bottom Flange Connection

When the bottom flanges deliver a compressive force only, the flange forces are frequently developed by directly welding these flanges to the girder web as illustrated in Figure 12-15(a). Figure 12-15(b) illustrates the use of an angle or channel below the beam flange to provide for a horizontal fillet weld. The angle or channel should be wider than the beam flange to allow for downhand welding. Figure 12-15(c) is similar, but uses bolts instead of welds to develop the flange force.

## Web Connection

While a single-plate connection is shown in Figure 12-15(a) and unstiffened seated connections are shown in Figures 12-15(b) and 12-15(c), any of the shear connections in Part 10 may be used. Note that the effect of eccentricity in the shear connection may be neglected.

(a)

(b)

(c)

Fig. 12-15. FR moment connections across girder-web supports.

## FR CONNECTIONS WITH HSS

## HSS Through-Plate Flange-Plated FR Moment Connections

If the required moment transfer to the column is larger than can be provided by the bolted base plate or cap plate, or if the hollow structural section (HSS) width is larger than that of the wide-flange beam, a through-plate moment connection can be used as illustrated in Figure 12-16. It should be noted that through-plate connections are more difficult to erect than the continuous beam connected framing.

(a) Between column splices

(b) At column splice

Fig. 12-16. Through-plate moment connection.

When moment connections are made using through-plates, such as is shown in Figure 12-16, the fabricator must allow adequate clearance between the through-plates and the structural section W-shape so as to allow for the combined effects of mill, fabrication and erection tolerances. The permissible mill tolerances for W -shape variations in depth and squareness are shown in Table 1-22. Shimming in the field during erection with conventional shims or finger shims is the most commonly used method to fill the gap between the W-shape and the through-plate.

Specific design considerations for through-plate moment connections are as follows:

1. In Figures 12-16(a) and 12-16(b), the column moment transfer into the joint is limited by the fillet weld of the HSS to the through-plates. If necessary, a PJP groove weld can be used to improve the connection strength or a CJP groove weld with backing bars can be used.
2. In Figure 12-16, an end plate (base plate) is employed to create a splice in the column. Bolt tension with prying on the base plate will determine its thickness and thus limit the moment that can be transferred to the upper HSS.
3. The cap plate, which is also a flange splice plate, should be at least the same thickness as the base plate so that moment transfer between the HSS columns need not rely on load transfer through the beam flanges. The cap plate may need to be thicker than the HSS base plate due to the combined effect of plate bending from the bolted base plate and plate tension or compression from the wide-flange moment transfer.
4. The welding of the HSS to the cap and through-plate must be examined for both the HSS normal forces and the shear produced from the moment transfer from the W-shape.

## HSS Cut-Out Plate Flange-Plated FR Moment Connections

An alternative to interrupting the HSS for the cover or through-plate is to use a wider plate with a cut-out to slip around the HSS, as illustrated in Figure 12-17. A shear plate can be placed on the front and rear of the HSS faces to provide simple connections for perpendicular beams. The cut-out plate can easily be extended on the near and far sides so that a moment splice is created about both horizontal axes through the joint. The perpendicular framing should ideally be of the same depth for this detail to work well or, in the case of the simple connections, the perpendicular beams could be shallower than the space between the horizontal plates. The cut-out plates are shown as shop-welded; however, they could be field-welded.

For cut-out plate connections, the erection of the beams is more difficult than for continuous beam connections. The beams must be slipped between the two plates and against the single-plate connection with shimming being required, unless the upper plate is fieldwelded in place.

## Design Considerations for HSS Directly Welded FR Moment Connections

It may be possible to accomplish the moment transfer to the HSS without having to use a WT splice plate, end-plates, or diaphragm plates. Significant moment transfer can be achieved by attaching the W-shape directly to the face of the HSS, either by welding or by bolting. These connections are capable of developing the available flexural strength of the HSS. The available flexural strength of the W-shape, however, is seldom achieved because of the flexibility of the HSS wall.

The flexural strength for the welded W-shape is based on the strength of the respective flanges in tension and compression acting against the face of the HSS. This flange force can be considered to be the same as that of a plate with the dimensions of the flange.

Several design limit states exist for the plate length (flange width) oriented perpendicular to the length of the HSS (Packer and Henderson, 1997; Packer et al., 2010).


Fig. 12-17. Exterior plate moment connection.

## HSS Columns Above and Below Continuous Beams

Field connection to the flanges of the beam and of continuous beams can be used at joints where there is an HSS above and below a continuous beam. This situation is illustrated in Figures 12-18 and 12-19. If the column load is not high, stiffener plates may be used to transfer the axial load across the beam as shown in Figure 12-18(a). If the axial load is higher, it may be necessary to use a split HSS instead of plate stiffeners, as shown in Figure 12-18(b). The width of the W-shape must be at least as wide as the HSS and should preferably be wider than the HSS for this detail to be used as shown. It may be necessary to use a rectangular HSS column in order to fit the HSS base plate on the beam flange. The moment transfer to the HSS is limited by the strength of the four bolts, the W-shape flange thickness, and the base and cap plate thicknesses.


Fig. 12-18. HSS columns spliced to continuous beams.


Fig. 12-19. Roof beam continuous over HSS column.

## HSS Welded Tee Flange Connections

If the primary moment transfer is from a wide flange to an HSS, rather than through the HSS to another wide flange, a number of other connection concepts will work well. One of these is to use structural tee sections to transfer the force from the flanges of the wide flange to the walls of the HSS, as is illustrated in Figure 12-20. The tees should be long enough so that a flare bevel-groove (or single J-groove) weld with weld reinforcement can be used to connect the tee to the HSS. An alternative to using the vertical tee stiffener to transfer the beam shear would be to use a single-plate connection, if a deep enough plate can be fitted between the flanges of the tees.

## HSS Diaphragm Plate Connections

If the moment delivered by the W-shape to the HSS cannot be transmitted by other means, then use of diaphragm plates that transfer the flange loads to the sides of the HSS is appropriate. This is illustrated in Figure 12-21. For this moment connection, the limit states are those indicated for the cut-out plate connection plus a check of the weld transferring shear from the flange plate to the HSS wall.


Fig. 12-20. Tee splice plates to HSS column.

## Additional Suggested Details for HSS to Wide-Flange Moment Connections

The details shown in Figures 12-22 and 12-23 are suggested details only and are not intended to prohibit the use of other connection details.


Fig. 12-21. Diaphragm plate splice to exterior HSS column.


Through-plate diaphragm


Interior plate diaphragm


Fig. 12-22. Suggested details.


Note: Shear connections not shown for clarity.

Fig. 12-23. Suggested details.

## PART 12 REFERENCES

AISC (1977), Bridge Fatigue Guide Design and Details, American Institute of Steel Construction, Chicago, IL.
Carter, C.J. (1999), Stiffening of Wide-Flange Columns at Moment Connections: Wind and Seismic Applications, Design Guide 13, AISC, Chicago, IL.
Dowswell, B. and Muir, L. (2012), "Steelwise: Developing Mp," Modern Steel Construction, May.
Driscoll, G.C. and Beedle, L.S. (1982), "Suggestions for Avoiding Beam-to-Column Web Connection Failures," Engineering Journal, AISC, Vol. 19, No. 1, pp. 16-19.
Driscoll, G.C., Pourbohloul, A. and Wang, X. (1983), "Fracture of Moment ConnectionsTests on Simulated Beam-to-Column Web Moment Connection Details," Fritz Engineering Laboratory Report No. 469.7, Lehigh University, Bethlehem, PA.
Hart, W.H. and Milek, W.A. (1965), "Splices in Plastically Designed Continuous Structures," Engineering Journal, AISC, Vol. 2, No. 2, pp. 33-37.
Huang, J.S., Chen, W.F. and Beedle, L.S. (1973), "Behavior and Design of Steel Beam-toColumn Moment Connections," Bulletin 188, October, WRC, New York, NY.
Lincoln Electric Company (1973), The Procedure Handbook of Arc Welding, Lincoln Electric Company, Cleveland, OH.
Murray, T.M. and Shoemaker, W.L. (2002), Flush and Extended Multiple-Row Moment End-Plate Connections, Design Guide 16, AISC and MBMA, Chicago, IL.
Murray, T.M. and Sumner, E.A. (2003), Extended End-Plate Moment Connections-Seismic and Wind Applications, 2nd Ed., Design Guide 4, AISC, Chicago, IL.
Meng, R.L. and Murray, T.M. (1997), "Seismic Performance of Bolted End-Plate Moment Connection," Proceedings, National Steel Construction Conference, Chicago, IL, AISC, pp. 30-1-30-14.
Packer, J.A. and Henderson, J.E. (1997), Hollow Structural Section Connections and Trusses-A Design Guide, 2nd Ed., CISC, Alliston, Ontario, Canada.
Packer, J., Sherman, D. and Leece, M. (2010), Hollow Structural Section Connections, Design Guide 24, AISC, Chicago, IL.
Sumner, E.A., Mays, T.W. and Murray, T.M. (2000), "Cyclic Testing of Bolted Moment End-Plate Connections," Research Report No. CE/VPI-ST-00/03, SAC Report No. SAC/ BD-00/21, submitted to the SAC Joint Venture, May, 327 p.

## PART 13 <br> DESIGN OF BRACING CONNECTIONS AND TRUSS CONNECTIONS

SCOPE ..... 13-2
BRACING CONNECTIONS ..... 13-2
Diagonal Bracing Members ..... 13-2
Force Transfer in Diagonal Bracing Connections ..... 13-3
The Uniform Force Method ..... 13-3
Required Strength ..... 13-3
Special Case 1, Modified Working Point Location ..... 13-5
Special Case 2, Minimizing Shear in the Beam-to-Column Connection ..... 13-7
Special Case 3, No Gusset-to-Column Web Connection ..... 13-7
Analysis of Existing Diagonal Bracing Connections ..... 13-10
Available Strength ..... 13-11
TRUSS CONNECTIONS ..... 13-11
Members in Trusses ..... 13-11
Minimum Connection Strength ..... 13-12
Panel-Point Connections ..... 13-13
Design Checks ..... 13-14
Shop and Field Practices ..... 13-14
Support Connections ..... 13-14
Design Checks ..... 13-15
Shop and Field Practices ..... 13-16
Truss Chord Splices ..... 13-17
Design Considerations for HSS-to-HSS Truss Connections ..... 13-17
PART 13 REFERENCES ..... 13-18

## SCOPE

The specification requirements and other design considerations summarized in this Part apply to the design of concentric bracing connections and truss connections. For additional information on this topic, refer to AISC Design Guide 29, Vertical Bracing ConnectionsAnalysis and Design (Muir and Thornton, 2014).

## BRACING CONNECTIONS

## Diagonal Bracing Members

Diagonal bracing members can be rods, single angles, channels, double angles, tees, W-shapes, or hollow structural sections (HSS) as required by the loads. Slender diagonal bracing members are relatively flexible and, thus, vibration and sag may be considerations. In slender tension-only bracing composed of light angles, these problems can be minimized with "draw" or pretension created by shortening the fabricated length of the diagonal brace from the theoretical length, $L$, between member working points. In general, the following deductions will be sufficient to accomplish the required draw: no deduction for $L \leq 10 \mathrm{ft}$; deduct $1 / 16 \mathrm{in}$. for $10 \mathrm{ft}<L \leq 20 \mathrm{ft}$; deduct $1 / 8 \mathrm{in}$. for $20 \mathrm{ft}<L \leq 35 \mathrm{ft}$; and, deduct ${ }^{3} / 16$ in. for $L>35 \mathrm{ft}$. This approach is not applicable to heavier diagonal bracing members, since it is difficult to stretch these members; vibration and sag are not usually design considerations in heavier diagonal bracing members. In any diagonal bracing member, however, it is permissible to deduct an additional $1 / 32 \mathrm{in}$. when necessary to avoid dimensioning to thirty-seconds of an inch.

When double-angle diagonal bracing members are separated, as at "sandwiched" end connections to gussets, intermittent connections should be provided if the unsupported length of the diagonal brace exceeds the limits specified in the User Note in AISC Specification Section D4 for tension members. For compression members, the provisions of AISC Specification Section E6 must be satisfied. Either bolted or welded stitch-fillers may be provided as stipulated in AISC Specification Section E6. Many fabricators prefer ring or rectangular bolted stitch-fillers when the angles require other punching, as at the end connections. In welded construction, a stitch-filler with protruding ends, as shown in Figure 13-1(a), is preferred because it is easy to fit and weld. The short stitch-filler shown in Figure 13-1(b) is used if a smooth appearance is desired.

When a full-length filler is provided, as in corrosive environments, the maximum spacing of stitch bolts should be as specified in AISC Specification Section J3.5. Alternatively, the edges of the filler may be seal welded.


Fig. 13-1. Welded stitch-fillers.

## Force Transfer in Diagonal Bracing Connections

There has been some discussion as to which of several available analysis methods provides the best means for the safe and economical design and analysis of diagonal bracing connections. To better understand the technical issues, starting in 1981, AISC sponsored extensive computer studies of this connection by Richard (1986). Associated with Richard's work, full-scale tests were performed by Bjorhovde and Chakrabarti (1985), Gross and Cheok (1988), and Gross (1990). Also, AISC and ASCE formed a task group to recommend a design method for this connection. In 1990, this task group recommended three methods for further study; refer to Appendix A of Thornton (1991).

Using the results of the aforementioned full scale tests, Thornton (1991) showed that these three methods yield safe designs, and that of the three methods, the Uniform Force Method [see model 3 of Thornton (1991)] best predicts both the available strength and critical limit state of the connection. Furthermore, Thornton (1992) showed that the Uniform Force Method yields the most economical design through comparison of actual designs by the different methods and through consideration of the efficiency of force transmission. For the above reasons, and also because it is the most versatile method, the Uniform Force Method has been adopted for use in this manual.

## The Uniform Force Method

The essence of the Uniform Force Method is to select the geometry of the connection so that moments do not exist on the three connection interfaces; i.e., gusset-to-beam, gusset-to-column, and beam-to-column. In the absence of moment, these connections may then be designed for shear and/or tension only, hence the origin of the name Uniform Force Method.

## Required Strength

With the control points (c.p.) as illustrated in Figure 13-2 and the working point (w.p.) chosen at the intersection of the centerlines of the beam, column and diagonal brace as shown in Figure 13-2(a), four geometric parameters $e_{b}, e_{c}, \alpha$ and $\beta$ can be identified, where
$e_{b}=$ one-half the depth of the beam, in.
$e_{c}=$ one-half the depth of the column, in. Note that, for a column web support, $e_{c} \approx 0$.
$\alpha=$ distance from the face of the column flange or web to the centroid of the gusset-tobeam connection, in.
$\beta=$ distance from the face of the beam flange to the centroid of the gusset-to-column connection, in.

For the force distribution shown in the free-body diagrams of Figures 13-2(b), 13-2(c) and 13-2(d) to remain free of moments on the connection interfaces, the following expression must be satisfied:

$$
\begin{equation*}
\alpha-\beta \tan \theta=e_{b} \tan \theta-e_{c} \tag{13-1}
\end{equation*}
$$

Since the variables on the right of the equal $\operatorname{sign}\left(e_{b}, e_{c}\right.$ and $\left.\theta\right)$ are all defined by the members being connected and the geometry of the structure, the designer may select values of $\alpha$ and $\beta$ for which the equation is true, thereby locating the centroids of the gusset-to-beam and gusset-to-column connections.

(a) Diagonal bracing connection and external forces

(b) Gusset free-body diagram

(d) Beam free-body diagram
(c) Column free-body diagram
$R_{b}=R_{u b}$ or $R_{a b}$, required end reaction of the beam
$R_{c}=R_{u c}$ or $R_{a c}$, required column axial load above the connection
$A_{b}=A_{u b}$ or $A_{a b}$, required transverse force from adjacent bay
$H=$ horizontal component of the required axial force
$H_{b}=H_{u b}$ or $H_{a b}$, required shear force on the gusset-to-beam connection
$H_{c}=H_{u c}$ or $H_{a c}$, required axial force on the gusset-to-column connection
$V_{b}=V_{u b}$ or $V_{a b}$, required axial force on the gusset-to-beam connection
$V_{c}=V_{u c}$ or $V_{a c}$, required shear force on the gusset-to-column connection
$P=P_{u}$ or $P_{a}$, required axial force
$V=$ vertical component of the required axial force

Fig. 13-2. Force transfer by the Uniform Force Method, work point (w.p.) and control points (c.p.) as indicated.

Once $\alpha$ and $\beta$ have been determined, the required axial and shear forces for which these connections must be designed can be determined from the following equations:

$$
\begin{align*}
V_{c} & =\frac{\beta}{r} P  \tag{13-2}\\
H_{c} & =\frac{e_{c}}{r} P  \tag{13-3}\\
V_{b} & =\frac{e_{b}}{r} P  \tag{13-4}\\
H_{b} & =\frac{\alpha}{r} P \tag{13-5}
\end{align*}
$$

where

$$
\begin{equation*}
r=\sqrt{\left(\alpha+e_{c}\right)^{2}+\left(\beta+e_{b}\right)^{2}} \tag{13-6}
\end{equation*}
$$

The gusset-to-beam connection must be designed for the required shear force, $H_{b}$, and the required axial force, $V_{b}$, the gusset-to-column connection must be designed for the required shear force, $V_{c}$, and the required axial force, $H_{c}$, and the beam-to-column connection must be designed for the required shear:

$$
R_{b}-V_{b}
$$

and the required axial force:

$$
A_{b} \pm\left(H-H_{b}\right)
$$

Note that while the axial force, $P_{u}$ or $P_{a}$, is shown as a tensile force, it may also be a compressive force; were this the case, the signs of the resulting gusset forces would change.

## Special Case 1, Modified Working Point Location

As illustrated in Figure 13-3(a), the working point in Special Case 1 of the Uniform Force Method is chosen at the corner of the gusset; this may be done to simplify layout or for a column web connection. With this assumption, the terms in the gusset force equations involving $e_{b}$ and $e_{c}$ drop out and the interface forces, as shown in Figures 13-3(b), 13-3(c) and 13-3(d), are:

$$
\begin{gather*}
V_{c}=P \cos \theta=V  \tag{13-7}\\
V_{b}=0  \tag{13-8}\\
H_{b}=P \sin \theta=H  \tag{13-9}\\
H_{c}=0 \tag{13-10}
\end{gather*}
$$

The gusset-to-beam connection must be designed for the required shear force, $H_{b}$, and the gusset-to-column connection must be designed for the required shear force, $V_{c}$. Note, however, that the change in working point requires that the beam be designed for the required moment, $M_{b}$, where

$$
\begin{equation*}
M_{b}=H_{b} e_{b} \tag{13-11}
\end{equation*}
$$


(a) Diagonal bracing connection

(b) Gusset free-body diagram

(c) Column free-body diagram

(d) Beam free-body diagram
$R_{b}=R_{u b}$ or $R_{a b}$, required end reaction of the beam
$R_{c}=R_{u c}$ or $R_{a c}$, required column axial load above the connection
$A_{b}=A_{u b}$ or $A_{a b}$, required transverse force from adjacent bay
$H=$ horizontal component of the required axial force
$H_{b}=H_{u b}$ or $H_{a b}$, required shear force on the gusset-to-beam connection
$V_{c}=V_{u c}$ or $V_{a c}$, required shear force on the gusset-to-column connection
$P=P_{u}$ or $P_{a}$, required axial force
$V=$ vertical component of the required axial force

Fig. 13-3. Force transfer, Uniform Force Method Special Case 1.
and the column must be designed for the required moment, $M_{c}$. For an intermediate floor, this is determined as:

$$
\begin{equation*}
M_{c}=\frac{V_{c} e_{c}}{2} \tag{13-12}
\end{equation*}
$$

An example demonstrating this eccentric special case is presented in AISC (1984). This eccentric case was endorsed by the AISC/ASCE task group (Thornton, 1991) as a reduction of the three recommended methods when the work point is located at the gusset corner. While calculations are somewhat simplified, it should be noted that resolution of the required force, $P$, into the shears, $V_{c}$ and $H_{b}$, may not result in the most economical connection.

## Special Case 2, Minimizing Shear in the Beam-to-Column Connection

If the brace force, as illustrated in Figure 13-4(a), were compressive instead of tensile and the required beam reaction, $R_{b}$, were high, the addition of the extra shear force, $V_{b}$, into the beam might exceed the available strength of the beam and require doubler plates or a haunched connection. Alternatively, the vertical force in the gusset-to-beam connection, $V_{b}$, can be limited in a manner that is somewhat analogous to using the gusset itself as a haunch.

As illustrated in Figure 13-4(b), assume that $V_{b}$ is reduced by an arbitrary amount, $\Delta V_{b}$. By statics, the vertical force at the gusset-to-column interface will be increased to $V_{c}+\Delta V_{b}$, and a moment $M_{b}$ will result on the gusset-to-beam connection, where

$$
\begin{equation*}
M_{b}=\left(\Delta V_{b}\right) \alpha \tag{13-13}
\end{equation*}
$$

If $\Delta V_{b}$ is taken equal to $V_{b}$, none of the vertical component of the brace force is transmitted to the beam; the resulting procedure is that presented by AISC (1984) for concentric gravity axes, extended to connections to column flanges. This method was also recommended by the AISC/ASCE task group (Thornton, 1991).

Design by this method may be uneconomical. It is very punishing to the gusset and beam because of the moment, $M_{b}$, induced on the gusset-to-beam connection. This moment will require a larger connection and a thicker gusset. Additionally, the limit state of local web yielding may limit the strength of the beam. This special case interrupts the natural flow of forces assumed in the Uniform Force Method and thus is best used when the beam-tocolumn interface is already highly loaded, independently of the brace, by a high shear, $R_{b}$, in the beam-to-column connection.

## Special Case 3, No Gusset-to-Column Web Connection

When the connection is to a column web and the brace is shallow (as for large $\theta$ ) or the beam is deep, it may be more economical to eliminate the gusset-to-column connection entirely and connect the gusset to the beam only. The Uniform Force Method can be applied to this situation by setting $\beta$ and $e_{c}$ equal to zero, as illustrated in Figure 13-5. Since there is to be no gusset-to-column connection, $V_{c}$ and $H_{c}$ also equal zero. Thus, $V_{b}=V$ and $H_{b}=H$.

If $\bar{\alpha}=\alpha=e_{b} \tan \theta$, there is no moment on the gusset-to-beam interface and the gusset-tobeam connection can be designed for the required shear force, $H_{b}$, and the required axial force, $V_{b}$. If $\bar{\alpha} \neq \alpha=e_{b} \tan \theta$, the gusset-to-beam interface must be designed for the moment, $M_{b}$, in addition to $H_{b}$ and $V_{b}$, where

$$
\begin{equation*}
M_{b}=V_{b}(\alpha-\bar{\alpha}) \tag{13-14}
\end{equation*}
$$


$R_{b}=R_{u b}$ or $R_{u a}$, required end reaction of the beam
$R_{c}=R_{u c}$ or $R_{a c}$, required column axial load above the connection
$A_{b}=A_{u b}$ or $A_{a b}$, required transverse force from adjacent bay
$H=$ horizontal component of the required axial force
$H_{b}=H_{u b}$ or $H_{a b}$, required shear force on the gusset-to-beam connection
$H_{c}=H_{u c}$ or $H_{a c}$, required axial force on the gusset-to-column connection
$V_{b}=V_{u b}$ or $V_{a b}$, required axial force on the gusset-to-beam connection
$V_{c}=V_{u c}$ or $V_{a c}$, required shear force on the gusset-to-column connection
$P=P_{u}$ or $P_{a}$, required axial force
$V=$ vertical component of the required axial force

Fig. 13-4. Force transfer, Uniform Force Method Special Case 2.

(a) Diagonal bracing connection

(b) Gusset free-body diagram

(c) Column free-body diagram

(d) Beam free-body diagram
$R_{b}=R_{u b}$ or $R_{u a}$, required end reaction of the beam
$R_{c}=R_{u c}$ or $R_{a c}$, required column axial load above the connection
$A_{b}=A_{u b}$ or $A_{a b}$, required transverse force from adjacent bay
$H=$ horizontal component of the required axial force
$H_{b}=H_{u b}$ or $H_{a b}$, required shear force on the gusset-to-beam connection
$V_{b}=V_{u b}$ or $V_{a b}$, required axial force on the gusset-to-beam connection
$P=P_{u}$ or $P_{a}$, required axial force
$V=$ vertical component of the required axial force

Fig. 13-5. Force transfer, Uniform Force Method Special Case 3.

The beam-to-column connection must be designed for the required shear force, $R_{b}+V_{b}$.
Note that, since the connection is to a column web, $e_{c}$ is zero and hence $H_{c}$ is also zero. For a connection to a column flange, if the gusset-to-column-flange connection is eliminated, the beam-to-column connection must be a moment connection designed for the moment, $V e_{C}$, in addition to the shear, $V$. Thus, uniform forces on all interfaces are no longer possible.

## Analysis of Existing Diagonal Bracing Connections

A combination of $\alpha$ and $\beta$ which provides for no moments on the three interfaces can usually be achieved when a connection is being designed. However, when analyzing an existing connection or when other constraints exist on gusset dimensions, the values of $\alpha$ and $\beta$ may not satisfy the basic relationship

$$
\begin{equation*}
\alpha-\beta \tan \theta=e_{b} \tan \theta-e_{c} \tag{13-1}
\end{equation*}
$$

When this happens, uniform interface forces will not satisfy equilibrium and moments will exist on one or both gusset edges or at the beam-to-column interface.

To illustrate this point, consider an existing design where the actual centroids of the gusset-to-beam and gusset-to-column connections are at $\bar{\alpha}$ and $\bar{\beta}$, respectively. If the connection at one edge of the gusset is more rigid than the other, it is logical to assume that the more rigid edge takes all of the moment necessary for equilibrium. For instance, the gusset of Figure 13-2 is shown welded to the beam and bolted with double angles to the column. For this configuration, the gusset-to-beam connection will be much more rigid than the gusset-to-column connection.

Take $\alpha$ and $\beta$ as the ideal centroids of the gusset-to-beam and gusset-to-column connections, respectively. Setting $\beta=\bar{\beta}$, the $\alpha$ required for no moment on the gusset-to-beam connection may be calculated as

$$
\begin{equation*}
\alpha=K+\bar{\beta} \tan \theta \tag{13-15}
\end{equation*}
$$

where

$$
\begin{equation*}
K=e_{b} \tan \theta-e_{c} \tag{13-16}
\end{equation*}
$$

If $\alpha \neq \bar{\alpha}$, a moment, $M_{b}$, will exist on the gusset-to-beam connection where

$$
\begin{equation*}
M_{b}=V_{b}(\alpha-\bar{\alpha}) \tag{13-17}
\end{equation*}
$$

Conversely, suppose the gusset-to-column connection were judged to be more rigid. Setting $\alpha=\bar{\alpha}$, the $\beta$ required for no moment on the gusset-to-column connection may be calculated as

$$
\begin{equation*}
\beta=\frac{\bar{\alpha}-K}{\tan \theta} \tag{13-18}
\end{equation*}
$$

If $\beta \neq \bar{\beta}$, a moment, $M_{c}$, will exist on the gusset-to-column connection where

$$
\begin{equation*}
M_{c}=H_{c}(\beta-\bar{\beta}) \tag{13-19}
\end{equation*}
$$

If both connections were equally rigid and no obvious allocation of moment could be made, the moment could be distributed based on minimized eccentricities $\alpha-\bar{\alpha}$ and $\beta-\bar{\beta}$ by minimizing the objective function, $\xi$, where

$$
\begin{equation*}
\xi=\left(\frac{\alpha-\bar{\alpha}}{\bar{\alpha}}\right)^{2}+\left(\frac{\beta-\bar{\beta}}{\bar{\beta}}\right)^{2}-\lambda(\alpha-\beta \tan \theta-K) \tag{13-20}
\end{equation*}
$$

In the preceding equation, $\lambda$ is a Lagrange multiplier.
The values of $\alpha$ and $\beta$ that minimize $\xi$ are

$$
\begin{equation*}
\alpha=\frac{K^{\prime} \tan \theta+K\left(\frac{\bar{\alpha}}{\bar{\beta}}\right)^{2}}{D} \tag{13-21}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta=\frac{K^{\prime}-K \tan \theta}{D} \tag{13-22}
\end{equation*}
$$

where

$$
\begin{align*}
& K^{\prime}=\bar{\alpha}\left(\tan \theta+\frac{\bar{\alpha}}{\bar{\beta}}\right)  \tag{13-23}\\
& D=\tan ^{2} \theta+\left(\frac{\bar{\alpha}}{\bar{\beta}}\right)^{2} \tag{13-24}
\end{align*}
$$

## Available Strength

The available strength of a diagonal bracing connection is determined from the applicable limit states for the bolts (see Part 7), welds (see Part 8), and connecting elements (see Part 9). In all cases, the available strength, $\phi R_{n}$ or $R_{n} / \Omega$, must equal or exceed the required strength, $R_{u}$ or $R_{a}$. Note that when the gusset is directly welded to the beam or column, the connection should be designed for the larger of the peak stress and 1.25 times the average stress, but the weld size need not be larger than that required to develop the strength of the gusset. This $25 \%$ increase is recommended to allow adequate redistribution of transverse stresses in the weld group. This adjustment should not be applied to welds that resist only shear forces (Hewitt and Thornton, 2004).

## TRUSS CONNECTIONS

## Members in Trusses

For light loads, trusses are commonly composed of tees for the top and bottom chords with single-angle or double-angle web members. In welded construction, the single-angle and double-angle web members may, in many cases, be welded to the stem of the tee, thus, eliminating the need for gussets. When single-angle web members are used, all web members should be placed on the same side of the chord; staggering the web members causes a torque on the chord, as illustrated in Figure 13-6. Also see "Design Considerations for HSS-to-HSS Truss Connections" at the end of this Part.

Double-angle truss members are usually designed to act as a unit. When unequal-leg angles are used, long legs are normally assembled back-to-back. A simple notation for the angle assembly is LLBB (long legs back-to-back) and SLBB (short legs back-to-back).
Alternatively, the notation might be graphical in nature as $\quad \downarrow$ and $ـ ـ$. For large loads, W-shapes may be used with the web vertical and gussets welded to the flange for the truss connections. Web members may be single angles or double angles, although W -shapes are sometimes used for both chord and web members as shown in Figure 13-7. Heavy shapes in trusses must meet the design and fabrication restrictions and special requirements in AISC Specification Sections A3.1c and A3.1d. With member orientation as shown for the fieldwelded truss joint in Figure 13-7(a), connections usually are made by groove welding flanges to flanges and fillet welding webs directly or indirectly by the use of gussets. Fit-up of joints in this type of construction are very sensitive to dimensional variations in the rolled shapes; fabricators sometimes prefer to use built-up shapes in these cases.

The web connection plate in Figure 13-7(a) is a typical detail. While the diagonal member could theoretically be cut so that the diagonal web would be extended into the web of the chord for a direct connection, such a detail is difficult to fabricate. Additionally, welding access becomes very limited. Note the obvious difficulty of welding the gusset or diagonal directly to the chord web; therefore, this weld is usually omitted.

When stiffeners and doubler plates are required for concentrated flange forces, the designer should consider selecting a heavier section to eliminate the need for stiffening. Although this will increase the material cost of the member, the heavier section will likely provide a more economical solution due to the reduction in labor cost associated with the elimination of stiffening (Ricker, 1992; Thornton, 1992).

## Minimum Connection Strength

In the absence of defined design loads, a minimum required strength of 10 kips for LRFD or 6 kips for ASD should be considered, as noted in AISC Specification Commentary Section J1.1. For smaller elements, a required strength more appropriate to the size and


Fig. 13-6. Staggered web members result in a torque on the truss chord.
use of the part should be used. Additionally, when trusses are shop-assembled or fieldassembled on the ground for subsequent erection, consideration should be given to loads induced during handling, shipping and erection.

## Panel-Point Connections

A panel-point connection connects diagonal and/or vertical web members to the chord member of a truss. These web members deliver axial forces, tensile or compressive, to the truss chord. In bolted construction, a gusset is usually required because of bolt spacing and edge distance requirements. In welded construction, it is sometimes possible to eliminate the need for a gusset.

(a) Shop and field welding


Note: Check vertical and chord for reinforcing requirements.
(b) Shop welding

Fig. 13-7. Truss panel-point connections for $W$-shape truss members.

## Design Checks

The available strength of a panel-point connection is determined from the applicable limit states for the bolts (see Part 7), welds (see Part 8), and connecting elements (see Part 9). In all cases, the available strength, $\phi R_{n}$ or $R_{n} / \Omega$, must exceed the required strength, $R_{u}$ or $R_{a}$.

In the panel-point connection of Figure 13-8, the neutral axes of the vertical and diagonal truss members intersect on the neutral axis of the truss chord. As a result, the forces in all members of the truss are axial. It is common practice, however, to modify working lines slightly from the gravity axes to establish repetitive panels and avoid fractional dimensions less than $1 / 8$ in. or to accommodate a larger panel-point connection or a connection for bot-tom-chord lateral bracing, a purlin, or a sway-frame. This eccentricity and the resulting moment should be considered in the design of the truss chord.

In contrast, for the design of end connections of truss web members consisting of single or double angles or similar members, the center of gravity of the connection need not coincide with the gravity axis of the connected members, as permitted in AISC Specification Section J1.7. This is because tests have shown that there is no appreciable difference in the available strength between balanced and unbalanced connections subjected to static loading. Accordingly, the truss web members and their end connections may be designed for the axial load, neglecting the effect of this minor eccentricity.

## Shop and Field Practices

In bolted construction, it is convenient to use standard gage lines of the angles (see Table 1-7A) as truss working lines; where wider angles with two gage lines are used, the gage line nearest the heel of the angle is the one which is substituted for the gravity axis.

As shown in Figure 13-8, to provide for stiffness in the finished truss, the web members of the truss are extended to near the edge of the fillet of the tee chord ( $k$-dimension). If welded, the required welds are then applied along the heel and toe of each angle, beginning at their ends rather than at the edge of the tee stem.

## Support Connections

A truss support connection connects the ends of trusses to supporting members.


Fig. 13-8. Truss panel-point connection.

## Design Checks

The available strength of a support connection is determined from the applicable limit states for the bolts (see Part 7), welds (see Part 8), and connecting elements (see Part 9). Additionally, truss support connections produce tensile or compressive single concentrated forces at the beam end; the limit states of the available flange strength in local bending and the limit states of the available web strength in local yielding, crippling and compression buckling may have to be checked. In all cases, the available strength, $\phi R_{n}$ or $R_{n} / \Omega$, must exceed the required strength, $R_{u}$ or $R_{a}$.

At the end of a truss supported by a column, all member axes may not intersect at a common point. When this is the case, an eccentricity results. Typically, it is the neutral axis of the column that does not meet at the working point.

If trusses with similar reactions line up on opposite sides of the column, consideration of eccentricity would not be required since any moment would be transferred through the column and into the other truss. However, if there is little or no load on the opposite side of the column, the resulting eccentricity must be considered.

In Figure 13-9, the truss chord and diagonal intersect at a common working point on the face of the column flange. In this detail, there is no eccentricity in the gusset, gusset-tocolumn connection, truss chord, or diagonal. However, the column must be designed for the moment due to the eccentricity of the truss reaction from the neutral axis of the column.

For the truss support connection illustrated in Figure 13-10, this eccentricity results in a moment. Assuming the connection between the members is adequate, joint rotation is resisted by the combined flexural strength of the column, the truss top chord, and the truss diagonal. However, the distribution of moment between these members will be proportional to the stiffness of the members. Thus, when the stiffness of the column is much greater than the stiffness of the other elements of the truss support connection, it is good practice to design the column and gusset-to-column connection for the full eccentricity.


Fig. 13-9. Truss support connection, working point (w.p.) on column face.

Due to its importance, the truss support connection is frequently shown in detail on the design drawing.

## Shop and Field Practices

When a truss is erected in place and loaded, truss members in tension will lengthen and truss members in compression will shorten. At the support connection, this may cause the tension chord of a "square-ended" truss to encroach on its connection to the supporting column. When the connection is shop-attached to the truss, erection clearance must be provided with shims to fill out whatever space remains after the truss is erected and loaded. In field erected connections, however, provision must be made for the necessary adjustment in the connection.

When the tension chord delivers no calculated force to the connection, adjustment can usually be provided with slotted holes. For short spans with relatively light loads, the comparatively small deflections can be absorbed by the normal hole clearances provided for bolted construction. Slightly greater misalignment can be corrected in the field by reaming the holes. If appreciable deflection is expected, the connection may be welded. Alternatively, bolt holes may be field-drilled, but this is an expensive operation which should be avoided if at all possible.

An approximation of the elongation, $\Delta$, can be determined as

$$
\begin{equation*}
\Delta=\frac{P l}{A E} \tag{13-25}
\end{equation*}
$$



Fig. 13-10. Truss-support connection, working point (w.p.) at column centerline.
where
$A=$ gross area of the truss chord, in. ${ }^{2}$
$P=$ axial force due to service loads, kips
$l=$ length, in. ${ }^{2}$
$\Delta=$ elongation, in.
The total change in length of the truss chord is $\Sigma \Delta_{i}$, the sum of the changes in the lengths of the individual panel segments of the truss chord. The misalignment at each support connection of the tension chord is one-half the total elongation.

## Truss Chord Splices

Truss chord splices are expensive to fabricate and should be avoided whenever possible. In general, chord splices in ordinary building trusses are confined to cases where

1. The finished truss is too large to be shipped in one piece;
2. The truss chord exceeds the available material length;
3. The reduction in member size of the chord justifies the added cost of a splice; or
4. A sharp change in direction occurs in the working line of the chord and bending does not provide a satisfactory alternative.

Splices at truss chord ends that are finished to bear should be designed in accordance with AISC Specification Section J1.4.

## Design Considerations for HSS-to-HSS Truss Connections

The connection types covered in Chapter K of the AISC Specification and in AISC Design Guide 24, Hollow Structural Section Connections (Packer et al., 2010a), are only some of the potential configurations of HSS-to-HSS connections.

The structural analysis of HSS trusses should assume either pin-jointed analysis or analysis using web members pin-connected to continuous chord members such that only axial forces exist in the web members. The centerlines of the web members and the chord members should lie in a common plane, and rectangular HSS trusses should have all members oriented with walls parallel to the plane. Angles between the web member(s) and the chord less than $30^{\circ}$ should be avoided. In accordance with AISC Specification Section K3, eccentricities, measured from the intersection between the web member centerlines to the centerline of the chord, can be neglected if the eccentricity is less than or equal to $25 \%$ of the chord depth from the centerline of the chord away from the web members or less than or equal to $55 \%$ of the chord depth from the centerline of the chord toward the web members. Additionally, AISC Specification Chapter K is predicated on HSS truss members having a specified minimum yield strength of less than or equal to 52 ksi and $F_{y} / F_{u}$ of less than or equal to 0.8 .

HSS member sizes are often critical in connection design. Connection design, including weld requirements in AISC Specification Section K5, should be considered during main member selection as the connection limit states may force an increase in the member wall thickness over the main member design thickness. Compression chords should be sized such that the demand-to-capacity ratio is considerably less than one, such that the effects of web members do not cause the face of the chord to be overstressed. At initial design, Packer et
al. (2010b) recommends that chords have thick walls rather than thin walls; web members have thin walls rather than thick walls; web members be wide relative to the chord members, but still able to sit on the "flat" face of the chord section if possible; and gap connections (for K and N situations) are preferred to overlap connections because the members are easier to prepare, fit and weld. Where a gap is provided between the web members, the gap should be equal to or greater than the sum of the thicknesses of the web members to facilitate welding. Where web members are overlapped, the thicker web member should run through to the chord, and the overlap length (measured along the connecting face of the chord beneath the two web members) should be between $25 \%$ and $100 \%$ (inclusive) of the projected length of the overlapping web member on the chord. Members should be sized to satisfy the limits of applicability shown in Tables K3.1A and K3.2A of the AISC Specification.

For reinforced connections and connections not covered in the AISC Specification, refer to CIDECT Design Guide 3, Design Guide for Rectangular Hollow Section (RHS) Joints under Predominantly Static Loading (Packer et al., 2010b).

## PART 13 REFERENCES

AISC (1984), Engineering for Steel Construction, American Institute of Steel Construction, Chicago, IL, pp. 7.55-7.62.
Bjorhovde, R. and Chakrabarti, S.K. (1985), "Tests of Full-Size Gusset Plate Connections," Journal of Structural Engineering, ASCE, Vol. 111, No. 3, pp. 667-684.
Gross, J.L. and Cheok, G. (1988), Experimental Study of Gusseted Connections for Laterally Braced Steel Buildings, National Institute of Standards and Technology Report NISTIR 88-3849, NIST, Gaithersburg, MD.
Gross, J.L. (1990), "Experimental Study of Gusseted Connections," Engineering Journal, AISC, Vol. 27, No. 3, pp. 89-97.
Hewitt, C.M. and Thornton, W.A. (2004), "Rationale Behind and Proper Application of the Ductility Factor for Bracing Connections Subjected to Shear and Transverse Loading," Engineering Journal, AISC, Vol. 41, No. 1, pp. 3-6.
Muir, L.S. and Thornton, W.A. (2014), Vertical Bracing Connections-Analysis and Design, Design Guide 29, AISC, Chicago, IL.
Packer, J., Sherman, D. and Lecce, M. (2010a), Hollow Structural Section Connections, Design Guide 24, AISC, Chicago, IL.
Packer, J.A., Wardenier, J., Zhao, X.-L., van der Vegte, G.J. and Kurobane, Y. (2010b), Design Guide for Rectangular Hollow Section (RHS) Joints Under Predominantly Static Loading, Design Guide 3, CIDECT, 2nd Ed., LSS Verlag, Cologne, Germany.
Richard, R.M. (1986), "Analysis of Large Bracing Connection Designs for Heavy Construction," Proceedings, National Steel Construction Conference, Nashville, TN, AISC, pp. 31.1-31.24.
Ricker, D.T. (1992), "Value Engineering and Steel Economy," Modern Steel Construction, AISC, Vol. 32, No. 2, February.
Thornton, W.A. (1991), "On the Analysis and Design of Bracing Connections," Proceedings, National Steel Construction Conference, Washington, DC, AISC, pp. 26.1-26.33.
Thornton, W.A. (1992), "Designing for Cost Efficient Fabrication and Construction," Constructional Steel Design-An International Guide, Chapter 7, Elsevier, London, UK, pp. 845-854.

## PART 14

## DESIGN OF BEAM BEARING PLATES, COLUMN BASE PLATES, ANCHOR RODS, AND COLUMN SPLICES

SCOPE ..... 14-3
BEAM BEARING PLATES ..... 14-3
Force Transfer ..... 14-3
Recommended Bearing Plate Dimensions and Thickness ..... 14-4
Available Strength ..... 14-4
COLUMN BASE PLATES FOR AXIAL COMPRESSION ..... 14-4
Force Transfer ..... 14-5
Recommended Base Plate Dimensions and Thickness ..... 14-6
Available Strength ..... 14-6
Finishing Requirements ..... 14-6
Holes for Anchor Rods and Grouting ..... 14-6
Grouting and Leveling ..... 14-7
COLUMN BASE PLATES FOR AXIAL TENSION, SHEAR OR MOMENT ..... 14-8
ANCHOR RODS ..... 14-9
Minimum Edge Distance and Embedment Length ..... 14-10
Washer Requirements ..... 14-10
Hooked Anchor Rods ..... 14-11
Headed or Threaded and Nutted Anchor Rods ..... 14-11
Anchor Rod Nut Installation ..... 14-12
COLUMN SPLICES ..... 14-12
Fit-Up of Column Splices ..... 14-12
Lifting Devices ..... 14-13
Column Alignment and Stability During Erection ..... 14-14
Force Transfer in Column Splices ..... 14-16
Flange-Plated Column Splices ..... 14-17
Directly Welded Flange Column Splices ..... 14-18
Butt-Plated Column Splices ..... 14-18
PART 14 REFERENCES ..... 14-19
DESIGN TABLES ..... 14-20
Table 14-1. Finish Allowances ..... 14-20
Table 14-2. Recommended Sizes for Washers and Anchor-Rod Holes in Base Plates ..... 14-21
Table 14-3. Typical Column Splices ..... 14-22

## SCOPE

The specification requirements and other design considerations summarized in this Part apply to the design of beam bearing plates, column base plates, anchor rods, and column splices. For complete coverage of column base plate connections, see AISC Design Guide 1, Base Plate and Anchor Rod Design (Fisher and Kloiber, 2006).

## BEAM BEARING PLATES

A beam bearing plate is made with a plate as illustrated in Figure 14-1.

## Force Transfer

The required strength (beam end reaction), $R_{u}$ or $R_{a}$, is distributed from the beam bottom flange to the bearing plate over an area equal to $l_{b}$ times $2 k$, where $l_{b}$ is the bearing length (length of contact between the beam bottom flange and the bearing plate), in. The bearing plate is then assumed to distribute the beam end reaction to the concrete or masonry as a uniform bearing pressure by cantilevered bending of the plate. The bearing plate cantilever dimension is taken as

$$
\begin{equation*}
n=\frac{B}{2}-k \tag{14-1}
\end{equation*}
$$

where $B$ is the bearing plate width, in.
In the rare case where a bearing plate is not required, the beam end reaction, $R_{u}$ or $R_{a}$, is assumed to be uniformly distributed from the beam bottom flange to the concrete or masonry as a uniform bearing pressure by cantilevered bending of the beam flanges. The beam-flange cantilever dimension is calculated as for a bearing plate, but using the beam flange width, $b_{f}$, in place of $B$.


Fig. 14-1. Beam bearing plate variables.

## Recommended Bearing Plate Dimensions and Thickness

The length of bearing, $l_{b}$, may be established by available wall thickness, clearance requirements, or by the minimum requirements based on local web yielding or web crippling. The selected dimensions of the bearing plate, $B$ and $l_{b}$, should preferably be in full inches. Bearing plate thickness should be specified in multiples of $1 / 8 \mathrm{in}$. up to $1 \frac{1}{1 / 4}$-in. thickness and in multiples of $1 / 4$ in. thereafter.

## Available Strength

The available strength of a beam bearing plate is determined from the applicable limit states for connecting elements (see Part 9). In all cases, the available strength, $\phi R_{n}$ or $R_{n} / \Omega$, must exceed the required strength, $R_{u}$ or $R_{a}$. The stability of the beam end must also be addressed as discussed in "Stability Bracing" in Part 2.

## COLUMN BASE PLATES FOR AXIAL COMPRESSION

A column base plate is made with a plate and a minimum of four anchor rods as illustrated in Figure 14-2. Base plates for posts as defined by OSHA (see Part 2) may be supported with two anchor rods. The base plate is often attached to the base of the column in the shop. Large heavy columns can be difficult to handle and set plumb with the base plate attached in the shop. When the column is over a certain weight, it may be better to detail the base plate loose for setting and leveling before the column is set. When the column-to-base-plate assembly weighs more than 4 tons, loose base plates should be considered.


Fig. 14-2. Typical column base for axial compressive loads.

## Force Transfer

In Figure 14-3, the required strength (column axial force), $P_{u}$ or $P_{a}$, is distributed from the column end to the column base plate in direct bearing. The column base plate is then assumed to distribute the column axial force to the concrete or masonry as a uniform bearing pressure by cantilevered bending of the plate. The critical base plate cantilever dimension, $l$, is determined as the larger of $m, n$ and $\lambda n^{\prime}$ where

$$
\begin{gather*}
m=\frac{N-0.95 d}{2}  \tag{14-2}\\
n=\frac{B-0.8 b_{f}}{2}  \tag{14-3}\\
n^{\prime}=\frac{\sqrt{d b_{f}}}{4}  \tag{14-4}\\
\lambda=\frac{2 \sqrt{X}}{1+\sqrt{1-X}} \leq 1 \tag{14-5}
\end{gather*}
$$

$\begin{array}{|c|c|}\hline \text { LRFD } & \text { ASD } \\ \hline X=\left[\frac{4 d b_{f}}{\left(d+b_{f}\right)^{2}}\right] \frac{P_{u}}{\phi_{c} P_{p}} & \text { (14-6a) }\end{array} \quad X=\left[\frac{4 d b_{f}}{\left(d+b_{f}\right)^{2}}\right] \frac{P_{a}}{P_{p} / \Omega_{c}} \quad$ (14-6b) $\left.\quad\right]$

Note that, because both the term in brackets and the ratio of the required strength, $P_{u}$ or $P_{a}$, to the available strength, $\phi_{c} P_{p}$ or $P_{p} / \Omega_{c}$, are always less than or equal to 1 , the value of $X$ will always be less than or equal to 1 . Note also that $\lambda$ can always be taken conservatively as 1. For further information, see Thornton (1990a, 1990b), and AISC Design Guide 1, Base Plate and Anchor Rod Design (Fisher and Kloiber, 2006).


Fig. 14-3. Column base plate design variables.

## Recommended Base Plate Dimensions and Thickness

The selected dimensions of the base plate, $B$ and $N$, should preferably be in full inches. Base plate thickness should be specified in multiples of $1 / 8$ in. up to $1 \frac{1}{4}$-in. thickness and in multiples of $1 / 4$ in. thereafter.

## Available Strength

The available strength of an axially loaded column base plate is determined from the applicable limit states for connecting elements (see Part 9). From Thornton (1990a), the minimum base plate thickness can be calculated as

LRFD	ASD
$t_{\min }=l \sqrt{\frac{2 P_{u}}{0.90 F_{y} B N}}$	$(14-7 \mathrm{a})$
$t_{\min }=l \sqrt{\frac{1.67\left(2 P_{a}\right)}{F_{y} B N}}$	$(14-7 \mathrm{~b})$

The length, $l$, the critical base plate cantilever dimension, is determined as the larger of $m, n$ and $\lambda n^{\prime}$.

In all cases, the available strength, $\phi R_{n}$ or $R_{n} / \Omega$, must exceed the required strength, $R_{u}$ or $R_{a}$.

## Finishing Requirements

Base plate finishing requirements are given in AISC Specification Section M2.8. When finishing is required, the plate material must be ordered thicker than the specified base plate thickness to allow for the material removed in finishing. Finishing allowances are given in Table 14-1 per ASTM A6 flatness tolerances for steel base plates with $F_{u}$ equal to or less than 60 ksi based upon the width, thickness, and whether one or both sides are to be finished. Finishing allowances for steel base plates with $F_{u}$ greater than 60 ksi should be increased by $50 \%$.

The criteria for fit-up of column splices given in AISC Specification Section M4.4 are also applicable to column base plates.

## Holes for Anchor Rods and Grouting

Recommended anchor rod hole sizes are given in Table 14-2. These hole sizes will accommodate reasonable misalignments in the setting of the anchor rods and allow better adjustment of the column base to the correct centerlines. It is normally unnecessary to deduct the area of holes when determining the required base plate area. An adequate washer should be provided for each anchor rod.

When base plates with large areas are used, at least one grout hole should be provided near the center of the base plate through which grout may be placed. This will provide for a more even distribution of the grout and also prevent air pockets. Note that a grout hole may not be required when the grout is dry-packed. Grout holes do not require the same accuracy for size and location as anchor rod holes.

Holes in base plates for anchor rods and grouting often must be flame-cut, because drill sizes and punching capabilities may be limited to smaller diameters. Flame-cut holes may have a slight taper and should be inspected to assure proper clearances for anchor rods.

## Grouting and Leveling

High-strength, non-shrink grout is placed between the column base plate and the supporting foundation. When base plates are shipped attached to the column, three methods of column support are:

1. The use of leveling nuts and, in some cases, washers on the anchor rods beneath the base plate, as illustrated in Figure 14-4.
2. The use of shim stacks between the base plate and the supporting foundation.
3. The use of a steel leveling plate (normally $1 / 4$ in. thick), set to elevation and grouted prior to the setting of the column. The leveling plate should meet the flatness tolerances specified in ASTM A6. It may be larger than the base plate to accommodate anchor rod placement tolerances and can be used as a setting template for the anchor rods.

Temporary support of a column by means of leveling nuts and shims induces forces on permanent elements of the structure, such as anchor rods and foundations. When leveling nuts and/or shims are used, the determination of required loads and associated strengths is the responsibility of the erector.

For further information on grouting and leveling of column base plates, see AISC Design Guide 10, Erection Bracing of Low-Rise Structural Steel Frames (Fisher and West, 1997).

When base plates are shipped loose, the base plates are usually grouted after the base plate has been aligned and leveled with one of the preceding methods. For heavy loose base plates, three-point leveling bolts, illustrated in Figure 14-5, are commonly used. These threaded attachments may consist of a nut or an angle and nut welded to the base plate. Leveling bolts must be of sufficient length to compensate for the space provided for grouting. Rounding the point of the leveling bolt will prevent it from "walking" or moving laterally as it is turned. Additionally, a small steel pad under the point reduces friction and prevents damage to the concrete.


Fig. 14-4. Leveling nuts and washers.

Heavy loose base plates should be provided with some means of handling at the erection site. Lifting holes can be provided in the vertical legs of shop-attached connection angles. Lifting lugs can also be used and can remain in place after erection, unless they create an interference or removal is required in the contract documents.

Leveling bolts or nuts should not be used to support the column during erection. If grouting is delayed until after steel erection, the base plate must be shimmed to properly distribute loads to the foundation without overstressing either the base plate or the concrete. This difficulty of supporting columns while leveling and grouting their bases makes it advisable that footings be finished to near the proper elevation (Ricker, 1989). The top of the rough footing should be set approximately 1 to 2 in . below the bottom of the base plate to provide for adjustment. Alternatively, an angle frame as illustrated in Figure 14-6 could be constructed to the proper elevation and filled with grout prior to erection.

## COLUMN BASE PLATES FOR AXIAL TENSION, SHEAR OR MOMENT

For anchor rod diameters not greater than $1^{1 / 1} 4 \mathrm{in}$., angles bolted or welded to the column as shown in Figure 14-7(a) are generally adequate to transfer uplift forces resulting from axial loads and moments. When greater resistance is required, stiffeners may be used with horizontal plates or angles as illustrated in Figure 14-7(b). These stiffeners are not usually considered to be part of the column area in bearing on the base plate. The angles preferably should be set back from the column end about $1 / 8$ in. Stiffeners preferably should be set back


Fig. 14-5. Three-point leveling.
about 1 in . from the base plate to eliminate a pocket that might prevent drainage and, thus, protect the column and column base plate from corrosion.

For further information, see AISC Design Guide 1, Base Plate and Anchor Rod Design (Fisher and Kloiber, 2006).

## ANCHOR RODS

Cast-in-place anchor rods, illustrated in Figure 14-8, are generally made from unheaded rod material or headed bolt material. Drilled-in (post-installed) anchors can be used for corrective work or in new work as determined by the owner's designated representative for design


Fig. 14-6. Angle-frame leveling.


Fig. 14-7. Typical column bases for uplift.
and as permitted in the applicable building code. The design of post-installed anchors is governed by manufacturers' specifications; see also ACI 318 Chapter 17 (ACI, 2014). Postinstalled anchors that rely upon torque or tension to develop anchorage by wedging action should not be used unless the stability of the column during erection is provided by means other than the post-installed anchors.

## Minimum Edge Distance and Embedment Length

In general, minimum edge distances, embedment lengths, and the design of anchorages into concrete are covered by ACI 318 (ACI, 2014). These provisions include methods to account for edge distance and group action, as does ACI 349. AISC Design Guides 1, 7 and 10 provide additional material on the design of anchor rods in concrete (Fisher and Kloiber, 2006; Fisher, 2004; Fisher and West, 1997).

In addition to providing the recommended minimum embedment length, anchor rods must extend a distance above the foundation that is sufficient to permit adequate thread engagement of the nut. Adequate thread engagement for anchor rods is identical to the condition described in the RCSC Specification as adequate for steel-to-steel structural joints using high-strength bolts: having the end of the (anchor rod) flush with or outside the face of the nut.

## Washer Requirements

Because base plates typically have holes larger than oversized holes to allow for tolerances on the location of the anchor rod, washers are usually furnished from ASTM A36 steel plate. They may be round, square or rectangular, and generally have holes that are $1 / 16$ in. larger than the anchor rod diameter. The thickness must be suitable for the forces to be transferred. Recommended washer sizes and minimum thicknesses are given in Table 14-2.

(a) Hooked

(b) Headed

only on underside of nut
(c) Threaded with nut

Fig. 14-8. Cast-in-place anchor rods.

## Hooked Anchor Rods

Hooked anchor rods, as illustrated in Figure 14-8(a), should be used only for axially loaded members subject to compression only to locate and prevent the displacement or overturning of columns due to erection loads or accidental collisions during erection. Additionally, highstrength steels are not recommended for use in hooked rods since bending with heat may materially affect their strength.

## Headed or Threaded and Nutted Anchor Rods

When anchor rods are required for a calculated tensile force, $T$, a more positive anchorage is formed when headed anchor rods, illustrated in Figure 14-8(b), are used. With adequate embedment and edge distance, the limit state is either a tensile failure of the anchor rod or the breakout of a truncated pyramid of concrete radiating outward from the head as illustrated in Figure 14-9. Marsh and Burdette (1985a, 1985b) showed that the head of the anchor rod usually provides sufficient anchorage and the use of an additional washer or plate does not add significantly to the anchorage. The nut and threading shown in Figure 14-8(c) is acceptable in lieu of a bolt head. The nut should be welded to the rod on the underside of the nut to prevent the rod from turning out when the top nut is tightened. Alternatively, the nut can be secured by means of a jammed double nut, or deformed threads above and below the nut.


Fig. 14-9. Concrete truncated pyramid subject to breakout.

## Anchor Rod Nut Installation

The majority of anchorage applications in buildings do not require special anchor rod nut installation procedures or pretension in the anchor rod. The anchor rod nuts should be "drawn down tight" as columns and bases are erected, per ANSI/ASSE A10.13 Section 9.6 (ASSE, 2011). This condition can be achieved by following the same practices as recommended for snug-tightened installation in steel-to-steel bolted joints in the RCSC Specification. Snugtight is the condition that exists when all plies in a connection have been pulled into firm contact by the bolts in the joint and all the bolts in the joint have been tightened sufficiently to prevent the removal of the nuts without the use of a wrench.

When, in the judgment of the owner's designated representative for design, the performance of the structure will be compromised by excessive elongation of the anchor rods under tensile loads, pretension may be required. Some examples of applications that may require pretension include structures that cantilever from concrete foundations, moment-resisting column bases with significant tensile forces in the anchor rods, or where load reversal might result in the progressive loosening of the nuts on the anchor rods.

When pretensioning of anchor rods is specified, care must be taken in the design of the column base and the embedment of the anchor rod. The shaft of the anchor rod must be free of bond to the encasing concrete so that the rod is free to elongate as it is pretensioned. Also, loss of pretension due to creep in the concrete must be taken into account. Although the design of pretensioned anchorage devices is beyond the scope of this Manual, it should be noted that pretension should not be specified for anchorage devices that have not been properly designed and configured to be pretensioned.

## COLUMN SPLICES

When the height of a building exceeds the available length of column sections, or when it is economically advantageous to change the column size at a given floor level, it becomes necessary to splice two columns together. Column splices at the final exterior and interior perimeter and at interior openings must be located a minimum of 48 in . above the finished floor to accommodate the attachment of safety cables, except when constructability does not allow. For simplicity and uniformity, other column splices should be located at the same height. Note that column splices placed significantly higher than this are impractical in terms of field assembly.

## Fit-Up of Column Splices

From AISC Specification Section M2.6, the ends of columns in a column splice which depend upon contact bearing for the transfer of axial forces must be finished to a common plane by milling, sawing, or other equivalent means. In theory, if this were done and the pieces were erected truly plumb, there would be full contact bearing across the entire surface; this is true in most cases. However, AISC Specification Section M4.4 recognizes that a perfect fit on the entire available surface will not exist in all cases.

A $1 / 16$-in. gap is permissible with no requirements for repair or shimming. During erection, at the time of tightening the bolts or depositing the welds, columns will usually be subjected to loads that are significantly less than the design loads. Full-scale tests (Popov and Stephen, 1977) that progressed to column failure have demonstrated that subsequent loading to the design loads does not result in distress in the bolts or welds of the splice.

If the gap exceeds $1 / 16 \mathrm{in}$. but is equal to or less than $1 / 4 \mathrm{in}$., and if an engineering investigation shows that sufficient contact area does not exist, nontapered steel shims are required. Mild steel shims are acceptable regardless of the steel grade of the column or bearing material. If required, these shims must be contained, usually with a tack weld, so that they cannot be worked out of the joint.

There is no provision in the AISC Specification for gaps larger than $1 / 4 \mathrm{in}$. When such a gap exists, an engineering evaluation should be made of this condition based upon the type of loading transferred by the column splice. Tightly driven tapered shims may be required or the required strength may be developed through flange and web splice plates. Alternatively, the gap may be ground or gouged to a suitable profile and filled with weld metal.

## Lifting Devices

As illustrated in Figure 14-10, lifting devices are typically used to facilitate the handling and erection of columns. When flange-plated or web-plated column splices are used for W -shape columns, it is convenient to place lifting holes in these flange plates as illustrated in Figure 14-10(a). When butt-plated column splices are used, additional temporary plates with lifting holes may be required as illustrated in Figure 14-10(b). W-shape column splices which do not utilize web-plated or butt-plated column splices (i.e., groove-welded column splices) may be provided with a lifting hole in the column web as illustrated in Figure 14-10(c). While a hole in the column web reduces the cross-sectional area of the column, this reduction will seldom be critical since the column is sized for the loads at the floor below and the splice is located above the floor. Alternatively, auxiliary plates with lifting holes may be connected to the column so that they do not interfere with the welding. Typical column splices for HSS and box-section columns are illustrated in Figure 14-10(d). Holes in lifting devices may be drilled, reamed or flame-cut with a mechanically guided torch. In the latter case, the bearing surface of the hole in the direction of the lift must be smooth.

The lifting device and its attachment to the column must be of sufficient strength to support the weight of the column as it is brought from the horizontal position (as delivered) to the vertical position (as erected); the lifting device and its attachment to the column must be adequate for the tensile forces, shear forces and moments induced during handling and erection.

A suitable shackle and pin are connected to the lifting device while the column is on the ground. The steel erector usually establishes the size and type of shackle and pin to be used in erection and this information must be transmitted to the fabricator prior to detailing. Except for excessively heavy lifting pieces, it is customary to select a single pin and pinhole diameter to accommodate the majority of structural steel members, whether they are columns or other heavy structural steel members. The pin is attached to the lifting hook and a lanyard trails to the ground or floor level. After the column is erected and connected, the pin is removed from the device by means of the lanyard, eliminating the need for an ironworker to climb the column. The shackle pin, as assembled with the column, must be free and clear, so that it may be withdrawn laterally after the column has been landed and stabilized.

The safety of the structure, equipment and personnel is of utmost importance during the erection period. It is recommended that all welds that are used on the lifting devices and stability devices be inspected very carefully, both in the shop and later in the field, for any damage that may have occurred in handling and shipping. Groove welds frequently are
inspected with ultrasonic methods (UT) and fillet welds are inspected with magnetic particle (MT) or liquid dye penetrant (PT) methods.

## Column Alignment and Stability During Erection

Column splices should provide for safety and stability during erection when the columns might be subjected to wind, construction, and/or accidental loading prior to the placing of the floor system. The nominal flange-plated, web-plated, and butt-plated column splices developed here consider this type of loading.

In other splices, column alignment and stability during erection are achieved by the addition of temporary lugs for field bolting as illustrated in Figure 14-11. The material thickness, weld size and bolt diameter required are a function of the loading. A conservative resisting moment arm is normally taken as the distance from the compressive toe or flange face to the gage line of the temporary lug. The overturning moment should be checked about both axes

(a) W-shape columns, flange-plated column splices with lifting holes

(c) W-shape columns, no splice plates,
lifting hole in column web

(b) W-shape and box-shaped columns. butt-plated column splices with auxiliary lifting plates

(d) HSS and box-section columns, auxiliary lifting plates

Fig. 14-10. Lifting devices for columns.
of the column. The recommended minimum plate or angle thickness is $\frac{1}{2}$ in.; the recommended minimum weld size is $5 / 16 \mathrm{in}$.; additionally, high-strength bolts are normally used as stability devices.

Temporary lugs are not normally used as lifting devices. Unless required to be removed in the contract documents, these temporary lugs may remain.

Column alignment is provided with centerpunch marks that are useful in centering the columns in two directions.


Alignment plates between $W$-shape column flanges. Check clearances for erection of column web framing in lower shaft.
Note A: Note detail drawing to require center punch marks on center lines of all faces of upper and lower shafts.

Fig. 14-11. Column stability and alignment devices.

## Force Transfer in Column Splices

As illustrated in Figure 14-12, for the W-shapes most frequently used as columns, the distance between the inner faces of the flanges is constant throughout any given nominal depth group; as the nominal weight per foot increases for each nominal depth, the flange and web thicknesses increase. The available bearing strength, $\phi R_{n}$ or $R_{n} / \Omega$, of the contact area of a finished surface is determined using AISC Specification Equation J7-1:

$$
\begin{gather*}
R_{n}=1.8 F_{y} A_{p b}  \tag{Spec.Eq.J7-1}\\
\phi=0.75 \quad \Omega=2.00
\end{gather*}
$$

where
$A_{p b}=$ projected area in bearing, in. ${ }^{2}$
$F_{y}=$ specified minimum yield stress of the column, ksi
This bearing strength is much greater than the axial strength of the column and will seldom prove critical in the member design. For column splices transferring only axial forces, complete axial force transfer may be achieved through bearing on finished surfaces; bolts or welds are required by AISC Specification Section J1.4 to be sufficient to hold all parts securely in place.

In addition to axial compressive forces, from AISC Specification Section J1.4, column splices must be proportioned to achieve the required strength in tension, due to the combination of dead load and lateral loads. Note that it is not permissible to use forces due to live load to offset the tensile forces from wind or seismic loads. Additional column splice requirements are provided in the AISC Seismic Provisions.

For dead and wind loads, if the required strength due to the effect of the dead load is greater than the required strength due to the wind load, the splice is not subjected to tension and a nominal splice may be selected from those in Table 14-3. When the required strength due to dead load is less than the required strength due to the wind load, the splice will be subjected to tension and the nominal splices from Table 14-3 are acceptable if the available tensile strength of the splice is greater than or equal to the required strength. Otherwise, a splice must be designed with sufficient area and attachment.

When shear from lateral loads is divided among several columns, the force on any single column is relatively small and can usually be resisted by friction on the contact bearing surfaces and/or by the flange plates, web plates or butt plates. If the required shear strength


Column Size	$\boldsymbol{d}-\mathbf{2 \boldsymbol { t } _ { \boldsymbol { f } }}$ (in.)
W8 $\times 24-67$	7.13
W10×33-112	8.86
W12×40-336	10.9
W14×43-873	12.6

Fig. 14-12. Distance between flanges for typical W-shape columns.
exceeds the available shear strength of the column splice selected from Table 14-3, a column splice must be designed with sufficient area and attachment.

The column splices shown in Table 14-3 meet the OSHA requirement for 300 lb located 18 in. from the column face.

## Flange-Plated Column Splices

Table 14-3 gives typical flange-plated column splice details for W -shape columns. These details are not splice requirements, but rather, typical column splices in accordance with the AISC Specification and typical erection requirements. Other splice designs may also be developed. It is assumed in all cases that the lower shaft will be the heavier, although not necessarily the deeper, section.

Full-contact bearing is always achieved when lighter sections are centered over heavier sections of the same nominal depth group. If the upper column is not centered on the lower column, or if columns of different nominal depths must bear on each other, some areas of the upper column will not be in contact with the lower column. These areas are hatched in Figure 14-13.

When additional bearing area is not required, unfinished fillers may be used. These fillers are intended for "pack-out" of thickness and are usually set back $1 / 4 \mathrm{in}$. or more from the finished column end. Since no force is transferred by these fillers, only nominal attachment to the column is required.

When additional bearing area is required, fillers finished to bear on the larger column may be provided. Such fillers are proportioned to carry bearing loads at the bearing strength calculated from AISC Specification Section J7 and must be connected to the column to transfer this calculated force.

In Table 14-3, Cases I and II are for all-bolted flange-plated column splices for W-shape columns. Bolts in column splices are usually the same size and type as for other bolts on the column. Bolt spacing, end distance and edge distances resulting from the plate sizes shown permit the use of $3 / 4$-in.- and $7 / 8$-in.-diameter bolts in the splice details shown. Larger diameter bolts may require an increase in edge or end distances. Refer to AISC Specification Chapter J. The use of high-strength bolts in bearing-type connections is assumed in all field


Fig. 14-13. Columns not centered or of different nominal depth.
and shop splices. However, when slotted or oversized holes are utilized, a slip-critical connection is required. For ease of erection, field clearances for lap splices in Table 14-3 fastened by bolts range from $1 / 8$ in. to $3 / 16$ in. under each plate.

Cases IV and V are for all-welded flange-plated column splices for W-shape columns. Splice welds are assumed to be made with E70XX electrodes and are proportioned as required by the AISC Specification. The GMAW and FCAW equivalents to E70XX electrodes may be substituted if desired. Field clearance for welded splices are limited to $1 / 16$ in. to control the expense of building up welds to close openings. Note that the fillet weld lengths, $Y$, as compared to the lengths $l / 2$, provide 2 -in. unwelded distance below and above the column shaft finish line. This provides a degree of flexibility in the splice plates to assist the erector.

Cases VI and VII apply to combination bolted and welded column splices. Since the available strength of the welds will, in most cases, exceed the strength of the bolts, the weld and splice lengths shown may be reduced, if desired, to balance the strength of the fasteners to the upper or lower column, provided that the available strength of the splice is still greater than the required strength of the splice, including erection loading.

## Directly Welded Flange Column Splices

Table 14-3 also includes typical directly welded flange column splice details for W -shape and HSS or box-shaped columns. These details are not splice requirements, but rather, typical column splices in accordance with AISC Specification provisions and typical erection requirements. Other splice designs may also be developed. It is assumed in all cases that the lower shaft will be the heavier, although not necessarily the deeper, section.

Case VIII applies to W-shape columns spliced with either partial-joint-penetration or complete-joint-penetration groove welds. Case X applies to HSS or box-section columns spliced with partial-joint-penetration or complete-joint-penetration groove welds.

## Butt-Plated Column Splices

Table 14-3 includes typical butt-plated column splice details for W-shape and HSS or boxsection columns. These details are not splice requirements, but rather, present typical column splices in accordance with AISC Specification provisions and typical erection requirements. Other splice designs may also be developed. It is assumed in all cases that the lower shaft will be the heavier, although not necessarily the deeper, section.

Butt plates are used frequently on welded splices where the upper and lower columns are of different nominal depths, but may not be economical for bolted splices since fillers cannot be eliminated. Typical butt plates are $1 \frac{1}{2}$ in. thick for a W8 over W10 splice, and 2 in . thick for other W-shape combinations such as W10 over W12 and W12 over W14. Butt plates that are subjected to substantial bending stresses, such as required on box-section columns, will require a more careful review and analysis. One common method is to assume forces are transferred through the butt plate on a $45^{\circ}$ angle and check the thickness obtained for shear and bearing strength. Finishing requirements for butt plates are specified in AISC Specification Section M2.8.

Case III is a combination flange-plated and butt-plated column splice for W-shape columns. Case IX applies to welded butt-plated column splices for W-shape columns. Case XI applies to welded butt-plated column splices for HSS or box-section columns. Case XII applies to welded butt-plated column splices between W-shape and HSS or box-section columns.

## PART 14 REFERENCES

ACI (2010), Specification for Tolerances for Concrete Construction and Materials, ACI 117-10, American Concrete Institute, Farmington Hills, MI.
ACI (2013), Code Requirements for Nuclear Safety Related Concrete Structures, ACI 349-13, American Concrete Institute, Farmington Hills, MI.
ACI (2014), Building Code Requirements for Structural Concrete, ACI 318-14, and ACI 318M-14, American Concrete Institute, Farmington Hills, MI.
ASSE (2011), Safety Requirements for Steel Erection, ANSI/ASSE A10.13-2011, American Society of Safety Engineers, Park Ridge, IL.
Fisher, J.M. (2004), Industrial Buildings—Roofs to Anchor Rods, Design Guide 7, 2nd Ed., AISC, Chicago, IL.
Fisher, J.M. and Kloiber, L.A. (2006), Base Plate and Anchor Rod Design, 2nd Ed., Design Guide 1, AISC, Chicago, IL.
Fisher, J.M. and West, M.A. (1997), Erection Bracing of Low-Rise Structural Steel Frames, Design Guide 10, AISC, Chicago, IL.
Marsh, M.L. and Burdette, E.G. (1985a), "Anchorage of Steel Building Components to Concrete," Engineering Journal, AISC, Vol. 15, No. 4, pp. 33-39.
Marsh, M.L. and Burdette, E.G. (1985b), "Multiple Bolt Anchorages: Method for Determining the Effective Projected Area of Overlapping Stress Cones," Engineering Journal, AISC, Vol. 15, No. 4, pp. 29-32.
Popov, E.P. and Stephen, R.M. (1977), "Capacity of Columns with Splice Imperfections," Engineering Journal, AISC, Vol. 14, No. 1, pp. 16-23.
Ricker, D.T. (1989), "Some Practical Aspects of Column Base Selection," Engineering Journal, AISC, Vol. 26, No. 3, pp. 81-89.
Thornton, W.A. (1990a), "Design of Small Base Plates for Wide-Flange Columns," Engineering Journal, AISC, Vol. 27, No. 3, pp. 108-110.
Thornton, W.A. (1990b), "Design of Small Base Plates for Wide-Flange Columns-A Concatenation of Methods," Engineering Journal, AISC, Vol. 27, No. 4, pp. 173-174.

	Tab   Finish	$-1$	
Size	Thickness, in.	Add to Finish One Side, in.	Add to Finish Two Sides, in.
Maximum dimension 24 in. or less	$1 / 4$ or less over $1 / 1 / 4$ to 2 , incl.	$\begin{aligned} & 1 / 16 \\ & 1 / 8 \end{aligned}$	$\begin{aligned} & 1 / 8 \\ & 1 / 4 \end{aligned}$
Maximum dimension over 24 in.	$11 / 4$ or less over $1 / 1 / 4$ to 2 , incl.	$\begin{aligned} & 1 / 8 \\ & 3 / 16 \end{aligned}$	$\begin{aligned} & 1 / 4 \\ & 3 / 8 \end{aligned}$
56 in. wide or less	over 2 to $7 \frac{1}{2}$, incl. over $71 / 2$ to 10 , incl. over 10 to 15, incl.	$\begin{aligned} & 1 / 4 \\ & 1 / 2 \\ & 3 / 4 \end{aligned}$	$\begin{aligned} & 3 / 8 \\ & 5 / 8 \\ & 7 / 8 \end{aligned}$
Over 56 in. wide to 72 in. wide	over 2 to 6 , incl. over 6 to 10, incl. over 10 to 15, incl.	$\begin{aligned} & 1 / 4 \\ & 1 / 2 \\ & 3 / 4 \end{aligned}$	$\begin{aligned} & 3 / 8 \\ & 5 / 8 \\ & 7 / 8 \end{aligned}$
Note: These allowances apply for material with $F_{u} \leq 60 \mathrm{ksi}$.			

## Table 14-2 <br> Recommended Sizes for Washers and Anchor Rod Holes in Base Plates

Anchor Rod Diameter	Hole Diameter	Washer Size	Min. Washer Thickness	Anchor Rod Diameter	Hole Diameter	Washer Size	Min. Washer Thickness
in.	in.	in.	in.	in.	in.	in.	in.
3/4	15/16	2	1/4	11/2	23/8	4	1/2
7/8	19/16	$2^{1 / 2}$	5/16	13/4	$2^{7 / 8}$	41/2	5/8
1	17/8	3	$3 / 8$	2	$3^{1 / 4}$	5	$3 / 4$
11/4	21/8	31/2	1/2	21/2	$33 / 4$	51/2	7/8

Notes: 1. Hole sizes provided are based on anchor rod size and correlate with ACl 117 (ACl, 2010).
2. Circular or square washers meeting the washer size are acceptable.
3. Clearance must be considered when choosing an appropriate anchor rod hole location, noting effects such as the position of the rod in the hole with respect to the column, weld size, and other interferences.
4. ASTM F844 washers are permitted instead of plate washers when hole clearances are limited to $5 / 16$ in. for rod diameters up to 1 in ., $1 / 2$ in. for rod diameters over 1 in. up to 2 in., and 1 in. for rod diameters over 2 in. This exception should not be used unless the general contractor has agreed to meet smaller tolerances for anchor rod placement than those permitted in ACl 117.

Table 14-3   Typical Column Splices   Case I:   All-bolted flange-plated column splices between columns with depth $d_{u}$ and $d_{l}$ nominally the same					
Column Size	$\begin{gathered} \text { Gage }^{\mathrm{a}}, \\ g_{u} \text { or } g_{l} \\ \hline \text { in. } \\ \hline \end{gathered}$	Type	Flange Plates		
			Width	Thick.   in.	Length
			in.		
W14×455 to 873	$13^{1 / 2}$	1	16	$3 / 4$	$1^{\prime}-6{ }^{1 / 22^{\prime \prime}}$
$\times 257$ to 426	111/2	1	14	5/8	$1^{\prime}-61 / 2^{\prime \prime}$
$\times 145$ to 233	111/2	1	14	1/2	$1^{\prime}-6{ }^{1 / 22^{\prime \prime}}$
$\times 90$ to 132	111/2	2	14	$3 / 8$	$1^{\prime}-00^{1 / 2^{\prime \prime}}$
$\times 43$ to 82	$5^{1 / 2}$	2	8	3/8	$1^{\prime}-01 / 2^{\prime \prime}$
W12×120 to 336	$5^{1 / 2}$	2	8	5/8	$1^{\prime}-0^{1 / 2^{\prime \prime}}$
$\times 40$ to 106	$5^{1 / 2}$	2	8	$3 / 8$	$1^{\prime}-00^{1 / 2^{\prime \prime}}$
W10×33 to 112	$51 / 2$	2	8	3/8	$1^{\prime}-0{ }^{1} / 2^{\prime \prime}$
W8 $\times 31$ to 67	$5^{1 / 2}$	2	8	$3 / 8$	$1^{\prime}-0^{1 / 2} 2^{\prime \prime}$
$\times 24$ \& 28	4	2	6	3/8	$1^{\prime}-0{ }^{1 / 2^{\prime \prime}}$
Case I-A: $\begin{aligned} d_{l}= & \left(d_{u}+{ }^{1 / 4} \mathrm{in} .\right) \\ & \text { to }\left(d_{u}+5 / 8 \mathrm{in} .\right) \end{aligned}$	Flange plates: Select $g_{u}$ for upper column; select $g_{l}$ and flange plate dimensions for lower column.   Fillers: None.   Shims: Furnish sufficient strip shims $2^{1 / 2} \times^{1 / 8}$ to provide 0 to $1 / 16$-in. clearance each side.				
Case I-B: $\begin{aligned} d_{l}= & \left(d_{u}-1 / 4 \mathrm{in} .\right) \\ & \text { to }\left(d_{u}+1 / 8 \mathrm{in} .\right) \end{aligned}$	Flange plates: Same as Case I-A.   Fillers (shop bolted under flange plates): Select thickness as   $1 / 8$ in. for $d_{l}=d_{u}$ and $d_{l}=\left(d_{u}+1 / 8\right.$ in.) or as   $1 / 4$ in. for $d_{l}=\left(d_{u}-1 / 8\right.$ in.) and $d_{l}=\left(d_{u}-1 / 4\right.$ in. $)$.   Select width to match flange plate and length as $0^{\prime}-9^{\prime \prime}$ for Type 1 or $0^{\prime}-6^{\prime \prime}$ for Type 2.   Shims: Same as Case I-A.				
Case I-C: $d_{l}=\left(d_{u}+3 / 4 \text { in. }\right)$ and over	Flange plates: Same as Case I-A.   Fillers (shop bolted to upper column): Select thickness as $\left(d_{l}-d_{\psi}\right) / 2$ minus $1 / 8$ in. or $3 / 16$ in., whichever results in $1 / 8$ in. multiples of filler thickness. Select width to match flange plate, but not greater than upper column flange width. Select length as $1^{\prime}-0^{\prime \prime}$ for Type 1 or $0^{\prime}-9^{\prime \prime}$ for Type 2.   Shims: Same as Case I-A.				
a Gages shown may be modified if necessary to accommodate fittings elsewhere on the column. Note: For lifting devices, see Figure 14-10.					



## Table 14-3 (continued) Typical Column Splices

## Case II:

## All-bolted flange-plated column splices between columns with depth $d_{u}$ nominally 2 in . less than depth $d_{l}$

Fillers on upper column   developed for bearing on   lower column.	Flange plates: Same as Case I-A.   Fillers (shop bolted to upper column): Select thickness, $t$, as   $\left(d_{l}-d_{l}\right) / 2-1 / 8$ in. or $3 / 16$ in., whichever results in $1 / 8$-in. multiples   of filler thickness. Select bolts through fillers (including bolts through   flange plates) on each side to develop bearing strength of the filler.   Select width to match flange plate, but not greater than upper column   flange width unless required for bearing strength. Select length   as required to accommodate required number of bolts.   Shims: Same as Case I-A.

## Table 14-3 (continued) Typical Column Splices

## Case III:

## All-bolted flange-plated and butt-plated column splices between columns with depth $d_{u}$ nominally 2 in. less than depth $\boldsymbol{d}_{l}$

Fillers on upper column developed for bearing on lower column.	Column Size	$\begin{gathered} \hline \text { Gage }^{\text {a }} \\ \boldsymbol{g}_{u} \text { or } \boldsymbol{g}_{l} \end{gathered}$	Flange Plates			Length
			Type	Width	Thick.	
				in.	in.	
	W14×455 to 873	$13^{1 / 2}$	1	16	$3 / 4$	$1^{\prime}-8{ }^{1 / 2} 2^{\prime \prime}$
	$\times 257$ to 426	111/2	1	14	5/8	$1^{\prime}-81 / 2^{\prime \prime}$
	$\times 145$ to 233	111/2	1	14	1/2	$1^{\prime}-81 / 2^{\prime \prime}$
	$\times 90$ to 132	111/2	2	14	$3 / 8$	$1^{\prime}-2^{1 / 2 \prime 2}$
	$\times 43$ to 82	$51 / 2$	2	8	$3 / 8$	$1^{\prime}-2^{1} / 2^{\prime \prime}$
	W12×120 to 336	51/2	2	8	5/8	$1^{\prime}-2^{1 / 2} 2^{\prime \prime}$
	$\times 40$ to 106	51/2	2	8	$3 / 8$	$1^{\prime}-2^{1 / 2} 2^{\prime \prime}$
	W10×33 to 112	51/2	2	8	3/8	$1^{\prime}-2^{1 / 2 \prime}{ }^{\prime \prime}$
	W8×31 to 67	51/2	2	8	3/8	$1^{\prime}-2^{\prime \prime}$
	$\times 24$ \& 28	31/2	2	8	$3 / 8$	$1^{\prime}-2^{\prime \prime}$

Flange plates: Select $g_{u}$ for upper column, select $g_{l}$ and flange plate dimensions for lower column.
Fillers (shop bolted to upper column): Same as Case I-C.
Shims: Same as Case I-A.
Butt plate: Select thickness as $11 / 2$ in. for W8 upper column or 2 in. for others. Select width the same as upper column and length as $d_{l}-1 / 4 \mathrm{in}$.

[^49]

Table 14-3 (continued) Typical Column Splices   Case IV:   All-welded flange-plated column splices between columns with depth $d_{u}$ and $d_{l}$ nominally the same								
Column Size	Flange Plate			Welds			Minimum Space for Welding	
	Width	Thick.	Length,   $l$	Size,$A$	Length			
					$X$	$\boldsymbol{Y}$	M	$N$
	in.	in.		in.	in.	in.	in.	in.
W14×455 \& over	14	5/8	$1^{\prime}-6{ }^{\prime \prime}$	1/2	5	7	13/16	${ }^{11 / 16}$
$\times 311$ to 426	12	5/8	$1^{\prime}-4^{\prime \prime}$	1/2	4	6	13/16	11/16
$\times 211$ to 283	12	1/2	$1^{\prime}-4^{\prime \prime}$	3/8	4	6	11/16	9/16
$\times 90$ to 193	12	$3 / 8$	$1^{\prime}-4{ }^{\prime \prime}$	5/16	4	6	5/8	1/2
$\times 61$ to 82	8	$3 / 8$	$1^{\prime}-4^{\prime \prime}$	5/16	3	6	5/8	1/2
$\times 43$ to 53	6	5/16	$1^{\prime}-2^{\prime \prime}$	$1 / 4$	2	5	9/16	7/16
W12×120 to 336	8	1/2	$1^{\prime}-4 \prime$	3/8	3	6	11/16	9/16
$\times 53$ to 106	8	3/8	$1^{\prime}-4 \prime \prime$	5/16	3	6	5/8	1/2
$\times 40$ to 50	6	5/16	$1^{\prime}-2^{\prime \prime}$	1/4	2	5	9/16	7/16
W10×49 to 112	8	$3 / 8$	$1^{\prime}-4^{\prime \prime}$	5/16	3	6	5/8	1/2
$\times 33$ to 45	6	5/16	$1^{\prime}-2^{\prime \prime}$	$1 / 4$	2	5	9/16	7/16
W8×31 to 67	6	$3 / 8$	$1^{\prime}-2^{\prime \prime}$	5/16	2	5	5/8	1/2
$\times 24$ \& 28	5	5/16	$1^{\prime}-0^{\prime \prime}$	$1 / 4$	2	4	9/16	7/16
Case IV-A: $d_{l}=\left(d_{u}+1 / 8 \text { in. }\right)$	Flange plates: Select flange-plate width and length and weld lengths for upper (lighter) column; select flange plate thickness and weld size for lower (heavier) column.   Fillers: None.							
Case IV-B: $\begin{gathered} d_{l}=\left(d_{u}-1 / 4 \mathrm{in} .\right) \\ \\ \text { to } d_{u} \end{gathered}$	Flange plates: Same as Case IV-A, except use weld size, $A+t$, on lower column.   Fillers (underdeveloped on lower column, shop welded under flange plates): Select thickness, $t$, as $\left[\left(d_{l}-d_{l}\right) / 2\right]+1 / 16$ in. Select width to match flange plate and length as $(l / 2)-2 \mathrm{in}$.							
Case IV-C: $\begin{aligned} d_{l}= & \left(d_{u}+1 / 4 \mathrm{in} .\right) \\ & \text { to }\left(d_{u}+1 / 2 \mathrm{in} .\right) \end{aligned}$	Flange plates: Same as Case IV-A, except use weld size, $A+t$, on upper column.   Fillers (underdeveloped on upper column, shipped loose): Select thickness, $t$, as $\left[\left(d_{l}-d_{u}\right) / 2\right]-1 / 16$ in. Select width to match flange plate and length as (l/2) - 2 in.							
Note: For lifting devices, see Figure 14-10.								



## Table 14-3 (continued) Typical Column Splices <br> Case IV:

## All-welded flange-plated column splices between columns with depths $d_{u}$ and $d_{l}$ nominally the same

## Case IV-D:

$d_{l}=\left(d_{u}+5 / 8 \mathrm{in}.\right)$
and over
Filler width less than upper column flange width.

Flange plates: Same as Case IV-A, except see Note 1.
Fillers (developed on upper column, shop welded to upper column): Select thickness, $t$, as $\left[\left(d_{l}-d_{u}\right) / 2\right]-1 / 16 \mathrm{in}$.
Select weld size, $B$, from the AISC Specification Section J2; $5 / 16$ in. or less preferred. Select weld length, $l_{B}$, such that $l_{B} \geq[A(X+Y) / B] \geq(l / 2+1 \mathrm{in}$.). Select filler width greater than flange plate width plus $2 N$, but less than upper column flange width minus $2 M$. Select filler length, $l_{B}$, subject to Note 2.

## Case IV-E:

$d_{l}=\left(d_{u}+5 / 8 \mathrm{in}\right.$.)
and over
Filler width greater than upper column flange width. Use this case only when $M$ or $N$ in Case IV-D are inadequate for welds $B$ and $A$.

Flange plates: Same as Case IV-A, except see Note 1.
Fillers (developed on upper column, shop welded to upper column): Select thickness, $t$, as $\left[\left(d_{l}-d_{u}\right) / 2\right]-1 / 16$ in.
Select weld size, $B$, from the AISC Specification Section J2; $5 / 16$ in. or less preferred. Select weld length, $l_{B}$, such that $l_{B} \geq[A(X+Y) / B] \geq(l / 2+1 \mathrm{in}$.). Select filler width as the larger of the flange plate width plus $2 N$ and the upper column flange width plus $2 M$, rounded to the next higher $1 / 4$-in. increment. Select filler length, $l_{B}$, subject to Note 2.

Note 1: Where welds fasten flange plates to developed fillers, or developed fillers to column flanges (Cases IV-E and V-B), use Table 14-3A to check minimum fill thickness for balanced fill and weld shear strength.

Assume that an E70XX weld with $A=1 / 2 \mathrm{in}$., $X=4 \mathrm{in}$., and $Y=6$ in. is to be used at full strength on a $1 / 4$-in.-thick fill (A36). Since this table shows that the minimum fill thickness to develop this $1 / 2$-in. weld is 0.51 in., the $1 / 4$-in. fill will be overstressed.
A balanced condition is obtained by multiplying the length ( $X+Y$ ) by the ratio of the minimum to the actual thickness of fill, thus:
$(4 \mathrm{in} .+6 \mathrm{in}).\left(\frac{0.51 \mathrm{in} .}{0.25 \mathrm{in} .}\right)=20.4 \mathrm{in}$.
Use $(X+Y)=20^{1 / 2}$ in.

Table 14-3A		
Minimum Fill Thickness for   Balanced Weld and Plate   Shear, in.		
Weld A	$F_{y}$, ksi	
	$\mathbf{3 6}$	$\mathbf{5 0}$
	0.26	0.19
$5 / 16$	0.32	0.23
$3 / 8$	0.38	0.28
$7 / 16$	0.45	0.33
$1 / 2$	0.51	0.37

Placing this additional increment of $(X+Y)$ can be done by making weld lengths, $X$, continuous across the end of the splice plate and by increasing $Y$ (and therefore the plate length), if required.

Note 2: If fill length, $l_{B}$, is excessive, place weld of size $B$ across one or both ends of fill and reduce $l_{B}$ accordingly, but not less than (l/2 + 1 in .). Omit return welds in Cases IV-E and V-B.


## Table 14-3 (continued) Typical Column Splices

## Case V:

## All-welded flange-plated column splices between columns with depth $\boldsymbol{d}_{u}$ nominally $\mathbf{2} \mathrm{in}$. less than depth $\boldsymbol{d}_{l}$

Case V-A:   Filler on upper column developed for bearing on lower column. Filler width less than upper column flange width.	Flange plates: Same as Case IV-A, except see Note 1 for Case IV. Fillers (shop welded to upper column): Select thickness as $\left[\left(d_{l}-d_{u}\right) / 2\right]-1 / 16$ in. Select weld size $B$ from AISC Specification Section J2; $5 / 16$ in. or less preferred. Select weld length, $l_{B}$, to develop bearing strength of the filler but not less than ( $l / 2+1^{1} / 2 \mathrm{in}$.). Select filler width greater than flange plate width plus $2 N$ but less than the upper column flange width minus $2 M$. See Case IV for $M$ and $N$.
Case V-B:   Same as Case V-A except filler width is greater than upper column flange width. Use this case only when $M$ or $N$ in Case V-A are inadequate for weld $A$, or when additional filler bearing area is required.	Flange plates: Same as Case IV-A, except see Note 1.   Fillers (shop welded to upper column): Select thickness as $\left[\left(d_{l}-d_{u}\right) / 2\right]-1 / 16$ in. Select weld size $B$ from the AISC Specification Section J2; $5 / 16 \mathrm{in}$. or less preferred. Select weld length, $l_{B}$, to develop bearing strength of the filler but not less than ( $l / 2+1 \frac{1}{2}$ in.). Select filler width as the larger of the flange plate width plus $2 N$ and the upper column flange width plus $2 M$, rounded to the next higher $1 / 4$-in. increment. Select filler length, $l_{B}$, subject to Note 3.

Note 3: If fill length, based on $l_{B}$, is excessive, place weld of size $B$ across end of fill and reduce $l_{B}$ by one-half of the additional weld length, but not less than ( $l / 2+1 \frac{1}{2} 2 \mathrm{in}$.). Omit return welds in Case V-B.


Table 14-3 (continued) Typical Column Splices   Case VI:   Combination bolted and welded column splices between columns with depths $d_{u}$ and $d_{l}$ nominally the same									
Column Size	Flange Plate				Bolts		Welds		
	Width	Thick.	Length		$\begin{gathered} \hline \text { No. } \\ \text { of } \\ \text { Rows } \end{gathered}$	$\begin{gathered} \text { Gage }^{\mathrm{a}} \\ \boldsymbol{g} \end{gathered}$	$\begin{gathered} \text { Size } \\ A \end{gathered}$	Length	
			$l_{u}$	$l_{l}$				$X$	$Y$
	in.	in.	in.	in.		in.	in.	in.	in.
W14×455 \& over	14	5/8	$9^{1 / 4}$	9	3	111/2	1/2	5	7
$\times 311$ to 426	12	5/8	$91 / 4$	8	3	91/2	1/2	4	6
$\times 211$ to 283	12	1/2	91/4	8	3	$91 / 2$	3/8	4	6
$\times 90$ to 193	12	3/8	$61 / 4$	8	2	91/2	5/16	4	6
$\times 61$ to 82	8	$3 / 8$	$61 / 4$	8	2	$51 / 2$	5/16	3	6
$\times 43$ to 53	6	5/16	$61 / 4$	7	2	$3^{1 / 2}$	$1 / 4$	2	5
W12×120 to 336	8	1/2	$61 / 4$	8	2	$51 / 2$	3/8	3	6
$\times 53$ to 106	8	$3 / 8$	$61 / 4$	8	2	$5^{1 / 2}$	5/16	3	6
$\times 40$ to 50	6	5/16	$61 / 4$	7	2	$3^{1 / 2}$	$1 / 4$	2	5
W10×49 to 112	8	$3 / 8$	$61 / 4$	8	2	$5^{1 / 2}$	5/16	3	6
$\times 33$ to 45	6	5/16	$61 / 4$	7	2	$3^{1 / 2}$	$1 / 4$	2	5
W8 $\times 31$ to 67	6	$3 / 8$	$61 / 4$	7	2	$3^{1 / 2}$	5/16	2	5
$\times 24$ \& 28	5	5/16	$61 / 4$	6	2	$3^{1 / 2}$	$1 / 4$	2	4
Case VI-A: $\begin{aligned} d_{l}= & \left(d_{u}+1 / 4 \mathrm{in} .\right) \\ & \text { to }\left(d_{u}+5 / 8 \mathrm{in} .\right) \end{aligned}$	Flange plates: Select flange plate width, bolts, gage and length $l_{U}$ for upper column; select flange plate thickness, weld size $A$, weld lengths $X$ and $Y$, and length $l_{l}$ for lower column. Total flange plate length is $l_{u}+l_{l}$.   Fillers: None.   Shims: Furnish sufficient strip shims $2^{1 / 2}$ in. $\times 1 / 8$ in. to obtain 0 to $1 / 16$-in. clearance on each side.								
Case VI-B: $\begin{aligned} d_{l}= & \left(d_{u}-1 / 4 \mathrm{in} .\right) \\ & \text { to }\left(d_{u}+1 / 8 \mathrm{in} .\right) \end{aligned}$	Flange plates: Same as Case VI-A, except use weld size, $A+t$, on lower column. Fillers (shop welded to lower column under flange plate): Select thickness, $t$, as $1 / 8$ in. for $d_{l}=d_{u}$ and $d_{l}=\left(d_{u}+1 / 8\right.$ in. $)$ or as $3 / 16$ in. for $d_{l}=\left(d_{u}-1 / 8\right.$ in.) and $d_{l}=\left(d_{u}-1 / 4 \mathrm{in}\right.$.). Select width to match flange plate and length as $l_{l}-2$ in. Shims: Same as Case VI-A.								
$\begin{aligned} & \text { Case VI-C: } \\ & \begin{array}{l} d_{l}=\left(d_{u}+3 / 4 \text { in. }\right) \\ \quad \text { and over } \end{array} \end{aligned}$	Flange plates: Same as Case VI-A.   Fillers (shop welded to upper column): Select thickness, $t$, as $\left[\left(d_{l}-d_{u}\right) / 2\right]-1 / 8$ in. or $3 / 16$ in., whichever results in $1 / 8-$-in. multiples of fill thickness. Select weld size $B$ as minimum size from AISC Specification Section J2. Select weld length as $l_{u}-1 / 4 \mathrm{in}$. Select filler width as flange plate width and filler length as $l_{u}-1 / 4 \mathrm{in}$. Shims: Same as Case VI-A.								
a Gages shown may be modified if necessary to accommodate fittings elsewhere on the columns.									



# Table 14-3 (continued) Typical Column Splices 

## Case VII:

Combination bolted and welded flange-plated column splices between columns with depth $d_{u}$ nominally 2 in . less than depth $d_{l}$, fillers developed for bearing

Case VII-A:   Filler of width less than upper column flange width.	Flange plates: Same as Case VI-A.   Fillers (shop welded to upper column): Select filler thickness, $t$, as $\left[\left(d_{l}-d_{l}\right) / 2\right]-1 / 8$ in. or $3 / 16$ in., whichever results in $1 / 8$-in. multiples of filler thickness. Select weld size $B$ from the AISC Specification Section J2; $5 / 16$ in. or less preferred. Select weld length $l_{B}$ to develop bearing strength of filler. Select filler width not less than flange plate width but not greater than upper column flange width minus $2 M$ (see Case IV). Select filler length, $l_{B}$, subject to Note 4.
Case VII-B:   Filler of width greater than upper column flange width. Use Case VII-B only when fillers must be widened to provide additional bearing area.	Flange plates: Same as Case VI-A.   Fillers (shop welded to upper columns): Same as Case VII-A, except select filler width as upper column flange width plus $2 M$ (see Case IV) rounded to the next larger $1 / 2$-in. increment.

Note 4: If fill length based on $l_{B}$ is excessive, place weld of size $B$ across end of fill and reduce $l_{B}$ by one-half of the additional weld length, but not less than $l_{u}$. Omit return welds in Case VII-B.

## Table 14-3 (continued) Typical Column Splices

## Case VII:

Combination bolted and welded flange-plated column splices between columns with depth $d_{u}$ nominally 2 in . less than depth $d_{l}$, fillers developed for bearing


Case VII-B

## Table 14-3 (continued) Typical Column Splices <br> Case VIII:

## Directly welded flange column splices between columns with depths $d_{u}$ and $d_{l}$ nominally the same

These types of splices exhibit versatility. The flanges may be partial-joint-penetration groove welded as in Cases VIII-A and VIII-B, or complete-joint-penetration groove welded as in Cases VIII-C, VIII-D, and VIII-E. The webs may be spliced using the channel(s) as shown in Cases VIII-A, VIII-B, VIII-C, and VIII-D, or complete-joint-penetration groove welded as shown in Case VIII-E. The use of a channel or channels at the web splice provides a higher degree of restraint during the erection phase than does a plate or plates. The use of partial-joint-penetration groove flange welds provide greater stability during the erection phase than do complete-joint-penetration groove welds.

The adequacy of any splice arrangement must be confirmed by the user. This is especially true in regions where high winds are prevalent or when the concentrated weight of the fabricated column is significantly off its centerline. When using partial-joint-penetration groove flange welds, a land width of $1 / 4 \mathrm{in}$. or greater should be used. The weld sizes are based on the thickness of the thinner column flange, regardless of whether it is the upper or lower column.

When column flange thicknesses are less than $1 / 2$ in., it may be more efficient to use flange splice plates as shown in previous cases.

See the table below for minimum effective weld sizes for partial-joint-penetration groove welds.

Partial-Joint-Penetration Groove Width	
Thickness of Column Material, ${ }^{\text {a }}$	Minimum Effective Weld Size,
$\boldsymbol{T}_{\boldsymbol{u}}$	$\boldsymbol{E}$
in.	in.
Over $1 / 2$ to $3 / 4$, incl. $^{\text {b }}$	$1 / 4$
Over $3 / 4$ to $1^{11 / 2}$, incl.	$5 / 16$
Over 1 $1 / 2$ to $2^{1 / 4}$, incl.	$3 / 8$
Over 2 ${ }^{1 / 1 / 4}$ to 6, incl.	$1 / 2$
Over 6	$5 / 8$

a Thickness of thinner part jointed.
${ }^{b}$ For less than $1 / 2$ in., use splice plates.

(a) Partial-joint-penetration groove welds

(b) Complete-joint-penetration groove welds

## Table 14-3 (continued) Typical Column Splices

## Case VIII:

Directly welded flange column splices between columns with depths $d_{u}$ and $d_{l}$ nominally the same


Case VIII-A
All-bolted web splice, partial-joint-penetration groove flange welds


## Table 14-3 (continued) Typical Column Splices

## Case VIII:

Directly welded flange column splices between columns with depths $d_{u}$ and $d_{l}$ nominally the same


Case VIII-C
All-bolted web splice, complete-joint-penetration groove flange welds


Note: User to verify weld accessibility of channel to lower column shaft, or consider the use of a bolted-bolted connection.

Case VIII-D
Combination bolted and welded web splice, complete-joint-penetration groove flange welds

## Table 14-3 (continued) Typical Column Splices

## Case VIII:

Directly welded flange column splices between columns with depths $d_{u}$ and $d_{l}$ nominally the same


Case VIII-E
Complete-joint-penetration groove flange and web welds

## Table 14-3 (continued) Typical Column Splices <br> Case IX:

Butt-plated column splices between columns with depth $d_{u}$ nominally 2 in . less than depth $d_{l}$

Butt-plate: Select a butt-plate thickness of $1 / 1 / 2$ in. for W8 over W10 columns and 2 in. for all other combinations. Select butt-plate width and length not less than $w_{l}$ and $d_{l}$ assuming the lower member is the larger column shaft.

Weld: Select weld to upper column based on the thicker of $t_{f u}$ and $t_{p}$. Select weld to lower column based on the thicker of $t_{f l}$ and $t_{p}$. The edge preparation required by the groove weld is usually performed on the column shafts. However, special cases such as when the butt plate must be field welded to the lower column require special consideration.

Erection: Clip angles, such as those shown for Case IX, help to locate and stabilize the upper column during the erection phase.


Case IX

## Table 14-3 (continued) Typical Column Splices

## Cases X, XI, XII

Case X:   Directly welded splice between   HSS and/or box-section   columns.	Welds may be either partial- or complete-joint-penetration groove welds.   The strength of partial-joint-penetration groove welds is a function   of the column wall thickness and appropriate guidelines for   minimum land width and effective weld size must be observed.   This type of splice usually requires lifting and alignment devices.   For lifting devices, see Figure 14-10. For alignment devices,   see Figure 14-11.
Case XI:   Butt-plated splices between   HSS and/or box-section   columns.	The butt-plate thickness is selected based on the AISC Specification.   Welds may be either partial- or complete-joint-penetration groove   welds, or, if adequate space is provided, fillet welds may be used.   Weld strength is based on the thickness of connected material.   See comments related to Case X regarding lifting and alignment   devices.
Case XII:   Butt-plated column splices   between W-shape columns   and HSS or box-section   columns.	See comments related to Case XI.




## PART 15

## DESIGN OF HANGER CONNECTIONS, BRACKET PLATES, AND CRANE-RAIL CONNECTIONS

SCOPE ..... 15-2
HANGER CONNECTIONS ..... 15-2
BRACKET PLATES ..... 15-3
CRANE-RAIL CONNECTIONS ..... 15-6
Bolted Splices ..... 15-6
Table 15-1. Crane Rail Splices ..... 15-7
Welded Splices ..... 15-7
Hook Bolt Fastenings ..... 15-8
Rail Clip Fastenings ..... 15-8
Rail Clamp Fastenings ..... 15-8
Patented Rail Clip Fastenings ..... 15-9
DESIGN TABLE DISCUSSION ..... 15-9
PART 15 REFERENCES ..... 15-11
DESIGN TABLES ..... 15-12
Table 15-2. Preliminary Hanger Connection Selection Table ..... 15-12
Table 15-3. Net Plastic Section Modulus, $Z_{n e t}$, in. ${ }^{3}$ ..... 15-14
Table 15-4. Dimensions and Weights of Clevises ..... 15-16
Table 15-5. Clevis Numbers Compatible with Various Rods and Pins ..... 15-17
Table 15-6. Dimensions and Weights of Turnbuckles ..... 15-18
Table 15-7. Dimensions and Weights of Sleeve Nuts ..... 15-19
Table 15-8. Dimensions and Weights of Recessed-Pin Nuts ..... $15-20$
Table 15-9. Dimensions and Weights of Clevis and Cotter Pins ..... 15-21

## SCOPE

The specification requirements and other design considerations summarized in this Part apply to the design of hanger connections, bracket plates, and crane-rail connections. For the design of similar connections for rectangular and round HSS, see AISC Specification Chapter K.

## HANGER CONNECTIONS

Hanger connections, illustrated in Figure 15-1, are usually made with a plate, tee, angle, or pair of angles. The available strength of a hanger connection is determined from the applicable limit states for the bolts (see Part 7), welds (see Part 8), and connecting elements (see Part 9). In all cases, the available strength, $\phi R_{n}$ or $R_{n} / \Omega$, must exceed the required strength, $R_{u}$ or $R_{a}$.


Fig. 15-1. Typical hanger connections.

## BRACKET PLATES

A bracket plate, illustrated in Figure 15-2, acts as a cantilevered beam. The available strength of a bracket plate is determined from the applicable limit states for the bolts (see Part 7), welds (see Part 8), and connecting elements (see Part 9). Additionally the following checks must be considered: flexural yielding at Sections A-A in Figure 15-2; flexural rupture through Sections A-A in Figure 15-2; and shear yielding, local yielding and local buckling through Sections B-B in Figure 15-2 (Muir and Thornton, 2004). The following procedures are for a single bracket plate with the applied load $P_{r}$, where $P_{r}$ is the required strength using LRFD load combinations, $P_{u}$, or the required strength using ASD load combinations, $P_{a}$. In all cases, the available strength must equal or exceed the required strength. The seat plate shown in Figure 15-2 should be attached to the bracket plate(s) with a minimum continuous single-sided fillet weld per AISC Specification Table J2.4.

The required flexural strength at Sections A-A in Figure 15-2 is

LRFD	ASD		
$M_{u}=P_{u} e$	$(15-1 \mathrm{a})$	$M_{a}=P_{a} e$	$(15-1 \mathrm{~b})$

where
$e=$ distance shown in Figure 15-2, in.

(a) Bolted

(b) Welded

$$
\begin{aligned}
& N_{r}=P_{r} \cos \theta \\
& V_{r}=P_{r} \sin \theta \\
& M_{r}=P_{r} e-N_{r}\left(b^{\prime} / 2\right)
\end{aligned}
$$

Fig. 15-2. Bracket-plate connections.

For flexural yielding, the available strength, $\phi M_{n}$ or $M_{n} / \Omega$, of the bracket plate is

$$
\begin{gather*}
M_{n}=F_{y} Z  \tag{15-2}\\
\phi=0.90 \quad \Omega=1.67
\end{gather*}
$$

where
$Z=$ gross plastic section modulus of the bracket plate at Sections A-A in Figure 15-2, in. ${ }^{3}$
For flexural rupture, the available strength, $\phi M_{n}$ or $M_{n} / \Omega$, of the bracket plate is

$$
\begin{gather*}
M_{n}=F_{u} Z_{n e t}  \tag{15-3}\\
\phi=0.75 \quad \Omega=2.00
\end{gather*}
$$

where
$Z_{n e t}=$ net plastic section modulus of the bracket plate at Sections A-A in Figure 15-2, in. ${ }^{3}$ See Table 15-3 for the determination of $Z_{\text {net }}$ for brackets with standard holes. General equations for determination of $Z_{\text {net }}$ follow (Mohr and Murray, 2008).

For an odd number of bolt rows

$$
\begin{equation*}
Z_{n e t}=\frac{1}{4} t\left(s-d_{h}^{\prime}\right)\left(n^{2} s+d_{h}^{\prime}\right) \tag{15-4}
\end{equation*}
$$

For an even number of bolt rows

$$
\begin{equation*}
Z_{n e t}=\frac{1}{4} t\left(s-d_{h}^{\prime}\right) n^{2} s \tag{15-5}
\end{equation*}
$$

where
$d_{h}^{\prime}=$ hole diameter $+{ }^{1 / 16}$, in.
$n=$ number of bolt rows
$s=$ vertical bolt row spacing, in.
In both cases, the vertical edge distances are assumed to be $s / 2$ with plate depth of $a=n s$.
The required shear strength at Sections B-B in Figure 15-2 is

LRFD		ASD	
$V_{u}=P_{u} \sin \theta$	$(15-6 \mathrm{a})$	$V_{a}=P_{a} \sin \theta$	$(15-6 \mathrm{~b})$

For shear yielding, the available strength, $\phi V_{n}$ or $V_{n} / \Omega$, of the bracket plate is

$$
\begin{gather*}
V_{n}=0.6 F_{y} t b^{\prime}  \tag{15-7}\\
\phi=1.00 \quad \Omega=1.50
\end{gather*}
$$

where
$a=$ depth of bracket plate, in.
$b^{\prime}=a \sin \theta$, in.
$t=$ thickness of bracket plate, in.
$\theta=$ angle shown in Figure 15-2, degrees

The required normal and flexural strength at Sections B-B in Figure 15-2 is

LRFD	ASD		
$M_{u}=P_{u} e-N_{u}\left(\frac{b^{\prime}}{2}\right)$	$(15-8 \mathrm{a})$	$M_{a}=P_{a} e-N_{a}\left(\frac{b^{\prime}}{2}\right)$	$(15-8 \mathrm{~b})$
$N_{u}=P_{u} \cos \theta$	$(15-9 \mathrm{a})$	$N_{a}=P_{a} \cos \theta$	$(15-9 \mathrm{~b})$

For interaction of normal and flexural strengths, the following interaction equation must be satisfied:

$$
\begin{equation*}
\frac{N_{r}}{N_{c}}+\frac{M_{r}}{M_{c}} \leq 1.0 \tag{15-10}
\end{equation*}
$$

The nominal normal strength of the bracket plate for the limit states of local yielding and local buckling is

$$
\begin{equation*}
N_{n}=F_{c r} t b^{\prime}, \mathrm{kips} \tag{15-11}
\end{equation*}
$$

and the nominal flexural strength of the bracket plate for the limit states of local yielding and local buckling is

$$
\begin{equation*}
M_{n}=\frac{F_{c r} t b^{\prime 2}}{4}, \text { kip-in. } \tag{15-12}
\end{equation*}
$$

For design by LRFD

$$
\begin{aligned}
M_{c} & =\phi M_{n} \\
M_{r} & =M_{u} \\
N_{c} & =\phi N_{n} \\
N_{r} & =N_{u} \\
\phi & =0.90
\end{aligned}
$$

For design by ASD

$$
\begin{aligned}
& M_{c}=\frac{M_{n}}{\Omega} \\
& M_{r}=M_{a} \\
& N_{c}=\frac{N_{n}}{\Omega} \\
& N_{r}=N_{a} \\
& \Omega=1.67
\end{aligned}
$$

For the limit state of local yielding of the bracket plate

$$
\begin{equation*}
F_{c r}=F_{y} \tag{15-13}
\end{equation*}
$$

For the limit state of local buckling of the bracket plate

$$
\begin{equation*}
F_{c r}=Q F_{y} \tag{15-14}
\end{equation*}
$$

When $\lambda \leq 0.70$, the limit state of local buckling need not be considered (that is, $Q=1$ ).
When $0.70<\lambda \leq 1.41$

$$
\begin{equation*}
Q=1.34-0.486 \lambda \tag{15-15}
\end{equation*}
$$

When $1.41<\lambda$

$$
\begin{equation*}
Q=\frac{1.30}{\lambda^{2}} \tag{15-16}
\end{equation*}
$$

where

$$
\begin{align*}
a^{\prime} & =\frac{a}{\cos \theta}  \tag{15-17}\\
& =\text { length of free edge, in. } \\
\lambda & =\frac{\left(\frac{b^{\prime}}{t}\right) \sqrt{F_{y}}}{5 \sqrt{475+1,120\left(\frac{b^{\prime}}{a^{\prime}}\right)^{2}}} \tag{15-18}
\end{align*}
$$

## CRANE-RAIL CONNECTIONS

## Bolted Splices

It is desirable to use properly installed and maintained bolted splice bars in crane-rail connections rather than welded splice bars, which are frequently subject to failure in service.

Standard rail drilling and joint-bar punching, as furnished by manufacturers of light standard rails for track work, include round holes in rail ends and slotted holes in joint bars to receive standard oval-neck track bolts. Holes in rails are oversized and punching in joint bars is spaced to allow $1 / 16$-in. to $1 / 8$-in. clearance between rail ends (see manufacturers' catalogs for spacing and dimensions of holes and slots). Although this construction is satisfactory for track and light crane service, its use in general crane service may lead to high maintenance and joint failure. Welded splices are therefore preferable.

For best service in bolted splices, it is recommended that tight joints be required for all rails for crane service. This will require rail ends to be finished, and the special rail drilling and joint-bar punching tabulated in Table 15-1 and shown in Figure 15-3. Special rail drilling is accepted by some mills, or rails may be ordered blank for shop drilling. End finishing of standard rails can be done at the mill. However, light rails often must be endfinished in the shop or ground at the site prior to erection. In the crane rail range from 104 to 175 lb per yard, rails and joint bars are manufactured to obtain a tight fit and no further special end finishing, drilling or punching is required. Because of cumulative tolerance variations in holes, bolt diameters and rail ends, a slight gap may sometimes occur. It may sometimes be necessary to ream holes through joined bar and rail to permit entry of bolts.

Joint bars for crane service are provided in various sections to match the rails. Joint bars for light and standard rails can be purchased blank for special shop punching to obtain tight joints. See manufacturer data for dimensions, material specifications, and the identification necessary to match the crane-rail section.

Joint-bar bolts, as distinguished from oval-neck track bolts, have straight shanks to the head and are manufactured to ASTM A449 specifications. Nuts are manufactured to ASTM A563 Grade B specifications. Alternatively, ASTM F3125 Grade A325 bolts and compatible ASTM A563 nuts can be used. Bolt assembly includes an alloy steel spring washer, furnished to American Railway Engineering and Maintenance of Way Association (AREMA) specifications. After installation, bolts should be retightened within 30 days and every three months thereafter.

													ic						
Wt.   per   Yard	Rail					Joint Bar						Bolt				Washer		Wt. 2 Bars Bolts, Nuts, Washers	
	Drilling					Punching				L	G	Dia.	Grip	$l$	H	Inside   Dia.	Thick-   ness   and   Width		
	$g$	Hole	A	B	C	Hole Dia.	D	$B$	C									With Ftg.	W/0   Ftg.
lb	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	lb	lb
40	171/128	13/16*	$2^{1 / 2}$	5	-	13/16*	$4^{15} / 16^{*}$	5	-	20	23/16	3/4	115/16	$3^{1 / 2}$	$2^{1 / 2}$	13/16	7/16 $\times 3 / 8$	20.0	16.5
60	$1^{115} / 128$	13/16*	$2^{1 / 2}$	5	-	13/16*	$4^{15} / 16^{*}$	5	-	24	$2^{11 / 16}$	$3 / 4$	$2^{19} / 32$	4	$2^{11 / 16}$	13/16	$7 / 16 \times 3 / 8$	36.5	29.6
85	$2^{17} / 64$	15/16*	$2^{1 / 2}$	5	-	15/16*	$4^{15} / 16^{*}$	5	-	24	$3^{11 / 32}$	7/8	$3^{5} / 32$	$4^{3 / 4}$	$3^{3} / 16$	15/16	$7 / 16 \times 3 / 8$	56.6	45.3
104	$2^{7 / 16}$	$1^{1 / 16}$	4	5	6	$1^{1 / 16}$	$7^{15} / 16$	5	6	34	$3^{1 / 2}$	1	$3^{1 / 2}$	51/4	$3^{1 / 2}$	$1^{1 / 16}$	$7 / 16 \times 1 / 2$	73.5	55.4
135	$2^{15} / 32$	13/16	4	5	6	$1^{3} / 16$	$7{ }^{15 / 16}$	5	6	34	-	$1^{1 / 8}$	$35 / 8$	$5^{1 / 2}$	$3^{11 / 16}$	$1^{3 / 16}$	$7 / 16 \times 1 / 2$	-	75.3
171	25/8	13/16	4	5	6	$1^{3} / 16$	$7{ }^{15} / 16$	5	6	34	_	$1^{1 / 8}$	$4^{7 / 16}$	$61 / 4$	$4^{1 / 16}$	13/16	$7 / 16 \times 1 / 2$	-	90.8
175	$2^{21 / 32}$	13/16	4	5	6	13/16	$7^{15 / 16}$	5	6	34	-	$1^{1 / 8}$	$4^{1 / 8}$	$6^{1 / 4}$	$3^{15} / 16$	$13 / 16$	$7 / 16 \times 1 / 2$	-	87.7
*Special rail drilling and joint bar punching. Ftg. $=$ fitting																			

## Welded Splices

When welded splices are specified, consult the manufacturer for recommended rail-end preparation, welding procedure, and method of ordering. Although the joint continuity made possible by this method of splicing is desirable, the careful control required in all stages of the welding operation may be difficult to meet during crane-rail installation. Rails should not be attached to structural supports by welding. Rails with holes for joint bar bolts should not be used in making welded splices.


Fig. 15-3. Special rail drilling and joint-bar punching.

## Hook Bolt Fastenings

Hook bolts (Figure 15-4) are used primarily with light rails when attached to beams that are too narrow for clamps. Rail adjustment to $\pm 1 / 2$ in. is inherent in the threaded shank. Hook bolts are paired alternately 3 to 4 in . apart, spaced at about 24 in . on center. The special rail drilling required must be done in the fabricator's shop. Hook bolts are not recommended for use with heavy-duty cycle cranes [Crane Manufacturers Association of America (CMAA) Classes D, E and F]. It is generally recommended that hook bolts should not be used in runway systems that are longer than 500 ft because the bolts do not allow for longitudinal movement of the rail.

## Rail Clip Fastenings

Rail clips are forged or cast devices that are shaped to match specific rail profiles. They are usually bolted to the runway girder flange with one bolt or are sometimes welded. Rail clips have been used satisfactorily with all classes of cranes. However, one drawback is that when a single bolt is used, the clip can rotate in response to rail longitudinal movement. This clip rotation can cause cam action that might force the rail out of alignment. Because of this limitation, rail clips should only be used in crane systems subject to infrequent use, and for runways less than 500 ft in length.

## Rail Clamp Fastenings

Rail clamps are a common method of attachment for heavy-duty cycle cranes. Rail clamps are detailed to provide two types: tight and floating (see Figure 15-5). Each clamp consists of two plates: an upper clamp plate and a lower filler plate. Dimensions shown are suggested. See manufacturers' catalogs for recommended gages, bolt sizes and detail dimensions not shown.

The lower plate is flat and nominally matches the height of the toe of the rail flange. The upper plate covers the lower plate and extends over the top of the lower rail flange. In the tight clamp, the upper plate is detailed to fit tightly to the lower tail flange top, thus "clamping" it tightly in place when the fasteners are tightened. The tight clamp is illustrated with the filler plates fitted tightly against the rail flange toe. This tight fit-up is rarely achieved in practice and is not considered to be necessary to achieve a tight type clamp. In the floating type clamp, the pieces are detailed to provide a clearance both alongside the rail flange toe and below the upper plate. The floating type does not, in


Fig. 15-4. Hook bolts.
reality, clamp the rail but merely holds the rail within the limits of the clamp clearances. High-strength bolts are recommended for both clamp types. Both types should be spaced 3 ft or less apart.

## Patented Rail Clip Fastenings

Each manufacturer's literature presents in detail the desirable aspects of the various designs. In general, patented rail clips are easy to install due to their range of adjustment and provide both limitation of lateral movement and allowance for longitudinal movement. Patented rail clips should be considered as a viable alternative to conventional hook bolts, clips or clamps. Because of their desirable characteristics, patented rail clips can be used without restriction except as limited by the specific manufacturer's recommendations. Installations using patented rail clips sometimes incorporate pads beneath the rail. When this is done, the lateral float of the rail should be limited as in the case of the tight rail clamps.

## DESIGN TABLE DISCUSSION

## Table 15-2. Preliminary Hanger Connection Selection Table

Values are given for the available tensile strength per in. of fitting length in bending of a tee fitting flange or angle leg with $F_{u}=58 \mathrm{ksi}$ and $F_{u}=65 \mathrm{ksi}$. The bending strength is calculated in terms of $F_{u}$, which provides good correlation with available test data (Thornton, 1992; Swanson, 2002). Table 15-2 can be used to select a trial fitting once the number and


Fig. 15-5. Rail clamps.
size of bolts required is known. The number of bolts required must be selected such that the available tensile strength of one bolt, $\phi r_{n}$ or $r_{n} / \Omega$, exceeds the required tensile force per bolt, $r_{u t}$ or $r_{a t}$.

In this table, it is assumed that equal moments exist at the face of the tee stem or angle leg and at the bolt line. The available flexural strength of the tee flange or angle leg, $\phi_{b} M_{n}$ or $M_{n} / \Omega_{b}$, is determined with

$$
\begin{gather*}
M_{n}=M_{p}=F_{u} Z  \tag{15-19}\\
\phi_{b}=0.90 \quad \Omega_{b}=1.67
\end{gather*}
$$

In the above equation, the plastic section modulus, $Z$, per unit length of the angle or tee flange is

$$
\begin{equation*}
Z=\frac{t^{2}}{4} \tag{15-20}
\end{equation*}
$$

where $t$ is the thickness of the angle or tee flange, in. Thus, for a unit length of the angle or tee flange the available flexural strength, $\phi_{b} M_{n}$ or $M_{n} / \Omega_{b}$, is determined with

$$
\begin{gather*}
M_{n}=\frac{F_{u} t^{2}}{4}  \tag{15-21}\\
\phi_{b}=0.90 \quad \Omega_{b}=1.67
\end{gather*}
$$

The tensile force on the fitting per bolt row, $2 r_{u t}$ or $2 r_{a t}$, must be less than the appropriate (LRFD or ASD) value shown in Table 15-2 times the tributary length per pair of bolts, $p$ (length perpendicular to the elevation shown in Table 15-2).

## Table 15-3. Net Plastic Section Modulus, $\boldsymbol{Z}_{\text {net }}$

Values of the net plastic section modulus, $Z_{n e t}$, are given in Table 15-3 for brackets with standard holes and numbers of fasteners spaced 3 in . on center, the usual spacing for these connections. The values are determined using Equations 15-4 and 15-5.

## Forged Steel Structural Hardware

## Table 15-4. Dimensions and Weights of Clevises

Dimensions, weights and available strengths of clevises are listed in Table 15-4.

## Table 15-5. Clevis Numbers Compatible with Various Rods and Pins

Compatibility of clevises with various rods and pins is given in Table 15-5.

## Table 15-6. Dimensions and Weights of Turnbuckles

Dimensions, weights and available strengths of turnbuckles are listed in Table 15-6.

## PART 15 REFERENCES

Mohr, B.A. and Murray, T.M. (2008), "Bending Strength of Steel Bracket and Splice Plates," Engineering Journal, AISC, Vol. 45, No. 2, pp. 97-106.
Muir, L.S. and Thornton, W.A. (2004), "A Direct Method for Obtaining the Plate Buckling Coefficient for Double Coped Beams," Engineering Journal, AISC, Vol. 41, No. 3, pp. 133-134.
Swanson, J.A. (2002), "Ultimate Strength Prying Models for Bolted T-Stub Connections," Engineering Journal, AISC, Vol. 39, No. 3, pp. 136-147.
Thornton, W.A. (1992), "Strength and Serviceability of Hanger Connections," Engineering Journal, AISC, Vol. 29, No. 4, pp. 145-149. See also ERRATA, Engineering Journal, AISC, Vol. 33, No. 1, 1996, pp. 39, 40.

$\dagger$										
$b$, in.										
$t$, in.	1		11/4		11/2		13/4		2	
	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
5/16	3.39	5.10	2.71	4.08	2.26	3.40	1.94	2.91	1.70	2.55
3/8	4.88	7.34	3.91	5.87	3.26	4.89	2.79	4.19	2.44	3.67
7/16	6.65	9.99	5.32	7.99	4.43	6.66	3.80	5.71	3.32	5.00
1/2	8.68	13.1	6.95	10.4	5.79	8.70	4.96	7.46	4.34	6.53
9/16	11.0	16.5	8.79	13.2	7.33	11.0	6.28	9.44	5.49	8.26
5/8	13.6	20.4	10.9	16.3	9.04	13.6	7.75	11.7	6.78	10.2
11/16	16.4	24.7	13.1	19.7	10.9	16.4	9.38	14.1	8.21	12.3
$3 / 4$	19.5	29.4	15.6	23.5	13.0	19.6	11.2	16.8	9.77	14.7
13/16	22.9	34.5	18.3	27.6	15.3	23.0	13.1	19.7	11.5	17.2
7/8	26.6	40.0	21.3	32.0	17.7	26.6	15.2	22.8	13.3	20.0
15/16	30.5	45.9	24.4	36.7	20.3	30.6	17.4	26.2	15.3	22.9
1	34.7	52.2	27.8	41.8	23.2	34.8	19.8	29.8	17.4	26.1
11/16	39.2	58.9	31.4	47.1	26.1	39.3	22.4	33.7	19.6	29.5
11/8	44.0	66.1	35.2	52.9	29.3	44.0	25.1	37.8	22.0	33.0
13/16	49.0	73.6	39.2	58.9	32.6	49.1	28.0	42.1	24.5	36.8
$11 / 4$	54.3	81.6	43.4	65.3	36.2	54.4	31.0	46.6	27.1	40.8
	21/4		$2^{1 / 2}$		$2^{3 / 4}$		3		$3^{1 / 4}$	
5/16	1.51	2.27	1.36	2.04	1.23	1.85	1.13	1.70	1.04	1.57
3/8	2.17	3.26	1.95	2.94	1.78	2.67	1.63	2.45	1.50	2.26
7/16	2.95	4.44	2.66	4.00	2.42	3.63	2.22	3.33	2.05	3.07
1/2	3.86	5.80	3.47	5.22	3.16	4.75	2.89	4.35	2.67	4.02
9/16	4.88	7.34	4.40	6.61	4.00	6.01	3.66	5.51	3.38	5.08
5/8	6.03	9.06	5.43	8.16	4.93	7.41	4.52	6.80	4.17	6.27
11/16	7.30	11.0	6.57	9.87	5.97	8.97	5.47	8.22	5.05	7.59
$3 / 4$	8.68	13.1	7.81	11.7	7.10	10.7	6.51	9.79	6.01	9.03
13/16	10.2	15.3	9.17	13.8	8.34	12.5	7.64	11.5	7.05	10.6
7/8	11.8	17.8	10.6	16.0	9.67	14.5	8.86	13.3	8.18	12.3
15/16	13.6	20.4	12.2	18.4	11.1	16.7	10.2	15.3	9.39	14.1
1	15.4	23.2	13.9	20.9	12.6	19.0	11.6	17.4	10.7	16.1
11/16	17.4	26.2	15.7	23.6	14.3	21.4	13.1	19.6	12.1	18.1
11/8	19.5	29.4	17.6	26.4	16.0	24.0	14.7	22.0	13.5	20.3
13/16	21.8	32.7	19.6	29.4	17.8	26.8	16.3	24.5	15.1	22.6
11/4	24.1	36.3	21.7	32.6	19.7	29.7	18.1	27.2	16.7	25.1


	Avail 居	on   ble   limi		Tabl min On stre ben $\qquad$	15 ry ele gth ing		Ta   er lang	ple   ear		$\frac{i^{t}}{i}$
$t$, in.	$b$, in.									
	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
5/16	3.80	5.71	3.04	4.57	2.53	3.81	2.17	3.26	1.90	2.86
3/8	5.47	8.23	4.38	6.58	3.65	5.48	3.13	4.70	2.74	4.11
7/16	7.45	11.2	5.96	8.96	4.97	7.46	4.26	6.40	3.72	5.60
1/2	9.73	14.6	7.78	11.7	6.49	9.75	5.56	8.36	4.87	7.31
9/16	12.3	18.5	9.85	14.8	8.21	12.3	7.04	10.6	6.16	9.25
5/8	15.2	22.9	12.2	18.3	10.1	15.2	8.69	13.1	7.60	11.4
11/16	18.4	27.7	14.7	22.1	12.3	18.4	10.5	15.8	9.20	13.8
$3 / 4$	21.9	32.9	17.5	26.3	14.6	21.9	12.5	18.8	10.9	16.5
13/16	25.7	38.6	20.6	30.9	17.1	25.7	14.7	22.1	12.8	19.3
7/8	29.8	44.8	23.8	35.8	19.9	29.9	17.0	25.6	14.9	22.4
15/16	34.2	51.4	27.4	41.1	22.8	34.3	19.5	29.4	17.1	25.7
1	38.9	58.5	31.1	46.8	25.9	39.0	22.2	33.4	19.5	29.3
11/16	43.9	66.0	35.2	52.8	29.3	44.0	25.1	37.7	22.0	33.0
11/8	49.3	74.0	39.4	59.2	32.8	49.4	28.1	42.3	24.6	37.0
13/16	54.9	82.5	43.9	66.0	36.6	55.0	31.4	47.1	27.4	41.2
$11 / 4$	60.8	91.4	48.7	73.1	40.5	60.9	34.8	52.2	30.4	45.7
	$2^{1 / 4}$		$2^{1 / 2}$		23/4		3		$3^{1 / 4}$	
5/16	1.69	2.54	1.52	2.29	1.38	2.08	1.27	1.90	1.17	1.76
$3 / 8$	2.43	3.66	2.19	3.29	1.99	2.99	1.82	2.74	1.68	2.53
7/16	3.31	4.98	2.98	4.48	2.71	4.07	2.48	3.73	2.29	3.45
$1 / 2$	4.32	6.50	3.89	5.85	3.54	5.32	3.24	4.88	2.99	4.50
9/16	5.47	8.23	4.93	7.40	4.48	6.73	4.11	6.17	3.79	5.70
5/8	6.76	10.2	6.08	9.14	5.53	8.31	5.07	7.62	4.68	7.03
11/16	8.18	12.3	7.36	11.1	6.69	10.1	6.13	9.22	5.66	8.51
$3 / 4$	9.73	14.6	8.76	13.2	7.96	12.0	7.30	11.0	6.74	10.1
13/16	11.4	17.2	10.3	15.4	9.34	14.0	8.56	12.9	7.91	11.9
7/8	13.2	19.9	11.9	17.9	10.8	16.3	9.93	14.9	9.17	13.8
15/16	15.2	22.9	13.7	20.6	12.4	18.7	11.4	17.1	10.5	15.8
1	17.3	26.0	15.6	23.4	14.2	21.3	13.0	19.5	12.0	18.0
11/16	19.5	29.4	17.6	26.4	16.0	24.0	14.6	22.0	13.5	20.3
11/8	21.9	32.9	19.7	29.6	17.9	26.9	16.4	24.7	15.2	22.8
13/16	24.4	36.7	22.0	33.0	20.0	30.0	18.3	27.5	16.9	25.4
$11 / 4$	27.0	40.6	24.3	36.6	22.1	33.2	20.3	30.5	18.7	28.1



Net Plastic Section Modulus, $Z_{\text {net }}$ (Standard Holes) taken along this line								
\# Bolts in One Vertical Row, $n$	Bracket Plate Depth, a, in.	Nominal Bolt Diameter, d, in.						
		7/8		1				
		Bracket Plate Thickness, $t$, in.						
		$3 / 4$	7/8	1/2	$5 / 8$	$3 / 4$	7/8	1
2	6	4.50	5.25	2.72	3.40	4.08	4.76	5.44
3	9	10.5	12.3	6.39	7.98	9.58	11.2	12.8
4	12	18.0	21.0	10.9	13.6	16.3	19.0	21.8
5	15	28.5	33.3	17.3	21.6	25.9	30.2	34.5
6	18	40.5	47.3	24.5	30.6	36.7	42.8	48.9
7	21	55.5	64.8	33.6	42.0	50.4	58.8	67.1
8	24	72.0	84.0	43.5	54.4	65.3	76.1	87.0
9	27	91.5	107	55.3	69.2	83.0	96.8	111
10	30	113	131	68.0	85.0	102	119	136
12	36	162	189	97.9	122	147	171	196
14	42	221	257	133	167	200	233	266
16	48	288	336	174	218	261	305	348
18	54	365	425	220	275	330	385	440
20	60	450	525	272	340	408	476	544
22	66	545	635	329	411	493	576	658
24	72	648	756	392	489	587	685	783
26	78	761	887	459	574	689	804	919
28	84	882	1030	533	666	799	933	1070
30	90	1010	1180	612	765	918	1070	1220
32	96	1150	1340	696	870	1040	1220	1390
34	102	1300	1520	786	982	1180	1380	1570
36	108	1460	1700	881	1100	1320	1540	1760
Notes:								
The area reduction per hole is assumed to be $d_{h}+1 / 16$ in. for $7 / 8$-in.-diameter bolts and $d_{h}+1 / 8$ in. for 1 -in.-diameter bolts.   Bolts spaced 3 in. vertically with $1 / 1 / 2$-in. edge distance at top and bottom.								


Thread: UNC Class 2B											
Clevis   Number	Dimensions, in.							Weight,   lb	Available Strength, kips*		
	Max. D	Max. $p$	$b$	$n$	$a$	W	$t$		ASD	LRFD	
2	5/8	3/4	17/16	5/8	39/16	11/16	5/16 ( $+1 / 32,-0)$	1	5.83	8.75	
21/2	7/8	11/2	$2^{1 / 2}$	1	4	$11 / 4$	5/16( $\left.++^{1 / 32},-0\right)$	2.5	12.5	18.8	
3	13/8	13/4	3	$11 / 4$	51/16	11/2	$1 / 2(+1 / 16,-1 / 32)$	4	25.0	37.5	
$3^{1 / 2}$	11/2	2	$3^{1 / 2}$	$11 / 2$	6	$13 / 4$	$1 / 2\left(+{ }^{1 / 16, ~-~}-1 / 16\right)$	6	30.0	45.0	
4	$1^{3 / 4}$	$2^{1 / 4}$	4	$1^{3 / 4}$	5 ${ }^{15} / 16$	2	$1 / 2\left(+{ }^{1 / 16, ~-~}-1 / 16\right.$ )	9	35.0	52.5	
5	21/8	$2^{1 / 2}$	5	$21 / 4$	7	$21 / 2$	$5 / 8(+3 / 32,-0)$	16	62.5	93.8	
6	$2^{1 / 2}$	3	6	$2^{3 / 4}$	8	3	$3 / 4(+3 / 32,-0)$	26	90.0	135	
7	3	$3^{3 / 4}$	7	3	9	$3^{1 / 2}$	7/8( $+^{1 / 8},-1 / 16$ )	36	114	171	
8	4	$41 / 4$	8	4	101/8	4	$11 / 2(+1 / 8,-1 / 16)$	90	225	338	
ASD	LRFD	Notes:   Weights and dimensions of clevises are typical; products of all suppliers are essentially similar. User shall verify with the manufacturer that product meets available strength specifications above.   * Strength at service load corresponds to a 3:1 safety factor using maximum pin diameter.									
$\Omega=3.00$	$\phi=0.50$										

# Table 15-5 Clevis Numbers Compatible with Various Rods and Pins 

Dia. of	Diameter of Pin, in.																	
Tap, in.	1/2	5/8	3/4	7/8	1	11/4	11/2	13/4	2	21/4	21/2	23/4	3	31/4	31/2	3/4	4	41/4
$3 / 8$	2	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1/2	2	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
$5 / 8$	2	2	2	$2^{1 / 2}$	21/2	$2^{1 / 2}$	$2^{1 / 2}$	-	-	-	-	-	-	-	-	-	-	-
$3 / 4$	-	-	$2^{1} / 2$	21/2	21/2	$2^{1 / 2}$	$2^{1 / 2}$	-	-	-	-	-	-	-	-	-	-	-
7/8	-	-	-	21/2	21/2	$2^{1} / 2$	$2^{1 / 2}$	3	-	-	-	-	-	-	-	-	-	-
1	-	-	-	-	3	3	3	3	-	-	-	-	-	-	-	-	-	-
11/8	-	-	-	-	3	3	3	3	$3^{1 / 2}$	-	-	-	-	-	-	-	-	-
11/4	-	-	-	-	3	3	3	3	$31 / 2$	-	-	-	-	-	-	-	-	-
13/8	-	-	-	-	-	3	3	$31 / 2$	3112	4	-	-	-	-	-	-	-	-
11/2	-	-	-	-	-	$31 / 2$	$31 / 2$	4	4	5	-	-	-	-	-	-	-	-
15/8	-	-	-	-	-	4	4	4	5	5	5	-	-	-	-	-	-	-
$13 / 4$	-	-	-	-	-	-	4	5	5	5	5	-	-	-	-	-	-	-
17/8	-	-	-	-	-	-	5	5	5	5	5	-	-	-	-	-	-	-
2	-	-	-	-	-	-	5	5	5	5	5	6	6	-	-	-	-	-
21/8	-	-	-	-	-	-	-	5	5	6	6	6	6	-	-	-	-	-
21/4	-	-	-	-	-	-	-	-	6	6	6	6	6	7	7	-	-	-
23/8	-	-	-	-	-	-	-	-	6	6	6	6	7	7	7	7	-	-
21/2	-	-	-	-	-	-	-	-	6	6	6	7	7	7	7	7	-	-
25/8	-	-	-	-	-	-	-	-	-	-	7	7	7	7	7	8	-	-
23/4	-	-	-	-	-	-	-	-	-	-	7	7	7	7	8	8	-	-
27/8	-	-	-	-	-	-	-	-	-	-	7	8	8	8	8	8	8	8
3	-	-	-	-	-	-	-	-	-	-	7	8	8	8	8	8	8	8
31/8	-	-	-	-	-	-	-	-	-	-	-	8	8	8	8	8	8	8
31/4	-	-	-	-	-	-	-	-	-	-	-	8	8	8	8	8	8	8
$33 / 8$	-	-	-	-	-	-	-	-	-	-	-	8	8	8	8	8	8	8
$3^{1 / 2}$	-	-	-	-	-	-	-	-	-	-	-	-	8	8	8	8	8	8
35/8	-	-	-	-	-	-	-	-	-	-	-	-	8	8	8	8	8	-
$33 / 4$	-	-	-	-	-	-	-	-	-	-	-	-	8	8	8	8	8	-
37/8	-	-	-	-	-	-	-	-	-	-	-	-	-	8	8	8	-	-
4	-	-	-	-	-	-	-	-	-	-	-	-	-	8	8	-	-	-

Notes:
Tabular values assume that the net area of the clevis through the pin hole is greater than or equal to $125 \%$ of the net area of the rod, and is applicable to round rods without upset ends. For other net area ratios, the required clevis size may be calculated by referring to the dimensions tabulated in Tables 15-4 and 7-17.

## Table 15-6 <br> Dimensions and Weights of Turnbuckles



Threads: UNC and 4UN Class 2B

Diameter D, in.	Dimensions, in.					Weight (lb) for Length a, in.						Available Strength, kips												
	$a$	$n$	$c$	$\boldsymbol{e}$	$g$	6	9	12	18	24	26													
												ASD	LRFD											
												$R_{n} / \Omega$	$\phi \boldsymbol{R}_{n}$											
3/8	6	9/16	71/8	9/16	11/32	0.42	-	-	-	-	-	2.00	3.00											
$1 / 2$	6	25/32	79/16	11/16	15/16	0.65	0.90	1.20	-	-	-	3.67	5.50											
5/8	6	15/16	7\%	13/16	$1^{1 / 2}$	0.98	1.35	1.58	2.43	-	-	5.83	8.75											
$3 / 4$	6	11/16	$81 / 8$	15/16	123/32	1.45	1.84	2.35	3.06	4.25	-	8.67	13.0											
7/8	6	15/16	85/8	13/32	17/8	1.85	-	3.02	4.20	5.43	-	12.0	18.0											
1	6	17/16	87/8	19/32	$2^{1 / 32}$	2.60	-	4.02	4.40	6.85	10.0	15.5	23.3											
11/8	6	19/16	91/8	$1^{13 / 32}$	$2^{9} / 32$	4.06	-	4.70	6.10	-	-	19.3	29.0											
$1^{1 / 4}$	6	19/16	91/8	19/16	$2^{17 / 32}$	4.00	-	6.49	7.13	11.3	13.1	25.3	38.0											
13/8	6	$1^{13 / 16}$	95/8	$1^{11 / 16}$	$2^{3 / 4}$	6.15	-	-	-	-	-	29.0	43.5											
11/2	6	$1^{7 / 8}$	93/4	$1^{27 / 32}$	$3^{1 / 32}$	6.15	-	9.70	9.13	16.8	19.4	35.0	52.5											
15/8	6	$2^{1 / 2}$	11	$1^{31 / 32}$	$3^{9} / 32$	9.80	-	-	-	-	-	40.9	61.3											
$1^{1 / 4}$	6	$2^{1 / 2}$	11	$2^{1 / 8}$	39/16	9.80	-	15.3	16.0	19.5	-	47.2	70.8											
17/8	6	213/16	115/8	23/8	4	14.0	-	15.3	-	-	-	62.0	93.0											
2	6	23/16	115/8	$2^{3 / 8}$	4	14.0	-	15.3	-	27.5	-	62.0	93.0											
21/4	6	35/16	125/8	$2^{11 / 16}$	45/8	19.6	-	30.9	-	43.5	-	80.0	120											
$2^{1 / 2}$	6	33/4	131/2	3	5	23.3	-	30.9	-	42.4	-	100	150											
$2^{3 / 4}$	6	43/16	143/8	$31 / 4$	5/8	31.5	-	-	-	54.0	-	125	188											
3	6	45/16	145/8	35/8	61/8	39.5	-	-	-	-	-	161	242											
$3^{1 / 4}$	6	57/16	167/8	37/8	$6^{3 / 4}$	60.5	-	79.5	-	-	-	203	305											
$3^{1 / 2}$	6	57/16	167/8	37/8	$6^{3 / 4}$	60.5	70.0	79.5	-	-	-	203	305											
$33 / 4$	6	6	18	45/8	$81 / 2$	95.0	-	-	-	-	-	280	420											
4	6	6	18	45/8	$81 / 2$	95.0	-	-	-	-	-	280	420											
$41 / 4$	9	63/4	221/2	51/4	$93 / 4$	-	152	-	-	-	-	390	585											
41/2	9	63/4	221/2	51/4	$9^{3} / 4$	-	152	-	-	-	-	390	585											
43/4	9	$63 / 4$	221/2	51/4	$93 / 4$	-	152	-	-	-	-	390	585											
5	9	71/2	24	6	10	-	200	-	-	-	-	491	737											
ASD	LRFD	Notes:   Weights and dimensions of turnbuckles are typical; products of all suppliers are essentially similar. Users shall verify with the manufacturer that product meets strength specifications above.																						
$\Omega=3.00$	$\phi=0.50$																							


Table 15-7   Dimensions and Weights of Sleeve Nuts						
rew	Dimensions, in.					Weight, lb
Dia., $\boldsymbol{D}$, in.	Short Dia.	Long Dia.	Length, $l$	Nut, $n$	Clear, $\boldsymbol{c}$	
$3 / 8$	11/16	25/32	4			0.27
7/16	25/32	7/8	4	-	-	0.34
1/2	7/8	1	4	-	-	0.43
9/16	15/16	11/16	5	-	-	0.64
5/8	11/16	$1^{7 / 32}$	5	-		0.93
$3 / 4$	$11 / 4$	17/16	5	-	-	1.12
7/8	17/16	15/8	7	$1^{7 / 16}$	1	1.75
1	15/8	13/16	7	$1^{7 / 16}$	11/8	2.46
$11 / 8$	$1^{13 / 16}$	$2^{1 / 16}$	71/2	15/8	$11 / 4$	3.10
11/4	2	$21 / 4$	$71 / 2$	15/8	$1^{3 / 8}$	4.04
$13 / 8$	23/16	$2^{1 / 2}$	8	$1^{7 / 8}$	$11 / 2$	4.97
11/2	23/8	$2^{11 / 16}$	8	$1^{7 / 8}$	15/8	6.16
15/8	$29 / 16$	$2^{15 / 16}$	$8^{1 / 2}$	$2^{1 / 16}$	$13 / 4$	7.36
$1^{3 / 4}$	$2^{3 / 4}$	$31 / 8$	$8{ }^{1 / 2}$	21/16	$1^{7 / 8}$	8.87
17/8	25/16	35/16	9	25/16	2	10.4
2	$31 / 8$	$31 / 2$	9	25/16	$2^{1 / 8}$	12.2
21/4	$3^{1 / 2}$	$3^{15 / 16}$	$91 / 2$	$2^{1 / 2}$	23/8	16.2
21/2	$3^{7 / 8}$	$4^{3 / 8}$	10	$2^{3 / 4}$	25/8	21.1
$2^{3 / 4}$	$41 / 4$	$4^{13 / 16}$	$101 / 2$	25/16	$2^{7 / 8}$	26.7
3	45/8	$5^{1 / 4}$	11	$3^{3 / 16}$	$31 / 8$	33.2
$3^{1 / 4}$	5	5/8	111/2	3/8	$3^{3 / 8}$	40.6
$3^{1 / 2}$	$53 / 8$	6	12	3/8	3/8	49.1
$3^{3 / 4}$	$53 / 4$	$6^{3 / 8}$	$12^{1 / 2}$	$3^{13 / 16}$	$37 / 8$	58.6
4	$61 / 8$	$6^{7 / 8}$	13	$4^{1 / 16}$	$41 / 8$	69.2
$41 / 4$	$61 / 2$	$71 / 2$	$13^{1 / 2}$	$43 / 4$	$4^{3 / 8}$	75.0
$41 / 2$	$6^{7 / 8}$	715/16	14	5	$4^{3 / 4}$	90.0
43/4	$71 / 4$	$83 / 8$	$14^{1 / 2}$	$5^{1 / 4}$	5	98.0
5	75/8	$8^{7 / 8}$	15	$5^{1 / 2}$	$5^{1 / 4}$	110
$51 / 4$	8	$9^{1 / 4}$	$15^{1 / 2}$	$53 / 4$	$5^{1 / 2}$	122
$51 / 2$	$83 / 8$	$93 / 4$	16	6	$53 / 4$	142
$53 / 4$	$8^{3 / 4}$	101/8	$161 / 2$	$6^{1 / 4}$	6	157
6	$91 / 8$	105/8	17	$6^{1 / 2}$	$6^{1 / 4}$	176
Notes:   Weights and dimensions of sleeve nuts are typical; products of all suppliers are essentially similar. User shall verify with the manufacturer that strengths of sleeve nut are greater than the corresponding connecting rod when the same material is used.						

## Table 15-8 <br> Dimensions and Weights of Recessed-Pin Nuts




## PART 16 <br> SPECIFICATIONS AND CODES

SPECIFICATION FOR STRUCTURAL STEEL BUILDINGS, JULY 7, 2016 ..... 16.1-i
Preface ..... 16.1-iii
Table of Contents ..... 16.1-vi
Symbols ..... 16.1-xxvi
Glossary ..... 16.1-xli
Abbreviations ..... 16.1-liv
Specification ..... 16.1-1
Commentary ..... 16.1-253
SPECIFICATION FOR STRUCTURAL JOINTS USING HIGH-STRENGTH BOLTS, AUGUST 1, 2014 ..... 16.2-i
Preface ..... 16.2-iii
Table of Contents ..... 16.2-v
Symbols ..... 16.2-vii
Glossary ..... 16.2-ix
Specification and Commentary ..... 16.2-1
References ..... 16.2-76
CODE OF STANDARD PRACTICE FOR STEEL BUILDINGS AND BRIDGES, JUNE 15, 2016 ..... 16.3-i
Preface ..... 16.3-iii
Table of Contents ..... 16.3-vi
Glossary ..... 16.3-ix
Specification and Commentary ..... 16.3-1

# Specification for Structural Steel Buildings 

July 7, 2016

Supersedes the Specification for Structural Steel Buildings dated June 22, 2010 and all previous versions

Approved by the Committee on Specifcations

by
American Institute of Steel Construction

All rights reserved. This book or any part thereof must not be reproduced in any form without the written permission of the publisher. The AISC logo is a registered trademark of AISC.

The information presented in this publication has been prepared by a balanced committee following American National Standards Institute (ANSI) consensus procedures and recognized principles of design and construction. While it is believed to be accurate, this information should not be used or relied upon for any specific application without competent professional examination and verification of its accuracy, suitability and applicability by a licensed engineer or architect. The publication of this information is not a representation or warranty on the part of the American Institute of Steel Construction, its officers, agents, employees or committee members, or of any other person named herein, that this information is suitable for any general or particular use, or of freedom from infringement of any patent or patents. All representations or warranties, express or implied, other than as stated above, are specifically disclaimed. Anyone making use of the information presented in this publication assumes all liability arising from such use.

Caution must be exercised when relying upon standards and guidelines developed by other bodies and incorporated by reference herein since such material may be modified or amended from time to time subsequent to the printing of this edition. The American Institute of Steel Construction bears no responsibility for such material other than to refer to it and incorporate it by reference at the time of the initial publication of this edition.

> Printed in the United States of America

Revision March 2017

## PREFACE

(This Preface is not part of ANSI/AISC 360-16, Specification for Structural Steel Buildings, but is included for informational purposes only.)

This Specification is based upon past successful usage, advances in the state of knowledge, and changes in design practice. The 2016 American Institute of Steel Construction's Specification for Structural Steel Buildings provides an integrated treatment of allowable strength design (ASD) and load and resistance factor design (LRFD), and replaces earlier Specifications. As indicated in Chapter B of the Specification, designs can be made according to either ASD or LRFD provisions.

This ANSI-approved Specification has been developed as a consensus document using ANSI-accredited procedures to provide a uniform practice in the design of steel-framed buildings and other structures. The intention is to provide design criteria for routine use and not to provide specific criteria for infrequently encountered problems, which occur in the full range of structural design.

This Specification is the result of the consensus deliberations of a committee of structural engineers with wide experience and high professional standing, representing a wide geographical distribution throughout the United States. The committee includes approximately equal numbers of engineers in private practice and code agencies, engineers involved in research and teaching, and engineers employed by steel fabricating and producing companies. The contributions and assistance of more than 50 additional professional volunteers working in task committees are also hereby acknowledged.

The Symbols, Glossary, Abbreviations and Appendices to this Specification are an integral part of the Specification. A nonmandatory Commentary has been prepared to provide background for the Specification provisions and the user is encouraged to consult it. Additionally, nonmandatory User Notes are interspersed throughout the Specification to provide concise and practical guidance in the application of the provisions.

A number of significant technical modifications have also been made since the 2010 edition of the Specification, including the following:

- Adopted an ASTM umbrella bolt specification, ASTM F3125, that includes Grades A325, A325M, A490, A490M, F1852 and F2280
- Adopted new ASTM HSS material specifications, ASTM A1085/A1085M and A1065/ A1065M, that permit use of a design thickness equal to the full nominal thickness of the member
- Expanded the structural integrity provisions applicable to connection design
- Added a shear lag factor for welded plates or connected elements with unequal length longitudinal welds
- The available compressive strength for double angles and tees is determined by the general flexural-torsional buckling equation for members without slender elements
- Added a constrained-axis torsional buckling limit state for members with lateral bracing offset from the shear center
- Revised the available compressive strength formulation for members with slender compression elements
- Reformulated the available flexural strength provisions for tees and double angles
- Revised the shear strength of webs of certain I-shapes and channels without tension field action and when considering tension field action
- Increased the limit on rebar strength to 80 ksi for composite columns
- Incorporated provisions for applying the direct analysis method to composite members
- Inserted general requirements to address minimum composite action in composite beams
- Revised the provisions for bolts in combination with welds
- Increased minimum pretension for $1^{1 / 8}$-in.-diameter and larger bolts
- Increased standard hole sizes and short-slot and long-slot widths for 1 -in.-diameter and larger bolts
- Reorganized the HSS connection design provisions in Chapter K, including reference to Chapter J for some limit states
- Expanded provisions in Appendix 1 for direct modeling of member imperfections and inelasticity that may be used with the direct analysis method
- Inserted a table of properties of high-strength bolts at elevated temperatures in Appendix 4

The reader is cautioned that professional judgment must be exercised when data or recommendations in the Specification are applied, as described more fully in the disclaimer notice preceding this Preface.

This Specification was approved by the Committee on Specifications,
R. Shankar Nair, Chairman

Patrick J. Fortney, Vice-Chairman
Allen Adams
Taha D. Al-Shawaf
William F. Baker
John M. Barsom, Emeritus
Reidar Bjorhovde
Roger L. Brockenbrough, Emeritus
Charles J. Carter
Gregory G. Deierlein
Carol J. Drucker
W. Samuel Easterling

Duane S. Ellifritt, Emeritus
Bruce R. Ellingwood, Emeritus
Michael D. Engelhardt
Shu-Jin Fang, Emeritus
Steven J. Fenves, Emeritus
James M. Fisher
John W. Fisher, Emeritus
Theodore V. Galambos, Emeritus
Louis F. Geschwindner
Ramon E. Gilsanz
Lawrence G. Griffis
John L. Gross, III
Jerome F. Hajjar
Patrick M. Hassett
Tony C. Hazel
Richard A. Henige, Jr.

Mark V. Holland
John D. Hooper
Nestor R. Iwankiw
William P. Jacobs, V
Ronald J. Janowiak
Lawrence A. Kloiber
Lawrence F. Kruth
Jay W. Larson
Roberto T. Leon
James O. Malley
Duane K. Miller
Larry S. Muir
Thomas M. Murray
Douglas A. Rees-Evans
Rafael Sabelli
Thomas A. Sabol
Benjamin W. Schafer
Robert E. Shaw, Jr.
Donald R. Sherman
W. Lee Shoemaker

William A. Thornton
Raymond H.R. Tide, Emeritus
Chia-Ming Uang
Amit H. Varma
Donald W. White
Ronald D. Ziemian
Cynthia J. Duncan, Secretary

The Committee honors former members, David L. McKenzie, Richard C. Kaehler and Keith Landwehr, and advisory member, Fernando Frias, who passed away during this cycle.

The Committee gratefully acknowledges advisory members, Carlos Aguirre, Edward E. Garvin and Alfred F. Wong, for their contributions, and the following task committee members for their involvement in the development of this document.

Farid Alfawakhiri
Susan B. Burmeister
Art Bustos
Helen Chen
Marshall T. Ferrell
Christopher M. Foley
George Frater
Steven Freed
Christine Freisinger
Mike Gase
Rodney D. Gibble
Arvind V. Goverdhan
Todd A. Helwig
Alfred A. Herget
Stephen M. Herlache
Steven J. Herth
Matthew A. Johann
Ronald Johnson
Daniel J. Kaufman
Venkatesh K.R. Kodur
Michael E. Lederle
Andres Lepage
J. Walter Lewis

LeRoy A. Lutz

Bonnie E. Manley
Peter W. Marshall
Jason P. McCormick
James A. Milke
Heath E. Mitchell
J.R. Ubejd Mujagic

Jeffrey A. Packer
Conrad Paulson
Teoman Pekoz
Thomas D. Poulos
Christopher H. Raebel
Gian Andrea Rassati
Clinton O. Rex
Thomas J. Schlafly
James Schoen
Richard Scruton
Thomas Sputo
Andrea E. Surovek
James A. Swanson
Matthew Trammell
Brian Uy
Sriramulu Vinnakota
Michael A. West

## TABLE OF CONTENTS

SYMBOLS ..... xxvi
GLOSSARY ..... xli
ABBREVIATIONS ..... liv
SPECIFICATION
A. GENERAL PROVISIONS ..... 1
A1. Scope ..... 1

1. Seismic Applications ..... 2
2. Nuclear Applications ..... 2
A2. Referenced Specifications, Codes and Standards ..... 2
A3. Material ..... 6
3. Structural Steel Materials ..... 6
1a. ASTM Designations ..... 6
1b. Unidentified Steel ..... 7
1c. Rolled Heavy Shapes ..... 7
1d. Built-Up Heavy Shapes ..... 8
4. Steel Castings and Forgings ..... 8
5. Bolts, Washers and Nuts ..... 8
6. Anchor Rods and Threaded Rods ..... 9
7. Consumables for Welding ..... 9
8. Headed Stud Anchors ..... 10
A4. Structural Design Drawings and Specifications ..... 10
B. DESIGN REQUIREMENTS ..... 11
B1. General Provisions ..... 11
B2. Loads and Load Combinations ..... 11
B3. Design Basis ..... 11
9. Design for Strength Using Load and Resistance Factor Design (LRFD) ..... 12
10. Design for Strength Using Allowable Strength Design (ASD) ..... 12
11. Required Strength ..... 12
12. Design of Connections and Supports ..... 13
4a. Simple Connections ..... 13
4b. Moment Connections ..... 13
13. Design of Diaphragms and Collectors ..... 14
14. Design of Anchorages to Concrete ..... 14
15. Design for Stability ..... 14
16. Design for Serviceability ..... 14
17. Design for Structural Integrity ..... 14
18. Design for Ponding ..... 15
19. Design for Fatigue ..... 15
20. Design for Fire Conditions ..... 15
21. Design for Corrosion Effects ..... 15
B4. Member Properties ..... 16
22. Classification of Sections for Local Buckling ..... 16
1a. Unstiffened Elements ..... 16
1b. Stiffened Elements ..... 16
23. Design Wall Thickness for HSS ..... 20
24. Gross and Net Area Determination ..... 20
3a. Gross Area ..... 20
3b. Net Area ..... 20
B5. Fabrication and Erection ..... 21
B6. Quality Control and Quality Assurance ..... 21
B7. Evaluation of Existing Structures ..... 21
C. DESIGN FOR STABILITY ..... 22
C1. General Stability Requirements ..... 22
25. Direct Analysis Method of Design ..... 22
26. Alternative Methods of Design ..... 23
C2. Calculation of Required Strengths ..... 23
27. General Analysis Requirements ..... 23
28. Consideration of Initial System Imperfections ..... 24
2a. Direct Modeling of Imperfections ..... 24
2b. Use of Notional Loads to Represent Imperfections ..... 25
29. Adjustments to Stiffness ..... 26
C3. Calculation of Available Strengths ..... 27
D. DESIGN OF MEMBERS FOR TENSION ..... 28
D1. Slenderness Limitations ..... 28
D2. Tensile Strength ..... 28
D3. Effective Net Area ..... 29
D4. Built-Up Members ..... 29
D5. Pin-Connected Members ..... 29
30. Tensile Strength ..... 29
31. Dimensional Requirements ..... 31
D6. Eyebars ..... 31
32. Tensile Strength ..... 31
33. Dimensional Requirements ..... 32
E. DESIGN OF MEMBERS FOR COMPRESSION ..... 33
E1. General Provisions ..... 33
E2. Effective Length ..... 35
E3. Flexural Buckling of Members without Slender Elements ..... 35
E4. Torsional and Flexural-Torsional Buckling of Single Angles and Members without Slender Elements ..... 36
E5. Single-Angle Compression Members ..... 38
E6. Built-Up Members ..... 39
34. Compressive Strength ..... 39
35. Dimensional Requirements ..... 40
E7. Members with Slender Elements ..... 42
36. Slender Element Members Excluding Round HSS ..... 42
37. Round HSS ..... 43
F. DESIGN OF MEMBERS FOR FLEXURE ..... 44
F1. General Provisions ..... 46
F2. Doubly Symmetric Compact I-Shaped Members and Channels Bent about Their Major Axis ..... 47
38. Yielding ..... 47
39. Lateral-Torsional Buckling ..... 47
F3. Doubly Symmetric I-Shaped Members with Compact Webs and Noncompact or Slender Flanges Bent about Their Major Axis ..... 49
40. Lateral-Torsional Buckling ..... 49
41. Compression Flange Local Buckling ..... 49
F4. Other I-Shaped Members with Compact or Noncompact Webs BentAbout Their Major Axis50
42. Compression Flange Yielding ..... 50
43. Lateral-Torsional Buckling ..... 50
44. Compression Flange Local Buckling ..... 53
45. Tension Flange Yielding ..... 53
F5. Doubly Symmetric and Singly Symmetric I-Shaped Members with Slender Webs Bent about Their Major Axis ..... 54
46. Compression Flange Yielding ..... 54
47. Lateral-Torsional Buckling ..... 54
48. Compression Flange Local Buckling ..... 55
49. Tension Flange Yielding ..... 55
F6. I-Shaped Members and Channels Bent about Their Minor Axis ..... 56
50. Yielding ..... 56
51. Flange Local Buckling ..... 56
F7. Square and Rectangular HSS and Box Sections ..... 57
52. Yielding ..... 57
53. Flange Local Buckling ..... 57
54. Web Local Buckling ..... 57
55. Lateral-Torsional Buckling ..... 58
F8. Round HSS ..... 59
56. Yielding ..... 59
57. Local Buckling ..... 59
F9. Tees and Double Angles Loaded in the Plane of Symmetry ..... 60
58. Yielding ..... 60
59. Lateral-Torsional Buckling ..... 60
60. Flange Local Buckling of Tees and Double-Angle Legs ..... 61
61. Local Buckling of Tee Stems and Double-Angle Leg Webs in Flexural Compression ..... 62
F10. Single Angles ..... 62
62. Yielding ..... 63
63. Lateral-Torsional Buckling ..... 63
64. Leg Local Buckling ..... 65
F11. Rectangular Bars and Rounds ..... 65
65. Yielding ..... 65
66. Lateral-Torsional Buckling ..... 65
F12. Unsymmetrical Shapes ..... 66
67. Yielding ..... 66
68. Lateral-Torsional Buckling ..... 66
69. Local Buckling ..... 67
F13. Proportions of Beams and Girders ..... 67
70. Strength Reductions for Members with Holes in the Tension Flange ..... 67
71. Proportioning Limits for I-Shaped Members ..... 67
72. Cover Plates ..... 68
73. Built-Up Beams ..... 69
74. Unbraced Length for Moment Redistribution ..... 69
G. DESIGN OF MEMBERS FOR SHEAR ..... 70
G1. General Provisions ..... 70
G2. I-Shaped Members and Channels ..... 70
75. Shear Strength of Webs without Tension Field Action ..... 70
76. Shear Strength of Interior Web Panels with alh $\leq 3$ Considering Tension Field Action ..... 72
77. Transverse Stiffeners ..... 73
G3. Single Angles and Tees ..... 74
G4. Rectangular HSS, Box Sections, and other Singly and Doubly Symmetric Members ..... 74
G5. Round HSS ..... 75
G6. Weak-Axis Shear in Doubly Symmetric and Singly Symmetric Shapes ..... 75
G7. Beams and Girders with Web Openings ..... 76
H. DESIGN OF MEMBERS FOR COMBINED FORCES AND TORSION ..... 77
H1. Doubly and Singly Symmetric Members Subject to Flexure and Axial Force ..... 77
78. Doubly and Singly Symmetric Members Subject to Flexure and Compression ..... 77
79. Doubly and Singly Symmetric Members Subject to Flexure and Tension ..... 78
80. Doubly Symmetric Rolled Compact Members Subject to Single-Axis Flexure and Compression ..... 79
H2. Unsymmetric and Other Members Subject to Flexure and Axial Force ..... 80
H3. Members Subject to Torsion and Combined Torsion, Flexure, Shear, and/or Axial Force ..... 81
81. Round and Rectangular HSS Subject to Torsion ..... 81
82. HSS Subject to Combined Torsion, Shear, Flexure and Axial Force ..... 83
83. Non-HSS Members Subject to Torsion and Combined Stress ..... 84
H4. Rupture of Flanges with Holes Subjected to Tension ..... 84
I. DESIGN OF COMPOSITE MEMBERS ..... 86
I1. General Provisions ..... 86
84. Concrete and Steel Reinforcement ..... 86
85. Nominal Strength of Composite Sections ..... 87
2a. Plastic Stress Distribution Method ..... 87
2b. Strain Compatibility Method ..... 87
2c. Elastic Stress Distribution Method ..... 87
2d. Effective Stress-Strain Method ..... 88
86. Material Limitations ..... 88
87. Classification of Filled Composite Sections for Local Buckling ..... 88
88. Stiffness for Calculation of Required Strengths ..... 90
I2. Axial Force ..... 90
89. Encased Composite Members ..... 90
1a. Limitations ..... 90
1b. Compressive Strength ..... 91
1c. Tensile Strength ..... 92
1d. Load Transfer ..... 92
1e. Detailing Requirements ..... 92
90. Filled Composite Members ..... 93
2a. Limitations ..... 93
2b. Compressive Strength ..... 93
2c. Tensile Strength ..... 94
2d. Load Transfer ..... 94
91. Flexure ..... 94
92. General ..... 94
1a. Effective Width ..... 94
1b. Strength During Construction ..... 95
93. Composite Beams with Steel Headed Stud or Steel Channel Anchors ..... 95
2a. Positive Flexural Strength ..... 95
2b. Negative Flexural Strength ..... 95
2c. Composite Beams with Formed Steel Deck ..... 96
94. General ..... 96
95. Deck Ribs Oriented Perpendicular to Steel Beam ..... 96
96. Deck Ribs Oriented Parallel to Steel Beam ..... 96
2d. Load Transfer between Steel Beam and Concrete Slab ..... 96
97. Load Transfer for Positive Flexural Strength ..... 96
98. Load Transfer for Negative Flexural Strength ..... 97
99. Encased Composite Members ..... 97
100. Filled Composite Members ..... 98
4a. Limitations ..... 98
4b. Flexural Strength ..... 98
I4. Shear ..... 99
101. Filled and Encased Composite Members ..... 99
102. Composite Beams with Formed Steel Deck ..... 99
I5. Combined Flexure and Axial Force ..... 99
I6. Load Transfer ..... 101
103. General Requirements ..... 101
104. Force Allocation ..... 101
2a. External Force Applied to Steel Section ..... 101
2b. External Force Applied to Concrete ..... 102
2c. External Force Applied Concurrently to Steel and Concrete ..... 102
105. Force Transfer Mechanisms ..... 102
3a. Direct Bearing ..... 103
3b. Shear Connection ..... 103
3c. Direct Bond Interaction ..... 103
106. Detailing Requirements ..... 104
4a. Encased Composite Members ..... 104
4b. Filled Composite Members ..... 104
I7. Composite Diaphragms and Collector Beams ..... 104
I8. Steel Anchors ..... 104
107. General ..... 104
108. Steel Anchors in Composite Beams ..... 105
2a. Strength of Steel Headed Stud Anchors ..... 105
2b. Strength of Steel Channel Anchors ..... 106
2c. Required Number of Steel Anchors ..... 106
2d. Detailing Requirements ..... 107
109. Steel Anchors in Composite Components ..... 107
3a. Shear Strength of Steel Headed Stud Anchors in Composite Components ..... 109
3b. Tensile Strength of Steel Headed Stud Anchors in Composite Components ..... 109
3c. Strength of Steel Headed Stud Anchors for Interaction of Shear and Tension in Composite Components ..... 110
3d. Shear Strength of Steel Channel Anchors in Composite Components ..... 111
3e. Detailing Requirements in Composite Components ..... 112
J. DESIGN OF CONNECTIONS ..... 113
J1. General Provisions ..... 113
110. Design Basis ..... 113
111. Simple Connections ..... 113
112. Moment Connections ..... 114
113. Compression Members with Bearing Joints ..... 114
114. Splices in Heavy Sections ..... 114
115. Weld Access Holes ..... 115
116. Placement of Welds and Bolts ..... 115
117. Bolts in Combination with Welds ..... 115
118. Welded Alterations to Structures with Existing Rivets or Bolts ..... 116
119. High-Strength Bolts in Combination with Rivets ..... 116
J2. Welds ..... 116
120. Groove Welds ..... 117
1a. Effective Area ..... 117
1b. Limitations ..... 118
121. Fillet Welds ..... 119
2a. Effective Area ..... 119
2b. Limitations ..... 119
122. Plug and Slot Welds ..... 121
3a. Effective Area ..... 121
3b. Limitations ..... 121
123. Strength ..... 122
124. Combination of Welds ..... 125
125. Filler Metal Requirements ..... 125
126. Mixed Weld Metal ..... 125
J3. Bolts and Threaded Parts ..... 126
127. High-Strength Bolts ..... 126
128. Size and Use of Holes ..... 128
129. Minimum Spacing ..... 130
130. Minimum Edge Distance ..... 131
131. Maximum Spacing and Edge Distance ..... 131
132. Tensile and Shear Strength of Bolts and Threaded Parts ..... 131
133. Combined Tension and Shear in Bearing-Type Connections ..... 133
134. High-Strength Bolts in Slip-Critical Connections ..... 134
135. Combined Tension and Shear in Slip-Critical Connections ..... 135
136. Bearing and Tearout Strength at Bolt Holes ..... 135
137. Special Fasteners ..... 136
138. Wall Strength at Tension Fasteners ..... 136
J4. Affected Elements of Members and Connecting Elements ..... 137
139. Strength of Elements in Tension ..... 137
140. Strength of Elements in Shear ..... 137
141. Block Shear Strength ..... 138
142. Strength of Elements in Compression ..... 138
143. Strength of Elements in Flexure ..... 138
J5. Fillers ..... 139
144. Fillers in Welded Connections ..... 139
1a. Thin Fillers ..... 139
1b. Thick Fillers ..... 139
145. Fillers in Bolted Bearing-Type Connections ..... 139
J6. Splices ..... 139
J7. Bearing Strength ..... 140
J8. Column Bases and Bearing on Concrete ..... 140
J9. Anchor Rods and Embedments ..... 141
J10. Flanges and Webs with Concentrated Forces ..... 142
146. Flange Local Bending ..... 142
147. Web Local Yielding ..... 143
148. Web Local Crippling ..... 143
149. Web Sidesway Buckling ..... 144
150. Web Compression Buckling ..... 145
151. Web Panel-Zone Shear ..... 145
152. Unframed Ends of Beams and Girders ..... 146
153. Additional Stiffener Requirements for Concentrated Forces ..... 147
154. Additional Doubler Plate Requirements for Concentrated Forces ..... 147
155. Transverse Forces on Plate Elements ..... 148
K. ADDITIONAL REQUIREMENTS FOR HSS AND BOX-SECTION CONNECTIONS ..... 149
K1. General Provisions and Parameters for HSS Connections ..... 149
156. Definitions of Parameters ..... 150
157. Rectangular HSS ..... 150
2a. Effective Width for Connections to Rectangular HSS ..... 150
K2. Concentrated Forces on HSS ..... 150
158. Definitions of Parameters ..... 150
159. Round HSS ..... 150
160. Rectangular HSS ..... 152
K3. HSS-to-HSS Truss Connections ..... 152
161. Definitions of Parameters ..... 152
162. Round HSS ..... 153
163. Rectangular HSS ..... 153
K4. HSS-to-HSS Moment Connections ..... 153
164. Definitions of Parameters ..... 157
165. Round HSS ..... 158
166. Rectangular HSS ..... 158
K5. Welds of Plates and Branches to Rectangular HSS ..... 158
L. DESIGN FOR SERVICEABILITY ..... 165
L1. General Provisions ..... 165
L2. Deflections ..... 165
L3. Drift ..... 165
L4. Vibration ..... 166
L5. Wind-Induced Motion ..... 166
L6. Thermal Expansion and Contraction ..... 166
L7. Connection Slip ..... 166
M. FABRICATION AND ERECTION ..... 167
M1. Shop and Erection Drawings ..... 167
M2. Fabrication ..... 167
167. Cambering, Curving and Straightening ..... 167
168. Thermal Cutting ..... 167
169. Planing of Edges ..... 168
170. Welded Construction ..... 168
171. Bolted Construction ..... 168
172. Compression Joints ..... 169
173. Dimensional Tolerances ..... 169
174. Finish of Column Bases ..... 169
175. Holes for Anchor Rods ..... 170
176. Drain Holes ..... 170
177. Requirements for Galvanized Members ..... 170
M3. Shop Painting ..... 170
178. General Requirements ..... 170
179. Inaccessible Surfaces ..... 170
180. Contact Surfaces ..... 170
181. Finished Surfaces ..... 170
182. Surfaces Adjacent to Field Welds ..... 171
M4. Erection ..... 171
183. Column Base Setting ..... 171
184. Stability and Connections ..... 171
185. Alignment ..... 171
186. Fit of Column Compression Joints and Base Plates ..... 171
187. Field Welding ..... 171
188. Field Painting ..... 171
N. QUALITY CONTROL AND QUALITY ASSURANCE ..... 172
N1. General Provisions ..... 172
N2. Fabricator and Erector Quality Control Program ..... 173
189. Material Identification ..... 173
190. Fabricator Quality Control Procedures ..... 173
191. Erector Quality Control Procedures ..... 173
N3. Fabricator and Erector Documents ..... 174
192. Submittals for Steel Construction ..... 174
193. Available Documents for Steel Construction ..... 174
N4. Inspection and Nondestructive Testing Personnel ..... 175
194. Quality Control Inspector Qualifications ..... 175
195. Quality Assurance Inspector Qualifications ..... 175
196. NDT Personnel Qualifications ..... 175
N5. Minimum Requirements for Inspection of Structural Steel Buildings ..... 175
197. Quality Control ..... 175
198. Quality Assurance ..... 176
199. Coordinated Inspection ..... 176
200. Inspection of Welding ..... 176
201. Nondestructive Testing of Welded Joints ..... 180
5a. Procedures ..... 180
5b. CJP Groove Weld NDT ..... 180
5c. Welded Joints Subjected to Fatigue ..... 180
5d. Ultrasonic Testing Rejection Rate ..... 180
5e. Reduction of Ultrasonic Testing Rate ..... 180
5f. Increase in Ultrasonic Testing Rate ..... 181
5g. Documentation ..... 181
202. Inspection of High-Strength Bolting ..... 181
203. Inspection of Galvanized Structural Steel Main Members ..... 182
204. Other Inspection Tasks ..... 182
N6. Approved Fabricators and Erectors ..... 184
N7. Nonconforming Material and Workmanship ..... 184
APPENDIX 1. DESIGN BY ADVANCED ANALYSIS ..... 185
1.1. General Requirements ..... 185
1.2. Design by Elastic Analysis ..... 185
205. General Stability Requirements ..... 185
206. Calculation of Required Strengths ..... 185
2a. General Analysis Requirements ..... 186
2b. Adjustments to Stiffness ..... 187
207. Calculation of Available Strengths ..... 187
1.3. Design by Inelastic Analysis ..... 187
208. General Requirements ..... 187
209. Ductility Requirements ..... 188
2a. Material ..... 188
2b. Cross Section ..... 188
2c. Unbraced Length ..... 189
2d. Axial Force ..... 190
210. Analysis Requirements ..... 190
3a. Material Properties and Yield Criteria ..... 191
3b. Geometric Imperfections ..... 191
3c. Residual Stress and Partial Yielding Effects ..... 191
APPENDIX 2. DESIGN FOR PONDING ..... 192
2.1. Simplified Design for Ponding ..... 192
2.2. Improved Design for Ponding ..... 193
APPENDIX 3. FATIGUE ..... 196
3.1. General Provisions ..... 196
3.2. Calculation of Maximum Stresses and Stress Ranges ..... 197
3.3. Plain Material and Welded Joints ..... 197
3.4. Bolts and Threaded Parts ..... 199
3.5. Fabrication and Erection Requirements for Fatigue ..... 200
3.6. Nondestructive Examination Requirements for Fatigue ..... 201
APPENDIX 4. STRUCTURAL DESIGN FOR FIRE CONDITIONS ..... 222
4.1. General Provisions ..... 222
211. Performance Objective ..... 222
212. Design by Engineering Analysis ..... 222
213. Design by Qualification Testing ..... 223
214. Load Combinations and Required Strength ..... 223
4.2. Structural Design for Fire Conditions by Analysis ..... 223
215. Design-Basis Fire ..... 223
1a. Localized Fire ..... 224
1b. Post-Flashover Compartment Fires ..... 224
1c. Exterior Fires ..... 224
1d. Active Fire Protection Systems ..... 224
216. Temperatures in Structural Systems under Fire Conditions ..... 225
217. Material Strengths at Elevated Temperatures ..... 225
3a. Thermal Elongation ..... 225
3b. Mechanical Properties at Elevated Temperatures ..... 225
218. Structural Design Requirements ..... 226
4a. General Structural Integrity ..... 226
4b. Strength Requirements and Deformation Limits ..... 226
4c. Design by Advanced Methods of Analysis ..... 227
4d. Design by Simple Methods of Analysis ..... 228
4.3. Design by Qualification Testing ..... 231
219. Qualification Standards ..... 231
220. Restrained Construction ..... 231
221. Unrestrained Construction ..... 232
APPENDIX 5. EVALUATION OF EXISTING STRUCTURES ..... 233
5.1. General Provisions ..... 233
5.2. Material Properties ..... 233
222. Determination of Required Tests ..... 233
223. Tensile Properties ..... 233
224. Chemical Composition ..... 234
225. Base Metal Notch Toughness ..... 234
226. Weld Metal ..... 234
227. Bolts and Rivets ..... 234
5.3. Evaluation by Structural Analysis ..... 234
228. Dimensional Data ..... 234
229. Strength Evaluation ..... 235
230. Serviceability Evaluation ..... 235
5.4. Evaluation by Load Tests ..... 235
231. Determination of Load Rating by Testing ..... 235
232. Serviceability Evaluation ..... 236
5.5. Evaluation Report ..... 236
APPENDIX 6. MEMBER STABILITY BRACING ..... 237
6.1. General Provisions ..... 237
6.2. Column Bracing ..... 238
233. Panel Bracing ..... 238
234. Point Bracing ..... 239
6.3. Beam Bracing ..... 240
235. Lateral Bracing ..... 240
1a. Panel Bracing ..... 240
1b. Point Bracing ..... 241
236. Torsional Bracing ..... 241
2a. Point Bracing ..... 242
2b. Continuous Bracing ..... 243
6.4 Beam-Column Bracing ..... 243
APPENDIX 7. ALTERNATIVE METHODS OF DESIGN FOR STABILITY ..... 245
7.1. General Stability Requirements ..... 245
7.2. Effective Length Method ..... 245
237. Limitations ..... 245
238. Required Strengths ..... 245
239. Available Strengths ..... 246
7.3 First-Order Analysis Method ..... 246
240. Limitations ..... 246
241. Required Strengths ..... 247
242. Available Strengths ..... 248
APPENDIX 8. APPROXIMATE SECOND-ORDER ANALYSIS ..... 249
8.1. Limitations ..... 249
8.2. Calculation Procedure ..... 249
243. Multiplier $B_{1}$ for $P-\delta$ Effects ..... 250
244. Multiplier $B_{2}$ for $P-\Delta$ Effects ..... 251
COMMENTARY ON THE SPECIFICATION FOR STRUCTURAL STEEL BUILDINGS
INTRODUCTION ..... 253
COMMENTARY SYMBOLS ..... 254
COMMENTARY GLOSSARY ..... 256
A. GENERAL PROVISIONS ..... 258
A1. Scope ..... 258
A2. Referenced Specifications, Codes and Standards ..... 259
A3. Material ..... 259
245. Structural Steel Materials ..... 259
1a. ASTM Designations ..... 259
1c. Rolled Heavy Shapes ..... 263
246. Steel Castings and Forgings ..... 263
247. Bolts, Washers and Nuts ..... 264
248. Anchor Rods and Threaded Rods ..... 265
249. Consumables for Welding ..... 265
A4. Structural Design Drawings and Specifications ..... 266
B. DESIGN REQUIREMENTS ..... 267
B1. General Provisions ..... 267
B2. Loads and Load Combinations ..... 267
B3. Design Basis ..... 269
250. Design for Strength Using Load and Resistance Factor Design (LRFD) ..... 270
251. Design for Strength Using Allowable Strength Design (ASD) ..... 272
252. Required Strength ..... 274
253. Design of Connections and Supports ..... 274
254. Design of Diaphragms and Collectors ..... 279
255. Design of Anchorages to Concrete ..... 280
256. Design for Stability ..... 280
257. Design for Serviceability ..... 280
258. Design for Structural Integrity ..... 280
259. Design for Ponding ..... 281
260. Design for Fatigue ..... 282
261. Design for Fire Conditions ..... 282
262. Design for Corrosion Effects ..... 282
B4. Member Properties ..... 283
263. Classifications of Sections for Local Buckling ..... 283
264. Design Wall Thickness for HSS ..... 285
265. Gross and Net Area Determination ..... 286
3a. Gross Area ..... 286
3b. Net Area ..... 286
B5. Fabrication and Erection ..... 286
B6. Quality Control and Quality Assurance ..... 286
B7. Evaluation of Existing Structures ..... 286
C. DESIGN FOR STABILITY ..... 287
C1. General Stability Requirements ..... 287
C2. Calculation of Required Strengths ..... 289
266. General Analysis Requirements ..... 289
267. Consideration of Initial System Imperfections ..... 294
268. Adjustments to Stiffness ..... 295
C3. Calculation of Available Strengths ..... 297
D. DESIGN OF MEMBERS FOR TENSION ..... 299
D1. Slenderness Limitations ..... 299
D2. Tensile Strength ..... 299
D3. Effective Net Area ..... 299
D4. Built-Up Members ..... 304
D5. Pin-Connected Members ..... 304
269. Tensile Strength ..... 304
270. Dimensional Requirements ..... 304
D6. Eyebars ..... 305
271. Tensile Strength ..... 305
272. Dimensional Requirements ..... 305
E. DESIGN OF MEMBERS FOR COMPRESSION ..... 307
E1. General Provisions ..... 307
E2. Effective Length ..... 309
E3. Flexural Buckling of Members without Slender Elements ..... 309
E4. Torsional and Flexural-Torsional Buckling of Single Angles and Members without Slender Elements ..... 311
E5. Single-Angle Compression Members ..... 315
E6. Built-Up Members ..... 316
273. Compressive Strength ..... 317
274. Dimensional Requirements ..... 317
E7. Members with Slender Elements ..... 318
275. Slender Element Members Excluding Round HSS ..... 318
276. Round HSS ..... 321
F. DESIGN OF MEMBERS FOR FLEXURE ..... 323
F1. General Provisions ..... 325
F2. Doubly Symmetric Compact I-Shaped Members and Channels Bent about Their Major Axis ..... 330
F3. Doubly Symmetric I-Shaped Members with Compact Webs and Noncompact or Slender Flanges Bent about Their Major Axis ..... 331
F4. Other I-Shaped Members with Compact or Noncompact Webs Bent about Their Major Axis ..... 332
F5. Doubly Symmetric and Singly Symmetric I-Shaped Members with Slender Webs Bent about Their Major Axis ..... 334
F6. I-Shaped Members and Channels Bent about Their Minor Axis ..... 334
F7. Square and Rectangular HSS and Box Sections ..... 335
F8. Round HSS ..... 336
F9. Tees and Double Angles Loaded in the Plane of Symmetry ..... 337
F10. Single Angles ..... 341
277. Yielding ..... 342
278. Lateral-Torsional Buckling ..... 342
279. Leg Local Buckling ..... 346
F11. Rectangular Bars and Rounds ..... 347
F12. Unsymmetrical Shapes ..... 347
F13. Proportions of Beams and Girders ..... 347
280. Strength Reductions for Members with Holes in the Tension Flange ..... 347
281. Proportioning Limits for I-Shaped Members ..... 348
282. Cover Plates ..... 348
283. Unbraced Length for Moment Redistribution ..... 348
G. DESIGN OF MEMBERS FOR SHEAR ..... 350
G1. General Provisions ..... 350
G2. I-Shaped Members and Channels ..... 350
284. Shear Strength of Webs without Tension Field Action ..... 350
285. Shear Strength of Interior Web Panels with $a / h \leq 3$ Considering Tension Field Action ..... 352
286. Transverse Stiffeners ..... 353
G3. Single Angles and Tees ..... 354
G4. Rectangular HSS, Box Sections, and other Singly and Doubly Symmetric Members ..... 354
G5. Round HSS ..... 355
G6. Weak-Axis Shear in Doubly Symmetric and Singly Symmetric Shapes ..... 355
G7. Beams and Girders with Web Openings ..... 355
H. DESIGN OF MEMBERS FOR COMBINED FORCES AND TORSION ..... 356
H1. Doubly and Singly Symmetric Members Subject to Flexure and Axial Force ..... 356
287. Doubly and Singly Symmetric Members Subject to Flexure and Compression ..... 356
288. Doubly and Singly Symmetric Members Subject to Flexure and Tension ..... 360
289. Doubly Symmetric Rolled Compact Members Subject to Single-Axis Flexure and Compression ..... 360
H2. Unsymmetric and Other Members Subject to Flexure and Axial Force ..... 363
H3. Members Subject to Torsion and Combined Torsion, Flexure, Shear, and/or Axial Force ..... 366
290. Round and Rectangular HSS Subject to Torsion ..... 366
291. HSS Subject to Combined Torsion, Shear, Flexure and Axial Force ..... 368
292. Non-HSS Members Subject to Torsion and Combined Stress ..... 368
H4. Rupture of Flanges with Holes Subjected to Tension ..... 369
I. DESIGN OF COMPOSITE MEMBERS ..... 370
I1. General Provisions ..... 370
293. Concrete and Steel Reinforcement ..... 371
294. Nominal Strength of Composite Sections ..... 372
2a. Plastic Stress Distribution Method ..... 372
2b. Strain Compatibility Method ..... 374
2c. Elastic Stress Distribution Method ..... 374
2d. Effective Stress-Strain Method ..... 374
295. Material Limitations ..... 374
296. Classification of Filled Composite Sections for Local Buckling ..... 374
297. Stiffness for Calculation of Required Strengths ..... 376
I2. Axial Force ..... 377
298. Encased Composite Members ..... 378
1a. Limitations ..... 378
1b. Compressive Strength ..... 378
1c. Tensile Strength ..... 378
299. Filled Composite Members ..... 379
2a. Limitations ..... 379
2b. Compressive Strength ..... 379
2c. Tensile Strength ..... 380
I3. Flexure ..... 380
300. General ..... 380
1a. Effective Width ..... 381
1b. Strength During Construction ..... 381
301. Composite Beams with Steel Headed Stud or Steel Channel Anchors ..... 381
2a. Positive Flexural Strength ..... 385
2b. Negative Flexural Strength ..... 387
2c. Composite Beams with Formed Steel Deck ..... 388
2d. Load Transfer between Steel Beam and Concrete Slab ..... 389
302. Load Transfer for Positive Flexural Strength ..... 389
303. Load Transfer for Negative Flexural Strength ..... 392
304. Encased Composite Members ..... 392
305. Filled Composite Members ..... 393
I4. Shear ..... 394
306. Filled and Encased Composite Members ..... 394
307. Composite Beams with Formed Steel Deck ..... 395
I5. Combined Flexure and Axial Force ..... 395
I6. Load Transfer ..... 401
308. General Requirements ..... 401
309. Force Allocation ..... 401
310. Force Transfer Mechanisms ..... 403
3a. Direct Bearing ..... 403
3b. Shear Connection ..... 403
3c. Direct Bond Interaction ..... 403
311. Detailing Requirements ..... 404
I7. Composite Diaphragms and Collector Beams ..... 405
I8. Steel Anchors ..... 408
312. General ..... 408
313. Steel Anchors in Composite Beams ..... 409
2a. Strength of Steel Headed Stud Anchors ..... 409
2b. Strength of Steel Channel Anchors ..... 411
2d. Detailing Requirements ..... 411
314. Steel Anchors in Composite Components ..... 412
J. DESIGN OF CONNECTIONS ..... 415
J1. General Provisions ..... 415
315. Design Basis ..... 415
316. Simple Connections ..... 415
317. Moment Connections ..... 415
318. Compression Members with Bearing Joints ..... 416
319. Splices in Heavy Sections ..... 416
320. Weld Access Holes ..... 418
321. Placement of Welds and Bolts ..... 419
322. Bolts in Combination with Welds ..... 420
323. High-Strength Bolts in Combination with Rivets ..... 421
J2. Welds ..... 421
324. Groove Welds ..... 421
1a. Effective Area ..... 421
1b. Limitations ..... 422
325. Fillet Welds ..... 422
2a. Effective Area ..... 422
2b. Limitations ..... 422
326. Plug and Slot Welds ..... 428
3a. Effective Area ..... 428
3b. Limitations ..... 428
327. Strength ..... 428
328. Combination of Welds ..... 430
329. Filler Metal Requirements ..... 431
330. Mixed Weld Metal ..... 432
J3. Bolts and Threaded Parts ..... 432
331. High-Strength Bolts ..... 432
332. Size and Use of Holes ..... 435
333. Minimum Spacing ..... 435
334. Minimum Edge Distance ..... 435
335. Maximum Spacing and Edge Distance ..... 435
336. Tension and Shear Strength of Bolts and Threaded Parts ..... 435
337. Combined Tension and Shear in Bearing-Type Connections ..... 438
338. High-Strength Bolts in Slip-Critical Connections ..... 439
339. Bearing and Tearout Strength at Bolt Holes ..... 443
340. Wall Strength at Tension Fasteners ..... 444
J4. Affected Elements of Members and Connecting Elements ..... 444
341. Strength of Elements in Tension ..... 444
342. Strength of Elements in Shear ..... 444
343. Block Shear Strength ..... 444
344. Strength of Elements in Compression ..... 446
345. Strength of Elements in Flexure ..... 446
J5. Fillers ..... 447
J7. Bearing Strength ..... 447
J8. Column Bases and Bearing on Concrete ..... 447
J9. Anchor Rods and Embedments ..... 447
J10. Flanges and Webs with Concentrated Forces ..... 448
346. Flange Local Bending ..... 451
347. Web Local Yielding ..... 451
348. Web Local Crippling ..... 452
349. Web Sidesway Buckling ..... 452
350. Web Compression Buckling ..... 455
351. Web Panel-Zone Shear ..... 455
352. Unframed Ends of Beams and Girders ..... 457
353. Additional Stiffener Requirements for Concentrated Forces ..... 457
354. Additional Doubler Plate Requirements for Concentrated Forces ..... 460
355. Transverse Forces on Plate Elements ..... 461
K. ADDITIONAL REQUIREMENTS FOR HSS AND BOX-SECTION CONNECTIONS ..... 462
K1. General Provisions and Parameters for HSS Connections ..... 464
356. Rectangular HSS ..... 464
K2. Concentrated Forces on HSS ..... 466
357. Definitions of Parameters ..... 466
358. Round HSS ..... 466
359. Rectangular HSS ..... 467
K3. HSS-to-HSS Truss Connections ..... 468
360. Definitions of Parameters ..... 469
361. Round HSS ..... 469
362. Rectangular HSS ..... 471
K4. HSS-to-HSS Moment Connections ..... 474
K5. Welds of Plates and Branches to Rectangular HSS ..... 475
L. DESIGN FOR SERVICEABILITY ..... 477
L1. General Provisions ..... 477
L2. Deflections ..... 478
L3. Drift ..... 479
L4. Vibration ..... 480
L5. Wind-Induced Motion ..... 481
L6. Thermal Expansion and Contraction ..... 482
L7. Connection Slip ..... 482
M. FABRICATION AND ERECTION ..... 483
M1. Shop and Erection Drawings ..... 483
M2. Fabrication ..... 483
363. Cambering, Curving and Straightening ..... 483
364. Thermal Cutting ..... 484
365. Welded Construction ..... 484
366. Bolted Construction ..... 484
367. Drain Holes ..... 485
368. Requirements for Galvanized Members ..... 485
M3. Shop Painting ..... 486
369. General Requirements ..... 486
370. Contact Surfaces ..... 486
371. Surfaces Adjacent to Field Welds ..... 486
M4. Erection ..... 486
372. Stability and Connections ..... 486
373. Fit of Column Compression Joints and Base Plates ..... 487
374. Field Welding ..... 487
N. QUALITY CONTROL AND QUALITY ASSURANCE ..... 488
N1. General Provisions ..... 488
N2. Fabricator and Erector Quality Control Program ..... 489
N3. Fabricator and Erector Documents ..... 490
375. Submittals for Steel Construction ..... 490
376. Available Documents for Steel Construction ..... 490
N4. Inspection and Nondestructive Testing Personnel ..... 491
377. Quality Control Inspector Qualifications ..... 491
378. Quality Assurance Inspector Qualifications ..... 491
379. NDT Personnel Qualifications ..... 491
N5. Minimum Requirements for Inspection of Structural Steel Buildings ..... 492
380. Quality Control ..... 492
381. Quality Assurance ..... 492
382. Coordinated Inspection ..... 493
383. Inspection of Welding ..... 494
384. Nondestructive Testing of Welded Joints ..... 498
5a. Procedures ..... 498
5b. CJP Groove Weld NDT ..... 499
5c. Welded Joints Subjected to Fatigue ..... 499
5e. Reduction of Ultrasonic Testing Rate ..... 499
5f. Increase in Ultrasonic Testing Rate ..... 500
385. Inspection of High-Strength Bolting ..... 500
386. Inspection of Galvanized Structural Steel Main Members ..... 501
387. Other Inspection Tasks ..... 501
N6. Approved Fabricators and Erectors ..... 503
APPENDIX 1. DESIGN BY ADVANCED ANALYSIS ..... 504
1.1. General Requirements ..... 504
1.2. Design by Elastic Analysis ..... 504
388. General Stability Requirements ..... 505
389. Calculation of Required Strengths ..... 506
390. Calculation of Available Strengths ..... 511
1.3. Design by Inelastic Analysis ..... 511
391. General Requirements ..... 512
392. Ductility Requirements ..... 514
2a. Material ..... 514
2b. Cross Section ..... 515
2c. Unbraced Length ..... 516
2d. Axial Force ..... 517
393. Analysis Requirements ..... 517
3a. Material Properties and Yield Criteria ..... 518
3b. Geometric Imperfections ..... 518
3c. Residual Stresses and Partial Yielding Effects ..... 519
APPENDIX 2. DESIGN FOR PONDING ..... 520
APPENDIX 3. FATIGUE ..... 523
3.1. General Provisions ..... 523
3.2. Calculation of Maximum Stresses and Stress Ranges ..... 524
3.3. Plain Material and Welded Joints ..... 524
3.4. Bolts and Threaded Parts ..... 526
3.5. Fabrication and Erection Requirements for Fatigue ..... 527
APPENDIX 4. STRUCTURAL DESIGN FOR FIRE CONDITIONS ..... 530
4.1. General Provisions ..... 530
394. Performance Objective ..... 530
395. Design by Engineering Analysis ..... 530
396. Load Combinations and Required Strength ..... 531
4.2. Structural Design for Fire Conditions by Analysis ..... 532
397. Design-Basis Fire ..... 532
1a. Localized Fire ..... 532
1b. Post-Flashover Compartment Fires ..... 532
1c. Exterior Fires ..... 533
1d. Active Fire Protection Systems ..... 533
398. Temperatures in Structural Systems under Fire Conditions ..... 533
399. Material Strengths at Elevated Temperatures ..... 537
400. Structural Design Requirements ..... 539
4a. General Structural Integrity ..... 539
4b. Strength Requirements and Deformation Limits ..... 539
4c. Design by Advanced Methods of Analysis ..... 540
4d. Design by Simple Methods of Analysis ..... 540
4.3. Design by Qualification Testing ..... 545
401. Qualification Standards ..... 545
402. Restrained Construction ..... 545
403. Unrestrained Construction ..... 546
Additional Bibliography ..... 546
APPENDIX 5. EVALUATION OF EXISTING STRUCTURES ..... 549
5.1. General Provisions ..... 549
5.2. Material Properties ..... 549
404. Determination of Required Tests ..... 549
405. Tensile Properties ..... 549
406. Base Metal Notch Toughness ..... 550
407. Weld Metal ..... 550
408. Bolts and Rivets ..... 550
5.3. Evaluation by Structural Analysis ..... 550
409. Strength Evaluation ..... 550
5.4. Evaluation by Load Tests ..... 551
410. Determination of Load Rating by Testing ..... 551
411. Serviceability Evaluation ..... 551
5.5. Evaluation Report ..... 552
APPENDIX 6. MEMBER STABILITY BRACING ..... 553
6.1. General Provisions ..... 553
6.2. Column Bracing ..... 559
6.3. Beam Bracing ..... 560
412. Lateral Bracing ..... 560
413. Torsional Bracing ..... 562
6.4 Beam-Column Bracing ..... 565
APPENDIX 7. ALTERNATIVE METHODS OF DESIGN FOR STABILITY ..... 568
7.2. Effective Length Method ..... 568
7.3. First-Order Analysis Method ..... 578
APPENDIX 8. APPROXIMATE SECOND-ORDER ANALYSIS ..... 579
REFERENCES ..... 586

## SYMBOLS

Some definitions in the list below have been simplified in the interest of brevity. In all cases, the definitions given in the body of this Specification govern. Symbols without text definitions, or used only in one location and defined at that location, are omitted in some cases. The section or table number in the righthand column refers to the Section where the symbol is first defined.

## Symbol

Definition
Section
A Cross-sectional area of angle, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$. . . . . . . . . . . . . . . . . . . . . . . . . F10. 2
$A_{B M} \quad$ Cross-sectional area of the base metal, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$. . . . . . . . . . . . . . . . . . J2.4
$A_{b} \quad$ Nominal unthreaded body area of bolt or threaded part, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right) \ldots \ldots$ J3.6

$A_{c} \quad$ Area of concrete slab within effective width, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right) \ldots \ldots . \ldots .$. . . . 3.2 d

$A_{e} \quad$ Effective net area, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$. ............................................. . . D2
$A_{e} \quad$ Summation of the effective areas of the cross section based on the reduced effective widths, $b_{e}, d_{e}$ or $h_{e}$, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$. . . . . . . . . . . . . . . . . E7


$A_{f n} \quad$ Net area of tension flange, $\mathrm{in}^{2}\left(\mathrm{~mm}^{2}\right)$. . . . . . . . . . . . . . . . . . . . . . . . . . . . F13.1


$A_{g} \quad$ Gross area of composite member, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$. . . . . . . . . . . . . . . . . . . . . . . I2.1
Agv Gross area subject to shear, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right) \ldots \ldots . \ldots$. . . . . . . . . . . . . . . . . . . . J4.2
$A_{n} \quad$ Net area of member, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$. .................................... . . B4.3b
$A_{n t} \quad$ Net area subject to tension, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right) \ldots \ldots . \ldots$. . . . . . . . . . . . . . . . . . . . J4.3
$A_{n v} \quad$ Net area subject to shear, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right) \ldots \ldots \ldots \ldots . . \ldots$. . . . . . . . . . . . . . . . . . J4.2
$A_{p b} \quad$ Projected area in bearing, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J7

$A_{s a} \quad$ Cross-sectional area of steel headed stud anchor, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right) \ldots \ldots \ldots$. . . . 8.2 a
$A_{s f} \quad$ Area on the shear failure path, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$. . . . . . . . . . . . . . . . . . . . . . . D5. 1
$A_{s r} \quad$ Area of continuous reinforcing bars, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right) \ldots \ldots \ldots \ldots . \ldots$. . . . . . . . . . 2 a
$A_{s r} \quad$ Area of developed longitudinal reinforcing steel within the effective width of the concrete slab, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$ I3.2d. 2
$A_{t} \quad$ Net area in tension, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right) \ldots \ldots \ldots \ldots \ldots \ldots$. . . . . . . . . . . . . . . . App. 3.4
$A_{T} \quad$ Nominal forces and deformations due to the design-basis fire defined in Section 4.2.1

App. 4.1.4
$A_{w} \quad$ Area of web, the overall depth times the web thickness, $d t_{w}$, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$G2.1
$A_{\text {we }} \quad$ Effective area of the weld, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . J2.4

$A_{1} \quad$ Area of steel concentrically bearing on a concrete support, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right) \ldots$ J8
$A_{2} \quad$ Maximum area of the portion of the supporting surface that is geometrically similar to and concentric with the loaded area, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$DefinitionSection
B Overall width of rectangular HSS main member, measured $90^{\circ}$ to the plane of the connection, in. (mm) ..... Table D3.1
$B_{b} \quad$ Overall width of rectangular HSS branch member or plate, measured$90^{\circ}$ to the plane of the connection, in. (mm)K1.1
$B_{e} \quad$ Effective width of rectangular HSS branch member or plate, in. (mm) ..... K1.1
$B_{1} \quad$ Multiplier to account for $P-\delta$ effects ..... App. 8.2
$B_{2} \quad$ Multiplier to account for $P-\Delta$ effects ..... App. 8.2
$C \quad$ HSS torsional constant ..... H3.1
$C_{b} \quad$ Lateral-torsional buckling modification factor for nonuniform moment diagrams when both ends of the segment are braced ..... F1
$C_{f} \quad$ Constant from Table A-3.1 for the fatigue category ..... App. 3.3
$C_{m} \quad$ Equivalent uniform moment factor assuming no relative translation of member ends ..... App. 8.2.1
$C_{v 1} \quad$ Web shear strength coefficient ..... G2.1
$C_{\nu 2} \quad$ Web shear buckling coefficient ..... G2. 2
$C_{w} \quad$ Warping constant, in. ${ }^{6}\left(\mathrm{~mm}^{6}\right)$ ..... E4
$C_{1} \quad$ Coefficient for calculation of effective rigidity of encased composite compression member ..... I2.1b
$C_{2} \quad$ Edge distance increment, in. (mm) ..... Table J3.5
$C_{3} \quad$ Coefficient for calculation of effective rigidity of filled composite compression member ..... I2.2b
$D \quad$ Outside diameter of round HSS, in. (mm) ..... E7.2
$D \quad$ Outside diameter of round HSS main member, in. (mm) ..... K1.1
$D \quad$ Nominal dead load, kips (N) ..... B3.9
$D \quad$ Nominal dead load rating ..... App. 5.4.1
$D_{b} \quad$ Outside diameter of round HSS branch member, in. (mm) ..... K1.1
$D_{u} \quad$ In slip-critical connections, a multiplier that reflects the ratio of the mean installed bolt pretension to the specified minimum bolt pretension ..... J3.8
$E \quad$ Modulus of elasticity of steel $=29,000 \mathrm{ksi}(200000 \mathrm{MPa})$ ..... Table B4.1
$E_{c} \quad$ Modulus of elasticity of concrete $=w_{c}^{1.5} \sqrt{f_{c}^{\prime}}$, ksi$\left(0.043 w_{c}^{1.5} \sqrt{f_{c}^{\prime}}\right.$, MPa)I2.1b
$E_{S} \quad$ Modulus of elasticity of steel $=29,000 \mathrm{ksi}(200000 \mathrm{MPa})$ ..... I2.1b
$E I_{\text {eff }} \quad$ Effective stiffness of composite section, kip-in. ${ }^{2}$ (N-mm²) ..... I2.1b
$F_{c} \quad$ Available stress in main member, ksi (MPa) ..... K1.1
$F_{c a} \quad$ Available axial stress at the point of consideration, ksi (MPa) ..... H2
$F_{c b w}, F_{c b z} \quad$ Available flexural stress at the point of consideration, ksi (MPa) ..... H2
$F_{c r} \quad$ Buckling stress for the section as determined by analysis, ksi (MPa) ..... H3. 3
$F_{c r} \quad$ Critical stress, ksi (MPa) ..... E3
$F_{c r} \quad$ Lateral-torsional buckling stress for the section as determined by analysis, ksi (MPa) ..... F12.2
$F_{c r} \quad$ Local buckling stress for the section as determined by analysis, ksi (MPa) ..... F12.3
$F_{e} \quad$ Elastic buckling stress, ksi (MPa) ..... E3
$F_{e l} \quad$ Elastic local buckling stress, ksi (MPa) ..... E7. 1
$F_{E X X} \quad$ Filler metal classification strength, ksi (MPa) ..... J2.4
$F_{\text {in }} \quad$ Nominal bond stress, ksi (MPa) ..... I6.3c

Symbol	Definition
$F_{L}$	
	$\begin{array}{l}\text { Nominal compressive strength above which the inelastic } \\ \text { buckling limit states apply, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . F4.2 }\end{array}$
$F_{n B M}$	Nominal stress of the base metal, ksi (MPa) . . . . . . . . . . . . . . . . . . . J2.4


Symbol	Definition Section
$I_{s t 1}$	Minimum moment of inertia of transverse stiffeners required for development of the full shear post buckling resistance of the stiffened web panels, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$
$I_{s t 2}$	Minimum moment of inertia of transverse stiffeners required for development of web shear buckling resistance, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$ $\qquad$
$I_{x}, I_{y}$	Moment of inertia about the principal axes, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$. . . . . . . . . . . . . . E4
$I_{\text {yeff }}$	Effective out-of-plane moment of inertia, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$. . . . . . . . . App. 6.3.2a
$I_{y c}$	Moment of inertia of the compression flange about the $y$-axis, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$
$I_{y t}$	Moment of inertia of the tension flange about the $y$-axis, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$
$J$	Torsional constant, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E4
$K$	Effective length factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E2
$K_{x}$	Effective length factor for flexural buckling about $x$-axis . . . . . . . . . . . . . E4
$K_{y}$	Effective length factor for flexural buckling about $y$-axis . . . . . . . . . . . . . E4
$K_{z}$	Effective length factor for torsional buckling about the longitudinal axis . . E4
$L$	Length of member, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H3.1
$L$	Laterally unbraced length of member, in. (mm) . . . . . . . . . . . . . . . . . . . . . E2
$L$	Length of span, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 6.3.2a
$L$	Length of member between work points at truss chord centerlines, in. (mm)
$L$	Nominal live load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B3. 9
$L$	Nominal live load rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 5.4.1
$L$	Nominal occupancy live load, kips (N) . . . . . . . . . . . . . . . . . . . . App. 4.1.4
$L$	Height of story, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 7.3.2
$L_{b}$	Length between points that are either braced against lateral displacement of compression flange or braced against twist of the cross section, in. (mm)
$L_{b}$	Largest laterally unbraced length along either flange at the point of load, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J10. 4
$L_{b r}$	Unbraced length within the panel under consideration, in. (mm) . . App. 6.2.1
$L_{b r}$	Unbraced length adjacent to the point brace, in. (mm) . . . . . . . . . App. 6.2.2
$L_{c}$	Effective length of member, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . E2
$L_{c x}$	Effective length of member for buckling about $x$-axis, in. (mm) . . . . . . . E4
$L_{c y}$	Effective length of member for buckling about $y$-axis, in. (mm) . . . . . . . E4
$L_{c z}$	Effective length of member for buckling about longitudinal axis, in. (mm) $\qquad$
$L_{c 1}$	Effective length in the plane of bending, calculated based on the assumption of no lateral translation at the member ends, set equal to the laterally unbraced length of the member unless analysis justifies a smaller value, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 8.2.1
$L_{\text {in }}$	Load introduction length, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . I6.3c
$L_{p}$	Limiting laterally unbraced length for the limit state of yielding, in. (mm)
$L_{p}$	Length of primary members, ft (m) . . . . . . . . . . . . . . . . . . . . . . . . App. 2.1


Symbol	Definition Section
$L_{r}$	Limiting laterally unbraced length for the limit state of inelastic
	lateral-torsional buckling, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . F2.2
$L_{r}$	Nominal roof live load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 5.4.1
$L_{S}$	Length of secondary members, ft (m) . . . . . . . . . . . . . . . . . . . . . . . App. 2.1
$L_{v}$	Distance from maximum to zero shear force, in. (mm) . . . . . . . . . . . . . . G5
$L_{x}, L_{y}, L_{z}$	Laterally unbraced length of the member for each axis, in. (mm) . . . . . . E4
$M_{A}$	Absolute value of moment at quarter point of the unbraced segment, kip-in. (N-mm)
$M_{a}$	Required flexural strength using ASD load combinations, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J10. 4
$M_{B}$	Absolute value of moment at centerline of the unbraced segment, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F1
$M_{C}$	Absolute value of moment at three-quarter point of the unbraced segment, kip-in. (N-mm)
$M_{c}$	Available flexural strength, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . H1.1
$M_{c r}$	Elastic lateral-torsional buckling moment, kip-in. (N-mm) . . . . . . . . . . F10.2
$M_{c x}, M_{c y}$	Available flexural strength determined in accordance with   Chapter F, kip-in. (N-mm)
$M_{c x}$	Available lateral-torsional strength for major axis flexure determined in accordance with Chapter F using $C_{b}=1.0$, kip-in. (N-mm)
$M_{c x}$	Available flexural strength about $x$-axis for the limit state of tensile rupture of the flange, determined according to Section F13.1,   kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H4
$M_{l t}$	First-order moment using LRFD or ASD load combinations, due to lateral translation of the structure only, kip-in. (N-mm) . . . . . . App. 8.2
$M_{\text {max }}$	Absolute value of maximum moment in the unbraced segment, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F1
$M_{n}$	Nominal flexural strength, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . F1
$M_{n t}$	First-order moment using LRFD or ASD load combinations, with the structure restrained against lateral translation, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 8.2
$M_{p}$	Plastic bending moment, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . Table B4. 1
$M_{p}$	Moment corresponding to plastic stress distribution over the composite cross section, kip-in. (N-mm)
$M_{r}$	Required second-order flexural strength using LRFD or ASD load combinations, kip-in. ( $\mathrm{N}-\mathrm{mm}$ )
$M_{r}$	Required flexural strength, determined in accordance with Chapter C, using LRFD or ASD load combinations, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H1. 1
$M_{r}$	Required flexural strength of the beam within the panel under consideration using LRFD or ASD load combinations, kip-in. ( $\mathrm{N}-\mathrm{mm}$ )
$M_{r}$	Largest of the required flexural strengths of the beam within the unbraced lengths adjacent to the point brace using LRFD or ASD load combinations, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . App. 6.3.1b


Symbol	Definition Section
$M_{b r}$	Required flexural strength of the brace, kip-in. (N-mm) . . . . . . . App. 6.3.2a
$M_{r o}$	Required flexural strength in chord at a joint, on the side of joint with lower compression stress, kips (N) . . . . . . . . . . . . . . . . . . . . . Table K2. 1
$M_{r-i p}$	Required in-plane flexural strength in branch using LRFD or ASD load combinations, kip-in. (N-mm) Table K4.1
$M_{r-o p}$	Required out-of-plane flexural strength in branch using LRFD or ASD load combinations, kip-in. (N-mm)
$M_{r x}, M_{r y}$	Required flexural strength, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . H1.1
$M_{r x}$	Required flexural strength at the location of the bolt holes, determined in accordance with Chapter C , positive for tension in the flange under consideration, negative for compression, kip-in. (N-mm) . . . . . . . . . . . . . . H4
$M_{u}$	Required flexural strength using LRFD load combinations,   kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J10. 4
$M_{y}$	Moment at yielding of the extreme fiber, kip-in. (N-mm) . . . . . . . Table B4.1
$M_{y}$	Yield moment corresponding to yielding of the tension flange and first yield of the compression flange, kip-in. (N-mm) $\qquad$
$M_{y}$	Yield moment about the axis of bending, kip-in. (N-mm) . . . . . . . . . . . .F9.1
$M_{y c}$	Yield moment in the compression flange, kip-in. (N-mm) . . . . . . . . . . . F4. 1
$M_{y t}$	Yield moment in the tension flange, kip-in. (N-mm) . . . . . . . . . . . . . . . F4.4
$M_{1}{ }^{\prime}$	Effective moment at the end of the unbraced length opposite from $M_{2}$, kip-in. (N-mm) $\qquad$ App. 1.3.2c
$M_{1}$	Smaller moment at end of unbraced length, kip-in. (N-mm) . . . . . . . . . F13.5
$M_{2}$	Larger moment at end of unbraced length, kip-in. (N-mm) . . . . . . . . . . F13.5
$N_{i}$	Notional load applied at level $i$, kips (N) . . . . . . . . . . . . . . . . . . . . . . C2.2b
$N_{i}$	Additional lateral load, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . App. 7.3.2
$O_{v}$	Overlap connection coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K3.1
$P_{a}$	Required axial strength in chord using ASD load combinations, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table K2. 1
$P_{b r}$	Required end and intermediate point brace strength using LRFD or ASD load combinations, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . App. 6.2.2
$P_{c}$	Available axial strength, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . H1.1
$P_{c}$	Available axial strength for the limit state of tensile rupture of the net section at the location of bolt holes, kips ( N ) $\qquad$
$P_{c y}$	Available axial compressive strength out of the plane of bending,   kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H1. 3
$P_{e}$	Elastic critical buckling load determined in accordance with Chapter C or Appendix 7, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I2.1b
$P_{\text {e story }}$	Elastic critical buckling strength for the story in the direction of translation being considered, kips (N) . . . . . . . . . . . . . . . . . . . . . . App 8.2.2
$P_{e 1}$	Elastic critical buckling strength of the member in the plane of bending, kips (N)
$P_{l t}$	First-order axial force using LRFD or ASD load combinations, due to lateral translation of the structure only, kips (N) $\qquad$
$P_{m f}$	Total vertical load in columns in the story that are part of moment frames, if any, in the direction of translation being considered, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 8.2.2


Symbol	Definition Section
$P_{n}$	Nominal axial strength, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D2
$P_{n}$	Nominal compressive strength, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . E1
$P_{\text {no }}$	Nominal axial compressive strength of zero length, doubly symmetric, axially loaded composite member, kips (N)
$P_{\text {no }}$	Available compressive strength of axially loaded doubly symmetric filled composite members, kips (N) I2.2b
$P_{n s}$	Cross-section compressive strength, kips (N) . . . . . . . . . . . . . . . . . . . C2.3
$P_{n t}$	First-order axial force using LRFD and ASD load combinations, with the structure restrained against lateral translation, kips (N) $\text { . . . . App. } 8.2$
$P_{p}$	Nominal bearing strength, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J8
$P_{r}$	Largest of the required axial strengths of the column within the unbraced lengths adjacent to the point brace, using LRFD or ASD load combinations, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . App. 6.2.2
$P_{r}$	Required axial compressive strength using LRFD or ASD load combinations, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C2. 3
$P_{r}$	Required axial strength of the column within the panel under consideration, using LRFD or ASD load combinations, kips (N) . . App. 6.2.1
$P_{r}$	Required second-order axial strength using LRFD or ASD load combinations, kips (N)   App. 8.2
$P_{r}$	Required axial strength, determined in accordance with Chapter C, using LRFD or ASD load combinations, kips (N)
$P_{r}$	Required axial strength of the member at the location of the bolt holes; positive in tension, negative in compression, kips (N) . . . . . . . . . . . . .H4
$P_{r}$	Required external force applied to the composite member, kips (N) . . . .I6.2a
$P_{r o}$	Required axial strength in chord at a joint, on the side of joint with lower compression stress, kips (N) . . . . . . . . . . . . . . . . . . . . Table K2.1
$P_{\text {story }}$	Total vertical load supported by the story using LRFD or ASD load combinations, as applicable, including loads in columns that are not part of the lateral force-resisting system, kips (N) . . . . . . . . App. 8.2.2
$P_{u}$	Required axial strength in chord using LRFD load combinations, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table K2.1
$P_{u}$	Required axial strength in compression using LRFD load combinations, kips (N)   App. 1.3.2b
$P_{y}$	Axial yield strength of the column, kips (N) . . . . . . . . . . . . . . . . . . . . J10.6
$Q_{c t}$	Available tensile strength, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I8.3c
$Q_{c v}$	Available shear strength, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . I8.3c
$Q_{f}$	Chord-stress interaction parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . J10.3
$Q_{g}$	Gapped truss joint parameter accounting for geometric effects . . . Table K3.1
$Q_{n}$	Nominal strength of one steel headed stud or steel channel anchors, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I3.2d.1
$Q_{n t}$	Nominal tensile strength of steel headed stud anchor, kips (N) . . . . . . I8.3b
$Q_{n v}$	Nominal shear strength of steel headed stud anchor, kips (N) . . . . . . . I8.3a
$Q_{r t}$	Required tensile strength, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . I8.3b
$Q_{r v}$	Required shear strength, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . I8.3c
$R$	Radius of joint surface, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . Table J2.2
$R_{a}$	Required strength using ASD load combinations . . . . . . . . . . . . . . . . . B3.2

Symbol Definition Section$R_{F I L} \quad$ Reduction factor for joints using a pair of transverse filletwelds onlyApp. 3.3
$R_{g} \quad$ Coefficient to account for group effect ..... I8.2a
$R_{M} \quad$ Coefficient to account for influence of $P-\delta$ on $P-\Delta$ ..... App. 8.2.2
$R_{n} \quad$ Nominal strength, specified in this Specification ..... B3.1
$R_{n} \quad$ Nominal slip resistance, kips (N) ..... J1.8
$R_{n} \quad$ Nominal strength of the applicable force transfer mechanism, kips (N) ..... I6.3
$R_{n w l} \quad$ Total nominal strength of longitudinally loaded fillet welds, as determined in accordance with Table J2.5, kips (N) ..... J2.4
$R_{n w t} \quad$ Total nominal strength of transversely loaded fillet welds, as determined in accordance with Table J2.5 without the alternate in Section J2.4(a), kips (N) ..... J2.4
$R_{p} \quad$ Position effect factor for shear studs ..... I8.2a
$R_{p c} \quad$ Web plastification factor ..... F4.1
$R_{p g} \quad$ Bending strength reduction factor ..... F5. 2
$R_{P J P} \quad$ Reduction factor for reinforced or nonreinforced transverse partial-joint-penetration (PJP) groove welds ..... App. 3.3
$R_{p t} \quad$ Web plastification factor corresponding to the tension flange yielding limit state ..... F4. 4
$R_{u} \quad$ Required strength using LRFD load combinations ..... B3.1
$S \quad$ Elastic section modulus about the axis of bending, in. ${ }^{3}\left(\mathrm{~mm}^{3}\right)$ ..... F7. 2
$S \quad$ Nominal snow load, kips (N) ..... App. 4.1.4
$S \quad$ Spacing of secondary members, ft (m) ..... App. 2.1
$S_{c} \quad$ Elastic section modulus to the toe in compression relative to the axis of bending, in. ${ }^{3}\left(\mathrm{~mm}^{3}\right)$. ..... F10.3
$S_{e} \quad$ Effective section modulus determined with the effective width of the compression flange, in. ${ }^{3}\left(\mathrm{~mm}^{3}\right)$ ..... F7. 2
$S_{i p} \quad$ Effective elastic section modulus of welds for in-plane bending, in. ${ }^{3}\left(\mathrm{~mm}^{3}\right)$ ..... K5
$S_{\text {min }} \quad$ Minimum elastic section modulus relative to the axis of bending, in. ${ }^{3}\left(\mathrm{~mm}^{3}\right)$ ..... F12
$S_{o p} \quad$ Effective elastic section modulus of welds for out-of-plane bending, in. ${ }^{3}$ ( $\mathrm{mm}^{3}$ ) ..... K5
$S_{x c}, S_{x t} \quad$ Elastic section modulus referred to compression and tension flanges, respectively, in. ${ }^{3}\left(\mathrm{~mm}^{3}\right)$ ..... Table B4.1
$S_{x} \quad$ Elastic section modulus taken about the $x$-axis, in. ${ }^{3}\left(\mathrm{~mm}^{3}\right)$ ..... F2. 2
$S_{x} \quad$ Minimum elastic section modulus taken about the $x$-axis, in. ${ }^{3}\left(\mathrm{~mm}^{3}\right)$ ..... F13.1
$S_{y} \quad$ Elastic section modulus taken about the $y$-axis, in. ${ }^{3}\left(\mathrm{~mm}^{3}\right)$ ..... F6. 1
$T \quad$ Elevated temperature of steel due to unintended fire exposure, ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$ ..... App. 4.2.4d
$T_{a} \quad$ Required tension force using ASD load combinations, kips (kN) ..... J3. 9
$T_{b} \quad$ Minimum fastener tension given in Table J3.1 or J3.1M, kips (kN) ..... J3.8
$T_{c} \quad$ Available torsional strength, kip-in. (N-mm) ..... H3. 2

Symbol	Definition Section
$T_{n}$	Nominal torsional strength, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . H3.1
$T_{r}$	Required torsional strength, determined in accordance with Chapter C, using LRFD or ASD load combinations, kip-in. (N-mm) . . . . H3.2
$T_{u}$	Required tension force using LRFD load combinations, kips (kN) . . . . . J3.9
$U$	Shear lag factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D3
$U$	Utilization ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table K2. 1
$U_{b s}$	Reduction coefficient, used in calculating block shear rupture strength
$U_{p}$	Stress index for primary members . . . . . . . . . . . . . . . . . . . . . . . . . . App. 2.2
$U_{s}$	Stress index for secondary members . . . . . . . . . . . . . . . . . . . . . . . App. A 2.2
$V^{\prime}$	Nominal shear force between the steel beam and the concrete slab transferred by steel anchors, kips (N) $\qquad$
$V_{b r}$	Required shear strength of the bracing system in the direction perpendicular to the longitudinal axis of the column, kips (N) . . . . App. 6.2.1
$V_{c}$	Available shear strength, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . H3. 2
$V_{c 1}$	Available shear strength calculated with $V_{n}$ as defined in Section G2.1 or G2.2. as applicable, kips (N) . . . . . . . . . . . . . . . . . . . . . . G2.3
$V_{c 2}$	Available shear buckling strength, kips (N) . . . . . . . . . . . . . . . . . . . . . G2.3
$V_{n}$	Nominal shear strength, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G1
$V_{r}$	Required shear strength in the panel being considered, kips (N) . . . . . . G2.3
$V_{r}$	Required shear strength determined in accordance with Chapter C, using LRFD or ASD load combinations, kips (N) $\qquad$
$V_{r}^{\prime}$	Required longitudinal shear force to be transferred to the steel or concrete, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I6.1
$Y_{i}$	Gravity load applied at level $i$ from the LRFD load combination or ASD load combination, as applicable, kips (N) C2.2b
Z	Plastic section modulus taken about the axis of bending, in. ${ }^{3}\left(\mathrm{~mm}^{3}\right)$
$Z_{b}$	Plastic section modulus of branch taken about the axis of bending, in. ${ }^{3}\left(\mathrm{~mm}^{3}\right)$
$Z_{x}$	
$Z_{y}$	
$a$	Clear distance between transverse stiffeners, in. (mm) . . . . . . . . . . . . F13.2
$a$	Distance between connectors, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . E6. 1
$a$	Shortest distance from edge of pin hole to edge of member measured parallel to the direction of force, in. (mm) $\qquad$
$a$	Half the length of the nonwelded root face in the direction of the thickness of the tension-loaded plate, in. (mm) $\qquad$ App. 3.3
$a^{\prime}$	Weld length along both edges of the cover plate termination to the beam or girder, in. (mm) $\qquad$ F13.3
$a_{w}$	Ratio of two times the web area in compression due to application of major axis bending moment alone to the area of the compression flange components
$b$	Full width of leg in compression, in. (mm) . . . . . . . . . . . . . . . . . . . . F10.3
$b$	For flanges of I-shaped members, half the full-flange width, in. (mm)

Symbol Definition Section
$b \quad$ For legs of angles and flanges of channels and zees, full leg or flange width, in. (mm) ..... B4.1a$b \quad$ For plates, the distance from the free edge to the first row offasteners or line of welds, in. (mm)B4.1a
$b \quad$ Width of the element, in. (mm) ..... E7.1$b \quad$ Width of unstiffened compression element; width of stiffenedcompression element, in. (mm)B4. 1
$b \quad$ Width of the leg resisting the shear force or depth of tee stem, in. (mm) ..... G3
$b \quad$ Width of leg, in. (mm) ..... F10.2
$b_{c f} \quad$ Width of column flange, in. (mm) ..... J10.6
$b_{e} \quad$ Reduced effective width, in. (mm) ..... E7. 1$b_{e} \quad$ Effective edge distance for calculation of tensile rupture strengthof pin-connected member, in. (mm)D5.1
$b_{f} \quad$ Width of flange, in. (mm) ..... B4. 1
$b_{f c} \quad$ Width of compression flange, in. (mm) ..... F4. 2
$b_{f t} \quad$ Width of tension flange, in. (mm) ..... G2.2
$b_{l} \quad$ Length of longer leg of angle, in. (mm) ..... E5
$b_{p} \quad$ Smaller of the dimension $a$ and $h$, in. (mm) ..... G2.3
$b_{s} \quad$ Length of shorter leg of angle, in. (mm) ..... E5$b_{s} \quad$ Stiffener width for one-sided stiffeners; twice the individualstiffener width for pairs of stiffeners, in. (mm)App. 6.3.2a
$c \quad$ Distance from the neutral axis to the extreme compressive fibers, in. (mm) ..... App. 6.3.2a
$c_{1} \quad$ Effective width imperfection adjustment factor determined from Table E7.1 ..... E7. 1
$d \quad$ Depth of section from which the tee was cut, in. (mm) Table D3.1
$d$ Depth of tee or width of web leg in compression, in. (mm) ..... F9. 2
$d \quad$ Nominal fastener diameter, in. (mm) ..... J3.3
$d \quad$ Full nominal depth of the member, in. (mm) ..... B4.1
$d$ Depth of rectangular bar, in. (mm) ..... F11.1
$d \quad$ Diameter, in. (mm) ..... J7
$d \quad$ Diameter of pin, in. (mm) ..... D5.1
$d_{b} \quad$ Depth of beam, in. (mm) ..... J10.6
$d_{b} \quad$ Nominal diameter (body or shank diameter), in. (mm) ..... App. 3.4
$d_{c} \quad$ Depth of column, in. (mm) ..... J10.6
$d_{e} \quad$ Effective width for tees, in. (mm) ..... E7.1
$d_{s a} \quad$ Diameter of steel headed stud anchor, in. (mm) ..... I8.1
$e \quad$ Eccentricity in a truss connection, positive being away from the branches, in. (mm) ..... K3.1
$e_{m i d-h t} \quad$ Distance from the edge of steel headed stud anchor shank to the steel deck web, in. (mm) ..... I8.2a
$f_{c}^{\prime} \quad$ Specified compressive strength of concrete, ksi (MPa) ..... I1.2b$f_{o} \quad$ Stress due to impounded water due to either nominal rain orsnow loads (exclusive of the ponding contribution), and otherloads acting concurrently as specified in Section B2, ksi (MPa)App. 2.2

Symbol	Definition Section
$f_{r a}$	Required axial stress at the point of consideration, determined in accordance with Chapter C, using LRFD or ASD load combinations, ksi (MPa)
$f_{r b w}, f_{r b z}$	Required flexural stress at the point of consideration, determined in accordance with Chapter C, using LRFD or ASD load combinations, ksi (MPa)
$f_{r v}$	Required shear stress using LRFD or ASD load combinations, ksi (MPa)
$g$	Transverse center-to-center spacing (gage) between fastener gage lines, in. (mm)
$g$	Gap between toes of branch members in a gapped K-connection, neglecting the welds, in. (mm)
$h$	For webs of rolled or formed sections, the clear distance between flanges less the fillet or corner radius at each flange; for webs of built-up sections, the distance between adjacent lines of fasteners or the clear distance between flanges when welds are used; for webs of rectangular HSS, the clear distance between the flanges less the inside corner radius on each side, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . B4.1b
$h$	Width resisting the shear force, taken as the clear distance between the flanges less the inside corner radius on each side for HSS or the clear distance between flanges for box sections, in. (mm)
$h_{c}$	Twice the distance from the center of gravity to the following: the inside face of the compression flange less the fillet or corner radius, for rolled shapes; the nearest line of fasteners at the compression flange or the inside faces of the compression flange when welds are used, for built-up sections, in. (mm) . . . . . . . . . . B4. B
$h_{e}$	Effective width for webs, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F7.1
$h_{f}$	Factor for fillers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E3.8
$h_{o}$	Distance between flange centroids, in. (mm) . . . . . . . . . . . . . . . . . . . . F2. 2
$h_{p}$	Twice the distance from the plastic neutral axis to the nearest line of fasteners at the compression flange or the inside face of the compression flange when welds are used, in. (mm)
$k$	Distance from outer face of flange to the web toe of fillet, in. (mm) . . . J10.2
$k_{c}$	Coefficient for slender unstiffened elements . . . . . . . . . . . . . . . . Table B4. 1
$k_{s c}$	Slip-critical combined tension and shear coefficient . . . . . . . . . . . . . . . J3.9
$k_{v}$	Web plate shear buckling coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . G2.1
$l$	Actual length of end-loaded weld, in. (mm) . . . . . . . . . . . . . . . . . . . . . J2.2
$l$	Length of connection, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . Table D3.1
$l_{a}$	Length of channel anchor, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . I8.2b
$l_{b}$	Bearing length of the load, measured parallel to the axis of the HSS member (or measured across the width of the HSS in the case of loaded cap plates), in. (mm)   K2.1
$l_{b}$	Length of bearing, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J7
$l_{c}$	Clear distance, in the direction of the force, between the edge of the hole and the edge of the adjacent hole or edge of the material, in. (mm)   . . . . J3.10

Symbol Definition Section
$l_{e} \quad$ Total effective weld length of groove and fillet welds to rectangular HSS for weld strength calculations, in. (mm) ..... K5
$l_{\text {end }} \quad$ Distance from the near side of the connecting branch or plate to end of chord, in. (mm) ..... K1.1
$l_{o v} \quad$ Overlap length measured along the connecting face of the chord beneath the two branches, in. (mm) ..... K3.1
$l_{p} \quad$ Projected length of the overlapping branch on the chord, in. (mm) ..... K3.1
$l_{1}, l_{2} \quad$ Connection weld length, in. (mm) ..... Table D3.1
$n \quad$ Number of braced points within the span ..... App. 6.3.2a
$n \quad$ Threads per inch (per mm) ..... App. 3.4
$n_{b} \quad$ Number of bolts carrying the applied tension ..... J3. 9
$n_{s} \quad$ Number of slip planes required to permit the connection to slip ..... J3.8
$n_{S R} \quad$ Number of stress range fluctuations in design life ..... App. 3.3
$p \quad$ Pitch, in. per thread (mm per thread) ..... App. 3.4$p_{b} \quad$ Perimeter of the steel-concrete bond interface within thecomposite cross section, in. (mm)I6.3c
$r$ Radius of gyration, in. (mm) ..... E2
$r$ Retention factor depending on bottom flange temperature ..... App. 4.2.4d
$r_{a} \quad$ Radius of gyration about the geometric axis parallel to theconnected leg, in. (mm)E5
$r_{i} \quad$ Minimum radius of gyration of individual component, in. (mm) ..... E6.1
$\overline{r_{o}} \quad$ Polar radius of gyration about the shear center, in. (mm) ..... E4$r_{t} \quad$ Effective radius of gyration for lateral-torsional buckling. For I-shapeswith a channel cap or a cover plate attached to the compression flange,radius of gyration of the flange components in flexural compressionplus one-third of the web area in compression due to application ofmajor axis bending moment alone, in. (mm)F4. 2
$r_{x} \quad$ Radius of gyration about the $x$-axis, in. (mm) ..... E4
$r_{y} \quad$ Radius of gyration about $y$-axis, in. (mm) ..... E4
$r_{z} \quad$ Radius of gyration about the minor principal axis, in. (mm) ..... E5
$S$ Longitudinal center-to-center spacing (pitch) of any two consecutive holes, in. (mm) ..... B4.3b
$t \quad$ Distance from the neutral axis to the extreme tensile fibers, in. (mm) ..... App. 6.3.2a
$t \quad$ Thickness of wall, in. (mm) ..... E7. 2
F10.2
$t \quad$ Thickness of angle leg, in. (mm)
F11.1
Width of rectangular bar parallel to axis of bending, in. (mm)
J3.10
Thickness of connected material, in. (mm)
D5.1
Thickness of plate, in. (mm)
J5. 2
$t \quad$ Total thickness of fillers, in. (mm)
B4. 2
$t \quad$ Design wall thickness of HSS member, in. (mm)
K1.1
$t \quad$ Design wall thickness of HSS main member, in. (mm)G3$t \quad$ Thickness of angle leg or of tee stem, in. (mm)
$t_{b} \quad$ Design wall thickness of HSS branch member or thickness of plate, in. (mm) ..... K1.1
Thickness of overlapping branch, in. (mm) ..... Table K3.2
Symbol Definition Section
$t_{b j} \quad$ Thickness of overlapped branch, in. (mm) ..... Table K3.2
$t_{c f} \quad$ Thickness of column flange, in. (mm) ..... J10.6
$t_{f} \quad$ Thickness of flange, in. (mm) ..... F3. 2
$t_{f} \quad$ Thickness of the loaded flange, in. (mm) ..... J10.1
$t_{f} \quad$ Thickness of flange of channel anchor, in. (mm) ..... I8.2b
$t_{f c} \quad$ Thickness of compression flange, in. (mm) ..... F4.2
$t_{p} \quad$ Thickness of tension loaded plate, in. (mm) ..... App. 3.3
$t_{s t} \quad$ Thickness of web stiffener, in. (mm) ..... App. 6.3.2a
$t_{w} \quad$ Thickness of web, in. (mm) ..... F4.2
$t_{w} \quad$ Smallest effective weld throat thickness around the perimeter of branch or plate, in. (mm) ..... K5
$t_{w} \quad$ Thickness of channel anchor web, in. (mm) ..... I8.2b
$w \quad$ Width of cover plate, in. (mm) ..... F13.3
w Size of weld leg, in. (mm) ..... J2.2b
w Subscript relating symbol to major principal axis bending ..... H2
w
Width of plate, in. (mm) ..... Table D3.1
$w \quad$ Leg size of the reinforcing or contouring fillet, if any, in thedirection of the thickness of the tension-loaded plate, in. (mm)App. 3.3
$w_{c} \quad$ Weight of concrete per unit volume $\left(90 \leq w_{c} \leq 155 \mathrm{lb} / \mathrm{ft}^{3}\right.$or $1500 \leq w_{c} \leq 2500 \mathrm{~kg} / \mathrm{m}^{3}$ )I2.1b
$w_{r} \quad$ Average width of concrete rib or haunch, in. (mm) ..... I3.2c
$x \quad$ Subscript relating symbol to major axis bending ..... H1.1
$x_{o}, y_{o} \quad$ Coordinates of the shear center with respect to the centroid, in. (mm) ..... E4
$\bar{x} \quad$ Eccentricity of connection, in. (mm) ..... Table D3.1
$y \quad$ Subscript relating symbol to minor axis bending ..... H1.1
$z \quad$ Subscript relating symbol to minor principal axis bending ..... H2
$\alpha \quad$ ASD/LRFD force level adjustment factor ..... C2.3
$\beta$ Length reduction factor given by Equation J2-1 ..... J2.2b
$\beta \quad$ Width ratio; the ratio of branch diameter to chord diameterfor round HSS; the ratio of overall branch width to chordwidth for rectangular HSSK3.1
$\beta_{T} \quad$ Overall brace system required stiffness, kip-in./rad ( $\mathrm{N}-\mathrm{mm} / \mathrm{rad}$ ) ..... App. 6.3.2a
$\beta_{b r} \quad$ Required shear stiffness of the bracing system, kip/in. (N/mm) ..... App. 6.2.1a
$\beta_{b r} \quad$ Required flexural stiffness of the brace, kip/in. (N/mm) ..... App. 6.3.2a
$\beta_{e f f} \quad$ Effective width ratio; the sum of the perimeters of the two branch members in a K-connection divided by eight times the chord width ..... K3.1
$\beta_{\text {eop }} \quad$ Effective outside punching parameter ..... K3.2$\beta_{\text {sec }} \quad$ Web distortional stiffness, including the effect of webtransverse stiffeners, if any, kip-in./rad ( $\mathrm{N}-\mathrm{mm} / \mathrm{rad}$ )App. 6.3.2a
$\beta_{w} \quad$ Section property for single angles about major principal axis, in. (mm) ..... F10.2
$\Delta \quad$ First-order interstory drift due to the LRFD or ASD load combinations, in. (mm) ..... App. 7.3.2

Symbol	Definition Section
$\Delta_{H}$	First-order interstory drift, in the direction of translation being considered, due to lateral forces, in. (mm) $\qquad$ $\qquad$ App. 8.2.2
$\gamma$	Chord slenderness ratio; the ratio of one-half the diameter to the wall thickness for round HSS; the ratio of one-half the width to wall thickness for rectangular HSS
$\zeta$	Gap ratio; the ratio of the gap between the branches of a gapped K-connection to the width of the chord for rectangular HSS $\qquad$
$\eta$	Load length parameter, applicable only to rectangular HSS; the ratio of the length of contact of the branch with the chord in the plane of the connection to the chord width $\qquad$
$\lambda$	Width-to-thickness ratio for the element as defined in Section B4.1 . . . E7.1
$\lambda_{p}$	Limiting width-to-thickness parameter for compact element . . . . . . . . . B4.1
$\lambda_{p d}$	Limiting width-to-thickness parameter for plastic design . . . . . . App. 1.2.2b
$\lambda_{p f}$	Limiting width-to-thickness parameter for compact flange . . . . . . . . . . . F3.2
$\lambda_{p w}$	Limiting width-to-thickness parameter for compact web . . . . . . . . . . . F4. 2
$\lambda_{r}$	Limiting width-to-thickness parameter for noncompact element . . . . . . B4.1
$\lambda_{r f}$	Limiting width-to-thickness parameter for noncompact flange . . . . . . . . F3.2
$\lambda_{r w}$	Limiting width-to-thickness parameter for noncompact web . . . . . . . . . F4. 2
$\mu$	Mean slip coefficient for Class A or B surfaces, as applicable, or as established by tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J3.8
$\phi$	Resistance factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B3.1
$\phi_{B}$	Resistance factor for bearing on concrete . . . . . . . . . . . . . . . . . . . . . . . I6.3a
$\phi_{b}$	Resistance factor for flexure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H1.1
$\phi_{c}$	Resistance factor for compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H1.1
$\phi_{c}$	Resistance factor for axially loaded composite columns . . . . . . . . . . . . I2.1b
$\phi_{s f}$	Resistance factor for shear on the failure path . . . . . . . . . . . . . . . . . . . D5. 1
$\phi_{T}$	Resistance factor for torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H3.1
$\phi_{t}$	Resistance factor for tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H1. 2
$\phi_{t}$	Resistance factor for tensile rupture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H4
$\phi_{t}$	Resistance factor for steel headed stud anchor in tension . . . . . . . . . . . . I8.3b
$\phi_{v}$	Resistance factor for shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G 1
$\phi_{v}$	Resistance factor for steel headed stud anchor in shear . . . . . . . . . . . . I8.3a
$\Omega$	Safety factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B3. 2
$\Omega_{B}$	Safety factor for bearing on concrete . . . . . . . . . . . . . . . . . . . . . . . . . I6.3a
$\Omega_{b}$	Safety factor for flexure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H1. 1
$\Omega_{c}$	Safety factor for compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H1.1
$\Omega_{c}$	Safety factor for axially loaded composite columns . . . . . . . . . . . . . . . . I2.1b
$\Omega_{t}$	Safety factor for steel headed stud anchor in tension . . . . . . . . . . . . . . . I8.3b
$\Omega_{s f}$	Safety factor for shear on the failure path . . . . . . . . . . . . . . . . . . . . . . D5. 1
$\Omega_{T}$	Safety factor for torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H3.1
$\Omega_{t}$	Safety factor for tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H1. 2
$\Omega_{t}$	Safety factor for tensile rupture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H4
$\Omega_{v}$	Safety factor for shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G1
$\Omega_{v}$	Safety factor for steel headed stud anchor in shear . . . . . . . . . . . . . . . . . I8.3a
$\rho_{w}$	Maximum shear ratio within the web panels on each side of the transverse stiffener $\qquad$ G2.3

Symbol Definition Section
$\rho_{s r} \quad$ Minimum reinforcement ratio for longitudinal reinforcing ..... I2.1
$\theta \quad$ Angle between the line of action of the required force and the weld longitudinal axis, degrees ..... J2.4
$\theta \quad$ Acute angle between the branch and chord, degrees ..... K3.1
$\tau_{b}$ Stiffness reduction parameter ..... C2.3

## GLOSSARY

Notes:
(1) Terms designated with $\dagger$ are common AISI-AISC terms that are coordinated between the two standards development organizations.
(2) Terms designated with * are usually qualified by the type of load effect, for example, nominal tensile strength, available compressive strength, and design flexural strength.
(3) Terms designated with $* *$ are usually qualified by the type of component, for example, web local buckling, and flange local bending.

Active fire protection. Building materials and systems that are activated by a fire to mitigate adverse effects or to notify people to take action to mitigate adverse effects.
Allowable strength ${ }^{*} \dagger$. Nominal strength divided by the safety factor, $R_{n} / \Omega$.
Allowable stress*. Allowable strength divided by the applicable section property, such as section modulus or cross-sectional area.

Applicable building code $\dagger$. Building code under which the structure is designed.
ASD (allowable strength design) $\dagger$. Method of proportioning structural components such that the allowable strength equals or exceeds the required strength of the component under the action of the ASD load combinations.
ASD load combination $\dagger$. Load combination in the applicable building code intended for allowable strength design (allowable stress design).
Authority having jurisdiction (AHJ). Organization, political subdivision, office or individual charged with the responsibility of administering and enforcing the provisions of this Specification.
Available strength* $\dagger$. Design strength or allowable strength, as applicable.
Available stress*. Design stress or allowable stress, as applicable.
Average rib width. In a formed steel deck, average width of the rib of a corrugation.
Beam. Nominally horizontal structural member that has the primary function of resisting bending moments.
Beam-column. Structural member that resists both axial force and bending moment.
Bearing $\dagger$. In a connection, limit state of shear forces transmitted by the mechanical fastener to the connection elements.

Bearing (local compressive yielding) $\dagger$. Limit state of local compressive yielding due to the action of a member bearing against another member or surface.

Bearing-type connection. Bolted connection where shear forces are transmitted by the bolt bearing against the connection elements.
Block shear rupture $\dagger$. In a connection, limit state of tension rupture along one path and shear yielding or shear rupture along another path.

Box section. Square or rectangular doubly symmetric member made with four plates welded together at the corners such that it behaves as a single member.

Braced frame $\dagger$. Essentially vertical truss system that provides resistance to lateral forces and provides stability for the structural system.
Bracing. Member or system that provides stiffness and strength to limit the out-of-plane movement of another member at a brace point.
Branch member. In an HSS connection, member that terminates at a chord member or main member.
Buckling $\dagger$. Limit state of sudden change in the geometry of a structure or any of its elements under a critical loading condition.
Buckling strength. Strength for instability limit states.
Built-up member, cross section, section, shape. Member, cross section, section or shape fabricated from structural steel elements that are welded or bolted together.
Camber. Curvature fabricated into a beam or truss so as to compensate for deflection induced by loads.
Charpy V-notch impact test. Standard dynamic test measuring notch toughness of a specimen.
Chord member. In an HSS connection, primary member that extends through a truss connection.
Cladding. Exterior covering of structure.
Cold-formed steel structural member $\dagger$. Shape manufactured by press-braking blanks sheared from sheets, cut lengths of coils or plates, or by roll forming cold- or hot-rolled coils or sheets; both forming operations being performed at ambient room temperature, that is, without manifest addition of heat such as would be required for hot forming.
Collector. Also known as drag strut; member that serves to transfer loads between floor diaphragms and the members of the lateral force-resisting system.
Column. Nominally vertical structural member that has the primary function of resisting axial compressive force.
Column base. Assemblage of structural shapes, plates, connectors, bolts and rods at the base of a column used to transmit forces between the steel superstructure and the foundation.
Compact section. Section capable of developing a fully plastic stress distribution and possessing a rotation capacity of approximately three before the onset of local buckling.
Compartmentation. Enclosure of a building space with elements that have a specific fire endurance.
Complete-joint-penetration (CJP) groove weld. Groove weld in which weld metal extends through the joint thickness, except as permitted for HSS connections.
Composite. Condition in which steel and concrete elements and members work as a unit in the distribution of internal forces.
Composite beam. Structural steel beam in contact with and acting compositely with a reinforced concrete slab.
Composite component. Member, connecting element or assemblage in which steel and concrete elements work as a unit in the distribution of internal forces, with the exception of the special case of composite beams where steel anchors are embedded in a solid concrete slab or in a slab cast on formed steel deck.

Concrete breakout surface. The surface delineating a volume of concrete surrounding a steel headed stud anchor that separates from the remaining concrete.

Concrete crushing. Limit state of compressive failure in concrete having reached the ultimate strain.

Concrete haunch. In a composite floor system constructed using a formed steel deck, the section of solid concrete that results from stopping the deck on each side of the girder.

Concrete-encased beam. Beam totally encased in concrete cast integrally with the slab.
Connection $\dagger$. Combination of structural elements and joints used to transmit forces between two or more members.

Construction documents. Written, graphic and pictorial documents prepared or assembled for describing the design (including the structural system), location and physical characteristics of the elements of a building necessary to obtain a building permit and construct a building.
Cope. Cutout made in a structural member to remove a flange and conform to the shape of an intersecting member.
Cover plate. Plate welded or bolted to the flange of a member to increase cross-sectional area, section modulus or moment of inertia.

Cross connection. HSS connection in which forces in branch members or connecting elements transverse to the main member are primarily equilibrated by forces in other branch members or connecting elements on the opposite side of the main member.

Design. The process of establishing the physical and other properties of a structure for the purpose of achieving the desired strength, serviceability, durability, constructability, economy and other desired characteristics. Design for strength, as used in this Specification, includes analysis to determine required strength and proportioning to have adequate available strength.

Design-basis fire. Set of conditions that define the development of a fire and the spread of combustion products throughout a building or portion thereof.
Design drawings. Graphic and pictorial documents showing the design, location and dimensions of the work. These documents generally include plans, elevations, sections, details, schedules, diagrams and notes.

Design load $\dagger$. Applied load determined in accordance with either LRFD load combinations or ASD load combinations, as applicable.
Design strength ${ }^{*} \dagger$. Resistance factor multiplied by the nominal strength, $\phi R_{n}$.
Design wall thickness. HSS wall thickness assumed in the determination of section properties.
Diagonal stiffener. Web stiffener at column panel zone oriented diagonally to the flanges, on one or both sides of the web.

Diaphragm $\dagger$. Roof, floor or other membrane or bracing system that transfers in-plane forces to the lateral force-resisting system.

Diaphragm plate. Plate possessing in-plane shear stiffness and strength, used to transfer forces to the supporting elements.
Direct bond interaction. In a composite section, mechanism by which force is transferred between steel and concrete by bond stress.

Distortional failure. Limit state of an HSS truss connection based on distortion of a rectangular HSS chord member into a rhomboidal shape.

Distortional stiffness. Out-of-plane flexural stiffness of web.
Double curvature. Deformed shape of a beam with one or more inflection points within the span.
Double-concentrated forces. Two equal and opposite forces applied normal to the same flange, forming a couple.
Doubler. Plate added to, and parallel with, a beam or column web to increase strength at locations of concentrated forces.

Drift. Lateral deflection of structure.
Effective length factor, $K$. Ratio between the effective length and the unbraced length of the member.
Effective length. Length of an otherwise identical compression member with the same strength when analyzed with simple end conditions.
Effective net area. Net area modified to account for the effect of shear lag.
Effective section modulus. Section modulus reduced to account for buckling of slender compression elements.

Effective width. Reduced width of a plate or slab with an assumed uniform stress distribution which produces the same effect on the behavior of a structural member as the actual plate or slab width with its nonuniform stress distribution.
Elastic analysis. Structural analysis based on the assumption that the structure returns to its original geometry on removal of the load.
Elevated temperatures. Heating conditions experienced by building elements or structures as a result of fire which are in excess of the anticipated ambient conditions.
Encased composite member. Composite member consisting of a structural concrete member and one or more embedded steel shapes.
End panel. Web panel with an adjacent panel on one side only.
End return. Length of fillet weld that continues around a corner in the same plane.
Engineer of record. Licensed professional responsible for sealing the design drawings and specifications.

Expansion rocker. Support with curved surface on which a member bears that is able to tilt to accommodate expansion.

Expansion roller. Round steel bar on which a member bears that is able to roll to accommodate expansion.
Eyebar. Pin-connected tension member of uniform thickness, with forged or thermally cut head of greater width than the body, proportioned to provide approximately equal strength in the head and body.
Factored load $\dagger$. Product of a load factor and the nominal load.
Fastener. Generic term for bolts, rivets or other connecting devices.
Fatigue $\dagger$. Limit state of crack initiation and growth resulting from repeated application of live loads.
Faying surface. Contact surface of connection elements transmitting a shear force.
Filled composite member. Composite member consisting of an HSS or box section filled with structural concrete.

Filler metal. Metal or alloy added in making a welded joint.
Filler. Plate used to build up the thickness of one component.
Fillet weld reinforcement. Fillet welds added to groove welds.
Fillet weld. Weld of generally triangular cross section made between intersecting surfaces of elements.
Finished surface. Surfaces fabricated with a roughness height value measured in accordance with ANSI/ASME B46.1 that is equal to or less than 500.

Fire. Destructive burning, as manifested by any or all of the following: light, flame, heat or smoke.
Fire barrier. Element of construction formed of fire-resisting materials and tested in accordance with an approved standard fire resistance test, to demonstrate compliance with the applicable building code.
Fire resistance. Property of assemblies that prevents or retards the passage of excessive heat, hot gases or flames under conditions of use and enables the assemblies to continue to perform a stipulated function.
First-order analysis. Structural analysis in which equilibrium conditions are formulated on the undeformed structure; second-order effects are neglected.
Fitted bearing stiffener. Stiffener used at a support or concentrated load that fits tightly against one or both flanges of a beam so as to transmit load through bearing.

Flare bevel groove weld. Weld in a groove formed by a member with a curved surface in contact with a planar member.
Flare V-groove weld. Weld in a groove formed by two members with curved surfaces.
Flashover. Transition to a state of total surface involvement in a fire of combustible materials within an enclosure.
Flat width. Nominal width of rectangular HSS minus twice the outside corner radius. In the absence of knowledge of the corner radius, the flat width is permitted to be taken as the total section width minus three times the thickness.

Flexural buckling $\dagger$. Buckling mode in which a compression member deflects laterally without twist or change in cross-sectional shape.
Flexural-torsional buckling $\dagger$. Buckling mode in which a compression member bends and twists simultaneously without change in cross-sectional shape.
Force. Resultant of distribution of stress over a prescribed area.
Formed steel deck. In composite construction, steel cold formed into a decking profile used as a permanent concrete form.
Fully-restrained moment connection. Connection capable of transferring moment with negligible rotation between connected members.
Gage. Transverse center-to-center spacing of fasteners.
Gapped connection. HSS truss connection with a gap or space on the chord face between intersecting branch members.

Geometric axis. Axis parallel to web, flange or angle leg.
Girder filler. In a composite floor system constructed using a formed steel deck, narrow piece of sheet steel used as a fill between the edge of a deck sheet and the flange of a girder.

## Girder. See Beam.

Gouge. Relatively smooth surface groove or cavity resulting from plastic deformation or removal of material.
Gravity load. Load acting in the downward direction, such as dead and live loads.
Grip (of bolt). Thickness of material through which a bolt passes.
Groove weld. Weld in a groove between connection elements. See also AWS D1.1/D1.1M.
Gusset plate. Plate element connecting truss members or a strut or brace to a beam or column.
Heat flux. Radiant energy per unit surface area.
Heat release rate. Rate at which thermal energy is generated by a burning material.
Horizontal shear. In a composite beam, force at the interface between steel and concrete surfaces.
HSS (hollow structural section). Square, rectangular or round hollow structural steel section produced in accordance with one of the product specifications in Section A3.1a(b).
Inelastic analysis. Structural analysis that takes into account inelastic material behavior, including plastic analysis.
In-plane instability $\dagger$. Limit state involving buckling in the plane of the frame or the member.
Instability $\dagger$. Limit state reached in the loading of a structural component, frame or structure in which a slight disturbance in the loads or geometry produces large displacements.
Introduction length. The length along which the required longitudinal shear force is assumed to be transferred into or out of the steel shape in an encased or filled composite column.
Joint $\dagger$. Area where two or more ends, surfaces, or edges are attached. Categorized by type of fastener or weld used and method of force transfer.
Joint eccentricity. In an HSS truss connection, perpendicular distance from chord member center-of-gravity to intersection of branch member work points.
$k$-area. The region of the web that extends from the tangent point of the web and the flange-web fillet (AISC $k$ dimension) a distance $1 \frac{1}{2} 2 \mathrm{in}$. ( 38 mm ) into the web beyond the $k$ dimension.
K-connection. HSS connection in which forces in branch members or connecting elements transverse to the main member are primarily equilibriated by forces in other branch members or connecting elements on the same side of the main member.
Lacing. Plate, angle or other steel shape, in a lattice configuration, that connects two steel shapes together.
Lap joint. Joint between two overlapping connection elements in parallel planes.
Lateral bracing. Member or system that is designed to inhibit lateral buckling or lateral-torsional buckling of structural members.
Lateral force-resisting system. Structural system designed to resist lateral loads and provide stability for the structure as a whole.
Lateral load. Load acting in a lateral direction, such as wind or earthquake effects.
Lateral-torsional buckling $\dagger$. Buckling mode of a flexural member involving deflection out of the plane of bending occurring simultaneously with twist about the shear center of the cross section.
Leaning column. Column designed to carry gravity loads only, with connections that are not intended to provide resistance to lateral loads.

Length effects. Consideration of the reduction in strength of a member based on its unbraced length.
Lightweight concrete. Structural concrete with an equilibrium density of $115 \mathrm{lb} / \mathrm{ft}^{3}(1840$ $\mathrm{kg} / \mathrm{m}^{3}$ ) or less, as determined by ASTM C567.
Limit state $\dagger$. Condition in which a structure or component becomes unfit for service and is judged either to be no longer useful for its intended function (serviceability limit state) or to have reached its ultimate load-carrying capacity (strength limit state).
Load $\dagger$. Force or other action that results from the weight of building materials, occupants and their possessions, environmental effects, differential movement, or restrained dimensional changes.
Load effect $\dagger$. Forces, stresses and deformations produced in a structural component by the applied loads.
Load factor. Factor that accounts for deviations of the nominal load from the actual load, for uncertainties in the analysis that transforms the load into a load effect and for the probability that more than one extreme load will occur simultaneously.
Load transfer region. Region of a composite member over which force is directly applied to the member, such as the depth of a connection plate.
Local bending ${ }^{* *} \dagger$. Limit state of large deformation of a flange under a concentrated transverse force.

Local buckling**. Limit state of buckling of a compression element within a cross section.
Local yielding**†. Yielding that occurs in a local area of an element.
LRFD (load and resistance factor design) $\dagger$. Method of proportioning structural components such that the design strength equals or exceeds the required strength of the component under the action of the LRFD load combinations.
LRFD load combination $\dagger$. Load combination in the applicable building code intended for strength design (load and resistance factor design).
Main member. In an HSS connection, chord member, column or other HSS member to which branch members or other connecting elements are attached.
Member imperfection. Initial displacement of points along the length of individual members (between points of intersection of members) from their nominal locations, such as the out-of-straightness of members due to manufacturing and fabrication.
Mill scale. Oxide surface coating on steel formed by the hot rolling process.
Moment connection. Connection that transmits bending moment between connected members.
Moment frame $\dagger$. Framing system that provides resistance to lateral loads and provides stability to the structural system, primarily by shear and flexure of the framing members and their connections.
Negative flexural strength. Flexural strength of a composite beam in regions with tension due to flexure on the top surface.
Net area. Gross area reduced to account for removed material.
Nominal dimension. Designated or theoretical dimension, as in tables of section properties. Nominal load $\dagger$. Magnitude of the load specified by the applicable building code.

Nominal rib height. In a formed steel deck, height of deck measured from the underside of the lowest point to the top of the highest point.
Nominal strength* ${ }^{*}$. Strength of a structure or component (without the resistance factor or safety factor applied) to resist load effects, as determined in accordance with this Specification.
Noncompact section. Section that is able to develop the yield stress in its compression elements before local buckling occurs, but is unable to develop a rotation capacity of three.
Nondestructive testing. Inspection procedure wherein no material is destroyed and the integrity of the material or component is not affected.
Notch toughness. Energy absorbed at a specified temperature as measured in the Charpy V-notch impact test.

Notional load. Virtual load applied in a structural analysis to account for destabilizing effects that are not otherwise accounted for in the design provisions.
Out-of-plane buckling $\dagger$. Limit state of a beam, column or beam-column involving lateral or lateral-torsional buckling.
Overlapped connection. HSS truss connection in which intersecting branch members overlap.
Panel brace. Brace that controls the relative movement of two adjacent brace points along the length of a beam or column or the relative lateral displacement of two stories in a frame (see point brace).
Panel zone. Web area of beam-to-column connection delineated by the extension of beam and column flanges through the connection, transmitting moment through a shear panel.
Partial-joint-penetration (PJP) groove weld. Groove weld in which the penetration is intentionally less than the complete thickness of the connected element.
Partially restrained moment connection. Connection capable of transferring moment with rotation between connected members that is not negligible.
Percent elongation. Measure of ductility, determined in a tensile test as the maximum elongation of the gage length divided by the original gage length expressed as a percentage.
Pipe. See HSS.
Pitch. Longitudinal center-to-center spacing of fasteners. Center-to-center spacing of bolt threads along axis of bolt.
Plastic analysis. Structural analysis based on the assumption of rigid-plastic behavior, that is, that equilibrium is satisfied and the stress is at or below the yield stress throughout the structure.
Plastic hinge. Fully yielded zone that forms in a structural member when the plastic moment is attained.

Plastic moment. Theoretical resisting moment developed within a fully yielded cross section.
Plastic stress distribution method. In a composite member, method for determining stresses assuming that the steel section and the concrete in the cross section are fully plastic.
Plastification. In an HSS connection, limit state based on an out-of-plane flexural yield line mechanism in the chord at a branch member connection.
Plate girder. Built-up beam.
Plug weld. Weld made in a circular hole in one element of a joint fusing that element to another element.

Point brace. Brace that prevents lateral movement or twist independently of other braces at adjacent brace points (see panel brace).
Ponding. Retention of water due solely to the deflection of flat roof framing.
Positive flexural strength. Flexural strength of a composite beam in regions with compression due to flexure on the top surface.
Pretensioned bolt. Bolt tightened to the specified minimum pretension.
Pretensioned joint. Joint with high-strength bolts tightened to the specified minimum pretension.
Properly developed. Reinforcing bars detailed to yield in a ductile manner before crushing of the concrete occurs. Bars meeting the provisions of ACI 318, insofar as development length, spacing and cover are deemed to be properly developed.
Prying action. Amplification of the tension force in a bolt caused by leverage between the point of applied load, the bolt, and the reaction of the connected elements.
Punching load. In an HSS connection, component of branch member force perpendicular to a chord.
$P-\delta$ effect. Effect of loads acting on the deflected shape of a member between joints or nodes.
$P-\Delta$ effect. Effect of loads acting on the displaced location of joints or nodes in a structure. In tiered building structures, this is the effect of loads acting on the laterally displaced location of floors and roofs.
Quality assurance. Monitoring and inspection tasks to ensure that the material provided and work performed by the fabricator and erector meet the requirements of the approved construction documents and referenced standards. Quality assurance includes those tasks designated "special inspection" by the applicable building code.
Quality assurance inspector (QAI). Individual designated to provide quality assurance inspection for the work being performed.
Quality assurance plan (QAP). Program in which the agency or firm responsible for quality assurance maintains detailed monitoring and inspection procedures to ensure conformance with the approved construction documents and referenced standards.
Quality control. Controls and inspections implemented by the fabricator or erector, as applicable, to ensure that the material provided and work performed meet the requirements of the approved construction documents and referenced standards.
Quality control inspector (QCI). Individual designated to perform quality control inspection tasks for the work being performed.
Quality control program ( $Q C P$ ). Program in which the fabricator or erector, as applicable, maintains detailed fabrication or erection and inspection procedures to ensure conformance with the approved design drawings, specifications, and referenced standards.
Reentrant. In a cope or weld access hole, a cut at an abrupt change in direction in which the exposed surface is concave.
Required strength ${ }^{*} \dagger$. Forces, stresses and deformations acting on a structural component, determined by either structural analysis, for the LRFD or ASD load combinations, as applicable, or as specified by this Specification or Standard.

Resistance factor, $\phi \dagger$. Factor that accounts for unavoidable deviations of the nominal strength from the actual strength and for the manner and consequences of failure.

Restrained construction. Floor and roof assemblies and individual beams in buildings where the surrounding or supporting structure is capable of resisting significant thermal expansion throughout the range of anticipated elevated temperatures.
Reverse curvature. See double curvature.
Root of joint. Portion of a joint to be welded where the members are closest to each other.
Rotation capacity. Incremental angular rotation defined as the ratio of the inelastic rotation attained to the idealized elastic rotation at first yield prior to significant load shedding.
Rupture strength $\dagger$. Strength limited by breaking or tearing of members or connecting elements.

Safety factor, $\Omega \dagger$. Factor that accounts for deviations of the actual strength from the nominal strength, deviations of the actual load from the nominal load, uncertainties in the analysis that transforms the load into a load effect, and for the manner and consequences of failure.

Second-order effect. Effect of loads acting on the deformed configuration of a structure; includes $P-\delta$ effect and $P-\Delta$ effect.
Seismic force-resisting system. That part of the structural system that has been considered in the design to provide the required resistance to the seismic forces prescribed in ASCE/SEI 7.
Seismic response modification factor. Factor that reduces seismic load effects to strength level.

Service load combination. Load combination under which serviceability limit states are evaluated.
Service load $\dagger$. Load under which serviceability limit states are evaluated.
Serviceability limit state $\dagger$. Limiting condition affecting the ability of a structure to preserve its appearance, maintainability, durability, comfort of its occupants, or function of machinery, under typical usage.
Shear buckling $\dagger$. Buckling mode in which a plate element, such as the web of a beam, deforms under pure shear applied in the plane of the plate.
Shear lag. Nonuniform tensile stress distribution in a member or connecting element in the vicinity of a connection.

Shear wall $\dagger$. Wall that provides resistance to lateral loads in the plane of the wall and provides stability for the structural system.
Shear yielding (punching). In an HSS connection, limit state based on out-of-plane shear strength of the chord wall to which branch members are attached.
Sheet steel. In a composite floor system, steel used for closure plates or miscellaneous trimming in a formed steel deck.
Shim. Thin layer of material used to fill a space between faying or bearing surfaces.
Sidesway buckling (frame). Stability limit state involving lateral sidesway instability of a frame.

Simple connection. Connection that transmits negligible bending moment between connected members.

Single-concentrated force. Tensile or compressive force applied normal to the flange of a member.

Single curvature. Deformed shape of a beam with no inflection point within the span.
Slender-element section. Cross section possessing plate components of sufficient slenderness such that local buckling in the elastic range will occur.

Slip. In a bolted connection, limit state of relative motion of connected parts prior to the attainment of the available strength of the connection.
Slip-critical connection. Bolted connection designed to resist movement by friction on the faying surface of the connection under the clamping force of the bolts.
Slot weld. Weld made in an elongated hole fusing an element to another element.
Snug-tightened joint. Joint with the connected plies in firm contact as specified in Chapter J.
Specifications. Written documents containing the requirements for materials, standards and workmanship.
Specified minimum tensile strength. Lower limit of tensile strength specified for a material as defined by ASTM.

Specified minimum yield stress $\dagger$. Lower limit of yield stress specified for a material as defined by ASTM.
Splice. Connection between two structural elements joined at their ends to form a single, longer element.

Stability. Condition in the loading of a structural component, frame or structure in which a slight disturbance in the loads or geometry does not produce large displacements.
Steel anchor. Headed stud or hot rolled channel welded to a steel member and embodied in concrete of a composite member to transmit shear, tension, or a combination of shear and tension at the interface of the two materials.
Stiffened element. Flat compression element with adjoining out-of-plane elements along both edges parallel to the direction of loading.
Stiffener. Structural element, typically an angle or plate, attached to a member to distribute load, transfer shear or prevent buckling.
Stiffness. Resistance to deformation of a member or structure, measured by the ratio of the applied force (or moment) to the corresponding displacement (or rotation).
Story drift. Horizontal deflection at the top of the story relative to the bottom of the story.
Story drift ratio. Story drift divided by the story height.
Strain compatibility method. In a composite member, method for determining the stresses considering the stress-strain relationships of each material and its location with respect to the neutral axis of the cross section.
Strength limit state $\dagger$. Limiting condition in which the maximum strength of a structure or its components is reached.
Stress. Force per unit area caused by axial force, moment, shear or torsion.
Stress concentration. Localized stress considerably higher than average due to abrupt changes in geometry or localized loading.
Strong axis. Major principal centroidal axis of a cross section.

Structural analysis $\dagger$. Determination of load effects on members and connections based on principles of structural mechanics.
Structural component $\dagger$. Member, connector, connecting element or assemblage.
Structural Integrity. Performance characteristic of a structure indicating resistance to catastrophic failure.

Structural steel. Steel elements as defined in the AISC Code of Standard Practice for Steel Buildings and Bridges Section 2.1.

Structural system. An assemblage of load-carrying components that are joined together to provide interaction or interdependence.
System imperfection. Initial displacement of points of intersection of members from their nominal locations, such as the out-of-plumbness of columns due to erection tolerances.

T-connection. HSS connection in which the branch member or connecting element is perpendicular to the main member and in which forces transverse to the main member are primarily equilibrated by shear in the main member.

Tensile strength (of material) $\dagger$. Maximum tensile stress that a material is capable of sustaining as defined by ASTM.

Tensile strength (of member). Maximum tension force that a member is capable of sustaining.
Tension and shear rupture $\dagger$. In a bolt or other type of mechanical fastener, limit state of rupture due to simultaneous tension and shear force.

Tension field action. Behavior of a panel under shear in which diagonal tensile forces develop in the web and compressive forces develop in the transverse stiffeners in a manner similar to a Pratt truss.

Thermally cut. Cut with gas, plasma or laser.
Tie plate. Plate element used to join two parallel components of a built-up column, girder or strut rigidly connected to the parallel components and designed to transmit shear between them.

Toe of fillet. Junction of a fillet weld face and base metal. Tangent point of a fillet in a rolled shape.

Torsional bracing. Bracing resisting twist of a beam or column.
Torsional buckling $\dagger$. Buckling mode in which a compression member twists about its shear center axis.

Transverse reinforcement. In an encased composite column, steel reinforcement in the form of closed ties or welded wire fabric providing confinement for the concrete surrounding the steel shape.

Transverse stiffener. Web stiffener oriented perpendicular to the flanges, attached to the web.
Tubing. See HSS.
Turn-of-nut method. Procedure whereby the specified pretension in high-strength bolts is controlled by rotating the fastener component a predetermined amount after the bolt has been snug tightened.

Unbraced length. Distance between braced points of a member, measured between the centers of gravity of the bracing members.

Uneven load distribution. In an HSS connection, condition in which the stress is not distributed uniformly through the cross section of connected elements.
Unframed end. The end of a member not restrained against rotation by stiffeners or connection elements.

Unstiffened element. Flat compression element with an adjoining out-of-plane element along one edge parallel to the direction of loading.
Unrestrained construction. Floor and roof assemblies and individual beams in buildings that are assumed to be free to rotate and expand throughout the range of anticipated elevated temperatures.
Weak axis. Minor principal centroidal axis of a cross section.
Weathering steel. High-strength, low-alloy steel that, with sufficient precautions, is able to be used in typical atmospheric exposures (not marine) without protective paint coating.
Web local crippling $\dagger$. Limit state of local failure of web plate in the immediate vicinity of a concentrated load or reaction.
Web sidesway buckling. Limit state of lateral buckling of the tension flange opposite the location of a concentrated compression force.
Weld metal. Portion of a fusion weld that has been completely melted during welding. Weld metal has elements of filler metal and base metal melted in the weld thermal cycle.
Weld root. See root of joint.
$Y$-connection. HSS connection in which the branch member or connecting element is not perpendicular to the main member and in which forces transverse to the main member are primarily equilibrated by shear in the main member.
Yield moment $\dagger$. In a member subjected to bending, the moment at which the extreme outer fiber first attains the yield stress.
Yield point $\dagger$. First stress in a material at which an increase in strain occurs without an increase in stress as defined by ASTM.
Yield strength $\dagger$. Stress at which a material exhibits a specified limiting deviation from the proportionality of stress to strain as defined by ASTM.
Yield stress $\dagger$. Generic term to denote either yield point or yield strength, as applicable for the material.
Yielding $\dagger$. Limit state of inelastic deformation that occurs when the yield stress is reached.
Yielding (plastic moment) $\dagger$. Yielding throughout the cross section of a member as the bending moment reaches the plastic moment.
Yielding (yield moment) $\dagger$. Yielding at the extreme fiber on the cross section of a member when the bending moment reaches the yield moment.

## ABBREVIATIONS

The following abbreviations appear in this Specification. The abbreviations are written out where they first appear within a Section.

ACI (American Concrete Institute)
AHJ (authority having jurisdiction)
AISC (American Institute of Steel Construction)
AISI (American Iron and Steel Institute)
ANSI (American National Standards Institute)
ASCE (American Society of Civil Engineers)
ASD (allowable strength design)
ASME (American Society of Mechanical Engineers)
ASNT (American Society for Nondestructive Testing)
AWI (associate welding inspector)
AWS (American Welding Society)
CJP (complete joint penetration)
CVN (Charpy V-notch)
EOR (engineer of record)
ERW (electric resistance welded)
FCAW (flux cored arc welding)
$F R$ (fully restrained)
GMAW (gas metal arc welding)
HSLA (high-strength low-alloy)
HSS (hollow structural section)
LRFD (load and resistance factor design)
MT (magnetic particle testing)
NDT (nondestructive testing)
OSHA (Occupational Safety and Health Administration)
PJP (partial joint penetration)
$P Q R$ (procedure qualification record)
$P R$ (partially restrained)
PT (penetrant testing)
QA (quality assurance)
QAI (quality assurance inspector)
QAP (quality assurance plan)
QC (quality control)
QCI (quality control inspector)

QCP (quality control program)
RCSC (Research Council on Structural Connections)
RT (radiographic testing)
SAW (submerged arc welding)
SEI (Structural Engineering Institute)
SFPE (Society of Fire Protection Engineers)
SMAW (shielded metal arc welding)
SWI (senior welding inspector)
UNC (Unified National Coarse)
UT (ultrasonic testing)
WI (welding inspector)
WPQR (welder performance qualification records)
WPS (welding procedure specification)

## 16.1-lvi

Specification for Structural Steel Buildings, July 7, 2016 American Institute of Steel Construction

## CHAPTER A

## GENERAL PROVISIONS

This chapter states the scope of this Specification, lists referenced specifications, codes and standards, and provides requirements for materials and structural design documents.

The chapter is organized as follows:
A1. Scope
A2. Referenced Specifications, Codes and Standards
A3. Material
A4. Structural Design Drawings and Specifications

## A1. SCOPE

The Specification for Structural Steel Buildings (ANSI/AISC 360), hereafter referred to as this Specification, shall apply to the design, fabrication and erection of the structural steel system or systems with structural steel acting compositely with reinforced concrete, where the steel elements are defined in Section 2.1 of the AISC Code of Standard Practice for Steel Buildings and Bridges (ANSI/AISC 303), hereafter referred to as the Code of Standard Practice.

This Specification includes the Symbols, the Glossary, Abbreviations, Chapters A through N , and Appendices 1 through 8. The Commentary to this Specification and the User Notes interspersed throughout are not part of this Specification. The phrases "is permitted" and "are permitted" in this document identify provisions that comply with this Specification, but are not mandatory.

User Note: User notes are intended to provide concise and practical guidance in the application of the Specification provisions.

This Specification sets forth criteria for the design, fabrication and erection of structural steel buildings and other structures, where other structures are defined as structures designed, fabricated and erected in a manner similar to buildings, with building-like vertical and lateral load-resisting elements.

Wherever this Specification refers to the applicable building code and there is none, the loads, load combinations, system limitations, and general design requirements shall be those in ASCE Minimum Design Loads and Associated Criteria for Buildings and Other Structures (ASCE/SEI 7).

Where conditions are not covered by this Specification, designs are permitted to be based on tests or analysis, subject to the approval of the authority having jurisdiction. Alternative methods of analysis and design are permitted, provided such alternative methods or criteria are acceptable to the authority having jurisdiction.

User Note: For the design of cold-formed steel structural members, the provisions in the AISI North American Specification for the Design of Cold-Formed Steel Structural Members (AISI S100) are recommended, except for cold-formed hollow structural sections (HSS), which are designed in accordance with this Specification.

## 1. Seismic Applications

The AISC Seismic Provisions for Structural Steel Buildings (ANSI/AISC 341) shall apply to the design of seismic force-resisting systems of structural steel or of structural steel acting compositely with reinforced concrete, unless specifically exempted by the applicable building code.

User Note: ASCE/SEI 7 (Table 12.2-1, Item H) specifically exempts structural steel systems in seismic design categories B and C from the requirements in the AISC Seismic Provisions for Structural Steel Buildings if they are designed according to this Specification and the seismic loads are computed using a seismic response modification factor, $R$, of 3 ; composite systems are not covered by this exemption. The Seismic Provisions for Structural Steel Buildings do not apply in seismic design category A .

## 2. Nuclear Applications

The design, fabrication and erection of nuclear structures shall comply with the provisions of this Specification as modified by the requirements of the AISC Specification for Safety-Related Steel Structures for Nuclear Facilities (ANSI/AISC N690).

## A2. REFERENCED SPECIFICATIONS, CODES AND STANDARDS

The following specifications, codes and standards are referenced in this Specification:
(a) American Concrete Institute (ACI)

ACI 318-14 Building Code Requirements for Structural Concrete and Commentary
ACI 318M-14 Metric Building Code Requirements for Structural Concrete and Commentary
ACI 349-13 Code Requirements for Nuclear Safety-Related Concrete Structures and Commentary
ACI 349M-13 Code Requirements for Nuclear Safety-Related Concrete Structures and Commentary (Metric)
(b) American Institute of Steel Construction (AISC)

ANSI/AISC 303-16 Code of Standard Practice for Steel Buildings and Bridges
ANSI/AISC 341-16 Seismic Provisions for Structural Steel Buildings
ANSI/AISC N690-12 Specification for Safety-Related Steel Structures for Nuclear Facilities
ANSI/AISC N690s1-15 Specification for Safety-Related Steel Structures for Nuclear Facilities, Supplement No. 1
(c) American Society of Civil Engineers (ASCE)

ASCE/SEI 7-16 Minimum Design Loads and Associated Criteria for Buildings and Other Structures
ASCE/SEI/SFPE 29-05 Standard Calculation Methods for Structural Fire Protection
(d) American Society of Mechanical Engineers (ASME)

ASME B18.2.6-10 Fasteners for Use in Structural Applications
ASME B46.1-09 Surface Texture, Surface Roughness, Waviness, and Lay
(e) American Society for Nondestructive Testing (ASNT)

ANSI/ASNT CP-189-2011 Standard for Qualification and Certification of Nondestructive Testing Personnel
Recommended Practice No. SNT-TC-1A-2011 Personnel Qualification and Certification in Nondestructive Testing
(f) ASTM International (ASTM)

A6/A6M-14 Standard Specification for General Requirements for Rolled Structural Steel Bars, Plates, Shapes, and Sheet Piling
A36/A36M-14 Standard Specification for Carbon Structural Steel
A53/A53M-12 Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless
A193/A193M-15 Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for High Temperature or High Pressure Service and Other Special Purpose Applications
A194/A194M-15 Standard Specification for Carbon Steel, Alloy Steel, and Stainless Steel Nuts for Bolts for High Pressure or High Temperature Service, or Both

A216/A216M-14e1 Standard Specification for Steel Castings, Carbon, Suitable for Fusion Welding, for High-Temperature Service
A242/A242M-13 Standard Specification for High-Strength Low-Alloy Structural Steel
A283/A283M-13 Standard Specification for Low and Intermediate Tensile Strength Carbon Steel Plates
A307-14 Standard Specification for Carbon Steel Bolts, Studs, and Threaded Rod, 60,000 PSI Tensile Strength

User Note: ASTM A325/A325M are now included as a Grade within ASTM F3125.

A354-11 Standard Specification for Quenched and Tempered Alloy Steel Bolts, Studs, and Other Externally Threaded Fasteners
A370-15 Standard Test Methods and Definitions for Mechanical Testing of Steel Products
A449-14 Standard Specification for Hex Cap Screws, Bolts and Studs, Steel, Heat Treated, 120/105/90 ksi Minimum Tensile Strength, General Use

User Note: ASTM A490/A490M are now included as a Grade within ASTM F3125.

A500/A500M-13 Standard Specification for Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes
A501/A501M-14 Standard Specification for Hot-Formed Welded and Seamless Carbon Steel Structural Tubing
A502-03 (2015) Standard Specification for Rivets, Steel, Structural
A514/A514M-14 Standard Specification for High-Yield-Strength, Quenched and Tempered Alloy Steel Plate, Suitable for Welding
A529/A529M-14 Standard Specification for High-Strength Carbon-Manganese Steel of Structural Quality
A563-15 Standard Specification for Carbon and Alloy Steel Nuts
A563M-07(2013) Standard Specification for Carbon and Alloy Steel Nuts (Metric)
A568/A568M-15 Standard Specification for Steel, Sheet, Carbon, Structural, and High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, General Requirements for
A572/A572M-15 Standard Specification for High-Strength Low-Alloy Colum-bium-Vanadium Structural Steel
A588/A588M-15 Standard Specification for High-Strength Low-Alloy Structural Steel, up to 50 ksi [345 MPa] Minimum Yield Point, with Atmospheric Corrosion Resistance
A606/A606M-15 Standard Specification for Steel, Sheet and Strip, High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved Atmospheric Corrosion Resistance
A618/A618M-04(2015) Standard Specification for Hot-Formed Welded and Seamless High-Strength Low-Alloy Structural Tubing
A668/A668M-15 Standard Specification for Steel Forgings, Carbon and Alloy, for General Industrial Use
A673/A673M-07(2012) Standard Specification for Sampling Procedure for Impact Testing of Structural Steel
A709/A709M-13a Standard Specification for Structural Steel for Bridges
A751-14a Standard Test Methods, Practices, and Terminology for Chemical Analysis of Steel Products
A847/A847M-14 Standard Specification for Cold-Formed Welded and Seamless High-Strength, Low-Alloy Structural Tubing with Improved Atmospheric Corrosion Resistance
A913/A913M-15 Standard Specification for High-Strength Low-Alloy Steel Shapes of Structural Quality, Produced by Quenching and Self-Tempering Process (QST)
A992/A992M-11(2015) Standard Specification for Structural Steel Shapes
A1011/A1011M-14 Standard Specification for Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, and Ultra-High Strength
A1043/A1043M-14 Standard Specification for Structural Steel with Low Yield to Tensile Ratio for Use in Buildings
A1065/A1065M-15 Standard Specification for Cold-Formed Electric-Fusion (Arc) Welded High-Strength Low-Alloy Structural Tubing in Shapes, with 50 ksi [345 MPa] Minimum Yield Point

A1066/A1066M-11(2015)e1 Standard Specification for High-Strength LowAlloy Structural Steel Plate Produced by Thermo-Mechanical Controlled Process (TMCP)
A1085/A1085M-13 Standard Specification for Cold-Formed Welded Carbon Steel Hollow Structural Sections (HSS)
C567/C567M-14 Standard Test Method for Determining Density of Structural Lightweight Concrete
E119-15 Standard Test Methods for Fire Tests of Building Construction and Materials
E165/E165M-12 Standard Practice for Liquid Penetrant Examination for General Industry
E709-15 Standard Guide for Magnetic Particle Examination
F436-11 Standard Specification for Hardened Steel Washers
F436M-11 Standard Specification for Hardened Steel Washers (Metric)
F606/F606M-14a Standard Test Methods for Determining the Mechanical Properties of Externally and Internally Threaded Fasteners, Washers, Direct Tension Indicators, and Rivets
F844-07a(2013) Standard Specification for Washers, Steel, Plain (Flat), Unhardened for General Use
F959-15 Standard Specification for Compressible-Washer-Type Direct Tension Indicators for Use with Structural Fasteners
F959M-13 Standard Specification for Compressible-Washer-Type Direct Tension Indicators for Use with Structural Fasteners (Metric)
F1554-15 Standard Specification for Anchor Bolts, Steel, 36, 55, and 105-ksi Yield Strength

User Note: ASTM F1554 is the most commonly referenced specification for anchor rods. Grade and weldability must be specified.

User Note: ASTM F1852 and F2280 are now included as Grades within ASTM F3125.

F3043-14e1 Standard Specification for "Twist Off" Type Tension Control Structural Bolt/Nut/Washer Assemblies, Alloy Steel, Heat Treated, 200 ksi Minimum Tensile Strength
F3111-14 Standard Specification for Heavy Hex Structural Bolt/Nut/Washer Assemblies, Alloy Steel, Heat Treated, 200 ksi Minimum Tensile Strength
F3125/F3125M-15 Standard Specification for High Strength Structural Bolts, Steel and Alloy Steel, Heat Treated, 120 ksi (830 MPa) and 150 ksi (1040 MPa) Minimum Tensile Strength, Inch and Metric Dimensions
(g) American Welding Society (AWS)

AWS A5.1/A5.1M:2012 Specification for Carbon Steel Electrodes for Shielded Metal Arc Welding
AWS A5.5/A5.5M:2014 Specification for Low-Alloy Steel Electrodes for Shielded Metal Arc Welding

AWS A5.17/A5.17M:1997 (R2007) Specification for Carbon Steel Electrodes and Fluxes for Submerged Arc Welding
AWS A5.18/A5.18M:2005 Specification for Carbon Steel Electrodes and Rods for Gas Shielded Arc Welding
AWS A5.20/A5.20M:2005 (R2015) Specification for Carbon Steel Electrodes for Flux Cored Arc Welding
AWS A5.23/A5.23M:2011 Specification for Low-Alloy Steel Electrodes and Fluxes for Submerged Arc Welding
AWS A5.25/A5.25M:1997 (R2009) Specification for Carbon and Low-Alloy Steel Electrodes and Fluxes for Electroslag Welding
AWS A5.26/A5.26M:1997 (R2009) Specification for Carbon and Low-Alloy Steel Electrodes for Electrogas Welding
AWS A5.28/A5.28M:2005 (R2015) Specification for Low-Alloy Steel Electrodes and Rods for Gas Shielded Arc Welding
AWS A5.29/A5.29M:2010 Specification for Low-Alloy Steel Electrodes for Flux Cored Arc Welding
AWS A5.32/A5.32M:2011 Welding Consumables-Gases and Gas Mixtures for Fusion Welding and Allied Processes
AWS A5.36/A5.36M:2012 Specification for Carbon and Low-Alloy Steel Flux Cored Electrodes for Flux Cored Arc Welding and Metal Cored Electrodes for Gas Metal Arc Welding
AWS B5.1:2013-AMD1 Specification for the Qualification of Welding Inspectors
AWS D1.1/D1.1M:2015 Structural Welding Code—Steel
AWS D1.3/D1.3M:2008 Structural Welding Code—Sheet Steel
(h) Research Council on Structural Connections (RCSC)

Specification for Structural Joints Using High-Strength Bolts, 2014
(i) Steel Deck Institute (SDI)

ANSI/SDI QA/QC-2011 Standard for Quality Control and Quality Assurance for Installation of Steel Deck

## A3. MATERIAL

## 1. Structural Steel Materials

Material test reports or reports of tests made by the fabricator or a testing laboratory shall constitute sufficient evidence of conformity with one of the ASTM standards listed in Section A3.1a. For hot-rolled structural shapes, plates, and bars, such tests shall be made in accordance with ASTM A6/A6M; for sheets, such tests shall be made in accordance with ASTM A568/A568M; for tubing and pipe, such tests shall be made in accordance with the requirements of the applicable ASTM standards listed above for those product forms.

## 1a. ASTM Designations

Structural steel material conforming to one of the following ASTM specifications is approved for use under this Specification:
(a) Hot-rolled structural shapes

ASTM A36/A36M
ASTM A529/A529M
ASTM A572/A572M
ASTM A588/A588M
(b) Hollow structural sections (HSS)

ASTM A53/A53M Grade B
ASTM A500/A500M
ASTM A501/A501M
ASTM A618/A618M
(c) Plates

ASTM A36/A36M
ASTM A242/A242M
ASTM A283/A283M
ASTM A514/A514M
ASTM A529/A529M
ASTM A709/A709M
ASTM A913/A913M
ASTM A992/ A992M
ASTM A1043/A1043M

ASTM A847/A847M
ASTM A1065/A1065M
ASTM A1085/A1085M

ASTM A572/A572M
ASTM A588/A588M
ASTM A709/A709M
ASTM A1043/A1043M
ASTM A1066/A1066M
(d) Bars

ASTM A36/A36M
ASTM A572/A572M
ASTM A709/A709M
(e) Sheets

ASTM A606/A606M
ASTM A1011/A1011M SS, HSLAS, AND HSLAS-F

## 1b. Unidentified Steel

Unidentified steel, free of injurious defects, is permitted to be used only for members or details whose failure will not reduce the strength of the structure, either locally or overall. Such use shall be subject to the approval of the engineer of record.

User Note: Unidentified steel may be used for details where the precise mechanical properties and weldability are not of concern. These are commonly curb plates, shims and other similar pieces.

## 1c. Rolled Heavy Shapes

ASTM A6/A6M hot-rolled shapes with a flange thickness exceeding 2 in . ( 50 mm ) are considered to be rolled heavy shapes. Rolled heavy shapes used as members subject to primary (computed) tensile forces due to tension or flexure and spliced or connected using complete-joint-penetration groove welds that fuse through the thickness of the flange or the flange and the web, shall be specified as follows. The structural design documents shall require that such shapes be supplied with Charpy V-notch (CVN) impact test results in accordance with ASTM A6/A6M, Supplementary Requirement S30, Charpy V-Notch Impact Test for Structural ShapesAlternate Core Location. The impact test shall meet a minimum average value of 20 $\mathrm{ft}-\mathrm{lb}(27 \mathrm{~J})$ absorbed energy at a maximum temperature of $+70^{\circ} \mathrm{F}\left(+21^{\circ} \mathrm{C}\right)$.

The requirements in this section do not apply if the splices and connections are made by bolting. Where a rolled heavy shape is welded to the surface of another shape using groove welds, the requirements apply only to the shape that has weld metal fused through the cross section.

User Note: Additional requirements for rolled heavy-shape welded joints are given in Sections J1.5, J1.6, J2.6 and M2.2.

## 1d. Built-Up Heavy Shapes

Built-up cross sections consisting of plates with a thickness exceeding 2 in . ( 50 mm ) are considered built-up heavy shapes. Built-up heavy shapes used as members subject to primary (computed) tensile forces due to tension or flexure and spliced or connected to other members using complete-joint-penetration groove welds that fuse through the thickness of the plates, shall be specified as follows. The structural design documents shall require that the steel be supplied with Charpy V-notch impact test results in accordance with ASTM A6/A6M, Supplementary Requirement S5, Charpy V-Notch Impact Test. The impact test shall be conducted in accordance with ASTM A673/A673M, Frequency P, and shall meet a minimum average value of 20 $\mathrm{ft}-\mathrm{lb}(27 \mathrm{~J})$ absorbed energy at a maximum temperature of $+70^{\circ} \mathrm{F}\left(+21^{\circ} \mathrm{C}\right)$.

When a built-up heavy shape is welded to the face of another member using groove welds, these requirements apply only to the shape that has weld metal fused through the cross section.

User Note: Additional requirements for built-up heavy-shape welded joints are given in Sections J1.5, J1.6, J2.6 and M2.2.

## 2. Steel Castings and Forgings

Steel castings and forgings shall conform to an ASTM standard intended for structural applications and shall provide strength, ductility, weldability and toughness adequate for the purpose. Test reports produced in accordance with the ASTM reference standards shall constitute sufficient evidence of conformity with such standards.

## 3. Bolts, Washers and Nuts

Bolt, washer and nut material conforming to one of the following ASTM specifications is approved for use under this Specification:

User Note: ASTM F3125 is an umbrella standard that incorporates Grades A325, A325M, A490, A490M, F1852 and F2280, which were previously separate standards.
(a) Bolts

ASTM A307
ASTM A354
ASTM A449
(b) Nuts

ASTM A194/A194M ASTM A563M
ASTM A563
(c) Washers

ASTM F436 ASTM F844
ASTM F436M
(d) Compressible-Washer-Type Direct Tension Indicators ASTM F959

ASTM F959M
Manufacturer's certification shall constitute sufficient evidence of conformity with the standards.

## 4. Anchor Rods and Threaded Rods

Anchor rod and threaded rod material conforming to one of the following ASTM specifications is approved for use under this Specification:

```
ASTM A36/A36M
ASTM A572/A572M
ASTM A193/A193M
ASTM A588/A588M
ASTM A354
ASTM F1554
ASTM A449
```

User Note: ASTM F1554 is the preferred material specification for anchor rods.

ASTM A449 material is permitted for high-strength anchor rods and threaded rods of any diameter.

Threads on anchor rods and threaded rods shall conform to the Unified Standard Series of ASME B18.2.6 and shall have Class 2A tolerances.

Manufacturer's certification shall constitute sufficient evidence of conformity with the standards.

## 5. Consumables for Welding

Filler metals and fluxes shall conform to one of the following specifications of the American Welding Society:

AWS A5.1/A5.1M
AWS A5.5/A5.5M
AWS A5.17/A5.17M
AWS A5.18/A5.18M
AWS A5.20/A5.20M
AWS A5.23/A5.23M

AWS A5.25/A5.25M
AWS A5.26/A5.26M
AWS A5.28/A5.28M
AWS A5.29/A5.29M
AWS A5.32/A5.32M
AWS A5.36/A5.36M

Manufacturer's certification shall constitute sufficient evidence of conformity with the standards.

## 6. Headed Stud Anchors

Steel headed stud anchors shall conform to the requirements of the Structural Welding Code-Steel (AWS D1.1/D1.1M).

Manufacturer's certification shall constitute sufficient evidence of conformity with AWS D1.1/D1.1M.

## A4. STRUCTURAL DESIGN DRAWINGS AND SPECIFICATIONS

The structural design drawings and specifications shall meet the requirements of the Code of Standard Practice.

User Note: The Code of Standard Practice uses the term "design documents" in place of "design drawings" to generalize the term and to reflect both paper drawings and electronic models. Similarly, "fabrication documents" is used in place of "shop drawings," and "erection documents" is used in place of "erection drawings." The use of "drawings" in this standard is not intended to create a conflict.

User Note: Provisions in this Specification contain information that is to be shown on design drawings. These include:

- Section A3.1c: Rolled heavy shapes where alternate core Charpy V-notch toughness (CVN) is required
- Section A3.1d: Built-up heavy shapes where CVN toughness is required
- Section J3.1: Locations of connections using pretensioned bolts

Other information needed by the fabricator or erector should be shown on design drawings, including:

- Fatigue details requiring nondestructive testing
- Risk category (Chapter N)
- Indication of complete-joint-penetration (CJP) groove welds subject to tension (Chapter N)


## CHAPTER B

## DESIGN REQUIREMENTS

This chapter addresses general requirements for the design of steel structures applicable to all chapters of this Specification.

The chapter is organized as follows:
B1. General Provisions
B2. Loads and Load Combinations
B3. Design Basis
B4. Member Properties
B5. Fabrication and Erection
B6. Quality Control and Quality Assurance
B7. Evaluation of Existing Structures

## B1. GENERAL PROVISIONS

The design of members and connections shall be consistent with the intended behavior of the framing system and the assumptions made in the structural analysis.

## B2. LOADS AND LOAD COMBINATIONS

The loads, nominal loads and load combinations shall be those stipulated by the applicable building code. In the absence of a building code, the loads, nominal loads and load combinations shall be those stipulated in Minimum Design Loads and Associated Criteria for Buildings and Other Structures (ASCE/SEI 7).

User Note: When using ASCE/SEI 7 for design according to Section B3.1 (LRFD), the load combinations in ASCE/SEI 7 Section 2.3 apply. For design according to Section B3.2 (ASD), the load combinations in ASCE/SEI 7 Section 2.4 apply.

## B3. DESIGN BASIS

Design shall be such that no applicable strength or serviceability limit state shall be exceeded when the structure is subjected to all applicable load combinations.

Design for strength shall be performed according to the provisions for load and resistance factor design (LRFD) or to the provisions for allowable strength design (ASD).

User Note: The term "design", as used in this Specification, is defined in the Glossary.

## 1. Design for Strength Using Load and Resistance Factor Design (LRFD)

Design according to the provisions for load and resistance factor design (LRFD) satisfies the requirements of this Specification when the design strength of each structural component equals or exceeds the required strength determined on the basis of the LRFD load combinations. All provisions of this Specification, except for those in Section B3.2, shall apply.

Design shall be performed in accordance with Equation B3-1:

$$
\begin{equation*}
R_{u} \leq \phi R_{n} \tag{B3-1}
\end{equation*}
$$

where
$R_{u}=$ required strength using LRFD load combinations
$R_{n}=$ nominal strength
$\phi=$ resistance factor
$\phi R_{n}=$ design strength
The nominal strength, $R_{n}$, and the resistance factor, $\phi$, for the applicable limit states are specified in Chapters D through K.

## 2. Design for Strength Using Allowable Strength Design (ASD)

Design according to the provisions for allowable strength design (ASD) satisfies the requirements of this Specification when the allowable strength of each structural component equals or exceeds the required strength determined on the basis of the ASD load combinations. All provisions of this Specification, except those of Section B3.1, shall apply.

Design shall be performed in accordance with Equation B3-2:

$$
\begin{equation*}
R_{a} \leq \frac{R_{n}}{\Omega} \tag{B3-2}
\end{equation*}
$$

where
$R_{a} \quad=$ required strength using ASD load combinations
$R_{n} \quad=$ nominal strength
$\Omega=$ safety factor
$R_{n} / \Omega=$ allowable strength
The nominal strength, $R_{n}$, and the safety factor, $\Omega$, for the applicable limit states are specified in Chapters D through K.

## 3. Required Strength

The required strength of structural members and connections shall be determined by structural analysis for the applicable load combinations as stipulated in Section B2.

Design by elastic or inelastic analysis is permitted. Requirements for analysis are stipulated in Chapter C and Appendix 1.

The required flexural strength of indeterminate beams composed of compact sections, as defined in Section B4.1, carrying gravity loads only, and satisfying the unbraced length requirements of Section F13.5, is permitted to be taken as ninetenths of the negative moments at the points of support, produced by the gravity loading and determined by an elastic analysis satisfying the requirements of Chapter C, provided that the maximum positive moment is increased by one-tenth of the average negative moment determined by an elastic analysis. This moment redistribution is not permitted for moments in members with $F_{y}$ exceeding $65 \mathrm{ksi}(450 \mathrm{MPa})$, for moments produced by loading on cantilevers, for design using partially restrained (PR) moment connections, or for design by inelastic analysis using the provisions of Appendix 1. This moment redistribution is permitted for design according to Section B3.1 (LRFD) and for design according to Section B3.2 (ASD). The required axial strength shall not exceed $0.15 \phi_{c} F_{y} A_{g}$ for LRFD or $0.15 F_{y} A_{g} / \Omega_{c}$ for ASD, where $\phi_{c}$ and $\Omega_{c}$ are determined from Section E1, $A_{g}=$ gross area of member, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$, and $F_{y}=$ specified minimum yield stress, ksi (MPa).

## 4. Design of Connections and Supports

Connection elements shall be designed in accordance with the provisions of Chapters J and K . The forces and deformations used in design of the connections shall be consistent with the intended performance of the connection and the assumptions used in the design of the structure. Self-limiting inelastic deformations of the connections are permitted. At points of support, beams, girders and trusses shall be restrained against rotation about their longitudinal axis unless it can be shown by analysis that the restraint is not required.

User Note: Section 3.1.2 of the Code of Standard Practice addresses communication of necessary information for the design of connections.

## 4a. Simple Connections

A simple connection transmits a negligible moment. In the analysis of the structure, simple connections may be assumed to allow unrestrained relative rotation between the framing elements being connected. A simple connection shall have sufficient rotation capacity to accommodate the required rotation determined by the analysis of the structure.

## 4b. Moment Connections

Two types of moment connections, fully restrained and partially restrained, are permitted, as specified below.
(a) Fully Restrained (FR) Moment Connections

A fully restrained (FR) moment connection transfers moment with a negligible rotation between the connected members. In the analysis of the structure, the connection may be assumed to allow no relative rotation. An FR connection shall have sufficient strength and stiffness to maintain the initial angle between the connected members at the strength limit states.
(b) Partially Restrained (PR) Moment Connections

Partially restrained (PR) moment connections transfer moments, but the rotation between connected members is not negligible. In the analysis of the structure, the force-deformation response characteristics of the connection shall be included. The response characteristics of a PR connection shall be documented in the technical literature or established by analytical or experimental means. The component elements of a PR connection shall have sufficient strength, stiffness and deformation capacity at the strength limit states.

## 5. Design of Diaphragms and Collectors

Diaphragms and collectors shall be designed for forces that result from loads as stipulated in Section B2. They shall be designed in conformance with the provisions of Chapters C through K , as applicable.

## 6. Design of Anchorages to Concrete

Anchorage between steel and concrete acting compositely shall be designed in accordance with Chapter I. The design of column bases and anchor rods shall be in accordance with Chapter J.

## 7. Design for Stability

The structure and its elements shall be designed for stability in accordance with Chapter C.

## 8. Design for Serviceability

The overall structure and the individual members and connections shall be evaluated for serviceability limit states in accordance with Chapter L.

## 9. Design for Structural Integrity

When design for structural integrity is required by the applicable building code, the requirements in this section shall be met.
(a) Column splices shall have a nominal tensile strength equal to or greater than $D+L$ for the area tributary to the column between the splice and the splice or base immediately below,
where
$D=$ nominal dead load, kips (N)
$L=$ nominal live load, kips (N)
(b) Beam and girder end connections shall have a minimum nominal axial tensile strength equal to (i) two-thirds of the required vertical shear strength for design according to Section B3.1 (LRFD) or (ii) the required vertical shear strength for design according to Section B3.2 (ASD), but not less than 10 kips in either case.
(c) End connections of members bracing columns shall have a nominal tensile strength equal to or greater than (i) $1 \%$ of two-thirds of the required column axial strength at that level for design according to Section B3.1 (LRFD) or (ii) $1 \%$ of the required column axial strength at that level for design according to Section B3.2 (ASD).

The strength requirements for structural integrity in this section shall be evaluated independently of other strength requirements. For the purpose of satisfying these requirements, bearing bolts in connections with short-slotted holes parallel to the direction of the tension force and inelastic deformation of the connection are permitted.

## 10. Design for Ponding

The roof system shall be investigated through structural analysis to ensure strength and stability under ponding conditions, unless the roof surface is configured to prevent the accumulation of water.

Methods of evaluating stability and strength under ponding conditions are provided in Appendix 2.

## 11. Design for Fatigue

Fatigue shall be considered in accordance with Appendix 3, for members and their connections subject to repeated loading. Fatigue need not be considered for seismic effects or for the effects of wind loading on typical building lateral force-resisting systems and building enclosure components.

## 12. Design for Fire Conditions

Two methods of design for fire conditions are provided in Appendix 4: (a) by analysis and (b) by qualification testing. Compliance with the fire-protection requirements in the applicable building code shall be deemed to satisfy the requirements of Appendix 4.

This section is not intended to create or imply a contractual requirement for the engineer of record responsible for the structural design or any other member of the design team.

User Note: Design by qualification testing is the prescriptive method specified in most building codes. Traditionally, on most projects where the architect is the prime professional, the architect has been the responsible party to specify and coordinate fire-protection requirements. Design by analysis is a newer engineering approach to fire protection. Designation of the person(s) responsible for designing for fire conditions is a contractual matter to be addressed on each project.

## 13. Design for Corrosion Effects

Where corrosion could impair the strength or serviceability of a structure, structural components shall be designed to tolerate corrosion or shall be protected against corrosion.

## B4. MEMBER PROPERTIES

## 1. Classification of Sections for Local Buckling

For members subject to axial compression, sections are classified as nonslenderelement or slender-element sections. For a nonslender-element section, the width-to-thickness ratios of its compression elements shall not exceed $\lambda_{r}$ from Table B4.1a. If the width-to-thickness ratio of any compression element exceeds $\lambda_{r}$, the section is a slender-element section.

For members subject to flexure, sections are classified as compact, noncompact or slender-element sections. For a section to qualify as compact, its flanges must be continuously connected to the web or webs, and the width-to-thickness ratios of its compression elements shall not exceed the limiting width-to-thickness ratios, $\lambda_{p}$, from Table B4.1b. If the width-to-thickness ratio of one or more compression elements exceeds $\lambda_{p}$, but does not exceed $\lambda_{r}$ from Table B 4.1 b , the section is noncompact. If the width-to-thickness ratio of any compression element exceeds $\lambda_{r}$, the section is a slender-element section.

## 1a. Unstiffened Elements

For unstiffened elements supported along only one edge parallel to the direction of the compression force, the width shall be taken as follows:
(a) For flanges of I-shaped members and tees, the width, $b$, is one-half the full-flange width, $b_{f}$.
(b) For legs of angles and flanges of channels and zees, the width, $b$, is the full leg or flange width.
(c) For plates, the width, $b$, is the distance from the free edge to the first row of fasteners or line of welds.
(d) For stems of tees, $d$ is the full depth of the section.

User Note: Refer to Table B4.1 for the graphic representation of unstiffened element dimensions.

## 1b. Stiffened Elements

For stiffened elements supported along two edges parallel to the direction of the compression force, the width shall be taken as follows:
(a) For webs of rolled sections, $h$ is the clear distance between flanges less the fillet at each flange; $h_{c}$ is twice the distance from the centroid to the inside face of the compression flange less the fillet or corner radius.
(b) For webs of built-up sections, $h$ is the distance between adjacent lines of fasteners or the clear distance between flanges when welds are used, and $h_{c}$ is twice the distance from the centroid to the nearest line of fasteners at the compression flange or the inside face of the compression flange when welds are used; $h_{p}$ is twice the distance from the plastic neutral axis to the nearest line of fasteners at the compression flange or the inside face of the compression flange when welds are used.

## TABLE B4.1a <br> Width-to-Thickness Ratios: Compression Elements Members Subject to Axial Compression

	O	Description of Element	Width-toThickness Ratio	Limiting Width-to-Thickness Ratio $\lambda_{r}$ (nonslender/slender)	Examples
	1	Flanges of rolled I-shaped sections, plates projecting from rolled I-shaped sections, outstanding legs of pairs of angles connected with continuous contact, flanges of channels, and flanges of tees	$b / t$	$0.56 \sqrt{\frac{E}{F_{y}}}$	完
	2	Flanges of built-up I-shaped sections and plates or angle legs projecting from built-up I-shaped sections	$b / t$	[a] $0.64 \sqrt{\frac{k_{c} E}{F_{y}}}$	
	3	Legs of single angles, legs of double angles with separators, and all other unstiffened elements	b/t	$0.45 \sqrt{\frac{E}{F_{y}}}$	
	4	Stems of tees	$d / t$	$0.75 \sqrt{\frac{E}{F_{y}}}$	$t_{-} t d$
	5	Webs of doubly symmetric rolled and built-up I-shaped sections and channels	$h / t_{w}$	$1.49 \sqrt{\frac{E}{F_{y}}}$	
	6	Walls of rectangular HSS	$b / t$	$1.40 \sqrt{\frac{E}{F_{y}}}$	
	7	Flange cover plates and diaphragm plates between lines of fasteners or welds	$b / t$	$1.40 \sqrt{\frac{E}{F_{y}}}$	
	8	All other stiffened elements	$b / t$	$1.49 \sqrt{\frac{E}{F_{y}}}$	
	9	Round HSS	D/t	$0.11 \frac{E}{F_{y}}$	

${ }^{\text {aa] }} k_{c}=4 / \sqrt{h / t_{w}}$, but shall not be taken less than 0.35 nor greater than 0.76 for calculation purposes.

TABLE B4.1b   Width-to-Thickness Ratios: Compression Elements Members Subject to Flexure						
		Description of Element	Width-toThickness Ratio	LimitingWidth-to-Thickness Ratio		Examples
	$\begin{aligned} & \mathbb{0} \\ & \ddot{0} \end{aligned}$			$\begin{gathered} \lambda_{p} \\ \text { (compact// } \\ \text { noncompact) } \end{gathered}$	$\begin{array}{\|c\|} \lambda_{r} \\ \text { (noncompact/ } / 2 \\ \text { slender) } \end{array}$	
	10	Flanges of rolled I-shaped sections, channels, and tees	b/t	$0.38 \sqrt{\frac{E}{F_{y}}}$	$1.0 \sqrt{\frac{E}{F_{y}}}$	
	11	Flanges of doubly and singly symmetric I-shaped built-up sections	b/t	$0.38 \sqrt{\frac{E}{F_{y}}}$	[a] [b] $0.95 \sqrt{\frac{k_{c} E}{F_{L}}}$	
	12	Legs of single angles	b/t	$0.54 \sqrt{\frac{E}{F_{y}}}$	$0.91 \sqrt{\frac{E}{F_{y}}}$	$b^{b-1}$
	13	Flanges of all I-shaped sections and channels in flexure about the minor axis	b/t	$0.38 \sqrt{\frac{E}{F_{y}}}$	$1.0 \sqrt{\frac{E}{F_{y}}}$	
	14	Stems of tees	d/t	$0.84 \sqrt{\frac{E}{F_{y}}}$	$1.52 \sqrt{\frac{E}{F_{y}}}$	$t-d$

(c) For flange or diaphragm plates in built-up sections, the width, $b$, is the distance between adjacent lines of fasteners or lines of welds.
(d) For flanges of rectangular hollow structural sections (HSS), the width, $b$, is the clear distance between webs less the inside corner radius on each side. For webs of rectangular HSS, $h$ is the clear distance between the flanges less the inside corner radius on each side. If the corner radius is not known, $b$ and $h$ shall be taken as the corresponding outside dimension minus three times the thickness. The thickness, $t$, shall be taken as the design wall thickness, per Section B4.2.
(e) For flanges or webs of box sections and other stiffened elements, the width, $b$, is the clear distance between the elements providing stiffening.
(f) For perforated cover plates, $b$ is the transverse distance between the nearest line of fasteners, and the net area of the plate is taken at the widest hole.

## TABLE B4.1b (continued) Width-to-Thickness Ratios: Compression Elements Members Subject to Flexure

	$\begin{aligned} & \mathscr{N} \\ & \underset{心}{心} \end{aligned}$	Description of Element	Width-to-Thickness Ratio	LimitingWidth-to-Thickness Ratio		Examples
				$\begin{gathered} \lambda_{p} \\ \text { (compact// } \\ \text { noncompact) } \\ \hline \end{gathered}$	$\qquad$	
	15	Webs of doubly symmetric Ishaped sections and channels	$h / t_{w}$	$3.76 \sqrt{\frac{E}{F_{y}}}$	$5.70 \sqrt{\frac{E}{F_{y}}}$	
	16	Webs of singly symmetric I-shaped sections	$h_{c} / t_{w}$	$\frac{\frac{h_{c}}{h_{p}} \sqrt{\frac{E}{F_{y}}} \quad[\mathrm{c}]}{\left(0.54 \frac{M_{p}}{M_{y}}-0.09\right)^{2}} \leq^{\leq \lambda_{r}}$	$5.70 \sqrt{\frac{E}{F_{y}}}$	
	17	Flanges of rectangular HSS	$b / t$	$1.12 \sqrt{\frac{E}{F_{y}}}$	$1.40 \sqrt{\frac{E}{F_{y}}}$	
	18	Flange cover plates and diaphragm plates between lines of fasteners or welds	$b / t$	$1.12 \sqrt{\frac{E}{F_{y}}}$	$1.40 \sqrt{\frac{E}{F_{y}}}$	
	19	Webs of rectangular HSS and box sections	$h / t$	$2.42 \sqrt{\frac{E}{F_{y}}}$	$5.70 \sqrt{\frac{E}{F_{y}}}$	
	20	Round HSS	D/t	$0.07 \frac{E}{F_{y}}$	$0.31 \frac{E}{F_{y}}$	
	21	Flanges of box sections	$b / t$	$1.12 \sqrt{\frac{E}{F_{y}}}$	$1.49 \sqrt{\frac{E}{F_{y}}}$	

[a] $k_{c}=4 / \sqrt{h / t_{w}}$, shall not be taken less than 0.35 nor greater than 0.76 for calculation purposes.
${ }^{[b]} F_{L}=0.7 F_{y}$ for slender web I-shaped members and major-axis bending of compact and noncompact web builtup I-shaped members with $S_{x t} / S_{x c} \geq 0.7 ; F_{L}=F_{y} S_{x t} / S_{x c} \geq 0.5 F_{y}$ for major-axis bending of compact and noncompact web built-up I-shaped members with $S_{x t} / S_{x c}<0.7$, where $S_{x c}, S_{x t}=$ elastic section modulus referred to compression and tension flanges, respectively, in. ${ }^{3}\left(\mathrm{~mm}^{3}\right)$.
${ }^{[c]} M_{y}$ is the moment at yielding of the extreme fiber. $M_{p}=F_{y} Z_{x}$, plastic bending moment, kip-in. (N-mm), where $Z_{x}=$ plastic section modulus taken about $x$-axis, in. ${ }^{3}\left(\mathrm{~mm}^{3}\right)$.
$E=$ modulus of elasticity of steel $=29,000 \mathrm{ksi}(200000 \mathrm{MPa})$
ENA = elastic neutral axis
$F_{y}=$ specified minimum yield stress, ksi (MPa)
PNA = plastic neutral axis

User Note: Refer to Table B4.1 for the graphic representation of stiffened element dimensions.

For tapered flanges of rolled sections, the thickness is the nominal value halfway between the free edge and the corresponding face of the web.

## 2. Design Wall Thickness for HSS

The design wall thickness, $t$, shall be used in calculations involving the wall thickness of hollow structural sections (HSS). The design wall thickness, $t$, shall be taken equal to the nominal thickness for box sections and HSS produced according to ASTM A1065/A1065M or ASTM A1085/A1085M. For HSS produced according to other standards approved for use under this Specification, the design wall thickness, $t$, shall be taken equal to 0.93 times the nominal wall thickness.

User Note: A pipe can be designed using the provisions of this Specification for round HSS sections as long as the pipe conforms to ASTM A53/A53M Grade B and the appropriate limitations of this Specification are used.

## 3. Gross and Net Area Determination

## 3a. Gross Area

The gross area, $A_{g}$, of a member is the total cross-sectional area.

## 3b. Net Area

The net area, $A_{n}$, of a member is the sum of the products of the thickness and the net width of each element computed as follows:

In computing net area for tension and shear, the width of a bolt hole shall be taken as $1 / 16 \mathrm{in}$. ( 2 mm ) greater than the nominal dimension of the hole.

For a chain of holes extending across a part in any diagonal or zigzag line, the net width of the part shall be obtained by deducting from the gross width the sum of the diameters or slot dimensions as provided in this section, of all holes in the chain, and adding, for each gage space in the chain, the quantity $s^{2} / 4 g$,
where
$g=$ transverse center-to-center spacing (gage) between fastener gage lines, in. (mm)
$s=$ longitudinal center-to-center spacing (pitch) of any two consecutive holes, in. (mm)

For angles, the gage for holes in opposite adjacent legs shall be the sum of the gages from the back of the angles less the thickness.

For slotted HSS welded to a gusset plate, the net area, $A_{n}$, is the gross area minus the product of the thickness and the total width of material that is removed to form the slot.

In determining the net area across plug or slot welds, the weld metal shall not be considered as adding to the net area.

For members without holes, the net area, $A_{n}$, is equal to the gross area, $A_{g}$.

## B5. FABRICATION AND ERECTION

Shop drawings, fabrication, shop painting and erection shall satisfy the requirements stipulated in Chapter M.

## B6. QUALITY CONTROL AND QUALITY ASSURANCE

Quality control and quality assurance activities shall satisfy the requirements stipulated in Chapter N.

## B7. EVALUATION OF EXISTING STRUCTURES

The evaluation of existing structures shall satisfy the requirements stipulated in Appendix 5.

## CHAPTER C

## DESIGN FOR STABILITY

This chapter addresses requirements for the design of structures for stability. The direct analysis method is presented herein.

The chapter is organized as follows:
C1. General Stability Requirements
C2. Calculation of Required Strengths
C3. Calculation of Available Strengths
User Note: Alternative methods for the design of structures for stability are provided in Appendices 1 and 7. Appendix 1 provides alternatives that allow for considering member imperfections and/or inelasticity directly within the analysis and may be particularly useful for more complex structures. Appendix 7 provides the effective length method and a first-order elastic method.

## C1. GENERAL STABILITY REQUIREMENTS

Stability shall be provided for the structure as a whole and for each of its elements. The effects of all of the following on the stability of the structure and its elements shall be considered: (a) flexural, shear and axial member deformations, and all other component and connection deformations that contribute to the displacements of the structure; (b) second-order effects (including $P-\Delta$ and $P-\delta$ effects); (c) geometric imperfections; (d) stiffness reductions due to inelasticity, including the effect of partial yielding of the cross section which may be accentuated by the presence of residual stresses; and (e) uncertainty in system, member, and connection strength and stiffness. All load-dependent effects shall be calculated at a level of loading corresponding to LRFD load combinations or 1.6 times ASD load combinations.

Any rational method of design for stability that considers all of the listed effects is permitted; this includes the methods identified in Sections C1.1 and C1.2.

User Note: See Commentary Section C1 and Table C-C1.1 for an explanation of how requirements (a) through (e) of Section C 1 are satisfied in the methods of design listed in Sections C1.1 and C1.2.

## 1. Direct Analysis Method of Design

The direct analysis method of design is permitted for all structures, and can be based on either elastic or inelastic analysis. For design by elastic analysis, required strengths shall be calculated in accordance with Section C2 and the calculation of available strengths in accordance with Section C3. For design by advanced analysis, the provisions of Section 1.1 and Sections 1.2 or 1.3 of Appendix 1 shall be satisfied.

## 2. Alternative Methods of Design

The effective length method and the first-order analysis method, both defined in Appendix 7, are based on elastic analysis and are permitted as alternatives to the direct analysis method for structures that satisfy the limitations specified in that appendix.

## C2. CALCULATION OF REQUIRED STRENGTHS

For the direct analysis method of design, the required strengths of components of the structure shall be determined from an elastic analysis conforming to Section C2.1. The analysis shall include consideration of initial imperfections in accordance with Section C2.2 and adjustments to stiffness in accordance with Section C2.3.

## 1. General Analysis Requirements

The analysis of the structure shall conform to the following requirements:
(a) The analysis shall consider flexural, shear and axial member deformations, and all other component and connection deformations that contribute to displacements of the structure. The analysis shall incorporate reductions in all stiffnesses that are considered to contribute to the stability of the structure, as specified in Section C2.3.
(b) The analysis shall be a second-order analysis that considers both $P-\Delta$ and $P-\delta$ effects, except that it is permissible to neglect the effect of $P-\delta$ on the response of the structure when the following conditions are satisfied: (1) the structure supports gravity loads primarily through nominally vertical columns, walls or frames; (2) the ratio of maximum second-order drift to maximum first-order drift (both determined for LRFD load combinations or 1.6 times ASD load combinations, with stiffnesses adjusted as specified in Section C2.3) in all stories is equal to or less than 1.7 ; and (3) no more than one-third of the total gravity load on the structure is supported by columns that are part of moment-resisting frames in the direction of translation being considered. It is necessary in all cases to consider $P-\delta$ effects in the evaluation of individual members subject to compression and flexure.

User Note: A $P$ - $\Delta$-only second-order analysis (one that neglects the effects of $P-\delta$ on the response of the structure) is permitted under the conditions listed. In this case, the requirement for considering $P-\delta$ effects in the evaluation of individual members can be satisfied by applying the $B_{1}$ multiplier defined in Appendix 8 to the required flexural strength of the member.

Use of the approximate method of second-order analysis provided in Appendix 8 is permitted.
(c) The analysis shall consider all gravity and other applied loads that may influence the stability of the structure.

User Note: It is important to include in the analysis all gravity loads, including loads on leaning columns and other elements that are not part of the lateral force-resisting system.
(d) For design by LRFD, the second-order analysis shall be carried out under LRFD load combinations. For design by ASD, the second-order analysis shall be carried out under 1.6 times the ASD load combinations, and the results shall be divided by 1.6 to obtain the required strengths of components.

## 2. Consideration of Initial System Imperfections

The effect of initial imperfections in the position of points of intersection of members on the stability of the structure shall be taken into account either by direct modeling of these imperfections in the analysis as specified in Section C2.2a or by the application of notional loads as specified in Section C2.2b.

User Note: The imperfections required to be considered in this section are imperfections in the locations of points of intersection of members (system imperfections). In typical building structures, the important imperfection of this type is the out-of-plumbness of columns. Consideration of initial out-of-straightness of individual members (member imperfections) is not required in the structural analysis when using the provisions of this section; it is accounted for in the compression member design provisions of Chapter E and need not be considered explicitly in the analysis as long as it is within the limits specified in the Code of Standard Practice. Appendix 1, Section 1.2 provides an extension to the direct analysis method that includes modeling of member imperfections (initial out-ofstraightness) within the structural analysis.

## 2a. Direct Modeling of Imperfections

In all cases, it is permissible to account for the effect of initial system imperfections by including the imperfections directly in the analysis. The structure shall be analyzed with points of intersection of members displaced from their nominal locations. The magnitude of the initial displacements shall be the maximum amount considered in the design; the pattern of initial displacements shall be such that it provides the greatest destabilizing effect.

User Note: Initial displacements similar in configuration to both displacements due to loading and anticipated buckling modes should be considered in the modeling of imperfections. The magnitude of the initial displacements should be based on permissible construction tolerances, as specified in the Code of Standard Practice or other governing requirements, or on actual imperfections if known.

In the analysis of structures that support gravity loads primarily through nominally vertical columns, walls or frames, where the ratio of maximum second-order story drift to maximum first-order story drift (both determined for LRFD load combinations or 1.6 times ASD load combinations, with stiffnesses adjusted as specified in Section C2.3) in all stories is equal to or less than 1.7, it is permissible to include initial system imperfections in the analysis for gravity-only load combinations and not in the analysis for load combinations that include applied lateral loads.

## 2b. Use of Notional Loads to Represent Imperfections

For structures that support gravity loads primarily through nominally vertical columns, walls or frames, it is permissible to use notional loads to represent the effects of initial system imperfections in the position of points of intersection of members in accordance with the requirements of this section. The notional load shall be applied to a model of the structure based on its nominal geometry.

User Note: In general, the notional load concept is applicable to all types of structures and to imperfections in the positions of both points of intersection of members and points along members, but the specific requirements in Sections C 2.2 b (a) through $\mathrm{C} 2.2 \mathrm{~b}(\mathrm{~d})$ are applicable only for the particular class of structure and type of system imperfection identified here.
(a) Notional loads shall be applied as lateral loads at all levels. The notional loads shall be additive to other lateral loads and shall be applied in all load combinations, except as indicated in Section $\mathrm{C} 2.2 \mathrm{~b}(\mathrm{~d})$. The magnitude of the notional loads shall be:

$$
\begin{equation*}
N_{i}=0.002 \alpha Y_{i} \tag{C2-1}
\end{equation*}
$$

where
$\alpha=1.0$ (LRFD); $\alpha=1.6$ (ASD)
$N_{i}=$ notional load applied at level $i$, kips (N)
$Y_{i}=$ gravity load applied at level $i$ from the LRFD load combination or ASD load combination, as applicable, kips (N)

User Note: The use of notional loads can lead to additional (generally small) fictitious base shears in the structure. The correct horizontal reactions at the foundation may be obtained by applying an additional horizontal force at the base of the structure, equal and opposite in direction to the sum of all notional loads, distributed among vertical load-carrying elements in the same proportion as the gravity load supported by those elements. The notional loads can also lead to additional overturning effects, which are not fictitious.
(b) The notional load at any level, $N_{i}$, shall be distributed over that level in the same manner as the gravity load at the level. The notional loads shall be applied in the direction that provides the greatest destabilizing effect.

User Note: For most building structures, the requirement regarding notional load direction may be satisfied as follows: for load combinations that do not include lateral loading, consider two alternative orthogonal directions of notional load application, in a positive and a negative sense in each of the two directions, in the same direction at all levels; for load combinations that include lateral loading, apply all notional loads in the direction of the resultant of all lateral loads in the combination.
(c) The notional load coefficient of 0.002 in Equation C2-1 is based on a nominal initial story out-of-plumbness ratio of $1 / 500$; where the use of a different maximum out-of-plumbness is justified, it is permissible to adjust the notional load coefficient proportionally.

User Note: An out-of-plumbness of $1 / 500$ represents the maximum tolerance on column plumbness specified in the Code of Standard Practice. In some cases, other specified tolerances, such as those on plan location of columns, will govern and will require a tighter plumbness tolerance.
(d) For structures in which the ratio of maximum second-order drift to maximum first-order drift (both determined for LRFD load combinations or 1.6 times ASD load combinations, with stiffnesses adjusted as specified in Section C2.3) in all stories is equal to or less than 1.7, it is permissible to apply the notional load, $N_{i}$, only in gravity-only load combinations and not in combinations that include other lateral loads.

## 3. Adjustments to Stiffness

The analysis of the structure to determine the required strengths of components shall use reduced stiffnesses, as follows:
(a) A factor of 0.80 shall be applied to all stiffnesses that are considered to contribute to the stability of the structure. It is permissible to apply this reduction factor to all stiffnesses in the structure.

User Note: Applying the stiffness reduction to some members and not others can, in some cases, result in artificial distortion of the structure under load and possible unintended redistribution of forces. This can be avoided by applying the reduction to all members, including those that do not contribute to the stability of the structure.
(b) An additional factor, $\tau_{b}$, shall be applied to the flexural stiffnesses of all members whose flexural stiffnesses are considered to contribute to the stability of the structure. For noncomposite members, $\tau_{b}$ shall be defined as follows (see Section I1.5 for the definition of $\tau_{b}$ for composite members).
(1) When $\alpha P_{r} / P_{n s} \leq 0.5$

$$
\begin{equation*}
\tau_{b}=1.0 \tag{C2-2a}
\end{equation*}
$$

(2) When $\alpha P_{r} / P_{n s}>0.5$

$$
\begin{equation*}
\tau_{b}=4\left(\alpha P_{r} / P_{n s}\right)\left[1-\left(\alpha P_{r} / P_{n s}\right)\right] \tag{C2-2b}
\end{equation*}
$$

where
$\alpha=1.0$ (LRFD); $\alpha=1.6$ (ASD)
$P_{r}=$ required axial compressive strength using LRFD or ASD load combinations, kips ( N )
$P_{n s}=$ cross-section compressive strength; for nonslender-element sections, $P_{n s}$ $=F_{y} A_{g}$, and for slender-element sections, $P_{n s}=F_{y} A_{e}$, where $A_{e}$ is as defined in Section E7, kips (N)

User Note: Taken together, Sections (a) and (b) require the use of $0.8 \tau_{b}$ times the nominal elastic flexural stiffness and 0.8 times other nominal elastic stiffnesses for structural steel members in the analysis.
(c) In structures to which Section C2.2b is applicable, in lieu of using $\tau_{b}<1.0$ where $\alpha P_{r} / P_{n s}>0.5$, it is permissible to use $\tau_{b}=1.0$ for all noncomposite members if a notional load of $0.001 \alpha Y_{i}$ [where $Y_{i}$ is as defined in Section $\mathrm{C} 2.2 \mathrm{~b}(\mathrm{a})$ ] is applied at all levels, in the direction specified in Section C2.2b(b), in all load combinations. These notional loads shall be added to those, if any, used to account for the effects of initial imperfections in the position of points of intersection of members and shall not be subject to the provisions of Section C2.2b(d).
(d) Where components comprised of materials other than structural steel are considered to contribute to the stability of the structure and the governing codes and specifications for the other materials require greater reductions in stiffness, such greater stiffness reductions shall be applied to those components.

## C3. CALCULATION OF AVAILABLE STRENGTHS

For the direct analysis method of design, the available strengths of members and connections shall be calculated in accordance with the provisions of Chapters D through K , as applicable, with no further consideration of overall structure stability. The effective length for flexural buckling of all members shall be taken as the unbraced length unless a smaller value is justified by rational analysis.

Bracing intended to define the unbraced lengths of members shall have sufficient stiffness and strength to control member movement at the braced points.

User Note: Methods of satisfying this bracing requirement are provided in Appendix 6. The requirements of Appendix 6 are not applicable to bracing that is included in the design of the lateral force-resisting system of the overall structure.

## CHAPTER D

## DESIGN OF MEMBERS FOR TENSION

This chapter applies to members subject to axial tension.
The chapter is organized as follows:
D1. Slenderness Limitations
D2. Tensile Strength
D3. Effective Net Area
D4. Built-Up Members
D5. Pin-Connected Members
D6. Eyebars
User Note: For cases not included in this chapter, the following sections apply:

- B3.11 Members subject to fatigue
- Chapter H Members subject to combined axial tension and flexure
- J3 Threaded rods
- J4.1 Connecting elements in tension
- J4.3 Block shear rupture strength at end connections of tension members


## D1. SLENDERNESS LIMITATIONS

There is no maximum slenderness limit for members in tension.
User Note: For members designed on the basis of tension, the slenderness ratio, $L / r$, preferably should not exceed 300 . This suggestion does not apply to rods or hangers in tension.

## D2. TENSILE STRENGTH

The design tensile strength, $\phi_{t} P_{n}$, and the allowable tensile strength, $P_{n} / \Omega_{t}$, of tension members shall be the lower value obtained according to the limit states of tensile yielding in the gross section and tensile rupture in the net section.
(a) For tensile yielding in the gross section

$$
\begin{equation*}
P_{n}=F_{y} A_{g} \tag{D2-1}
\end{equation*}
$$

$$
\phi_{t}=0.90(\mathrm{LRFD}) \quad \Omega_{t}=1.67(\mathrm{ASD})
$$

(b) For tensile rupture in the net section

$$
\begin{gather*}
P_{n}=F_{u} A_{e}  \tag{D2-2}\\
\phi_{t}=0.75(\mathrm{LRFD}) \quad \Omega_{t}=2.00(\mathrm{ASD})
\end{gather*}
$$

where

```
\(A_{e}=\) effective net area, in. \({ }^{2}\left(\mathrm{~mm}^{2}\right)\)
\(A_{g}=\) gross area of member, in. \({ }^{2}\left(\mathrm{~mm}^{2}\right)\)
\(F_{y}=\) specified minimum yield stress, ksi (MPa)
\(F_{u}=\) specified minimum tensile strength, ksi (MPa)
```

Where connections use plug, slot or fillet welds in holes or slots, the effective net area through the holes shall be used in Equation D2-2.

## D3. EFFECTIVE NET AREA

The gross area, $A_{g}$, and net area, $A_{n}$, of tension members shall be determined in accordance with the provisions of Section B4.3.

The effective net area of tension members shall be determined as

$$
\begin{equation*}
A_{e}=A_{n} U \tag{D3-1}
\end{equation*}
$$

where $U$, the shear lag factor, is determined as shown in Table D3.1.

For open cross sections such as W, M, S, C, or HP shapes, WTs, STs, and single and double angles, the shear lag factor, $U$, need not be less than the ratio of the gross area of the connected element(s) to the member gross area. This provision does not apply to closed sections, such as HSS sections, nor to plates.

## D4. BUILT-UP MEMBERS

For limitations on the longitudinal spacing of connectors between elements in continuous contact consisting of a plate and a shape, or two plates, see Section J3.5.

Lacing, perforated cover plates, or tie plates without lacing are permitted to be used on the open sides of built-up tension members. Tie plates shall have a length not less than two-thirds the distance between the lines of welds or fasteners connecting them to the components of the member. The thickness of such tie plates shall not be less than one-fiftieth of the distance between these lines. The longitudinal spacing of intermittent welds or fasteners at tie plates shall not exceed 6 in . ( 150 mm ).

User Note: The longitudinal spacing of connectors between components should preferably limit the slenderness ratio in any component between the connectors to 300 .

## D5. PIN-CONNECTED MEMBERS

## 1. Tensile Strength

The design tensile strength, $\phi_{t} P_{n}$, and the allowable tensile strength, $P_{n} / \Omega_{t}$, of pinconnected members, shall be the lower value determined according to the limit states of tensile rupture, shear rupture, bearing and yielding.

Shear Lag Factors for Connections to Tension Members				
Case	Description of Element		Shear Lag Factor, U	Example
1	All tension members where the tension load is transmitted directly to each of the cross-sectional elements by fasteners or welds (except as in Cases 4, 5 and 6).		$U=1.0$	-
2	All tension members, except HSS, where the tension load is transmitted to some but not all of the cross-sectional elements by fasteners or by longitudinal welds in combination with transverse welds. Alternatively, Case 7 is permitted for W, $\mathrm{M}, \mathrm{S}$ and HP shapes. (For angles, Case 8 is permitted to be used.)		$U=1-\frac{\bar{x}}{l}$	
3	All tension members where the tension load is transmitted only by transverse welds to some but not all of the cross-sectional elements.		$\begin{aligned} & U=1.0 \text { and } \\ & A_{n}=\text { area of the directly } \\ & \text { connected elements } \end{aligned}$	-
$4{ }^{\text {[a] }}$	Plates, angles, channels with welds at heels, tees, and W -shapes with connected elements, where the tension load is transmitted by longitudinal welds only. See Case 2 for definition of $\bar{x}$.		$U=\frac{3 l^{2}}{3 l^{2}+w^{2}}\left(1-\frac{\bar{x}}{l}\right)$	
5	Round HSS with a single concentric gusset plate through slots in the HSS.		$\begin{gathered} l \geq 1.3 D, U=1.0 \\ D \leq l<1.3 D, U=1-\frac{\bar{x}}{l} \\ \bar{x}=\frac{D}{\pi} \end{gathered}$	
6	Rectangular HSS.	with a single concentric gusset plate	$\begin{gathered} l \geq H, U=1-\frac{\bar{x}}{l} \\ \bar{x}=\frac{B^{2}+2 B H}{4(B+H)} \end{gathered}$	
		with two side gusset plates	$\begin{gathered} l \geq H, U=1-\frac{\bar{x}}{l} \\ \bar{x}=\frac{B^{2}}{4(B+H)} \end{gathered}$	
7	W-, M-, S- or HPshapes, or tees cut from these shapes. (If $U$ is calculated per Case 2, the larger value is permitted to be used.)	with flange connected with three or more fasteners per line in the direction of loading	$\begin{aligned} & b_{f} \geq \frac{2}{3} d, U=0.90 \\ & b_{f}<\frac{2}{3} d, U=0.85 \end{aligned}$	-
		with web connected with four or more fasteners per line in the direction of loading	$U=0.70$	-
8	Single and double angles.   (If $U$ is calculated per Case 2, the larger value is permitted to be used.)	with four or more fasteners per line in the direction of loading	$U=0.80$	-
		with three fasteners per line in the direction of loading (with fewer than three fasteners per line in the direction of loading, use Case 2)	$U=0.60$	-
$B=$ overall width of rectangular HSS member, measured $90^{\circ}$ to the plane of the connection, in. ( mm ); $D=$ outside diameter of round HSS, in. (mm); $H=$ overall height of rectangular HSS member, measured in the plane of the connection, in. (mm); $d=$ depth of section, in. (mm); for tees, $d=$ depth of the section from which the tee was cut, in. ( mm ); $l=$ length of connection, in. (mm); $w=$ width of plate, in. (mm); $\bar{x}=$ eccentricity of connection, in. (mm).   ${ }^{\text {[a] }} l=\frac{l_{1}+l_{2}}{2}$, where $l_{1}$ and $l_{2}$ shall not be less than 4 times the weld size.				

(a) For tensile rupture on the net effective area

$$
\begin{gathered}
P_{n}=F_{u}\left(2 t b_{e}\right) \\
\phi_{t}=0.75(\mathrm{LRFD}) \quad \Omega_{t}=2.00(\mathrm{ASD})
\end{gathered}
$$

(b) For shear rupture on the effective area

$$
\begin{gather*}
P_{n}=0.6 F_{u} A_{s f}  \tag{D5-2}\\
\phi_{s f}=0.75(\mathrm{LRFD}) \quad \Omega_{s f}=2.00(\mathrm{ASD})
\end{gather*}
$$

where

$$
A_{s f}=2 t(a+d / 2)
$$

$$
=\text { area on the shear failure path, } \mathrm{in.}^{2}\left(\mathrm{~mm}^{2}\right)
$$

$a=$ shortest distance from edge of the pin hole to the edge of the member measured parallel to the direction of the force, in. (mm)
$b_{e}=2 t+0.63$, in. $(=2 t+16, \mathrm{~mm})$, but not more than the actual distance from the edge of the hole to the edge of the part measured in the direction normal to the applied force, in. (mm)
$d=$ diameter of pin, in. (mm)
$t=$ thickness of plate, in. (mm)
(c) For bearing on the projected area of the pin, use Section J7.
(d) For yielding on the gross section, use Section D2(a).

## 2. Dimensional Requirements

Pin-connected members shall meet the following requirements:
(a) The pin hole shall be located midway between the edges of the member in the direction normal to the applied force.
(b) When the pin is expected to provide for relative movement between connected parts while under full load, the diameter of the pin hole shall not be more than $1 / 32 \mathrm{in}$. ( 1 mm ) greater than the diameter of the pin.
(c) The width of the plate at the pin hole shall not be less than $2 b_{e}+d$ and the minimum extension, $a$, beyond the bearing end of the pin hole, parallel to the axis of the member, shall not be less than $1.33 b_{e}$.
(d) The corners beyond the pin hole are permitted to be cut at $45^{\circ}$ to the axis of the member, provided the net area beyond the pin hole, on a plane perpendicular to the cut, is not less than that required beyond the pin hole parallel to the axis of the member.

## D6. EYEBARS

## 1. Tensile Strength

The available tensile strength of eyebars shall be determined in accordance with Section D2, with $A_{g}$ taken as the cross-sectional area of the body.

For calculation purposes, the width of the body of the eyebars shall not exceed eight times its thickness.

## 2. Dimensional Requirements

Eyebars shall meet the following requirements:
(a) Eyebars shall be of uniform thickness, without reinforcement at the pin holes, and have circular heads with the periphery concentric with the pin hole.
(b) The radius of transition between the circular head and the eyebar body shall not be less than the head diameter.
(c) The pin diameter shall not be less than seven-eighths times the eyebar body width, and the pin-hole diameter shall not be more than $1 / 32 \mathrm{in}$. ( 1 mm ) greater than the pin diameter.
(d) For steels having $F_{y}$ greater than 70 ksi ( 485 MPa ), the hole diameter shall not exceed five times the plate thickness, and the width of the eyebar body shall be reduced accordingly.
(e) A thickness of less than $\frac{1}{2} \mathrm{in}$. ( 13 mm ) is permissible only if external nuts are provided to tighten pin plates and filler plates into snug contact.
(f) The width from the hole edge to the plate edge perpendicular to the direction of applied load shall be greater than two-thirds and, for the purpose of calculation, not more than three-fourths times the eyebar body width.

## CHAPTER E

## DESIGN OF MEMBERS FOR COMPRESSION

This chapter addresses members subject to axial compression.
The chapter is organized as follows:

## E1. General Provisions

E2. Effective Length
E3. Flexural Buckling of Members without Slender Elements
E4. Torsional and Flexural-Torsional Buckling of Single Angles and Members without Slender Elements
E5. Single-Angle Compression Members
E6. Built-Up Members
E7. Members with Slender Elements
User Note: For cases not included in this chapter, the following sections apply:

- H1 - H2 Members subject to combined axial compression and flexure
- H3 Members subject to axial compression and torsion
- I2 Composite axially loaded members
- J4.4 Compressive strength of connecting elements


## E1. GENERAL PROVISIONS

The design compressive strength, $\phi_{c} P_{n}$, and the allowable compressive strength, $P_{n} / \Omega_{c}$, are determined as follows.

The nominal compressive strength, $P_{n}$, shall be the lowest value obtained based on the applicable limit states of flexural buckling, torsional buckling, and flexural-torsional buckling.

$$
\phi_{c}=0.90(\mathrm{LRFD}) \quad \Omega_{c}=1.67(\mathrm{ASD})
$$

# TABLE USER NOTE E1.1 Selection Table for the Application of Chapter E Sections 

Cross Section	Without Slender Elements		With Slender Elements		
	Sections in Chapter E	Limit States	Sections in Chapter E	Limit   States	
	$\begin{aligned} & \text { E3 } \\ & \text { E4 } \end{aligned}$	$\begin{aligned} & \text { FB } \\ & \text { TB } \end{aligned}$	E7	LB   FB   TB	
	$\begin{aligned} & \text { E3 } \\ & \text { E4 } \end{aligned}$	$\begin{aligned} & \text { FB } \\ & \text { FTB } \end{aligned}$	E7	$\begin{gathered} \text { LB } \\ \text { FB } \\ \text { FTB } \end{gathered}$	
	E3	FB	E7	$\begin{aligned} & \text { LB } \\ & \text { FB } \end{aligned}$	
	E3	FB	E7	$\begin{aligned} & \text { LB } \\ & \text { FB } \end{aligned}$	
\\|	$\begin{aligned} & \text { E3 } \\ & \text { E4 } \end{aligned}$	$\begin{aligned} & \text { FB } \\ & \text { FTB } \end{aligned}$	E7	LB   FB   FTB	
	E6   E3   E4	$\begin{aligned} & \text { FB } \\ & \text { FTB } \end{aligned}$	$\begin{aligned} & \text { E6 } \\ & \text { E7 } \end{aligned}$	$\begin{gathered} \text { LB } \\ \text { FB } \\ \text { FTB } \end{gathered}$	
	E5		E5		
Tit	E3	FB	N/A	N/A	
Unsymmetrical shapes other than single angles	E4	FTB	E7	$\begin{gathered} \text { LB } \\ \text { FTB } \end{gathered}$	
FB = flexural buckling, $\mathrm{TB}=$ torsional buckling, $\mathrm{FTB}=$ flexural-torsional buckling, $\mathrm{LB}=$ local buckling, $\mathrm{N} / \mathrm{A}=$ not applicable					

## E2. EFFECTIVE LENGTH

The effective length, $L_{c}$, for calculation of member slenderness, $L_{c} / r$, shall be determined in accordance with Chapter C or Appendix 7,
where
$K=$ effective length factor
$L_{c}=K L=$ effective length of member, in. (mm)
$L=$ laterally unbraced length of the member, in. (mm)
$r=$ radius of gyration, in. (mm)
User Note: For members designed on the basis of compression, the effective slenderness ratio, $L_{c} / r$, preferably should not exceed 200.

User Note: The effective length, $L_{c}$, can be determined through methods other than those using the effective length factor, $K$.

## E3. FLEXURAL BUCKLING OF MEMBERS WITHOUT SLENDER ELEMENTS

This section applies to nonslender-element compression members, as defined in Section B4.1, for elements in axial compression.

User Note: When the torsional effective length is larger than the lateral effective length, Section E4 may control the design of wide-flange and similarly shaped columns.

The nominal compressive strength, $P_{n}$, shall be determined based on the limit state of flexural buckling:

$$
\begin{equation*}
P_{n}=F_{c r} A_{g} \tag{E3-1}
\end{equation*}
$$

The critical stress, $F_{c r}$, is determined as follows:
(a) When $\frac{L_{c}}{r} \leq 4.71 \sqrt{\frac{E}{F_{y}}}$

$$
\begin{array}{r}
\left(\text { or } \frac{F_{y}}{F_{e}} \leq 2.25\right) \\
F_{c r}=\left(0.658^{\frac{F_{y}}{F_{e}}}\right) F_{y} \tag{E3-2}
\end{array}
$$

(b) When $\frac{L_{c}}{r}>4.71 \sqrt{\frac{E}{F_{y}}} \quad$ (or $\frac{F_{y}}{F_{e}}>2.25$ )

$$
\begin{equation*}
F_{c r}=0.877 F_{e} \tag{E3-3}
\end{equation*}
$$

where
$A_{g}=$ gross cross-sectional area of member, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
$E=$ modulus of elasticity of steel $=29,000 \mathrm{ksi}(200000 \mathrm{MPa})$
$F_{e}=$ elastic buckling stress determined according to Equation E3-4, as specified in Appendix 7, Section 7.2.3(b), or through an elastic buckling analysis, as applicable, ksi (MPa)

$$
\begin{equation*}
=\frac{\pi^{2} E}{\left(\frac{L_{c}}{r}\right)^{2}} \tag{E3-4}
\end{equation*}
$$

$F_{y}=$ specified minimum yield stress of the type of steel being used, ksi (MPa)
$r=$ radius of gyration, in. (mm)
User Note: The two inequalities for calculating the limits of applicability of Sections E3(a) and E3(b), one based on $L_{c} / r$ and one based on $F_{y} / F_{e}$, provide the same result for flexural buckling.

## E4. TORSIONAL AND FLEXURAL-TORSIONAL BUCKLING OF SINGLE ANGLES AND MEMBERS WITHOUT SLENDER ELEMENTS

This section applies to singly symmetric and unsymmetric members, certain doubly symmetric members, such as cruciform or built-up members, and doubly symmetric members when the torsional unbraced length exceeds the lateral unbraced length, all without slender elements. These provisions also apply to single angles with $b / t>$ $0.71 \sqrt{E / F_{y}}$, where $b$ is the width of the longest leg and $t$ is the thickness.

The nominal compressive strength, $P_{n}$, shall be determined based on the limit states of torsional and flexural-torsional buckling:

$$
\begin{equation*}
P_{n}=F_{c r} A_{g} \tag{E4-1}
\end{equation*}
$$

The critical stress, $F_{c r}$, shall be determined according to Equation E3-2 or E3-3, using the torsional or flexural-torsional elastic buckling stress, $F_{e}$, determined as follows:
(a) For doubly symmetric members twisting about the shear center

$$
\begin{equation*}
F_{e}=\left(\frac{\pi^{2} E C_{w}}{L_{c z}^{2}}+G J\right) \frac{1}{I_{x}+I_{y}} \tag{E4-2}
\end{equation*}
$$

(b) For singly symmetric members twisting about the shear center where $y$ is the axis of symmetry

$$
\begin{equation*}
F_{e}=\left(\frac{F_{e y}+F_{e z}}{2 H}\right)\left[1-\sqrt{1-\frac{4 F_{e y} F_{e z} H}{\left(F_{e y}+F_{e z}\right)^{2}}}\right] \tag{E4-3}
\end{equation*}
$$

User Note: For singly symmetric members with the $x$-axis as the axis of symmetry, such as channels, Equation E4-3 is applicable with $F_{e y}$ replaced by $F_{e x}$.
(c) For unsymmetric members twisting about the shear center, $F_{e}$ is the lowest root of the cubic equation
$\left(F_{e}-F_{e x}\right)\left(F_{e}-F_{e y}\right)\left(F_{e}-F_{e z}\right)-F_{e}^{2}\left(F_{e}-F_{e y}\right)\left(\frac{x_{o}}{\bar{r}_{o}}\right)^{2}-F_{e}^{2}\left(F_{e}-F_{e x}\right)\left(\frac{y_{o}}{\bar{r}_{o}}\right)^{2}=0$
where
$C_{w} \quad=$ warping constant, in. ${ }^{6}\left(\mathrm{~mm}^{6}\right)$
$F_{e x}=\frac{\pi^{2} E}{\left(\frac{L_{c x}}{r_{x}}\right)^{2}}$
$F_{e y}=\frac{\pi^{2} E}{\left(\frac{L_{c y}}{r_{y}}\right)^{2}}$
$F_{e z} \quad=\left(\frac{\pi^{2} E C_{w}}{L_{c z}^{2}}+G J\right) \frac{1}{A_{g} \bar{r}_{o}^{2}}$
$G \quad=$ shear modulus of elasticity of steel $=11,200 \mathrm{ksi}(77200 \mathrm{MPa})$
$H$ = flexural constant
$=1-\frac{x_{o}^{2}+y_{o}^{2}}{\bar{r}_{o}^{2}}$
$I_{x}, I_{y}=$ moment of inertia about the principal axes, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$
$J \quad=$ torsional constant, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$
$K_{x} \quad=$ effective length factor for flexural buckling about $x$-axis
$K_{y} \quad=$ effective length factor for flexural buckling about $y$-axis
$K_{z} \quad=$ effective length factor for torsional buckling about the longitudinal axis
$L_{c x} \quad=K_{x} L_{x}=$ effective length of member for buckling about $x$-axis, in. (mm)
$L_{c y} \quad=K_{y} L_{y}=$ effective length of member for buckling about $y$-axis, in. (mm)
$L_{c z} \quad=K_{z} L_{z}=$ effective length of member for buckling about longitudinal axis, in. (mm)
$L_{x}, L_{y}, L_{z}=$ laterally unbraced length of the member for each axis, in. (mm)
$\bar{r}_{o} \quad=$ polar radius of gyration about the shear center, in. (mm)
$\bar{r}_{o}^{2}=x_{o}^{2}+y_{o}^{2}+\frac{I_{x}+I_{y}}{A_{g}}$
$r_{x} \quad=$ radius of gyration about $x$-axis, in. (mm)
$r_{y} \quad=$ radius of gyration about $y$-axis, in. (mm)
$x_{o}, y_{o}=$ coordinates of the shear center with respect to the centroid, in. (mm)
User Note: For doubly symmetric I-shaped sections, $C_{w}$ may be taken as $I_{y} h_{o}{ }^{2} / 4$, where $h_{o}$ is the distance between flange centroids, in lieu of a more precise analysis. For tees and double angles, omit the term with $C_{w}$ when computing $F_{e z}$ and take $x_{o}$ as 0 .
(d) For members with lateral bracing offset from the shear center, the elastic buckling stress, $F_{e}$, shall be determined by analysis.

User Note: Members with lateral bracing offset from the shear center are susceptible to constrained-axis torsional buckling, which is discussed in the Commentary.

## E5. SINGLE-ANGLE COMPRESSION MEMBERS

The nominal compressive strength, $P_{n}$, of single-angle members shall be the lowest value based on the limit states of flexural buckling in accordance with Section E3 or Section E7, as applicable, or flexural-torsional buckling in accordance with Section E4. Flexural-torsional buckling need not be considered when $b / t \leq 0.71 \sqrt{E / F_{y}}$.
The effects of eccentricity on single-angle members are permitted to be neglected and the member evaluated as axially loaded using one of the effective slenderness ratios specified in Section E5(a) or E5(b), provided that the following requirements are met:
(1) Members are loaded at the ends in compression through the same one leg.
(2) Members are attached by welding or by connections with a minimum of two bolts.
(3) There are no intermediate transverse loads.
(4) $L_{c} / r$ as determined in this section does not exceed 200.
(5) For unequal leg angles, the ratio of long leg width to short leg width is less than 1.7.

Single-angle members that do not meet these requirements or the requirements described in Section E5(a) or (b) shall be evaluated for combined axial load and flexure using the provisions of Chapter H.
(a) For angles that are individual members or are web members of planar trusses with adjacent web members attached to the same side of the gusset plate or chord
(1) For equal-leg angles or unequal-leg angles connected through the longer leg
(i) When $\frac{L}{r_{a}} \leq 80$

$$
\begin{equation*}
\frac{L_{c}}{r}=72+0.75 \frac{L}{r_{a}} \tag{E5-1}
\end{equation*}
$$

(ii) When $\frac{L}{r_{a}}>80$

$$
\begin{equation*}
\frac{L_{c}}{r}=32+1.25 \frac{L}{r_{a}} \tag{E5-2}
\end{equation*}
$$

(2) For unequal-leg angles connected through the shorter leg, $L_{c} / r$ from Equations E5-1 and E5-2 shall be increased by adding $4\left[\left(b_{l} / b_{s}\right)^{2}-1\right]$, but $L_{c} / r$ of the members shall not be taken as less than $0.95 L / r_{z}$.
(b) For angles that are web members of box or space trusses with adjacent web members attached to the same side of the gusset plate or chord
(1) For equal-leg angles or unequal-leg angles connected through the longer leg
(i) When $\frac{L}{r_{a}} \leq 75$

$$
\begin{equation*}
\frac{L_{c}}{r}=60+0.8 \frac{L}{r_{a}} \tag{E5-3}
\end{equation*}
$$

(ii) When $\frac{L}{r_{a}}>75$

$$
\begin{equation*}
\frac{L_{c}}{r}=45+\frac{L}{r_{a}} \tag{E5-4}
\end{equation*}
$$

(2) For unequal-leg angles with leg length ratios less than 1.7 and connected through the shorter leg, $L_{C} / r$ from Equations E5-3 and E5-4 shall be increased by adding $6\left[\left(b_{l} / b_{s}\right)^{2}-1\right]$, but $L_{c} / r$ of the member shall not be taken as less than $0.82 L / r_{z}$
where
$L=$ length of member between work points at truss chord centerlines, in. (mm)
$L_{c}=$ effective length of the member for buckling about the minor axis, in. (mm)
$b_{l}=$ length of longer leg of angle, in. (mm)
$b_{s}=$ length of shorter leg of angle, in. (mm)
$r_{a}=$ radius of gyration about the geometric axis parallel to the connected leg, in. (mm)
$r_{z}=$ radius of gyration about the minor principal axis, in. (mm)

## E6. BUILT-UP MEMBERS

## 1. Compressive Strength

This section applies to built-up members composed of two shapes either (a) interconnected by bolts or welds or (b) with at least one open side interconnected by perforated cover plates or lacing with tie plates. The end connection shall be welded or connected by means of pretensioned bolts with Class A or B faying surfaces.

User Note: It is acceptable to design a bolted end connection of a built-up compression member for the full compressive load with bolts in bearing and bolt design based on the shear strength; however, the bolts must be pretensioned. In built-up compression members, such as double-angle struts in trusses, a small relative slip between the elements can significantly reduce the compressive strength of the strut. Therefore, the connection between the elements at the ends of built-up members should be designed to resist slip.

The nominal compressive strength of built-up members composed of two shapes that are interconnected by bolts or welds shall be determined in accordance with Sections E3, E4 or E7, subject to the following modification. In lieu of more accurate analysis, if the buckling mode involves relative deformations that produce shear forces in the connectors between individual shapes, $L_{c} / r$ is replaced by $\left(L_{c} / r\right)_{m}$, determined as follows:
(a) For intermediate connectors that are bolted snug-tight

$$
\begin{equation*}
\left(\frac{L_{c}}{r}\right)_{m}=\sqrt{\left(\frac{L_{c}}{r}\right)_{o}^{2}+\left(\frac{a}{r_{i}}\right)^{2}} \tag{E6-1}
\end{equation*}
$$

(b) For intermediate connectors that are welded or are connected by means of pretensioned bolts with Class A or B faying surfaces
(1) When $\frac{a}{r_{i}} \leq 40$

$$
\begin{equation*}
\left(\frac{L_{c}}{r}\right)_{m}=\left(\frac{L_{c}}{r}\right)_{o} \tag{E6-2a}
\end{equation*}
$$

(2) When $\frac{a}{r_{i}}>40$

$$
\begin{equation*}
\left(\frac{L_{c}}{r}\right)_{m}=\sqrt{\left(\frac{L_{c}}{r}\right)_{o}^{2}+\left(\frac{K_{i} a}{r_{i}}\right)^{2}} \tag{E6-2b}
\end{equation*}
$$

where

$$
\begin{aligned}
\left(\frac{L_{c}}{r}\right)_{m} & =\text { modified slenderness ratio of built-up member } \\
\left(\frac{L_{c}}{r}\right)_{o} & =\text { slenderness ratio of built-up member acting as a unit in the buckling } \\
& \text { direction being addressed } \\
L_{c} & =\text { effective length of built-up member, in. (mm) } \\
K_{i} & =0.50 \text { for angles back-to-back } \\
& =0.75 \text { for channels back-to-back } \\
& =0.86 \text { for all other cases } \\
a & =\text { distance between connectors, in. (mm) } \\
r_{i} & =\text { minimum radius of gyration of individual component, in. (mm) }
\end{aligned}
$$

## 2. Dimensional Requirements

Built-up members shall meet the following requirements:
(a) Individual components of compression members composed of two or more shapes shall be connected to one another at intervals, $a$, such that the slenderness ratio, $a / r_{i}$, of each of the component shapes between the fasteners does not exceed three-fourths times the governing slenderness ratio of the built-up member. The least radius of gyration, $r_{i}$, shall be used in computing the slenderness ratio of each component part.
(b) At the ends of built-up compression members bearing on base plates or finished surfaces, all components in contact with one another shall be connected by a weld having a length not less than the maximum width of the member or by bolts spaced longitudinally not more than four diameters apart for a distance equal to $1^{1} / 2$ times the maximum width of the member.
Along the length of built-up compression members between the end connections required in the foregoing, longitudinal spacing of intermittent welds or bolts shall be adequate to provide the required strength. For limitations on the longitudinal spacing of fasteners between elements in continuous contact consisting of a plate and a shape, or two plates, see Section J3.5. Where a component of a built-up compression member consists of an outside plate, the maximum spacing shall not exceed the thickness of the thinner outside plate times $0.75 \sqrt{E / F_{y}}$, nor 12 in.
( 300 mm ), when intermittent welds are provided along the edges of the components or when fasteners are provided on all gage lines at each section. When fasteners are staggered, the maximum spacing of fasteners on each gage line shall not exceed the thickness of the thinner outside plate times $1.12 \sqrt{E / F_{y}}$ nor 18 in . ( 460 mm ).
(c) Open sides of compression members built up from plates or shapes shall be provided with continuous cover plates perforated with a succession of access holes. The unsupported width of such plates at access holes, as defined in Section B4.1, is assumed to contribute to the available strength provided the following requirements are met:
(1) The width-to-thickness ratio shall conform to the limitations of Section B4.1.

User Note: It is conservative to use the limiting width-to-thickness ratio for Case 7 in Table B4.1a with the width, $b$, taken as the transverse distance between the nearest lines of fasteners. The net area of the plate is taken at the widest hole. In lieu of this approach, the limiting width-tothickness ratio may be determined through analysis.
(2) The ratio of length (in direction of stress) to width of hole shall not exceed 2.
(3) The clear distance between holes in the direction of stress shall be not less than the transverse distance between nearest lines of connecting fasteners or welds.
(4) The periphery of the holes at all points shall have a minimum radius of $1^{1} / 2 \mathrm{in}$. $(38 \mathrm{~mm}$ ).
(d) As an alternative to perforated cover plates, lacing with tie plates is permitted at each end and at intermediate points if the lacing is interrupted. Tie plates shall be as near the ends as practicable. In members providing available strength, the end tie plates shall have a length of not less than the distance between the lines of fasteners or welds connecting them to the components of the member. Intermediate tie plates shall have a length not less than one-half of this distance. The thickness of tie plates shall be not less than one-fiftieth of the distance between lines of welds or fasteners connecting them to the segments of the members. In welded construction, the welding on each line connecting a tie plate shall total not less than one-third the length of the plate. In bolted construction, the spacing in the direction of stress in tie plates shall be not more than six diameters and the tie plates shall be connected to each segment by at least three fasteners.
(e) Lacing, including flat bars, angles, channels or other shapes employed as lacing, shall be so spaced that $L / r$ of the flange element included between their connections shall not exceed three-fourths times the governing slenderness ratio for the member as a whole. Lacing shall be proportioned to provide a shearing strength normal to the axis of the member equal to $2 \%$ of the available compressive strength of the member. For lacing bars arranged in single systems, $L / r$ shall not exceed 140. For double lacing, this ratio shall not exceed 200. Double lacing bars shall be joined at the intersections. For lacing bars in compression, $L$ is permitted to be
taken as the unsupported length of the lacing bar between welds or fasteners connecting it to the components of the built-up member for single lacing, and $70 \%$ of that distance for double lacing.

User Note: The inclination of lacing bars to the axis of the member shall preferably be not less than $60^{\circ}$ for single lacing and $45^{\circ}$ for double lacing. When the distance between the lines of welds or fasteners in the flanges is more than 15 in . ( 380 mm ), the lacing should preferably be double or made of angles.

For additional spacing requirements, see Section J3.5.

## E7. MEMBERS WITH SLENDER ELEMENTS

This section applies to slender-element compression members, as defined in Section B4.1 for elements in axial compression.

The nominal compressive strength, $P_{n}$, shall be the lowest value based on the applicable limit states of flexural buckling, torsional buckling, and flexural-torsional buckling in interaction with local buckling.

$$
\begin{equation*}
P_{n}=F_{c r} A_{e} \tag{E7-1}
\end{equation*}
$$

where
$A_{e}=$ summation of the effective areas of the cross section based on reduced effective widths, $b_{e}, d_{e}$ or $h_{e}$, or the area as given by Equations E7-6 or E7-7, in. ${ }^{2}$ ( $\mathrm{mm}^{2}$ ).
$F_{c r}=$ critical stress determined in accordance with Section E3 or E4, ksi (MPa). For single angles, determine $F_{c r}$ in accordance with Section E3 only.

User Note: The effective area, $A_{e}$, may be determined by deducting from the gross area, $A_{g}$, the reduction in area of each slender element determined as $\left(b-b_{e}\right) t$.

## 1. Slender Element Members Excluding Round HSS

The effective width, $b_{e}$, (for tees, this is $d_{e}$; for webs, this is $h_{e}$ ) for slender elements is determined as follows:
(a) When $\lambda \leq \lambda_{r} \sqrt{\frac{F_{y}}{F_{c r}}}$

$$
\begin{equation*}
b_{e}=b \tag{E7-2}
\end{equation*}
$$

(b) When $\lambda>\lambda \sqrt{\frac{F_{y}}{F_{c r}}}$

$$
\begin{equation*}
b_{e}=b\left(1-c_{1} \sqrt{\frac{F_{e l}}{F_{c r}}}\right) \sqrt{\frac{F_{e l}}{F_{c r}}} \tag{E7-3}
\end{equation*}
$$

TABLE E7.1   Effective Width Imperfection Adjustment Factors,   $c_{1}$ and $c_{2}$			
Case	Slender Element	$c_{1}$	$c_{2}$
(a)	Stiffened elements except walls of square and rectangular HSS	0.18	1.31
(b)	Walls of square and rectangular HSS	0.20	1.38
(c)	All other elements	0.22	1.49

where
$b=$ width of the element (for tees this is $d$; for webs this is $h$ ), in. (mm)
$c_{1}=$ effective width imperfection adjustment factor determined from Table E7.1
$c_{2}=\frac{1-\sqrt{1-4 c_{1}}}{2 c_{1}}$
$\lambda=$ width-to-thickness ratio for the element as defined in Section B4.1
$\lambda_{r}=$ limiting width-to-thickness ratio as defined in Table B4.1a
$F_{e l}=\left(c_{2} \frac{\lambda_{r}}{\lambda}\right)^{2} F_{y}$
$=$ elastic local buckling stress determined according to Equation E7-5 or an elastic local buckling analysis, ksi (MPa)

## 2. Round HSS

The effective area, $A_{e}$, is determined as follows:
(a) When $\frac{D}{t} \leq 0.11 \frac{E}{F_{y}}$

$$
\begin{equation*}
A_{e}=A_{g} \tag{E7-6}
\end{equation*}
$$

(b) When $0.11 \frac{E}{F_{y}}<\frac{D}{t}<0.45 \frac{E}{F_{y}}$

$$
\begin{equation*}
A_{e}=\left[\frac{0.038 E}{F_{y}(D / t)}+\frac{2}{3}\right] A_{g} \tag{E7-7}
\end{equation*}
$$

where
$D=$ outside diameter of round HSS, in. (mm)
$t=$ thickness of wall, in. (mm)

## CHAPTER F DESIGN OF MEMBERS FOR FLEXURE

This chapter applies to members subject to simple bending about one principal axis. For simple bending, the member is loaded in a plane parallel to a principal axis that passes through the shear center or is restrained against twisting at load points and supports.

The chapter is organized as follows:
F1. General Provisions
F2. Doubly Symmetric Compact I-Shaped Members and Channels Bent about Their Major Axis
F3. Doubly Symmetric I-Shaped Members with Compact Webs and Noncompact or Slender Flanges Bent about Their Major Axis
F4. Other I-Shaped Members with Compact or Noncompact Webs Bent about Their Major Axis
F5. Doubly Symmetric and Singly Symmetric I-Shaped Members with Slender Webs Bent about Their Major Axis
F6. I-Shaped Members and Channels Bent about Their Minor Axis
F7. Square and Rectangular HSS and Box Sections
F8. Round HSS
F9. Tees and Double Angles Loaded in the Plane of Symmetry
F10. Single Angles
F11. Rectangular Bars and Rounds
F12. Unsymmetrical Shapes
F13. Proportions of Beams and Girders

User Note: For cases not included in this chapter, the following sections apply:

- Chapter G Design provisions for shear
- H1-H3 Members subject to biaxial flexure or to combined flexure and axial force
- H3 Members subject to flexure and torsion
- Appendix 3 Members subject to fatigue

For guidance in determining the appropriate sections of this chapter to apply, Table User Note F1.1 may be used.

TABLE USER NOTE F1.1   Selection Table for the Application of Chapter F Sections				
Section in Chapter F	Cross   Section	Flange Slenderness	Web Slenderness	Limit States
F2	$\square \square$	C	C	Y, LTB
F3		NC, S	C	LTB, FLB
F4	$T T$	C, NC, S	C, NC	CFY, LTB, FLB, TFY
F5	$T T$	C, NC, S	S	CFY, LTB, FLB, TFY
F6		C, NC, S	N/A	Y, FLB
F7		C, NC, S	C, NC, S	Y, FLB, WLB, LTB
F8		N/A	N/A	Y, LB
F9		C, NC, S	N/A	Y, LTB, FLB, WLB
F10		N/A	N/A	Y, LTB, LLB
F11		N/A	N/A	Y, LTB
F12	Unsymmetrical shapes, other than single angles	N/A	N/A	All limit states
$\mathrm{Y}=$ yielding, CFY = compression flange yielding, $\mathrm{LTB}=$ lateral-torsional buckling, FLB = flange local buckling, WLB = web local buckling, TFY = tension flange yielding, $\mathrm{LLB}=$ leg local buckling, $\mathrm{LB}=$ local buckling, $\mathrm{C}=$ compact, $\mathrm{NC}=$ noncompact, $\mathrm{S}=$ slender, $\mathrm{N} / \mathrm{A}=$ not applicable				

## F1. GENERAL PROVISIONS

The design flexural strength, $\phi_{b} M_{n}$, and the allowable flexural strength, $M_{n} / \Omega_{b}$, shall be determined as follows:
(a) For all provisions in this chapter

$$
\phi_{b}=0.90(\mathrm{LRFD}) \quad \Omega_{b}=1.67(\mathrm{ASD})
$$

and the nominal flexural strength, $M_{n}$, shall be determined according to Sections F2 through F13.
(b) The provisions in this chapter are based on the assumption that points of support for beams and girders are restrained against rotation about their longitudinal axis.
(c) For singly symmetric members in single curvature and all doubly symmetric members

The lateral-torsional buckling modification factor, $C_{b}$, for nonuniform moment diagrams when both ends of the segment are braced is determined as follows:

$$
\begin{equation*}
C_{b}=\frac{12.5 M_{\max }}{2.5 M_{\max }+3 M_{A}+4 M_{B}+3 M_{C}} \tag{F1-1}
\end{equation*}
$$

where
$M_{\max }=$ absolute value of maximum moment in the unbraced segment, kip-in. ( $\mathrm{N}-\mathrm{mm}$ )
$M_{A}=$ absolute value of moment at quarter point of the unbraced segment, kip-in. ( $\mathrm{N}-\mathrm{mm}$ )
$M_{B}=$ absolute value of moment at centerline of the unbraced segment, kip-in. ( $\mathrm{N}-\mathrm{mm}$ )
$M_{C}=$ absolute value of moment at three-quarter point of the unbraced segment, kip-in. (N-mm)

User Note: For doubly symmetric members with no transverse loading between brace points, Equation F1-1 reduces to 1.0 for the case of equal end moments of opposite sign (uniform moment), 2.27 for the case of equal end moments of the same sign (reverse curvature bending), and to 1.67 when one end moment equals zero. For singly symmetric members, a more detailed analysis for $C_{b}$ is presented in the Commentary. The Commentary provides additional equations for $C_{b}$ that provide improved characterization of the effects of a variety of member boundary conditions.

For cantilevers where warping is prevented at the support and where the free end is unbraced, $C_{b}=1.0$.
(d) In singly symmetric members subject to reverse curvature bending, the lateraltorsional buckling strength shall be checked for both flanges. The available flexural strength shall be greater than or equal to the maximum required moment causing compression within the flange under consideration.

## F2. DOUBLY SYMMETRIC COMPACT I-SHAPED MEMBERS AND CHANNELS BENT ABOUT THEIR MAJOR AXIS

This section applies to doubly symmetric I-shaped members and channels bent about their major axis, having compact webs and compact flanges as defined in Section B4.1 for flexure.

User Note: All current ASTM A6 W, S, M, C and MC shapes except W21×48, W $14 \times 99$, W $14 \times 90$, W $12 \times 65$, W $10 \times 12$, W $8 \times 31, \mathrm{~W} 8 \times 10$, W $6 \times 15, \mathrm{~W} 6 \times 9$, $\mathrm{W} 6 \times 8.5$ and $\mathrm{M} 4 \times 6$ have compact flanges for $F_{y}=50 \mathrm{ksi}(345 \mathrm{MPa})$; all current ASTM A6 W, S, M, HP, C and MC shapes have compact webs at $F_{y} \leq 70 \mathrm{ksi}$ (485 MPa).

The nominal flexural strength, $M_{n}$, shall be the lower value obtained according to the limit states of yielding (plastic moment) and lateral-torsional buckling.

## 1. Yielding

$$
\begin{equation*}
M_{n}=M_{p}=F_{y} Z_{x} \tag{F2-1}
\end{equation*}
$$

where
$F_{y}=$ specified minimum yield stress of the type of steel being used, ksi (MPa)
$Z_{x}=$ plastic section modulus about the $x$-axis, in. ${ }^{3}\left(\mathrm{~mm}^{3}\right)$

## 2. Lateral-Torsional Buckling

(a) When $L_{b} \leq L_{p}$, the limit state of lateral-torsional buckling does not apply.
(b) When $L_{p}<L_{b} \leq L_{r}$

$$
\begin{equation*}
M_{n}=C_{b}\left[M_{p}-\left(M_{p}-0.7 F_{y} S_{x}\right)\left(\frac{L_{b}-L_{p}}{L_{r}-L_{p}}\right)\right] \leq M_{p} \tag{F2-2}
\end{equation*}
$$

(c) When $L_{b}>L_{r}$

$$
\begin{equation*}
M_{n}=F_{c r} S_{x} \leq M_{p} \tag{F2-3}
\end{equation*}
$$

where
$L_{b}=$ length between points that are either braced against lateral displacement of the compression flange or braced against twist of the cross section, in. (mm)
$F_{c r}=\frac{C_{b} \pi^{2} E}{\left(\frac{L_{b}}{r_{t s}}\right)^{2}} \sqrt{1+0.078 \frac{J c}{S_{x} h_{o}}\left(\frac{L_{b}}{r_{t s}}\right)^{2}}$
= critical stress, ksi (MPa)
$E=$ modulus of elasticity of steel $=29,000 \mathrm{ksi}(200000 \mathrm{MPa})$
$J=$ torsional constant, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$
$S_{x}=$ elastic section modulus taken about the $x$-axis, in. ${ }^{3}\left(\mathrm{~mm}^{3}\right)$
$h_{o}=$ distance between the flange centroids, in. (mm)

User Note: The square root term in Equation F2-4 may be conservatively taken equal to 1.0.

User Note: Equations F2-3 and F2-4 provide identical solutions to the following expression for lateral-torsional buckling of doubly symmetric sections that has been presented in past editions of this Specification:

$$
M_{c r}=C_{b} \frac{\pi}{L_{b}} \sqrt{E I_{y} G J+\left(\frac{\pi E}{L_{b}}\right)^{2} I_{y} C_{w}}
$$

The advantage of Equations F2-3 and F2-4 is that the form is very similar to the expression for lateral-torsional buckling of singly symmetric sections given in Equations F4-4 and F4-5.
$L_{p}$, the limiting laterally unbraced length for the limit state of yielding, in. (mm), is:

$$
\begin{equation*}
L_{p}=1.76 r_{y} \sqrt{\frac{E}{F_{y}}} \tag{F2-5}
\end{equation*}
$$

$L_{r}$, the limiting unbraced length for the limit state of inelastic lateral-torsional buckling, in. (mm), is:

$$
\begin{equation*}
L_{r}=1.95 r_{t s} \frac{E}{0.7 F_{y}} \sqrt{\frac{J c}{S_{x} h_{o}}+\sqrt{\left(\frac{J c}{S_{x} h_{o}}\right)^{2}+6.76\left(\frac{0.7 F_{y}}{E}\right)^{2}}} \tag{F2-6}
\end{equation*}
$$

where

$$
\begin{align*}
& r_{y}=\text { radius of gyration about } y \text {-axis, in. (mm) } \\
& r_{t s}^{2}=\frac{\sqrt{I_{y} C_{w}}}{S_{x}} \tag{F2-7}
\end{align*}
$$

and the coefficient $c$ is determined as follows:
(1) For doubly symmetric I-shapes

$$
\begin{equation*}
c=1 \tag{F2-8a}
\end{equation*}
$$

(2) For channels

$$
\begin{equation*}
c=\frac{h_{o}}{2} \sqrt{\frac{I_{y}}{C_{w}}} \tag{F2-8b}
\end{equation*}
$$

where

$$
I_{y}=\text { moment of inertia about the } y \text {-axis, in. }{ }^{4}\left(\mathrm{~mm}^{4}\right)
$$

User Note:
User Note:
For doubly symmetric I-shapes with rectangular flanges, $C_{w}=\frac{I_{y} h_{o}^{2}}{4}$, and thus, Equation F2-7 becomes

$$
r_{t s}^{2}=\frac{I_{y} h_{o}}{2 S_{x}}
$$

$r_{t s}$ may be approximated accurately and conservatively as the radius of gyration of the compression flange plus one-sixth of the web:

$$
r_{t s}=\frac{b_{f}}{\sqrt{12\left(1+\frac{1}{6} \frac{h t_{w}}{b_{f} t_{f}}\right)}}
$$

## F3. DOUBLY SYMMETRIC I-SHAPED MEMBERS WITH COMPACT WEBS AND NONCOMPACT OR SLENDER FLANGES BENT ABOUT THEIR MAJOR AXIS

This section applies to doubly symmetric I-shaped members bent about their major axis having compact webs and noncompact or slender flanges as defined in Section B4.1 for flexure.

User Note: The following shapes have noncompact flanges for $F_{y}=50 \mathrm{ksi}(345$ MPa): W $21 \times 48$, W $14 \times 99$, W $14 \times 90$, W $12 \times 65$, W $10 \times 12$, W $8 \times 31$, W $8 \times 10$, $\mathrm{W} 6 \times 15, \mathrm{~W} 6 \times 9, \mathrm{~W} 6 \times 8.5$ and $\mathrm{M} 4 \times 6$. All other ASTM A6 W, S and M shapes have compact flanges for $F_{y} \leq 50 \mathrm{ksi}(345 \mathrm{MPa})$.

The nominal flexural strength, $M_{n}$, shall be the lower value obtained according to the limit states of lateral-torsional buckling and compression flange local buckling.

## 1. Lateral-Torsional Buckling

For lateral-torsional buckling, the provisions of Section F2.2 shall apply.
2. Compression Flange Local Buckling
(a) For sections with noncompact flanges

$$
\begin{equation*}
M_{n}=M_{p}-\left(M_{p}-0.7 F_{y} S_{x}\right)\left(\frac{\lambda-\lambda_{p f}}{\lambda_{r f}-\lambda_{p f}}\right) \tag{F3-1}
\end{equation*}
$$

(b) For sections with slender flanges

$$
\begin{equation*}
M_{n}=\frac{0.9 E k_{c} S_{x}}{\lambda^{2}} \tag{F3-2}
\end{equation*}
$$

where
$k_{c}=\frac{4}{\sqrt{h / t_{w}}}$ and shall not be taken less than 0.35 nor greater than 0.76 for calcu-
$h=$ distance as defined in Section B4.1b, in. (mm)
$\lambda=\frac{b_{f}}{2 t_{f}}$
$b_{f}=$ width of the flange, in. (mm)
$t_{f}=$ thickness of the flange, in. (mm)
$\lambda_{p f}=\lambda_{p}$ is the limiting slenderness for a compact flange, defined in Table B4.1b
$\lambda_{r f}=\lambda_{r}$ is the limiting slenderness for a noncompact flange, defined in Table B4.1b

## F4. OTHER I-SHAPED MEMBERS WITH COMPACT OR NONCOMPACT WEBS BENT ABOUT THEIR MAJOR AXIS

This section applies to doubly symmetric I-shaped members bent about their major axis with noncompact webs and singly symmetric I-shaped members with webs attached to the mid-width of the flanges, bent about their major axis, with compact or noncompact webs, as defined in Section B4.1 for flexure.

User Note: I-shaped members for which this section is applicable may be designed conservatively using Section F5.

The nominal flexural strength, $M_{n}$, shall be the lowest value obtained according to the limit states of compression flange yielding, lateral-torsional buckling, compression flange local buckling, and tension flange yielding.

## 1. Compression Flange Yielding

$$
\begin{equation*}
M_{n}=R_{p c} M_{y c} \tag{F4-1}
\end{equation*}
$$

where
$M_{y c}=F_{y} S_{x c}=$ yield moment in the compression flange, kip-in. (N-mm)
$R_{p c}=$ web plastification factor, determined in accordance with Section F4.2(c)(6)
$S_{x c}=$ elastic section modulus referred to compression flange, in. ${ }^{3}\left(\mathrm{~mm}^{3}\right)$

## 2. Lateral-Torsional Buckling

(a) When $L_{b} \leq L_{p}$, the limit state of lateral-torsional buckling does not apply.
(b) When $L_{p}<L_{b} \leq L_{r}$

$$
\begin{equation*}
M_{n}=C_{b}\left[R_{p c} M_{y c}-\left(R_{p c} M_{y c}-F_{L} S_{x c}\right)\left(\frac{L_{b}-L_{p}}{L_{r}-L_{p}}\right)\right] \leq R_{p c} M_{y c} \tag{F4-2}
\end{equation*}
$$

(c) When $L_{b}>L_{r}$

$$
\begin{equation*}
M_{n}=F_{c r} S_{x c} \leq R_{p c} M_{y c} \tag{F4-3}
\end{equation*}
$$

where
(1) $M_{y c}$, the yield moment in the compression flange, kip-in. (N-mm), is:

$$
\begin{equation*}
M_{y c}=F_{y} S_{x c} \tag{F4-4}
\end{equation*}
$$

(2) $F_{c r}$, the critical stress, $\mathrm{ksi}(\mathrm{MPa})$, is:

$$
\begin{equation*}
F_{c r}=\frac{C_{b} \pi^{2} E}{\left(\frac{L_{b}}{r_{t}}\right)^{2}} \sqrt{1+0.078 \frac{J}{S_{x c} h_{o}}\left(\frac{L_{b}}{r_{t}}\right)^{2}} \tag{F4-5}
\end{equation*}
$$

For $\frac{I_{y c}}{I_{y}} \leq 0.23, J$ shall be taken as zero,
where
$I_{y c}=$ moment of inertia of the compression flange about the $y$-axis, in. ${ }^{4}$ $\left(\mathrm{mm}^{4}\right)$
(3) $F_{L}$, nominal compression flange stress above which the inelastic buckling limit states apply, ksi (MPa), is determined as follows:
(i) When $\frac{S_{x t}}{S_{x c}} \geq 0.7$

$$
\begin{equation*}
F_{L}=0.7 F_{y} \tag{F4-6a}
\end{equation*}
$$

(ii) When $\frac{S_{x t}}{S_{x c}}<0.7$

$$
\begin{equation*}
F_{L}=F_{y} \frac{S_{x t}}{S_{x c}} \geq 0.5 F_{y} \tag{F4-6b}
\end{equation*}
$$

where

$$
S_{x t}=\text { elastic section modulus referred to tension flange, in. }{ }^{3}\left(\mathrm{~mm}^{3}\right)
$$

(4) $L_{p}$, the limiting laterally unbraced length for the limit state of yielding, in. ( mm ) is:

$$
\begin{equation*}
L_{p}=1.1 r_{t} \sqrt{\frac{E}{F_{y}}} \tag{F4-7}
\end{equation*}
$$

(5) $L_{r}$, the limiting unbraced length for the limit state of inelastic lateral-torsional buckling, in. (mm), is:

$$
\begin{equation*}
L_{r}=1.95 r_{t} \frac{E}{F_{L}} \sqrt{\frac{J}{S_{x c} h_{o}}+\sqrt{\left(\frac{J}{S_{x c} h_{o}}\right)^{2}+6.76\left(\frac{F_{L}}{E}\right)^{2}}} \tag{F4-8}
\end{equation*}
$$

(6) $R_{p c}$, the web plastification factor, is determined as follows:
(i) When $I_{y c} / I_{y}>0.23$
(a) When $\frac{h_{c}}{t_{w}} \leq \lambda_{p w}$

$$
\begin{equation*}
R_{p c}=\frac{M_{p}}{M_{y c}} \tag{F4-9a}
\end{equation*}
$$

(b) When $\frac{h_{c}}{t_{w}}>\lambda_{p w}$

$$
\begin{equation*}
R_{p c}=\left[\frac{M_{p}}{M_{y c}}-\left(\frac{M_{p}}{M_{y c}}-1\right)\left(\frac{\lambda-\lambda_{p w}}{\lambda_{w}-\lambda_{p w}}\right)\right] \leq \frac{M_{p}}{M_{y c}} \tag{F4-9b}
\end{equation*}
$$

(ii) When $I_{y c} / I_{y} \leq 0.23$

$$
\begin{equation*}
R_{p c}=1.0 \tag{F4-10}
\end{equation*}
$$

where

$$
M_{p}=F_{y} Z_{x} \leq 1.6 F_{y} S_{x}
$$

$h_{c}=$ twice the distance from the centroid to the following: the inside face of the compression flange less the fillet or corner radius, for rolled shapes; the nearest line of fasteners at the compression flange or the inside faces of the compression flange when welds are used, for builtup sections, in. (mm)

$$
\lambda=\frac{h_{c}}{t_{w}}
$$

$\lambda_{p w}=\lambda_{p}$, the limiting slenderness for a compact web, given in Table B4.1b
$\lambda_{r w}=\lambda_{r}$, the limiting slenderness for a noncompact web, given in Table B4.1b
(7) $r_{t}$, the effective radius of gyration for lateral-torsional buckling, in. (mm), is determined as follows:
(i) For I-shapes with a rectangular compression flange

$$
\begin{equation*}
r_{t}=\frac{b_{f c}}{\sqrt{12\left(1+\frac{1}{6} a_{w}\right)}} \tag{F4-11}
\end{equation*}
$$

where

$$
\begin{align*}
a_{w} & =\frac{h_{c} t_{w}}{b_{f c} t_{f c}}  \tag{F4-12}\\
b_{f c} & =\text { width of compression flange, in. (mm) } \\
t_{f c} & =\text { thickness of compression flange, in. (mm) } \\
t_{w} & =\text { thickness of web, in. (mm) }
\end{align*}
$$

(ii) For I-shapes with a channel cap or a cover plate attached to the compression flange
$r_{t}=$ radius of gyration of the flange components in flexural compression plus one-third of the web area in compression due to application of major axis bending moment alone, in. (mm)

## 3. Compression Flange Local Buckling

(a) For sections with compact flanges, the limit state of local buckling does not apply.
(b) For sections with noncompact flanges

$$
\begin{equation*}
M_{n}=R_{p c} M_{y c}-\left(R_{p c} M_{y c}-F_{L} S_{x c}\right)\left(\frac{\lambda-\lambda_{p f}}{\lambda_{r f}-\lambda_{p f}}\right) \tag{F4-13}
\end{equation*}
$$

(c) For sections with slender flanges

$$
\begin{equation*}
M_{n}=\frac{0.9 E k_{c} S_{x c}}{\lambda^{2}} \tag{F4-14}
\end{equation*}
$$

where
$F_{L}$ is defined in Equations F4-6a and F4-6b
$R_{p c}$ is the web plastification factor, determined by Equation F4-9a, F4-9b or F4-10
$k_{c}=\frac{4}{\sqrt{h / t_{w}}}$ and shall not be taken less than 0.35 nor greater than 0.76 for
$\lambda=\frac{b_{f c}}{2 t_{f c}}$
$\lambda_{p f}=\lambda_{p}$, the limiting slenderness for a compact flange, defined in Table B4.1b
$\lambda_{r f}=\lambda_{r}$, the limiting slenderness for a noncompact flange, defined in Table B4.1b

## 4. Tension Flange Yielding

(a) When $S_{x t} \geq S_{x c}$, the limit state of tension flange yielding does not apply.
(b) When $S_{x t}<S_{x c}$

$$
\begin{equation*}
M_{n}=R_{p t} M_{y t} \tag{F4-15}
\end{equation*}
$$

where
$M_{y t}=F_{y} S_{x t}=$ yield moment in the tension flange, kip-in. (N-mm)
$R_{p t}$, the web plastification factor corresponding to the tension flange yielding limit state, is determined as follows:
(1) When $I_{y c} / I_{y}>0.23$
(i) When $\frac{h_{c}}{t_{w}} \leq \lambda_{p w}$

$$
\begin{equation*}
R_{p t}=\frac{M_{p}}{M_{y t}} \tag{F4-16a}
\end{equation*}
$$

(ii) When $\frac{h_{c}}{t_{w}}>\lambda_{p w}$

$$
\begin{equation*}
R_{p t}=\left[\frac{M_{p}}{M_{y t}}-\left(\frac{M_{p}}{M_{y t}}-1\right)\left(\frac{\lambda-\lambda_{p w}}{\lambda_{r w}-\lambda_{p w}}\right)\right] \leq \frac{M_{p}}{M_{y t}} \tag{F4-16b}
\end{equation*}
$$

(2) When $I_{y c} / I_{y} \leq 0.23$

$$
\begin{equation*}
R_{p t}=1.0 \tag{F4-17}
\end{equation*}
$$

where
$M_{p}=F_{y} Z_{x} \leq 1.6 F_{y} S_{x}$
$\lambda=\frac{h_{c}}{t_{w}}$
$\lambda_{p w}=\lambda_{p}$, the limiting slenderness for a compact web, defined in Table B4.1b
$\lambda_{r w}=\lambda_{r}$, the limiting slenderness for a noncompact web, defined in Table B4.1b

## F5. DOUBLY SYMMETRIC AND SINGLY SYMMETRIC I-SHAPED MEMBERS WITH SLENDER WEBS BENT ABOUT THEIR MAJOR AXIS

This section applies to doubly symmetric and singly symmetric I-shaped members with slender webs attached to the mid-width of the flanges and bent about their major axis as defined in Section B4.1 for flexure.

The nominal flexural strength, $M_{n}$, shall be the lowest value obtained according to the limit states of compression flange yielding, lateral-torsional buckling, compression flange local buckling, and tension flange yielding.

## 1. Compression Flange Yielding

$$
\begin{equation*}
M_{n}=R_{p g} F_{y} S_{x c} \tag{F5-1}
\end{equation*}
$$

2. Lateral-Torsional Buckling

$$
\begin{equation*}
M_{n}=R_{p g} F_{c r} S_{x c} \tag{F5-2}
\end{equation*}
$$

(a) When $L_{b} \leq L_{p}$, the limit state of lateral-torsional buckling does not apply.
(b) When $L_{p}<L_{b} \leq L_{r}$

$$
\begin{equation*}
F_{c r}=C_{b}\left[F_{y}-\left(0.3 F_{y}\right)\left(\frac{L_{b}-L_{p}}{L_{r}-L_{p}}\right)\right] \leq F_{y} \tag{F5-3}
\end{equation*}
$$

(c) When $L_{b}>L_{r}$

$$
\begin{equation*}
F_{c r}=\frac{C_{b} \pi^{2} E}{\left(\frac{L_{b}}{r_{t}}\right)^{2}} \leq F_{y} \tag{F5-4}
\end{equation*}
$$

where
$L_{p}$ is defined by Equation F4-7

$$
\begin{equation*}
L_{r}=\pi r_{t} \sqrt{\frac{E}{0.7 F_{y}}} \tag{F5-5}
\end{equation*}
$$

$r_{t}=$ effective radius of gyration for lateral-torsional buckling as defined in Section F4, in. (mm)
$R_{p g}$, the bending strength reduction factor, is:

$$
\begin{equation*}
R_{p g}=1-\frac{a_{w}}{1,200+300 a_{w}}\left(\frac{h_{c}}{t_{w}}-5.7 \sqrt{\frac{E}{F_{y}}}\right) \leq 1.0 \tag{F5-6}
\end{equation*}
$$

and

$$
a_{w} \text { is defined by Equation F4-12, but shall not exceed } 10
$$

## 3. Compression Flange Local Buckling

$$
\begin{equation*}
M_{n}=R_{p g} F_{c r} S_{x c} \tag{F5-7}
\end{equation*}
$$

(a) For sections with compact flanges, the limit state of compression flange local buckling does not apply.
(b) For sections with noncompact flanges

$$
\begin{equation*}
F_{c r}=\left[F_{y}-\left(0.3 F_{y}\right)\left(\frac{\lambda-\lambda_{p f}}{\lambda_{r f}-\lambda_{p f}}\right)\right] \tag{F5-8}
\end{equation*}
$$

(c) For sections with slender flanges

$$
\begin{equation*}
F_{c r}=\frac{0.9 E k_{c}}{\left(\frac{b_{f}}{2 t_{f}}\right)^{2}} \tag{F5-9}
\end{equation*}
$$

where
$k_{c}=\frac{4}{\sqrt{h / t_{w}}}$ and shall not be taken less than 0.35 nor greater than 0.76 for calcu-
$\lambda=\frac{b_{f c}}{2 t_{f c}}$
$\lambda_{p f}=\lambda_{p}$, the limiting slenderness for a compact flange, defined in Table B4.1b
$\lambda_{r f}=\lambda_{r}$, the limiting slenderness for a noncompact flange, defined in Table B4.1b

## 4. Tension Flange Yielding

(a) When $S_{x t} \geq S_{x c}$, the limit state of tension flange yielding does not apply.
(b) When $S_{x t}<S_{x c}$

$$
\begin{equation*}
M_{n}=F_{y} S_{x t} \tag{F5-10}
\end{equation*}
$$

## F6. I-SHAPED MEMBERS AND CHANNELS BENT ABOUT THEIR MINOR AXIS

This section applies to I-shaped members and channels bent about their minor axis.
The nominal flexural strength, $M_{n}$, shall be the lower value obtained according to the limit states of yielding (plastic moment) and flange local buckling.

## 1. Yielding

$$
\begin{equation*}
M_{n}=M_{p}=F_{y} Z_{y} \leq 1.6 F_{y} S_{y} \tag{F6-1}
\end{equation*}
$$

where
$S_{y}=$ elastic section modulus taken about the $y$-axis, in. ${ }^{3}\left(\mathrm{~mm}^{3}\right)$
$Z_{y}=$ plastic section modulus taken about the $y$-axis, in. ${ }^{3}\left(\mathrm{~mm}^{3}\right)$

## 2. Flange Local Buckling

(a) For sections with compact flanges, the limit state of flange local buckling does not apply.

User Note: All current ASTM A6 W, S, M, C and MC shapes except W $21 \times 48$, W $14 \times 99$, W $14 \times 90$, W $12 \times 65$, W $10 \times 12$, W8×31, W $8 \times 10$, W $6 \times 15$, W $6 \times 9$, $\mathrm{W} 6 \times 8.5$ and $\mathrm{M} 4 \times 6$ have compact flanges at $F_{y}=50 \mathrm{ksi}(345 \mathrm{MPa})$.
(b) For sections with noncompact flanges

$$
\begin{equation*}
M_{n}=M_{p}-\left(M_{p}-0.7 F_{y} S_{y}\right)\left(\frac{\lambda-\lambda_{p f}}{\lambda_{r f}-\lambda_{p f}}\right) \tag{F6-2}
\end{equation*}
$$

(c) For sections with slender flanges

$$
\begin{equation*}
M_{n}=F_{c r} S_{y} \tag{F6-3}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{c r}=\frac{0.69 E}{\left(\frac{b}{t_{f}}\right)^{2}} \tag{F6-4}
\end{equation*}
$$

$b$ = for flanges of I-shaped members, half the full flange width, $b_{f}$; for flanges of channels, the full nominal dimension of the flange, in. (mm)
$t_{f}=$ thickness of the flange, in. (mm)
$\lambda=\frac{b}{t_{f}}$
$\lambda_{p f}=\lambda_{p}$, the limiting slenderness for a compact flange, defined in Table B4.1b
$\lambda_{r f}=\lambda_{r}$, the limiting slenderness for a noncompact flange, defined in Table B4.1b

## F7. SQUARE AND RECTANGULAR HSS AND BOX SECTIONS

This section applies to square and rectangular HSS, and box sections bent about either axis, having compact, noncompact or slender webs or flanges, as defined in Section B4.1 for flexure.

The nominal flexural strength, $M_{n}$, shall be the lowest value obtained according to the limit states of yielding (plastic moment), flange local buckling, web local buckling, and lateral-torsional buckling under pure flexure.

## 1. Yielding

$$
\begin{equation*}
M_{n}=M_{p}=F_{y} Z \tag{F7-1}
\end{equation*}
$$

where
$Z=$ plastic section modulus about the axis of bending, in. ${ }^{3}\left(\mathrm{~mm}^{3}\right)$

## 2. Flange Local Buckling

(a) For compact sections, the limit state of flange local buckling does not apply.
(b) For sections with noncompact flanges

$$
\begin{equation*}
M_{n}=M_{p}-\left(M_{p}-F_{y} S\right)\left(3.57 \frac{b}{t_{f}} \sqrt{\frac{F_{y}}{E}}-4.0\right) \leq M_{p} \tag{F7-2}
\end{equation*}
$$

where
$S=$ elastic section modulus about the axis of bending, in. ${ }^{3}\left(\mathrm{~mm}^{3}\right)$
$b=$ width of compression flange as defined in Section B4.1b, in. (mm)
(c) For sections with slender flanges

$$
\begin{equation*}
M_{n}=F_{y} S_{e} \tag{F7-3}
\end{equation*}
$$

where
$S_{e}=$ effective section modulus determined with the effective width, $b_{e}$, of the compression flange taken as:
(1) For HSS

$$
\begin{equation*}
b_{e}=1.92 t_{f} \sqrt{\frac{E}{F_{y}}}\left(1-\frac{0.38}{b / t_{f}} \sqrt{\frac{E}{F_{y}}}\right) \leq b \tag{F7-4}
\end{equation*}
$$

(2) For box sections

$$
\begin{equation*}
b_{e}=1.92 t_{f} \sqrt{\frac{E}{F_{y}}}\left(1-\frac{0.34}{b / t_{f}} \sqrt{\frac{E}{F_{y}}}\right) \leq b \tag{F7-5}
\end{equation*}
$$

## 3. Web Local Buckling

(a) For compact sections, the limit state of web local buckling does not apply.
(b) For sections with noncompact webs

$$
\begin{equation*}
M_{n}=M_{p}-\left(M_{p}-F_{y} S\right)\left(0.305 \frac{h}{t_{w}} \sqrt{\frac{F_{y}}{E}}-0.738\right) \leq M_{p} \tag{F7-6}
\end{equation*}
$$

where
$h=$ depth of web, as defined in Section B4.1b, in. (mm)
(c) For sections with slender webs
(1) Compression flange yielding

$$
\begin{equation*}
M_{n}=R_{p g} F_{y} S \tag{F7-7}
\end{equation*}
$$

(2) Compression flange local buckling

$$
\begin{equation*}
M_{n}=R_{p g} F_{c r} S_{x c} \tag{F7-8}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{c r}=\frac{0.9 E k_{c}}{\left(\frac{b}{t_{f}}\right)^{2}} \tag{F7-9}
\end{equation*}
$$

where

$$
\begin{aligned}
& R_{p g} \text { is defined by Equation F5-6 with } a_{w}=2 h t_{w} /\left(b t_{f}\right) \\
& k_{c}=4.0
\end{aligned}
$$

User Note: When Equation F7-9 results in the stress, $F_{c r}$, being greater than $F_{y}$, member strength will be limited by one of the other limit states in Section F7.

User Note: There are no HSS with slender webs.

## 4. Lateral-Torsional Buckling

(a) When $L_{b} \leq L_{p}$, the limit state of lateral-torsional buckling does not apply.
(b) When $L_{p}<L_{b} \leq L_{r}$

$$
\begin{equation*}
M_{n}=C_{b}\left[M_{p}-\left(M_{p}-0.7 F_{y} S_{x}\right)\left(\frac{L_{b}-L_{p}}{L_{r}-L_{p}}\right)\right] \leq M_{p} \tag{F7-10}
\end{equation*}
$$

(c) When $L_{b}>L_{r}$

$$
\begin{equation*}
M_{n}=2 E C_{b} \frac{\sqrt{J A_{g}}}{L_{b} / r_{y}} \leq M_{p} \tag{F7-11}
\end{equation*}
$$

where
$A_{g}=$ gross cross-sectional area of member, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
$L_{p}$, the limiting laterally unbraced length for the limit state of yielding, in. (mm), is:

$$
\begin{equation*}
L_{p}=0.13 E r_{y} \frac{\sqrt{J A_{g}}}{M_{p}} \tag{F7-12}
\end{equation*}
$$

$L_{r}$, the limiting laterally unbraced length for the limit state of inelastic lateraltorsional buckling, in. (mm), is:

$$
\begin{equation*}
L_{r}=2 E r_{y} \frac{\sqrt{J A_{g}}}{0.7 F_{y} S_{x}} \tag{F7-13}
\end{equation*}
$$

User Note: Lateral-torsional buckling will not occur in square sections or sections bending about their minor axis. In HSS sizes, deflection will usually control before there is a significant reduction in flexural strength due to lateral-torsional buckling. The same is true for box sections, and lateral-torsional buckling will usually only be a consideration for sections with high depth-to-width ratios.

## F8. ROUND HSS

This section applies to round HSS having $D / t$ ratios of less than $\frac{0.45 E}{F_{y}}$.

The nominal flexural strength, $M_{n}$, shall be the lower value obtained according to the limit states of yielding (plastic moment) and local buckling.

## 1. Yielding

$$
\begin{equation*}
M_{n}=M_{p}=F_{y} Z \tag{F8-1}
\end{equation*}
$$

## 2. Local Buckling

(a) For compact sections, the limit state of flange local buckling does not apply.
(b) For noncompact sections

$$
\begin{equation*}
M_{n}=\left[\frac{0.021 E}{\left(\frac{D}{t}\right)}+F_{y}\right] S \tag{F8-2}
\end{equation*}
$$

(c) For sections with slender walls

$$
\begin{equation*}
M_{n}=F_{c r} S \tag{F8-3}
\end{equation*}
$$

where
$D=$ outside diameter of round HSS, in. (mm)
$F_{c r}=\frac{0.33 E}{\left(\frac{D}{t}\right)}$
$t=$ design wall thickness of HSS member, in. (mm)

## F9. TEES AND DOUBLE ANGLES LOADED IN THE PLANE OF SYMMETRY

This section applies to tees and double angles loaded in the plane of symmetry.
The nominal flexural strength, $M_{n}$, shall be the lowest value obtained according to the limit states of yielding (plastic moment), lateral-torsional buckling, flange local buckling, and local buckling of tee stems and double angle web legs.

## 1. Yielding

$$
\begin{equation*}
M_{n}=M_{p} \tag{F9-1}
\end{equation*}
$$

where
(a) For tee stems and web legs in tension

$$
\begin{equation*}
M_{p}=F_{y} Z_{x} \leq 1.6 M_{y} \tag{F9-2}
\end{equation*}
$$

where

$$
\begin{align*}
M_{y} & =\text { yield moment about the axis of bending, kip-in. (N-mm) } \\
& =F_{y} S_{x} \tag{F9-3}
\end{align*}
$$

(b) For tee stems in compression

$$
\begin{equation*}
M_{p}=M_{y} \tag{F9-4}
\end{equation*}
$$

(c) For double angles with web legs in compression

$$
\begin{equation*}
M_{p}=1.5 M_{y} \tag{F9-5}
\end{equation*}
$$

## 2. Lateral-Torsional Buckling

(a) For stems and web legs in tension
(1) When $L_{b} \leq L_{p}$, the limit state of lateral-torsional buckling does not apply.
(2) When $L_{p}<L_{b} \leq L_{r}$

$$
\begin{equation*}
M_{n}=M_{p}-\left(M_{p}-M_{y}\right)\left(\frac{L_{b}-L_{p}}{L_{r}-L_{p}}\right) \tag{F9-6}
\end{equation*}
$$

(3) When $L_{b}>L_{r}$

$$
\begin{equation*}
M_{n}=M_{c r} \tag{F9-7}
\end{equation*}
$$

where

$$
\begin{align*}
& L_{p}=1.76 r_{y} \sqrt{\frac{E}{F_{y}}}  \tag{F9-8}\\
& L_{r}=1.95\left(\frac{E}{F_{y}}\right) \frac{\sqrt{I_{y} J}}{S_{x}} \sqrt{2.36\left(\frac{F_{y}}{E}\right) \frac{d S_{x}}{J}+1} \tag{F9-9}
\end{align*}
$$

$$
\begin{align*}
M_{c r} & =\frac{1.95 E}{L_{b}} \sqrt{I_{y} J}\left(B+\sqrt{1+B^{2}}\right)  \tag{F9-10}\\
B & =2.3\left(\frac{d}{L_{b}}\right) \sqrt{\frac{I_{y}}{J}}  \tag{F9-11}\\
d & =\text { depth of tee or width of web leg in tension, in. (mm) }
\end{align*}
$$

(b) For stems and web legs in compression anywhere along the unbraced length, $M_{c r}$ is given by Equation F9-10 with

$$
\begin{equation*}
B=-2.3\left(\frac{d}{L_{b}}\right) \sqrt{\frac{I_{y}}{J}} \tag{F9-12}
\end{equation*}
$$

where
$d=$ depth of tee or width of web leg in compression, in. (mm)
(1) For tee stems

$$
\begin{equation*}
M_{n}=M_{c r} \leq M_{y} \tag{F9-13}
\end{equation*}
$$

(2) For double-angle web legs, $M_{n}$ shall be determined using Equations F10-2 and F10-3 with $M_{c r}$ determined using Equation F9-10 and $M_{y}$ determined using Equation F9-3.

## 3. Flange Local Buckling of Tees and Double-Angle Legs

(a) For tee flanges
(1) For sections with a compact flange in flexural compression, the limit state of flange local buckling does not apply.
(2) For sections with a noncompact flange in flexural compression

$$
\begin{equation*}
M_{n}=\left[M_{p}-\left(M_{p}-0.7 F_{y} S_{x c}\right)\left(\frac{\lambda-\lambda_{p f}}{\lambda_{r f}-\lambda_{p f}}\right)\right] \leq 1.6 M_{y} \tag{F9-14}
\end{equation*}
$$

(3) For sections with a slender flange in flexural compression

$$
\begin{equation*}
M_{n}=\frac{0.7 E S_{x c}}{\left(\frac{b_{f}}{2 t_{f}}\right)^{2}} \tag{F9-15}
\end{equation*}
$$

where
$S_{x c}=$ elastic section modulus referred to the compression flange, in. ${ }^{3}\left(\mathrm{~mm}^{3}\right)$
$\lambda=\frac{b_{f}}{2 t_{f}}$
$\lambda_{p f}=\lambda_{p}$, the limiting slenderness for a compact flange, defined in Table B4.1b
$\lambda_{r f}=\lambda_{r}$, the limiting slenderness for a noncompact flange, defined in Table B4.1b
(b) For double-angle flange legs

The nominal moment strength, $M_{n}$, for double angles with the flange legs in compression shall be determined in accordance with Section F10.3, with $S_{c}$ referred to the compression flange.

## 4. Local Buckling of Tee Stems and Double-Angle Web Legs in Flexural Compression

(a) For tee stems

$$
\begin{equation*}
M_{n}=F_{c r} S_{x} \tag{F9-16}
\end{equation*}
$$

where
$S_{x}=$ elastic section modulus, in. ${ }^{3}\left(\mathrm{~mm}^{3}\right)$
$F_{c r}$, the critical stress, is determined as follows:
(1) When $\frac{d}{t_{w}} \leq 0.84 \sqrt{\frac{E}{F_{y}}}$

$$
\begin{equation*}
F_{c r}=F_{y} \tag{F9-17}
\end{equation*}
$$

(2) When $0.84 \sqrt{\frac{E}{F_{y}}}<\frac{d}{t_{w}} \leq 1.52 \sqrt{\frac{E}{F_{y}}}$

$$
\begin{equation*}
F_{c r}=\left(1.43-0.515 \frac{d}{t_{w}} \sqrt{\frac{F_{y}}{E}}\right) F_{y} \tag{F9-18}
\end{equation*}
$$

(3) When $\frac{d}{t_{w}}>1.52 \sqrt{\frac{E}{F_{y}}}$

$$
\begin{equation*}
F_{c r}=\frac{1.52 E}{\left(\frac{d}{t_{w}}\right)^{2}} \tag{F9-19}
\end{equation*}
$$

(b) For double-angle web legs

The nominal moment strength, $M_{n}$, for double angles with the web legs in compression shall be determined in accordance with Section F10.3, with $S_{c}$ taken as the elastic section modulus.

## F10. SINGLE ANGLES

This section applies to single angles with and without continuous lateral restraint along their length.

Single angles with continuous lateral-torsional restraint along the length are permitted to be designed on the basis of geometric axis $(x, y)$ bending. Single angles without continuous lateral-torsional restraint along the length shall be designed using the provisions for principal axis bending except where the provision for bending about a geometric axis is permitted.

If the moment resultant has components about both principal axes, with or without axial load, or the moment is about one principal axis and there is axial load, the combined stress ratio shall be determined using the provisions of Section H2.

User Note: For geometric axis design, use section properties computed about the $x$ - and $y$-axis of the angle, parallel and perpendicular to the legs. For principal axis design, use section properties computed about the major and minor principal axes of the angle.

The nominal flexural strength, $M_{n}$, shall be the lowest value obtained according to the limit states of yielding (plastic moment), lateral-torsional buckling, and leg local buckling.

User Note: For bending about the minor principal axis, only the limit states of yielding and leg local buckling apply.

## 1. Yielding

$$
\begin{equation*}
M_{n}=1.5 M_{y} \tag{F10-1}
\end{equation*}
$$

## 2. Lateral-Torsional Buckling

For single angles without continuous lateral-torsional restraint along the length
(a) When $\frac{M_{y}}{M_{c r}} \leq 1.0$

$$
\begin{equation*}
M_{n}=\left(1.92-1.17 \sqrt{\frac{M_{y}}{M_{c r}}}\right) M_{y} \leq 1.5 M_{y} \tag{F10-2}
\end{equation*}
$$

(b) When $\frac{M_{y}}{M_{c r}}>1.0$

$$
\begin{equation*}
M_{n}=\left(0.92-\frac{0.17 M_{c r}}{M_{y}}\right) M_{c r} \tag{F10-3}
\end{equation*}
$$

where
$M_{c r}$, the elastic lateral-torsional buckling moment, is determined as follows:
(1) For bending about the major principal axis of single angles

$$
\begin{equation*}
M_{c r}=\frac{9 E A r_{z} t C_{b}}{8 L_{b}}\left[\sqrt{1+\left(4.4 \frac{\beta_{w} r_{z}}{L_{b} t}\right)^{2}}+4.4 \frac{\beta_{w} r_{z}}{L_{b} t}\right] \tag{F10-4}
\end{equation*}
$$

where
$C_{b}$ is computed using Equation F1-1 with a maximum value of 1.5
$A=$ cross-sectional area of angle, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
$L_{b}=$ laterally unbraced length of member, in. (mm)
$r_{z}=$ radius of gyration about the minor principal axis, in. (mm)
$t=$ thickness of angle leg, in. (mm)
$\beta_{w}=$ section property for single angles about major principal axis, in. (mm). $\beta_{w}$ is positive with short legs in compression and negative with long legs in compression for unequal-leg angles, and zero for equal-leg angles. If the long leg is in compression anywhere along the unbraced length of the member, the negative value of $\beta_{w}$ shall be used.

User Note: The equation for $\beta_{w}$ and values for common angle sizes are listed in the Commentary.
(2) For bending about one of the geometric axes of an equal-leg angle with no axial compression
(i) With no lateral-torsional restraint:
(a) With maximum compression at the toe

$$
\begin{equation*}
M_{c r}=\frac{0.58 E b^{4} t C_{b}}{L_{b}^{2}}\left[\sqrt{1+0.88\left(\frac{L_{b} t}{b^{2}}\right)^{2}}-1\right] \tag{F10-5a}
\end{equation*}
$$

(b) With maximum tension at the toe

$$
\begin{equation*}
M_{c r}=\frac{0.58 E b^{4} t C_{b}}{L_{b}^{2}}\left[\sqrt{1+0.88\left(\frac{L_{b} t}{b^{2}}\right)^{2}}+1\right] \tag{F10-5b}
\end{equation*}
$$

where
$M_{y}$ shall be taken as 0.80 times the yield moment calculated using the geometric section modulus.
$b=$ width of leg, in. (mm)
(ii) With lateral-torsional restraint at the point of maximum moment only:
$M_{c r}$ shall be taken as 1.25 times $M_{c r}$ computed using Equation F10-5a or F10-5b.
$M_{y}$ shall be taken as the yield moment calculated using the geometric section modulus.

User Note: $M_{n}$ may be taken as $M_{y}$ for single angles with their vertical leg toe in compression, and having a span-to-depth ratio less than or equal to

$$
\frac{1.64 E}{F_{y}} \sqrt{\left(\frac{t}{b}\right)^{2}-1.4 \frac{F_{y}}{E}}
$$

## 3. Leg Local Buckling

The limit state of leg local buckling applies when the toe of the leg is in compression.
(a) For compact sections, the limit state of leg local buckling does not apply.
(b) For sections with noncompact legs

$$
\begin{equation*}
M_{n}=F_{y} S_{c}\left[2.43-1.72\left(\frac{b}{t}\right) \sqrt{\frac{F_{y}}{E}}\right] \tag{F10-6}
\end{equation*}
$$

(c) For sections with slender legs

$$
\begin{equation*}
M_{n}=F_{c r} S_{c} \tag{F10-7}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{c r}=\frac{0.71 E}{\left(\frac{b}{t}\right)^{2}} \tag{F10-8}
\end{equation*}
$$

$S_{c}=$ elastic section modulus to the toe in compression relative to the axis of bending, in. ${ }^{3}\left(\mathrm{~mm}^{3}\right)$. For bending about one of the geometric axes of an equal-leg angle with no lateral-torsional restraint, $S_{c}$ shall be 0.80 of the geometric axis section modulus.
$b=$ full width of leg in compression, in. (mm)

## F11. RECTANGULAR BARS AND ROUNDS

This section applies to rectangular bars bent about either geometric axis and rounds. The nominal flexural strength, $M_{n}$, shall be the lower value obtained according to the limit states of yielding (plastic moment) and lateral-torsional buckling.

## 1. Yielding

For rectangular bars with $\frac{L_{b} d}{t^{2}} \leq \frac{0.08 E}{F_{y}}$ bent about their major axis, rectangular bars bent about their minor axis, and rounds

$$
\begin{equation*}
M_{n}=M_{p}=F_{y} Z \leq 1.6 F_{y} S_{x} \tag{F11-1}
\end{equation*}
$$

where
$d=$ depth of rectangular bar, in. (mm)
$t=$ width of rectangular bar parallel to axis of bending, in. (mm)

## 2. Lateral-Torsional Buckling

(a) For rectangular bars with $\frac{L_{b} d}{t^{2}} \leq \frac{0.08 E}{F_{y}}$ bent about their major axis, the limit state of lateral-torsional buckling does not apply.
(b) For rectangular bars with $\frac{0.08 E}{F_{y}}<\frac{L_{b} d}{t^{2}} \leq \frac{1.9 E}{F_{y}}$ bent about their major axis

$$
\begin{equation*}
M_{n}=C_{b}\left[1.52-0.274\left(\frac{L_{b} d}{t^{2}}\right) \frac{F_{y}}{E}\right] M_{y} \leq M_{p} \tag{F11-2}
\end{equation*}
$$

where
$L_{b}=$ length between points that are either braced against lateral displacement of the compression region or between points braced to prevent twist of the cross section, in. (mm)
(c) For rectangular bars with $\frac{L_{b} d}{t^{2}}>\frac{1.9 E}{F_{y}}$ bent about their major axis

$$
\begin{equation*}
M_{n}=F_{c r} S_{x} \leq M_{p} \tag{F11-3}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{c r}=\frac{1.9 E C_{b}}{\frac{L_{b} d}{t^{2}}} \tag{F11-4}
\end{equation*}
$$

(d) For rounds and rectangular bars bent about their minor axis, the limit state of lateral-torsional buckling need not be considered.

## F12. UNSYMMETRICAL SHAPES

This section applies to all unsymmetrical shapes except single angles.
The nominal flexural strength, $M_{n}$, shall be the lowest value obtained according to the limit states of yielding (yield moment), lateral-torsional buckling, and local buckling where

$$
\begin{equation*}
M_{n}=F_{n} S_{m i n} \tag{F12-1}
\end{equation*}
$$

where
$S_{\min }=$ minimum elastic section modulus relative to the axis of bending, in. ${ }^{3}\left(\mathrm{~mm}^{3}\right)$

User Note: The design provisions within this section can be overly conservative for certain shapes, unbraced lengths and moment diagrams. To improve economy, the provisions of Appendix 1.3 are recommended as an alternative for determining the nominal flexural strength of members of unsymmetrical shape.

## 1. Yielding

$$
\begin{equation*}
F_{n}=F_{y} \tag{F12-2}
\end{equation*}
$$

## 2. Lateral-Torsional Buckling

$$
\begin{equation*}
F_{n}=F_{c r} \leq F_{y} \tag{F12-3}
\end{equation*}
$$

where
$F_{c r}=$ lateral-torsional buckling stress for the section as determined by analysis, ksi (MPa)

User Note: In the case of Z-shaped members, it is recommended that $F_{c r}$ be taken as $0.5 F_{c r}$ of a channel with the same flange and web properties.

## 3. Local Buckling

$$
\begin{equation*}
F_{n}=F_{c r} \leq F_{y} \tag{F12-4}
\end{equation*}
$$

where
$F_{c r}=$ local buckling stress for the section as determined by analysis, ksi (MPa)

## F13. PROPORTIONS OF BEAMS AND GIRDERS

## 1. Strength Reductions for Members with Holes in the Tension Flange

This section applies to rolled or built-up shapes and cover-plated beams with holes, proportioned on the basis of flexural strength of the gross section.

In addition to the limit states specified in other sections of this Chapter, the nominal flexural strength, $M_{n}$, shall be limited according to the limit state of tensile rupture of the tension flange.
(a) When $F_{u} A_{f n} \geq Y_{t} F_{y} A_{f g}$, the limit state of tensile rupture does not apply.
(b) When $F_{u} A_{f n}<Y_{t} F_{y} A_{f g}$, the nominal flexural strength, $M_{n}$, at the location of the holes in the tension flange shall not be taken greater than

$$
\begin{equation*}
M_{n}=\frac{F_{u} A_{f n}}{A_{f g}} S_{x} \tag{F13-1}
\end{equation*}
$$

where
$A_{f g}=$ gross area of tension flange, calculated in accordance with the provisions of Section B4.3a, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
$A_{f n}=$ net area of tension flange, calculated in accordance with the provisions of Section B4.3b, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
$F_{u}=$ specified minimum tensile strength, ksi (MPa)
$S_{x}=$ minimum elastic section modulus taken about the $x$-axis, in. ${ }^{3}\left(\mathrm{~mm}^{3}\right)$
$Y_{t}=1.0$ for $F_{y} / F_{u} \leq 0.8$
$=1.1$ otherwise

## 2. Proportioning Limits for I-Shaped Members

Singly symmetric I-shaped members shall satisfy the following limit:

$$
\begin{equation*}
0.1 \leq \frac{I_{y c}}{I_{y}} \leq 0.9 \tag{F13-2}
\end{equation*}
$$

I-shaped members with slender webs shall also satisfy the following limits:
(a) When $\frac{a}{h} \leq 1.5$

$$
\begin{equation*}
\left(\frac{h}{t_{w}}\right)_{\max }=12.0 \sqrt{\frac{E}{F_{y}}} \tag{F13-3}
\end{equation*}
$$

(b) When $\frac{a}{h}>1.5$

$$
\begin{equation*}
\left(\frac{h}{t_{w}}\right)_{\max }=\frac{0.40 E}{F_{y}} \tag{F13-4}
\end{equation*}
$$

where
$a=$ clear distance between transverse stiffeners, in. (mm)
In unstiffened girders, $h / t_{w}$ shall not exceed 260. The ratio of the web area to the compression flange area shall not exceed 10.

## 3. Cover Plates

For members with cover plates, the following provisions apply:
(a) Flanges of welded beams or girders are permitted to be varied in thickness or width by splicing a series of plates or by the use of cover plates.
(b) High-strength bolts or welds connecting flange to web, or cover plate to flange, shall be proportioned to resist the total horizontal shear resulting from the bending forces on the girder. The longitudinal distribution of these bolts or intermittent welds shall be in proportion to the intensity of the shear.
(c) However, the longitudinal spacing shall not exceed the maximum specified for compression or tension members in Sections E6 or D4, respectively. Bolts or welds connecting flange to web shall also be proportioned to transmit to the web any loads applied directly to the flange, unless provision is made to transmit such loads by direct bearing.
(d) Partial-length cover plates shall be extended beyond the theoretical cutoff point and the extended portion shall be attached to the beam or girder by high-strength bolts in a slip-critical connection or fillet welds. The attachment shall, at the applicable strength given in Sections J2.2, J3.8 or B3.11, develop the cover plate's portion of the flexural strength in the beam or girder at the theoretical cutoff point.
(e) For welded cover plates, the welds connecting the cover plate termination to the beam or girder shall be continuous welds along both edges of the cover plate in the length $a^{\prime}$, defined in the following, and shall develop the cover plate's portion of the available strength of the beam or girder at the distance $a^{\prime}$ from the end of the cover plate.
(1) When there is a continuous weld equal to or larger than three-fourths of the plate thickness across the end of the plate

$$
\begin{equation*}
a^{\prime}=w \tag{F13-5}
\end{equation*}
$$

where

$$
w=\text { width of cover plate, in. }(\mathrm{mm})
$$

(2) When there is a continuous weld smaller than three-fourths of the plate thickness across the end of the plate

$$
\begin{equation*}
a^{\prime}=1.5 w \tag{F13-6}
\end{equation*}
$$

(3) When there is no weld across the end of the plate

$$
\begin{equation*}
a^{\prime}=2 w \tag{F13-7}
\end{equation*}
$$

## 4. Built-Up Beams

Where two or more beams or channels are used side by side to form a flexural member, they shall be connected together in compliance with Section E6.2. When concentrated loads are carried from one beam to another or distributed between the beams, diaphragms having sufficient stiffness to distribute the load shall be welded or bolted between the beams.

## 5. Unbraced Length for Moment Redistribution

For moment redistribution in indeterminate beams according to Section B3.3, the laterally unbraced length, $L_{b}$, of the compression flange adjacent to the redistributed end moment locations shall not exceed $L_{m}$ determined as follows.
(a) For doubly symmetric and singly symmetric I-shaped beams with the compression flange equal to or larger than the tension flange loaded in the plane of the web

$$
\begin{equation*}
L_{m}=\left[0.12+0.076\left(\frac{M_{1}}{M_{2}}\right)\right]\left(\frac{E}{F_{y}}\right) r_{y} \tag{F13-8}
\end{equation*}
$$

(b) For solid rectangular bars and symmetric box beams bent about their major axis

$$
\begin{equation*}
L_{m}=\left[0.17+0.10\left(\frac{M_{1}}{M_{2}}\right)\right]\left(\frac{E}{F_{y}}\right) r_{y} \geq 0.10\left(\frac{E}{F_{y}}\right) r_{y} \tag{F13-9}
\end{equation*}
$$

where
$F_{y}=$ specified minimum yield stress of the compression flange, ksi (MPa)
$M_{1}=$ smaller moment at end of unbraced length, kip-in. (N-mm)
$M_{2}=$ larger moment at end of unbraced length, kip-in. (N-mm)
$r_{y}=$ radius of gyration about $y$-axis, in. (mm)
( $M_{1} / M_{2}$ ) is positive when moments cause reverse curvature and negative for single curvature

There is no limit on $L_{b}$ for members with round or square cross sections or for any beam bent about its minor axis.

## CHAPTER G

## DESIGN OF MEMBERS FOR SHEAR

This chapter addresses webs of singly or doubly symmetric members subject to shear in the plane of the web, single angles and HSS subject to shear, and shear in the weak direction of singly or doubly symmetric shapes.

The chapter is organized as follows:
G1. General Provisions
G2. I-Shaped Members and Channels
G3. Single Angles and Tees
G4. Rectangular HSS, Box Sections, and other Singly and Doubly Symmetric Members
G5. Round HSS
G6. Weak-Axis Shear in Doubly Symmetric and Singly Symmetric Shapes
G7. Beams and Girders with Web Openings
User Note: For cases not included in this chapter, the following sections apply:

- H3.3 Unsymmetric sections
- J4.2 Shear strength of connecting elements
- J10.6 Web panel zone shear


## G1. GENERAL PROVISIONS

The design shear strength, $\phi_{\nu} V_{n}$, and the allowable shear strength, $V_{n} / \Omega_{v}$, shall be determined as follows:
(a) For all provisions in this chapter except Section G2.1(a)

$$
\phi_{v}=0.90(\mathrm{LRFD}) \quad \Omega_{v}=1.67(\mathrm{ASD})
$$

(b) The nominal shear strength, $V_{n}$, shall be determined according to Sections G2 through G7.

## G2. I-SHAPED MEMBERS AND CHANNELS

1. Shear Strength of Webs without Tension Field Action

The nominal shear strength, $V_{n}$, is:

$$
\begin{equation*}
V_{n}=0.6 F_{y} A_{w} C_{v 1} \tag{G2-1}
\end{equation*}
$$

where
$F_{y}=$ specified minimum yield stress of the type of steel being used, ksi (MPa)
$A_{w}=$ area of web, the overall depth times the web thickness, $d t_{w}$, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
(a) For webs of rolled I-shaped members with $h / t_{w} \leq 2.24 \sqrt{E / F_{y}}$

$$
\phi_{v}=1.00(\mathrm{LRFD}) \quad \Omega_{v}=1.50(\mathrm{ASD})
$$

and

$$
\begin{equation*}
C_{v 1}=1.0 \tag{G2-2}
\end{equation*}
$$

where
$E=$ modulus of elasticity of steel $=29,000 \mathrm{ksi}(200000 \mathrm{MPa})$
$h$ = clear distance between flanges less the fillet at each flange, in. (mm)
$t_{w}=$ thickness of web, in. (mm)

User Note: All current ASTM A6 W, S and HP shapes except W44×230, $\mathrm{W} 40 \times 149, \mathrm{~W} 36 \times 135$, W $33 \times 118$, W $30 \times 90$, W $24 \times 55$, W $16 \times 26$ and $\mathrm{W} 12 \times 14$ meet the criteria stated in Section G2.1(a) for $F_{y}=50 \mathrm{ksi}(345 \mathrm{MPa})$.
(b) For all other I-shaped members and channels
(1) The web shear strength coefficient, $C_{\nu 1}$, is determined as follows:
(i) When $h / t_{w} \leq 1.10 \sqrt{k_{v} E / F_{y}}$

$$
\begin{equation*}
C_{v 1}=1.0 \tag{G2-3}
\end{equation*}
$$

where

$$
\begin{aligned}
h= & \text { for built-up welded sections, the clear distance between flanges, } \\
& \text { in. (mm) } \\
= & \text { for built-up bolted sections, the distance between fastener lines, } \\
& \text { in. (mm) }
\end{aligned}
$$

(ii) When $h / t_{w}>1.10 \sqrt{k_{v} E / F_{y}}$

$$
\begin{equation*}
C_{v 1}=\frac{1.10 \sqrt{k_{v} E / F_{y}}}{h / t_{w}} \tag{G2-4}
\end{equation*}
$$

(2) The web plate shear buckling coefficient, $k_{v}$, is determined as follows:
(i) For webs without transverse stiffeners

$$
k_{v}=5.34
$$

(ii) For webs with transverse stiffeners

$$
\begin{align*}
k_{v} & =5+\frac{5}{(a / h)^{2}}  \tag{G2-5}\\
& =5.34 \text { when } a / h>3.0
\end{align*}
$$

where
$a=$ clear distance between transverse stiffeners, in. (mm)
User Note: For all ASTM A6 W, S, M and HP shapes except M12.5×12.4, $\mathrm{M} 12.5 \times 11.6, \mathrm{M} 12 \times 11.8, \mathrm{M} 12 \times 10.8, \mathrm{M} 12 \times 10, \mathrm{M} 10 \times 8$ and $\mathrm{M} 10 \times 7.5$, when $F_{y}=50 \mathrm{ksi}(345 \mathrm{MPa}), C_{v 1}=1.0$.

## 2. Shear Strength of Interior Web Panels with $a$ / $h \leq 3$

## Considering Tension Field Action

The nominal shear strength, $V_{n}$, is determined as follows:
(a) When $h / t_{w} \leq 1.10 \sqrt{k_{v} E / F_{y}}$

$$
\begin{equation*}
V_{n}=0.6 F_{y} A_{w} \tag{G2-6}
\end{equation*}
$$

(b) When $h / t_{w}>1.10 \sqrt{k_{v} E / F_{y}}$
(1) When $2 A_{w} /\left(A_{f c}+A_{f t}\right) \leq 2.5, h / b_{f c} \leq 6.0$ and $h / b_{f t} \leq 6.0$

$$
\begin{equation*}
V_{n}=0.6 F_{y} A_{w}\left[C_{v 2}+\frac{1-C_{v 2}}{1.15 \sqrt{1+(a / h)^{2}}}\right] \tag{G2-7}
\end{equation*}
$$

(2) Otherwise

$$
\begin{equation*}
V_{n}=0.6 F_{y} A_{w}\left[C_{v 2}+\frac{1-C_{v 2}}{1.15\left[a / h+\sqrt{1+(a / h)^{2}}\right]}\right] \tag{G2-8}
\end{equation*}
$$

where
The web shear buckling coefficient, $C_{v 2}$, is determined as follows:
(i) When $h / t_{w} \leq 1.10 \sqrt{k_{v} E / F_{y}}$

$$
\begin{equation*}
C_{v 2}=1.0 \tag{G2-9}
\end{equation*}
$$

(ii) When $1.10 \sqrt{k_{v} E / F_{y}}<h / t_{w} \leq 1.37 \sqrt{k_{v} E / F_{y}}$

$$
\begin{equation*}
C_{\nu 2}=\frac{1.10 \sqrt{k_{v} E / F_{y}}}{h / t_{w}} \tag{G2-10}
\end{equation*}
$$

(iii) When $h / t_{w}>1.37 \sqrt{k_{v} E / F_{y}}$

$$
\begin{equation*}
C_{v 2}=\frac{1.51 k_{v} E}{\left(h / t_{w}\right)^{2} F_{y}} \tag{G2-11}
\end{equation*}
$$

$A_{f c}=$ area of compression flange, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
$A_{f t}=$ area of tension flange, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
$b_{f c}=$ width of compression flange, in. (mm)
$b_{f t}=$ width of tension flange, in. (mm)
$k_{v}$ is as defined in Section G2.1
The nominal shear strength is permitted to be taken as the larger of the values from Sections G2.1 and G2.2.

User Note: Section G2.1 may predict a higher strength for members that do not meet the requirements of Section G2.2(b)(1).

## 3. Transverse Stiffeners

For transverse stiffeners, the following shall apply.
(a) Transverse stiffeners are not required where $h / t_{w} \leq 2.46 \sqrt{E / F_{y}}$, or where the available shear strength provided in accordance with Section G2.1 for $k_{v}=5.34$ is greater than the required shear strength.
(b) Transverse stiffeners are permitted to be stopped short of the tension flange, provided bearing is not needed to transmit a concentrated load or reaction. The weld by which transverse stiffeners are attached to the web shall be terminated not less than four times nor more than six times the web thickness from the near toe of the web-to-flange weld or web-to-flange fillet. When single stiffeners are used, they shall be attached to the compression flange if it consists of a rectangular plate, to resist any uplift tendency due to torsion in the flange.
(c) Bolts connecting stiffeners to the girder web shall be spaced not more than 12 in. ( 300 mm ) on center. If intermittent fillet welds are used, the clear distance between welds shall not be more than 16 times the web thickness nor more than 10 in. ( 250 mm ).
(d) $(b / t)_{s t} \leq 0.56 \sqrt{\frac{E}{F_{y s t}}}$
(e) $I_{s t} \geq I_{s t 2}+\left(I_{s t 1}-I_{s t 2}\right) \rho_{w}$
where
$F_{y s t}=$ specified minimum yield stress of the stiffener material, ksi (MPa)
$F_{y w}=$ specified minimum yield stress of the web material, ksi (MPa)
$I_{s t}=$ moment of inertia of the transverse stiffeners about an axis in the web center for stiffener pairs, or about the face in contact with the web plate for single stiffeners, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$
$I_{s t 1}=\frac{h^{4} \rho_{s t}^{1.3}}{40}\left(\frac{F_{y w}}{E}\right)^{1.5}$
= minimum moment of inertia of the transverse stiffeners required for development of the full shear post buckling resistance of the stiffened web panels, $V_{r}=V_{c 1}$, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$
$I_{s t 2}=\left[\frac{2.5}{(a / h)^{2}}-2\right] b_{p} t_{w}^{3} \geq 0.5 b_{p} t_{w}^{3}$
$=$ minimum moment of inertia of the transverse stiffeners required for development of the web shear buckling resistance, $V_{r}=V_{c 2}$, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$
$V_{c 1}=$ available shear strength calculated with $V_{n}$ as defined in Section G2.1 or G2.2, as applicable, kips (N)
$V_{c 2}=$ available shear strength, kips $(\mathrm{N})$, calculated with $V_{n}=0.6 F_{y} A_{w} C_{v 2}$
$V_{r} \quad=$ required shear strength in the panel being considered, kips ( N )
$b_{p} \quad=$ smaller of the dimension $a$ and $h$, in. (mm)
$(b / t)_{s t}=$ width-to-thickness ratio of the stiffener
$\rho_{s t} \quad=$ larger of $F_{y w} / F_{y s t}$ and 1.0
$\rho_{w} \quad=$ maximum shear ratio, $\left(\frac{V_{r}-V_{c 2}}{V_{c 1}-V_{c 2}}\right) \geq 0$, within the web panels on each side of the transverse stiffener

User Note: $I_{s t}$ may conservatively be taken as $I_{s t 1}$. Equation G2-15 provides the minimum stiffener moment of inertia required to attain the web shear post buckling resistance according to Sections G2.1 and G2.2, as applicable. If less post buckling shear strength is required, Equation G2-13 provides a linear interpolation between the minimum moment of inertia required to develop web shear buckling and that required to develop the web shear post buckling strength.

## G3. SINGLE ANGLES AND TEES

The nominal shear strength, $V_{n}$, of a single-angle leg or a tee stem is:

$$
\begin{equation*}
V_{n}=0.6 F_{y} b t C_{v 2} \tag{G3-1}
\end{equation*}
$$

where
$C_{v 2}=$ web shear buckling strength coefficient, as defined in Section G2.2 with $h / t_{w}=b / t$ and $k_{v}=1.2$
$b$ = width of the leg resisting the shear force or depth of the tee stem, in. (mm)
$t=$ thickness of angle leg or tee stem, in. (mm)

## G4. RECTANGULAR HSS, BOX SECTIONS, AND OTHER SINGLY AND DOUBLY SYMMETRIC MEMBERS

The nominal shear strength, $V_{n}$, is:

$$
\begin{equation*}
V_{n}=0.6 F_{y} A_{w} C_{v 2} \tag{G4-1}
\end{equation*}
$$

For rectangular HSS and box sections
$A_{w}=2 h t$, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
$C_{v 2}=$ web shear buckling strength coefficient, as defined in Section G2.2, with $h / t_{w}=h / t$ and $k_{v}=5$
$h=$ width resisting the shear force, taken as the clear distance between the flanges less the inside corner radius on each side for HSS or the clear distance between flanges for box sections, in. (mm). If the corner radius is not known, $h$ shall be taken as the corresponding outside dimension minus 3 times the thickness.
$t=$ design wall thickness, as defined in Section B4.2, in. (mm)
For other singly or doubly symmetric shapes
$A_{w}=$ area of web or webs, taken as the sum of the overall depth times the web thickness, $d t_{w}$, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
$C_{v 2}=$ web shear buckling strength coefficient, as defined in Section G2.2, with $h / t_{w}=h / t$ and $k_{v}=5$
$h=$ width resisting the shear force, in. (mm)
= for built-up welded sections, the clear distance between flanges, in. (mm)
$=$ for built-up bolted sections, the distance between fastener lines, in. (mm)
$t=$ web thickness, as defined in Section B4.2, in. (mm)

## G5. ROUND HSS

The nominal shear strength, $V_{n}$, of round HSS, according to the limit states of shear yielding and shear buckling, shall be determined as:

$$
\begin{equation*}
V_{n}=F_{c r} A_{g} / 2 \tag{G5-1}
\end{equation*}
$$

where
$F_{c r}$ shall be the larger of

$$
\begin{equation*}
F_{c r}=\frac{1.60 E}{\sqrt{\frac{L_{v}}{D}}\left(\frac{D}{t}\right)^{\frac{5}{4}}} \tag{G5-2a}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{c r}=\frac{0.78 E}{\left(\frac{D}{t}\right)^{\frac{3}{2}}} \tag{G5-2b}
\end{equation*}
$$

but shall not exceed $0.6 F_{y}$
$A_{g}=$ gross cross-sectional area of member, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
$D=$ outside diameter, in. (mm)
$L_{v}=$ distance from maximum to zero shear force, in. (mm)
$t=$ design wall thickness, in. (mm)
User Note: The shear buckling equations, Equations G5-2a and G5-2b, will control for $D / t$ over 100, high-strength steels, and long lengths. For standard sections, shear yielding will usually control and $F_{c r}=0.6 F_{y}$.

## G6. WEAK-AXIS SHEAR IN DOUBLY SYMMETRIC AND SINGLY SYMMETRIC SHAPES

For doubly and singly symmetric shapes loaded in the weak axis without torsion, the nominal shear strength, $V_{n}$, for each shear resisting element is:

$$
\begin{equation*}
V_{n}=0.6 F_{y} b_{f} t_{f} C_{v 2} \tag{G6-1}
\end{equation*}
$$

where
$C_{v 2}=$ web shear buckling strength coefficient, as defined in Section G2.2 with $h / t_{w}=b_{f} / 2 t_{f}$ for I-shaped members and tees, or $h / t_{w}=b_{f} / t_{f}$ for channels, and $k_{v}=1.2$
$b_{f}=$ width of flange, in. (mm)
$t_{f}=$ thickness of flange, in. (mm)

User Note: For all ASTM A6 W, S, M and HP shapes, when $F_{y} \leq 70 \mathrm{ksi}$ ( 485 MPa ), $C_{\nu 2}=1.0$.

## G7. BEAMS AND GIRDERS WITH WEB OPENINGS

The effect of all web openings on the shear strength of steel and composite beams shall be determined. Reinforcement shall be provided when the required strength exceeds the available strength of the member at the opening.

## CHAPTER H

## DESIGN OF MEMBERS FOR COMBINED FORCES AND TORSION

This chapter addresses members subject to axial force and flexure about one or both axes, with or without torsion, and members subject to torsion only.

The chapter is organized as follows:
H1. Doubly and Singly Symmetric Members Subject to Flexure and Axial Force
H2. Unsymmetric and Other Members Subject to Flexure and Axial Force
H3. Members Subject to Torsion and Combined Torsion, Flexure, Shear, and/or Axial Force
H4. Rupture of Flanges with Holes Subjected to Tension
User Note: For composite members, see Chapter I.

## H1. DOUBLY AND SINGLY SYMMETRIC MEMBERS SUBJECT TO FLEXURE AND AXIAL FORCE

1. Doubly and Singly Symmetric Members Subject to Flexure and Compression

The interaction of flexure and compression in doubly symmetric members and singly symmetric members constrained to bend about a geometric axis ( $x$ and/or $y$ ) shall be limited by Equations H1-1a and H1-1b.

User Note: Section H2 is permitted to be used in lieu of the provisions of this section.
(a) When $\frac{P_{r}}{P_{c}} \geq 0.2$

$$
\begin{equation*}
\frac{P_{r}}{P_{c}}+\frac{8}{9}\left(\frac{M_{r x}}{M_{c x}}+\frac{M_{r y}}{M_{c y}}\right) \leq 1.0 \tag{H1-1a}
\end{equation*}
$$

(b) When $\frac{P_{r}}{P_{c}}<0.2$

$$
\begin{equation*}
\frac{P_{r}}{2 P_{c}}+\left(\frac{M_{r x}}{M_{c x}}+\frac{M_{r y}}{M_{c y}}\right) \leq 1.0 \tag{H1-1b}
\end{equation*}
$$

where
$P_{r}=$ required axial strength, determined in accordance with Chapter C, using LRFD or ASD load combinations, kips (N)
$P_{c}=$ available axial strength determined in accordance with Chapter E, kips (N)
$M_{r}=$ required flexural strength, determined in accordance with Chapter C, using LRFD or ASD load combinations, kip-in. (N-mm)

```
\(M_{c}=\) available flexural strength, determined in accordance with Chapter F, kipin. (\(\mathrm{N}-\mathrm{mm}\))
\(x=\) subscript relating symbol to major axis bending
\(y=\) subscript relating symbol to minor axis bending
```


## For design according to Section B3.1 (LRFD):

$P_{r}=$ required axial strength, determined in accordance with Chapter C, using LRFD load combinations, kips (N)
$P_{c}=\phi_{c} P_{n}=$ design axial strength, determined in accordance with Chapter E, kips (N)
$M_{r}=$ required flexural strength, determined in accordance with Chapter C, using LRFD load combinations, kip-in. (N-mm)
$M_{c}=\phi_{b} M_{n}=$ design flexural strength determined in accordance with Chapter F, kip-in. (N-mm)
$\phi_{c}=$ resistance factor for compression $=0.90$
$\phi_{b}=$ resistance factor for flexure $=0.90$
For design according to Section B3.2 (ASD):
$P_{r}=$ required axial strength, determined in accordance with Chapter C, using ASD load combinations, kips (N)
$P_{c}=P_{n} / \Omega_{c}=$ allowable axial strength, determined in accordance with Chapter E, kips (N)
$M_{r}=$ required flexural strength, determined in accordance with Chapter C, using ASD load combinations, kip-in. (N-mm)
$M_{c}=M_{n} / \Omega_{b}=$ allowable flexural strength, determined in accordance with Chapter F, kip-in. (N-mm)
$\Omega_{c}=$ safety factor for compression $=1.67$
$\Omega_{b}=$ safety factor for flexure $=1.67$

## 2. Doubly and Singly Symmetric Members Subject to Flexure and Tension

The interaction of flexure and tension in doubly symmetric members and singly symmetric members constrained to bend about a geometric axis ( $x$ and/or $y$ ) shall be limited by Equations H1-1a and H1-1b,
where

## For design according to Section B3.1 (LRFD):

$P_{r}=$ required axial strength, determined in accordance with Chapter C, using LRFD load combinations, kips (N)
$P_{c}=\phi_{t} P_{n}=$ design axial strength, determined in accordance with Section D2, kips (N)
$M_{r}=$ required flexural strength, determined in accordance with Chapter C, using LRFD load combinations, kip-in. (N-mm)
$M_{c}=\phi_{b} M_{n}=$ design flexural strength, determined in accordance with Chapter F, kip-in. (N-mm)
$\phi_{t}=$ resistance factor for tension (see Section D2)
$\phi_{b}=$ resistance factor for flexure $=0.90$

## For design according to Section B3.2 (ASD):

$P_{r}=$ required axial strength, determined in accordance with Chapter C, using ASD load combinations, kips ( N )
$P_{c}=P_{n} / \Omega_{t}=$ allowable axial strength, determined in accordance with Section D2, kips (N)
$M_{r}=$ required flexural strength, determined in accordance with Chapter C, using ASD load combinations, kip-in. (N-mm)
$M_{c}=M_{n} / \Omega_{b}=$ allowable flexural strength, determined in accordance with Chapter F, kip-in. (N-mm)
$\Omega_{t}=$ safety factor for tension (see Section D2)
$\Omega_{b}=$ safety factor for flexure $=1.67$
For doubly symmetric members, $C_{b}$ in Chapter F is permitted to be multiplied by $\sqrt{1+\frac{\alpha P_{r}}{P_{e y}}}$ for axial tension that acts concurrently with flexure,
where

$$
\begin{equation*}
P_{e y}=\frac{\pi^{2} E I_{y}}{L_{b}^{2}} \tag{H1-2}
\end{equation*}
$$

$\alpha=1.0$ (LRFD); $\alpha=1.6$ (ASD)
and
$E=$ modulus of elasticity of steel $=29,000 \mathrm{ksi}(200000 \mathrm{MPa})$
$I_{y}=$ moment of inertia about the $y$-axis, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$
$L_{b}=$ length between points that are either braced against lateral displacement of the compression flange or braced against twist of the cross section, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$

## 3. Doubly Symmetric Rolled Compact Members Subject to Single-Axis Flexure and Compression

For doubly symmetric rolled compact members, with the effective length for torsional buckling less than or equal to the effective length for $y$-axis flexural buckling, $L_{c z} \leq L_{c y}$, subjected to flexure and compression with moments primarily about their major axis, it is permissible to address the two independent limit states, in-plane instability and out-of-plane buckling or lateral-torsional buckling, separately in lieu of the combined approach provided in Section H1.1,
where
$L_{c y}=$ effective length for buckling about the $y$-axis, in. (mm)
$L_{c z}=$ effective length for buckling about the longitudinal axis, in. (mm)
For members with $M_{r y} / M_{c y} \geq 0.05$, the provisions of Section H1.1 shall be followed.
(a) For the limit state of in-plane instability, Equations $\mathrm{H} 1-1 \mathrm{a}$ and $\mathrm{H} 1-1 \mathrm{~b}$ shall be used with $P_{c}$ taken as the available compressive strength in the plane of bending and $M_{c x}$ taken as the available flexural strength based on the limit state of yielding.
(b) For the limit state of out-of-plane buckling and lateral-torsional buckling

$$
\begin{equation*}
\frac{P_{r}}{P_{c y}}\left(1.5-0.5 \frac{P_{r}}{P_{c y}}\right)+\left(\frac{M_{r x}}{C_{b} M_{c x}}\right)^{2} \leq 1.0 \tag{H1-3}
\end{equation*}
$$

where
$P_{c y}=$ available compressive strength out of the plane of bending, kips (N)
$C_{b}=$ lateral-torsional buckling modification factor determined from Section F1
$M_{c x}=$ available lateral-torsional strength for major axis flexure determined in accordance with Chapter F using $C_{b}=1.0$, kip-in. (N-mm)

User Note: In Equation H1-3, $C_{b} M_{c x}$ may be larger than $\phi_{b} M_{p x}$ in LRFD or $M_{p x} / \Omega_{b}$ in ASD. The yielding resistance of the beam-column is captured by Equations H1-1.

## H2. UNSYMMETRIC AND OTHER MEMBERS SUBJECT TO FLEXURE AND AXIAL FORCE

This section addresses the interaction of flexure and axial stress for shapes not covered in Section H1. It is permitted to use the provisions of this Section for any shape in lieu of the provisions of Section H1.

$$
\begin{equation*}
\left|\frac{f_{r a}}{F_{c a}}+\frac{f_{r b w}}{F_{c b w}}+\frac{f_{r b z}}{F_{c b z}}\right| \leq 1.0 \tag{H2-1}
\end{equation*}
$$

where
$f_{r a} \quad=$ required axial stress at the point of consideration, determined in accordance with Chapter C, using LRFD or ASD load combinations, ksi (MPa)
$F_{c a} \quad=$ available axial stress at the point of consideration, ksi (MPa)
$f_{r b w}, f_{r b z}=$ required flexural stress at the point of consideration, determined in accordance with Chapter C, using LRFD or ASD load combinations, ksi (MPa)
$F_{c b w}, F_{c b z}=$ available flexural stress at the point of consideration, ksi (MPa)
$w \quad=$ subscript relating symbol to major principal axis bending
$z \quad=$ subscript relating symbol to minor principal axis bending

User Note: The subscripts $w$ and $z$ refer to the principal axes of the unsymmetric cross section. For doubly symmetric cross sections, these can be replaced by the $x$ and $y$ subscripts.

## For design according to Section B3.1 (LRFD)

$f_{r a} \quad=$ required axial stress at the point of consideration, determined in accordance with Chapter C, using LRFD load combinations, ksi (MPa)

$$
\left.\begin{array}{rl}
F_{c a}= & \begin{array}{rl}
\phi_{c} F_{c r}=\text { design axial stress, determined in accordance with Chapter } \\
& \mathrm{E} \text { for compression or Section D2 for tension, ksi (MPa) }
\end{array} \\
f_{r b w}, f_{r b z}= & \text { required flexural stress at the point of consideration, determined in } \\
\text { accordance with Chapter C, using LRFD load combinations, ksi } \\
& (\mathrm{MPa})
\end{array}\right\}
$$

For design according to Section B3.2 (ASD)
$f_{r a} \quad=$ required axial stress at the point of consideration, determined in accordance with Chapter C, using ASD load combinations, ksi (MPa)
$F_{c a} \quad=$ allowable axial stress, determined in accordance with Chapter E for compression, or Section D2 for tension, ksi (MPa)
$f_{r b w}, f_{r b z}=$ required flexural stress at the point of consideration, determined in accordance with Chapter C, using ASD load combinations, ksi (MPa)
$F_{c b w}, F_{c b z}=\frac{M_{n}}{\Omega_{b} S}=$ allowable flexural stress, determined in accordance with
Chapter F, ksi (MPa). Use the section modulus, $S$, for the specific location in the cross section and consider the sign of the stress.
$\Omega_{c} \quad=$ safety factor for compression $=1.67$
$\Omega_{t} \quad=$ safety factor for tension (see Section D2)
$\Omega_{b} \quad=$ safety factor for flexure $=1.67$
Equation $\mathrm{H} 2-1$ shall be evaluated using the principal bending axes by considering the sense of the flexural stresses at the critical points of the cross section. The flexural terms are either added to or subtracted from the axial term as applicable. When the axial force is compression, second-order effects shall be included according to the provisions of Chapter C.

A more detailed analysis of the interaction of flexure and tension is permitted in lieu of Equation H2-1.

## H3. MEMBERS SUBJECT TO TORSION AND COMBINED TORSION, FLEXURE, SHEAR, AND/OR AXIAL FORCE

## 1. Round and Rectangular HSS Subject to Torsion

The design torsional strength, $\phi_{T} T_{n}$, and the allowable torsional strength, $T_{n} / \Omega_{T}$, for round and rectangular HSS according to the limit states of torsional yielding and torsional buckling shall be determined as follows:

$$
\begin{gathered}
T_{n}=F_{c r} C \\
\phi_{T}=0.90(\mathrm{LRFD}) \quad \Omega_{T}=1.67(\mathrm{ASD})
\end{gathered}
$$

where

$$
C=\text { HSS torsional constant, in. }{ }^{3}\left(\mathrm{~mm}^{3}\right)
$$

The critical stress, $F_{c r}$, shall be determined as follows:
(a) For round HSS, $F_{c r}$ shall be the larger of

$$
\begin{equation*}
\text { (1) } F_{c r}=\frac{1.23 E}{\sqrt{\frac{L}{D}}\left(\frac{D}{t}\right)^{\frac{5}{4}}} \tag{H3-2a}
\end{equation*}
$$

and
(2) $F_{c r}=\frac{0.60 E}{)^{\frac{3}{2}}}$

$$
\begin{equation*}
\left(\frac{D}{t}\right)^{\frac{j}{2}} \tag{H3-2b}
\end{equation*}
$$

but shall not exceed $0.6 F_{y}$,
where
$D=$ outside diameter, in. (mm)
$L=$ length of member, in. (mm)
$t=$ design wall thickness defined in Section B4.2, in. (mm)
(b) For rectangular HSS
(1) When $h / t \leq 2.45 \sqrt{E / F_{y}}$

$$
\begin{equation*}
F_{c r}=0.6 F_{y} \tag{H3-3}
\end{equation*}
$$

(2) When $2.45 \sqrt{E / F_{y}}<h / t \leq 3.07 \sqrt{E / F_{y}}$

$$
\begin{equation*}
F_{c r}=\frac{0.6 F_{y}\left(2.45 \sqrt{E / F_{y}}\right)}{\left(\frac{h}{t}\right)} \tag{H3-4}
\end{equation*}
$$

(3) When $3.07 \sqrt{E / F_{y}}<h / t \leq 260$

$$
\begin{equation*}
F_{c r}=\frac{0.458 \pi^{2} E}{\left(\frac{h}{t}\right)^{2}} \tag{H3-5}
\end{equation*}
$$

where
$h=$ flat width of longer side, as defined in Section B4.1b(d), in. (mm)

User Note: The torsional constant, $C$, may be conservatively taken as:
For round HSS: $C=\frac{\pi(D-t)^{2} t}{2}$
For rectangular HSS: $C=2(B-t)(H-t) t-4.5(4-\pi) t^{3}$

## 2. HSS Subject to Combined Torsion, Shear, Flexure and Axial Force

When the required torsional strength, $T_{r}$, is less than or equal to $20 \%$ of the available torsional strength, $T_{c}$, the interaction of torsion, shear, flexure and/or axial force for HSS may be determined by Section H1 and the torsional effects may be neglected. When $T_{r}$ exceeds $20 \%$ of $T_{c}$, the interaction of torsion, shear, flexure and/or axial force shall be limited, at the point of consideration, by

$$
\begin{equation*}
\left(\frac{P_{r}}{P_{c}}+\frac{M_{r}}{M_{c}}\right)+\left(\frac{V_{r}}{V_{c}}+\frac{T_{r}}{T_{c}}\right)^{2} \leq 1.0 \tag{H3-6}
\end{equation*}
$$

where

## For design according to Section B3.1 (LRFD)

$P_{r}=$ required axial strength, determined in accordance with Chapter C, using LRFD load combinations, kips (N)
$P_{c}=\phi P_{n}=$ design tensile or compressive strength, determined in accordance with Chapter D or E, kips (N)
$M_{r}=$ required flexural strength, determined in accordance with Chapter C, using LRFD load combinations, kip-in. (N-mm)
$M_{c}=\phi_{b} M_{n}=$ design flexural strength, determined in accordance with Chapter F, kip-in. ( $\mathrm{N}-\mathrm{mm}$ )
$V_{r}=$ required shear strength, determined in accordance with Chapter C , using LRFD load combinations, kips (N)
$V_{c}=\phi_{v} V_{n}=$ design shear strength, determined in accordance with Chapter G, kips (N)
$T_{r}=$ required torsional strength, determined in accordance with Chapter C, using LRFD load combinations, kip-in. (N-mm)
$T_{c}=\phi_{T} T_{n}=$ design torsional strength, determined in accordance with Section H3.1, kip-in. (N-mm)

## For design according to Section B3.2 (ASD)

$P_{r}=$ required axial strength, determined in accordance with Chapter C, using ASD load combinations, kips ( N )
$P_{c}=P_{n} / \Omega=$ allowable tensile or compressive strength, determined in accordance with Chapter D or E, kips (N)
$M_{r}=$ required flexural strength, determined in accordance with Chapter C, using ASD load combinations, kip-in. (N-mm)
$M_{c}=M_{n} / \Omega_{b}=$ allowable flexural strength, determined in accordance with Chapter F, kip-in. (N-mm)
$V_{r}=$ required shear strength, determined in accordance with Chapter C , using ASD load combinations, kips (N)
$V_{c}=V_{n} / \Omega_{v}=$ allowable shear strength, determined in accordance with Chapter G, kips (N)
$T_{r}=$ required torsional strength, determined in accordance with Chapter C, using ASD load combinations, kip-in. (N-mm)
$T_{c}=T_{n} / \Omega_{T}=$ allowable torsional strength, determined in accordance with Section H3.1, kip-in. (N-mm)

## 3. Non-HSS Members Subject to Torsion and Combined Stress

The available torsional strength for non-HSS members shall be the lowest value obtained according to the limit states of yielding under normal stress, shear yielding under shear stress, or buckling, determined as follows:

$$
\phi_{T}=0.90(\mathrm{LRFD}) \quad \Omega_{T}=1.67(\mathrm{ASD})
$$

(a) For the limit state of yielding under normal stress

$$
\begin{equation*}
F_{n}=F_{y} \tag{H3-7}
\end{equation*}
$$

(b) For the limit state of shear yielding under shear stress

$$
\begin{equation*}
F_{n}=0.6 F_{y} \tag{H3-8}
\end{equation*}
$$

(c) For the limit state of buckling

$$
\begin{equation*}
F_{n}=F_{c r} \tag{H3-9}
\end{equation*}
$$

where
$F_{c r}=$ buckling stress for the section as determined by analysis, ksi (MPa)
Constrained local yielding is permitted adjacent to areas that remain elastic.

## H4. RUPTURE OF FLANGES WITH HOLES SUBJECTED TO TENSION

At locations of bolt holes in flanges subjected to tension under combined axial force and major axis flexure, flange tensile rupture strength shall be limited by Equation H4-1. Each flange subjected to tension due to axial force and flexure shall be checked separately.

$$
\begin{equation*}
\frac{P_{r}}{P_{c}}+\frac{M_{r x}}{M_{c x}} \leq 1.0 \tag{H4-1}
\end{equation*}
$$

where
$P_{r}=$ required axial strength of the member at the location of the bolt holes, determined in accordance with Chapter C, positive in tension and negative in compression, kips (N)
$P_{c}=$ available axial strength for the limit state of tensile rupture of the net section at the location of bolt holes, kips (N)
$M_{r x}=$ required flexural strength at the location of the bolt holes, determined in accordance with Chapter C, positive for tension in the flange under consideration and negative for compression, kip-in. (N-mm)
$M_{c x}=$ available flexural strength about $x$-axis for the limit state of tensile rupture of the flange, determined according to Section F13.1. When the limit state of tensile rupture in flexure does not apply, use the plastic bending moment, $M_{p}$, determined with bolt holes not taken into consideration, kip-in. (N-mm)

## For design according to Section B3.1 (LRFD):

$P_{r}=$ required axial strength, determined in accordance with Chapter C , using LRFD load combinations, kips (N)
$P_{c}=\phi_{t} P_{n}=$ design axial strength for the limit state of tensile rupture, determined in accordance with Section D2(b), kips (N)
$M_{r x}=$ required flexural strength, determined in accordance with Chapter C, using LRFD load combinations, kip-in. (N-mm)
$M_{c x}=\phi_{b} M_{n}=$ design flexural strength determined in accordance with Section F13.1 or the plastic bending moment, $M_{p}$, determined with bolt holes not taken into consideration, as applicable, kip-in. (N-mm)
$\phi_{t}=$ resistance factor for tensile rupture $=0.75$
$\phi_{b}=$ resistance factor for flexure $=0.90$

## For design according to Section B3.2 (ASD):

$P_{r}=$ required axial strength, determined in accordance with Chapter C, using ASD load combinations, kips (N)
$P_{c}=P_{n} / \Omega_{t}=$ allowable axial strength for the limit state of tensile rupture, determined in accordance with Section D2(b), kips (N)
$M_{r x}=$ required flexural strength, determined in accordance with Chapter C, using ASD load combinations, kip-in. (N-mm)
$M_{c x}=M_{n} / \Omega_{b}=$ allowable flexural strength determined in accordance with Section F13.1, or the plastic bending moment, $M_{p}$, determined with bolt holes not taken into consideration, as applicable, kip-in. (N-mm)
$\Omega_{t}=$ safety factor for tensile rupture $=2.00$
$\Omega_{b}=$ safety factor for flexure $=1.67$

## CHAPTER I

DESIGN OF COMPOSITE MEMBERS

This chapter addresses composite members composed of rolled or built-up structural steel shapes or HSS and structural concrete acting together, and steel beams supporting a reinforced concrete slab so interconnected that the beams and the slab act together to resist bending. Simple and continuous composite beams with steel headed stud anchors, encased and filled beams, constructed with or without temporary shores, are included.

The chapter is organized as follows:
I1. General Provisions
I2. Axial Force
I3. Flexure
I4. Shear
I5. Combined Flexure and Axial Force
I6. Load Transfer
I7. Composite Diaphragms and Collector Beams
I8. Steel Anchors

## I1. GENERAL PROVISIONS

In determining load effects in members and connections of a structure that includes composite members, consideration shall be given to the effective sections at the time each increment of load is applied.

## 1. Concrete and Steel Reinforcement

The design, detailing and material properties related to the concrete and reinforcing steel portions of composite construction shall comply with the reinforced concrete and reinforcing bar design specifications stipulated by the applicable building code. Additionally, the provisions in the Building Code Requirements for Structural Concrete and Commentary (ACI 318) and the Metric Building Code Requirements for Structural Concrete and Commentary (ACI 318M), subsequently referred to in Chapter I collectively as ACI 318, shall apply with the following exceptions and limitations:
(a) ACI 318 provisions specifically intended for composite columns shall be excluded in their entirety.
(b) Concrete and steel reinforcement material limitations shall be as specified in Section I1.3.
(c) Transverse reinforcement limitations shall be as specified in Section I2.1a(b) and I2.2a(c), in addition to those specified in ACI 318.

Minimum longitudinal reinforcement limitations shall be as specified in Sections I2.1a(c) and I2.2a(c). Concrete and steel reinforcement components designed in accordance with ACI 318 shall be based on a level of loading corresponding to LRFD load combinations.

User Note: It is the intent of this Specification that the concrete and reinforcing steel portions of composite concrete members are detailed utilizing the noncomposite provisions of ACI 318, as modified by this Specification. All requirements specific to composite members are covered in this Specification.

Note that the design basis for ACI 318 is strength design. Designers using ASD for steel must be conscious of the different load factors.

## 2. Nominal Strength of Composite Sections

The nominal strength of composite sections shall be determined in accordance with either the plastic stress distribution method, the strain compatibility method, the elastic stress distribution method, or the effective stress-strain method, as defined in this section.

The tensile strength of the concrete shall be neglected in the determination of the nominal strength of composite members.

Local buckling effects shall be evaluated for filled composite members, as defined in Section I1.4. Local buckling effects need not be evaluated for encased composite members.

## 2a. Plastic Stress Distribution Method

For the plastic stress distribution method, the nominal strength shall be computed assuming that steel components have reached a stress of $F_{y}$ in either tension or compression, and concrete components in compression due to axial force and/or flexure have reached a stress of $0.85 f_{c}^{\prime}$, where $f_{c}^{\prime}$ is the specified compressive strength of concrete, ksi (MPa). For round HSS filled with concrete, a stress of $0.95 f_{c}^{\prime}$ is permitted to be used for concrete components in compression due to axial force and/or flexure to account for the effects of concrete confinement.

## 2b. Strain Compatibility Method

For the strain compatibility method, a linear distribution of strains across the section shall be assumed, with the maximum concrete compressive strain equal to 0.003 in./in. ( $\mathrm{mm} / \mathrm{mm}$ ). The stress-strain relationships for steel and concrete shall be obtained from tests or from published results.

User Note: The strain compatibility method can be used to determine nominal strength for irregular sections and for cases where the steel does not exhibit elasto-plastic behavior. General guidelines for the strain compatibility method for encased members subjected to axial load, flexure or both are given in AISC Design Guide 6, Load and Resistance Factor Design of W-Shapes Encased in Concrete, and ACI 318.

## 2c. Elastic Stress Distribution Method

For the elastic stress distribution method, the nominal strength shall be determined from the superposition of elastic stresses for the limit state of yielding or concrete crushing.

## 2d. Effective Stress-Strain Method

For the effective stress-strain method, the nominal strength shall be computed assuming strain compatibility, and effective stress-strain relationships for steel and concrete components accounting for the effects of local buckling, yielding, interaction and concrete confinement.

## 3. Material Limitations

Concrete, structural steel, and steel reinforcing bars in composite systems shall meet the following limitations:
(a) For the determination of the available strength, concrete shall have a compressive strength, $f_{c}^{\prime}$, of not less than $3 \mathrm{ksi}(21 \mathrm{MPa})$ nor more than $10 \mathrm{ksi}(69 \mathrm{MPa})$ for normal weight concrete and not less than $3 \mathrm{ksi}(21 \mathrm{MPa})$ nor more than $6 \mathrm{ksi}(41$ MPa ) for lightweight concrete.

User Note: Higher strength concrete material properties may be used for stiffness calculations but may not be relied upon for strength calculations unless justified by testing or analysis.
(b) The specified minimum yield stress of structural steel used in calculating the strength of composite members shall not exceed $75 \mathrm{ksi}(525 \mathrm{MPa})$.
(c) The specified minimum yield stress of reinforcing bars used in calculating the strength of composite members shall not exceed $80 \mathrm{ksi}(550 \mathrm{MPa}$ ).

## 4. Classification of Filled Composite Sections for Local Buckling

For compression, filled composite sections are classified as compact, noncompact or slender. For a section to qualify as compact, the maximum width-to-thickness ratio of its compression steel elements shall not exceed the limiting width-to-thickness ratio, $\lambda_{p}$, from Table I1.1a. If the maximum width-to-thickness ratio of one or more steel compression elements exceeds $\lambda_{p}$, but does not exceed $\lambda_{r}$ from Table I1.1a, the filled composite section is noncompact. If the maximum width-to-thickness ratio of any compression steel element exceeds $\lambda_{r}$, the section is slender. The maximum permitted width-to-thickness ratio shall be as specified in the table.

For flexure, filled composite sections are classified as compact, noncompact or slender. For a section to qualify as compact, the maximum width-to-thickness ratio of its compression steel elements shall not exceed the limiting width-to-thickness ratio, $\lambda_{p}$, from Table I1.1b. If the maximum width-to-thickness ratio of one or more steel compression elements exceeds $\lambda_{p}$, but does not exceed $\lambda_{r}$ from Table I1.1b, the section is noncompact. If the width-to-thickness ratio of any steel element exceeds $\lambda_{r}$, the section is slender. The maximum permitted width-to-thickness ratio shall be as specified in the table.

Refer to Section B4.1b for definitions of width, $b$ and $D$, and thickness, $t$, for rectangular and round HSS sections and box sections of uniform thickness.

TABLE I1.1a   Limiting Width-to-Thickness Ratios for Compression Steel Elements in Composite Members Subject to Axial Compression for Use with Section I2.2				
Description of Element	Width-to-   Thickness Ratio	$\lambda_{p}$   Compact/   Noncompact	Noncompact/ Slender	Maximum Permitted
Walls of Rectangular HSS and Box Sections of Uniform Thickness	$b / t$	$2.26 \sqrt{\frac{E}{F_{y}}}$	$3.00 \sqrt{\frac{E}{F_{y}}}$	$5.00 \sqrt{\frac{E}{F_{y}}}$
Round HSS	$D / t$	$\frac{0.15 E}{F_{y}}$	$\frac{0.19 E}{F_{y}}$	$\frac{0.31 E}{F_{y}}$


TABLE I1.1b   Limiting Width-to-Thickness Ratios for Compression Steel Elements in Composite Members Subject to Flexure for Use with Section I3.4				
Description of Element	Width-toThickness Ratio	$\lambda_{p}$   Compact/ Noncompact	$\lambda_{r}$ Noncompact/ Slender	Maximum Permitted
Flanges of Rectangular HSS and Box Sections of Uniform Thickness	$b / t$	$2.26 \sqrt{\frac{E}{F_{y}}}$	$3.00 \sqrt{\frac{E}{F_{y}}}$	$5.00 \sqrt{\frac{E}{F_{y}}}$
Webs of Rectangular HSS and Box Sections of Uniform Thickness	$h / t$	$3.00 \sqrt{\frac{E}{F_{y}}}$	$5.70 \sqrt{\frac{E}{F_{y}}}$	$5.70 \sqrt{\frac{E}{F_{y}}}$
Round HSS	$D / t$	$\frac{0.09 E}{F_{y}}$	$\frac{0.31 E}{F_{y}}$	$\frac{0.31 E}{F_{y}}$

User Note: All current ASTM A500 Grade C square HSS sections are compact according to the limits of Table I1.1a and Table I1.1b, except HSS7 $\times 7 \times 1 / 8$, HSS $8 \times 8 \times 1 / 8$, HSS $10 \times 10 \times 3 / 16$ and HSS $12 \times 12 \times 3 / 16$, which are noncompact for both axial compression and flexure, and $\mathrm{HSS} 9 \times 9 \times 1 / 8$, which is slender for both axial compression and flexure.

All current ASTM A500 Grade C round HSS sections are compact according to the limits of Table I1.1a and Table I1.1b for both axial compression and flexure, with the exception of HSS6.625 $\times 0.125$, HSS7.000 $\times 0.125$, HSS10.000 $\times 0.188$, HSS14.000 $\times 0.250$, HSS16.000 $\times 0.250$, and HSS20.000 $\times 0.375$, which are noncompact for flexure.

## 5. Stiffness for Calculation of Required Strengths

For the direct analysis method of design, the required strengths of encased composite members and filled composite members shall be determined using the provisions of Section C2 and the following requirements:
(1) The nominal flexural stiffness of members subject to net compression shall be taken as the effective stiffness of the composite section, $E I_{e f f}$, as defined in Section I2.
(2) The nominal axial stiffness of members subject to net compression shall be taken as the summation of the elastic axial stiffnesses of each component.
(3) Stiffness of members subject to net tension shall be taken as the stiffness of the bare steel members in accordance with Chapter C.
(4) The stiffness reduction parameter, $\tau_{b}$, shall be taken as 0.8 .

User Note: Taken together, the stiffness reduction factors require the use of $0.64 E I_{\text {eff }}$ for the flexural stiffness and 0.8 times the nominal axial stiffness of encased composite members and filled composite members subject to net compression in the analysis.

Stiffness values appropriate for the calculation of deflections and for use with the effective length method are discussed in the Commentary.

## 12. AXIAL FORCE

This section applies to encased composite members and filled composite members subject to axial force.

## 1. Encased Composite Members

## 1a. Limitations

For encased composite members, the following limitations shall be met:
(a) The cross-sectional area of the steel core shall comprise at least $1 \%$ of the total composite cross section.
(b) Concrete encasement of the steel core shall be reinforced with continuous longitudinal bars and lateral ties or spirals.
Where lateral ties are used, a minimum of either a No. $3(10 \mathrm{~mm})$ bar spaced at a maximum of $12 \mathrm{in} .(300 \mathrm{~mm})$ on center, or a No. $4(13 \mathrm{~mm})$ bar or larger spaced at a maximum of $16 \mathrm{in} .(400 \mathrm{~mm})$ on center shall be used. Deformed wire or welded wire reinforcement of equivalent area are permitted.
Maximum spacing of lateral ties shall not exceed 0.5 times the least column dimension.
(c) The minimum reinforcement ratio for continuous longitudinal reinforcing, $\rho_{s r}$, shall be 0.004 , where $\rho_{s r}$ is given by:

$$
\begin{equation*}
\rho_{s r}=\frac{A_{s r}}{A_{g}} \tag{I2-1}
\end{equation*}
$$

where

$$
\begin{aligned}
& A_{g}=\text { gross area of composite member, in. }{ }^{2}\left(\mathrm{~mm}^{2}\right) \\
& A_{s r}=\text { area of continuous reinforcing bars, in. }{ }^{2}\left(\mathrm{~mm}^{2}\right)
\end{aligned}
$$

User Note: Refer to ACI 318 for additional tie and spiral reinforcing provisions.

## 1b. Compressive Strength

The design compressive strength, $\phi_{c} P_{n}$, and allowable compressive strength, $P_{n} / \Omega_{c}$, of doubly symmetric axially loaded encased composite members shall be determined for the limit state of flexural buckling based on member slenderness as follows:

$$
\phi_{c}=0.75(\mathrm{LRFD}) \quad \Omega_{c}=2.00(\mathrm{ASD})
$$

(a) When $\frac{P_{n o}}{P_{e}} \leq 2.25$

$$
\begin{equation*}
P_{n}=P_{n o}\left(0.658^{\frac{P_{n o}}{P_{e}}}\right) \tag{I2-2}
\end{equation*}
$$

(b) When $\frac{P_{n o}}{P_{e}}>2.25$

$$
\begin{equation*}
P_{n}=0.877 P_{e} \tag{I2-3}
\end{equation*}
$$

where
$P_{n o}=F_{y} A_{s}+F_{y s r} A_{s r}+0.85 f_{c}^{\prime} A_{c}$
$P_{e}=$ elastic critical buckling load determined in accordance with Chapter C or Appendix 7, kips (N)

$$
\begin{equation*}
=\pi^{2}\left(E I_{e f f} / L_{c}^{2}\right. \tag{I2-5}
\end{equation*}
$$

$A_{c}=$ area of concrete, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
$A_{s}=$ cross-sectional area of steel section, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
$E_{c}=$ modulus of elasticity of concrete

$$
=w_{c}^{1.5} \sqrt{f_{c}^{\prime}}, \operatorname{ksi}\left(0.043 w_{c}^{1.5} \sqrt{f_{c}^{\prime}}, \mathrm{MPa}\right)
$$

$E I_{e f f}=$ effective stiffness of composite section, kip-in. ${ }^{2}\left(\mathrm{~N}-\mathrm{mm}^{2}\right)$
$=E_{s} I_{s}+E_{s} I_{s r}+C_{1} E_{c} I_{c}$
$C_{1}=$ coefficient for calculation of effective rigidity of an encased composite compression member

$$
=0.25+3\left(\frac{A_{s}+A_{s r}}{A_{g}}\right) \leq 0.7
$$

$E_{S}=$ modulus of elasticity of steel
$=29,000 \mathrm{ksi}(200000 \mathrm{MPa})$
$F_{y}=$ specified minimum yield stress of steel section, ksi (MPa)
$F_{y s r}=$ specified minimum yield stress of reinforcing bars, ksi (MPa)
$I_{c}=$ moment of inertia of the concrete section about the elastic neutral axis of the composite section, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$
$I_{s}=$ moment of inertia of steel shape about the elastic neutral axis of the composite section, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$
$I_{s r}=$ moment of inertia of reinforcing bars about the elastic neutral axis of the composite section, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$
$K=$ effective length factor
$L \quad=$ laterally unbraced length of the member, in. (mm)
$L_{c} \quad=K L=$ effective length of the member, in. (mm)
$f_{c}^{\prime}=$ specified compressive strength of concrete, ksi (MPa)
$w_{c}=$ weight of concrete per unit volume $\left(90 \leq w_{c} \leq 155 \mathrm{lb} / \mathrm{ft}^{3}\right.$ or $1500 \leq w_{c} \leq$ $2500 \mathrm{~kg} / \mathrm{m}^{3}$ )

The available compressive strength need not be less than that specified for the bare steel member, as required by Chapter E.

## 1c. Tensile Strength

The available tensile strength of axially loaded encased composite members shall be determined for the limit state of yielding as:

$$
\begin{gather*}
P_{n}=F_{y} A_{s}+F_{y s r} A_{s r}  \tag{I2-8}\\
\phi_{t}=0.90(\mathrm{LRFD}) \quad \Omega_{t}=1.67(\mathrm{ASD})
\end{gather*}
$$

1d. Load Transfer
Load transfer requirements for encased composite members shall be determined in accordance with Section I6.

## 1e. Detailing Requirements

For encased composite members, the following detailing requirements shall be met:
(a) Clear spacing between the steel core and longitudinal reinforcing shall be a minimum of 1.5 reinforcing bar diameters, but not less than 1.5 in . ( 38 mm ).
(b) If the composite cross section is built up from two or more encased steel shapes, the shapes shall be interconnected with lacing, tie plates or comparable components to prevent buckling of individual shapes due to loads applied prior to hardening of the concrete.

## 2. Filled Composite Members

## 2a. Limitations

For filled composite members:
(a) The cross-sectional area of the steel section shall comprise at least $1 \%$ of the total composite cross section.
(b) Filled composite members shall be classified for local buckling according to Section I1.4.
(c) Minimum longitudinal reinforcement is not required. If longitudinal reinforcement is provided, internal transverse reinforcement is not required for strength.

## 2b. Compressive Strength

The available compressive strength of axially loaded doubly symmetric filled composite members shall be determined for the limit state of flexural buckling in accordance with Section I2.1b with the following modifications:
(a) For compact sections

$$
\begin{equation*}
P_{n o}=P_{p} \tag{I2-9a}
\end{equation*}
$$

where

$$
P_{p}=F_{y} A_{s}+C_{2} f_{c}^{\prime}\left(A_{c}+A_{s r} \frac{E_{s}}{E_{c}}\right)
$$

$C_{2}=0.85$ for rectangular sections and 0.95 for round sections
(b) For noncompact sections

$$
\begin{equation*}
P_{n o}=P_{p}-\frac{P_{p}-P_{y}}{\left(\lambda_{r}-\lambda_{p}\right)^{2}}\left(\lambda-\lambda_{p}\right)^{2} \tag{I2-9c}
\end{equation*}
$$

where
$\lambda, \lambda_{p}$ and $\lambda_{r}$ are slenderness ratios determined from Table I1.1a
$P_{p}$ is determined from Equation I2-9b

$$
\begin{equation*}
P_{y}=F_{y} A_{s}+0.7 f_{c}^{\prime}\left(A_{c}+A_{s r} \frac{E_{s}}{E_{c}}\right) \tag{I2-9d}
\end{equation*}
$$

(c) For slender sections

$$
\begin{equation*}
P_{n o}=F_{c r} A_{s}+0.7 f_{c}^{\prime}\left(A_{c}+A_{s r} \frac{E_{s}}{E_{c}}\right) \tag{I2-9e}
\end{equation*}
$$

where
(1) For rectangular filled sections

$$
\begin{equation*}
F_{c r}=\frac{9 E_{s}}{\left(\frac{b}{t}\right)^{2}} \tag{I2-10}
\end{equation*}
$$

(2) For round filled sections

$$
\begin{equation*}
F_{c r}=\frac{0.72 F_{y}}{\left[\left(\frac{D}{t}\right) \frac{F_{y}}{E_{s}}\right]^{0.2}} \tag{I2-11}
\end{equation*}
$$

The effective stiffness of the composite section, $E I_{\text {eff }}$, for all sections shall be:

$$
\begin{equation*}
E I_{e f f}=E_{s} I_{s}+E_{s} I_{s r}+C_{3} E_{C} I_{c} \tag{I2-12}
\end{equation*}
$$

where
$C_{3}=$ coefficient for calculation of effective rigidity of filled composite compression member

$$
\begin{equation*}
=0.45+3\left(\frac{A_{s}+A_{s r}}{A_{g}}\right) \leq 0.9 \tag{I2-13}
\end{equation*}
$$

The available compressive strength need not be less than specified for the bare steel member, as required by Chapter E.

## 2c. Tensile Strength

The available tensile strength of axially loaded filled composite members shall be determined for the limit state of yielding as:

$$
\begin{gathered}
P_{n}=A_{s} F_{y}+A_{s r} F_{y s r} \\
\phi_{t}=0.90(\mathrm{LRFD}) \quad \Omega_{t}=1.67(\mathrm{ASD})
\end{gathered}
$$

## 2d. Load Transfer

Load transfer requirements for filled composite members shall be determined in accordance with Section I6.

## I3. FLEXURE

This section applies to three types of composite members subject to flexure: composite beams with steel anchors consisting of steel headed stud anchors or steel channel anchors, concrete encased members, and concrete filled members.

## 1. General

## 1a. Effective Width

The effective width of the concrete slab shall be the sum of the effective widths for each side of the beam centerline, each of which shall not exceed:
(a) one-eighth of the beam span, center-to-center of supports;
(b) one-half the distance to the centerline of the adjacent beam; or
(c) the distance to the edge of the slab.

## 1b. Strength During Construction

When temporary shores are not used during construction, the steel section alone shall have sufficient strength to support all loads applied prior to the concrete attaining $75 \%$ of its specified strength, $f_{c}^{\prime}$. The available flexural strength of the steel section shall be determined in accordance with Chapter F.

## 2. Composite Beams with Steel Headed Stud or Steel Channel Anchors

## 2a. Positive Flexural Strength

The design positive flexural strength, $\phi_{b} M_{n}$, and allowable positive flexural strength, $M_{n} / \Omega_{b}$, shall be determined for the limit state of yielding as follows:

$$
\phi_{b}=0.90(\mathrm{LRFD}) \quad \Omega_{b}=1.67(\mathrm{ASD})
$$

(a) When $h / t_{w} \leq 3.76 \sqrt{E / F_{y}}$
$M_{n}$ shall be determined from the plastic stress distribution on the composite section for the limit state of yielding (plastic moment).

User Note: All current ASTM A6 W, S and HP shapes satisfy the limit given in Section I3.2a(a) for $F_{y} \leq 70 \mathrm{ksi}(485 \mathrm{MPa})$.
(b) When $h / t_{w}>3.76 \sqrt{E / F_{y}}$
$M_{n}$ shall be determined from the superposition of elastic stresses, considering the effects of shoring, for the limit state of yielding (yield moment).

## 2b. Negative Flexural Strength

The available negative flexural strength shall be determined for the steel section alone, in accordance with the requirements of Chapter F.

Alternatively, the available negative flexural strength shall be determined from the plastic stress distribution on the composite section, for the limit state of yielding (plastic moment), with

$$
\phi_{b}=0.90(\mathrm{LRFD}) \quad \Omega_{b}=1.67(\mathrm{ASD})
$$

provided that the following limitations are met:
(a) The steel beam is compact and is adequately braced in accordance with Chapter F .
(b) Steel headed stud or steel channel anchors connect the slab to the steel beam in the negative moment region.
(c) The slab reinforcement parallel to the steel beam, within the effective width of the slab, is developed.

## 2c. Composite Beams with Formed Steel Deck

## 1. General

The available flexural strength of composite construction consisting of concrete slabs on formed steel deck connected to steel beams shall be determined by the applicable portions of Sections I3.2a and I3.2b, with the following requirements:
(a) The nominal rib height shall not be greater than 3 in . $(75 \mathrm{~mm}$ ). The average width of concrete rib or haunch, $w_{r}$, shall be not less than 2 in . ( 50 mm ), but shall not be taken in calculations as more than the minimum clear width near the top of the steel deck.
(b) The concrete slab shall be connected to the steel beam with steel headed stud anchors welded either through the deck or directly to the steel cross section. Steel headed stud anchors, after installation, shall extend not less than $1 \frac{1}{2}$ in. $(38 \mathrm{~mm})$ above the top of the steel deck and there shall be at least $\frac{1}{2}$ in. $(13 \mathrm{~mm})$ of specified concrete cover above the top of the steel headed stud anchors.
(c) The slab thickness above the steel deck shall be not less than 2 in . 50 mm ).
(d) Steel deck shall be anchored to all supporting members at a spacing not to exceed 18 in. ( 460 mm ). Such anchorage shall be provided by steel headed stud anchors, a combination of steel headed stud anchors and arc spot (puddle) welds, or other devices specified by the contract documents.
2. Deck Ribs Oriented Perpendicular to Steel Beam

Concrete below the top of the steel deck shall be neglected in determining composite section properties and in calculating $A_{c}$ for deck ribs oriented perpendicular to the steel beams.

## 3. Deck Ribs Oriented Parallel to Steel Beam

Concrete below the top of the steel deck is permitted to be included in determining composite section properties and in calculating $A_{c}$.
Formed steel deck ribs over supporting beams are permitted to be split longitudinally and separated to form a concrete haunch.
When the nominal depth of steel deck is $1^{1} / 2 \mathrm{in}$. ( 38 mm ) or greater, the average width, $w_{r}$, of the supported haunch or rib shall be not less than 2 in . ( 50 mm ) for the first steel headed stud anchor in the transverse row plus four stud diameters for each additional steel headed stud anchor.

## 2d. Load Transfer Between Steel Beam and Concrete Slab

## 1. Load Transfer for Positive Flexural Strength

The entire horizontal shear at the interface between the steel beam and the concrete slab shall be assumed to be transferred by steel headed stud or steel channel anchors, except for concrete-encased beams as defined in Section I3.3. For composite action with concrete subject to flexural compression, the nominal shear force between the steel beam and the concrete slab transferred by steel anchors,
$V^{\prime}$, between the point of maximum positive moment and the point of zero moment shall be determined as the lowest value in accordance with the limit states of concrete crushing, tensile yielding of the steel section, or the shear strength of the steel anchors:
(a) Concrete crushing

$$
\begin{equation*}
V^{\prime}=0.85 f_{c}^{\prime} A_{c} \tag{I3-1a}
\end{equation*}
$$

(b) Tensile yielding of the steel section

$$
\begin{equation*}
V^{\prime}=F_{y} A_{s} \tag{I3-1b}
\end{equation*}
$$

(c) Shear strength of steel headed stud or steel channel anchors

$$
\begin{equation*}
V^{\prime}=\Sigma Q_{n} \tag{I3-1c}
\end{equation*}
$$

where
$A_{c}=$ area of concrete slab within effective width, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
$A_{s}=$ cross-sectional area of steel section, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
$\Sigma Q_{n}=$ sum of nominal shear strengths of steel headed stud or steel channel anchors between the point of maximum positive moment and the point of zero moment, kips ( N )

The effect of ductility (slip capacity) of the shear connection at the interface of the concrete slab and the steel beam shall be considered.
2. Load Transfer for Negative Flexural Strength

In continuous composite beams where longitudinal reinforcing steel in the negative moment regions is considered to act compositely with the steel beam, the total horizontal shear between the point of maximum negative moment and the point of zero moment shall be determined as the lower value in accordance with the following limit states:
(a) For the limit state of tensile yielding of the slab reinforcement

$$
\begin{equation*}
V^{\prime}=F_{y s r} A_{s r} \tag{I3-2a}
\end{equation*}
$$

where
$A_{s r}=$ area of developed longitudinal reinforcing steel within the effective width of the concrete slab, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
$F_{y s r}=$ specified minimum yield stress of the reinforcing steel, ksi (MPa)
(b) For the limit state of shear strength of steel headed stud or steel channel anchors

$$
\begin{equation*}
V^{\prime}=\Sigma Q_{n} \tag{I3-2b}
\end{equation*}
$$

## 3. Encased Composite Members

The available flexural strength of concrete-encased members shall be determined as follows:

$$
\phi_{b}=0.90(\mathrm{LRFD}) \quad \Omega_{b}=1.67(\mathrm{ASD})
$$

The nominal flexural strength, $M_{n}$, shall be determined using one of the following methods:
(a) The superposition of elastic stresses on the composite section, considering the effects of shoring for the limit state of yielding (yield moment).
(b) The plastic stress distribution on the steel section alone, for the limit state of yielding (plastic moment) on the steel section.
(c) The plastic stress distribution on the composite section or the strain-compatibility method, for the limit state of yielding (plastic moment) on the composite section. For concrete-encased members, steel anchors shall be provided.

## 4. Filled Composite Members

## 4. Limitations

Filled composite sections shall be classified for local buckling according to Section I1.4.

## 4b. Flexural Strength

The available flexural strength of filled composite members shall be determined as follows:

$$
\phi_{b}=0.90(\mathrm{LRFD}) \quad \Omega_{b}=1.67(\mathrm{ASD})
$$

The nominal flexural strength, $M_{n}$, shall be determined as follows:
(a) For compact sections

$$
\begin{equation*}
M_{n}=M_{p} \tag{I3-3a}
\end{equation*}
$$

where
$M_{p}=$ moment corresponding to plastic stress distribution over the composite cross section, kip-in. ( $\mathrm{N}-\mathrm{mm}$ )
(b) For noncompact sections

$$
\begin{equation*}
M_{n}=M_{p}-\left(M_{p}-M_{y}\right)\left(\frac{\lambda-\lambda_{p}}{\lambda_{r}-\lambda_{p}}\right) \tag{I3-3b}
\end{equation*}
$$

where
$\lambda, \lambda_{p}$ and $\lambda_{r}$ are slenderness ratios determined from Table I1.1b.
$M_{y}=$ yield moment corresponding to yielding of the tension flange and first yield of the compression flange, kip-in. (N-mm). The capacity at first yield shall be calculated assuming a linear elastic stress distribution with the maximum concrete compressive stress limited to $0.70 f_{c}^{\prime}$ and the maximum steel stress limited to $F_{y}$.
(c) For slender sections, $M_{n}$, shall be determined as the first yield moment. The compression flange stress shall be limited to the local buckling stress, $F_{c r}$, determined using Equation I2-10 or I2-11. The concrete stress distribution shall be linear elastic with the maximum compressive stress limited to $0.70 f_{c}^{\prime}$.

## I4. SHEAR

## 1. Filled and Encased Composite Members

The design shear strength, $\phi_{\nu} V_{n}$, and allowable shear strength, $V_{n} / \Omega_{v}$, shall be determined based on one of the following:
(a) The available shear strength of the steel section alone as specified in Chapter G
(b) The available shear strength of the reinforced concrete portion (concrete plus steel reinforcement) alone as defined by ACI 318 with

$$
\phi_{v}=0.75(\mathrm{LRFD}) \quad \Omega_{v}=2.00(\mathrm{ASD})
$$

(c) The nominal shear strength of the steel section, as defined in Chapter G, plus the nominal strength of the reinforcing steel, as defined by ACI 318, with a combined resistance or safety factor of

$$
\phi_{v}=0.75(\mathrm{LRFD}) \quad \Omega_{v}=2.00(\mathrm{ASD})
$$

## 2. Composite Beams with Formed Steel Deck

The available shear strength of composite beams with steel headed stud or steel channel anchors shall be determined based upon the properties of the steel section alone in accordance with Chapter G.

## I5. COMBINED FLEXURE AND AXIAL FORCE

The interaction between flexure and axial forces in composite members shall account for stability as required by Chapter C. The available compressive strength and the available flexural strength shall be determined as defined in Sections I2 and I3, respectively. To account for the influence of length effects on the axial strength of the member, the nominal axial strength of the member shall be determined in accordance with Section I2.
(a) For encased composite members and for filled composite members with compact sections, the interaction between axial force and flexure shall be based on the interaction equations of Section H1.1 or one of the methods defined in Section I1.2.
(b) For filled composite members with noncompact or slender sections, the interaction between axial force and flexure shall be based either on the interaction equations of Section H1.1, the method defined in Section I1.2d, or Equations I51 a and b .
(1) When $\frac{P_{r}}{P_{c}} \geq c_{p}$

$$
\begin{equation*}
\frac{P_{r}}{P_{c}}+\frac{1-c_{p}}{c_{m}}\left(\frac{M_{r}}{M_{c}}\right) \leq 1.0 \tag{I5-1a}
\end{equation*}
$$

(2) When $\frac{P_{r}}{P_{c}}<c_{p}$

$$
\begin{equation*}
\left(\frac{1-c_{m}}{c_{p}}\right)\left(\frac{P_{r}}{P_{c}}\right)+\frac{M_{r}}{M_{c}} \leq 1.0 \tag{I5-1b}
\end{equation*}
$$

TABLE I5.1   Coefficients $c_{p}$ and $c_{m}$ for Use with Equations I5-1 a and I5-1b			
Filled Composite Member Type	$c_{p}$	$c_{m}$	
		when $c_{s r} \geq 0.5$	when $c_{s r}<0.5$
Rectangular	$c_{p}=\frac{0.17}{c_{s r}{ }^{0.4}}$	$c_{m}=\frac{1.06}{c_{s r} 0.11} \geq 1.0$	$c_{m}=\frac{0.90}{c_{s r} 0.36} \leq 1.67$
Round HSS	$c_{p}=\frac{0.27}{c_{s r}{ }^{0.4}}$	$c_{m}=\frac{1.10}{c_{s r} 0.08} \geq 1.0$	$c_{m}=\frac{0.95}{c_{s r} 0.32} \leq 1.67$

where
$M_{c}=$ available flexural strength, determined in accordance with Section I3, kip-in. ( $\mathrm{N}-\mathrm{mm}$ )
$M_{r}=$ required flexural strength, determined in accordance with Section I1.5, using LRFD or ASD load combinations, kip-in. (N-mm)
$P_{c}=$ available axial strength, determined in accordance with Section I2, kips (N)
$P_{r}=$ required axial strength, determined in accordance with Section I1.5, using LRFD or ASD load combinations, kips (N)

## For design according to Section B3.1 (LRFD):

$M_{c}=\phi_{b} M_{n}=$ design flexural strength determined in accordance with Section I3, kip-in. (N-mm)
$M_{r}=$ required flexural strength, determined in accordance with Section I1.5, using LRFD load combinations, kip-in. (N-mm)
$P_{c}=\phi_{c} P_{n}=$ design axial strength, determined in accordance with Section I2, kips (N)
$P_{r}=$ required axial strength, determined in accordance with Section I1.5, using LRFD load combinations, kips (N)
$\phi_{c}=$ resistance factor for compression $=0.75$
$\phi_{b}=$ resistance factor for flexure $=0.90$
For design according to Section B3.2 (ASD):
$M_{c}=M_{n} / \Omega_{b}=$ allowable flexural strength, determined in accordance with Section I3, kip-in. (N-mm)
$M_{r}=$ required flexural strength, determined in accordance with Section I1.5, using ASD load combinations, kip-in. (N-mm)
$P_{c}=P_{n} / \Omega_{c}=$ allowable axial strength, determined in accordance with Section I2, kips (N)
$P_{r}=$ required axial strength, determined in accordance with Section I1.5, using ASD load combinations, kips (N)
$\Omega_{c}=$ safety factor for compression $=2.00$
$\Omega_{b}=$ safety factor for flexure $=1.67$
$c_{m}$ and $c_{p}$ are determined from Table I5.1

$$
\begin{equation*}
\mathrm{c}_{s r}=\frac{A_{s} F_{y}+A_{s r} F_{y r}}{A_{c} f_{c}^{\prime}} \tag{I5-2}
\end{equation*}
$$

## I6. LOAD TRANSFER

## 1. General Requirements

When external forces are applied to an axially loaded encased or filled composite member, the introduction of force to the member and the transfer of longitudinal shear within the member shall be assessed in accordance with the requirements for force allocation presented in this section.

The design strength, $\phi R_{n}$, or the allowable strength, $R_{n} / \Omega$, of the applicable force transfer mechanisms as determined in accordance with Section I6.3 shall equal or exceed the required longitudinal shear force to be transferred, $V_{r}^{\prime}$, as determined in accordance with Section I6.2. Force transfer mechanisms shall be located within the load transfer region as determined in accordance with Section I6.4.

## 2. Force Allocation

Force allocation shall be determined based upon the distribution of external force in accordance with the following requirements.

User Note: Bearing strength provisions for externally applied forces are provided in Section J8. For filled composite members, the term $\sqrt{A_{2} / A_{1}}$ in Equation J8-2 may be taken equal to 2.0 due to confinement effects.

## 2a. External Force Applied to Steel Section

When the entire external force is applied directly to the steel section, the force required to be transferred to the concrete, $V_{r}^{\prime}$, shall be determined as:

$$
\begin{equation*}
V_{r}^{\prime}=P_{r}\left(1-F_{y} A_{s} / P_{n o}\right) \tag{I6-1}
\end{equation*}
$$

where
$P_{n o}=$ nominal axial compressive strength without consideration of length effects, determined by Equation I2-4 for encased composite members, and Equation I2-9a or Equation I2-9c, as applicable, for compact or noncompact filled composite members, kips (N)
$P_{r}=$ required external force applied to the composite member, kips (N)

User Note: Equation I6-1 does not apply to slender filled composite members for which the external force is applied directly to the concrete fill in accordance with Section I6.2b, or concurrently to the steel and concrete, in accordance with Section I6.2c.

## 2b. External Force Applied to Concrete

When the entire external force is applied directly to the concrete encasement or concrete fill, the force required to be transferred to the steel, $V_{r}^{\prime}$, shall be determined as follows:
(a) For encased or filled composite members that are compact or noncompact

$$
\begin{equation*}
V_{r}^{\prime}=P_{r}\left(F_{y} A_{s} / P_{n o}\right) \tag{I6-2a}
\end{equation*}
$$

(b) For slender filled composite members

$$
\begin{equation*}
V_{r}^{\prime}=P_{r}\left(F_{c r} A_{s} / P_{n o}\right) \tag{I6-2b}
\end{equation*}
$$

where
$F_{c r}=$ critical buckling stress for steel elements of filled composite members determined using Equation I2-10 or Equation I2-11, as applicable, ksi (MPa)
$P_{n o}=$ nominal axial compressive strength without consideration of length effects, determined by Equation I2-4 for encased composite members, and Equation I2-9a for filled composite members, kips (N)

## 2c. External Force Applied Concurrently to Steel and Concrete

When the external force is applied concurrently to the steel section and concrete encasement or concrete fill, $V_{r}^{\prime}$ shall be determined as the force required to establish equilibrium of the cross section.

User Note: The Commentary provides an acceptable method of determining the longitudinal shear force required for equilibrium of the cross section.

## 3. Force Transfer Mechanisms

The nominal strength, $R_{n}$, of the force transfer mechanisms of direct bond interaction, shear connection and direct bearing shall be determined in accordance with this section. Use of the force transfer mechanism providing the largest nominal strength is permitted. Force transfer mechanisms shall not be superimposed.

The force transfer mechanism of direct bond interaction shall not be used for encased composite members.

## 3a. Direct Bearing

Where force is transferred in an encased or filled composite member by direct bearing from internal bearing mechanisms, the available bearing strength of the concrete for the limit state of concrete crushing shall be determined as:

$$
\begin{gather*}
R_{n}=1.7 f_{c}^{\prime} A_{1}  \tag{I6-3}\\
\phi_{B}=0.65(\mathrm{LRFD}) \quad \Omega_{B}=2.31(\mathrm{ASD})
\end{gather*}
$$

where
$A_{1}=$ loaded area of concrete, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$

User Note: An example of force transfer via an internal bearing mechanism is the use of internal steel plates within a filled composite member.

## 3b. Shear Connection

Where force is transferred in an encased or filled composite member by shear connection, the available shear strength of steel headed stud or steel channel anchors shall be determined as:

$$
\begin{equation*}
R_{c}=\Sigma Q_{c v} \tag{I6-4}
\end{equation*}
$$

where
$\Sigma Q_{c v}=$ sum of available shear strengths, $\phi Q_{n v}$ (LRFD) or $Q_{n v} / \Omega$ (ASD), as applicable, of steel headed stud or steel channel anchors, determined in accordance with Section I8.3a or Section I8.3d, respectively, placed within the load introduction length as defined in Section I6.4, kips (N)

## 3c. Direct Bond Interaction

Where force is transferred in a filled composite member by direct bond interaction, the available bond strength between the steel and concrete shall be determined as follows:

$$
\begin{equation*}
R_{n}=p_{b} L_{i n} F_{\text {in }} \tag{I6-5}
\end{equation*}
$$

$$
\phi=0.50(\mathrm{LRFD}) \quad \Omega=3.00(\mathrm{ASD})
$$

where
$F_{\text {in }}=$ nominal bond stress, $\mathrm{ksi}(\mathrm{MPa})$
$=12 t / H^{2} \leq 0.1$, ksi ( $\left.2100 t / H^{2} \leq 0.7, \mathrm{MPa}\right)$ for rectangular cross sections
$=30 t / D^{2} \leq 0.2$, ksi $\left(5300 t / D^{2} \leq 1.4\right.$, MPa) for circular cross sections
$D=$ outside diameter of round HSS, in. (mm)
$H$ = maximum transverse dimension of rectangular steel member, in. (mm)
$L_{i n}=$ load introduction length, determined in accordance with Section I6.4, in. (mm)
$R_{n}=$ nominal bond strength, kips (N)
$p_{b}=$ perimeter of the steel-concrete bond interface within the composite cross section, in. (mm)
$t=$ design wall thickness of HSS member as defined in Section B4.2, in. (mm)

## 4. Detailing Requirements

## 4a. Encased Composite Members

Force transfer mechanisms shall be distributed within the load introduction length, which shall not exceed a distance of two times the minimum transverse dimension of the encased composite member above and below the load transfer region. Anchors utilized to transfer longitudinal shear shall be placed on at least two faces of the steel shape in a generally symmetric configuration about the steel shape axes.

Steel anchor spacing, both within and outside of the load introduction length, shall conform to Section I8.3e.

## 4b. Filled Composite Members

Force transfer mechanisms shall be distributed within the load introduction length, which shall not exceed a distance of two times the minimum transverse dimension of a rectangular steel member or two times the diameter of a round steel member both above and below the load transfer region. For the specific case of load applied to the concrete of a filled composite member containing no internal reinforcement, the load introduction length shall extend beyond the load transfer region in only the direction of the applied force. Steel anchor spacing within the load introduction length shall conform to Section I8.3e.

## I7. COMPOSITE DIAPHRAGMS AND COLLECTOR BEAMS

Composite slab diaphragms and collector beams shall be designed and detailed to transfer loads between the diaphragm, the diaphragm's boundary members and collector elements, and elements of the lateral force-resisting system.

User Note: Design guidelines for composite diaphragms and collector beams can be found in the Commentary.

## 18. STEEL ANCHORS

## 1. General

The diameter of a steel headed stud anchor, $d_{s a}$, shall be $3 / 4 \mathrm{in}$. ( 19 mm ) or less, except where anchors are utilized solely for shear transfer in solid slabs in which case $7 / 8$-in.- $(22 \mathrm{~mm})$ and 1-in.- $(25 \mathrm{~mm})$ diameter anchors are permitted. Additionally, $d_{s a}$ shall not be greater than 2.5 times the thickness of the base metal to which it is welded, unless it is welded to a flange directly over a web.

Section I8.2 applies to a composite flexural member where steel anchors are embedded in a solid concrete slab or in a slab cast on formed steel deck. Section I8.3 applies to all other cases.

## 2. Steel Anchors in Composite Beams

The length of steel headed stud anchors shall not be less than four stud diameters from the base of the steel headed stud anchor to the top of the stud head after installation.

## 2a. Strength of Steel Headed Stud Anchors

The nominal shear strength of one steel headed stud anchor embedded in a solid concrete slab or in a composite slab with decking shall be determined as follows:

$$
\begin{equation*}
Q_{n}=0.5 A_{s a} \sqrt{f_{c}^{\prime} E_{c}} \leq R_{g} R_{p} A_{s a} F_{u} \tag{I8-1}
\end{equation*}
$$

$$
\begin{aligned}
& \text { where } \\
& A_{s a}=\text { cross-sectional area of steel headed stud anchor, in. }{ }^{2}\left(\mathrm{~mm}^{2}\right) \\
& E_{c}=\text { modulus of elasticity of concrete } \\
&=w_{c}^{1.5} \sqrt{f_{c}^{\prime}}, \mathrm{ksi}\left(0.043 w_{c}^{1.5} \sqrt{f_{c}^{\prime}}, \mathrm{MPa}\right) \\
& F_{u} \quad=\text { specified minimum tensile strength of a steel headed stud anchor, ksi } \\
& \quad(\mathrm{MPa}) \\
& R_{g} \quad=1.0 \text { for: }
\end{aligned}
$$

(a) One steel headed stud anchor welded in a steel deck rib with the deck oriented perpendicular to the steel shape
(b) Any number of steel headed stud anchors welded in a row directly to the steel shape
(c) Any number of steel headed stud anchors welded in a row through steel deck with the deck oriented parallel to the steel shape and the ratio of the average rib width to rib depth $\geq 1.5$
$=0.85$ for:
(a) Two steel headed stud anchors welded in a steel deck rib with the deck oriented perpendicular to the steel shape
(b) One steel headed stud anchor welded through steel deck with the deck oriented parallel to the steel shape and the ratio of the average rib width to rib depth < 1.5
$=0.7$ for three or more steel headed stud anchors welded in a steel deck rib with the deck oriented perpendicular to the steel shape
$R_{p}=0.75$ for:
(a) Steel headed stud anchors welded directly to the steel shape
(b) Steel headed stud anchors welded in a composite slab with the deck oriented perpendicular to the beam and $e_{m i d-h t} \geq 2 \mathrm{in}$. ( 50 mm )
(c) Steel headed stud anchors welded through steel deck, or steel sheet used as girder filler material, and embedded in a composite slab with the deck oriented parallel to the beam
$=0.6$ for steel headed stud anchors welded in a composite slab with deck oriented perpendicular to the beam and $e_{m i d-h t}<2 \mathrm{in}$. ( 50 mm )
$e_{m i d-h t}=$ distance from the edge of steel headed stud anchor shank to the steel deck web, measured at mid-height of the deck rib, and in the load bearing direction of the steel headed stud anchor (in other words, in the direction of maximum moment for a simply supported beam), in. (mm)

User Note: The table below presents values for $R_{g}$ and $R_{p}$ for several cases. Available strengths for steel headed stud anchors can be found in the AISC Steel Construction Manual.

Condition	$R_{g}$	$\boldsymbol{R}_{\boldsymbol{p}}$
No decking	1.0	0.75
Decking oriented parallel to the steel shape $\begin{aligned} & \frac{w_{r}}{h_{r}} \geq 1.5 \\ & \frac{w_{r}}{h_{r}}<1.5 \end{aligned}$	1.0   $0.85^{[a]}$	$\begin{aligned} & 0.75 \\ & 0.75 \end{aligned}$
Decking oriented perpendicular to the steel shape Number of steel headed stud anchors occupying the same decking rib: $1$   2   3 or more	$\begin{aligned} & 1.0 \\ & 0.85 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 0.6^{[b]} \\ & \left.0.6^{[b]}\right] \\ & 0.6^{[b]} \end{aligned}$
$h_{r}=$ nominal rib height, in. (mm)   $w_{r}=$ average width of concrete rib or haunch (as defined in Section I3.2c), in. (mm)   ${ }^{\text {[a] }}$ For a single steel headed stud anchor   ${ }^{[b]}$ This value may be increased to 0.75 when $e_{\text {mid-ht }} \geq 2$ in. $(50 \mathrm{~mm})$.		

## 2b. Strength of Steel Channel Anchors

The nominal shear strength of one hot-rolled channel anchor embedded in a solid concrete slab shall be determined as:

$$
\begin{equation*}
Q_{n}=0.3\left(t_{f}+0.5 t_{w}\right) l_{a} \sqrt{f_{c}^{\prime} E_{c}} \tag{I8-2}
\end{equation*}
$$

where
$l_{a}=$ length of channel anchor, in. (mm)
$t_{f}=$ thickness of flange of channel anchor, in. (mm)
$t_{w}=$ thickness of channel anchor web, in. (mm)
The strength of the channel anchor shall be developed by welding the channel to the beam flange for a force equal to $Q_{n}$, considering eccentricity on the anchor.

## 2c. Required Number of Steel Anchors

The number of anchors required between the section of maximum bending moment, positive or negative, and the adjacent section of zero moment shall be equal to the
horizontal shear as determined in Sections I3.2d.1 and I3.2d.2 divided by the nominal shear strength of one steel anchor as determined from Section I8.2a or Section I8.2b. The number of steel anchors required between any concentrated load and the nearest point of zero moment shall be sufficient to develop the maximum moment required at the concentrated load point.

## 2d. Detailing Requirements

Steel anchors in composite beams shall meet the following requirements:
(a) Steel anchors required on each side of the point of maximum bending moment, positive or negative, shall be distributed uniformly between that point and the adjacent points of zero moment, unless specified otherwise on the contract documents.
(b) Steel anchors shall have at least 1 in . $(25 \mathrm{~mm})$ of lateral concrete cover in the direction perpendicular to the shear force, except for anchors installed in the ribs of formed steel decks.
(c) The minimum distance from the center of a steel anchor to a free edge in the direction of the shear force shall be 8 in . ( 200 mm ) if normal weight concrete is used and 10 in . ( 250 mm ) if lightweight concrete is used. The provisions of ACI 318 Chapter 17 are permitted to be used in lieu of these values.
(d) Minimum center-to-center spacing of steel headed stud anchors shall be four diameters in any direction. For composite beams that do not contain anchors located within formed steel deck oriented perpendicular to the beam span, an additional minimum spacing limit of six diameters along the longitudinal axis of the beam shall apply.
(e) The maximum center-to-center spacing of steel anchors shall not exceed eight times the total slab thickness or 36 in . $(900 \mathrm{~mm}$ ).

## 3. Steel Anchors in Composite Components

This section shall apply to the design of cast-in-place steel headed stud anchors and steel channel anchors in composite components.

The provisions of the applicable building code or ACI 318 Chapter 17 are permitted to be used in lieu of the provisions in this section.

User Note: The steel headed stud anchor strength provisions in this section are applicable to anchors located primarily in the load transfer (connection) region of composite columns and beam-columns, concrete-encased and filled composite beams, composite coupling beams, and composite walls, where the steel and concrete are working compositely within a member. They are not intended for hybrid construction where the steel and concrete are not working compositely, such as with embed plates.

Section I8.2 specifies the strength of steel anchors embedded in a solid concrete slab or in a concrete slab with formed steel deck in a composite beam.

Limit states for the steel shank of the anchor and for concrete breakout in shear are covered directly in this Section. Additionally, the spacing and dimensional limitations provided in these provisions preclude the limit states of concrete pryout for anchors loaded in shear and concrete breakout for anchors loaded in tension as defined by ACI 318 Chapter 17.

For normal weight concrete: Steel headed stud anchors subjected to shear only shall not be less than five stud diameters in length from the base of the steel headed stud to the top of the stud head after installation. Steel headed stud anchors subjected to tension or interaction of shear and tension shall not be less than eight stud diameters in length from the base of the stud to the top of the stud head after installation.

For lightweight concrete: Steel headed stud anchors subjected to shear only shall not be less than seven stud diameters in length from the base of the steel headed stud to the top of the stud head after installation. Steel headed stud anchors subjected to tension shall not be less than ten stud diameters in length from the base of the stud to the top of the stud head after installation. The nominal strength of steel headed stud anchors subjected to interaction of shear and tension for lightweight concrete shall be determined as stipulated by the applicable building code or ACI 318 Chapter 17.

Steel headed stud anchors subjected to tension or interaction of shear and tension shall have a diameter of the head greater than or equal to 1.6 times the diameter of the shank.

User Note: The following table presents values of minimum steel headed stud anchor $h / d$ ratios for each condition covered in this Specification.

Loading   Condition	Normal Weight   Concrete	Lightweight   Concrete
Shear	$h / d_{s a} \geq 5$	$h / d_{s a} \geq 7$
Tension	$h / d_{s a} \geq 8$	$h / d_{s a} \geq 10$
Shear and Tension	$h / d_{s a} \geq 8$	$\mathrm{~N} / \mathrm{A}^{[a]}$
$h / d_{s a}=$ ratio of steel headed stud anchor shank length to the top of the stud head, to shank   diameter.		
[a] Refer to ACl 318 Chapter 17 for the calculation of interaction effects of anchors embedded in   lightweight concrete.		

## 3a. Shear Strength of Steel Headed Stud Anchors in Composite Components

Where concrete breakout strength in shear is not an applicable limit state, the design shear strength, $\phi_{v} Q_{n v}$, and allowable shear strength, $Q_{n v} / \Omega_{v}$, of one steel headed stud anchor shall be determined as:

$$
\begin{gather*}
Q_{n v}=F_{u} A_{s a}  \tag{I8-3}\\
\phi_{v}=0.65(\mathrm{LRFD}) \quad \Omega_{v}=2.31(\mathrm{ASD})
\end{gather*}
$$

where
$A_{s a}=$ cross-sectional area of a steel headed stud anchor, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
$F_{u}=$ specified minimum tensile strength of a steel headed stud anchor, ksi (MPa)
$Q_{n v}=$ nominal shear strength of a steel headed stud anchor, kips (N)
Where concrete breakout strength in shear is an applicable limit state, the available shear strength of one steel headed stud anchor shall be determined by one of the following:
(a) Where anchor reinforcement is developed in accordance with ACI 318 on both sides of the concrete breakout surface for the steel headed stud anchor, the minimum of the steel nominal shear strength from Equation I8-3 and the nominal strength of the anchor reinforcement shall be used for the nominal shear strength, $Q_{n v}$, of the steel headed stud anchor.
(b) As stipulated by the applicable building code or ACI 318 Chapter 17.

User Note: If concrete breakout strength in shear is an applicable limit state (for example, where the breakout prism is not restrained by an adjacent steel plate, flange or web), appropriate anchor reinforcement is required for the provisions of this Section to be used. Alternatively, the provisions of the applicable building code or ACI 318 Chapter 17 may be used.

## 3b. Tensile Strength of Steel Headed Stud Anchors in Composite Components

Where the distance from the center of an anchor to a free edge of concrete in the direction perpendicular to the height of the steel headed stud anchor is greater than or equal to 1.5 times the height of the steel headed stud anchor measured to the top of the stud head, and where the center-to-center spacing of steel headed stud anchors is greater than or equal to three times the height of the steel headed stud anchor measured to the top of the stud head, the available tensile strength of one steel headed stud anchor shall be determined as:

$$
\begin{gather*}
Q_{n t}=F_{u} A_{s a}  \tag{I8-4}\\
\phi_{t}=0.75(\mathrm{LRFD}) \quad \Omega_{t}=2.00(\mathrm{ASD})
\end{gather*}
$$

where
$Q_{n t}=$ nominal tensile strength of steel headed stud anchor, kips (N)
Where the distance from the center of an anchor to a free edge of concrete in the direction perpendicular to the height of the steel headed stud anchor is less than 1.5 times the height of the steel headed stud anchor measured to the top of the stud head, or where the center-to-center spacing of steel headed stud anchors is less than three times the height of the steel headed stud anchor measured to the top of the stud head, the nominal tensile strength of one steel headed stud anchor shall be determined by one of the following:
(a) Where anchor reinforcement is developed in accordance with ACI 318 on both sides of the concrete breakout surface for the steel headed stud anchor, the minimum of the steel nominal tensile strength from Equation I8-4 and the nominal strength of the anchor reinforcement shall be used for the nominal tensile strength, $Q_{n t}$, of the steel headed stud anchor.
(b) As stipulated by the applicable building code or ACI 318 Chapter 17.

User Note: Supplemental confining reinforcement is recommended around the anchors for steel headed stud anchors subjected to tension or interaction of shear and tension to avoid edge effects or effects from closely spaced anchors. See the Commentary and ACI 318 for guidelines.

## 3c. Strength of Steel Headed Stud Anchors for Interaction of Shear and Tension in Composite Components

Where concrete breakout strength in shear is not a governing limit state, and where the distance from the center of an anchor to a free edge of concrete in the direction perpendicular to the height of the steel headed stud anchor is greater than or equal to 1.5 times the height of the steel headed stud anchor measured to the top of the stud head, and where the center-to-center spacing of steel headed stud anchors is greater than or equal to three times the height of the steel headed stud anchor measured to the top of the stud head, the nominal strength for interaction of shear and tension of one steel headed stud anchor shall be determined as:

$$
\begin{equation*}
\left(\frac{Q_{r t}}{Q_{c t}}\right)^{5 / 3}+\left(\frac{Q_{v}}{Q_{c v}}\right)^{5 / 3} \leq 1.0 \tag{I8-5}
\end{equation*}
$$

where
$Q_{c t}=$ available tensile strength, kips (N)
$Q_{r t}=$ required tensile strength, kips (N)
$Q_{c v}=$ available shear strength, kips (N)
$Q_{r v}=$ required shear strength, kips (N)

## For design in accordance with Section B3.3 (LRFD):

$Q_{r t}=$ required tensile strength using LRFD load combinations, kips (N)
$Q_{c t}=\phi_{t} Q_{n t}=$ design tensile strength, determined in accordance with Section I8.3b, kips (N)
$Q_{r v}=$ required shear strength using LRFD load combinations, kips (N)
$Q_{c v}=\phi_{\nu} Q_{n v}=$ design shear strength, determined in accordance with Section I8.3a, kips (N)
$\phi_{t}=$ resistance factor for tension $=0.75$
$\phi_{\nu}=$ resistance factor for shear $=0.65$

## For design in accordance with Section B3.4 (ASD):

$Q_{r t}=$ required tensile strength using ASD load combinations, kips (N)
$Q_{c t}=Q_{n t} / \Omega_{t}=$ allowable tensile strength, determined in accordance with Section I8.3b, kips (N)
$Q_{r v}=$ required shear strength using ASD load combinations, kips (N)
$Q_{c v}=Q_{n v} / \Omega_{v}=$ allowable shear strength, determined in accordance with Section I8.3a, kips (N)
$\Omega_{t}=$ safety factor for tension $=2.00$
$\Omega_{v}=$ safety factor for shear $=2.31$
Where concrete breakout strength in shear is a governing limit state, or where the distance from the center of an anchor to a free edge of concrete in the direction perpendicular to the height of the steel headed stud anchor is less than 1.5 times the height of the steel headed stud anchor measured to the top of the stud head, or where the center-to-center spacing of steel headed stud anchors is less than three times the height of the steel headed stud anchor measured to the top of the stud head, the nominal strength for interaction of shear and tension of one steel headed stud anchor shall be determined by one of the following:
(a) Where anchor reinforcement is developed in accordance with ACI 318 on both sides of the concrete breakout surface for the steel headed stud anchor, the minimum of the steel nominal shear strength from Equation I8-3 and the nominal strength of the anchor reinforcement shall be used for the nominal shear strength, $Q_{n v}$, of the steel headed stud anchor, and the minimum of the steel nominal tensile strength from Equation I8-4 and the nominal strength of the anchor reinforcement shall be used for the nominal tensile strength, $Q_{n t}$, of the steel headed stud anchor for use in Equation I8-5.
(b) As stipulated by the applicable building code or ACI 318 Chapter 17.

## 3d. Shear Strength of Steel Channel Anchors in Composite Components

The available shear strength of steel channel anchors shall be based on the provisions of Section I8.2b with the following resistance factor and safety factor:

$$
\phi_{t}=0.75(\mathrm{LRFD}) \quad \Omega_{t}=2.00(\mathrm{ASD})
$$

## 3e. Detailing Requirements in Composite Components

Steel anchors in composite components shall meet the following requirements:
(a) Minimum concrete cover to steel anchors shall be in accordance with ACI 318 provisions for concrete protection of headed shear stud reinforcement.
(b) Minimum center-to-center spacing of steel headed stud anchors shall be four diameters in any direction.
(c) The maximum center-to-center spacing of steel headed stud anchors shall not exceed 32 times the shank diameter.
(d) The maximum center-to-center spacing of steel channel anchors shall be 24 in . $(600 \mathrm{~mm}$ ).

User Note: Detailing requirements provided in this section are absolute limits. See Sections I8.3a, I8.3b and I8.3c for additional limitations required to preclude edge and group effect considerations.

## CHAPTER J

## DESIGN OF CONNECTIONS

This chapter addresses connecting elements, connectors and the affected elements of connected members not subject to fatigue loads.

The chapter is organized as follows:
J1. General Provisions
J2. Welds
J3. Bolts and Threaded Parts
J4. Affected Elements of Members and Connecting Elements
J5. Fillers
J6. Splices
J7. Bearing Strength
J8. Column Bases and Bearing on Concrete
J9. Anchor Rods and Embedments
J10. Flanges and Webs with Concentrated Forces
User Note: For cases not included in this chapter, the following sections apply:

- Chapter K Additional Requirements for HSS and Box-Section Connections
- Appendix 3 Fatigue


## J1. GENERAL PROVISIONS

## 1. Design Basis

The design strength, $\phi R_{n}$, and the allowable strength, $R_{n} / \Omega$, of connections shall be determined in accordance with the provisions of this chapter and the provisions of Chapter B.

The required strength of the connections shall be determined by structural analysis for the specified design loads, consistent with the type of construction specified, or shall be a proportion of the required strength of the connected members when so specified herein.

Where the gravity axes of intersecting axially loaded members do not intersect at one point, the effects of eccentricity shall be considered.

## 2. Simple Connections

Simple connections of beams, girders and trusses shall be designed as flexible and are permitted to be proportioned for the reaction shears only, except as otherwise indicated in the design documents. Flexible beam connections shall accommodate end rotations of simple beams. Some inelastic but self-limiting deformation in the connection is permitted to accommodate the end rotation of a simple beam.

## 3. Moment Connections

End connections of restrained beams, girders and trusses shall be designed for the combined effect of forces resulting from moment and shear induced by the rigidity of the connections. Response criteria for moment connections are provided in Section B3.4b.

User Note: See Chapter C and Appendix 7 for analysis requirements to establish the required strength for the design of connections.

## 4. Compression Members with Bearing Joints

Compression members relying on bearing for load transfer shall meet the following requirements:
(a) For columns bearing on bearing plates or finished to bear at splices, there shall be sufficient connectors to hold all parts in place.
(b) For compression members other than columns finished to bear, the splice material and its connectors shall be arranged to hold all parts in line and their required strength shall be the lesser of:
(1) An axial tensile force equal to $50 \%$ of the required compressive strength of the member; or
(2) The moment and shear resulting from a transverse load equal to $2 \%$ of the required compressive strength of the member. The transverse load shall be applied at the location of the splice exclusive of other loads that act on the member. The member shall be taken as pinned for the determination of the shears and moments at the splice.

User Note: All compression joints should also be proportioned to resist any tension developed by the load combinations stipulated in Section B2.

## 5. Splices in Heavy Sections

When tensile forces due to applied tension or flexure are to be transmitted through splices in heavy sections, as defined in Sections A3.1c and A3.1d, by complete-jointpenetration (CJP) groove welds, the following provisions apply: (a) material notch-toughness requirements as given in Sections A3.1c and A3.1d; (b) weld access hole details as given in Section J1.6; (c) filler metal requirements as given in Section J2.6; and (d) thermal cut surface preparation and inspection requirements as given in Section M2.2. The foregoing provision is not applicable to splices of elements of built-up shapes that are welded prior to assembling the shape.

User Note: CJP groove welded splices of heavy sections can exhibit detrimental effects of weld shrinkage. Members that are sized for compression that are also subject to tensile forces may be less susceptible to damage from shrinkage if they are spliced using partial-joint-penetration (PJP) groove welds on the flanges and fillet-welded web plates, or using bolts for some or all of the splice.

## 6. Weld Access Holes

Weld access holes shall meet the following requirements:
(a) All weld access holes required to facilitate welding operations shall be detailed to provide room for weld backing as needed.
(b) The access hole shall have a length from the toe of the weld preparation not less than $1^{1} / 2$ times the thickness of the material in which the hole is made, nor less than $1^{1} / 2 \mathrm{in}$. ( 38 mm ).
(c) The access hole shall have a height not less than the thickness of the material with the access hole, nor less than $3 / 4$ in. ( 19 mm ), nor does it need to exceed 2 in . 50 mm ).
(d) For sections that are rolled or welded prior to cutting, the edge of the web shall be sloped or curved from the surface of the flange to the reentrant surface of the access hole.
(e) In hot-rolled shapes, and built-up shapes with CJP groove welds that join the web-to-flange, weld access holes shall be free of notches and sharp reentrant corners.
(f) No arc of the weld access hole shall have a radius less than $3 / 8$ in. ( 10 mm ).
(g) In built-up shapes with fillet or partial-joint-penetration (PJP) groove welds that join the web-to-flange, weld access holes shall be free of notches and sharp reentrant corners.
(h) The access hole is permitted to terminate perpendicular to the flange, providing the weld is terminated at least a distance equal to the weld size away from the access hole.
(i) For heavy shapes, as defined in Sections A3.1c and A3.1d, the thermally cut surfaces of weld access holes shall be ground to bright metal.
(j) If the curved transition portion of weld access holes is formed by predrilled or sawed holes, that portion of the access hole need not be ground.

## 7. Placement of Welds and Bolts

Groups of welds or bolts at the ends of any member that transmit axial force into that member shall be sized so that the center of gravity of the group coincides with the center of gravity of the member, unless provision is made for the eccentricity. The foregoing provision is not applicable to end connections of single-angle, doubleangle and similar members.

## 8. Bolts in Combination with Welds

Bolts shall not be considered as sharing the load in combination with welds, except in the design of shear connections on a common faying surface where strain compatibility between the bolts and welds is considered.

It is permitted to determine the available strength, $\phi R_{n}$ and $R_{n} / \Omega$, as applicable, of a joint combining the strengths of high-strength bolts and longitudinal fillet welds as the sum of (1) the nominal slip resistance, $R_{n}$, for bolts as defined in Equation J3-4 according to the requirements of a slip-critical connection and (2) the nominal weld strength, $R_{n}$, as defined in Section J2.4, when the following apply:
(a) $\phi=0.75$ (LRFD); $\Omega=2.00$ (ASD) for the combined joint.
(b) When the high-strength bolts are pretensioned according to the requirements of Table J3.1 or Table J3.1M, using the turn-of-nut method, the longitudinal fillet welds shall have an available strength of not less than $50 \%$ of the required strength of the connection.
(c) When the high-strength bolts are pretensioned according to the requirements of Table J3.1 or Table J3.1M, using any method other than the turn-of-nut method, the longitudinal fillet welds shall have an available strength of not less than $70 \%$ of the required strength of the connection.
(d) The high-strength bolts shall have an available strength of not less than $33 \%$ of the required strength of the connection.

In joints with combined bolts and longitudinal welds, the strength of the connection need not be taken as less than either the strength of the bolts alone or the strength of the welds alone.

## 9. Welded Alterations to Structures with Existing Rivets or Bolts

In making welded alterations to structures, existing rivets and high-strength bolts in standard or short-slotted holes transverse to the direction of load and tightened to the requirements of slip-critical connections are permitted to be utilized for resisting loads present at the time of alteration, and the welding need only provide the additional required strength. The weld available strength shall provide the additional required strength, but not less than $25 \%$ of the required strength of the connection.

User Note: The provisions of this section are generally recommended for alteration in building designs or for field corrections. Use of the combined strength of bolts and welds on a common faying surface is not recommended for new design.

## 10. High-Strength Bolts in Combination with Rivets

In both new work and alterations, in connections designed as slip-critical connections in accordance with the provisions of Section J3, high-strength bolts are permitted to be considered as sharing the load with existing rivets.

## J2. WELDS

All provisions of the Structural Welding Code—Steel (AWS D1.1/D1.1M), hereafter referred to as AWS D1.1/D1.1M, apply under this Specification, with the exception that the provisions of the listed Specification sections apply under this Specification in lieu of the cited AWS provisions as follows:
(a) Section J1.6 in lieu of AWS D1.1/D1.1M clause 5.16
(b) Section J2.2a in lieu of AWS D1.1/D1.1M clauses 2.4.2.10 and 2.4.4.4
(c) Table J2.2 in lieu of AWS D1.1/D1.1M Table 2.1
(d) Table J2.5 in lieu of AWS D1.1/D1.1M Table 2.3
(e) Appendix 3, Table A-3.1 in lieu of AWS D1.1/D1.1M Table 2.5

| TABLE J2.1 <br> Effective Throat Of |  |  |
| :--- | :---: | :---: | :---: |
| Partial-Joint-Penetration Groove Welds |  |  |

(f) Section B3.11 and Appendix 3 in lieu of AWS D1.1/D1.1M clause 2, Part C
(g) Section M2.2 in lieu of AWS D1.1/D1.1M clauses 5.14 and 5.15

## 1. Groove Welds

## 1a. Effective Area

The effective area of groove welds shall be taken as the length of the weld times the effective throat.

The effective throat of a CJP groove weld shall be the thickness of the thinner part joined.
When filled flush to the surface, the effective weld throat for a PJP groove weld shall be as given in Table J2.1 and the effective weld throat for a flare groove weld shall be as given in Table J2.2. The effective throat of a PJP groove weld or flare groove weld filled less than flush shall be as shown in Table J2.1 or Table J2.2, less the greatest perpendicular dimension measured from a line flush to the base metal surface to the weld surface.

User Note: The effective throat of a PJP groove weld is dependent on the process used and the weld position. The design drawings should either indicate the effective throat required or the weld strength required, and the fabricator should detail the joint based on the weld process and position to be used to weld the joint.

TABLE J2.2   Effective Throat of Flare Groove Welds		
Welding Process	Flare Bevel Groove ${ }^{[\mathrm{a}]}$	Flare V-Groove
GMAW and FCAW-G	5/8R	$3 / 4 R$
SMAW and FCAW-S	5/16R	5/8R
SAW	5/16R	$1 / 2 R$
${ }^{[a]}$ For flare bevel groove with $R<3 / 8$ in. ( 10 mm ), use only reinforcing fillet weld on filled flush joint. General note: $R=$ radius of joint surface (is permitted to be $2 t$ for HSS), in. (mm)		


TABLE J2.3	
Minimum Effective Throat of	
Partial-Joint-Penetration Groove Welds	
Material Thickness of	
Thinner Part Joined, in. (mm)	Minimum Effective   Throat, ${ }^{\text {[a] }}$ in. (mm)
To $1 / 4(6)$ inclusive	$1 / 8(3)$
Over $1 / 4(6)$ to $1 / 2(13)$	$3 / 16(5)$
Over $1 / 2(13)$ to $3 / 4(19)$	$5 / 4(6)$
Over $3 / 4(19)$ to $1^{11 / 2}(38)$	$3 / 16(8)$
Over $1^{1 / 2}(38)$ to $2^{1 / 4}(57)$	$1 / 2(13)$
Over $2^{1 / 4}(57)$ to $6(150)$	$5 / 8(16)$
Over $6(150)$	
[a] See Table J2.1.	

Larger effective throats than those in Table J2.2 are permitted for a given welding procedure specification (WPS), provided the fabricator establishes by qualification the consistent production of such larger effective throat. Qualification shall consist of sectioning the weld normal to its axis, at mid-length, and terminal ends. Such sectioning shall be made on a number of combinations of material sizes representative of the range to be used in the fabrication.

## 1b. Limitations

The minimum effective throat of a partial-joint-penetration groove weld shall not be less than the size required to transmit calculated forces nor the size shown in Table J2.3. Minimum weld size is determined by the thinner of the two parts joined.

## TABLE J2.4 <br> Minimum Size of Fillet Welds

Material Thickness of   Thinner Part Joined, in. (mm)	Minimum Size of   Fillet Weld, ${ }^{[a]}$ in. (mm)
To $1 / 4(6)$ inclusive $^{1 / 4}$ (6) to $1 / 2(13)$	$1 / 8(3)$
Over $^{1 / 4}(5 / 16(5)$	
Over $1 / 2(13)$ to $3 / 4(19)$	$1 / 4(6)$
Over $3 / 4(19)$	$5 / 16(8)$

${ }^{\text {[a] }}$ Leg dimension of fillet welds. Single pass welds must be used.
Note: See Section J2.2b for maximum size of fillet welds.

## 2. Fillet Welds

## 2a. Effective Area

The effective area of a fillet weld shall be the effective length multiplied by the effective throat. The effective throat of a fillet weld shall be the shortest distance from the root to the face of the diagrammatic weld. An increase in effective throat is permitted if consistent penetration beyond the root of the diagrammatic weld is demonstrated by tests using the production process and procedure variables.
For fillet welds in holes and slots, the effective length shall be the length of the centerline of the weld along the center of the plane through the throat. In the case of overlapping fillets, the effective area shall not exceed the nominal cross-sectional area of the hole or slot, in the plane of the faying surface.

## 2b. Limitations

Fillet welds shall meet the following limitations:
(a) The minimum size of fillet welds shall be not less than the size required to transmit calculated forces, nor the size as shown in Table J2.4. These provisions do not apply to fillet weld reinforcements of PJP or CJP groove welds.
(b) The maximum size of fillet welds of connected parts shall be:
(1) Along edges of material less than $1 / 4 \mathrm{in}$. $(6 \mathrm{~mm})$ thick; not greater than the thickness of the material.
(2) Along edges of material $1 / 4 \mathrm{in}$. ( 6 mm ) or more in thickness; not greater than the thickness of the material minus $1 / 16$ in. ( 2 mm ), unless the weld is especially designated on the drawings to be built out to obtain full-throat thickness. In the as-welded condition, the distance between the edge of the base metal and the toe of the weld is permitted to be less than $1 / 16 \mathrm{in}$. ( 2 mm ), provided the weld size is clearly verifiable.
(c) The minimum length of fillet welds designed on the basis of strength shall be not less than four times the nominal weld size, or else the effective size of the weld shall not be taken to exceed one-quarter of its length. For the effect of longitudinal fillet weld length in end connections upon the effective area of the connected member, see Section D3.
(d) The effective length of fillet welds shall be determined as follows:
(1) For end-loaded fillet welds with a length up to 100 times the weld size, it is permitted to take the effective length equal to the actual length.
(2) When the length of the end-loaded fillet weld exceeds 100 times the weld size, the effective length shall be determined by multiplying the actual length by the reduction factor, $\beta$, determined as:

$$
\begin{equation*}
\beta=1.2-0.002(l / w) \leq 1.0 \tag{J2-1}
\end{equation*}
$$

where

$$
\begin{aligned}
& l=\text { actual length of end-loaded weld, in. (mm) } \\
& w=\text { size of weld leg, in. (mm) }
\end{aligned}
$$

(3) When the length of the weld exceeds 300 times the leg size, $w$, the effective length shall be taken as $180 w$.
(e) Intermittent fillet welds are permitted to be used to transfer calculated stress across a joint or faying surfaces and to join components of built-up members. The length of any segment of intermittent fillet welding shall be not less than four times the weld size, with a minimum of $1^{1} / 2 \mathrm{in}$. ( 38 mm ).
(f) In lap joints, the minimum amount of lap shall be five times the thickness of the thinner part joined, but not less than 1 in . ( 25 mm ). Lap joints joining plates or bars subjected to axial stress that utilize transverse fillet welds only shall be fillet welded along the end of both lapped parts, except where the deflection of the lapped parts is sufficiently restrained to prevent opening of the joint under maximum loading.
(g) Fillet weld terminations shall be detailed in a manner that does not result in a notch in the base metal subject to applied tension loads. Components shall not be connected by welds where the weld would prevent the deformation required to provide assumed design conditions.

User Note: Fillet weld terminations should be detailed in a manner that does not result in a notch in the base metal transverse to applied tension loads that can occur as a result of normal fabrication. An accepted practice to avoid notches in base metal is to stop fillet welds short of the edge of the base metal by a length approximately equal to the size of the weld. In most welds, the effect of stopping short can be neglected in strength calculations.

There are two common details where welds are terminated short of the end of the joint to permit relative deformation between the connected parts:

- Welds on the outstanding legs of beam clip-angle connections are returned on the top of the outstanding leg and stopped no more than 4 times the weld size and not greater than half the leg width from the outer toe of the angle.
- Fillet welds connecting transverse stiffeners to webs of girders that are $3 / 4$ in. thick or less are stopped 4 to 6 times the web thickness from the web toe of the flange-to web fillet weld, except where the end of the stiffener is welded to the flange.

Details of fillet weld terminations may be shown on shop standard details.
(h) Fillet welds in holes or slots are permitted to be used to transmit shear and resist loads perpendicular to the faying surface in lap joints or to prevent the buckling or separation of lapped parts and to join components of built-up members. Such fillet welds are permitted to overlap, subject to the provisions of Section J2. Fillet welds in holes or slots are not to be considered plug or slot welds.
(i) For fillet welds in slots, the ends of the slot shall be semicircular or shall have the corners rounded to a radius of not less than the thickness of the part containing it, except those ends which extend to the edge of the part.

## 3. Plug and Slot Welds

## 3a. Effective Area

The effective shearing area of plug and slot welds shall be taken as the nominal crosssectional area of the hole or slot in the plane of the faying surface.

## 3b. Limitations

Plug or slot welds are permitted to be used to transmit shear in lap joints or to prevent buckling or separation of lapped parts and to join component parts of built-up members, subject to the following limitations:
(a) The diameter of the holes for a plug weld shall not be less than the thickness of the part containing it plus $5 / 16$ in. ( 8 mm ), rounded to the next larger odd $1 / 16 \mathrm{in}$. (even mm ), nor greater than the minimum diameter plus $1 / 8 \mathrm{in}$. ( 3 mm ) or $2^{1 / 4}$ times the thickness of the weld.
(b) The minimum center-to-center spacing of plug welds shall be four times the diameter of the hole.
(c) The length of slot for a slot weld shall not exceed 10 times the thickness of the weld.
(d) The width of the slot shall be not less than the thickness of the part containing it plus $5 / 16 \mathrm{in}$. ( 8 mm ) rounded to the next larger odd $1 / 16 \mathrm{in}$. (even mm ), nor shall it be larger than $2 \frac{1}{4}$ times the thickness of the weld.
(e) The ends of the slot shall be semicircular or shall have the corners rounded to a radius of not less than the thickness of the part containing it.
(f) The minimum spacing of lines of slot welds in a direction transverse to their length shall be four times the width of the slot.
(g) The minimum center-to-center spacing in a longitudinal direction on any line shall be two times the length of the slot.
(h) The thickness of plug or slot welds in material $5 / 8$ in. ( 16 mm ) or less in thickness shall be equal to the thickness of the material. In material over $5 / 8$ in. ( 16 mm ) thick, the thickness of the weld shall be at least one-half the thickness of the material, but not less than $5 / 8 \mathrm{in}$. ( 16 mm ).

## 4. Strength

(a) The design strength, $\phi R_{n}$ and the allowable strength, $R_{n} / \Omega$, of welded joints shall be the lower value of the base material strength determined according to the limit states of tensile rupture and shear rupture and the weld metal strength determined according to the limit state of rupture as follows:

For the base metal

$$
\begin{equation*}
R_{n}=F_{n B M} A_{B M} \tag{J2-2}
\end{equation*}
$$

For the weld metal

$$
\begin{equation*}
R_{n}=F_{n w} A_{w e} \tag{J2-3}
\end{equation*}
$$

where

$$
\begin{aligned}
& A_{B M}=\text { cross-sectional area of the base metal, in. }{ }^{2}\left(\mathrm{~mm}^{2}\right) \\
& A_{w e}=\text { effective area of the weld, } \mathrm{in}^{2}\left(\mathrm{~mm}^{2}\right) \\
& F_{n B M}=\text { nominal stress of the base metal, ksi }(\mathrm{MPa}) \\
& F_{n w}=\text { nominal stress of the weld metal, ksi (MPa) }
\end{aligned}
$$

The values of $\phi, \Omega, F_{n B M}$ and $F_{n w}$, and limitations thereon, are given in Table J2.5.
(b) For fillet welds, the available strength is permitted to be determined accounting for a directional strength increase of $\left(1.0+0.50 \sin ^{1.5} \theta\right)$ if strain compatibility of the various weld elements is considered,
where
$\phi=0.75$ (LRFD); $\Omega=2.00$ (ASD)
$\theta=$ angle between the line of action of the required force and the weld longitudinal axis, degrees
(1) For a linear weld group with a uniform leg size, loaded through the center of gravity

$$
\begin{equation*}
R_{n}=F_{n w} A_{w e} \tag{J2-4}
\end{equation*}
$$

where

$$
\begin{align*}
& F_{n w}=0.60 F_{E X X}\left(1.0+0.50 \sin ^{1.5} \theta\right), \mathrm{ksi}(\mathrm{MPa})  \tag{J2-5}\\
& F_{E X X}=\text { filler metal classification strength, ksi }(\mathrm{MPa})
\end{align*}
$$

User Note: A linear weld group is one in which all elements are in a line or are parallel.

TABLE J2.5   Available Strength of Welded Joints, ksi (MPa)					
Load Type and Direction Relative to Weld Axis	Pertinent Metal	$\phi$ and $\Omega$	Nominal Stress ( $F_{n B M}$ or $F_{n w}$ ), ksi (MPa)	$\begin{array}{\|c} \text { Effective } \\ \text { Area } \\ \left(A_{B M}\right. \text { or } \\ \left.A_{w e}\right), \\ \text { in. }^{2}\left(\mathrm{~mm}^{2}\right) \end{array}$	Required Filler Metal Strength Level ${ }^{[a][b]}$
COMPLETE-JOINT-PENETRATION GROOVE WELDS					
Tension-   Normal to weld axis	Strength of the joint is controlled by the base metal.				Matching filler metal shall be used. For T- and corner-joints with backing left in place, notch tough filler metal is required. See Section J2.6.
CompressionNormal to weld axis	Strength of the joint is controlled by the base metal.				Filler metal with a strength level equal to or one strength level less than matching filler metal is permitted.
Tension or compressionParallel to weld axis	Tension or compression in parts joined parallel to a weld is permitted to be neglected in design of welds joining the parts.				Filler metal with a strength level equal to or less than matching filler metal is permitted.
Shear	Strength of the joint is controlled by the base metal.				Matching filler metal shall be used. ${ }^{[c]}$
PARTIAL-JOINT-PENETRATION GROOVE WELDS INCLUDING FLARE V-GROOVE AND FLARE BEVEL GROOVE WELDS					
Tension-   Normal to weld axis	Base	$\begin{aligned} & \phi=0.75 \\ & \Omega=2.00 \end{aligned}$	$F_{u}$	See J4	Filler metal with a strength level equal to or less than matching filler metal is permitted.
	Weld	$\begin{aligned} & \phi=0.80 \\ & \Omega=1.88 \end{aligned}$	$0.60 F_{E X X}$	See J2.1a	
CompressionColumn to base plate and column splices designed per Section J1.4(a)	Compressive stress is permitted to be neglected in design of welds joining the parts.				
CompressionConnections of	Base	$\begin{aligned} & \phi=0.90 \\ & \Omega=1.67 \end{aligned}$	$F_{y}$	See J4	
members designed to bear other than columns as described in Section J1.4(b)	Weld	$\begin{aligned} & \phi=0.80 \\ & \Omega=1.88 \end{aligned}$	$0.60 F_{E X X}$	See J2.1a	
Compression-	Base	$\begin{aligned} & \phi=0.90 \\ & \Omega=1.67 \end{aligned}$	$F_{y}$	See J4	
finished-to-bear	Weld	$\begin{aligned} & \phi=0.80 \\ & \Omega=1.88 \end{aligned}$	$0.90 F_{E X X}$	See J2.1a	
Tension or compression- Parallel to weld axis	Tension or compression in parts joined parallel to a weld is permitted to be neglected in design of welds joining the parts.				
Shear	Base	Governed by J4			
	Weld	$\begin{aligned} & \phi=0.75 \\ & \Omega=2.00 \end{aligned}$	0.60FEXX	See J2.1a	


TABLE J2.5 (continued) Available Strength of Welded Joints, ksi (MPa)					
Load Type and Direction Relative to Weld Axis	Pertinent Metal	$\phi$ and $\Omega$	Nominal Stress ( $F_{\text {nBM }}$ or $F_{n w}$ ), ksi (MPa)	$\begin{array}{\|c} \hline \text { Effective } \\ \text { Area } \\ \left(\boldsymbol{A}_{B M}\right. \text { or } \\ \left.A_{w e}\right), \\ \text { in. }^{2}\left(\mathrm{~mm}^{2}\right) \end{array}$	Required Filler Metal Strength Level ${ }^{[a][b]}$
FILLET WELDS INCLUDING FILLETS IN HOLES AND SLOTS AND SKEWED T-JOINTS					
Shear	Base	Governed by J4			
	Weld	$\phi=0.75$ $\Omega=2.00$	$0.60 F_{E X X}{ }^{[d]}$	See J2.2a	Filler metal with a strength level equal
Tension or compressionParallel to weld axis	Tension or compression in parts joined parallel to a weld is permitted to be neglected in design of welds joining the parts.				matching filler metal is permitted.
PLUG AND SLOT WELDS					
ShearParallel to faying surface on the effective area	Base	Governed by J4			Filler metal with a
	Weld	$\phi=0.75$ $\Omega=2.00$	$0^{0.60 F}$ EXX	See J2.3a	to or less than matching filler metal is permitted.
${ }^{[a]}$ For matching weld metal, see AWS D1.1/D1.1M clause 3.3.   ${ }^{[b]}$ Filler metal with a strength level one strength level greater than matching is permitted.   ${ }^{[c]}$ Filler metals with a strength level less than matching are permitted to be used for groove welds between the webs and flanges of built-up sections transferring shear loads, or in applications where high restraint is a concern. In these applications, the weld joint shall be detailed and the weld shall be designed using the thickness of the material as the effective throat, where $\phi=0.80, \Omega=1.88$ and $0.60 F_{E X X}$ is the nominal strength.   ${ }^{[d]}$ The provisions of Section J2.4(b) are also applicable.					

(2) For fillet weld groups concentrically loaded and consisting of elements with a uniform leg size that are oriented both longitudinally and transversely to the direction of applied load, the combined strength, $R_{n}$, of the fillet weld group shall be determined as the greater of the following:
(i) $R_{n}=R_{n w l}+R_{n w t}$
or
(ii) $R_{n}=0.85 R_{n w l}+1.5 R_{n w t}$
where
$R_{n w l}=$ total nominal strength of longitudinally loaded fillet welds, as determined in accordance with Table J2.5, kips (N)
$R_{n w t}=$ total nominal strength of transversely loaded fillet welds, as determined in accordance with Table J2.5 without the increase in Section J2.4(b), kips (N)

User Note: The instantaneous center method is a valid way to calculate the strength of weld groups consisting of weld elements in various directions based on strain compatibility.

## 5. Combination of Welds

If two or more of the general types of welds (groove, fillet, plug, slot) are combined in a single joint, the strength of each shall be separately computed with reference to the axis of the group in order to determine the strength of the combination.

## 6. Filler Metal Requirements

The choice of filler metal for use with CJP groove welds subject to tension normal to the effective area shall comply with the requirements for matching filler metals given in AWS D1.1/D1.1M.

User Note: The following User Note Table summarizes the AWS D1.1/D1.1M provisions for matching filler metals. Other restrictions exist. For a complete list of base metals and prequalified matching filler metals, see AWS D1.1/D1.1M Table 3.1 and Table 3.2.

Base Metal (ASTM)	Matching Filler Metal
A36 $\leq 3 / 4$ in. thick	60- and 70-ksi filler metal
A36 > 3/4 in., A588 ${ }^{[\text {[a] }, ~ A 1011, ~}$ A572 Gr. 50 and 55, A913 Gr. 50, A992, A1018	SMAW: E7015, E7016, E7018, E7028   Other processes: 70-ksi filler metal
A913 Gr. 60 and 65	80-ksi filler metal
A913 Gr. 70	90-ksi filler metal
${ }^{[a]}$ For corrosion resistance and color similar to the base metal, see AWS D1.1/D1.1M clause 3.7.3. Notes:   In joints with base metals of different strengths, either a filler metal that matches the higher strength base metal or a filler metal that matches the lower strength and produces a low hydrogen deposit may be used when matching strength is required.	

Filler metal with a specified minimum Charpy V-notch toughness of $20 \mathrm{ft}-\mathrm{lb}$ (27 J) at $40^{\circ} \mathrm{F}\left(4^{\circ} \mathrm{C}\right)$ or lower shall be used in the following joints:
(a) CJP groove welded T- and corner joints with steel backing left in place, subject to tension normal to the effective area, unless the joints are designed using the nominal strength and resistance factor or safety factor, as applicable, for a PJP groove weld
(b) CJP groove welded splices subject to tension normal to the effective area in heavy sections, as defined in Sections A3.1c and A3.1d

The manufacturer's Certificate of Conformance shall be sufficient evidence of compliance.

## 7. Mixed Weld Metal

When Charpy V-notch toughness is specified, the process consumables for all weld metal, tack welds, root pass and subsequent passes deposited in a joint shall be compatible to ensure notch-tough composite weld metal.

## J3. BOLTS AND THREADED PARTS

ASTM A307 bolts are permitted except where pretensioning is specified.

## 1. High-Strength Bolts

Use of high-strength bolts shall conform to the provisions of the Specification for Structural Joints Using High-Strength Bolts, hereafter referred to as the RCSC Specification, as approved by the Research Council on Structural Connections, except as otherwise provided in this Specification. High-strength bolts in this Specification are grouped according to material strength as follows:

```
Group A—ASTM F3125/F3125M Grades A325, A325M, F1852 and ASTM A354 Grade BC
Group B—ASTM F3125/F3125M Grades A490, A490M, F2280 and ASTM A354 Grade BD
```

Group C—ASTM F3043 and F3111
Use of Group C high-strength bolt/nut/washer assemblies shall conform to the applicable provisions of their ASTM standard. ASTM F3043 and F3111 Grade 1 assemblies may be installed only to the snug-tight condition. ASTM F3043 and F3111 Grade 2 assemblies may be used in snug-tight, pretensioned and slip-critical connections, using procedures provided in the applicable ASTM standard.

User Note: The use of Group C assemblies is limited to specific building locations and noncorrosive environmental conditions by the applicable ASTM standard.

When assembled, all joint surfaces, including those adjacent to the washers, shall be free of scale, except tight mill scale.
(a) Bolts are permitted to be installed to the snug-tight condition when used in:
(1) Bearing-type connections, except as stipulated in Section E6
(2) Tension or combined shear and tension applications, for Group A bolts only, where loosening or fatigue due to vibration or load fluctuations are not design considerations
(b) Bolts in the following connections shall be pretensioned:
(1) As required by the RCSC Specification
(2) Connections subjected to vibratory loads where bolt loosening is a consideration
(3) End connections of built-up members composed of two shapes either interconnected by bolts, or with at least one open side interconnected by perforated cover plates or lacing with tie plates, as required in Section E6.1
(c) The following connections shall be designed as slip critical:
(1) As required by the RCSC Specification
(2) The extended portion of bolted, partial-length cover plates, as required in Section F13.3

Minimum Bolt Pretension, Kips ${ }^{[a]}$			
Bolt Size, in.	$\begin{gathered} \text { Group } A^{[\mathrm{a}]} \\ \text { (e.g., A325 Bolts) } \end{gathered}$	$\begin{gathered} \text { Group } B^{[a]} \\ \text { ( e.g., A490 Bolts) } \end{gathered}$	Group C, Grade $2^{[b]}$ (e.g., F3043 Gr. 2 bolts)
1/2	12	15	-
5/8	19	24	-
$3 / 4$	28	35	-
7/8	39	49	-
1	51	64	90
11/8	64	80	113
$1^{1 / 4}$	81	102	143
13/8	97	121	-
11/2	118	148	-
${ }^{[a]}$ Equal to 0.70 times the minimum tensile strength of bolts as specified in ASTM F3125/F3125M for Grade A325 and Grade A490 bolts with UNC threads, rounded off to nearest kip.			
${ }^{[b]}$ Equal to 0.70 times the minimum tensile strength of bolts, rounded off to nearest kip, for ASTM F3043 Grade 2 and ASTM F3111 Grade 2.			


Minimum Bolt Pretension, KN[a]		
Bolt Size, mm	Group A (e.g., A325M Bolts)	Group B (e.g., A490M Bolts)
M16	91	114
M20	142	179
M22	176	221
M24	205	257
M27	267	334
M30	326	408
M36	475	595
[a] Equal to 0.70 times the minimum tensile strength of bolts, rounded off to nearest kN, as specified in ASTM		
F3125/F3125M for Grade A325M and Grade A490M bolts with UNC threads.		

The snug-tight condition is defined in the RCSC Specification. Bolts to be tightened to a condition other than snug tight shall be clearly identified on the design drawings. (See Table J3.1 or J3.1M for minimum bolt pretension for connections designated as pretensioned or slip critical.)

User Note: There are no specific minimum or maximum tension requirements for snug-tight bolts. Bolts that have been pretensioned are permitted in snug-tight connections unless specifically prohibited on design documents.

When bolt requirements cannot be provided within the RCSC Specification limitations because of requirements for lengths exceeding 12 diameters or diameters exceeding $1^{1 / 2}$ in. ( 38 mm ), bolts or threaded rods conforming to Group A or Group B materials are permitted to be used in accordance with the provisions for threaded parts in Table J3.2.

When ASTM A354 Grade BC, A354 Grade BD, or A449 bolts and threaded rods are used in pretensioned connections, the bolt geometry, including the thread pitch, thread length, head and nut(s), shall be equal to or (if larger in diameter) proportional to that required by the RCSC Specification. Installation shall comply with all applicable requirements of the RCSC Specification with modifications as required for the increased diameter and/or length to provide the design pretension.

## 2. Size and Use of Holes

The following requirements apply for bolted connections:
(a) The maximum sizes of holes for bolts are given in Table J3.3 or Table J3.3M, except that larger holes, required for tolerance on location of anchor rods in concrete foundations, are permitted in column base details.
(b) Standard holes or short-slotted holes transverse to the direction of the load shall be provided in accordance with the provisions of this Specification, unless oversized holes, short-slotted holes parallel to the load, or long-slotted holes are approved by the engineer of record.
(c) Finger shims up to $\frac{1}{1} 4 \mathrm{in}$. ( 6 mm ) are permitted in slip-critical connections designed on the basis of standard holes without reducing the nominal shear strength of the fastener to that specified for slotted holes.
(d) Oversized holes are permitted in any or all plies of slip-critical connections, but they shall not be used in bearing-type connections.
(e) Short-slotted holes are permitted in any or all plies of slip-critical or bearing-type connections. The slots are permitted without regard to direction of loading in slip-critical connections, but the length shall be normal to the direction of the loading in bearing-type connections.
(f) Long-slotted holes are permitted in only one of the connected parts of either a slipcritical or bearing-type connection at an individual faying surface. Long-slotted holes are permitted without regard to direction of loading in slip-critical connections, but shall be normal to the direction of loading in bearing-type connections.
(g) Washers shall be provided in accordance with the RCSC Specification Section 6, except for Group C assemblies, where washers shall be provided in accordance with the applicable ASTM standard.

User Note: When Group C heavy-hex fastener assemblies are used, a single washer is used under the bolt head and a single washer is used under the nut. When Group C twist-off bolt assemblies are used, a single washer is used under the nut. Washers are of the type specified in the ASTM standard for the assembly.

## TABLE J3.2 <br> Nominal Strength of Fasteners and Threaded Parts, ksi (MPa)

Description of Fasteners	Nominal Tensile Strength, $F_{n t}, \mathrm{ksi}(\mathrm{MPa})^{[a]}$	Nominal Shear Strength in Bearing-Type Connections, $F_{n v}$, ksi $(\mathrm{MPa})^{[\mathrm{b}]}$
A307 bolts	$45(310)^{[c]}$	$27(186){ }^{[c] ~[d]}$
Group A (e.g., A325) bolts, when threads are not excluded from shear planes	90 (620)	54 (372)
Group A (e.g., A325) bolts, when threads are excluded from shear planes	90 (620)	68 (469)
Group B (e.g., A490) bolts, when threads are not excluded from shear planes	113 (780)	68 (469)
Group B (e.g., A490) bolts, when threads are excluded from shear planes	113 (780)	84 (579)
Group C (e.g., F3043) bolt assemblies, when threads and transition area of shank are not excluded from the shear plane	150 (1040)	90 (620)
Group C (e.g., F3043) bolt assemblies, when threads and transition area of shank are excluded from the shear plane	150 (1040)	113 (779)
Threaded parts meeting the requirements of Section A3.4, when threads are not excluded from shear planes	$0.75 F_{u}$	$0.450 F_{u}$
Threaded parts meeting the requirements of Section A3.4, when threads are excluded from shear planes	$0.75 F_{u}$	$0.563 F_{u}$

[^50]| TABLE J3.3 <br> Nominal Hole Dimensions, in. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Hole Dimensions |  |  |  |
| Bolt <br> Diameter, in. | Standard (Dia.) | Oversize (Dia.) | Short-Slot (Width $\times$ Length) | Long-Slot (Width $\times$ Length) |
| 1/2 | 9/16 | 5/8 | $9 / 16 \times 11 / 16$ | $9 / 16 \times 1^{1 / 4}$ |
| 5/8 | 11/16 | 13/16 | $11 / 16 \times 7 / 8$ | $11 / 16 \times 19 / 16$ |
| $3 / 4$ | 13/16 | 15/16 | $13 / 16 \times 1$ | $13 / 16 \times 1^{7 / 8}$ |
| 7/8 | 15/16 | 11/16 | $15 / 16 \times 1^{1 / 8}$ | $15 / 16 \times 2^{3 / 16}$ |
| 1 | $11 / 8$ | $11 / 4$ | $11 / 8 \times 15 / 16$ | $11 / 8 \times 2^{1 / 2}$ |
| $\geq 11 / 8$ |  |  |  | $(d+1 / 8) \times 2.5 d$ |


TABLE J3.3M   Nominal Hole Dimensions, mm				
	Hole Dimensions			
Bolt Diameter, mm	Standard (Dia.)	Oversize (Dia.)	Short-Slot (Width $\times$ Length)	Long-Slot (Width $\times$ Length)
M16	18	20	$18 \times 22$	$18 \times 40$
M20	22	24	$22 \times 26$	$22 \times 50$
M22	24	28	$24 \times 30$	$24 \times 55$
M24	$27^{[a]}$	30	$27 \times 32$	$27 \times 60$
M27	30	35	$30 \times 37$	$30 \times 67$
M30	33	38	$33 \times 40$	$33 \times 75$
$\geq$ M36	$d+3$	$d+8$	$(d+3) \times(d+10)$	$(d+3) \times 2.5 d$

${ }^{[a]}$ Clearance provided allows the use of a 1-in.-diameter bolt.

## 3. Minimum Spacing

The distance between centers of standard, oversized or slotted holes shall not be less than $2^{2} / 3$ times the nominal diameter, $d$, of the fastener. However, the clear distance between bolt holes or slots shall not be less than $d$.

User Note: A distance between centers of standard, oversize or slotted holes of $3 d$ is preferred.

## 4. Minimum Edge Distance

The distance from the center of a standard hole to an edge of a connected part in any direction shall not be less than either the applicable value from Table J3.4 or Table J3.4M, or as required in Section J3.10. The distance from the center of an oversized or slotted hole to an edge of a connected part shall be not less than that required for a standard hole to an edge of a connected part plus the applicable increment, $C_{2}$, from Table J3.5 or Table J3.5M.

User Note: The edge distances in Tables J3.4 and J3.4M are minimum edge distances based on standard fabrication practices and workmanship tolerances. The appropriate provisions of Sections J3.10 and J4 must be satisfied.

## 5. Maximum Spacing and Edge Distance

The maximum distance from the center of any bolt to the nearest edge of parts in contact shall be 12 times the thickness of the connected part under consideration, but shall not exceed 6 in. ( 150 mm ). The longitudinal spacing of fasteners between elements consisting of a plate and a shape, or two plates, in continuous contact shall be as follows:
(a) For painted members or unpainted members not subject to corrosion, the spacing shall not exceed 24 times the thickness of the thinner part or 12 in . ( 300 mm ).
(b) For unpainted members of weathering steel subject to atmospheric corrosion, the spacing shall not exceed 14 times the thickness of the thinner part or 7 in . $(180 \mathrm{~mm})$.

User Note: The dimensions in (a) and (b) do not apply to elements consisting of two shapes in continuous contact.

## 6. Tensile and Shear Strength of Bolts and Threaded Parts

The design tensile or shear strength, $\phi R_{n}$, and the allowable tensile or shear strength, $R_{n} / \Omega$, of a snug-tightened or pretensioned high-strength bolt or threaded part shall be determined according to the limit states of tension rupture and shear rupture as:

$$
\begin{gather*}
R_{n}=F_{n} A_{b}  \tag{J3-1}\\
\phi=0.75(\mathrm{LRFD}) \quad \Omega=2.00(\mathrm{ASD})
\end{gather*}
$$

where
$A_{b}=$ nominal unthreaded body area of bolt or threaded part, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
$F_{n}=$ nominal tensile stress, $F_{n t}$, or shear stress, $F_{n v}$, from Table J3.2, ksi (MPa)
The required tensile strength shall include any tension resulting from prying action produced by deformation of the connected parts.

TABLE J3.4   Minimum Edge Distance ${ }^{[\mathrm{ab}]}$ from Center of Standard Hole ${ }^{[b]}$ to Edge of Connected Part, in.	
Bolt Diameter, in.	Minimum Edge Distance
1/2	$3 / 4$
5/8	7/8
3/4	1
7/8	11/8
1	$1^{1 / 4}$
$1^{1 / 8}$	$1^{1 / 2}$
$11 / 4$	15/8
Over $11 / 4$	$11 / 4 d$
lesser edge distances satisfied, but edge dist gineer of record. or slotted holes, see	applicable provisions from Sec meter are not permitted witho



TABLE J3.5   Values of Edge Distance Increment $\boldsymbol{C}_{2}$, in.				
Nominal Diameter of Fastener	Oversized Holes	Slotted Holes		
		Long Axis Perpendicular to Edge		Long Axis Parallel to Edge
		Short Slots	Long Slots ${ }^{[1]}$	
$\leq 7 / 8$	1/16	1/8		
1	1/8	1/8	$3 / 4 d$	0
$\geq 11 / 8$	1/8	3/16		

${ }^{[a]}$ When the length of the slot is less than the maximum allowable (see Table J 3.3 ), $C_{2}$ is permitted to be reduced by one-half the difference between the maximum and actual slot lengths.

Values of Edge Distance Increment $\boldsymbol{C}_{2}$, mm				
Nominal Diameter of Fastener	Oversized Holes	Slotted Holes		
		Long Axis Per	cular to Edge	
		Short Slots	Long Slots ${ }^{[1]}$	Parallel to Edge
$\leq 22$	2	3	0.75d	0
24	3	3		
$\geq 27$	3	5		
${ }^{[a]}$ When the length of the slot is less than the maximum allowable (see Table J 3.3 M ), $\mathrm{C}_{2}$ is permitted to be reduced by one-half the difference between the maximum and actual slot lengths.				

User Note: The force that can be resisted by a snug-tightened or pretensioned high-strength bolt or threaded part may be limited by the bearing strength at the bolt hole per Section J3.10. The effective strength of an individual fastener may be taken as the lesser of the fastener shear strength per Section J3.6 or the bearing strength at the bolt hole per Section J3.10. The strength of the bolt group is taken as the sum of the effective strengths of the individual fasteners.

## 7. Combined Tension and Shear in Bearing-Type Connections

The available tensile strength of a bolt subjected to combined tension and shear shall be determined according to the limit states of tension and shear rupture as:

$$
\begin{gather*}
R_{n}=F_{n t}^{\prime} A_{b}  \tag{J3-2}\\
\phi=0.75(\mathrm{LRFD}) \quad \Omega=2.00(\mathrm{ASD})
\end{gather*}
$$

where
$F_{n t}^{\prime}=$ nominal tensile stress modified to include the effects of shear stress, ksi (MPa)

$$
\begin{align*}
& =1.3 F_{n t}-\frac{F_{n t}}{\phi F_{n v}} f_{r v} \leq F_{n t} \quad(\mathrm{LRFD})  \tag{J3-3a}\\
& =1.3 F_{n t}-\frac{\Omega F_{n t}}{F_{n v}} f_{v v} \leq F_{n t} \quad(\mathrm{ASD}) \tag{J3-3b}
\end{align*}
$$

$F_{n t}=$ nominal tensile stress from Table J3.2, ksi (MPa)
$F_{n v}=$ nominal shear stress from Table J3.2, ksi (MPa)
$f_{r v}=$ required shear stress using LRFD or ASD load combinations, ksi (MPa)
The available shear stress of the fastener shall equal or exceed the required shear stress, $f_{r v}$.

User Note: Note that when the required stress, $f$, in either shear or tension, is less than or equal to $30 \%$ of the corresponding available stress, the effects of combined stress need not be investigated. Also note that Equations J3-3a and J3-3b can be rewritten so as to find a nominal shear stress, $F_{n v}^{\prime}$, as a function of the required tensile stress, $f_{t}$.

## 8. High-Strength Bolts in Slip-Critical Connections

Slip-critical connections shall be designed to prevent slip and for the limit states of bearing-type connections. When slip-critical bolts pass through fillers, all surfaces subject to slip shall be prepared to achieve design slip resistance.

The single bolt available slip resistance for the limit state of slip shall be determined as follows:

$$
\begin{equation*}
R_{n}=\mu D_{u} h_{f} T_{b} n_{s} \tag{J3-4}
\end{equation*}
$$

(a) For standard size and short-slotted holes perpendicular to the direction of the load

$$
\phi=1.00(\mathrm{LRFD}) \quad \Omega=1.50(\mathrm{ASD})
$$

(b) For oversized and short-slotted holes parallel to the direction of the load

$$
\phi=0.85(\mathrm{LRFD}) \quad \Omega=1.76(\mathrm{ASD})
$$

(c) For long-slotted holes

$$
\phi=0.70 \text { (LRFD) } \quad \Omega=2.14 \text { (ASD) }
$$

where
$D_{u}=1.13$, a multiplier that reflects the ratio of the mean installed bolt pretension to the specified minimum bolt pretension. The use of other values are permitted if approved by the engineer of record.
$T_{b}=$ minimum fastener tension given in Table J3.1, kips, or Table J3.1M, kN
$h_{f}=$ factor for fillers, determined as follows:
(1) For one filler between connected parts

$$
h_{f}=1.0
$$

(2) For two or more fillers between connected parts

$$
h_{f}=0.85
$$

$n_{s}=$ number of slip planes required to permit the connection to slip
$\mu=$ mean slip coefficient for Class A or B surfaces, as applicable, and determined as follows, or as established by tests:
(1) For Class A surfaces (unpainted clean mill scale steel surfaces or surfaces with Class A coatings on blast-cleaned steel or hot-dipped galvanized and roughened surfaces)

$$
\mu=0.30
$$

(2) For Class B surfaces (unpainted blast-cleaned steel surfaces or surfaces with Class B coatings on blast-cleaned steel)

$$
\mu=0.50
$$

## 9. Combined Tension and Shear in Slip-Critical Connections

When a slip-critical connection is subjected to an applied tension that reduces the net clamping force, the available slip resistance per bolt from Section J3.8 shall be multiplied by the factor, $k_{s c}$, determined as follows:

$$
\begin{align*}
k_{s c} & =1-\frac{T_{u}}{D_{u} T_{b} n_{b}} \geq 0 \quad \text { (LRFD) }  \tag{J3-5a}\\
k_{s c} & =1-\frac{1.5 T_{a}}{D_{u} T_{b} n_{b}} \geq 0 \quad \text { (ASD) } \tag{J3-5b}
\end{align*}
$$

where
$T_{a}=$ required tension force using ASD load combinations, kips (kN)
$T_{u}=$ required tension force using LRFD load combinations, kips (kN)
$n_{b}=$ number of bolts carrying the applied tension

## 10. Bearing and Tearout Strength at Bolt Holes

The available strength, $\phi R_{n}$ and $R_{n} / \Omega$, at bolt holes shall be determined for the limit states of bearing and tearout, as follows:

$$
\phi=0.75 \text { (LRFD) } \quad \Omega=2.00 \text { (ASD) }
$$

The nominal strength of the connected material, $R_{n}$, is determined as follows:
(a) For a bolt in a connection with standard, oversized and short-slotted holes, independent of the direction of loading, or a long-slotted hole with the slot parallel to the direction of the bearing force
(1) Bearing
(i) When deformation at the bolt hole at service load is a design consideration

$$
\begin{equation*}
R_{n}=2.4 d t F_{u} \tag{J3-6a}
\end{equation*}
$$

(ii) When deformation at the bolt hole at service load is not a design consideration

$$
\begin{equation*}
R_{n}=3.0 d t F_{u} \tag{J3-6b}
\end{equation*}
$$

(2) Tearout
(i) When deformation at the bolt hole at service load is a design consideration

$$
\begin{equation*}
R_{n}=1.2 l_{c} t F_{u} \tag{J3-6c}
\end{equation*}
$$

(ii) When deformation at the bolt hole at service load is not a design consideration

$$
\begin{equation*}
R_{n}=1.5 l_{c} t F_{u} \tag{J3-6d}
\end{equation*}
$$

(b) For a bolt in a connection with long-slotted holes with the slot perpendicular to the direction of force
(1) Bearing

$$
\begin{equation*}
R_{n}=2.0 d t F_{u} \tag{J3-6e}
\end{equation*}
$$

(2) Tearout

$$
\begin{equation*}
R_{n}=1.0 l_{c} t F_{u} \tag{J3-6f}
\end{equation*}
$$

(c) For connections made using bolts that pass completely through an unstiffened box member or HSS, see Section J7 and Equation J7-1;
where
$F_{u}=$ specified minimum tensile strength of the connected material, ksi (MPa)
$d=$ nominal fastener diameter, in. (mm)
$l_{c}=$ clear distance, in the direction of the force, between the edge of the hole and the edge of the adjacent hole or edge of the material, in. (mm)
$t=$ thickness of connected material, in. (mm)
Bearing strength and tearout strength shall be checked for both bearing-type and slipcritical connections. The use of oversized holes and short- and long-slotted holes parallel to the line of force is restricted to slip-critical connections per Section J3.2.

## 11. Special Fasteners

The nominal strength of special fasteners other than the bolts presented in Table J3.2 shall be verified by tests.

## 12. Wall Strength at Tension Fasteners

When bolts or other fasteners in tension are attached to an unstiffened box or HSS wall, the strength of the wall shall be determined by rational analysis.

## J4. AFFECTED ELEMENTS OF MEMBERS AND CONNECTING ELEMENTS

This section applies to elements of members at connections and connecting elements, such as plates, gussets, angles and brackets.

## 1. Strength of Elements in Tension

The design strength, $\phi R_{n}$, and the allowable strength, $R_{n} / \Omega$, of affected and connecting elements loaded in tension shall be the lower value obtained according to the limit states of tensile yielding and tensile rupture.
(a) For tensile yielding of connecting elements

$$
\begin{gather*}
R_{n}=F_{y} A_{g}  \tag{J4-1}\\
\phi=0.90(\mathrm{LRFD}) \quad \Omega=1.67(\mathrm{ASD})
\end{gather*}
$$

(b) For tensile rupture of connecting elements

$$
\begin{gather*}
R_{n}=F_{u} A_{e}  \tag{J4-2}\\
\phi=0.75(\mathrm{LRFD}) \quad \Omega=2.00(\mathrm{ASD})
\end{gather*}
$$

where
$A_{e}=$ effective net area as defined in Section D3, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
User Note: The effective net area of the connection plate may be limited due to stress distribution as calculated by methods such as the Whitmore section.

## 2. Strength of Elements in Shear

The available shear strength of affected and connecting elements in shear shall be the lower value obtained according to the limit states of shear yielding and shear rupture:
(a) For shear yielding of the element

$$
\begin{gather*}
R_{n}=0.60 F_{y} A_{g v}  \tag{J4-3}\\
\phi=1.00(\mathrm{LRFD}) \quad \Omega=1.50(\mathrm{ASD})
\end{gather*}
$$

where

$$
A_{g v}=\text { gross area subject to shear, in. }{ }^{2}\left(\mathrm{~mm}^{2}\right)
$$

(b) For shear rupture of the element

$$
\begin{gather*}
R_{n}=0.60 F_{u} A_{n v}  \tag{J4-4}\\
\phi=0.75(\mathrm{LRFD}) \quad \Omega=2.00(\mathrm{ASD})
\end{gather*}
$$

where

$$
A_{n v}=\text { net area subject to shear, in. }{ }^{2}\left(\mathrm{~mm}^{2}\right)
$$

## 3. Block Shear Strength

The available strength for the limit state of block shear rupture along a shear failure path or paths and a perpendicular tension failure path shall be determined as follows:

$$
\begin{gather*}
R_{n}=0.60 F_{u} A_{n v}+U_{b s} F_{u} A_{n t} \leq 0.60 F_{y} A_{g v}+U_{b s} F_{u} A_{n t}  \tag{J4-5}\\
\phi=0.75(\mathrm{LRFD}) \quad \Omega=2.00(\mathrm{ASD})
\end{gather*}
$$

where
$A_{n t}=$ net area subject to tension, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
Where the tension stress is uniform, $U_{b s}=1$; where the tension stress is nonuniform, $U_{b s}=0.5$.

User Note: Typical cases where $U_{b s}$ should be taken equal to 0.5 are illustrated in the Commentary.

## 4. Strength of Elements in Compression

The available strength of connecting elements in compression for the limit states of yielding and buckling shall be determined as follows:
(a) When $L_{c} / r \leq 25$

$$
\begin{gather*}
P_{n}=F_{y} A_{g}  \tag{J4-6}\\
\phi=0.90(\mathrm{LRFD}) \quad \Omega=1.67(\mathrm{ASD})
\end{gather*}
$$

(b) When $L_{c} / r>25$, the provisions of Chapter E apply;
where
$L_{c}=K L=$ effective length, in. (mm)
$K=$ effective length factor
$L=$ laterally unbraced length of the member, in. (mm)

User Note: The effective length factors used in computing compressive strengths of connecting elements are specific to the end restraint provided and may not necessarily be taken as unity when the direct analysis method is employed.

## 5. Strength of Elements in Flexure

The available flexural strength of affected elements shall be the lower value obtained according to the limit states of flexural yielding, local buckling, flexural lateral-torsional buckling, and flexural rupture.

## J5. FILLERS

## 1. Fillers in Welded Connections

Whenever it is necessary to use fillers in joints required to transfer applied force, the fillers and the connecting welds shall conform to the requirements of Section J5.1a or Section J5.1b, as applicable.

## 1a. Thin Fillers

Fillers less than $1 / 4 \mathrm{in}$. ( 6 mm ) thick shall not be used to transfer stress. When the thickness of the fillers is less than $1 / 4 \mathrm{in}$. $(6 \mathrm{~mm})$, or when the thickness of the filler is $1 / 4 \mathrm{in}$. ( 6 mm ) or greater but not sufficient to transfer the applied force between the connected parts, the filler shall be kept flush with the edge of the outside connected part, and the size of the weld shall be increased over the required size by an amount equal to the thickness of the filler.

## 1b. Thick Fillers

When the thickness of the fillers is sufficient to transfer the applied force between the connected parts, the filler shall extend beyond the edges of the outside connected base metal. The welds joining the outside connected base metal to the filler shall be sufficient to transmit the force to the filler and the area subjected to the applied force in the filler shall be sufficient to prevent overstressing the filler. The welds joining the filler to the inside connected base metal shall be sufficient to transmit the applied force.

## 2. Fillers in Bolted Bearing-Type Connections

When a bolt that carries load passes through fillers that are equal to or less than $1 / 4$ in. ( 6 mm ) thick, the shear strength shall be used without reduction. When a bolt that carries load passes through fillers that are greater than $\frac{1}{1} 4 \mathrm{in}$. $(6 \mathrm{~mm})$ thick, one of the following requirements shall apply:
(a) The shear strength of the bolts shall be multiplied by the factor

$$
\begin{aligned}
& 1-0.4(t-0.25) \\
& 1-0.0154(t-6)
\end{aligned}
$$

but not less than 0.85 , where $t$ is the total thickness of the fillers.
(b) The fillers shall be welded or extended beyond the joint and bolted to uniformly distribute the total force in the connected element over the combined cross section of the connected element and the fillers.
(c) The size of the joint shall be increased to accommodate a number of bolts that is equivalent to the total number required in (b).

## J6. SPLICES

Groove-welded splices in plate girders and beams shall develop the nominal strength of the smaller spliced section. Other types of splices in cross sections of plate girders and beams shall develop the strength required by the forces at the point of the splice.

## J7. BEARING STRENGTH

The design bearing strength, $\phi R_{n}$, and the allowable bearing strength, $R_{n} / \Omega$, of surfaces in contact shall be determined for the limit state of bearing (local compressive yielding) as follows:

$$
\phi=0.75(\mathrm{LRFD}) \quad \Omega=2.00(\mathrm{ASD})
$$

The nominal bearing strength, $R_{n}$, shall be determined as follows:
(a) For finished surfaces, pins in reamed, drilled, or bored holes, and ends of fitted bearing stiffeners

$$
\begin{equation*}
R_{n}=1.8 F_{y} A_{p b} \tag{J7-1}
\end{equation*}
$$

where

$$
\begin{aligned}
& A_{p b}=\text { projected area in bearing, } \text { in. }^{2}\left(\mathrm{~mm}^{2}\right) \\
& F_{y}=\text { specified minimum yield stress, ksi }(\mathrm{MPa})
\end{aligned}
$$

(b) For expansion rollers and rockers
(1) When $d \leq 25$ in. ( 630 mm )

$$
\begin{align*}
& R_{n}=\frac{1.2\left(F_{y}-13\right) l_{b} d}{20}  \tag{J7-2}\\
& R_{n}=\frac{1.2\left(F_{y}-90\right) l_{b} d}{20} \tag{J7-2M}
\end{align*}
$$

(2) When $d>25$ in. $(630 \mathrm{~mm})$

$$
\begin{align*}
& R_{n}=\frac{6.0\left(F_{y}-13\right) l_{b} \sqrt{d}}{20}  \tag{J7-3}\\
& R_{n}=\frac{30.2\left(F_{y}-90\right) l_{b} \sqrt{d}}{20} \tag{J7-3M}
\end{align*}
$$

where

$$
\begin{aligned}
& d=\text { diameter }, \text { in. }(\mathrm{mm}) \\
& l_{b}=\text { length of bearing, in. }(\mathrm{mm})
\end{aligned}
$$

## J8. COLUMN BASES AND BEARING ON CONCRETE

Provisions shall be made to transfer the column loads and moments to the footings and foundations.

In the absence of code regulations, the design bearing strength, $\phi_{c} P_{p}$, and the allowable bearing strength, $P_{p} / \Omega_{c}$, for the limit state of concrete crushing are permitted to be taken as follows:

$$
\phi_{c}=0.65(\mathrm{LRFD}) \quad \Omega_{c}=2.31(\mathrm{ASD})
$$

The nominal bearing strength, $P_{p}$, is determined as follows:
(a) On the full area of a concrete support

$$
\begin{equation*}
P_{p}=0.85 f_{c}^{\prime} A_{1} \tag{J8-1}
\end{equation*}
$$

(b) On less than the full area of a concrete support

$$
\begin{equation*}
P_{p}=0.85 f_{c}^{\prime} A_{1} \sqrt{A_{2} / A_{1}} \leq 1.7 f_{c}^{\prime} A_{1} \tag{J8-2}
\end{equation*}
$$

where
$A_{1}=$ area of steel concentrically bearing on a concrete support, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
$A_{2}=$ maximum area of the portion of the supporting surface that is geometrically
similar to and concentric with the loaded area, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
$f_{c}^{\prime}=$ specified compressive strength of concrete, $\mathrm{ksi}(\mathrm{MPa})$

## J9. ANCHOR RODS AND EMBEDMENTS

Anchor rods shall be designed to provide the required resistance to loads on the completed structure at the base of columns including the net tensile components of any bending moment resulting from load combinations stipulated in Section B2. The anchor rods shall be designed in accordance with the requirements for threaded parts in Table J3.2.

Design of anchor rods for the transfer of forces to the concrete foundation shall satisfy the requirements of ACI 318 (ACI 318M) or ACI 349 (ACI 349M).

User Note: Column bases should be designed considering bearing against concrete elements, including when columns are required to resist a horizontal force at the base plate. See AISC Design Guide 1, Base Plate and Anchor Rod Design, Second Edition, for column base design information.

When anchor rods are used to resist horizontal forces, hole size, anchor rod setting tolerance, and the horizontal movement of the column shall be considered in the design.

Larger oversized holes and slotted holes are permitted in base plates when adequate bearing is provided for the nut by using ASTM F844 washers or plate washers to bridge the hole.

User Note: The permitted hole sizes, corresponding washer dimensions and nuts are given in the AISC Steel Construction Manual and ASTM F1554. ASTM F1554 anchor rods may be furnished in accordance with product specifications with a body diameter less than the nominal diameter. Load effects such as bending and elongation should be calculated based on minimum diameters permitted by the product specification. See ASTM F1554 and the table, "Applicable ASTM Specifications for Various Types of Structural Fasteners," in Part 2 of the AISC Steel Construction Manual.

User Note: See ACI 318 (ACI 318M) for embedment design and for shear friction design. See OSHA for special erection requirements for anchor rods.

## J10. FLANGES AND WEBS WITH CONCENTRATED FORCES

This section applies to single- and double-concentrated forces applied normal to the flange(s) of wide-flange sections and similar built-up shapes. A single-concentrated force is either tensile or compressive. Double-concentrated forces are one tensile and one compressive and form a couple on the same side of the loaded member.

When the required strength exceeds the available strength as determined for the limit states listed in this section, stiffeners and/or doublers shall be provided and shall be sized for the difference between the required strength and the available strength for the applicable limit state. Stiffeners shall also meet the design requirements in Section J10.8. Doublers shall also meet the design requirement in Section J10.9.

User Note: See Appendix 6, Section 6.3 for requirements for the ends of cantilever members.

Stiffeners are required at unframed ends of beams in accordance with the requirements of Section J10.7.

User Note: Design guidance for members other than wide-flange sections and similar built-up shapes can be found in the Commentary.

## 1. Flange Local Bending

This section applies to tensile single-concentrated forces and the tensile component of double-concentrated forces.

The design strength, $\phi R_{n}$, and the allowable strength, $R_{n} / \Omega$, for the limit state of flange local bending shall be determined as:

$$
\begin{gather*}
R_{n}=6.25 F_{y f} t_{f}^{2}  \tag{J10-1}\\
\phi=0.90(\mathrm{LRFD}) \quad \Omega=1.67(\mathrm{ASD})
\end{gather*}
$$

where
$F_{y f}=$ specified minimum yield stress of the flange, ksi (MPa)
$t_{f}=$ thickness of the loaded flange, in. (mm)
If the length of loading across the member flange is less than $0.15 b_{f}$, where $b_{f}$ is the member flange width, Equation J10-1 need not be checked.

When the concentrated force to be resisted is applied at a distance from the member end that is less than $10 t_{f}, R_{n}$ shall be reduced by $50 \%$.
When required, a pair of transverse stiffeners shall be provided.

## 2. Web Local Yielding

This section applies to single-concentrated forces and both components of doubleconcentrated forces.

The available strength for the limit state of web local yielding shall be determined as follows:

$$
\phi=1.00(\mathrm{LRFD}) \quad \Omega=1.50(\mathrm{ASD})
$$

The nominal strength, $R_{n}$, shall be determined as follows:
(a) When the concentrated force to be resisted is applied at a distance from the member end that is greater than the full nominal depth of the member, $d$,

$$
\begin{equation*}
R_{n}=F_{y w} t_{w}\left(5 k+l_{b}\right) \tag{J10-2}
\end{equation*}
$$

(b) When the concentrated force to be resisted is applied at a distance from the member end that is less than or equal to the full nominal depth of the member, $d$,

$$
\begin{equation*}
R_{n}=F_{y w} t_{w}\left(2.5 k+l_{b}\right) \tag{J10-3}
\end{equation*}
$$

where
$F_{y w}=$ specified minimum yield stress of the web material, ksi (MPa)
$k=$ distance from outer face of the flange to the web toe of the fillet, in. (mm)
$l_{b} \quad=$ length of bearing (not less than $k$ for end beam reactions), in. (mm)
$t_{w}=$ thickness of web, in. (mm)
When required, a pair of transverse stiffeners or a doubler plate shall be provided.

## 3. Web Local Crippling

This section applies to compressive single-concentrated forces or the compressive component of double-concentrated forces.

The available strength for the limit state of web local crippling shall be determined as follows:

$$
\phi=0.75(\mathrm{LRFD}) \quad \Omega=2.00(\mathrm{ASD})
$$

The nominal strength, $R_{n}$, shall be determined as follows:
(a) When the concentrated compressive force to be resisted is applied at a distance from the member end that is greater than or equal to $d / 2$

$$
\begin{equation*}
R_{n}=0.80 t_{w}^{2}\left[1+3\left(\frac{l_{b}}{d}\right)\left(\frac{t_{w}}{t_{f}}\right)^{1.5}\right] \sqrt{\frac{E F_{y w} t_{f}}{t_{w}}} Q_{f} \tag{J10-4}
\end{equation*}
$$

(b) When the concentrated compressive force to be resisted is applied at a distance from the member end that is less than $d / 2$
(1) For $l_{b} / d \leq 0.2$

$$
\begin{equation*}
R_{n}=0.40 t_{w}^{2}\left[1+3\left(\frac{l_{b}}{d}\right)\left(\frac{t_{w}}{t_{f}}\right)^{1.5}\right] \sqrt{\frac{E F_{y w} t_{f}}{t_{w}}} Q_{f} \tag{J10-5a}
\end{equation*}
$$

(2) For $l_{b} / d>0.2$

$$
\begin{equation*}
R_{n}=0.40 t_{w}^{2}\left[1+\left(\frac{4 l_{b}}{d}-0.2\right)\left(\frac{t_{w}}{t_{f}}\right)^{1.5}\right] \sqrt{\frac{E F_{y w} t_{f}}{t_{w}}} Q_{f} \tag{J10-5b}
\end{equation*}
$$

where
$d$ = full nominal depth of the member, in. (mm)
$Q_{f}=1.0$ for wide-flange sections and for HSS (connecting surface) in tension $=$ as given in Table K3.2 for all other HSS conditions

When required, a transverse stiffener, a pair of transverse stiffeners, or a doubler plate extending at least three quarters of the depth of the web shall be provided.

## 4. Web Sidesway Buckling

This section applies only to compressive single-concentrated forces applied to members where relative lateral movement between the loaded compression flange and the tension flange is not restrained at the point of application of the concentrated force.

The available strength of the web for the limit state of sidesway buckling shall be determined as follows:

$$
\phi=0.85(\mathrm{LRFD}) \quad \Omega=1.76(\mathrm{ASD})
$$

The nominal strength, $R_{n}$, shall be determined as follows:
(a) If the compression flange is restrained against rotation
(1) When $\left(h / t_{w}\right) /\left(L_{b} / b_{f}\right) \leq 2.3$

$$
\begin{equation*}
R_{n}=\frac{C_{r} t_{w}^{3} t_{f}}{h^{2}}\left[1+0.4\left(\frac{h / t_{w}}{L_{b} / b_{f}}\right)^{3}\right] \tag{J10-6}
\end{equation*}
$$

(2) When $\left(h / t_{w}\right) /\left(L_{b} / b_{f}\right)>2.3$, the limit state of web sidesway buckling does not apply.

When the required strength of the web exceeds the available strength, local lateral bracing shall be provided at the tension flange or either a pair of transverse stiffeners or a doubler plate shall be provided.
(b) If the compression flange is not restrained against rotation
(1) When $\left(h / t_{w}\right) /\left(L_{b} / b_{f}\right) \leq 1.7$

$$
\begin{equation*}
R_{n}=\frac{C_{r} t_{w}^{3} t_{f}}{h^{2}}\left[0.4\left(\frac{h / t_{w}}{L_{b} / b_{f}}\right)^{3}\right] \tag{J10-7}
\end{equation*}
$$

(2) When $\left(h / t_{w}\right) /\left(L_{b} / b_{f}\right)>1.7$, the limit state of web sidesway buckling does not apply.

When the required strength of the web exceeds the available strength, local lateral bracing shall be provided at both flanges at the point of application of the concentrated forces.

In Equations J10-6 and J10-7, the following definitions apply:
$C_{r}=960,000 \mathrm{ksi}\left(6.6 \times 10^{6} \mathrm{MPa}\right)$, when $M_{u}<M_{y}(\mathrm{LRFD})$ or $1.5 M_{a}<M_{y}(\mathrm{ASD})$ at the location of the force
$=480,000 \mathrm{ksi}\left(3.3 \times 10^{6} \mathrm{MPa}\right)$, when $M_{u} \geq M_{y}$ (LRFD) or $1.5 M_{a} \geq M_{y}$ (ASD) at the location of the force
$L_{b}=$ largest laterally unbraced length along either flange at the point of load, in. (mm)
$M_{a}=$ required flexural strength using ASD load combinations, kip-in. (N-mm)
$M_{u}=$ required flexural strength using LRFD load combinations, kip-in. (N-mm)
$b_{f}=$ width of flange, in. (mm)
$h=$ clear distance between flanges less the fillet or corner radius for rolled shapes; distance between adjacent lines of fasteners or the clear distance between flanges when welds are used for built-up shapes, in. (mm)

User Note: For determination of adequate restraint, refer to Appendix 6.

## 5. Web Compression Buckling

This section applies to a pair of compressive single-concentrated forces or the compressive components in a pair of double-concentrated forces, applied at both flanges of a member at the same location.

The available strength for the limit state of web compression buckling shall be determined as follows:

$$
\begin{gather*}
R_{n}=\left(\frac{24 t_{w}^{3} \sqrt{E F_{y w}}}{h}\right) Q_{f}  \tag{J10-8}\\
\phi=0.90(\mathrm{LRFD}) \quad \Omega=1.67(\mathrm{ASD})
\end{gather*}
$$

where
$Q_{f}=1.0$ for wide-flange sections and for HSS (connecting surface) in tension = as given in Table K3.2 for all other HSS conditions

When the pair of concentrated compressive forces to be resisted is applied at a distance from the member end that is less than $d / 2, R_{n}$ shall be reduced by $50 \%$.

When required, a single transverse stiffener, a pair of transverse stiffeners, or a doubler plate extending the full depth of the web shall be provided.

## 6. Web Panel-Zone Shear

This section applies to double-concentrated forces applied to one or both flanges of a member at the same location.

The available strength of the web panel zone for the limit state of shear yielding shall be determined as follows:

$$
\phi=0.90(\mathrm{LRFD}) \quad \Omega=1.67(\mathrm{ASD})
$$

The nominal strength, $R_{n}$, shall be determined as follows:
(a) When the effect of inelastic panel-zone deformation on frame stability is not accounted for in the analysis:
(1) For $\alpha P_{r} \leq 0.4 P_{y}$

$$
\begin{equation*}
R_{n}=0.60 F_{y} d_{c} t_{w} \tag{J10-9}
\end{equation*}
$$

(2) For $\alpha P_{r}>0.4 P_{y}$

$$
\begin{equation*}
R_{n}=0.60 F_{y} d_{c} t_{w}\left(1.4-\frac{\alpha P_{r}}{P_{y}}\right) \tag{J10-10}
\end{equation*}
$$

(b) When the effect of inelastic panel-zone deformation on frame stability is accounted for in the analysis:
(1) For $\alpha P_{r} \leq 0.75 P_{y}$

$$
\begin{equation*}
R_{n}=0.60 F_{y} d_{c} t_{w}\left(1+\frac{3 b_{c f} t_{c f}^{2}}{d_{b} d_{c} t_{w}}\right) \tag{J10-11}
\end{equation*}
$$

(2) For $\alpha P_{r}>0.75 P_{y}$

$$
\begin{equation*}
R_{n}=0.60 F_{y} d_{c} t_{w}\left(1+\frac{3 b_{c f} t_{c f}^{2}}{d_{b} d_{c} t_{w}}\right)\left(1.9-\frac{1.2 \alpha P_{r}}{P_{y}}\right) \tag{J10-12}
\end{equation*}
$$

In Equations J10-9 through J10-12, the following definitions apply:
$A_{g}=$ gross cross-sectional area of member, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
$F_{y}=$ specified minimum yield stress of the column web, ksi (MPa)
$P_{r}=$ required axial strength using LRFD or ASD load combinations, kips (N)
$P_{y}=F_{y} A_{g}$, axial yield strength of the column, kips (N)
$b_{c f}=$ width of column flange, in. (mm)
$d_{b}=$ depth of beam, in. (mm)
$d_{c}=$ depth of column, in. (mm)
$t_{c f}=$ thickness of column flange, in. (mm)
$t_{w}=$ thickness of column web, in. (mm)
$\alpha=1.0$ (LRFD); $=1.6$ (ASD)
When required, doubler plate(s) or a pair of diagonal stiffeners shall be provided within the boundaries of the rigid connection whose webs lie in a common plane.

See Section J10.9 for doubler plate design requirements.

## 7. Unframed Ends of Beams and Girders

At unframed ends of beams and girders not otherwise restrained against rotation about their longitudinal axes, a pair of transverse stiffeners, extending the full depth of the web, shall be provided.

## 8. Additional Stiffener Requirements for Concentrated Forces

Stiffeners required to resist tensile concentrated forces shall be designed in accordance with the requirements of Section J4.1 and welded to the loaded flange and the web. The welds to the flange shall be sized for the difference between the required strength and available strength. The stiffener to web welds shall be sized to transfer to the web the algebraic difference in tensile force at the ends of the stiffener.

Stiffeners required to resist compressive concentrated forces shall be designed in accordance with the requirements in Section J4.4 and shall either bear on or be welded to the loaded flange and welded to the web. The welds to the flange shall be sized for the difference between the required strength and the applicable limit state strength. The weld to the web shall be sized to transfer to the web the algebraic difference in compression force at the ends of the stiffener. For fitted bearing stiffeners, see Section J7.

Transverse full depth bearing stiffeners for compressive forces applied to a beam or plate girder flange(s) shall be designed as axially compressed members (columns) in accordance with the requirements of Section E6.2 and Section J4.4. The member properties shall be determined using an effective length of $0.75 h$ and a cross section composed of two stiffeners, and a strip of the web having a width of $25 t_{w}$ at interior stiffeners and $12 t_{w}$ at the ends of members. The weld connecting full depth bearing stiffeners to the web shall be sized to transmit the difference in compressive force at each of the stiffeners to the web.

Transverse and diagonal stiffeners shall comply with the following additional requirements:
(a) The width of each stiffener plus one-half the thickness of the column web shall not be less than one-third of the flange or moment connection plate width delivering the concentrated force.
(b) The thickness of a stiffener shall not be less than one-half the thickness of the flange or moment connection plate delivering the concentrated load, nor less than the width divided by 16 .
(c) Transverse stiffeners shall extend a minimum of one-half the depth of the member except as required in Sections J10.3, J10.5 and J10.7.

## 9. Additional Doubler Plate Requirements for Concentrated Forces

Doubler plates required for compression strength shall be designed in accordance with the requirements of Chapter E .

Doubler plates required for tensile strength shall be designed in accordance with the requirements of Chapter D.

Doubler plates required for shear strength (see Section J10.6) shall be designed in accordance with the provisions of Chapter G.

Doubler plates shall comply with the following additional requirements:
(a) The thickness and extent of the doubler plate shall provide the additional material necessary to equal or exceed the strength requirements.
(b) The doubler plate shall be welded to develop the proportion of the total force transmitted to the doubler plate.

## 10. Transverse Forces on Plate Elements

When a force is applied transverse to the plane of a plate element, the nominal strength shall consider the limit states of shear and flexure in accordance with Sections J4.2 and J4.5.

User Note: The flexural strength can be checked based on yield-line theory and the shear strength can be determined based on a punching shear model. See AISC Steel Construction Manual Part 9 for further discussion.

## CHAPTER K

## ADDITIONAL REQUIREMENTS FOR HSS AND BOX-SECTION CONNECTIONS

This chapter addresses additional requirements for connections to HSS members and box sections of uniform wall thickness, where seam welds between box-section elements are complete-joint-penetration (CJP) groove welds in the connection region. The requirements of Chapter J also apply.

The chapter is organized as follows:
K1. General Provisions and Parameters for HSS Connections
K2. Concentrated Forces on HSS
K3. HSS-to-HSS Truss Connections
K4. HSS-to-HSS Moment Connections
K5. Welds of Plates and Branches to Rectangular HSS

## K1. GENERAL PROVISIONS AND PARAMETERS FOR HSS CONNECTIONS

For the purposes of this chapter, the centerlines of branch members and chord members shall lie in a common plane. Rectangular HSS connections are further limited to having all members oriented with walls parallel to the plane.

The tables in this chapter are often accompanied by limits of applicability. Connections complying with the limits of applicability listed can be designed considering only those limit states provided for each joint configuration. Connections not complying with the limits of applicability listed are not prohibited and must be designed by rational analysis.

User Note: The connection strengths calculated in Chapter K, including the applicable sections of Chapter J, are based on strength limit states only. See the Commentary if excessive connection deformations may cause serviceability or stability concerns.

User Note: Connection strength is often governed by the size of HSS members, especially the wall thickness of truss chords, and this must be considered in the initial design. To ensure economical and dependable connections can be designed, the connections should be considered in the design of the members. Angles between the chord and the branch(es) of less than $30^{\circ}$ can make welding and inspection difficult and should be avoided. The limits of applicability provided reflect limitations on tests conducted to date, measures to eliminate undesirable limit states, and other considerations. See Section J3.10(c) for through-bolt provisions.

This section provides parameters to be used in the design of plate-to-HSS and HSS-to-HSS connections.

The design strength, $\phi R_{n}, \phi M_{n}$ and $\phi P_{n}$, and the allowable strength, $R_{n} / \Omega, M_{n} / \Omega$ and $P_{n} / \Omega$, of connections shall be determined in accordance with the provisions of this chapter and the provisions of Chapter B.

## 1. Definitions of Parameters

$A_{g}=$ gross cross-sectional area of member, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
$B=$ overall width of rectangular HSS main member, measured $90^{\circ}$ to the plane of the connection, in. (mm)
$B_{b}=$ overall width of rectangular HSS branch member or plate, measured $90^{\circ}$ to the plane of the connection, in. (mm)
$B_{e}=$ effective width of rectangular HSS branch member or plate, in. (mm)
$D=$ outside diameter of round HSS main member, in. (mm)
$D_{b}=$ outside diameter of round HSS branch member, in. (mm)
$F_{c}=$ available stress in main member, $\mathrm{ksi}(\mathrm{MPa})$
$=F_{y}$ for LRFD; $0.60 F_{y}$ for ASD
$F_{u}=$ specified minimum tensile strength of HSS member material, ksi (MPa)
$F_{y}=$ specified minimum yield stress of HSS main member material, ksi (MPa)
$F_{y b}=$ specified minimum yield stress of HSS branch member or plate material, ksi (MPa)
$H$ = overall height of rectangular HSS main member, measured in the plane of the connection, in. (mm)
$H_{b}=$ overall height of rectangular HSS branch member, measured in the plane of the connection, in. (mm)
$l_{\text {end }}=$ distance from the near side of the connecting branch or plate to end of chord, in. (mm)
$t=$ design wall thickness of HSS main member, in. (mm)
$t_{b}=$ design wall thickness of HSS branch member or thickness of plate, in. (mm)

## 2. Rectangular HSS

## 2a. Effective Width for Connections to Rectangular HSS

The effective width of elements (plates or rectangular HSS branches) perpendicular to the longitudinal axis of a rectangular HSS member that deliver a force component transverse to the face of the member shall be taken as:

$$
\begin{equation*}
B_{e}=\left(\frac{10 t}{B}\right)\left(\frac{F_{y} t}{F_{y b} t_{b}}\right) B_{b} \leq B_{b} \tag{K1-1}
\end{equation*}
$$

## K2. CONCENTRATED FORCES ON HSS

## 1. Definitions of Parameters

$l_{b}=$ bearing length of the load, measured parallel to the axis of the HSS member (or measured across the width of the HSS in the case of loaded cap plates), in. (mm)

## 2. Round HSS

The available strength of plate-to-round HSS connections, within the limits in Table K2.1A, shall be taken as shown in Table K2.1.

TABLE K2.1   Available Strengths of Plate-to-Round HSS Connections			
Connection Type	Connection Available Strength	Plate Bending	
Transverse Plate Tand Cross-Connections	Limit State: HSS Local Yielding		
	Plate Axial Load	In-Plane	$\begin{gathered} \text { Out- } \\ \text { of-Plane } \end{gathered}$
	$\begin{gathered} R_{n} \sin \theta=F_{y} t^{2}\left(\frac{5.5}{1-0.81 \frac{B_{b}}{D}}\right) Q_{f} \\ (\mathrm{~K} 2-1 \mathrm{a}) \end{gathered}$		$\begin{gathered} M_{n}=0.5 B_{b} R_{n} \\ (\mathrm{~K} 2-1 \mathrm{~b}) \end{gathered}$
	$\phi=0.90$ (LRFD) $\quad \Omega=1.67$ (ASD)		
Longitudinal Plate T -, Y and Cross-Connections	Limit State: HSS Plastification		
	Plate Axial Load	In-Plane	Out-of-Plane
	$\begin{gathered} R_{n} \sin \theta=5.5 F_{y} t^{2}\left(1+0.25 \frac{l_{b}}{D}\right) Q_{f} \\ (\mathrm{~K} 2-2 \mathrm{a}) \end{gathered}$	$\begin{gathered} M_{n}=0.8 l_{b} R_{n} \\ (\mathrm{~K} 2-2 \mathrm{~b}) \end{gathered}$	-
	$\phi=0.90$ (LRFD) $\quad \Omega=1.67$ (ASD)		
Functions			
$Q_{f}=1$ for HSS (connecting surface) in tension   $=1.0-0.3 U(1+U)$ for HSS (connecting surface) in compression   (K2-3) $\begin{equation*} U=\left\|\frac{P_{r o}}{F_{c} A_{g}}+\frac{M_{r o}}{F_{c} S}\right\| \tag{K2-4} \end{equation*}$   where $P_{r o}$ and $M_{r o}$ are determined on the side of the joint that has the lower compression stress. $P_{r o}$ and $M_{r o}$ refer to required strengths in the HSS: $P_{r o}=P_{u}$ for LRFD, and $P_{a}$ for ASD; $M_{r o}=M_{u}$ for LRFD, and $M_{a}$ for ASD.			


	TABLE K2.1 A
	Limits of Applicability Of Table K2.1

## 3. Rectangular HSS

The available strength of connections to rectangular HSS with concentrated loads shall be determined based on the applicable limit states from Chapter J.

## K3. HSS-TO-HSS TRUSS CONNECTIONS

HSS-to-HSS truss connections are defined as connections that consist of one or more branch members that are directly welded to a continuous chord that passes through the connection and shall be classified as follows:
(a) When the punching load, $P_{r} \sin \theta$, in a branch member is equilibrated by beam shear in the chord member, the connection shall be classified as a T-connection when the branch is perpendicular to the chord, and classified as a Y-connection otherwise.
(b) When the punching load, $P_{r} \sin \theta$, in a branch member is essentially equilibrated (within $20 \%$ ) by loads in other branch member(s) on the same side of the connection, the connection shall be classified as a K-connection. The relevant gap is between the primary branch members whose loads equilibrate. An N-connection can be considered as a type of K-connection.

User Note: A K-connection with one branch perpendicular to the chord is often called an N -connection.
(c) When the punching load, $P_{r} \sin \theta$, is transmitted through the chord member and is equilibrated by branch member(s) on the opposite side, the connection shall be classified as a cross-connection.
(d) When a connection has more than two primary branch members, or branch members in more than one plane, the connection shall be classified as a general or multiplanar connection.

When branch members transmit part of their load as K-connections and part of their load as T-, Y- or cross-connections, the adequacy of the connections shall be determined by interpolation on the proportion of the available strength of each in total.

For trusses that are made with HSS that are connected by welding branch members to chord members, eccentricities within the limits of applicability are permitted without consideration of the resulting moments for the design of the connection.

## 1. Definitions of Parameters

$O_{v}=l_{o v} / l_{p} \times 100, \%$
$e=$ eccentricity in a truss connection, positive being away from the branches, in. (mm)
$g \quad=$ gap between toes of branch members in a gapped K-connection, neglecting the welds, in. (mm)
$l_{b}=H_{b} / \sin \theta$, in. (mm)
$l_{o v}=$ overlap length measured along the connecting face of the chord beneath the two branches, in. (mm)
$l_{p}=$ projected length of the overlapping branch on the chord, in. (mm)
$\beta=$ width ratio; the ratio of branch diameter to chord diameter $=D_{b} / D$ for round HSS; the ratio of overall branch width to chord width $=B_{b} / B$ for rectangular HSS
$\beta_{e f f}=$ effective width ratio; the sum of the perimeters of the two branch members in a K-connection divided by eight times the chord width
$\gamma=$ chord slenderness ratio; the ratio of one-half the diameter to the wall thickness $=D / 2 t$ for round HSS; the ratio of one-half the width to wall thickness $=B / 2 t$ for rectangular HSS
$\eta=$ load length parameter, applicable only to rectangular HSS; the ratio of the length of contact of the branch with the chord in the plane of the connection to the chord width $=l_{b} / B$
$\theta=$ acute angle between the branch and chord (degrees)
$\zeta=$ gap ratio; the ratio of the gap between the branches of a gapped K-connection to the width of the chord $=g / B$ for rectangular HSS

## 2. Round HSS

The available strength of round HSS-to-HSS truss connections, within the limits in Table K3.1A, shall be taken as the lowest value obtained according to the limit states shown in Table K3.1.

## 3. Rectangular HSS

The available strength, $\phi P_{n}$ and $P_{n} / \Omega$, of rectangular HSS-to-HSS truss connections within the limits in Table K3.2A, shall be taken as the lowest value obtained according to limit states shown in Table K3.2 and Chapter J.

User Note: Outside the limits in Table K3.2A, the limit states of Chapter J are still applicable and the applicable limit states of Chapter K are not defined.

User Note: Maximum gap size in Table K3.2A will be controlled by the $e / H$ limit. If the gap is large, treat as two Y-connections.

## K4. HSS-TO-HSS MOMENT CONNECTIONS

HSS-to-HSS moment connections are defined as connections that consist of one or two branch members that are directly welded to a continuous chord that passes through the connection, with the branch or branches loaded by bending moments.

A connection shall be classified as:
(a) A T-connection when there is one branch and it is perpendicular to the chord and as a Y-connection when there is one branch, but not perpendicular to the chord
(b) A cross-connection when there is a branch on each (opposite) side of the chord

TABLE K3.1   Available Strengths of Round HSS-to-HSS Truss Connections	
Connection Type	Connection Available Axial Strength
General Check for T-, Y-, Cross- and K -Connections with gap, when $D_{b(\text { tens } / \text { comp })}<(D-2 t)$	Limit State: Shear Yielding (punching) $\begin{aligned} P_{n}=0.6 F_{y} t \pi D_{b}\left(\frac{1+\sin \theta}{2 \sin ^{2} \theta}\right) \quad(\mathrm{K} 3-1) \\ \phi=0.95 \text { (LRFD) } \quad \Omega=1.58 \text { (ASD) } \end{aligned}$
	Limit State: Chord Plastification $P_{n} \sin \theta=F_{y} t^{2}\left(3.1+15.6 \beta^{2}\right) \gamma^{0.2} Q_{f} \quad(\mathrm{~K} 3-2)$ $\phi=0.90 \text { (LRFD) } \quad \Omega=1.67 \text { (ASD) }$
Cross-Connections	Limit State: Chord Plastification $\begin{equation*} P_{n} \sin \theta=F_{y} t^{2}\left(\frac{5.7}{1-0.81 \beta}\right) Q_{f} \tag{KЗ-3} \end{equation*}$ $\phi=0.90 \text { (LRFD) } \quad \Omega=1.67 \text { (ASD) }$
K-Connections with Gap or Overlap	Limit State: Chord Plastification $\begin{align*} & \left(P_{n} \sin \theta\right)_{\text {compression branch }}  \tag{K3-4}\\ & \quad=F_{y} t^{2}\left(2.0+11.33 \frac{D_{\text {b comp }}}{D}\right) Q_{g} Q_{f} \\ & \left(P_{n} \sin \theta\right)_{\text {tension branch }} \\ & \quad=\left(P_{n} \sin \theta\right)_{\text {compression branch }}  \tag{K3-5}\\ & \phi=0.90 \text { (LRFD) } \Omega=1.67 \text { (ASD) } \end{align*}$
Functions	
$Q_{f}=1$ for chord (connecting surface) in $=1.0-0.3 U(1+U)$ for HSS (conn $U=\left\|\frac{P_{r o}}{F_{c} A_{g}}+\frac{M_{r o}}{F_{c} S}\right\|$   where $P_{r o}$ and $M_{r o}$ are determined stress. $P_{r 0}$ and $M_{r 0}$ refer to required $M_{r o}=M_{u}$ for LRFD, and $M_{a}$ for ASD $Q_{g}=\gamma^{0.2}\left[1+\frac{0.024 \gamma^{1.2}}{\exp \left(\frac{0.5 g}{t}-1.33\right)+1}\right]$   Note that $\exp (x)$ is equal to $\mathrm{e}^{x}$, where	surface) in compression   (K2-3)   (K2-4)   side of the joint that has the lower compression ths in the HSS: $P_{r o}=P_{u}$ for LRFD, and $P_{a}$ for ASD;   (K3-6)   1828 is the base of the natural logarithm.


|  | TABLE K3.1 A |
| :--- | ---: | :--- |
| Limits of | Applicability Of Table K3.1 |


TABLE K3.2   Available Strengths of Rectangular HSS-to-HSS Truss Connections	
Connection Type	Connection Available Axial Strength
Gapped K-Connections	Limit State: Chord Wall Plastification, for all $\beta$ $\begin{gather*} P_{n} \sin \theta=F_{y} t^{2}\left(9.8 \beta_{e f f} \gamma^{0.5}\right) Q_{f}  \tag{K3-7}\\ \phi=0.90 \text { (LRFD) } \quad \Omega=1.67 \text { (ASD) } \end{gather*}$
	Limit State: Shear Yielding (punching), when $B_{b}<B-2 t$   This limit state need not be checked for square branches. $\begin{gathered} P_{n} \sin \theta=0.6 F_{y} t B\left(2 \eta+\beta+\beta_{e o p}\right) \\ \phi=0.95 \text { (LRFD) } \quad \Omega=1.58 \text { (ASD) } \end{gathered}$   (K3-8)
	Limit State: Shear of Chord Side Walls in the Gap Region   Determine $P_{n} \sin \theta$ in accordance with Section G4.   This limit state need not be checked for square chords.
	Limit State: Local Yielding of Branch/Branches due to Uneven Load Distribution   This limit state need not be checked for square branches or where $B / t \geq 15$. $\begin{gather*} P_{n}=F_{y b} t_{b}\left(2 H_{b}+B_{b}+B_{e}-4 t_{b}\right)  \tag{K3-9}\\ \phi=0.95(\mathrm{LRFD}) \quad \Omega=1.58(\mathrm{ASD}) \end{gather*}$


TABLE K3.2 (continued) Available Strengths of Rectangular HSS-to-HSS Truss Connections	
Connection Type	Connection Available Axial Strength
Overlapped K-Connections   Note that the force arrows shown for overlapped K-connections may be reversed; $i$ and $j$ control member identification.	Limit State: Local Yielding of Branch/Branches due to Uneven Load Distribution $\phi=0.95 \text { (LRFD) } \quad \Omega=1.58 \text { (ASD) }$   When $25 \% \leq O_{V}<50 \%$ $\begin{equation*} P_{n, i}=F_{y b i} t_{b i}\left[\frac{O_{V}}{50}\left(2 \mathrm{H}_{b i}-4 t_{b i}\right)+B_{e i}+B_{e j}\right] \tag{K3-10} \end{equation*}$   When $50 \% \leq O_{V}<80 \%$ $\begin{equation*} P_{n, i}=F_{y b i} t_{b i}\left(2 H_{b i}-4 t_{b i}+B_{e i}+B_{e j}\right) \tag{K3-11} \end{equation*}$   When $80 \% \leq O_{v} \leq 100 \%$ $\begin{equation*} P_{n, i}=F_{y b i} t_{b i}\left(2 H_{b i}-4 t_{b i}+B_{b i}+B_{e j}\right) \tag{K3-12} \end{equation*}$   Subscript $i$ refers to the overlapping branch Subscript $j$ refers to the overlapped branch $\begin{equation*} P_{n, j}=P_{n, i}\left(\frac{F_{y b j} A_{b j}}{F_{y b i} A_{b i}}\right) \tag{K3-13} \end{equation*}$
Functions	
$Q_{f}=1$ for chord (connecting surface) $=1.3-0.4 \frac{U}{\beta} \leq 1.0$   for chord (connecting surface) in $=1.3-0.4 \frac{U}{\beta_{\text {eff }}} \leq 1.0$   for chord (connecting surface) in $U=\left\|\frac{P_{r o}}{F_{c} A_{g}}+\frac{M_{r o}}{F_{c} S}\right\|$   where $P_{r o}$ and $M_{r o}$ are determin stress. $P_{r o}$ and $M_{r o}$ refer to requir $M_{r o}=M_{u}$ for LRFD, and $M_{a}$ for A $\begin{align*} & \beta_{\text {eff }}=\left[\left(B_{b}+H_{b}\right)_{\text {compression branch }}+\left(B_{b}+\right.\right.  \tag{К3-16}\\ & \beta_{\text {eop }}=\frac{5 \beta}{\gamma} \leq \beta \end{align*}$	in tension   (K3-14)   compression, for $\mathrm{T}-, \mathrm{Y}$ - and cross-connections   (K3-15)   compression, for gapped K-connections   (K2-4)   d on the side of the joint that has the lower compression $d$ strengths in the HSS: $P_{r o}=P_{u}$ for LRFD, and $P_{a}$ for ASD;   D.   $\left.b)_{\text {tension branch }}\right] / 4 B$   (K3-17)


TABLE K3.2A   Limits of Applicability of Table K3.2	
Joint eccentricity:	$-0.55 \leq e / H \leq 0.25$ for K-connections
Chord wall slenderness:	$B / t$ and $H / t \leq 35$ for gapped K-connections and T-, Y -and cross-connections
Branch wall slenderness:	$B / t \leq 30$ for overlapped K-connections   $H / t \leq 35$ for overlapped K-connections
$B_{b} / t_{b}$ and $H_{b} / t_{b} \leq 35$ for tension branch   $\leq 1.25 \sqrt{\frac{E}{F_{y b}}}$ for compression branch of gapped   $\leq 35$ for compression branch of gapped K-, T-, Y - and cross-connections	
	$\leq 1.1 \sqrt{\frac{E}{F_{y b}}}$ for compression branch of
Width ratio:	$B_{b} / B$ and $H_{b} / B \geq 0.25$ for $T$-, $Y$ - cross- and overlapped K-connections
Aspect ratio:	$0.5 \leq H_{b} / B_{b} \leq 2.0$ and $0.5 \leq H / B \leq 2.0$
Overlap:	$25 \% \leq O_{V} \leq 100 \%$ for overlapped K-connections
Branch width ratio:	$B_{b i} / B_{b j} \geq 0.75$ for overlapped K-connections, where subscript $i$ refers to the overlapping branch and subscript $j$ refers to the overlapped branch
Branch thickness ratio:	$t_{b i} / t_{b j} \leq 1.0$ for overlapped K-connections, where subscript $i$ refers to the overlapping branch and subscript $j$ refers to the overlapped branch
Material strength:	$F_{y}$ and $F_{y b} \leq 52 \mathrm{ksi}(360 \mathrm{MPa})$
Ductility:   End distance:	$F_{y} / F_{u}$ and $F_{y b} / F_{u b} \leq 0.8$ Note: ASTM A500 Grade $C$ is acceptable. $l_{\text {end }} \geq B \sqrt{1-\beta}$ for T - and Y -connections
Additional Limits for Gapped K-Connections	
Width ratio:$\frac{B_{b}}{B} \text { and } \frac{H_{b}}{B} \geq 0.1+\frac{\gamma}{50}$	
$\beta_{\text {eff }} \geq 0.35$	
Gap ratio:	$\zeta=g / B \geq 0.5\left(1-\beta_{\text {eff }}\right)$
$\begin{array}{rlrl}\text { Gap ratio. } & \\ \text { Gap: } & & =g=g / B & \geq 0.5\left(1-\beta_{\text {eff }} \text { ) }\right. \\ & & g & \geq t_{b} \text { compression branch }+t_{b} \text { tension }\end{array}$	
Branch size:	smaller $B_{b} \geq 0.63$ (larger $B_{b}$ ), if both branches are square

## 1. Definitions of Parameters

$Z_{b}=$ Plastic section modulus of branch about the axis of bending, in. ${ }^{3}\left(\mathrm{~mm}^{3}\right)$
$\beta=$ width ratio
$=D_{b} / D$ for round HSS; ratio of branch diameter to chord diameter
$=B_{b} / B$ for rectangular HSS; ratio of overall branch width to chord width
$\gamma=$ chord slenderness ratio
$=D / 2 t$ for round HSS; ratio of one-half the diameter to the wall thickness
$=B / 2 t$ for rectangular HSS; ratio of one-half the width to the wall thickness
$\eta \quad=$ load length parameter, applicable only to rectangular HSS
$=l_{b} / B$; the ratio of the length of contact of the branch with the chord in the plane of the connection to the chord width, where $l_{b}=H_{b} / \sin \theta$
$\theta=$ acute angle between the branch and chord (degrees)

## 2. Round HSS

The available strength of round HSS-to-HSS moment connections within the limits of Table K4.1A shall be taken as the lowest value of the applicable limit states shown in Table K4.1.

## 3. Rectangular HSS

The available strength, $\phi P_{n}$ and $P_{n} / \Omega$, of rectangular HSS-to-HSS moment connections within the limits in Table K4.2A shall be taken as the lowest value obtained according to limit states shown in Table K4.2 and Chapter J.

User Note: Outside the limits in Table K4.2A, the limit states of Chapter J are still applicable and the applicable limit states of Chapter K are not defined.

## K5. WELDS OF PLATES AND BRANCHES TO RECTANGULAR HSS

The available strength of branch connections shall be determined considering the nonuniformity of load transfer along the line of weld, due to differences in relative stiffness of HSS walls in HSS-to-HSS connections and between elements in transverse plate-to-HSS connections, as follows:

$$
\begin{gather*}
R_{n} \text { or } P_{n}=F_{n w} t_{w} l_{e}  \tag{K5-1}\\
M_{n-i p}=F_{n w} S_{i p}  \tag{K5-2}\\
M_{n-o p}=F_{n w} S_{o p} \tag{K5-3}
\end{gather*}
$$

Interaction shall be considered.
(a) For fillet welds

$$
\phi=0.75(\mathrm{LRFD}) \quad \Omega=2.00(\mathrm{ASD})
$$

(b) For partial-joint-penetration groove welds

$$
\phi=0.80(\mathrm{LRFD}) \quad \Omega=1.88(\mathrm{ASD})
$$

where
$F_{n w}=$ nominal stress of weld metal (Chapter J) with no increase in strength due to directionality of load for fillet welds, ksi (MPa)
$S_{i p}=$ effective elastic section modulus of welds for in-plane bending (Table K5.1), in. ${ }^{3}$ ( $\mathrm{mm}^{3}$ )
$S_{o p}=$ effective elastic section modulus of welds for out-of-plane bending (Table K5.1), in. ${ }^{3}$ ( $\mathrm{mm}^{3}$ )

TABLE K4.1   Available Strengths of Round HSS-to-HSS Moment Connections	
Connection Type	Connection Available Flexural Strength
Branch(es) Under In-Plane Bending T-, Y- and Cross-Connections	Limit State: Chord Plastification $\begin{gather*} M_{n-i p} \sin \theta=5.39 F_{y} t^{2} \gamma^{0.5} \beta D_{b} Q_{f}  \tag{K4-1}\\ \phi=0.90(\mathrm{LRFD}) \quad \Omega=1.67(\mathrm{ASD}) \end{gather*}$   Limit State: Shear Yielding (punching), when $D_{b}<(\mathrm{D}-2 t)$ $\begin{align*} & M_{n-i p}=0.6 F_{y} t D_{b}^{2}\left(\frac{1+3 \sin \theta}{4 \sin ^{2} \theta}\right)  \tag{K4-2}\\ \phi= & 0.95 \text { (LRFD) } \quad \Omega=1.58 \text { (ASD) } \end{align*}$
Branch(es) Under Out-of-Plane Bending T -, Y - and Cross-Connections	Limit State: Chord Plastification $\begin{gather*} M_{n-o p}=\frac{F_{y} t^{2} D_{b}}{\sin \theta}\left(\frac{3.0}{1-0.81 \beta}\right) Q_{f}  \tag{K4-3}\\ \phi=0.90 \text { (LRFD) } \quad \Omega=1.67 \text { (ASD) } \end{gather*}$   Limit State: Shear Yielding (punching), when $D_{b}<(\mathrm{D}-2 t)$ $\begin{align*} & M_{n-o p}=0.6 F_{y} t D_{b}^{2}\left(\frac{3+\sin \theta}{4 \sin ^{2} \theta}\right)  \tag{K4-4}\\ & \phi=0.95 \text { (LRFD) } \quad \Omega=1.58 \text { (ASD) } \end{align*}$
For T-, Y- and cross-connections, with br and out-of-plane bending, or any combin $\begin{align*} & \text { LRFD: }\left[P_{u} /\left(\phi P_{n}\right)\right]+\left[M_{r-i p} /\left(\phi M_{n-i p}\right)\right]^{2}+\left[M_{1}\right.  \tag{K4-5}\\ & \text { ASD: }\left[P_{a} /\left(P_{n} / \Omega\right)\right]+\left[M_{r-i p} /\left(M_{n-i p} / \Omega\right)\right]^{2}+[1  \tag{K4-6}\\ & \phi P_{n} \quad=\text { design strength }\left(\operatorname{or} P_{n} / \Omega=\right.\text { allo } \\ & \phi M_{n-i p}=\text { design strength (or } M_{n-i p} / \Omega=\mathrm{al} \\ & \phi M_{n-o p}=\text { design strength (or } M_{n-o p} / \Omega=\mathrm{a} \\ & M_{r-i p}=M_{u-i p} \text { for LRFD; } M_{a-i p} \text { for ASD } \\ & M_{r-o p}=M_{u-o p} \text { for LRFD; } M_{a-o p} \text { for ASD } \end{align*}$	) under combined axial load, in-plane bending, these load effects: $\begin{aligned} & \left.\left.M_{n-o p}\right)\right] \leq 1.0 \\ & \left.\left.M_{n-o p} / \Omega\right)\right] \leq 1.0 \end{aligned}$   trength) obtained from Table K3.1 strength) for in-plane bending e strength) for out-of-plane bending


TABLE K4.1 (continued)   Available Strengths of Round HSS-to-HSS Moment Connections				
Functions				
$Q_{f}=1$ for chord (connecting surface) in tension   $=1.0-0.3 U(1+U)$ for chord (connecting surface) in compression $\begin{equation*} U=\left\|\frac{P_{r o}}{F_{c} A_{g}}+\frac{M_{r o}}{F_{c} S}\right\| \tag{K2-3} \end{equation*}$   where $P_{r o}$ and $M_{r o}$ are determined on the side of the joint that has the lower compression stress. $P_{r o}$ and $M_{r o}$ refer to required strengths in the HSS: $P_{r o}=P_{u}$ for LRFD, and $P_{a}$ for ASD; $M_{r o}=M_{u}$ for LRFD, and $M_{a}$ for ASD.				


TABLE K4.1A   Limits of Applicability of Table K4.1	
Chord wall slenderness:	$D / t \leq 50$ for T - and Y -connections $D / t \leq 40$ for cross-connections
Branch wall slenderness:	$D_{b} / t_{b} \leq 50$
	$D_{b} / t_{b} \leq 0.05 E / F_{y b}$
Width ratio:	$0.2<D_{b} / D \leq 1.0$
Material strength:	$F_{y}$ and $F_{y b} \leq 52 \mathrm{ksi}(360 \mathrm{MPa})$
Ductility:	$F_{y} / F_{u}$ and $F_{y b} / F_{u b} \leq 0.8$ Note: ASTM A500 Grade C is acceptable.

$l_{e}=$ total effective weld length of groove and fillet welds to rectangular HSS for weld strength calculations, in. (mm)
$t_{w}=$ smallest effective weld throat around the perimeter of branch or plate, in. (mm)

When an overlapped K-connection has been designed in accordance with Table K3.2, and the branch member component forces normal to the chord are $80 \%$ balanced (i.e., the branch member forces normal to the chord face differ by no more than $20 \%$ ), the hidden weld under an overlapping branch may be omitted if the remaining welds to the overlapped branch everywhere develop the full capacity of the overlapped branch member walls.

TABLE K4.2	
Available Strengths of Rectangular	
HSS-to-HSS Moment Connections	

For T- and cross-connections, with branch(es) under combined axial load, in-plane bending, and out-of-plane bending, or any combination of these load effects:

LRFD: $\left[P_{u} /\left(\phi P_{n}\right)\right]+\left[M_{r-i p} /\left(\phi M_{n \text {-ip }}\right)\right]+\left[M_{r \text {-op }} /\left(\phi M_{n \text {-op }}\right)\right] \leq 1.0$
ASD: $\left[P_{a} /\left(P_{n} / \Omega\right)\right]+\left[M_{r-\text {-p }} /\left(M_{n-\text { ip }} / \Omega\right)\right]+\left[M_{r-\text { op }} /\left(M_{n-\text {-op }} / \Omega\right)\right] \leq 1.0$
$\phi P_{n} \quad=$ design strength (or $P_{n} / \Omega=$ allowable strength)
$\phi M_{n \text {-ip }}=$ design strength (or $M_{n \text {-ip }} / \Omega=$ allowable strength) for in-plane bending
$\phi M_{n-o p}=$ design strength (or $M_{n-o p} / \Omega=$ allowable strength) for out-of-plane bending
$M_{r-i p}=M_{u-i p}$ for LRFD; $M_{\text {a-ip }}$ for ASD
$M_{r-o p}=M_{u-o p}$ for LRFD; $M_{\text {a-op }}$ for ASD

## Functions

$Q_{f}=1$ for chord (connecting surface) in tension
$=1.3-0.4 \frac{U}{\beta} \leq 1.0$ for chord (connecting surface) in compression
$U=\left|\frac{P_{r o}}{F_{c} A_{g}}+\frac{M_{r o}}{F_{c} S}\right|$
where $P_{r o}$ and $M_{r o}$ are determined on the side of the joint that has the lower compression stress. $P_{r o}$ and $M_{r o}$ refer to required strengths in the HSS: $P_{r o}=P_{u}$ for LRFD, and $P_{a}$ for ASD; $M_{r o}=M_{u}$ for LRFD, and $M_{a}$ for ASD.


The weld checks in Table K5.1 are not required if the welds are capable of developing the full strength of the branch member wall along its entire perimeter (or a plate along its entire length).

User Note: The approach used here to allow downsizing of welds assumes a constant weld size around the full perimeter of the HSS branch. Special attention is required for equal width (or near-equal width) connections which combine par-tial-joint-penetration groove welds along the matched edges of the connection, with fillet welds generally across the main member face.


## TABLE K5.1 (continued) Effective Weld Properties for Connections to Rectangular HSS



Overlapping Member Effective Weld Properties (all dimensions are for the overlapping branch, $i$ )

When $25 \% \leq O_{V}<50 \%$ :
$l_{e, i}=\frac{2 O_{v}}{50}\left[\left(1-\frac{O_{v}}{100}\right)\left(\frac{H_{b i}}{\sin \theta_{i}}\right)+\frac{O_{v}}{100}\left(\frac{H_{b i}}{\sin \left(\theta_{i}+\theta_{j}\right)}\right)\right]+B_{e i}+B_{e j}$

When $50 \% \leq O_{v}<80 \%$ :

$$
\begin{equation*}
l_{e, i}=2\left[\left(1-\frac{O_{v}}{100}\right)\left(\frac{H_{b i}}{\sin \theta_{i}}\right)+\frac{O_{v}}{100}\left(\frac{H_{b i}}{\sin \left(\theta_{i}+\theta_{j}\right)}\right)\right]+B_{e i}+B_{e j} \tag{K5-11}
\end{equation*}
$$

When $80 \% \leq O_{v} \leq 100 \%$ :

$$
\begin{equation*}
l_{e, i}=2\left[\left(1-\frac{O_{v}}{100}\right)\left(\frac{H_{b i}}{\sin \theta_{i}}\right)+\frac{O_{v}}{100}\left(\frac{H_{b i}}{\sin \left(\theta_{i}+\theta_{j}\right)}\right)\right]+B_{b i}+B_{e j} \tag{K5-12}
\end{equation*}
$$

When $B_{b i} / B>0.85$ or $\theta_{i}>50^{\circ}, B_{e i} / 2$
shall not exceed $B_{b i} / 4$ and when
$B_{b i} / B_{b j}>0.85$ or $\left(180-\theta_{i}-\theta_{j}\right)>50^{\circ}$,
$B_{e j} / 2$ shall not exceed $B_{b i} / 4$.
Subscript $i$ refers to the overlapping branch
Subscript $j$ refers to the overlapped branch

Overlapped Member Effective Weld Properties (all dimensions are for the overlapped branch, $j$ )

$$
\begin{equation*}
l_{e, j}=\frac{2 H_{b j}}{\sin \theta_{j}}+2 B_{e j} \tag{K5-13}
\end{equation*}
$$

When $B_{b j} / B>0.85$ or $\theta_{j}>50^{\circ}$,

$$
\begin{equation*}
l_{e, j}=2\left(H_{b j}-1.2 t_{b j}\right) / \sin \theta_{j} \tag{K5-14}
\end{equation*}
$$

## CHAPTER L

## DESIGN FOR SERVICEABILITY

This chapter addresses the evaluation of the structure and its components for the serviceability limit states of deflections, drift, vibration, wind-induced motion, thermal distortion, and connection slip.

The chapter is organized as follows:
L1. General Provisions
L2. Deflections
L3. Drift
L4. Vibration
L5. Wind-Induced Motion
L6. Thermal Expansion and Contraction
L7. Connection Slip

## L1. GENERAL PROVISIONS

Serviceability is a state in which the function of a building, its appearance, maintainability, durability, and the comfort of its occupants are preserved under typical usage. Limiting values of structural behavior for serviceability (such as maximum deflections and accelerations) shall be chosen with due regard to the intended function of the structure. Serviceability shall be evaluated using applicable load combinations.

User Note: Serviceability limit states, service loads, and appropriate load combinations for serviceability considerations can be found in Minimum Design Loads and Associated Criteria for Buildings and Other Structures (ASCE/SEI 7) Appendix C and its commentary. The performance requirements for serviceability in this chapter are consistent with ASCE/SEI 7 Appendix C. Service loads are those that act on the structure at an arbitrary point in time and are not usually taken as the nominal loads.

Reduced stiffness values used in the direct analysis method, described in Chapter C , are not intended for use with the provisions of this chapter.

## L2. DEFLECTIONS

Deflections in structural members and structural systems shall be limited so as not to impair the serviceability of the structure.

## L3. DRIFT

Drift shall be limited so as not to impair the serviceability of the structure.

## L4. VIBRATION

The effect of vibration on the comfort of the occupants and the function of the structure shall be considered. The sources of vibration to be considered include occupant loading, vibrating machinery and others identified for the structure.

## L5. WIND-INDUCED MOTION

The effect of wind-induced motion of buildings on the comfort of occupants shall be considered.

## L6. THERMAL EXPANSION AND CONTRACTION

The effects of thermal expansion and contraction of a building shall be considered.

## L7. CONNECTION SLIP

The effects of connection slip shall be included in the design where slip at bolted connections may cause deformations that impair the serviceability of the structure. Where appropriate, the connection shall be designed to preclude slip.

User Note: For the design of slip-critical connections, see Sections J3.8 and J3.9. For more information on connection slip, refer to the RCSC Specification for Structural Joints Using High-Strength Bolts.

## CHAPTER M FABRICATION AND ERECTION

This chapter addresses requirements for shop drawings, fabrication, shop painting and erection.

The chapter is organized as follows:
M1. Shop and Erection Drawings
M2. Fabrication
M3. Shop Painting
M4. Erection

## M1. SHOP AND ERECTION DRAWINGS

Shop and erection drawings are permitted to be prepared in stages. Shop drawings shall be prepared in advance of fabrication and give complete information necessary for the fabrication of the component parts of the structure, including the location, type and size of welds and bolts. Erection drawings shall be prepared in advance of erection and give information necessary for erection of the structure. Shop and erection drawings shall clearly distinguish between shop and field welds and bolts and shall clearly identify pretensioned and slip-critical high-strength bolted connections. Shop and erection drawings shall be made with due regard to speed and economy in fabrication and erection.

## M2. FABRICATION

## 1. Cambering, Curving and Straightening

Local application of heat or mechanical means is permitted to be used to introduce or correct camber, curvature and straightness. The temperature of heated areas shall not exceed $1,100^{\circ} \mathrm{F}\left(590^{\circ} \mathrm{C}\right)$ for ASTM A514/A514M and ASTM A852/A852M steels nor $1,200^{\circ} \mathrm{F}\left(650^{\circ} \mathrm{C}\right)$ for other steels.

## 2. Thermal Cutting

Thermally cut edges shall meet the requirements of Structural Welding Code-Steel (AWS D1.1/D1.1M) clauses 5.14.5.2, 5.14.8.3 and 5.14.8.4, hereafter referred to as AWS D1.1M/D1.1M, with the exception that thermally cut free edges that will not be subject to fatigue shall be free of round-bottom gouges greater than ${ }^{3 / 16}$ in. $(5 \mathrm{~mm})$ deep and sharp V-shaped notches. Gouges deeper than $3 / 16 \mathrm{in}$. ( 5 mm ) and notches shall be removed by grinding or repaired by welding.

Reentrant corners shall be formed with a curved transition. The radius need not exceed that required to fit the connection. Discontinuous corners are permitted where the material on both sides of the discontinuous reentrant corner are connected to a mating piece to prevent deformation and associated stress concentration at the corner.

User Note: Reentrant corners with a radius of $1 / 2$ to $3 / 8$ in. ( 13 to 10 mm ) are acceptable for statically loaded work. Where pieces need to fit tightly together, a discontinuous reentrant corner is acceptable if the pieces are connected close to the corner on both sides of the discontinuous corner. Slots in HSS for gussets may be made with semicircular ends or with curved corners. Square ends are acceptable provided the edge of the gusset is welded to the HSS.

Weld access holes shall meet the geometrical requirements of Section J1.6. Beam copes and welds access holes in shapes that are to be galvanized shall be ground to bright metal. For shapes with a flange thickness not exceeding 2 in . 50 mm ), the roughness of thermally cut surfaces of copes shall be no greater than a surface roughness value of $2,000 \mu \mathrm{in}$. $(50 \mu \mathrm{~m})$ as defined in Surface Texture, Surface Roughness, Waviness, and Lay (ASME B46.1), hereafter referred to as ASTM B46.1. For beam copes and weld access holes in which the curved part of the access hole is thermally cut in ASTM A6/A6M hot-rolled shapes with a flange thickness exceeding 2 in . (50 mm ) and welded built-up shapes with material thickness greater than 2 in . 50 mm ), a preheat temperature of not less than $150^{\circ} \mathrm{F}\left(66^{\circ} \mathrm{C}\right)$ shall be applied prior to thermal cutting. The thermally cut surface of access holes in ASTM A6/A6M hot-rolled shapes with a flange thickness exceeding 2 in . $(50 \mathrm{~mm})$ and built-up shapes with a material thickness greater than 2 in . $(50 \mathrm{~mm}$ ) shall be ground.

User Note: The AWS Surface Roughness Guide for Oxygen Cutting (AWS C4.1-77) sample 2 may be used as a guide for evaluating the surface roughness of copes in shapes with flanges not exceeding 2 in . $(50 \mathrm{~mm}$ ) thick.

## 3. Planing of Edges

Planing or finishing of sheared or thermally cut edges of plates or shapes is not required unless specifically called for in the construction documents or included in a stipulated edge preparation for welding.

## 4. Welded Construction

Welding shall be performed in accordance with AWS D1.1/D1.1M, except as modified in Section J2.

User Note: Welder qualification tests on plate defined in AWS D1.1/D1.1M clause 4 are appropriate for welds connecting plates, shapes or HSS to other plates, shapes or rectangular HSS. The 6GR tubular welder qualification is required for unbacked complete-joint-penetration groove welds of HSS T-, Y- and K-connections.

## 5. Bolted Construction

Parts of bolted members shall be pinned or bolted and rigidly held together during assembly. Use of a drift pin in bolt holes during assembly shall not distort the metal or enlarge the holes. Poor matching of holes shall be cause for rejection.

Bolt holes shall comply with the provisions of the RCSC Specification for Structural Joints Using High-Strength Bolts Section 3.3, hereafter referred to as the RCSC Specification, except that thermally cut holes are permitted with a surface roughness profile not exceeding $1,000 \mu \mathrm{in}$. $(25 \mu \mathrm{~m})$, as defined in ASME B46.1. Gouges shall not exceed a depth of $1 / 16 \mathrm{in}$. ( 2 mm ). Water jet cut holes are also permitted.

User Note: The AWS Surface Roughness Guide for Oxygen Cutting (AWS C4.177) sample 3 may be used as a guide for evaluating the surface roughness of thermally cut holes.

Fully inserted finger shims, with a total thickness of not more than $1 / 4 \mathrm{in}$. ( 6 mm ) within a joint, are permitted without changing the strength (based upon hole type) for the design of connections. The orientation of such shims is independent of the direction of application of the load.

The use of high-strength bolts shall conform to the requirements of the RCSC Specification, except as modified in Section J3.

## 6. Compression Joints

Compression joints that depend on contact bearing as part of the splice strength shall have the bearing surfaces of individual fabricated pieces prepared by milling, sawing or other equivalent means.

## 7. Dimensional Tolerances

Dimensional tolerances shall be in accordance with Chapter 6 of the AISC Code of Standard Practice for Steel Buildings and Bridges, hereafter referred to as the Code of Standard Practice.

## 8. Finish of Column Bases

Column bases and base plates shall be finished in accordance with the following requirements:
(a) Steel bearing plates 2 in . ( 50 mm ) or less in thickness are permitted without milling provided a smooth and notch-free contact bearing surface is obtained. Steel bearing plates over 2 in . ( 50 mm ) but not over 4 in . ( 100 mm ) in thickness are permitted to be straightened by pressing or, if presses are not available, by milling for bearing surfaces, except as stipulated in subparagraphs (b) and (c) of this section, to obtain a smooth and notch-free contact bearing surface. Steel bearing plates over 4 in . ( 100 mm ) in thickness shall be milled for bearing surfaces, except as stipulated in subparagraphs (b) and (c) of this section.
(b) Bottom surfaces of bearing plates and column bases that are grouted to ensure full bearing contact on foundations need not be milled.
(c) Top surfaces of bearing plates need not be milled when complete-joint-penetration groove welds are provided between the column and the bearing plate.

## 9. Holes for Anchor Rods

Holes for anchor rods are permitted to be thermally cut in accordance with the provisions of Section M2.2.

## 10. Drain Holes

When water can collect inside HSS or box members, either during construction or during service, the member shall be sealed, provided with a drain hole at the base, or otherwise protected from water infiltration.

## 11. Requirements for Galvanized Members

Members and parts to be galvanized shall be designed, detailed and fabricated to provide for flow and drainage of pickling fluids and zinc and to prevent pressure buildup in enclosed parts.

User Note: See The Design of Products to be Hot-Dip Galvanized After Fabrication, American Galvanizer's Association, and ASTM A123, F2329, A384 and A780 for useful information on design and detailing of galvanized members. See Section M2.2 for requirements for copes of members that are to be galvanized.

## M3. SHOP PAINTING

## 1. General Requirements

Shop painting and surface preparation shall be in accordance with the provisions in Code of Standard Practice Chapter 6.

Shop paint is not required unless specified by the contract documents.
2. Inaccessible Surfaces

Except for contact surfaces, surfaces inaccessible after shop assembly shall be cleaned and painted prior to assembly, if required by the construction documents.

## 3. Contact Surfaces

Paint is permitted in bearing-type connections. For slip-critical connections, the faying surface requirements shall be in accordance with RCSC Specification Section 3.2.2.

## 4. Finished Surfaces

Machine-finished surfaces shall be protected against corrosion by a rust inhibitive coating that can be removed prior to erection or has characteristics that make removal prior to erection unnecessary.

## 5. Surfaces Adjacent to Field Welds

Unless otherwise specified in the design documents, surfaces within 2 in. ( 50 mm ) of any field weld location shall be free of materials that would prevent weld quality
from meeting the quality requirements of this Specification, or produce unsafe fumes during welding.

## M4. ERECTION

## 1. Column Base Setting

Column bases shall be set level and to correct elevation with full bearing on concrete or masonry as defined in Code of Standard Practice Chapter 7.

## 2. Stability and Connections

The frame of structural steel buildings shall be carried up true and plumb within the limits defined in Code of Standard Practice Chapter 7. As erection progresses, the structure shall be secured to support dead, erection and other loads anticipated to occur during the period of erection. Temporary bracing shall be provided, in accordance with the requirements of the Code of Standard Practice, wherever necessary to support the loads to which the structure may be subjected, including equipment and the operation of same. Such bracing shall be left in place as long as required for safety.
3. Alignment

No permanent bolting or welding shall be performed until the affected portions of the structure have been aligned as required by the construction documents.

## 4. Fit of Column Compression Joints and Base Plates

Lack of contact bearing not exceeding a gap of ${ }^{1 / 16} \mathrm{in}$. ( 2 mm ), regardless of the type of splice used (partial-joint-penetration groove welded or bolted), is permitted. If the gap exceeds ${ }^{1 / 16} \mathrm{in}$. ( 2 mm ), but is equal to or less than $1 / 4 \mathrm{in}$. ( 6 mm ), and if an engineering investigation shows that sufficient contact area does not exist, the gap shall be packed out with nontapered steel shims. Shims need not be other than mild steel, regardless of the grade of the main material.

## 5. Field Welding

Surfaces in and adjacent to joints to be field welded shall be prepared as necessary to assure weld quality. This preparation shall include surface preparation necessary to correct for damage or contamination occurring subsequent to fabrication.

## 6. Field Painting

Responsibility for touch-up painting, cleaning, and field painting shall be allocated in accordance with accepted local practices, and this allocation shall be set forth explicitly in the contract documents.

## CHAPTER N

## QUALITY CONTROL AND QUALITY ASSURANCE

This chapter addresses minimum requirements for quality control, quality assurance and nondestructive testing for structural steel systems and steel elements of composite members for buildings and other structures.

User Note: This chapter does not address quality control or quality assurance for the following items:
(a) Steel (open web) joists and girders
(b) Tanks or pressure vessels
(c) Cables, cold-formed steel products, or gage material
(d) Concrete reinforcing bars, concrete materials, or placement of concrete for composite members
(e) Surface preparations or coatings

The Chapter is organized as follows:

## N1. General Provisions

N2. Fabricator and Erector Quality Control Program
N3. Fabricator and Erector Documents
N4. Inspection and Nondestructive Testing Personnel
N5. Minimum Requirements for Inspection of Structural Steel Buildings
N6. Approved Fabricators and Erectors
N7. Nonconforming Material and Workmanship

## N1. GENERAL PROVISIONS

Quality control (QC) as specified in this chapter shall be provided by the fabricator and erector. Quality assurance (QA) as specified in this chapter shall be provided by others when required by the authority having jurisdiction (AHJ), applicable building code, purchaser, owner, or engineer of record (EOR). Nondestructive testing (NDT) shall be performed by the agency or firm responsible for quality assurance, except as permitted in accordance with Section N6.

User Note: The QA/QC requirements in Chapter N are considered adequate and effective for most steel structures and are strongly encouraged without modification. When the applicable building code and AHJ requires the use of a QA plan, this chapter outlines the minimum requirements deemed effective to provide satisfactory results in steel building construction. There may be cases where supplemental inspections are advisable. Additionally, where the contractor's QC program has demonstrated the capability to perform some tasks this plan has assigned to QA, modification of the plan could be considered.

User Note: The producers of materials manufactured in accordance with the standard specifications referenced in Section A3 and steel deck manufacturers are not considered to be fabricators or erectors.

## N2. FABRICATOR AND ERECTOR QUALITY CONTROL PROGRAM

The fabricator and erector shall establish, maintain and implement QC procedures to ensure that their work is performed in accordance with this Specification and the construction documents.

## 1. Material Identification

Material identification procedures shall comply with the requirements of Section 6.1 of the AISC Code of Standard Practice for Steel Buildings and Bridges, hereafter referred to as the Code of Standard Practice, and shall be monitored by the fabricator's quality control inspector (QCI).

## 2. Fabricator Quality Control Procedures

The fabricator's QC procedures shall address inspection of the following as a minimum, as applicable:
(a) Shop welding, high-strength bolting, and details in accordance with Section N5
(b) Shop cut and finished surfaces in accordance with Section M2
(c) Shop heating for cambering, curving and straightening in accordance with Section M2.1
(d) Tolerances for shop fabrication in accordance with Code of Standard Practice Section 6.4

## 3. Erector Quality Control Procedures

The erector's quality control procedures shall address inspection of the following as a minimum, as applicable:
(a) Field welding, high-strength bolting, and details in accordance with Section N5
(b) Steel deck in accordance with SDI Standard for Quality Control and Quality Assurance for Installation of Steel Deck
(c) Headed steel stud anchor placement and attachment in accordance with Section N5.4
(d) Field cut surfaces in accordance with Section M2.2
(e) Field heating for straightening in accordance with Section M2.1
(f) Tolerances for field erection in accordance with Code of Standard Practice Section 7.13

## N3. FABRICATOR AND ERECTOR DOCUMENTS

## 1. Submittals for Steel Construction

The fabricator or erector shall submit the following documents for review by the EOR or the EOR's designee, in accordance with Code of Standard Practice Section 4.4, prior to fabrication or erection, as applicable:
(a) Shop drawings, unless shop drawings have been furnished by others
(b) Erection drawings, unless erection drawings have been furnished by others

## 2. Available Documents for Steel Construction

The following documents shall be available in electronic or printed form for review by the EOR or the EOR's designee prior to fabrication or erection, as applicable, unless otherwise required in the construction documents to be submitted:
(a) For main structural steel elements, copies of material test reports in accordance with Section A3.1.
(b) For steel castings and forgings, copies of material test reports in accordance with Section A3.2.
(c) For fasteners, copies of manufacturer's certifications in accordance with Section A3.3.
(d) For anchor rods and threaded rods, copies of material test reports in accordance with Section A3.4.
(e) For welding consumables, copies of manufacturer's certifications in accordance with Section A3.5.
(f) For headed stud anchors, copies of manufacturer's certifications in accordance with Section A3.6.
(g) Manufacturer's product data sheets or catalog data for welding filler metals and fluxes to be used. The data sheets shall describe the product, limitations of use, recommended or typical welding parameters, and storage and exposure requirements, including baking, if applicable.
(h) Welding procedure specifications (WPS).
(i) Procedure qualification records (PQR) for WPS that are not prequalified in accordance with Structural Welding Code—Steel (AWS D1.1/D1.1M), hereafter referred to as AWS D1.1/D1.1M, or Structural Welding Code—Sheet Steel (AWS D1.3/D1.3M), as applicable.
(j) Welding personnel performance qualification records (WPQR) and continuity records.
(k) Fabricator's or erector's, as applicable, written QC manual that shall include, as a minimum:
(1) Material control procedures
(2) Inspection procedures
(3) Nonconformance procedures
(1) Fabricator's or erector's, as applicable, QCI qualifications.
(m) Fabricator NDT personnel qualifications, if NDT is performed by the fabricator.

## N4. INSPECTION AND NONDESTRUCTIVE TESTING PERSONNEL

## 1. Quality Control Inspector Qualifications

QC welding inspection personnel shall be qualified to the satisfaction of the fabricator's or erector's QC program, as applicable, and in accordance with either of the following:
(a) Associate welding inspectors (AWI) or higher as defined in Standard for the Qualification of Welding Inspectors (AWS B5.1), or
(b) Qualified under the provisions of AWS D1.1/D1.1M clause 6.1.4.

QC bolting inspection personnel shall be qualified on the basis of documented training and experience in structural bolting inspection.
2. Quality Assurance Inspector Qualifications

QA welding inspectors shall be qualified to the satisfaction of the QA agency's written practice, and in accordance with either of the following:
(a) Welding inspectors (WI) or senior welding inspectors (SWI), as defined in Standard for the Qualification of Welding Inspectors (AWS B5.1), except AWI are permitted to be used under the direct supervision of WI, who are on the premises and available when weld inspection is being conducted, or
(b) Qualified under the provisions of AWS D1.1/D1.1M clause 6.1.4.

QA bolting inspection personnel shall be qualified on the basis of documented training and experience in structural bolting inspection.

## 3. NDT Personnel Qualifications

NDT personnel, for NDT other than visual, shall be qualified in accordance with their employer's written practice, which shall meet or exceed the criteria of AWS D1.1/D1.1M clause 6.14.6, and,
(a) Personnel Qualification and Certification Nondestructive Testing (ASNT SNT-TC-1A), or
(b) Standard for the Qualification and Certification of Nondestructive Testing Personnel (ANSI/ASNT CP-189).

## N5. MINIMUM REQUIREMENTS FOR INSPECTION OF STRUCTURAL STEEL BUILDINGS

## 1. Quality Control

QC inspection tasks shall be performed by the fabricator's or erector's QCI, as applicable, in accordance with Sections N5.4, N5.6 and N5.7.

Tasks in Tables N5.4-1 through N5.4-3 and Tables N5.6-1 through N5.6-3 listed for QC are those inspections performed by the QCI to ensure that the work is performed in accordance with the construction documents.

For QC inspection, the applicable construction documents are the shop drawings and the erection drawings, and the applicable referenced specifications, codes and standards.

User Note: The QCI need not refer to the design drawings and project specifications. The Code of Standard Practice Section 4.2.1(a) requires the transfer of information from the contract documents (design drawings and project specification) into accurate and complete shop and erection drawings, allowing QC inspection to be based upon shop and erection drawings alone.

## 2. Quality Assurance

The QAI shall review the material test reports and certifications as listed in Section N3.2 for compliance with the construction documents.

QA inspection tasks shall be performed by the QAI, in accordance with Sections N5.4, N5.6 and N5.7.

Tasks in Tables N5.4-1 through N5.4-3 and N5.6-1 through N5.6-3 listed for QA are those inspections performed by the QAI to ensure that the work is performed in accordance with the construction documents.

Concurrent with the submittal of such reports to the AHJ, EOR or owner, the QA agency shall submit to the fabricator and erector:
(a) Inspection reports
(b) NDT reports

## 3. Coordinated Inspection

When a task is noted to be performed by both QC and QA, it is permitted to coordinate the inspection function between the QCI and QAI so that the inspection functions are performed by only one party. When QA relies upon inspection functions performed by QC, the approval of the EOR and the AHJ is required.

## 4. Inspection of Welding

Observation of welding operations and visual inspection of in-process and completed welds shall be the primary method to confirm that the materials, procedures and workmanship are in conformance with the construction documents.

User Note: The technique, workmanship, appearance and quality of welded construction are addressed in Section M2.4.

As a minimum, welding inspection tasks shall be in accordance with Tables N5.41, N5.4-2 and N5.4-3. In these tables, the inspection tasks are as follows:
(a) Observe ( O ): The inspector shall observe these items on a random basis. Operations need not be delayed pending these inspections.
(b) Perform ( P ): These tasks shall be performed for each welded joint or member.

TABLE N5.4-1   Inspection Tasks Prior to Welding		
Inspection Tasks Prior to Welding	QC	QA
Welder qualification records and continuity records	P	O
WPS available	P	P
Manufacturer certifications for welding consumables available	P	P
Material identification (type/grade)	O	O
Welder identification system ${ }^{[a]}$	0	0
Fit-up of groove welds (including joint geometry)   - Joint preparations   - Dimensions (alignment, root opening, root face, bevel)   - Cleanliness (condition of steel surfaces)   - Tacking (tack weld quality and location)   - Backing type and fit (if applicable)	O	O
Fit-up of CJP groove welds of HSS T-, Y- and K-joints without backing (including joint geometry)   - Joint preparations   - Dimensions (alignment, root opening, root face, bevel)   - Cleanliness (condition of steel surfaces)   - Tacking (tack weld quality and location)	P	O
Configuration and finish of access holes	0	O
Fit-up of fillet welds   - Dimensions (alignment, gaps at root)   - Cleanliness (condition of steel surfaces)   - Tacking (tack weld quality and location)	O	O
Check welding equipment	O	-
[a] The fabricator or erector, as applicable, shall maintain a system by which a welder who has welded a joint or member can be identified. Stamps, if used, shall be the low-stress type.		


TABLE N5.4-2   Inspection Tasks During Welding		
Inspection Tasks During Welding	QC	QA
Control and handling of welding consumables   - Packaging   - Exposure control	O	O
No welding over cracked tack welds	0	0
Environmental conditions   - Wind speed within limits   - Precipitation and temperature	O	O
WPS followed   - Settings on welding equipment   - Travel speed   - Selected welding materials   - Shielding gas type/flow rate   - Preheat applied   - Interpass temperature maintained (min./max.)   - Proper position (F, V, H, OH)	O	O
Welding techniques   - Interpass and final cleaning   - Each pass within profile limitations   - Each pass meets quality requirements	0	O
Placement and installation of steel headed stud anchors	P	P


TABLE N5.4-3   Inspection Tasks After Welding		
Inspection Tasks After Welding	QC	QA
Welds cleaned	0	O
Size, length and location of welds	P	P
Welds meet visual acceptance criteria   - Crack prohibition   - Weld/base-metal fusion   - Crater cross section   - Weld profiles   - Weld size   - Undercut   - Porosity	P	P
Arc strikes	P	P
$k$-area ${ }^{[a]}$	P	P
Weld access holes in rolled heavy shapes and built-up heavy shapes ${ }^{[b]}$	P	P
Backing removed and weld tabs removed (if required)	P	P
Repair activities	P	P
Document acceptance or rejection of welded joint or member	P	P
No prohibited welds have been added without the approval of the EOR	0	0
${ }^{[a]}$ When welding of doubler plates, continuity plates or stiffeners has been performed in the $k$-area, visually inspect the web $k$-area for cracks within 3 in. ( 75 mm ) of the weld.		
${ }^{[b]}$ After rolled heavy shapes (see Section A3.1c) and built-up heavy shapes (see Section A3.1d) are welded, visually inspect the weld access hole for cracks.		

## 5. Nondestructive Testing of Welded Joints

## 5a. Procedures

Ultrasonic testing (UT), magnetic particle testing (MT), penetrant testing (PT), and radiographic testing (RT), where required, shall be performed by QA in accordance with AWS D1.1/D1.1M.

User Note: The technique, workmanship, appearance and quality of welded construction is addressed in Section M2.4.

## 5b. CJP Groove Weld NDT

For structures in risk category III or IV, UT shall be performed by QA on all com-plete-joint-penetration (CJP) groove welds subject to transversely applied tension loading in butt, T- and corner joints, in material $5 / 16 \mathrm{in}$. ( 8 mm ) thick or greater. For structures in risk category II, UT shall be performed by QA on $10 \%$ of CJP groove welds in butt, T- and corner joints subject to transversely applied tension loading, in materials $5 / 16 \mathrm{in}$. ( 8 mm ) thick or greater.

User Note: For structures in risk category I, NDT of CJP groove welds is not required. For all structures in all risk categories, NDT of CJP groove welds in materials less than $5 / 16 \mathrm{in}$. $(8 \mathrm{~mm})$ thick is not required.

## 5c. Welded Joints Subjected to Fatigue

When required by Appendix 3, Table A-3.1, welded joints requiring weld soundness to be established by radiographic or ultrasonic inspection shall be tested by QA as prescribed. Reduction in the rate of UT is prohibited.

## 5d. Ultrasonic Testing Rejection Rate

The ultrasonic testing rejection rate shall be determined as the number of welds containing defects divided by the number of welds completed. Welds that contain acceptable discontinuities shall not be considered as having defects when the rejection rate is determined. For evaluating the rejection rate of continuous welds over 3 $\mathrm{ft}(1 \mathrm{~m})$ in length where the effective throat is 1 in . ( 25 mm ) or less, each 12 in . (300 mm ) increment or fraction thereof shall be considered as one weld. For evaluating the rejection rate on continuous welds over $3 \mathrm{ft}(1 \mathrm{~m})$ in length where the effective throat is greater than $1 \mathrm{in} .(25 \mathrm{~mm})$, each $6 \mathrm{in} .(150 \mathrm{~mm})$ of length, or fraction thereof, shall be considered one weld.

## 5e. Reduction of Ultrasonic Testing Rate

For projects that contain 40 or fewer welds, there shall be no reduction in the ultrasonic testing rate. The rate of UT is permitted to be reduced if approved by the EOR and the AHJ. Where the initial rate of UT is $100 \%$, the NDT rate for an individual
welder or welding operator is permitted to be reduced to $25 \%$, provided the rejection rate, the number of welds containing unacceptable defects divided by the number of welds completed, is demonstrated to be $5 \%$ or less of the welds tested for the welder or welding operator. A sampling of at least 40 completed welds shall be made for such reduced evaluation on each project.

## 5f. Increase in Ultrasonic Testing Rate

For structures in risk category II and higher (where the initial rate for UT is $10 \%$ ) the NDT rate for an individual welder or welding operator shall be increased to $100 \%$ should the rejection rate (the number of welds containing unacceptable defects divided by the number of welds completed) exceed $5 \%$ of the welds tested for the welder or welding operator. A sampling of at least 20 completed welds on each project shall be made prior to implementing such an increase. If the rejection rate for the welder or welding operator falls to $5 \%$ or less on the basis of at least 40 completed welds, the rate of UT may be decreased to $10 \%$.

## 5g. Documentation

All NDT performed shall be documented. For shop fabrication, the NDT report shall identify the tested weld by piece mark and location in the piece. For field work, the NDT report shall identify the tested weld by location in the structure, piece mark, and location in the piece.

When a weld is rejected on the basis of NDT, the NDT record shall indicate the location of the defect and the basis of rejection.

## 6. Inspection of High-Strength Bolting

Observation of bolting operations shall be the primary method used to confirm that the materials, procedures and workmanship incorporated in construction are in conformance with the construction documents and the provisions of the RCSC Specification.
(a) For snug-tight joints, pre-installation verification testing as specified in Table N5.6-1 and monitoring of the installation procedures as specified in Table N5.62 are not applicable. The QCI and QAI need not be present during the installation of fasteners in snug-tight joints.
(b) For pretensioned joints and slip-critical joints, when the installer is using the turn-of-nut method with matchmarking techniques, the direct-tension-indicator method, or the twist-off-type tension control bolt method, monitoring of bolt pretensioning procedures shall be as specified in Table N5.6-2. The QCI and QAI need not be present during the installation of fasteners when these methods are used by the installer.
(c) For pretensioned joints and slip-critical joints, when the installer is using the calibrated wrench method or the turn-of-nut method without matchmarking, monitoring of bolt pretensioning procedures shall be as specified in Table N5.6-2. The QCI and QAI shall be engaged in their assigned inspection duties during installation of fasteners when these methods are used by the installer.

As a minimum, bolting inspection tasks shall be in accordance with Tables N5.6-1, N5.6-2 and N5.6-3. In these tables, the inspection tasks are as follows:
(a) Observe ( O ): The inspector shall observe these items on a random basis. Operations need not be delayed pending these inspections.
(b) Perform (P): These tasks shall be performed for each bolted connection.

## 7. Inspection of Galvanized Structural Steel Main Members

Exposed cut surfaces of galvanized structural steel main members and exposed corners of rectangular HSS shall be visually inspected for cracks subsequent to galvanizing. Cracks shall be repaired or the member shall be rejected.

User Note: It is normal practice for fabricated steel that requires hot dip galvanizing to be delivered to the galvanizer and then shipped to the jobsite. As a result, inspection on site is common.

## 8. Other Inspection Tasks

The fabricator's QCI shall inspect the fabricated steel to verify compliance with the details shown on the shop drawings.

User Note: This includes such items as the correct application of shop joint details at each connection.

The erector's QCI shall inspect the erected steel frame to verify compliance with the field installed details shown on the erection drawings.

User Note: This includes such items as braces, stiffeners, member locations, and correct application of field joint details at each connection.

The QAI shall be on the premises for inspection during the placement of anchor rods and other embedments supporting structural steel for compliance with the construction documents. As a minimum, the diameter, grade, type and length of the anchor rod or embedded item, and the extent or depth of embedment into the concrete, shall be verified and documented prior to placement of concrete.

The QAI shall inspect the fabricated steel or erected steel frame, as applicable, to verify compliance with the details shown on the construction documents.

User Note: This includes such items as braces, stiffeners, member locations and the correct application of joint details at each connection.

The acceptance or rejection of joint details and the correct application of joint details shall be documented.

TABLE N5.6-1		
Inspection Tasks Prior to Bolting		
Inspection Tasks Prior to Bolting	QC	QA
Manufacturer's certifications available for fastener materials	O	P
Fasteners marked in accordance with ASTM requirements	O	O
Correct fasteners selected for the joint detail (grade, type, bolt length   if threads are to be excluded from shear plane)	O	O
Correct bolting procedure selected for joint detail	O	O
Connecting elements, including the appropriate faying surface condition   and hole preparation, if specified, meet applicable requirements	O	O
Pre-installation verification testing by installation personnel observed and   documented for fastener assemblies and methods used	P	O
Protected storage provided for bolts, nuts, washers and other fastener   components	O	O

## TABLE N5.6-2 Inspection Tasks During Bolting

Inspection Tasks During Bolting	QC	QA
Fastener assemblies placed in all holes and washers and nuts are   positioned as required	O	O
Joint brought to the snug-tight condition prior to the pretensioning   operation	O	O
Fastener component not turned by the wrench prevented from rotating	O	O
Fasteners are pretensioned in accordance with the RCSC Specification,   progressing systematically from the most rigid point toward the   free edges	O	O


TABLE N5.6-3		
Inspection Tasks After Bolting		
Inspection Tasks After Bolting	QC	QA
Document acceptance or rejection of bolted connections	P	P

## N6. APPROVED FABRICATORS AND ERECTORS

QA inspection is permitted to be waived when the work is performed in a fabricating shop or by an erector approved by the AHJ to perform the work without QA.
NDT of welds completed in an approved fabricator's shop is permitted to be performed by that fabricator when approved by the AHJ. When the fabricator performs the NDT, the QA agency shall review the fabricator's NDT reports.

At completion of fabrication, the approved fabricator shall submit a certificate of compliance to the AHJ stating that the materials supplied and work performed by the fabricator are in accordance with the construction documents. At completion of erection, the approved erector shall submit a certificate of compliance to the AHJ stating that the materials supplied and work performed by the erector are in accordance with the construction documents.

## N7. NONCONFORMING MATERIAL AND WORKMANSHIP

Identification and rejection of material or workmanship that is not in conformance with the construction documents is permitted at any time during the progress of the work. However, this provision shall not relieve the owner or the inspector of the obligation for timely, in-sequence inspections. Nonconforming material and workmanship shall be brought to the immediate attention of the fabricator or erector, as applicable.

Nonconforming material or workmanship shall be brought into conformance or made suitable for its intended purpose as determined by the EOR.

Concurrent with the submittal of such reports to the AHJ, EOR or owner, the QA agency shall submit to the fabricator and erector:
(a) Nonconformance reports
(b) Reports of repair, replacement or acceptance of nonconforming items

## APPENDIX 1

## DESIGN BY ADVANCED ANALYSIS

This Appendix permits the use of more advanced methods of structural analysis to directly model system and member imperfections and/or allow for the redistribution of member and connection forces and moments as a result of localized yielding.

The appendix is organized as follows:

### 1.1. General Requirements

1.2. Design by Elastic Analysis
1.3. Design by Inelastic Analysis

### 1.1. GENERAL REQUIREMENTS

The analysis methods permitted in this Appendix shall ensure that equilibrium and compatibility are satisfied for the structure in its deformed shape, including all flexural, shear, axial and torsional deformations, and all other component and connection deformations that contribute to the displacements of the structure.

Design by the methods of this Appendix shall be conducted in accordance with Section B3.1, using load and resistance factor design (LRFD).

### 1.2. DESIGN BY ELASTIC ANALYSIS

## 1. General Stability Requirements

Design by a second-order elastic analysis that includes the direct modeling of system and member imperfections is permitted for all structures subject to the limitations defined in this section. All requirements of Section C1 apply, with additional requirements and exceptions as noted below. All load-dependent effects shall be calculated at a level of loading corresponding to LRFD load combinations.

The influence of torsion shall be considered, including its impact on member deformations and second-order effects.

The provisions of this method apply only to doubly symmetric members, including I-shapes, HSS and box sections, unless evidence is provided that the method is applicable to other member types.

## 2. Calculation of Required Strengths

For design using a second-order elastic analysis that includes the direct modeling of system and member imperfections, the required strengths of components of the structure shall be determined from an analysis conforming to Section C2, with additional requirements and exceptions as noted in the following.

## 2a. General Analysis Requirements

The analysis of the structure shall also conform to the following requirements:
(a) Torsional member deformations shall be considered in the analysis.
(b) The analysis shall consider geometric nonlinearities, including $P-\Delta, P-\delta$ and twisting effects as applicable to the structure. The use of the approximate procedures appearing in Appendix 8 is not permitted.

User Note: A rigorous second-order analysis of the structure is an important requirement for this method of design. Many analysis routines common in design offices are based on a more traditional second-order analysis approach that includes only $P-\Delta$ and $P-\delta$ effects without consideration of additional sec-ond-order effects related to member twist, which can be significant for some members with unbraced lengths near or exceeding $L_{r}$. The type of secondorder analysis defined herein also includes the beneficial effects of additional member torsional strength and stiffness due to warping restraint, which can be conservatively neglected. Refer to the Commentary for additional information and guidance.
(c) In all cases, the analysis shall directly model the effects of initial imperfections due to both points of intersection of members displaced from their nominal locations (system imperfections), and initial out-of-straightness or offsets of members along their length (member imperfections). The magnitude of the initial displacements shall be the maximum amount considered in the design; the pattern of initial displacements shall be such that it provides the greatest destabilizing effect for the load combination being considered. The use of notional loads to represent either type of imperfection is not permitted.

User Note: Initial displacements similar in configuration to both displacements due to loading and anticipated buckling modes should be considered in the modeling of imperfections. The magnitude of the initial points of intersection of members displaced from their nominal locations (system imperfections) should be based on permissible construction tolerances, as specified in the AISC Code of Standard Practice for Steel Buildings and Bridges or other governing requirements, or on actual imperfections, if known. When these displacements are due to erection tolerances, $1 / 500$ is often considered, based on the tolerance of the out-of-plumbness ratio specified in the Code of Standard Practice. For out-of-straightness of members (member imperfections), a $1 / 1000$ out-of-straightness ratio is often considered. Refer to the Commentary for additional guidance.

## 2b. Adjustments to Stiffness

The analysis of the structure to determine the required strengths of components shall use reduced stiffnesses as defined in Section C2.3. Such stiffness reduction, including factors of 0.8 and $\tau_{b}$, shall be applied to all stiffnesses that are considered to contribute to the stability of the structure. The use of notional loads to represent $\tau_{b}$ is not permitted.

User Note: Stiffness reduction should be applied to all member properties including torsional properties ( $G J$ and $E C_{w}$ ) affecting twist of the member cross section. One practical method of including stiffness reduction is to reduce $E$ and $G$ by $0.8 \tau_{b}$, thereby leaving all cross-section geometric properties at their nominal value.

Applying this stiffness reduction to some members and not others can, in some cases, result in artificial distortion of the structure under load and thereby lead to an unintended redistribution of forces. This can be avoided by applying the reduction to all members, including those that do not contribute to the stability of the structure.

## 3. Calculation of Available Strengths

For design using a second-order elastic analysis that includes the direct modeling of system and member imperfections, the available strengths of members and connections shall be calculated in accordance with the provisions of Chapters D through K, as applicable, except as defined below, with no further consideration of overall structure stability.

The nominal compressive strength of members, $P_{n}$, may be taken as the cross-section compressive strength, $F_{y} A_{g}$, or as $F_{y} A_{e}$ for members with slender elements, where $A_{e}$ is defined in Section E7.

### 1.3. DESIGN BY INELASTIC ANALYSIS

User Note: Design by the provisions of this section is independent of the requirements of Section 1.2.

## 1. General Requirements

The design strength of the structural system and its members and connections shall equal or exceed the required strength as determined by the inelastic analysis. The provisions of Section 1.3 do not apply to seismic design.

The inelastic analysis shall take into account: (a) flexural, shear, axial and torsional member deformations, and all other component and connection deformations that contribute to the displacements of the structure; (b) second-order effects (including $P-\Delta, P-\delta$ and twisting effects); (c) geometric imperfections; (d) stiffness reductions due to inelasticity, including partial yielding of the cross section that may be accentuated by the presence of residual stresses; and (e) uncertainty in system, member, and connection strength and stiffness.

Strength limit states detected by an inelastic analysis that incorporates all of the preceding requirements in this Section are not subject to the corresponding provisions of this Specification when a comparable or higher level of reliability is provided by the analysis. Strength limit states not detected by the inelastic analysis shall be evaluated using the corresponding provisions of Chapters D through K.

Connections shall meet the requirements of Section B3.4.
Members and connections subject to inelastic deformations shall be shown to have ductility consistent with the intended behavior of the structural system. Force redistribution due to rupture of a member or connection is not permitted.

Any method that uses inelastic analysis to proportion members and connections to satisfy these general requirements is permitted. A design method based on inelastic analysis that meets the preceding strength requirements, the ductility requirements of Section 1.3.2, and the analysis requirements of Section 1.3.3 satisfies these general requirements.

## 2. Ductility Requirements

Members and connections with elements subject to yielding shall be proportioned such that all inelastic deformation demands are less than or equal to their inelastic deformation capacities. In lieu of explicitly ensuring that the inelastic deformation demands are less than or equal to their inelastic deformation capacities, the following requirements shall be satisfied for steel members subject to plastic hinging.

## 2a. Material

The specified minimum yield stress, $F_{y}$, of members subject to plastic hinging shall not exceed $65 \mathrm{ksi}(450 \mathrm{MPa})$.

## 2b. Cross Section

The cross section of members at plastic hinge locations shall be doubly symmetric with width-to-thickness ratios of their compression elements not exceeding $\lambda_{p d}$, where $\lambda_{p d}$ is equal to $\lambda_{p}$ from Table B4.1b, except as modified below:
(a) For the width-to-thickness ratio, $h / t_{w}$, of webs of I-shaped members, rectangular HSS, and box sections subject to combined flexure and compression
(1) When $P_{u} / \phi_{c} P_{y} \leq 0.125$

$$
\begin{equation*}
\lambda_{p d}=3.76 \sqrt{\frac{E}{F_{y}}}\left(1-\frac{2.75 P_{u}}{\phi_{c} P_{y}}\right) \tag{A-1-1}
\end{equation*}
$$

(2) When $P_{u} / \phi_{c} P_{y}>0.125$

$$
\begin{equation*}
\lambda_{p d}=1.12 \sqrt{\frac{E}{F_{y}}}\left(2.33-\frac{P_{u}}{\phi_{c} P_{y}}\right) \geq 1.49 \sqrt{\frac{E}{F_{y}}} \tag{A-1-2}
\end{equation*}
$$

where
$P_{u}=$ required axial strength in compression, using LRFD load combinations, kips (N)
$P_{y}=F_{y} A_{g}=$ axial yield strength, kips (N)
$h=$ as defined in Section B4.1, in. (mm)
$t_{w}=$ web thickness, in. (mm)
$\phi_{c}=$ resistance factor for compression $=0.90$
(b) For the width-to-thickness ratio, $b / t$, of flanges of rectangular HSS and box sections, and for flange cover plates, and diaphragm plates between lines of fasteners or welds

$$
\begin{equation*}
\lambda_{p d}=0.94 \sqrt{E / F_{y}} \tag{A-1-3}
\end{equation*}
$$

where

$$
\begin{aligned}
& b=\text { as defined in Section B4.1, in. (mm) } \\
& t=\text { as defined in Section B4.1, in. (mm) }
\end{aligned}
$$

(c) For the diameter-to-thickness ratio, $D / t$, of round HSS in flexure

$$
\begin{equation*}
\lambda_{p d}=0.045 E / F_{y} \tag{A-1-4}
\end{equation*}
$$

where
$D=$ outside diameter of round HSS, in. (mm)

## 2c. Unbraced Length

In prismatic member segments that contain plastic hinges, the laterally unbraced length, $L_{b}$, shall not exceed $L_{p d}$, determined as follows. For members subject to flexure only, or to flexure and axial tension, $L_{b}$ shall be taken as the length between points braced against lateral displacement of the compression flange, or between points braced to prevent twist of the cross section. For members subject to flexure and axial compression, $L_{b}$ shall be taken as the length between points braced against both lateral displacement in the minor axis direction and twist of the cross section.
(a) For I-shaped members bent about their major axis:

$$
\begin{equation*}
L_{p d}=\left(0.12-0.076 \frac{M_{1}^{\prime}}{M_{2}}\right) \frac{E}{F_{y}} r_{y} \tag{A-1-5}
\end{equation*}
$$

where

$$
r_{y}=\text { radius of gyration about minor axis, in. (mm) }
$$

(1) When the magnitude of the bending moment at any location within the unbraced length exceeds $M_{2}$

$$
\begin{equation*}
M_{1}^{\prime} / M_{2}=+1 \tag{A-1-6a}
\end{equation*}
$$

Otherwise:
(2) When $M_{\text {mid }} \leq\left(M_{1}+M_{2}\right) / 2$

$$
\begin{equation*}
M_{1}^{\prime}=M_{1} \tag{A-1-6b}
\end{equation*}
$$

(3) When $M_{\text {mid }}>\left(M_{1}+M_{2}\right) / 2$

$$
\begin{equation*}
M_{1}^{\prime}=\left(2 M_{\text {mid }}-M_{2}\right)<M_{2} \tag{A-1-6c}
\end{equation*}
$$

where
$M_{1}=$ smaller moment at end of unbraced length, kip-in. (N-mm)
$M_{2}=$ larger moment at end of unbraced length, kip-in. (N-mm) (shall be taken as positive in all cases)
$M_{\text {mid }}=$ moment at middle of unbraced length, kip-in. (N-mm)
$M_{1}{ }^{\prime}=$ effective moment at end of unbraced length opposite from $M_{2}$, kip-in. ( $\mathrm{N}-\mathrm{mm}$ )

The moments $M_{1}$ and $M_{\text {mid }}$ are individually taken as positive when they cause compression in the same flange as the moment, $M_{2}$, and taken as negative otherwise.
(b) For solid rectangular bars and for rectangular HSS and box sections bent about their major axis

$$
\begin{equation*}
L_{p d}=\left(0.17-0.10 \frac{M_{1}^{\prime}}{M_{2}}\right) \frac{E}{F_{y}} r_{y} \geq 0.10 \frac{E}{F_{y}} r_{y} \tag{A-1-7}
\end{equation*}
$$

For all types of members subject to axial compression and containing plastic hinges, the laterally unbraced lengths about the cross-section major and minor axes shall not exceed $4.71 r_{x} \sqrt{E / F_{y}}$ and $4.71 r_{y} \sqrt{E / F_{y}}$, respectively.
There is no $L_{p d}$ limit for member segments containing plastic hinges in the following cases:
(a) Members with round or square cross sections subject only to flexure or to combined flexure and tension
(b) Members subject only to flexure about their minor axis or combined tension and flexure about their minor axis
(c) Members subject only to tension

## 2d. Axial Force

To ensure ductility in compression members with plastic hinges, the design strength in compression shall not exceed $0.75 F_{y} A_{g}$.

## 3. Analysis Requirements

The structural analysis shall satisfy the general requirements of Section 1.3.1. These requirements are permitted to be satisfied by a second-order inelastic analysis meeting the requirements of this Section.

Exception: For continuous beams not subject to axial compression, a first-order inelastic or plastic analysis is permitted and the requirements of Sections 1.3.3b and 1.3.3c are waived.

User Note: Refer to the Commentary for guidance in conducting a traditional plastic analysis and design in conformance with these provisions.

## 3a. Material Properties and Yield Criteria

The specified minimum yield stress, $F_{y}$, and the stiffness of all steel members and connections shall be reduced by a factor of 0.9 for the analysis, except as stipulated in Section 1.3.3c.

The influence of axial force, major axis bending moment, and minor axis bending moment shall be included in the calculation of the inelastic response.

The plastic strength of the member cross section shall be represented in the analysis either by an elastic-perfectly-plastic yield criterion expressed in terms of the axial force, major axis bending moment, and minor axis bending moment, or by explicit modeling of the material stress-strain response as elastic-perfectly-plastic.

## 3b. Geometric Imperfections

In all cases, the analysis shall directly model the effects of initial imperfections due to both points of intersection of members displaced from their nominal locations (system imperfections), and initial out-of-straightness or offsets of members along their length (member imperfections). The magnitude of the initial displacements shall be the maximum amount considered in the design; the pattern of initial displacements shall be such that it provides the greatest destabilizing effect.

## 3c. Residual Stress and Partial Yielding Effects

The analysis shall include the influence of residual stresses and partial yielding. This shall be done by explicitly modeling these effects in the analysis or by reducing the stiffness of all structural components as specified in Section C2.3.

If the provisions of Section C2.3 are used, then:
(a) The 0.9 stiffness reduction factor specified in Section 1.3.3a shall be replaced by the reduction of the elastic modulus, $E$, by 0.8 as specified in Section C2.3, and
(b) The elastic-perfectly-plastic yield criterion, expressed in terms of the axial force, major axis bending moment, and minor axis bending moment, shall satisfy the cross-section strength limit defined by Equations H1-1a and H1-1b using $P_{c}=0.9 P_{y}, M_{c x}=0.9 M_{p x}$, and $M_{c y}=0.9 M_{p y}$.

## APPENDIX 2 <br> DESIGN FOR PONDING

This appendix provides methods for determining whether a roof system has adequate strength and stiffness to resist ponding. These methods are valid for flat roofs with rectangular bays where the beams are uniformly spaced and the girders are considered to be uniformly loaded.

The appendix is organized as follows:

### 2.1. $\quad$ Simplified Design for Ponding

2.2. Improved Design for Ponding

The members of a roof system shall be considered to have adequate strength and stiffness against ponding by satisfying the requirements of Sections 2.1 or 2.2.

### 2.1. SIMPLIFIED DESIGN FOR PONDING

The roof system shall be considered stable for ponding and no further investigation is needed if both of the following two conditions are met:

$$
\begin{gather*}
C_{p}+0.9 C_{s} \leq 0.25  \tag{A-2-1}\\
I_{d} \geq 25\left(S^{4}\right) 10^{-6}  \tag{A-2-2}\\
I_{d} \geq 3940 S^{4} \tag{A-2-2M}
\end{gather*}
$$

where

$$
\begin{align*}
& C_{p}=\frac{32 L_{s} L_{p}^{4}}{10^{7} I_{p}}  \tag{A-2-3}\\
& C_{p}=\frac{504 L_{s} L_{p}^{4}}{I_{p}}  \tag{A-2-3M}\\
& C_{s}=\frac{32 S L_{s}^{4}}{10^{7} I_{s}}  \tag{A-2-4}\\
& C_{s}=\frac{504 S L_{s}^{4}}{I_{s}} \tag{A-2-4M}
\end{align*}
$$

$I_{d}=$ moment of inertia of the steel deck supported on secondary members, in. ${ }^{4}$ per $\mathrm{ft}\left(\mathrm{mm}^{4}\right.$ per m$)$
$I_{p}=$ moment of inertia of primary members, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$
$I_{S}=$ moment of inertia of secondary members, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$
$L_{p}=$ length of primary members, $\mathrm{ft}(\mathrm{m})$
$L_{s}=$ length of secondary members, $\mathrm{ft}(\mathrm{m})$
$S=$ spacing of secondary members, $\mathrm{ft}(\mathrm{m})$

For trusses and steel joists, the calculation of the moments of inertia, $I_{p}$ and $I_{s}$, shall include the effects of web member strain when used in the above equation.

User Note: When the moment of inertia is calculated using only the truss or joist chord areas, the reduction in the moment of inertia due to web member strain can typically be taken as $15 \%$.

A steel deck shall be considered a secondary member when it is directly supported by the primary members.

### 2.2. IMPROVED DESIGN FOR PONDING

It is permitted to use the provisions in this section when a more accurate evaluation of framing stiffness is needed than that given by Equations A-2-1 and A-2-2.

Define the stress indexes

$$
\begin{align*}
& U_{p}=\left(\frac{0.8 F_{y}-f_{o}}{f_{o}}\right)_{p} \text { for the primary member }  \tag{A-2-5}\\
& U_{s}=\left(\frac{0.8 F_{y}-f_{o}}{f_{o}}\right)_{s} \text { for the secondary member } \tag{A-2-6}
\end{align*}
$$

where
$F_{y}=$ specified minimum yield stress, ksi (MPa)
$f_{o}=$ stress due to impounded water due to either nominal rain or snow loads (exclusive of the ponding contribution), and other loads acting concurrently as specified in Section B2, ksi (MPa)

For roof framing consisting of primary and secondary members, evaluate the combined stiffness as follows. Enter Figure A-2.1 at the level of the computed stress index, $U_{p}$, determined for the primary beam; move horizontally to the computed $C_{s}$ value of the secondary beams and then downward to the abscissa scale. The combined stiffness of the primary and secondary framing is sufficient to prevent ponding if the flexibility coefficient read from this latter scale is more than the value of $C_{p}$ computed for the given primary member; if not, a stiffer primary or secondary beam, or combination of both, is required.

A similar procedure must be followed using Figure A-2.2.
For roof framing consisting of a series of equally spaced wall bearing beams, evaluate the stiffness as follows. The beams are considered as secondary members supported on an infinitely stiff primary member. For this case, enter Figure A-2.2 with the computed stress index, $U_{s}$. The limiting value of $C_{s}$ is determined by the intercept of a horizontal line representing the $U_{s}$ value and the curve for $C_{p}=0$.

Evaluate the stability against ponding of a roof consisting of a metal roof deck of relatively slender depth-to-span ratio, spanning between beams supported directly on columns, as follows. Use Figure A-2.1 or A-2.2, using as $C_{s}$ the flexibility coefficient for a one-foot (one-meter) width of the roof deck ( $S=1.0$ ).


Fig. A-2.1. Limiting flexibility coefficient for the primary systems.


Fig. A-2.2. Limiting flexibility coefficient for the secondary systems.

## APPENDIX 3

## FATIGUE

This appendix applies to members and connections subject to high-cycle loading within the elastic range of stresses of frequency and magnitude sufficient to initiate cracking and progressive failure.

User Note: See AISC Seismic Provisions for Structural Steel Buildings for structures subject to seismic loads.

The appendix is organized as follows:

### 3.1. General Provisions

3.2. Calculation of Maximum Stresses and Stress Ranges
3.3. Plain Material and Welded Joints
3.4. Bolts and Threaded Parts
3.5. Fabrication and Erection Requirements for Fatigue
3.6. Nondestructive Examination Requirements for Fatigue

### 3.1. GENERAL PROVISIONS

The fatigue resistance of members consisting of shapes or plate shall be determined when the number of cycles of application of live load exceeds 20,000 . No evaluation of fatigue resistance of members consisting of HSS in building-type structures subject to code mandated wind loads is required. When the applied cyclic stress range is less than the threshold allowable stress range, $F_{T H}$, no further evaluation of fatigue resistance is required. See Table A-3.1.

The engineer of record shall provide either complete details including weld sizes or shall specify the planned cycle life and the maximum range of moments, shears and reactions for the connections.

The provisions of this Appendix shall apply to stresses calculated on the basis of the applied cyclic load spectrum. The maximum permitted stress due to peak cyclic loads shall be $0.66 F_{y}$. In the case of a stress reversal, the stress range shall be computed as the numerical sum of maximum repeated tensile and compressive stresses or the numerical sum of maximum shearing stresses of opposite direction at the point of probable crack initiation.

The cyclic load resistance determined by the provisions of this Appendix is applicable to structures with suitable corrosion protection or subject only to mildly corrosive atmospheres, such as normal atmospheric conditions.

The cyclic load resistance determined by the provisions of this Appendix is applicable only to structures subject to temperatures not exceeding $300^{\circ} \mathrm{F}\left(150^{\circ} \mathrm{C}\right)$.

### 3.2. CALCULATION OF MAXIMUM STRESSES AND STRESS RANGES

Calculated stresses shall be based upon elastic analysis. Stresses shall not be amplified by stress concentration factors for geometrical discontinuities.

For bolts and threaded rods subject to axial tension, the calculated stresses shall include the effects of prying action, if any. In the case of axial stress combined with bending, the maximum stresses of each kind shall be those determined for concurrent arrangements of the applied load.

For members having symmetric cross sections, the fasteners and welds shall be arranged symmetrically about the axis of the member, or the total stresses including those due to eccentricity shall be included in the calculation of the stress range.

For axially loaded angle members where the center of gravity of the connecting welds lies between the line of the center of gravity of the angle cross section and the center of the connected leg, the effects of eccentricity shall be ignored. If the center of gravity of the connecting welds lies outside this zone, the total stresses, including those due to joint eccentricity, shall be included in the calculation of stress range.

### 3.3. PLAIN MATERIAL AND WELDED JOINTS

In plain material and welded joints, the range of stress due to the applied cyclic loads shall not exceed the allowable stress range computed as follows.
(a) For stress categories $\mathrm{A}, \mathrm{B}, \mathrm{B}^{\prime}, \mathrm{C}, \mathrm{D}, \mathrm{E}$ and $\mathrm{E}^{\prime}$, the allowable stress range, $F_{S R}$, shall be determined by Equation A-3-1 or A-3-1M, as follows:

$$
\begin{align*}
& F_{S R}=1,000\left(\frac{C_{f}}{n_{S R}}\right)^{0.333} \geq F_{T H}  \tag{A-3-1}\\
& F_{S R}=6900\left(\frac{C_{f}}{n_{S R}}\right)^{0.333} \geq F_{T H} \tag{A-3-1M}
\end{align*}
$$

where
$C_{f}=$ constant from Table A-3.1 for the fatigue category
$F_{S R}=$ allowable stress range, ksi (MPa)
$F_{T H}=$ threshold allowable stress range, maximum stress range for indefinite design life from Table A-3.1, ksi (MPa)
$n_{S R}=$ number of stress range fluctuations in design life
(b) For stress category F, the allowable stress range, $F_{S R}$, shall be determined by Equation A-3-2 or A-3-2M as follows:

$$
\begin{gather*}
F_{S R}=100\left(\frac{1.5}{n_{S R}}\right)^{0.167} \geq 8 \mathrm{ksi}  \tag{A-3-2}\\
F_{S R}=690\left(\frac{1.5}{n_{S R}}\right)^{0.167} \geq 55 \mathrm{MPa} \tag{A-3-2M}
\end{gather*}
$$

(c) For tension-loaded plate elements connected at their end by cruciform, T or corner details with partial-joint-penetration (PJP) groove welds transverse to the direction of stress, with or without reinforcing or contouring fillet welds, or if joined with only fillet welds, the allowable stress range on the cross section of the tension-loaded plate element shall be determined as the lesser of the following:
(1) Based upon crack initiation from the toe of the weld on the tension-loaded plate element (i.e., when $R_{P J P}=1.0$ ), the allowable stress range, $F_{S R}$, shall be determined by Equation A-3-1 or A-3-1M for stress category C.
(2) Based upon crack initiation from the root of the weld, the allowable stress range, $F_{S R}$, on the tension loaded plate element using transverse PJP groove welds, with or without reinforcing or contouring fillet welds, the allowable stress range on the cross section at the root of the weld shall be determined by Equation A-3-3 or A-3-3M, for stress category $\mathrm{C}^{\prime}$ as follows:

$$
\begin{align*}
& F_{S R}=1,000 R_{P J P}\left(\frac{4.4}{n_{S R}}\right)^{0.333}  \tag{A-3-3}\\
& F_{S R}=6900 R_{P J P}\left(\frac{4.4}{n_{S R}}\right)^{0.333} \tag{A-3-3M}
\end{align*}
$$

where
$R_{P J P}$, the reduction factor for reinforced or nonreinforced transverse PJP groove welds, is determined as follows:

$$
\begin{align*}
& R_{P J P}=\frac{0.65-0.59\left(\frac{2 a}{t_{p}}\right)+0.72\left(\frac{w}{t_{p}}\right)}{t_{p}^{0.167}} \leq 1.0  \tag{A-3-4}\\
& R_{P J P}=\frac{1.12-1.01\left(\frac{2 a}{t_{p}}\right)+1.24\left(\frac{w}{t_{p}}\right)}{t_{p}^{0.167}} \leq 1.0 \tag{A-3-4M}
\end{align*}
$$

$2 a=$ length of the nonwelded root face in the direction of the thickness of the tension-loaded plate, in. (mm)
$t_{p}=$ thickness of tension loaded plate, in. (mm)
$w=$ leg size of the reinforcing or contouring fillet, if any, in the direction of the thickness of the tension-loaded plate, in. (mm)

If $R_{P J P}=1.0$, the stress range will be limited by the weld toe and category C will control.
(3) Based upon crack initiation from the roots of a pair of transverse fillet welds on opposite sides of the tension loaded plate element, the allowable stress range, $F_{S R}$, on the cross section at the root of the welds shall be determined by Equation A-3-5 or A-3-5M, for stress category $\mathrm{C}^{\prime \prime}$ as follows:

$$
\begin{align*}
& F_{S R}=1,000 R_{F I L}\left(\frac{4.4}{n_{S R}}\right)^{0.333}  \tag{A-3-5}\\
& F_{S R}=6900 R_{F I L}\left(\frac{4.4}{n_{S R}}\right)^{0.333} \tag{A-3-5M}
\end{align*}
$$

where
$R_{F I L}=$ reduction factor for joints using a pair of transverse fillet welds only

$$
\begin{align*}
& =\frac{0.06+0.72\left(w / t_{p}\right)}{t_{p}^{0.167}} \leq 1.0  \tag{A-3-6}\\
& =\frac{0.103+1.24\left(w / t_{p}\right)}{t_{p}^{0.167}} \leq 1.0 \tag{A-3-6M}
\end{align*}
$$

If $R_{F I L}=1.0$, the stress range will be limited by the weld toe and category C will control.

User Note: Stress categories $\mathrm{C}^{\prime}$ and $\mathrm{C}^{\prime \prime}$ are cases where the fatigue crack initiates in the root of the weld. These cases do not have a fatigue threshold and cannot be designed for an infinite life. Infinite life can be approximated by use of a very high cycle life such as $2 \times 10^{8}$. Alternatively, if the size of the weld is increased such that $R_{F I L}$ or $R_{P J P}$ is equal to 1.0 , then the base metal controls, resulting in stress category C, where there is a fatigue threshold and the crack initiates at the toe of the weld.

### 3.4. BOLTS AND THREADED PARTS

In bolts and threaded parts, the range of stress of the applied cyclic load shall not exceed the allowable stress range computed as follows.
(a) For mechanically fastened connections loaded in shear, the maximum range of stress in the connected material of the applied cyclic load shall not exceed the allowable stress range computed using Equation A-3-1 or A-3-1M, where $C_{f}$ and $F_{T H}$ are taken from Section 2 of Table A-3.1.
(b) For high-strength bolts, common bolts, threaded anchor rods, and hanger rods with cut, ground or rolled threads, the maximum range of tensile stress on the net tensile area from applied axial load and moment plus load due to prying action shall not exceed the allowable stress range computed using Equation A-3-1 or A-3-1M, where $C_{f}$ and $F_{T H}$ are taken from Case 8.5 (stress category G). The net area in tension, $A_{t}$, is given by Equation A-3-7 or A-3-7M.

$$
\begin{align*}
& A_{t}=\frac{\pi}{4}\left(d_{b}-\frac{0.9743}{n}\right)^{2}  \tag{A-3-7}\\
& A_{t}=\frac{\pi}{4}\left(d_{b}-0.9382 p\right)^{2} \tag{A-3-7M}
\end{align*}
$$

where
$d_{b}=$ nominal diameter (body or shank diameter), in. (mm)
$n=$ threads per in. (per mm)
$p=$ pitch, in. per thread (mm per thread)
For joints in which the material within the grip is not limited to steel or joints that are not tensioned to the requirements of Table J 3.1 or J 3.1 M , all axial load and moment applied to the joint plus effects of any prying action shall be assumed to be carried exclusively by the bolts or rods.

For joints in which the material within the grip is limited to steel and which are pretensioned to the requirements of Table J3.1 or J3.1M, an analysis of the relative stiffness of the connected parts and bolts is permitted to be used to determine the tensile stress range in the pretensioned bolts due to the total applied cyclic load and moment, plus effects of any prying action. Alternatively, the stress range in the bolts shall be assumed to be equal to the stress on the net tensile area due to $20 \%$ of the absolute value of the applied cyclic axial load and moment from dead, live and other loads.

### 3.5. FABRICATION AND ERECTION REQUIREMENTS FOR FATIGUE

Longitudinal steel backing, if used, shall be continuous. If splicing of steel backing is required for long joints, the splice shall be made with a complete-joint-penetration (CJP) groove weld, ground flush to permit a tight fit. If fillet welds are used to attach left-in-place longitudinal backing, they shall be continuous.

In transverse CJP groove welded T- and corner-joints, a reinforcing fillet weld, not less than $1 / 4 \mathrm{in}$. ( 6 mm ) in size, shall be added at reentrant corners.

The surface roughness of thermally cut edges subject to cyclic stress ranges, that include tension, shall not exceed $1,000 \mu \mathrm{in}$. $(25 \mu \mathrm{~m})$, where Surface Texture, Surface Roughness, Waviness, and Lay (ASME B46.1) is the reference standard.

User Note: AWS C4.1 Sample 3 may be used to evaluate compliance with this requirement.

Reentrant corners at cuts, copes and weld access holes shall form a radius not less than the prescribed radius in Table A-3.1 by predrilling or subpunching and reaming a hole, or by thermal cutting to form the radius of the cut.

For transverse butt joints in regions of tensile stress, weld tabs shall be used to provide for cascading the weld termination outside the finished joint. End dams shall not be used. Weld tabs shall be removed and the end of the weld finished flush with the edge of the member.

Fillet welds subject to cyclic loading normal to the outstanding legs of angles or on the outer edges of end plates shall have end returns around the corner for a distance not less than two times the weld size; the end return distance shall not exceed four times the weld size.

### 3.6. NONDESTRUCTIVE EXAMINATION REQUIREMENTS FOR FATIGUE

In the case of CJP groove welds, the maximum allowable stress range calculated by Equation A-3-1 or A-3-1M applies only to welds that have been ultrasonically or radiographically tested and meet the acceptance requirements of Structural Welding Code-Steel (AWS D1.1/D1.1M) clause 6.12.2 or clause 6.13.2.

## TABLE A-3.1 <br> Fatigue Design Parameters

Description	Stress Category	$\begin{aligned} & \text { Constant } \\ & \boldsymbol{C}_{\boldsymbol{f}} \end{aligned}$	```Threshold FTH, ksi (MPa)```	Potential Crack Initiation Point
SECTION 1-PLAIN MATERIAL AWAY FROM ANY WELDING				
1.1 Base metal, except noncoated weathering steel, with as-rolled or cleaned surfaces; flame-cut edges with surface roughness value of $1,000 \mu \mathrm{in}$. $(25 \mu \mathrm{~m})$ or less, but without reentrant corners	A	25	$\begin{gathered} 24 \\ (165) \end{gathered}$	Away from all welds or structural connections
1.2 Noncoated weathering steel base metal with as-rolled or cleaned surfaces; flame-cut edges with surface roughness value of $1,000 \mu \mathrm{in}$. ( $25 \mu \mathrm{~m}$ ) or less, but without reentrant corners	B	12	$\begin{gathered} 16 \\ (110) \end{gathered}$	Away from all welds or structural connections
1.3 Member with reentrant corners at copes, cuts, block-outs or other geometrical discontinuities, except weld access holes   $R \geq 1 \mathrm{in}$. (25 mm), with radius, $R$, formed by predrilling, subpunching and reaming or thermally cut and ground to a bright metal surface   $R \geq 3 / 8 \mathrm{in}$. ( 10 mm ) and the radius, $R$, need not be ground to a bright metal surface	$C$ $E^{\prime}$	4.4 $0.39$	$\begin{gathered} 10 \\ (69) \\ \\ 2.6 \\ (18) \end{gathered}$	At any external edge or at hole perimeter
1.4 Rolled cross sections with weld access holes made to requirements of Section J1.6   Access hole $R \geq 1 \mathrm{in}$. ( 25 mm ) with radius, $R$, formed by predrilling, subpunching and reaming or thermally cut and ground to a bright metal surface   Access hole $R \geq 3 / 8 \mathrm{in}$. $(10 \mathrm{~mm})$ and the radius, $R$, need not be ground to a bright metal surface	$C$ $E^{\prime}$	4.4 $0.39$	10 (69)   2.6   (18)	At reentrant corner of weld access hole
1.5 Members with drilled or reamed holes   Holes containing pretensioned bolts   Open holes without bolts	C D	$4.4$ $2.2$	$\begin{gathered} 10 \\ (69) \\ 7 \\ (48) \end{gathered}$	In net section originating at side of the hole

Fatigue Design Parameters

## TABLE A-3.1 (continued) Fatigue Design Parameters

| Description | Stress <br> Category | Constant <br> $C_{f}$ | Threshold <br> $\boldsymbol{F}_{\text {TH }}$, <br> ksi <br> (MPa) | Potential Crack <br> Initiation Point |
| :--- | :---: | :---: | :---: | :---: | :--- |
| SECTION 2-CONNECTED MATERIAL IN MECHANICALLY FASTENED JOINTS |  |  |  |  |
| 2.1 Gross area of base metal in lap <br> joints connected by high-strength bolts <br> in joints satisfying all requirements for <br> slip-critical connections | B | 12 | 16 <br> $(110)$ | Through gross <br> section near hole |
| 2.2 Base metal at net section of high- <br> strength bolted joints, designed on the <br> basis of bearing resistance, but fabri- <br> cated and installed to all requirements <br> for slip-critical connections | B | 12 | 16 <br> $(110)$ | In net section <br> originating at side <br> of hole |
| 2.3 Base metal at the net section of <br> riveted joints | C | 4.4 | 10 <br> $(69)$ | In net section <br> originating at side <br> of hole |

## TABLE A-3.1 (continued) Fatigue Design Parameters

SECTION 2—CONNECTED MATERIAL IN MECHANICALLY FASTENED JOINTS

## TABLE A-3.1 (continued) Fatigue Design Parameters

Description	Stress Category	$\begin{gathered} \text { Constant } \\ C_{f} \end{gathered}$	$\begin{aligned} & \text { Threshold } \\ & F_{T H}, \\ & \text { ksi } \\ & (\mathrm{MPa}) \end{aligned}$	Potential Crack Initiation Point
SECTION 3-WELDED JOINTS JOINING COMPONENTS OF BUILT-UP MEMBERS				
3.1 Base metal and weld metal in members without attachments built up of plates or shapes connected by continuous longitudinal CJP groove welds, back gouged and welded from second side, or by continuous fillet welds	B	12	$\begin{gathered} 16 \\ (110) \end{gathered}$	From surface or internal discontinuities in weld
3.2 Base metal and weld metal in members without attachments built up of plates or shapes, connected by continuous longitudinal CJP groove welds with left-in-place continuous steel backing, or by continuous PJP groove welds	$B^{\prime}$	6.1	$\begin{gathered} 12 \\ (83) \end{gathered}$	From surface or internal discontinuities in weld
3.3 Base metal at the ends of longitudinal welds that terminate at weld access holes in connected built-up members, as well as weld toes of fillet welds that wrap around ends of weld access holes   Access hole $R \geq 1 \mathrm{in}$. ( 25 mm ) with radius, $R$, formed by predrilling, subpunching and reaming, or thermally cut and ground to bright metal surface   Access hole $R \geq^{3} / 8$ in. ( 10 mm ) and the radius, $R$, need not be ground to a bright metal surface	D	$2.2$ $0.39$	7 (48)   2.6   (18)	From the weld termination into the web or flange
3.4 Base metal at ends of longitudinal intermittent fillet weld segments	E	1.1	$\begin{gathered} 4.5 \\ (31) \end{gathered}$	In connected material at start and stop locations of any weld
3.5 Base metal at ends of partial length welded coverplates narrower than the flange having square or tapered ends, with or without welds across the ends $\begin{aligned} & t_{f} \leq 0.8 \mathrm{in} .(20 \mathrm{~mm}) \\ & t_{f}>0.8 \mathrm{in} .(20 \mathrm{~mm}) \end{aligned}$   where   $t_{f}=$ thickness of member flange, in. (mm)	E   $E^{\prime}$	$\begin{gathered} 1.1 \\ 0.39 \end{gathered}$	$\begin{gathered} 4.5 \\ (31) \\ 2.6 \\ (18) \end{gathered}$	In flange at toe of end weld (if present) or in flange at termination of longitudinal weld

## TABLE A-3.1 (continued) Fatigue Design Parameters

## Illustrative Typical Examples

SECTION 3-WELDED JOINTS JOINING COMPONENTS OF BUILT-UP MEMBERS
3.1

3.2

(a)

(b)

(c)

(d)
3.3

3.5


(c)

## TABLE A-3.1 (continued) Fatigue Design Parameters

Description	Stress Category	$\begin{aligned} & \text { Constant } \\ & \qquad C_{f} \end{aligned}$	$\begin{gathered} \text { Threshold } \\ F_{T H}, \\ \text { ksi } \\ (\mathbf{M P a}) \end{gathered}$	Potential Crack Initiation Point
SECTION 3-WELDED JOINTS JOINING COMPONENTS OF BUILT-UP MEMBERS (cont'd)				
3.6 Base metal at ends of partial length welded coverplates or other attachments wider than the flange with welds across the ends $\begin{aligned} & t_{f} \leq 0.8 \mathrm{in} .(20 \mathrm{~mm}) \\ & t_{f}>0.8 \mathrm{in} .(20 \mathrm{~mm}) \end{aligned}$	$E$ $E^{\prime}$	$\begin{gathered} 1.1 \\ 0.39 \end{gathered}$	$\begin{gathered} 4.5 \\ (31) \\ 2.6 \\ (18) \end{gathered}$	In flange at toe of end weld or in flange at termination of longitudinal weld or in edge of flange
3.7 Base metal at ends of partial length welded coverplates wider than the flange without welds across the ends $t_{f} \leq 0.8 \mathrm{in} .(20 \mathrm{~mm})$   $t_{f}>0.8 \mathrm{in} .(20 \mathrm{~mm})$ is not permitted	$E^{\prime}$   None	$0.39$	$\begin{gathered} 2.6 \\ (18) \end{gathered}$	In edge of flange at end of coverplate weld
SECTION 4-LONGITUDINAL FILLET WELDED END CONNECTIONS				
4.1 Base metal at junction of axially loaded members with longitudinally welded end connections; welds are on each side of the axis of the member to balance weld stresses $\begin{aligned} & t_{f} \leq 0.5 \mathrm{in} .(13 \mathrm{~mm}) \\ & t_{f}>0.5 \mathrm{in} .(13 \mathrm{~mm}) \end{aligned}$   where   $t=$ connected member thickness, as shown in Case 4.1 figure, in. (mm)	$E$ $E^{\prime}$	$\begin{gathered} 1.1 \\ 0.39 \end{gathered}$	$\begin{gathered} 4.5 \\ (31) \\ 2.6 \\ (18) \end{gathered}$	Initiating from end of any weld termination extending into the base metal

## TABLE A-3.1 (continued) Fatigue Design Parameters

## Illustrative Typical Examples

SECTION 3-WELDED JOINTS JOINING COMPONENTS OF BUILT-UP MEMBERS (cont’d)
3.6


## TABLE A-3.1 (continued) Fatigue Design Parameters

Description	Stress Category	$\begin{aligned} & \text { Constant } \\ & \qquad C_{f} \end{aligned}$	$\begin{gathered} \text { Threshold } \\ F_{T H}, \\ \text { ksi } \\ (\mathbf{M P a}) \end{gathered}$	Potential Crack Initiation Point
SECTION 5-WELDED JOINTS TRANSVERSE TO DIRECTION OF STRESS				
5.1 Weld metal and base metal in or adjacent to CJP groove welded splices in plate, rolled shapes, or built-up cross sections with no change in cross section with welds ground essentially parallel to the direction of stress and inspected in accordance with Section 3.6	B	12	$\begin{gathered} 16 \\ (110) \end{gathered}$	From internal discontinuities in weld metal or along the fusion boundary
5.2 Weld metal and base metal in or adjacent to CJP groove welded splices with welds ground essentially parallel to the direction of stress at transitions in thickness or width made on a slope no greater than $1: 2^{1 / 2}$ and inspected in accordance with Section 3.6 $F_{y}<90 \mathrm{ksi}(620 \mathrm{MPa})$ $F_{y} \geq 90 \text { ksi (620 MPa) }$	$B$ $B^{\prime}$	$12$ $6.1$	$\begin{gathered} 16 \\ (110) \\ 12 \\ (83) \end{gathered}$	From internal discontinuities in metal or along the fusion boundary or at start of transition when $F_{y} \geq 90 \mathrm{ksi}$ ( 620 MPa )
5.3 Base metal and weld metal in or adjacent to CJP groove welded splices with welds ground essentially parallel to the direction of stress at transitions in width made on a radius, $R$, of not less than 24 in. $(600 \mathrm{~mm})$ with the point of tangency at the end of the groove weld and inspected in accordance with Section 3.6.	B	12	$\begin{gathered} 16 \\ (110) \end{gathered}$	From internal discontinuities in weld metal or along the fusion boundary
5.4 Weld metal and base metal in or adjacent to CJP groove welds in T- or cor-ner-joints or splices, without transitions in thickness or with transition in thickness having slopes no greater than $1: 2^{1} / 2$, when weld reinforcement is not removed, and is inspected in accordance with Section 3.6	C	4.4	$\begin{gathered} 10 \\ (69) \end{gathered}$	From weld extending into base metal or into weld metal

Fatigue Design Parameters

## TABLE A-3.1 (continued) Fatigue Design Parameters

Description	Stress Category	$\begin{aligned} & \text { Constant } \\ & C_{f} \end{aligned}$	```Threshold FTH, ksi (MPa)```	Potential Crack Initiation Point
SECTION 5-WELDED JOINTS TRANSVERSE TO DIRECTION OF STRESS				
5.5 Base metal and weld metal in or adjacent to transverse CJP groove welded butt splices with backing left in place   Tack welds inside groove   Tack welds outside the groove and not closer than $1 / 2 \mathrm{in}$. $(13 \mathrm{~mm})$ to the edge of base metal	D   E	$2.2$ $1.1$	7 $(48)$   4.5   (31)	From the toe of the groove weld or the toe of the weld attaching backing when applicable
5.6 Base metal and weld metal at transverse end connections of tension-loaded plate elements using PJP groove welds in butt, T- or corner-joints, with reinforcing or contouring fillets; $F_{S R}$ shall be the smaller of the toe crack or root crack allowable stress range   Crack initiating from weld toe   Crack initiating from weld root	C $C^{\prime}$	See Eq.   A-3-3 or   A-3-3M	10   (69)   None	Initiating from weld toe extending into base metal   Initiating at weld root extending into and through weld
5.7 Base metal and weld metal at transverse end connections of tension-loaded plate elements using a pair of fillet welds on opposite sides of the plate; $F_{S R}$ shall be the smaller of the weld toe crack or weld root crack allowable stress range   Crack initiating from weld toe   Crack initiating from weld root	C $C^{\prime \prime}$	See Eq.   A-3-5 or   A-3-5M	10   (69)   None	Initiating from weld toe extending into base metal   Initiating at weld root extending into and through weld
5.8 Base metal of tension-loaded plate elements, and on built-up shapes and rolled beam webs or flanges at toe of transverse fillet welds adjacent to welded transverse stiffeners	C	4.4	$\begin{gathered} 10 \\ (69) \end{gathered}$	From geometrical discontinuity at toe of fillet extending into base metal

## TABLE A-3.1 (continued) Fatigue Design Parameters



## TABLE A-3.1 (continued) Fatigue Design Parameters

Description	Stress Category	$\begin{gathered} \text { Constant } \\ C_{f} \end{gathered}$		Potential Crack Initiation Point
SECTION 6-BASE METAL AT WELDED TRANSVERSE MEMBER CONNECTIONS				
6.1 Base metal of equal or unequal thickness at details attached by CJP groove welds subject to longitudinal loading only when the detail embodies a transition radius, $R$, with the weld termination ground smooth and inspected in accordance with Section 3.6 $\begin{aligned} & R \geq 24 \mathrm{in} .(600 \mathrm{~mm}) \\ & 6 \mathrm{in} . \leq R<24 \mathrm{in} . \\ & (150 \mathrm{~mm} \leq R<600 \mathrm{~mm}) \\ & 2 \mathrm{in} . \leq R<6 \mathrm{in} . \\ & (50 \mathrm{~mm} \leq R<150 \mathrm{~mm}) \\ & R<2 \mathrm{in} .(50 \mathrm{~mm}) \end{aligned}$	B C D E	12   4.4   2.2   1.1	$\begin{gathered} 16 \\ (110) \\ 10 \\ (69) \\ 7 \\ (48) \\ 4.5 \\ (31) \\ \hline \end{gathered}$	Near point of tangency of radius at edge of member
6.2 Base metal at details of equal thickness attached by CJP groove welds, subject to transverse loading, with or without longitudinal loading, when the detail embodies a transition radius, $R$, with the weld termination ground smooth and inspected in accordance with Section 3.6   (a) When weld reinforcement is removed $\begin{aligned} & R \geq 24 \mathrm{in} .(600 \mathrm{~mm}) \\ & 6 \mathrm{in} . \leq R<24 \mathrm{in} . \\ & (150 \mathrm{~mm} \leq R<600 \mathrm{~mm}) \\ & 2 \mathrm{in} . \leq R<6 \mathrm{in} . \\ & (50 \mathrm{~mm} \leq R<150 \mathrm{~mm}) \\ & R<2 \mathrm{in} .(50 \mathrm{~mm}) \end{aligned}$   (b) When weld reinforcement is not removed $R \geq 6 \text { in. }(150 \mathrm{~mm})$   2 in. $\leq R<6$ in.   ( $50 \mathrm{~mm} \leq R<150 \mathrm{~mm}$ )   $R<2$ in. $(50 \mathrm{~mm})$	B C D E C D E	12   4.4   2.2   1.1   4.4   2.2   1.1	$\begin{gathered} 16 \\ (110) \\ 10 \\ (69) \\ 7 \\ (48) \\ 4.5 \\ (31) \\ \\ \\ 10 \\ (69) \\ 7 \\ (48) \\ 4.5 \\ (31) \end{gathered}$	Near point of tangency of radius or in the weld or at fusion boundary or member or attachment   At toe of the weld either along edge of member or the attachment

## TABLE A-3.1 (continued) Fatigue Design Parameters

## Illustrative Typical Examples

## SECTION 6-BASE METAL AT WELDED TRANSVERSE MEMBER CONNECTIONS

6.1

(a)

(b)

(c)
6.2

(a)

(b)
$R$

## TABLE A-3.1 (continued) Fatigue Design Parameters

Description	Stress Category	$\begin{aligned} & \text { Constant } \\ & \qquad C_{f} \end{aligned}$	$\begin{gathered} \text { Threshold } \\ F_{T H}, \\ \text { ksi } \\ (\mathbf{M P a}) \end{gathered}$	Potential Crack Initiation Point
SECTION 6-BASE METAL AT WELDED TRANSVERSE MEMBER CONNECTIONS (cont'd)				
6.3 Base metal at details of unequal thickness attached by CJP groove welds, subject to transverse loading, with or without longitudinal loading, when the detail embodies a transition radius, $R$, with the weld termination ground smooth and in accordance with Section 3.6   (a) When weld reinforcement is removed $R>2$ in. $(50 \mathrm{~mm})$   $R \leq 2$ in. $(50 \mathrm{~mm})$   (b) When reinforcement is not removed Any radius	D   E   E	2.2   1.1   1.1	7   (48)   4.5   (31)   4.5   (31)	At toe of weld along edge of thinner material In weld termination in small radius   At toe of weld along edge of thinner material
6.4 Base metal of equal or unequal thickness, subject to longitudinal stress at transverse members, with or without transverse stress, attached by fillet or PJP groove welds parallel to direction of stress when the detail embodies a transition radius, $R$, with weld termination ground smooth $R>2 \mathrm{in} .(50 \mathrm{~mm})$ $R \leq 2 \mathrm{in} .(50 \mathrm{~mm})$	D E	$\begin{aligned} & 2.2 \\ & 1.1 \end{aligned}$	$\begin{gathered} 7 \\ (48) \\ 4.5 \\ (31) \end{gathered}$	Initiating in base metal at the weld termination or at the toe of the weld extending into the base metal



## TABLE A-3.1 (continued) Fatigue Design Parameters

Description	Stress Category	$\begin{aligned} & \text { Constant } \\ & C_{f} \end{aligned}$	$\begin{aligned} & \text { Threshold } \\ & F_{T H}, \\ & \text { ksi } \\ & \text { (MPa) } \end{aligned}$	Potential Crack Initiation Point
SECTION 7-BASE METAL AT SHORT ATTACHMENTS ${ }^{[a]}$				
7.1 Base metal subject to longitudinal loading at details with welds parallel or transverse to the direction of stress, with or without transverse load on the detail, where the detail embodies no transition radius, $R$, and with detail length, $a$, and thickness of the attachment, $b$ :   $a<2$ in. (50 mm) for any thickness, $b$   2 in . $(50 \mathrm{~mm}) \leq a \leq$ lesser of $12 b$ or $4 \mathrm{in} .(100 \mathrm{~mm})$   $a>$ lesser of $12 b$ or 4 in . ( 100 mm ) when $b \leq 0.8 \mathrm{in}$. $(20 \mathrm{~mm}$ ) $a>4 \mathrm{in} .(100 \mathrm{~mm})$   when $b>0.8 \mathrm{in}$. $(20 \mathrm{~mm}$ )	C   D   E   $E^{\prime}$	4.4   2.2   1.1 $0.39$	$\begin{gathered} 10 \\ (69) \\ 7 \\ (48) \\ 4.5 \\ (31) \\ 2.6 \\ (18) \end{gathered}$	Initiating in base metal at the weld termination or at the toe of the weld extending into the base metal
7.2 Base metal subject to longitudinal stress at details attached by fillet or PJP groove welds, with or without transverse load on detail, when the detail embodies a transition radius, $R$, with weld termination ground smooth: $R>2 \mathrm{in.}(50 \mathrm{~mm})$ $R \leq 2 \mathrm{in} .(50 \mathrm{~mm})$	D E	2.2 1.1	$\begin{gathered} 7 \\ (48) \\ 4.5 \\ (31) \end{gathered}$	Initiating in base metal at the weld termination, extending into the base metal

[a] "Attachment," as used herein, is defined as any steel detail welded to a member that causes a deviation in the stress flow in the member and, thus, reduces the fatigue resistance. The reduction is due to the presence of the attachment, not due to the loading on the attachment.


## TABLE A-3.1 (continued) Fatigue Design Parameters

Description	Stress Category	$\begin{aligned} & \text { Constant } \\ & C_{f} \end{aligned}$	$\begin{gathered} \text { Threshold } \\ F_{T H}, \\ \text { ksi } \\ \text { (MPa) } \end{gathered}$	Potential Crack Initiation Point
SECTION 8-MISCELLANEOUS				
8.1 Base metal at steel headed stud anchors attached by fillet weld or automatic stud welding	C	4.4	$\begin{gathered} 10 \\ (69) \end{gathered}$	At toe of weld in base metal
8.2 Shear on throat of any fillet weld, continuous or intermittent, longitudinal or transverse	F	See Eq.   A-3-2 or   A-3-2M	See Eq. A-3-2 or A-3-2M	Initiating at the root of the fillet weld, extending into the weld
8.3 Base metal at plug or slot welds	E	1.1	$\begin{gathered} 4.5 \\ (31) \end{gathered}$	Initiating in the base metal at the end of the plug or slot weld, extending into the base metal
8.4 Shear on plug or slot welds	F	See Eq.   A-3-2 or   A-3-2M	See Eq. A-3-2 or A-3-2M	Initiating in the weld at the faying surface, extending into the weld
8.5 High-strength bolts, common bolts, threaded anchor rods, and hanger rods, whether pretensioned in accordance with Table J 3.1 or J 3.1 M , or snug-tightened with cut, ground or rolled threads; stress range on tensile stress area due to applied cyclic load plus prying action, when applicable	G	0.39	$\begin{gathered} 7 \\ (48) \end{gathered}$	Initiating at the root of the threads, extending into the fastener



## APPENDIX 4

## STRUCTURAL DESIGN FOR FIRE CONDITIONS

This appendix provides criteria for the design and evaluation of structural steel components, systems and frames for fire conditions. These criteria provide for the determination of the heat input, thermal expansion and degradation in mechanical properties of materials at elevated temperatures that cause progressive decrease in strength and stiffness of structural components and systems at elevated temperatures.

User Note: Throughout this chapter, the term "elevated temperatures" refers to temperatures due to unintended fire exposure only.

The appendix is organized as follows:
4.1. General Provisions
4.2. Structural Design for Fire Conditions by Analysis
4.3. Design by Qualification Testing

### 4.1. GENERAL PROVISIONS

The methods contained in this appendix provide regulatory evidence of compliance in accordance with the design applications outlined in this section.

## 1. Performance Objective

Structural components, members, and building frame systems shall be designed so as to maintain their load-bearing function during the design-basis fire and to satisfy other performance requirements specified for the building occupancy.

Deformation criteria shall be applied where the means of providing structural fire resistance, or the design criteria for fire barriers, requires evaluation of the deformation of the load-carrying structure.

Within the compartment of fire origin, forces and deformations from the design-basis fire shall not cause a breach of horizontal or vertical compartmentation.

## 2. Design by Engineering Analysis

The analysis methods in Section 4.2 are permitted to be used to document the anticipated performance of steel framing when subjected to design-basis fire scenarios. Methods in Section 4.2 provide evidence of compliance with performance objectives established in Section 4.1.1.

The analysis methods in Section 4.2 are permitted to be used to demonstrate an equivalency for an alternative material or method, as permitted by the applicable building code ( ABC ).

Structural design for fire conditions using Appendix 4.2 shall be performed using the load and resistance factor design method in accordance with the provisions of Section B3.1 (LRFD).

## 3. Design by Qualification Testing

The qualification testing methods in Section 4.3 are permitted to be used to document the fire resistance of steel framing subject to the standardized fire testing protocols required by the ABC .

## 4. Load Combinations and Required Strength

In the absence of ABC provisions for design under fire exposures, the required strength of the structure and its elements shall be determined from the gravity load combination as follows:

$$
\begin{equation*}
(0.9 \text { or } 1.2) D+A_{T}+0.5 L+0.2 S \tag{A-4-1}
\end{equation*}
$$

where
$A_{T}=$ nominal forces and deformations due to the design-basis fire defined in Section 4.2.1
$D=$ nominal dead load
$L=$ nominal occupancy live load
$S=$ nominal snow load
User Note: ASCE/SEI 7 Section 2.5 contains this load combination for extraordinary events, which includes fire.

A notional load, $N_{i}=0.002 Y_{i}$, as defined in Section C2.2b, where $N_{i}=$ notional load applied at framing level $i$ and $Y_{i}=$ gravity load from Equation A-4-1 acting on framing level $i$, shall be applied in combination with the loads stipulated in Equation A-4-1. Unless otherwise stipulated by the applicable building code, $D, L$ and $S$ shall be the nominal loads specified in ASCE/SEI 7.

User Note: The effect of initial imperfections may be taken into account by direct modeling of imperfections in the analysis. In typical building structures, when evaluating frame stability, the important imperfection is the out-of-plumbness of columns.

### 4.2. STRUCTURAL DESIGN FOR FIRE CONDITIONS BY ANALYSIS

It is permitted to design structural members, components and building frames for elevated temperatures in accordance with the requirements of this section.

## 1. Design-Basis Fire

A design-basis fire shall be identified to describe the heating conditions for the structure. These heating conditions shall relate to the fuel commodities and compartment characteristics present in the assumed fire area. The fuel load density based on the
occupancy of the space shall be considered when determining the total fuel load. Heating conditions shall be specified either in terms of a heat flux or temperature of the upper gas layer created by the fire. The variation of the heating conditions with time shall be determined for the duration of the fire.

The analysis methods in Section 4.2 shall be used in accordance with the provisions for alternative materials, designs and methods as permitted by the ABC. When the analysis methods in Section 4.2 are used to demonstrate equivalency to hourly ratings based on qualification testing in Section 4.3, the design-basis fire shall be permitted to be determined in accordance with ASTM E119.

## 1a. Localized Fire

Where the heat release rate from the fire is insufficient to cause flashover, a localized fire exposure shall be assumed. In such cases, the fuel composition, arrangement of the fuel array, and floor area occupied by the fuel shall be used to determine the radiant heat flux from the flame and smoke plume to the structure.

## 1b. Post-Flashover Compartment Fires

Where the heat release rate from the fire is sufficient to cause flashover, a postflashover compartment fire shall be assumed. The determination of the temperature versus time profile resulting from the fire shall include fuel load, ventilation characteristics of the space (natural and mechanical), compartment dimensions, and thermal characteristics of the compartment boundary.

The fire duration in a particular area shall be determined from the total combustible mass, or fuel load in the space. In the case of either a localized fire or a post-flashover compartment fire, the fire duration shall be determined as the total combustible mass divided by the mass loss rate.

## 1c. Exterior Fires

The exposure effects of the exterior structure to flames projecting from windows or other wall openings as a result of a post-flashover compartment fire shall be addressed along with the radiation from the interior fire through the opening. The shape and length of the flame projection shall be used along with the distance between the flame and the exterior steelwork to determine the heat flux to the steel. The method identified in Section 4.2.1b shall be used for describing the characteristics of the interior compartment fire.

## 1d. Active Fire-Protection Systems

The effects of active fire-protection systems shall be addressed when describing the design-basis fire.

Where automatic smoke and heat vents are installed in nonsprinklered spaces, the resulting smoke temperature shall be determined from calculation.

## 2. Temperatures in Structural Systems under Fire Conditions

Temperatures within structural members, components and frames due to the heating conditions posed by the design-basis fire shall be determined by a heat transfer analysis.

## 3. Material Strengths at Elevated Temperatures

Material properties at elevated temperatures shall be determined from test data. In the absence of such data, it is permitted to use the material properties stipulated in this section. These relationships do not apply for steels with yield strengths in excess of $65 \mathrm{ksi}(450 \mathrm{MPa})$ or concretes with specified compressive strength in excess of 8,000 psi ( 55 MPa ).

## 3a. Thermal Elongation

The coefficients of expansion shall be taken as follows:
(a) For structural and reinforcing steels: For calculations at temperatures above $150^{\circ} \mathrm{F}$ $\left(66^{\circ} \mathrm{C}\right)$, the coefficient of thermal expansion shall be $7.8 \times 10^{-6} /{ }^{\circ} \mathrm{F}\left(1.4 \times 10^{-5} /{ }^{\circ} \mathrm{C}\right)$.
(b) For normal weight concrete: For calculations at temperatures above $150^{\circ} \mathrm{F}$ $\left(66^{\circ} \mathrm{C}\right)$, the coefficient of thermal expansion shall be $1.0 \times 10^{-5} /{ }^{\circ} \mathrm{F}\left(1.8 \times 10^{-5} /{ }^{\circ} \mathrm{C}\right)$.
(c) For lightweight concrete: For calculations at temperatures above $150^{\circ} \mathrm{F}\left(66^{\circ} \mathrm{C}\right)$, the coefficient of thermal expansion shall be $4.4 \times 10^{-6} /{ }^{\circ} \mathrm{F}\left(7.9 \times 10^{-6} /{ }^{\circ} \mathrm{C}\right)$.

## 3b. Mechanical Properties at Elevated Temperatures

The deterioration in strength and stiffness of structural members, components and systems shall be taken into account in the structural analysis of the frame.
(a) For steel, the values $F_{y}(T), F_{p}(T), F_{u}(T), E(T)$ and $G(T)$ at elevated temperature to be used in structural analysis, expressed as the ratio with respect to the property at ambient, which is assumed to be $68^{\circ} \mathrm{F}\left(20^{\circ} \mathrm{C}\right)$, shall be defined as in Tables A-4.2.1. $F_{p}(T)$ is the proportional limit at elevated temperatures, which is calculated as a ratio to yield strength as specified in Table A-4.2.1. It is permitted to interpolate between these values.
(b) For concrete, the values $f_{c}^{\prime}(T), E_{c}(T)$ and $\varepsilon_{c u}(T)$ at elevated temperature to be used in structural analysis, expressed as the ratio with respect to the property at ambient, which is assumed to be $68^{\circ} \mathrm{F}\left(20^{\circ} \mathrm{C}\right)$, shall be defined as in Table A-4.2.2. It is permitted to interpolate between these values. For lightweight concrete, values of $\varepsilon_{c u}$ shall be obtained from tests.
(c) For bolts, the values of $F_{n t}(T)$ and $F_{n v}(T)$ at elevated temperature to be used in structural analysis, expressed as the ratio with respect to the property at ambient, which is assumed to be $68^{\circ} \mathrm{F}\left(20^{\circ} \mathrm{C}\right)$, shall be defined as in Table A-4.2.3. It is permitted to interpolate between these values.

TABLE A-4.2.1   Properties of Steel at Elevated Temperatures				
Steel Temperature, ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} k_{E} & =E(T) / E \\ & =G(T) / G \end{aligned}$	$k_{p}=F_{p}(T) / F_{y}$	$k_{y}=F_{y}(T) / F_{y}$	$k_{u}=F_{u}(T) / F_{y}$
68 (20)	1.00	1.00	*	*
200 (93)	1.00	1.00	*	*
400 (200)	0.90	0.80	*	*
600 (320)	0.78	0.58	*	*
750 (400)	0.70	0.42	1.00	1.00
800 (430)	0.67	0.40	0.94	0.94
1000 (540)	0.49	0.29	0.66	0.66
1200 (650)	0.22	0.13	0.35	0.35
1400 (760)	0.11	0.06	0.16	0.16
1600 (870)	0.07	0.04	0.07	0.07
1800 (980)	0.05	0.03	0.04	0.04
2000 (1100)	0.02	0.01	0.02	0.02
2200 (1200)	0.00	0.00	0.00	0.00
*Use ambient properties				

## 4. Structural Design Requirements

## 4a. General Structural Integrity

The structural frame and foundation shall be capable of providing the strength and deformation capacity to withstand, as a system, the structural actions developed during the fire within the prescribed limits of deformation. The structural system shall be designed to sustain local damage with the structural system as a whole remaining stable. Frame stability and required strength shall be determined in accordance with the requirements of Section C1.

Continuous load paths shall be provided to transfer all forces from the exposed region to the final point of resistance.

## 4b. Strength Requirements and Deformation Limits

Conformance of the structural system to these requirements shall be demonstrated by constructing a mathematical model of the structure based on principles of structural mechanics and evaluating this model for the internal forces and deformations in the members of the structure developed by the temperatures from the design-basis fire.

TABLE A-4.2.2   Properties of Concrete at Elevated Temperatures				
Concrete Temperature, ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	$k_{c}=f_{c}^{\prime}(T) / f_{c}^{\prime}$		$E_{c}(T) / E_{c}$	$\varepsilon_{c u}(T), \%$
	Normal Weight Concrete	Lightweight Concrete		Normal Weight Concrete
68 (20)	1.00	1.00	1.00	0.25
200 (93)	0.95	1.00	0.93	0.34
400 (200)	0.90	1.00	0.75	0.46
550 (290)	0.86	1.00	0.61	0.58
600 (320)	0.83	0.98	0.57	0.62
800 (430)	0.71	0.85	0.38	0.80
1000 (540)	0.54	0.71	0.20	1.06
1200 (650)	0.38	0.58	0.092	1.32
1400 (760)	0.21	0.45	0.073	1.43
1600 (870)	0.10	0.31	0.055	1.49
1800 (980)	0.05	0.18	0.036	1.50
2000 (1100)	0.01	0.05	0.018	1.50
2200 (1200)	0.00	0.00	0.000	0.00

Individual members shall have the design strength necessary to resist the shears, axial forces and moments determined in accordance with these provisions.

Connections shall develop the strength of the connected members or the forces. Where the means of providing fire resistance requires the evaluation of deformation criteria, the deformation of the structural system, or members thereof, under the design-basis fire shall not exceed the prescribed limits.

It shall be permitted to include membrane action of composite floor slabs for fire resistance if the design provides for the effects of increased connection tensile forces and redistributed gravity load demands on the adjacent framing supports.

## 4c. Design by Advanced Methods of Analysis

Design by advanced methods of analysis is permitted for the design of all steel building structures for fire conditions. The design-basis fire exposure shall be that determined in Section 4.2.1. The analysis shall include both a thermal response and the mechanical response to the design-basis fire.

The thermal response shall produce a temperature field in each structural element as a result of the design-basis fire and shall incorporate temperature-dependent thermal properties of the structural elements and fire-resistive materials, as per Section 4.2.2.


The mechanical response results in forces and deformations in the structural system subjected to the thermal response calculated from the design-basis fire. The mechanical response shall take into account explicitly the deterioration in strength and stiffness with increasing temperature, the effects of thermal expansions, inelastic behavior and load redistribution, large deformations, time-dependent effects such as creep, and uncertainties resulting from variability in material properties at elevated temperature. Boundary conditions and connection fixity must represent the proposed structural design. Material properties shall be defined as per Section 4.2.3.

The resulting analysis shall address all relevant limit states, such as excessive deflections, connection ruptures, and overall or local buckling.

## 4d. Design by Simple Methods of Analysis

The methods of analysis in this section are permitted to be used for the evaluation of the performance of individual members at elevated temperatures during exposure to fire.

The support and restraint conditions (forces, moments and boundary conditions) applicable at normal temperatures are permitted to be assumed to remain unchanged throughout the fire exposure.

It is permitted to model the thermal response of steel and composite members using a one-dimensional heat transfer equation with heat input as determined by the design-basis fire defined in Section 4.2.1, using the temperature equal to the maximum steel temperature. For flexural members, the maximum steel temperature shall be assigned to the bottom flange.

For steel temperatures less than or equal to $400^{\circ} \mathrm{F}\left(200^{\circ} \mathrm{C}\right)$, the member and connection design strengths shall be determined without consideration of temperature effects.

The design strength shall be determined as in Section B3.1. The nominal strength, $R_{n}$, shall be calculated using material properties, as provided in Section 4.2.3b, at the temperature developed by the design-basis fire and as stipulated in Sections 4.2.4d(a) through (f).

User Note: At temperatures below $400^{\circ} \mathrm{F}\left(200^{\circ} \mathrm{C}\right)$, the reduction in steel properties need not be considered in calculating member strengths for the simple method of analysis; however, forces and deformations induced by elevated temperatures must be considered.
(a) Design for Tension

Nominal strength for tension shall be determined using the provisions of Chapter D, with steel properties as stipulated in Section 4.2.3b and assuming a uniform temperature over the cross section using the temperature equal to the maximum steel temperature.
(b) Design for Compression

The nominal strength for compression shall be determined using the provisions of Chapter E with steel properties as stipulated in Section 4.2.3b and Equation A-4-2 used in lieu of Equations E3-2 and E3-3 to calculate the nominal compressive strength for flexural buckling:

$$
\begin{equation*}
F_{c r}(T)=\left[0.42 \sqrt{\frac{F_{y}(T)}{F_{e}(T)}}\right] F_{y}(T) \tag{A-4-2}
\end{equation*}
$$

where $F_{y}(T)$ is the yield stress at elevated temperature and $F_{e}(T)$ is the critical elastic buckling stress calculated from Equation E3-4 with the elastic modulus, $E(T)$, at elevated temperature. $F_{y}(T)$ and $E(T)$ are obtained using coefficients from Table A-4.2.1.

User Note: For most fire conditions, uniform heating and temperatures govern the design for compression. A method to account for the effects of nonuniform heating and resulting thermal gradients on the design strength of compression members is referenced in the Commentary. The strength of leaning (gravity) columns may be increased by rotational restraints from cooler columns in the stories above and below the story exposed to the fire. A method to account for the beneficial influence of rotational restraints is discussed in the Commentary.
(c) Design for Flexure

For steel beams, it is permitted to assume that the calculated bottom flange temperature is constant over the depth of the member.

Nominal strength for flexure shall be determined using the provisions of Chapter F with steel properties as stipulated in Section 4.2.3b and Equations A-4-3 through A-4-10 used in lieu of Equations F2-2 through F2-6 to calculate the nominal flexural strength for lateral-torsional buckling of laterally unbraced doubly symmetric members:
(1) When $L_{b} \leq L_{r}(T)$

$$
\begin{equation*}
M_{n}(T)=C_{b}\left\{M_{r}(T)+\left[M_{p}(T)-M_{r}(T)\right]\left[1-\frac{L_{b}}{L_{r}(T)}\right]^{c_{x}}\right\} \leq M_{p}(T) \tag{A-4-3}
\end{equation*}
$$

(2) When $L_{b}>L_{r}(T)$

$$
\begin{equation*}
M_{n}(T)=F_{c r}(T) S_{x} \leq M_{p}(T) \tag{A-4-4}
\end{equation*}
$$

where

$$
\begin{align*}
F_{c r}(T) & =\frac{C_{b} \pi^{2} E(T)}{\left(\frac{L_{b}}{r_{t s}}\right)^{2}} \sqrt{1+0.078 \frac{J c}{S_{x} h_{o}}\left(\frac{L_{b}}{r_{t s}}\right)^{2}}  \tag{A-4-5}\\
L_{r}(T) & =1.95 r_{t s} \frac{E(T)}{F_{L}(T)} \sqrt{\frac{J c}{S_{x} h_{o}}+\sqrt{\left(\frac{J c}{S_{x} h_{o}}\right)^{2}+6.76\left[\frac{F_{L}(T)}{E(T)}\right]^{2}}}  \tag{A-4-6}\\
M_{r}(T) & =F_{L}(T) S_{x}  \tag{A-4-7}\\
F_{L}(T) & =F_{y}\left(k_{p}-0.3 k_{y}\right)  \tag{A-4-8}\\
M_{p}(T) & =F_{y}(T) Z_{x}  \tag{A-4-9}\\
c_{x} & =0.53+\frac{T}{450} \leq 3.0 \text { where } T \text { is in }{ }^{\circ} \mathrm{F}  \tag{A-4-10}\\
c_{x} & =0.6+\frac{T}{250} \leq 3.0 \text { where } T \text { is in }{ }^{\circ} \mathrm{C} \tag{A-4-10M}
\end{align*}
$$

and
$T=$ elevated temperature of steel due to unintended fire exposure, ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$
The material properties at elevated temperatures, $E(T)$ and $F_{y}(T)$, and the $k_{p}$ and $k_{y}$ coefficients are calculated in accordance with Table A-4.2.1, and other terms are as defined in Chapter F.
(d) Design for Flexure in Composite Beams

For composite beams, the calculated bottom flange temperature shall be taken as constant between the bottom flange and mid-depth of the web and shall decrease linearly by no more than $25 \%$ from the mid-depth of the web to the top flange of the beam.

The nominal strength of a composite flexural member shall be determined using the provisions of Chapter I, with reduced yield stresses in the steel consistent with the temperature variation described under thermal response.

Alternatively, the nominal flexural strength of a composite beam, $M_{n}(T)$, is permitted to be calculated using the bottom flange temperature, $T$, as follows:

$$
\begin{equation*}
M_{n}(T)=r(T) M_{n} \tag{A-4-11}
\end{equation*}
$$

where
$M_{n}=$ nominal flexural strength at ambient temperature calculated in accordance with provisions of Chapter I, kip-in. (N-mm)
$r(T)=$ retention factor depending on bottom flange temperature, $T$, as given in Table A-4.2.4
(e) Design for Shear

Nominal strength for shear shall be determined in accordance with the provisions of Chapter G, with steel properties as stipulated in Section 4.2.3b and assuming a uniform temperature over the cross section.
(f) Design for Combined Forces and Torsion

Nominal strength for combinations of axial force and flexure about one or both axes, with or without torsion, shall be in accordance with the provisions of Chapter H with the design axial and flexural strengths as stipulated in Sections 4.2.4d(a) to (d). Nominal strength for torsion shall be determined in accordance with the provisions of Chapter H, with the steel properties as stipulated in Section 4.2 .3 b , assuming uniform temperature over the cross section.

### 4.3. DESIGN BY QUALIFICATION TESTING

## 1. Qualification Standards

Structural members and components in steel buildings shall be qualified for the rating period in conformance with ASTM E119. Demonstration of compliance with these requirements using the procedures specified for steel construction in Section 5 of Standard Calculation Methods for Structural Fire Protection (ASCE/SEI/SFPE 29) is permitted.

## 2. Restrained Construction

For floor and roof assemblies and individual beams in buildings, a restrained condition exists when the surrounding or supporting structure is capable of resisting forces and accommodating deformations caused by thermal expansion throughout the range of anticipated elevated temperatures.

Steel beams, girders and frames supporting concrete slabs that are welded or bolted to integral framing members shall be considered restrained construction.

TABLE A-4.2.4   Retention Factor for Composite   Flexural Members	
Bottom Flange Temperature,   ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	
$68(20)$	$r(T)$
$300(150)$	1.00
$600(320)$	0.98
$800(430)$	0.95
$1000(540)$	0.89
$1200(650)$	0.71
$1400(760)$	0.49
$1600(870)$	0.26
$1800(980)$	0.12
$2000(1100)$	0.05

## 3. Unrestrained Construction

Steel beams, girders and frames that do not support a concrete slab shall be considered unrestrained unless the members are bolted or welded to surrounding construction that has been specifically designed and detailed to resist effects of elevated temperatures.

A steel member bearing on a wall in a single span or at the end span of multiple spans shall be considered unrestrained unless the wall has been designed and detailed to resist effects of thermal expansion.

## APPENDIX 5

## EVALUATION OF EXISTING STRUCTURES

This appendix applies to the evaluation of the strength and stiffness under static loads of existing structures by structural analysis, by load tests, or by a combination of structural analysis and load tests when specified by the engineer of record or in the contract documents. For such evaluation, the steel grades are not limited to those listed in Section A3.1. This appendix does not address load testing for the effects of seismic loads or moving loads (vibrations). Section 5.4 is only applicable to static vertical gravity loads applied to existing roofs or floors.

The Appendix is organized as follows:
5.1. General Provisions
5.2. Material Properties
5.3. Evaluation by Structural Analysis
5.4. Evaluation by Load Tests
5.5. Evaluation Report

### 5.1. GENERAL PROVISIONS

These provisions shall be applicable when the evaluation of an existing steel structure is specified for (a) verification of a specific set of design loadings or (b) determination of the available strength of a load-resisting member or system. The evaluation shall be performed by structural analysis (Section 5.3), by load tests (Section 5.4), or by a combination of structural analysis and load tests, when specified in the contract documents by the engineer of record (EOR). Where load tests are used, the EOR shall first analyze the structure, prepare a testing plan, and develop a written procedure for the test. The plan shall consider catastrophic collapse and/or excessive levels of permanent deformation, as defined by the EOR, and shall include procedures to preclude either occurrence during testing.

### 5.2. MATERIAL PROPERTIES

## 1. Determination of Required Tests

The EOR shall determine the specific tests that are required from Sections 5.2.2 through 5.2.6 and specify the locations where they are required. Where available, the use of applicable project records is permitted to reduce or eliminate the need for testing.

## 2. Tensile Properties

Tensile properties of members shall be considered in evaluation by structural analysis (Section 5.3) or load tests (Section 5.4). Such properties shall include the yield stress, tensile strength and percent elongation. Where available, certified material test
reports or certified reports of tests made by the fabricator or a testing laboratory in accordance with ASTM A6/A6M or A568/A568M, as applicable, is permitted for this purpose. Otherwise, tensile tests shall be conducted in accordance with ASTM A370 from samples taken from components of the structure.

## 3. Chemical Composition

Where welding is anticipated for repair or modification of existing structures, the chemical composition of the steel shall be determined for use in preparing a welding procedure specification. Where available, results from certified material test reports or certified reports of tests made by the fabricator or a testing laboratory in accordance with ASTM procedures is permitted for this purpose. Otherwise, analyses shall be conducted in accordance with ASTM A751 from the samples used to determine tensile properties or from samples taken from the same locations.

## 4. Base Metal Notch Toughness

Where welded tension splices in heavy shapes and plates as defined in Section A3.1d are critical to the performance of the structure, the Charpy V-notch toughness shall be determined in accordance with the provisions of Section A3.1d. If the notch toughness so determined does not meet the provisions of Section A3.1d, the EOR shall determine if remedial actions are required.

## 5. Weld Metal

Where structural performance is dependent on existing welded connections, representative samples of weld metal shall be obtained. Chemical analysis and mechanical tests shall be made to characterize the weld metal. A determination shall be made of the magnitude and consequences of imperfections. If the requirements of Structural Welding Code-Steel, AWS D1.1/D1.1M, are not met, the EOR shall determine if remedial actions are required.

## 6. Bolts and Rivets

Representative samples of bolts shall be inspected to determine markings and classifications. Where bolts cannot be properly identified, representative samples shall be taken and tested to determine tensile strength in accordance with ASTM F606/F606M and the bolt classified accordingly. Alternatively, the assumption that the bolts are ASTM A307 is permitted. Rivets shall be assumed to be ASTM A502 Grade 1 unless a higher grade is established through documentation or testing.

### 5.3. EVALUATION BY STRUCTURAL ANALYSIS

## 1. Dimensional Data

All dimensions used in the evaluation, such as spans, column heights, member spacings, bracing locations, cross-section dimensions, thicknesses, and connection details, shall be determined from a field survey. Alternatively, when available, it is permitted to determine such dimensions from applicable project design or shop drawings with field verification of critical values.

## 2. Strength Evaluation

Forces (load effects) in members and connections shall be determined by structural analysis applicable to the type of structure evaluated. The load effects shall be determined for the loads and factored load combinations stipulated in Section B2.

The available strength of members and connections shall be determined from applicable provisions of Chapters B through K of this Specification.

## 3. Serviceability Evaluation

Where required, the deformations at service loads shall be calculated and reported.

### 5.4. EVALUATION BY LOAD TESTS

## 1. Determination of Load Rating by Testing

To determine the load rating of an existing floor or roof structure by testing, a test load shall be applied incrementally in accordance with the EOR's plan. The structure shall be visually inspected for signs of distress or imminent failure at each load level. Appropriate measures shall be taken if these or any other unusual conditions are encountered.

The tested strength of the structure shall be taken as the maximum applied test load plus the in-situ dead load. The live load rating of a floor structure shall be determined by setting the tested strength equal to $1.2 D+1.6 L$, where $D$ is the nominal dead load and $L$ is the nominal live load rating for the structure. For roof structures, $L_{r}, S$ or $R$ shall be substituted for $L$,
where
$L_{r}=$ nominal roof live load
$R=$ nominal load due to rainwater or snow, exclusive of the ponding contribution
$S=$ nominal snow load
More severe load combinations shall be used where required by the applicable building codes.

Periodic unloading shall be considered once the service load level is attained and after the onset of inelastic structural behavior is identified to document the amount of permanent set and the magnitude of the inelastic deformations. Deformations of the structure, such as member deflections, shall be monitored at critical locations during the test, referenced to the initial position before loading. It shall be demonstrated, while maintaining maximum test load for one hour, that the deformation of the structure does not increase by more than $10 \%$ above that at the beginning of the holding period. It is permissible to repeat the sequence if necessary to demonstrate compliance.

Deformations of the structure shall also be recorded 24 hours after the test loading is removed to determine the amount of permanent set. Because the amount of acceptable permanent deformation depends on the specific structure, no limit is specified for permanent deformation at maximum loading. Where it is not feasible to load test the entire structure, a segment or zone of not less than one complete bay representative of the most critical conditions shall be selected.

## 2. Serviceability Evaluation

When load tests are prescribed, the structure shall be loaded incrementally to the service load level. The service test load shall be held for a period of one hour, and deformations shall be recorded at the beginning and at the end of the one-hour holding period.

### 5.5. EVALUATION REPORT

After the evaluation of an existing structure has been completed, the EOR shall prepare a report documenting the evaluation. The report shall indicate whether the evaluation was performed by structural analysis, by load testing, or by a combination of structural analysis and load testing. Furthermore, when testing is performed, the report shall include the loads and load combination used and the load-deformation and time-deformation relationships observed. All relevant information obtained from design drawings, material test reports, and auxiliary material testing shall also be reported. Finally, the report shall indicate whether the structure, including all members and connections, is adequate to withstand the load effects.

## APPENDIX 6 MEMBER STABILITY BRACING

This appendix addresses the minimum strength and stiffness necessary to provide a braced point in a column, beam or beam-column.

The appendix is organized as follows:
6.1. General Provisions
6.2. Column Bracing
6.3. Beam Bracing
6.4. Beam-Column Bracing

User Note: Stability requirements for lateral force-resisting systems are provided in Chapter C. The provisions in this appendix apply to bracing that is not generally included in the analysis model of the overall structure, but is provided to stabilize individual columns, beams and beam-columns. Guidance for applying these provisions to stabilize trusses is provided in the Commentary.

### 6.1. GENERAL PROVISIONS

Bracing systems shall have the strength and stiffness specified in this Appendix, as applicable. Where such a system braces more than one member, the strength and stiffness of the bracing shall be based on the sum of the required strengths of all members being braced. The evaluation of the stiffness furnished by the bracing shall include the effects of connections and anchoring details.

User Note: More detailed analyses for bracing strength and stiffness are presented in the Commentary.

A panel brace (formerly referred to as a relative brace) controls the angular deviation of a segment of the braced member between braced points (that is, the lateral displacement of one end of the segment relative to the other). A point brace (formerly referred to as a nodal brace) controls the movement at the braced point without direct interaction with adjacent braced points. A continuous bracing system consists of bracing that is attached along the entire member length.

The available strength and stiffness of the bracing members and connections shall equal or exceed the required strength and stiffness, respectively, unless analysis indicates that smaller values are justified.

Columns, beams and beam-columns with end and intermediate braced points designed to meet the requirements in Sections 6.2, 6.3 and 6.4, as applicable, are permitted to be designed based on lengths $L_{c}$ and $L_{b}$, as defined in Chapters E and F , taken equal to the distance between the braced points.

In lieu of the requirements of Sections 6.2, 6.3 and 6.4,
(a) The required brace strength and stiffness can be obtained using a second-order analysis that satisfies the provisions of Chapter C or Appendix 1, as appropriate, and includes brace points displaced from their nominal locations in a pattern that provides for the greatest demand on the bracing.
(b) The required bracing stiffness can be obtained as $2 / \phi$ (LRFD) or $2 \Omega$ (ASD) times the ideal bracing stiffness determined from a buckling analysis. The required brace strength can be determined using the provisions of Sections 6.2, 6.3 and 6.4, as applicable.
(c) For either of the above analysis methods, members with end or intermediate braced points meeting these requirements may be designed based on effective lengths, $L_{c}$ and $L_{b}$, taken less than the distance between braced points.

User Note: The stability bracing requirements in Sections 6.2, 6.3 and 6.4 are based on buckling analysis models involving idealizations of common bracing conditions. Computational analysis methods may be used for greater generality, accuracy and efficiency for more complex bracing conditions. The Commentary to Section 6.1 provides guidance on these considerations.

### 6.2. COLUMN BRACING

It is permitted to laterally brace an individual column at end and intermediate points along its length using either panel or point bracing.

User Note: This section provides requirements only for lateral bracing. Column lateral bracing is assumed to be located at the shear center of the column. When lateral bracing does not prevent twist, the column is susceptible to torsional buckling, as addressed in Section E4. When the lateral bracing is offset from the shear center, the column is susceptible to constrained-axis torsional buckling, which is addressed in the commentary to Section E4.

## 1. Panel Bracing

The panel bracing system shall have the strength and stiffness specified in this section. The connection of the bracing system to the column shall have the strength specified in Section 6.2.2 for a point brace at that location.

User Note: If the stiffness of the connection to the panel bracing system is comparable to the stiffness of the panel bracing system itself, the panel bracing system and its connection to the column function as a panel and point bracing system arranged in series. Such cases may be evaluated using the alternative analysis methods listed in Section 6.1.

In the direction perpendicular to the longitudinal axis of the column, the required shear strength of the bracing system is:

$$
\begin{equation*}
V_{b r}=0.005 P_{r} \tag{A-6-1}
\end{equation*}
$$

and, the required shear stiffness of the bracing system is:

$$
\begin{array}{r}
\beta_{b r}=\frac{1}{\phi}\left(\frac{2 P_{r}}{L_{b r}}\right)(\mathrm{LRFD}) \\
\beta_{b r}=\Omega\left(\frac{2 P_{r}}{L_{b r}}\right)(\mathrm{ASD})  \tag{A-6-2b}\\
\phi=0.75(\mathrm{LRFD}) \quad \Omega=2.00(\mathrm{ASD})
\end{array}
$$

where
$L_{b r}=$ unbraced length within the panel under consideration, in. (mm)
$P_{r}=$ required axial strength of the column within the panel under consideration, using LRFD or ASD load combinations, kips (N)

## 2. Point Bracing

In the direction perpendicular to the longitudinal axis of the column, the required strength of end and intermediate point braces is

$$
\begin{equation*}
P_{b r}=0.01 P_{r} \tag{A-6-3}
\end{equation*}
$$

and, the required stiffness of the brace is

$$
\begin{array}{r}
\beta_{b r}=\frac{1}{\phi}\left(\frac{8 P_{r}}{L_{b r}}\right)(\mathrm{LRFD}) \\
\beta_{b r}=\Omega\left(\frac{8 P_{r}}{L_{b r}}\right)(\mathrm{ASD})  \tag{A-6-4b}\\
\phi=0.75(\mathrm{LRFD}) \quad \Omega=2.00(\mathrm{ASD})
\end{array}
$$

where
$L_{b r}=$ unbraced length adjacent to the point brace, in. (mm)
$P_{r}=$ largest of the required axial strengths of the column within the unbraced lengths adjacent to the point brace using LRFD or ASD load combinations, kips (N)

When the unbraced lengths adjacent to a point brace have different $P_{r} / L_{b r}$ values, the larger value shall be used to determine the required brace stiffness.

For intermediate point bracing of an individual column, $L_{b r}$ in Equations A-6-4a or A-6-4b need not be taken less than the maximum effective length, $L_{c}$, permitted for the column based upon the required axial strength, $P_{r}$.

### 6.3. BEAM BRACING

Beams shall be restrained against rotation about their longitudinal axis at points of support. When a braced point is assumed in the design between points of support, lateral bracing, torsional bracing, or a combination of the two shall be provided to prevent the relative displacement of the top and bottom flanges (i.e., to prevent twist). In members subject to double curvature bending, the inflection point shall not be considered a braced point unless bracing is provided at that location.

The requirements of this section shall apply to bracing of doubly and singly symmetric I-shaped members subjected to flexure within a plane of symmetry and zero net axial force.

## 1. Lateral Bracing

Lateral bracing shall be attached at or near the beam compression flange, except as follows:
(a) At the free end of a cantilevered beam, lateral bracing shall be attached at or near the top (tension) flange.
(b) For braced beams subject to double curvature bending, bracing shall be attached at or near both flanges at the braced point nearest the inflection point.

It is permitted to use either panel or point bracing to provide lateral bracing for beams.

## 1a. Panel Bracing

The panel bracing system shall have the strength and stiffness specified in this section. The connection of the bracing system to the member shall have the strength specified in Section 6.3.1b for a point brace at that location.

User Note: The stiffness contribution of the connection to the panel bracing system should be assessed as provided in the User Note to Section 6.2.1.

The required shear strength of the bracing system is

$$
\begin{equation*}
V_{b r}=0.01\left(\frac{M_{r} C_{d}}{h_{o}}\right) \tag{A-6-5}
\end{equation*}
$$

and, the required shear stiffness of the bracing system is

$$
\begin{gather*}
\beta_{b r}=\frac{1}{\phi}\left(\frac{4 M_{r} C_{d}}{L_{b r} h_{o}}\right)(\mathrm{LRFD})  \tag{A-6-6a}\\
\beta_{b r}=\Omega\left(\frac{4 M_{r} C_{d}}{L_{b r} h_{o}}\right)(\mathrm{ASD})  \tag{A-6-6b}\\
\phi=0.75(\mathrm{LRFD}) \quad \Omega=2.00(\mathrm{ASD})
\end{gather*}
$$

where
$C_{d}=1.0$, except in the following case:
$=2.0$ for the brace closest to the inflection point in a beam subject to double curvature bending
$L_{b r}=$ unbraced length within the panel under consideration, in. (mm)
$M_{r}=$ required flexural strength of the beam within the panel under consideration, using LRFD or ASD load combinations, kip-in. (N-mm)
$h_{o}=$ distance between flange centroids, in. (mm)

## 1b. Point Bracing

In the direction perpendicular to the longitudinal axis of the beam, the required strength of end and intermediate point braces is

$$
\begin{equation*}
P_{b r}=0.02\left(\frac{M_{r} C_{d}}{h_{o}}\right) \tag{A-6-7}
\end{equation*}
$$

and, the required stiffness of the brace is

$$
\begin{gather*}
\beta_{b r}=\frac{1}{\phi}\left(\frac{10 M_{r} C_{d}}{L_{b r} h_{o}}\right)(\mathrm{LRFD})  \tag{A-6-8a}\\
\beta_{b r}=\Omega\left(\frac{10 M_{r} C_{d}}{L_{b r} h_{o}}\right)(\mathrm{ASD})  \tag{A-6-8b}\\
\phi=0.75(\mathrm{LRFD}) \quad \Omega=2.00(\mathrm{ASD})
\end{gather*}
$$

where
$L_{b r}=$ unbraced length adjacent to the point brace, in. (mm)
$M_{r}=$ largest of the required flexural strengths of the beam within the unbraced lengths adjacent to the point brace using LRFD or ASD load combinations, kip-in. (N-mm)

When the unbraced lengths adjacent to a point brace have different $M_{r} / L_{b r}$ values, the larger value shall be used to determine the required brace stiffness.

For intermediate point bracing of an individual beam, $L_{b r}$ in Equations A-6-8a or A-6-8b need not be taken less than the maximum effective length, $L_{b}$, permitted for the beam based upon the required flexural strength, $M_{r}$.

## 2. Torsional Bracing

It is permitted to attach torsional bracing at any cross-section location, and it need not be attached near the compression flange.

User Note: Torsional bracing can be provided as point bracing, such as crossframes, moment-connected beams or vertical diaphragm elements, or as continuous bracing, such as slabs or decks.

## 2a. Point Bracing

About the longitudinal axis of the beam, the required flexural strength of the brace is:

$$
\begin{equation*}
M_{b r}=0.02 M_{r} \tag{A-6-9}
\end{equation*}
$$

and, the required flexural stiffness of the brace is:

$$
\begin{equation*}
\beta_{b r}=\frac{\beta_{T}}{\left(1-\frac{\beta_{T}}{\beta_{s e c}}\right)} \tag{A-6-10}
\end{equation*}
$$

where

$$
\begin{align*}
& \beta_{T}=\frac{1}{\phi} \frac{2.4 L}{n E I_{\text {yeff }}}\left(\frac{M_{r}}{C_{b}}\right)^{2} \quad(\mathrm{LRFD})  \tag{A-6-11a}\\
& \beta_{T}=\Omega \frac{2.4 L}{n E I_{\text {yeff }}}\left(\frac{M_{r}}{C_{b}}\right)^{2} \quad(\mathrm{ASD})  \tag{A-6-11b}\\
& \beta_{\text {sec }}=\frac{3.3 E}{h_{o}}\left(\frac{1.5 h_{o} t_{w}^{3}}{12}+\frac{t_{s t} b_{s}^{3}}{12}\right) \tag{A-6-12}
\end{align*}
$$

and
$\phi=0.75$ (LRFD); $\Omega=3.00(\mathrm{ASD})$

User Note: $\Omega=1.5^{2} / \phi=3.00$ in Equations A-6-11a or A-6-11b, because the moment term is squared.
$\beta_{s e c}$ can be taken equal to infinity, and $\beta_{b r}=\beta_{T}$, when a cross-frame is attached near both flanges or a vertical diaphragm element is used that is approximately the same depth as the beam being braced.
$E=$ modulus of elasticity of steel $=29,000 \mathrm{ksi}(200000 \mathrm{MPa})$
$I_{\text {yeff }}=$ effective out-of-plane moment of inertia, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$

$$
=I_{y c}+(t / c) I_{y t}
$$

$I_{y c}=$ moment of inertia of the compression flange about the $y$-axis, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$
$I_{y t}=$ moment of inertia of the tension flange about the $y$-axis, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$
$L=$ length of span, in. (mm)
$M_{r}=$ largest of the required flexural strengths of the beam within the unbraced lengths adjacent to the point brace, using LRFD or ASD load combinations, kip-in. (N-mm)
$\frac{M_{r}}{C_{b}}=$ maximum value of the required flexural strength of the beam divided by the moment gradient factor, within the unbraced lengths adjacent to the point brace, using LRFD or ASD load combinations, kip-in. (N-mm)
$b_{s}=$ stiffener width for one-sided stiffeners, in. (mm)
$=$ twice the individual stiffener width for pairs of stiffeners, in. $(\mathrm{mm})$
$c$ = distance from the neutral axis to the extreme compressive fibers, in. (mm)
$n \quad=$ number of braced points within the span
$t$ = distance from the neutral axis to the extreme tensile fibers, in. (mm)
$t_{w}=$ thickness of beam web, in. (mm)
$t_{s t}=$ thickness of web stiffener, in. (mm)
$\beta_{T}=$ overall brace system required stiffness, kip-in./rad ( $\mathrm{N}-\mathrm{mm} / \mathrm{rad}$ )
$\beta_{s e c}=$ web distortional stiffness, including the effect of web transverse stiffeners, if any, kip-in./rad ( $\mathrm{N}-\mathrm{mm} / \mathrm{rad}$ )

User Note: If $\beta_{s e c}<\beta_{T}$, Equation A-6-10 is negative, which indicates that torsional beam bracing will not be effective due to inadequate web distortional stiffness.

User Note: For doubly symmetric members, $c=t$ and $I_{\text {yeff }}=$ out-of-plane moment of inertia, $I_{y}$, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$.

When required, a web stiffener shall extend the full depth of the braced member and shall be attached to the flange if the torsional brace is also attached to the flange. Alternatively, it is permissible to stop the stiffener short by a distance equal to $4 t_{w}$ from any beam flange that is not directly attached to the torsional brace.

## 2b. Continuous Bracing

For continuous torsional bracing:
(a) The brace strength requirement per unit length along the beam shall be taken as Equation A-6-9 divided by the maximum unbraced length permitted for the beam based upon the required flexural strength, $M_{r}$. The required flexural strength, $M_{r}$, shall be taken as the maximum value throughout the beam span.
(b) The brace stiffness requirement per unit length shall be given by Equations A-6-10 and A-6-11 with $L / n=1.0$.
(c) The web distortional stiffness shall be taken as:

$$
\begin{equation*}
\beta_{s e c}=\frac{3.3 E t_{w}^{3}}{12 h_{o}} \tag{A-6-13}
\end{equation*}
$$

### 6.4. BEAM-COLUMN BRACING

For bracing of beam-columns, the required strength and stiffness for the axial force shall be determined as specified in Section 6.2, and the required strength and stiffness for flexure shall be determined as specified in Section 6.3. The values so determined shall be combined as follows:
(a) When panel bracing is used, the required strength shall be taken as the sum of the values determined using Equations A-6-1 and A-6-5, and the required stiffness shall be taken as the sum of the values determined using Equations A-6-2 and A-6-6.
(b) When point bracing is used, the required strength shall be taken as the sum of the values determined using Equations A-6-3 and A-6-7, and the required stiffness shall be taken as the sum of the values determined using Equations A-6-4 and A-6-8. In Equations A-6-4 and A-6-8, $L_{b r}$ for beam-columns shall be taken as the actual unbraced length; the provisions in Sections 6.2.2 and 6.3.1b, that $L_{b r}$ need not be taken less than the maximum permitted effective length based upon $P_{r}$ and $M_{r}$, shall not be applied.
(c) When torsional bracing is provided for flexure in combination with panel or point bracing for the axial force, the required strength and stiffness shall be combined or distributed in a manner that is consistent with the resistance provided by the element(s) of the actual bracing details.
(d) When the combined stress effect from axial force and flexure results in compression to both flanges, either lateral bracing shall be added to both flanges or both flanges shall be laterally restrained by a combination of lateral and torsional bracing.

User Note: For case (d), additional guidelines are provided in the Commentary.

## APPENDIX 7

## ALTERNATIVE METHODS OF DESIGN FOR STABILITY

This appendix presents alternatives to the direct analysis method of design for stability defined in Chapter C. The two alternative methods covered are the effective length method and the first-order analysis method.

The appendix is organized as follows:

### 7.1. General Stability Requirements

7.2. Effective Length Method
7.3. First-Order Analysis Method

### 7.1. GENERAL STABILITY REQUIREMENTS

The general requirements of Section C1 shall apply. As an alternative to the direct analysis method (defined in Sections C1 and C2), it is permissible to design structures for stability in accordance with either the effective length method, specified in Section 7.2, or the first-order analysis method, specified in Section 7.3, subject to the limitations indicated in those sections.

### 7.2. EFFECTIVE LENGTH METHOD

## 1. Limitations

The use of the effective length method shall be limited to the following conditions:
(a) The structure supports gravity loads primarily through nominally vertical columns, walls or frames.
(b) The ratio of maximum second-order drift to maximum first-order drift (both determined for load and resistance factor design (LRFD) load combinations or 1.6 times allowable strength design (ASD) load combinations, with stiffness not adjusted as specified in Section C2.3) in all stories is equal to or less than 1.5.

User Note: The ratio of second-order drift to first-order drift in a story may be taken as the $B_{2}$ multiplier, calculated as specified in Appendix 8.

## 2. Required Strengths

The required strengths of components shall be determined from an elastic analysis conforming to the requirements of Section C2.1, except that the stiffness reduction indicated in Section C2.1(a) shall not be applied; the nominal stiffnesses of all structural steel components shall be used. Notional loads shall be applied in the analysis in accordance with Section C2.2b.

User Note: Since the condition specified in Section C2.2b(d) will be satisfied in all cases where the effective length method is applicable, the notional load need only be applied in gravity-only load cases.

## 3. Available Strengths

The available strengths of members and connections shall be calculated in accordance with the provisions of Chapters D through K, as applicable.

For flexural buckling, the effective length, $L_{c}$, of members subject to compression shall be taken as $K L$, where $K$ is as specified in (a) or (b), in the following, as applicable, and $L$ is the laterally unbraced length of the member.
(a) In braced-frame systems, shear-wall systems, and other structural systems where lateral stability and resistance to lateral loads does not rely on the flexural stiffness of columns, the effective length factor, $K$, of members subject to compression shall be taken as unity unless a smaller value is justified by rational analysis.
(b) In moment-frame systems and other structural systems in which the flexural stiffnesses of columns are considered to contribute to lateral stability and resistance to lateral loads, the effective length factor, $K$, or elastic critical buckling stress, $F_{e}$, of those columns whose flexural stiffnesses are considered to contribute to lateral stability and resistance to lateral loads shall be determined from a sidesway buckling analysis of the structure; $K$ shall be taken as 1.0 for columns whose flexural stiffnesses are not considered to contribute to lateral stability and resistance to lateral loads.

Exception: It is permitted to use $K=1.0$ in the design of all columns if the ratio of maximum second-order drift to maximum first-order drift (both determined for LRFD load combinations or 1.6 times ASD load combinations) in all stories is equal to or less than 1.1.

User Note: Methods of calculating the effective length factor, $K$, are discussed in the Commentary.

Bracing intended to define the unbraced lengths of members shall have sufficient stiffness and strength to control member movement at the braced points.

User Note: Methods of satisfying the bracing requirement are provided in Appendix 6. The requirements of Appendix 6 are not applicable to bracing that is included in the design of the lateral force-resisting system of the overall structure.

### 7.3. FIRST-ORDER ANALYSIS METHOD

## 1. Limitations

The use of the first-order analysis method shall be limited to the following conditions:
(a) The structure supports gravity loads primarily through nominally vertical columns, walls or frames.
(b) The ratio of maximum second-order drift to maximum first-order drift (both determined for LRFD load combinations or 1.6 times ASD load combinations, with stiffness not adjusted as specified in Section C2.3) in all stories is equal to or less than 1.5 .

User Note: The ratio of second-order drift to first-order drift in a story may be taken as the $B_{2}$ multiplier, calculated as specified in Appendix 8.
(c) The required axial compressive strengths of all members whose flexural stiffnesses are considered to contribute to the lateral stability of the structure satisfy the limitation:

$$
\begin{equation*}
\alpha P_{r} \leq 0.5 P_{n s} \tag{A-7-1}
\end{equation*}
$$

where
$\alpha=1.0$ (LRFD); $\alpha=1.6$ (ASD)
$P_{r}=$ required axial compressive strength under LRFD or ASD load combinations, kips (N)
$P_{n s}=$ cross-section compressive strength; for nonslender-element sections, $P_{n s}=F_{y} A_{g}$, and for slender-element sections, $P_{n s}=F_{y} A_{e}$, where $A_{e}$ is as defined in Section E7, kips (N)

## 2. Required Strengths

The required strengths of components shall be determined from a first-order analysis, with additional requirements (a) and (b) given in the following. The analysis shall consider flexural, shear and axial member deformations, and all other deformations that contribute to displacements of the structure.
(a) All load combinations shall include an additional lateral load, $N_{i}$, applied in combination with other loads at each level of the structure:

$$
\begin{equation*}
N_{i}=2.1 \alpha(\Delta / L) Y_{i} \geq 0.0042 Y_{i} \tag{A-7-2}
\end{equation*}
$$

where
$\alpha=1.0$ (LRFD); $\alpha=1.6$ (ASD)
$Y_{i}=$ gravity load applied at level $i$ from the LRFD load combination or ASD load combination, as applicable, kips (N)
$\Delta / L=$ maximum ratio of $\Delta$ to $L$ for all stories in the structure
$\Delta$ = first-order interstory drift due to the LRFD or ASD load combination, as applicable, in. (mm). Where $\Delta$ varies over the plan area of the structure, $\Delta$ shall be the average drift weighted in proportion to vertical load or, alternatively, the maximum drift.
$L \quad=$ height of story, in. (mm)
The additional lateral load at any level, $N_{i}$, shall be distributed over that level in the same manner as the gravity load at the level. The additional lateral loads shall be applied in the direction that provides the greatest destabilizing effect.

User Note: For most building structures, the requirement regarding the direction of $N_{i}$ may be satisfied as follows: (a) For load combinations that do not include lateral loading, consider two alternative orthogonal directions for the additional lateral load in a positive and a negative sense in each of the two directions, same direction at all levels; (b) for load combinations that include lateral loading, apply all the additional lateral loads in the direction of the resultant of all lateral loads in the combination.
(b) The nonsway amplification of beam-column moments shall be included by applying the $B_{1}$ amplifier of Appendix 8 to the total member moments.

User Note: Since there is no second-order analysis involved in the first-order analysis method for design by ASD, it is not necessary to amplify ASD load combinations by 1.6 before performing the analysis, as required in the direct analysis method and the effective length method.

## 3. Available Strengths

The available strengths of members and connections shall be calculated in accordance with the provisions of Chapters D through K, as applicable.

The effective length for flexural buckling of all members shall be taken as the unbraced length unless a smaller value is justified by rational analysis.

Bracing intended to define the unbraced lengths of members shall have sufficient stiffness and strength to control member movement at the braced points.

User Note: Methods of satisfying this requirement are provided in Appendix 6. The requirements of Appendix 6 are not applicable to bracing that is included in the analysis of the overall structure as part of the overall force-resisting system.

## APPENDIX 8

## APPROXIMATE SECOND-ORDER ANALYSIS

This appendix provides an approximate procedure to account for second-order effects in structures by amplifying the required strengths indicated by two first-order elastic analyses.

The appendix is organized as follows:
8.1. Limitations
8.2. Calculation Procedure

### 8.1. LIMITATIONS

The use of this procedure is limited to structures that support gravity loads primarily through nominally vertical columns, walls or frames, except that it is permissible to use the procedure specified for determining $P-\delta$ effects for any individual compression member.

### 8.2. CALCULATION PROCEDURE

The required second-order flexural strength, $M_{r}$, and axial strength, $P_{r}$, of all members shall be determined as:

$$
\begin{gather*}
M_{r}=B_{1} M_{n t}+B_{2} M_{l t}  \tag{A-8-1}\\
P_{r}=P_{n t}+B_{2} P_{l t} \tag{A-8-2}
\end{gather*}
$$

where
$B_{1}=$ multiplier to account for $P-\delta$ effects, determined for each member subject to compression and flexure, and each direction of bending of the member in accordance with Section 8.2.1. $B_{1}$ shall be taken as 1.0 for members not subject to compression.
$B_{2}=$ multiplier to account for $P-\Delta$ effects, determined for each story of the structure and each direction of lateral translation of the story in accordance with Section 8.2.2
$M_{l t}=$ first-order moment using LRFD or ASD load combinations, due to lateral translation of the structure only, kip-in. (N-mm)
$M_{n t}=$ first-order moment using LRFD or ASD load combinations, with the structure restrained against lateral translation, kip-in. (N-mm)
$M_{r}=$ required second-order flexural strength using LRFD or ASD load combinations, kip-in. ( $\mathrm{N}-\mathrm{mm}$ )
$P_{l t}=$ first-order axial force using LRFD or ASD load combinations, due to lateral translation of the structure only, kips (N)
$P_{n t}=$ first-order axial force using LRFD or ASD load combinations, with the structure restrained against lateral translation, kips (N)
$P_{r}=$ required second-order axial strength using LRFD or ASD load combinations, kips (N)

User Note: Equations A-8-1 and A-8-2 are applicable to all members in all structures. Note, however, that $B_{1}$ values other than unity apply only to moments in beam-columns; $B_{2}$ applies to moments and axial forces in components of the lateral force-resisting system (including columns, beams, bracing members and shear walls). See the Commentary for more on the application of Equations A-8-1 and A-8-2.

## 1. Multiplier $\boldsymbol{B}_{\mathbf{1}}$ for $\boldsymbol{P}-\delta$ Effects

The $B_{1}$ multiplier for each member subject to compression and each direction of bending of the member is calculated as:

$$
\begin{equation*}
B_{1}=\frac{C_{m}}{1-\alpha P_{r} / P_{e 1}} \geq 1 \tag{A-8-3}
\end{equation*}
$$

where
$\alpha=1.0$ (LRFD); $\alpha=1.6$ (ASD)
$C_{m}=$ equivalent uniform moment factor, assuming no relative translation of the member ends, determined as follows:
(a) For beam-columns not subject to transverse loading between supports in the plane of bending

$$
\begin{equation*}
C_{m}=0.6-0.4\left(M_{1} / M_{2}\right) \tag{A-8-4}
\end{equation*}
$$

where $M_{1}$ and $M_{2}$, calculated from a first-order analysis, are the smaller and larger moments, respectively, at the ends of that portion of the member unbraced in the plane of bending under consideration. $M_{1} / M_{2}$ is positive when the member is bent in reverse curvature and negative when bent in single curvature.
(b) For beam-columns subject to transverse loading between supports, the value of $C_{m}$ shall be determined either by analysis or conservatively taken as 1.0 for all cases.
$P_{e 1}=$ elastic critical buckling strength of the member in the plane of bending, calculated based on the assumption of no lateral translation at the member ends, kips (N)
$=\frac{\pi^{2} E I *}{\left(L_{c 1}\right)^{2}}$
where
$E I^{*}=$ flexural rigidity required to be used in the analysis $\left(=0.8 \tau_{b} E I\right.$ when used in the direct analysis method, where $\tau_{b}$ is as defined in Chapter C; =EI for the effective length and first-order analysis methods)
$E=$ modulus of elasticity of steel $=29,000 \mathrm{ksi}(200000 \mathrm{MPa})$
$I=$ moment of inertia in the plane of bending, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$
$L_{c 1}=$ effective length in the plane of bending, calculated based on the assumption of no lateral translation at the member ends, set equal to the laterally unbraced length of the member unless analysis justifies a smaller value, in. (mm)

It is permitted to use the first-order estimate of $P_{r}$ (i.e., $P_{r}=P_{n t}+P_{l t}$ ) in Equation A-8-3.

## 2. Multiplier $\boldsymbol{B}_{\mathbf{2}}$ for $\boldsymbol{P}-\Delta$ Effects

The $B_{2}$ multiplier for each story and each direction of lateral translation is calculated as:

$$
\begin{equation*}
B_{2}=\frac{1}{1-\frac{\alpha P_{\text {story }}}{P_{\text {estory }}}} \geq 1 \tag{A-8-6}
\end{equation*}
$$

where
$\alpha \quad=1.0$ (LRFD); $\alpha=1.6$ (ASD)
$P_{\text {story }}=$ total vertical load supported by the story using LRFD or ASD load combinations, as applicable, including loads in columns that are not part of the lateral force-resisting system, kips (N)
$P_{\text {e story }}=$ elastic critical buckling strength for the story in the direction of translation being considered, kips (N), determined by sidesway buckling analysis or as:
$=R_{M} \frac{H L}{\Delta_{H}}$
and
$H=$ total story shear, in the direction of translation being considered, produced by the lateral forces used to compute $\Delta_{H}$, kips ( N )
$L=$ height of story, in. (mm)
$R_{M}=1-0.15\left(P_{m f} / P_{\text {story }}\right)$
$P_{m f}=$ total vertical load in columns in the story that are part of moment frames, if any, in the direction of translation being considered ( $=0$ for braced-frame systems), kips (N)
$\Delta_{H}=$ first-order interstory drift, in the direction of translation being considered, due to lateral forces, in. (mm), computed using the stiffness required to be used in the analysis. (When the direct analysis method is used, stiffness is reduced according to Section C2.3.) Where $\Delta_{H}$ varies over the plan area of the structure, it shall be the average drift weighted in proportion to vertical load or, alternatively, the maximum drift.

User Note: $R_{M}$ can be taken as 0.85 as a lower bound value for stories that include moment frames, and $R_{M}=1$ if there are no moment frames in the story. $H$ and $\Delta_{H}$ in Equation A-8-7 may be based on any lateral loading that provides a representative value of story lateral stiffness, $H / \Delta_{H}$.

## COMMENTARY <br> on the Specification for Structural Steel Buildings

July 7, 2016
(The Commentary is not a part of ANSI/AISC 360-16, Specification for Structural Steel Buildings, but is included for informational purposes only.)

## INTRODUCTION

The Specification is intended to be complete for normal design usage.
The Commentary furnishes background information and references for the benefit of the design professional seeking further understanding of the basis, derivations and limits of the Specification.

The Specification and Commentary are intended for use by design professionals with demonstrated engineering competence.

## COMMENTARY SYMBOLS

The Commentary uses the following symbols in addition to the symbols defined in the Specification. The section number in the right-hand column refers to the Commentary section where the symbol is first used.
Symbol Definition Section
$B \quad$ Overall width of rectangular HSS, in. (mm) ..... I3
$C_{f} \quad$ Compression force in concrete slab for fully composite beam; smaller of $F_{y} A_{s}$ and $0.85 f_{c}^{\prime} A_{c}$, kips (N) ..... I3.2
$F_{y} \quad$ Reported yield stress, ksi (MPa) ..... App. 5.2.2
$F_{y s} \quad$ Static yield stress, ksi (MPa) ..... App. 5.2.2
$H \quad$ Overall height of rectangular HSS, in. (mm) ..... I3
$H \quad$ Height of anchor, in. (mm) ..... I8.2
$I_{L B} \quad$ Lower bound moment of inertia, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$ ..... I3.2
$I_{\text {neg }} \quad$ Effective moment of inertia for negative moment, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$ ..... I3.2
$I_{p o s} \quad$ Effective moment of inertia for positive moment, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$ ..... I3.2
$I_{s} \quad$ Moment of inertia for the structural steel section, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$ ..... I3.2
$I_{t r} \quad$ Moment of inertia for fully composite uncracked transformed section, in. ${ }^{4}$ (mm ${ }^{4}$ ) ..... I3.2
$I_{y}$ Top $\quad$ Moment of inertia of the top flange about an axis through the web, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$ ..... F1
$K_{S} \quad$ Secant stiffness, kip-in. (N-mm) ..... B3.4
$M_{C L} \quad$ Moment at the middle of the unbraced length, kip-in. (N-mm) ..... F1
$M_{o} \quad$ Maximum first-order moment within the member due to the transverse loading, kip-in. (N-mm) ..... App. 8
Ms Moment at service loads, kip-in. (N-mm) ..... B3.4
$M_{T} \quad$ Torsional moment, kip-in. (N-mm) ..... G3
$N \quad$ Number of cycles to failure ..... App. 3.3
$P_{b r} \quad$ Required brace strength, kips (N) ..... App. 6.1
$Q_{m} \quad$ Mean value of the load effect $Q$ ..... B3.1
$R_{\text {cap }} \quad$ Minimum rotation capacity ..... App. 1.3.1
$R_{m} \quad$ Mean value of the resistance $R$ ..... B3.1
$S_{r} \quad$ Stress range ..... App. 3.3
$S_{s} \quad$ Section modulus for the structural steel section, referred to the tension flange, in. ${ }^{3}\left(\mathrm{~mm}^{3}\right)$ ..... I3.2
$S_{t r} \quad$ Section modulus for the fully composite uncracked transformed section, referred to the tension flange of the steel section, in. ${ }^{3}\left(\mathrm{~mm}^{3}\right)$ ..... I3.2
$V_{b} \quad$ Component of the shear force parallel to the angle leg with width $b$ and thickness $t$, kips (N) ..... G3
$V_{Q} \quad$ Coefficient of variation of the load effect $Q$ ..... B3.1
$V_{R} \quad$ Coefficient of variation of the resistance $R$ ..... B3.1
$a \quad$ Bracing offset measured from the shear center in $x$-direction, in. (mm) ..... E4
$a_{c r} \quad$ Neutral axis location for force equilibrium, slender section, in. (mm) ..... I3. 4
$a_{p} \quad$ Neutral axis location for force equilibrium, compact section, in. (mm) ..... I3. 4
$a_{y} \quad$ Neutral axis location for force equilibrium, noncompact section, in. (mm) ..... I3. 4
$b \quad$ Bracing offset measured from the shear center in $y$-direction, in. (mm) ..... E4
$f_{v} \quad$ Shear stress in angle, ksi (MPa) ..... G3
$k \quad$ Plate buckling coefficient characteristic of the type of plate edge-restraint ..... E7.1
$\beta \quad$ Reliability index ..... B3.1
$\beta \quad$ Brace stiffness, kip/in. (N/mm) ..... App. 6.1
$\beta_{a c t} \quad$ Actual bracing stiffness provided ..... App. 6.1
$\delta_{o} \quad$ Maximum deflection due to transverse loading, in. (mm) ..... App. 8
$\theta_{S} \quad$ Rotation at service loads, rad ..... B3.4
$v \quad$ Poisson's ratio $=11,200 \mathrm{ksi}(77200 \mathrm{MPa})$ ..... E7.1
$\omega \quad$ Empirical adjustment factor ..... E4

## COMMENTARY GLOSSARY

The Commentary uses the following terms in addition to the terms defined in the Glossary of the Specification.

Alignment chart. Nomograph for determining the effective length factor, $K$, for some types of columns.
Biaxial bending. Simultaneous bending of a member about two perpendicular axes.
Brittle fracture. Abrupt cleavage with little or no prior ductile deformation.
Column curve. Curve expressing the relationship between axial column strength and slenderness ratio.
Critical load. Load at which a perfectly straight member under compression may either assume a deflected position or may remain undeflected, or a beam under flexure may either deflect and twist out of plane or remain in its in-plane deflected position, as determined by a theoretical stability analysis.
Cyclic load. Repeatedly applied external load that may subject the structure to fatigue.
Drift damage index. Parameter used to measure the potential damage caused by interstory drift.
Effective moment of inertia. Moment of inertia of the cross section of a member that remains elastic when partial plastification of the cross section takes place, usually under the combination of residual stress and applied stress; also, the moment of inertia based on effective widths of elements that buckle locally; also, the moment of inertia used in the design of partially composite members.
Effective stiffness. Stiffness of a member computed using the effective moment of inertia of its cross section.
Fatigue threshold. Stress range at which fatigue cracking will not initiate regardless of the number of cycles of loading.
First-order plastic analysis. Structural analysis based on the assumption of rigid-plastic behavior-in other words, that equilibrium is satisfied throughout the structure and the stress is at or below the yield stress-and in which equilibrium conditions are formulated on the undeformed structure.
Flexible connection. Connection permitting a portion, but not all, of the simple beam rotation of a member end.
Inelastic action. Material deformation that does not disappear on removal of the force that produced it.
Interstory drift. Lateral deflection of a floor relative to the lateral deflection of the floor immediately below, divided by the distance between floors, $\left(\delta_{n}-\delta_{n-1}\right) / h$.
Permanent load. Load in which variations over time are rare or of small magnitude. All other loads are variable loads.

Plastic plateau. Portion of the stress-strain curve for uniaxial tension or compression in which the stress remains essentially constant during a period of substantially increased strain.

Primary member. For ponding analysis, beam or girder that supports the concentrated reactions from the secondary members framing into it.
Residual stress. Stress that remains in an unloaded member after it has been formed into a finished product. (Examples of such stresses include, but are not limited to, those induced by cold bending, cooling after rolling, or welding.)

Rigid frame. Structure in which connections maintain the angular relationship between beam and column members under load.
Secondary member. For ponding analysis, beam or joist that directly supports the distributed ponding loads on the roof of the structure.

Sidesway. Lateral movement of a structure under the action of lateral loads, unsymmetrical vertical loads, or unsymmetrical properties of the structure.

Sidesway buckling. Buckling mode of a multistory frame precipitated by the relative lateral displacements of joints, leading to failure by sidesway of the frame.
Shape Factor. Ratio of the plastic moment to the yield moment, $M_{p} / M_{y}$, also given by $Z / S$.
St. Venant torsion. Portion of the torsion in a member that induces only shear stresses in the member.

Strain hardening. Phenomenon wherein ductile steel, after undergoing considerable deformation at or just above yield point, exhibits the capacity to resist substantially higher loading than that which caused initial yielding.
Stub-column. A short compression test specimen utilizing the complete cross section, sufficiently long to provide a valid measure of the stress-strain relationship as averaged over the cross section, but short enough so that it will not buckle as a column in the elastic or plastic range.
Total building drift. Lateral frame deflection at the top of the most occupied floor divided by the height of the building to that level, $\Delta / H$.

Undercut. Notch resulting from the melting and removal of base metal at the edge of a weld.
Variable load. Load with substantial variation over time.
Warping torsion. Portion of the total resistance to torsion that is provided by resistance to warping of the cross section.

## CHAPTER A

## GENERAL PROVISIONS

## A1. SCOPE

The scope of this Specification is essentially the same as the 2010 Specification for Structural Steel Buildings (AISC, 2010) that it replaces.

The basic purpose of the provisions in this Specification is the determination of the nominal and available strengths of the members, connections and other components of steel building structures.

This Specification provides two methods of design:
(a) Load and Resistance Factor Design (LRFD): The nominal strength is multiplied by a resistance factor, $\phi$, resulting in the design strength, which is then required to equal or exceed the required strength determined by structural analysis for the appropriate LRFD load combinations specified by the applicable building code.
(b) Allowable Strength Design (ASD): The nominal strength is divided by a safety factor, $\Omega$, resulting in the allowable strength, which is then required to equal or exceed the required strength determined by structural analysis for the appropriate ASD load combinations specified by the applicable building code.

This Specification gives provisions for determining the values of the nominal strengths according to the applicable limit states and lists the corresponding values of the resistance factor, $\phi$, and the safety factor, $\Omega$. Nominal strength is usually defined in terms of resistance to a load effect, such as axial force, bending moment, shear or torque, but in some instances it is expressed in terms of a stress. The ASD safety factors are calibrated to give the same structural reliability and the same component size as the LRFD method at a live-to-dead load ratio of 3. The term available strength is used throughout the Specification to denote design strength and allowable strength, as applicable.

This Specification is applicable to both buildings and other structures. Many structures found in petrochemical plants, power plants, and other industrial applications are designed, fabricated and erected in a manner similar to buildings. It is not intended that this Specification address steel structures with vertical and lateral forceresisting systems that are not similar to buildings, nor those constructed of shells or catenary cables.

The Specification may be used for the design of structural steel elements, as defined in the AISC Code of Standard Practice for Steel Buildings and Bridges (AISC, 2016a), hereafter referred to as the Code of Standard Practice, when used as components of nonbuilding structures or other structures. Engineering judgment must be applied to the Specification requirements when the structural steel elements are exposed to environmental or service conditions and/or loads not usually applicable to building structures.

The Code of Standard Practice defines the practices that are the commonly accepted standards of custom and usage for structural steel fabrication and erection. As such, the Code of Standard Practice is primarily intended to serve as a contractual document to be incorporated into the contract between the buyer and seller of fabricated structural steel. Some parts of the Code of Standard Practice, however, form the basis for some of the provisions in this Specification. Therefore, the Code of Standard Practice is referenced in selected locations in this Specification to maintain the ties between these documents, where appropriate.

The Specification disallows seismic design of buildings and other structures using the provisions of Appendix 1, Section 1.3. The $R$-factor specified in ASCE/SEI 7-16 (ASCE 2016) used to determine the seismic loads is based on a nominal value of system overstrength and ductility that is inherent in steel structures designed by elastic analysis using this Specification. Therefore, it would be inappropriate to take advantage of the additional strength afforded by the inelastic design approach presented in Appendix 1, Section 1.3, while simultaneously using the code specified $R$-factor. In addition, the provisions for ductility in Appendix 1, Section 1.3.2, are not fully consistent with the intended levels for seismic design.

## A2. REFERENCED SPECIFICATIONS, CODES AND STANDARDS

Section A2 provides references to documents cited in this Specification. The date of the referenced document found in this Specification is the intended date referenced in this Commentary unless specifically indicated otherwise. Note that not all grades of a particular material specification are necessarily approved for use according to this Specification. For a list of approved materials and grades, see Section A3.

## A3. MATERIAL

## 1. Structural Steel Materials

## 1a. ASTM Designations

There are hundreds of steel materials and products. This Specification lists those products/materials that are commonly useful to structural engineers and those that have a history of satisfactory performance. Other materials may be suitable for specific applications, but the evaluation of those materials is the responsibility of the engineer specifying them. In addition to typical strength properties, considerations for materials may include, but are not limited to strength properties in transverse directions, ductility, formability, soundness, weldability including sensitivity to thermal cycles, notch toughness, and other forms of crack sensitivity, coatings, and corrosivity. Consideration for product form may include material considerations in addition to effects of production, tolerances, testing, reporting and surface profiles.

Hot-Rolled Structural Shapes. The grades of steel approved for use under this Specification, covered by ASTM Specifications, extend to a yield stress of 100 ksi (690 MPa). Some of the ASTM Specifications specify a minimum yield point, while others specify a minimum yield strength. The term "yield stress" is used in this Specification as a generic term to denote either the yield point or the yield strength.

It is important to be aware of limitations of availability that may exist for some combinations of strength and size. Not all structural section sizes are included in the various material specifications. For example, the $60-\mathrm{ksi}(415 \mathrm{MPa})$ yield stress steel in the ASTM A572/A572M Specification includes plate only up to $1^{1} / 4 \mathrm{in}$. ( 32 mm ) in thickness. Another limitation on availability is that even when a product is included in this Specification, it may be infrequently produced by the mills. Specifying these products may result in procurement delays or require ordering large quantities directly from the producing mills. Consequently, it is prudent to check availability before completing the details of a design. The AISC web site provides this information (www.aisc.org).

Properties in the direction of rolling are of principal interest in the design of steel structures. Hence, yield stress as determined by the standard tensile test is the principal mechanical property recognized in the selection of the steels approved for use under this Specification. It must be recognized that other mechanical and physical properties of rolled steel, such as anisotropy, ductility, notch toughness, formability, corrosion resistance, etc., may also be important to the satisfactory performance of a structure.

For rotary-straightened W-shapes, an area of reduced notch toughness has been documented in a limited region of the web immediately adjacent to the flange. Considerations in design and detailing that recognize this situation are presented in Chapter J.

It is not possible to incorporate in the Commentary adequate information to impart full understanding of all factors that might merit consideration in the selection and specification of materials for unique or especially demanding applications. In such a situation, the user of this Specification is advised to make use of reference material contained in the literature on the specific properties of concern and to specify supplementary material production or quality requirements as provided for in ASTM material specifications. One such case is the design of highly restrained welded connections (AISC, 1973). Rolled steel is anisotropic, especially insofar as ductility is concerned; therefore, weld contraction strains in the region of highly restrained welded connections may exceed the strength of the material if special attention is not given to material selection, details, workmanship and inspection.

Another special situation is that of fracture control design for certain types of service conditions (AASHTO, 2014). For especially demanding service conditions such as structures exposed to low temperatures, particularly those with impact loading, the specification of steels with superior notch toughness may be warranted. However, for most buildings, the steel is relatively warm, strain rates are essentially static, and the stress intensity and number of cycles of full design stress are low. Accordingly, the probability of fracture in most building structures is low. Good workmanship and good design details incorporating joint geometry that avoids severe stress concentrations are generally the most effective means of providing fracture-resistant construction.

TABLE C-A3.1			
Minimum Tensile Properties of HSS Steels			
Specification	Grade	$F_{\boldsymbol{y}}$, ksi (MPa)	$F_{u}$, ksi (MPa)
ASTM A53/A53M	B	$35(240)$	$60(415)$
ASTM A500/A500M   (round)	B	$42(290)$	$58(400)$
ASTM A500/A500M   (rectangular)	C	$46(315)$	$62(425)$
ASTM A501/A501M	B	$46(315)$	$58(400)$
	C	$50(345)$	$62(425)$
ASTM A618/A618M	A	$36(250)$	$58(400)$
(round)	B	$50(345)$	$70(485)$
ASTM A847/A847M	I and II	$50(345)$	$70(485)$
CAN/CSA-G40.20/G40.21	$t \leq w$, in. (MPa))	$50(345)$	$65(450)$
ASTM A1085/A1085M	III	-	$50(345)$
$70(485)$			
ASTM A1065/A1065M	-	$51(350)$	$65(450)$

Hollow Structural Sections (HSS). Specified minimum tensile properties are summarized in Table C-A3.1 for various HSS material specifications and grades. ASTM A53/A53M Grade B is a pipe specification included as an approved HSS material specification because it is the most readily available round product in the United States. Other North American HSS products that have properties and characteristics that are similar to the approved ASTM products are produced in Canada under the General Requirements for Rolled or Welded Structural Quality Steel (CSA, 2013). In addition, pipe is produced to other specifications that meet the strength, ductility and weldability requirements of the materials in Section A3, but may have additional requirements for notch toughness or pressure testing. As stated in the preamble to Section A3.1, for materials not specifically listed in Section A3, evidence of conformity to the specified ASTM specification must be shown.

Round HSS can be readily obtained in ASTM A53/A53M material and ASTM A500/ A500M Grade C is also common. For rectangular HSS, ASTM A500/A500M Grade C is the most commonly available material and a special order would be required for any other material. Depending upon size, either welded or seamless round HSS can be obtained. In North America, however, all ASTM A500/A500M rectangular HSS for structural purposes are welded. Rectangular HSS differ from box sections in that they have uniform thickness, except for some thickening in the rounded corners.

Nominal strengths of direct welded T-, Y- and K-connections of HSS have been developed analytically and empirically. Connection deformation is anticipated and is an acceptance limit for connection tests. Ductility is necessary to achieve the expected deformations. The ratio of the specified minimum yield strength to the specified minimum tensile strength (yield/tensile ratio) is one measure of material ductility. Materials in HSS used in connection tests have had a yield/tensile ratio of up to 0.80 and therefore that ratio has been adopted as a limit of applicability for direct welded HSS connections. ASTM A500/A500M Grade A material does not meet this ductility "limit of applicability" for direct connections in Chapter K. ASTM A500/A500M Grade C has a yield/tensile ratio of 0.807 but it is reasonable to use the rounding method described in ASTM E29 and find this material acceptable for use.

Even though ASTM A501/A501M includes rectangular HSS, hot-formed rectangular HSS are not currently produced in the United States. The General Requirements for Rolled or Welded Structural Quality Steel (CSA, 2013) includes Class C (coldformed) and Class H (cold-formed and stress relieved) HSS. Class H HSS have relatively low levels of residual stress, which enhances their performance in compression and may provide better ductility in the corners of rectangular HSS.

API 5L (API, 2012) is a line pipe specification that has some mechanical characteristics that make it advantageous in specific structural applications, such as in long span roofs with long unbraced lengths or large composite columns in heavy unbraced frames. Note, however, that Section A3.1 states, for materials not specifically listed in Section A3, evidence of conformity to the specified ASTM Specification must be shown. The specified minimum yield strength of API 5L ranges from 25 to 80 ksi ( 170 to 550 MPa ) and specified minimum tensile strength ranges from 45 to 90 ksi ( 310 to 620 MPa ), depending on product specification level and material grade. For Grades X42 and higher, additional elements may be used upon agreement between the purchaser and the manufacturer; however, care should be exercised in determining the alloying content for any given size and wall thickness of pipe, because the addition of such otherwise desirable elements may affect the weldability of the pipe. PSL2 pipe is a common structural choice and Grade X52 is probably the most common grade for structural purposes. Some pertinent mechanical and geometric properties for PSL2 X52N are: $F_{y}=52 \mathrm{ksi}(360 \mathrm{MPa}) ; F_{u}=66 \mathrm{ksi}(460 \mathrm{MPa})$; Toughness $=20 \mathrm{ft}-\mathrm{lb} @ 32^{\circ} \mathrm{F}\left(27 \mathrm{~J} @ 0^{\circ} \mathrm{C}\right)$ for $D \leq 30 \mathrm{in}$. ( 760 mm ); a wall thickness lower tolerance of $-10 \%$ for ${ }^{3} / 16 \mathrm{in} .<t<{ }^{19} / 32$ in. ( $5 \mathrm{~mm}<t<15 \mathrm{~mm}$ ), and -0.02 in. $(-0.5 \mathrm{~mm})$ for $t<3 / 16 \mathrm{in}$. $(t<5 \mathrm{~mm})$; a mass or area tolerance of $-3.5 \%$ for regular plain-ended. With a diameter range from ${ }^{13} / 32$ in. to 84 in . ( 10 mm to 2100 mm ), this high-quality pipe material addresses a frequent need for either large diameter or thick-walled round hollow sections. Other special features of PSL2 pipe are an upper bound on the yield strength [e.g., for X52 the minimum and maximum yield strengths are $52 \mathrm{ksi}(360 \mathrm{MPa})$ and $76 \mathrm{ksi}(530 \mathrm{MPa})$, respectively], and a maximum yield-totensile stress ratio of 0.93 in the as-delivered pipe [for $D>12.75 \mathrm{in}$. $(320 \mathrm{~mm})$ ].

## 1c. Rolled Heavy Shapes

The web-to-flange intersection and the web center of heavy hot-rolled shapes, as well as the interior portions of heavy plates, may contain a more coarse grain structure and/or lower notch toughness material than other areas of these products. This is probably caused by ingot segregation, the somewhat lesser deformation during hot rolling, higher finishing temperature, and the slower cooling rate after rolling for these heavy sections. This characteristic is not detrimental to suitability for compression members or for nonwelded members. However, when heavy cross sections are joined by splices or connections using complete-joint-penetration groove welds that extend through the coarser and/or lower notch-tough interior portions, tensile strains induced by weld shrinkage may result in cracking. An example is a complete-joint-penetration groove welded connection of a heavy cross-section beam to any column section. When members of lesser thickness are joined by complete-joint-penetration groove welds, which induce smaller weld shrinkage strains, to the finer grained and/or more notch-tough surface material of ASTM A6/A6M shapes and heavy built-up cross sections, the potential for cracking is significantly lower. An example is a complete-joint-penetration groove welded connection of a nonheavy cross-section beam to a heavy cross-section column.

For critical applications, such as primary tension members, material should be specified to provide adequate notch toughness at service temperatures. Because of differences in the strain rate between the Charpy V-notch (CVN) impact test and the strain rate experienced in actual structures, the CVN test is conducted at a temperature higher than the anticipated service temperature for the structure. The location of the CVN test specimens ("alternate core location") is specified in ASTM A6/A6M, Supplemental Requirement S30.

The notch toughness requirements of Section A3.1c are intended only to provide material of reasonable notch toughness for ordinary service applications. For unusual applications and/or low temperature service, more restrictive requirements and/or notch toughness requirements for other section sizes and thicknesses may be appropriate. To minimize the potential for fracture, the notch toughness requirements of Section A3.1c must be used in conjunction with good design and fabrication procedures. Specific requirements are given in Sections J1.5, J1.6, J2.6 and J2.7.

## 2. Steel Castings and Forgings

Design and fabrication of cast and forged steel components are not covered in this Specification.

Steel Castings. There are a number of ASTM Specifications for steel castings. The Steel Founders' Society of America (SFSA) Steel Castings Handbook (SFSA, 1995) discusses a number of standards useful for steel structures. In addition to the requirements of this Specification, SFSA recommends that various other requirements be considered for cast steel products. Continued quality assurance is critical to ensure confidence in the cast product. This includes testing of first article components as
well as production testing. It may be appropriate to inspect the first piece cast using magnetic particle inspection (MPI) in accordance with ASTM E125, degree 1a, b or c (ASTM, 2013a). Radiographic inspection level III may be desirable for the first piece cast. Ultrasonic testing (UT) in compliance with ASTM A609/A609M (ASTM, 2012b) may be appropriate for the first cast piece over 6 in . ( 150 mm ) thick. UT and MPI of production castings are also advisable. Design approval, sample approval, periodic nondestructive testing, chemical testing, and selection of the correct welding specification should be among the issues defined in the selection and procurement of cast steel products. Refer to SFSA (1995) for design information about cast steel products. For visual examination, refer to ASTM A802/A802M (ASTM, 2015d); for magnetic particle and liquid penetrant surface and subsurface examination, refer to ASTM A903/A903M (ASTM, 2012a); for radiographic examination, refer to ASTM E1030/E1030M (ASTM, 2015e); and for ultrasonic examination, refer to ASTM A609/A609M (ASTM, 2012b). ASTM A958/A958M is a cast steel used in the Kaiser Bolted Bracket Moment Connection, a prequalified moment connection in ANSI/AISC 358 (AISC, 2016c), but it may also be specified in some nonseismic applications. Additional information about cast steels can be found in the Steel Castings Handbook, Supplement 2 (SFSA, 2009).

Steel Forgings. There are a number of ASTM specifications for steel forgings. The Forging Industry Association's Forging Industry Handbook (FIA, 1985) discusses some typical forging issues, but more detailed information can be obtained at www.forging.org. Steel forgings should conform to ASTM A668/A668M and the related ASTM testing requirements. UT should be in compliance with ASTM A388/A388M (ASTM, 2016) and MPI in accordance with ASTM A275/A275M. Many of the frequently used structural forgings are catalog items for which the testing has been established. For custom forgings, the frequency and type of testing required should be established to conform to ASTM requirements.

## 3. Bolts, Washers and Nuts

ASTM F3125 is an umbrella specification that covers what were ASTM A325/ A325M, A490/A490M, F1852, and F2280 fasteners. These previously separate standards have been unified, coordinated, and made consistent with each other, turning them into Grades of ASTM F3125. From the user perspective, not much has changed, as the head marks remain the same, and handling and installation remain the same. Nevertheless, the specifier should be aware that ASTM F3125 now contains Grade A325, A325M, A490, A490M, F1852 and F2280 fasteners. One change of note is that under F3125, Grade A325 and A325M fasteners are uniformly 120 ksi (830 MPa ); Grade A325 and A325M had a drop in strength to $105 \mathrm{ksi}(725 \mathrm{MPa}$ ) for diameters over one inch ( 25 mm ) in previous standards.

The ASTM standard specification for A307 bolts covers two grades of fasteners. Either grade may be used under this Specification; however, it should be noted that Grade B is intended for pipe-flange bolting and Grade A is the grade long in use for structural applications.

## 4. Anchor Rods and Threaded Rods

ASTM F1554 is the primary specification for anchor rods. Since there is a limit on the maximum available length of structural bolts, the attempt to use these bolts for anchor rods with design lengths longer than the maximum available lengths has presented problems in the past. The inclusion of ASTM A449 and A354 materials in this Specification allows the use of higher strength material for bolts longer than structural bolts.

The engineer of record should specify the required strength for threaded rods used as load-carrying members.

## 5. Consumables for Welding

The AWS filler metal specifications listed in Section A3.5 are general specifications that include filler metal classifications suitable for building construction, as well as classifications that may not be suitable for building construction. Structural Welding Code—Steel (AWS D1.1/D1.1M) (AWS, 2015) Table 3.2 lists the various electrodes that may be used for prequalified welding procedure specifications, for the various steels that are to be joined. This list specifically does not include various classifications of filler metals that are not suitable for structural steel applications. Filler metals listed under the various AWS A5 filler metal specifications may or may not have specified notch toughness properties, depending on the specific electrode classification. Section J2.6 identifies certain welded joints where notch toughness of filler metal is needed in building construction. There may be other situations where the engineer of record may elect to specify the use of filler metals with specified notch toughness properties, such as for structures subject to high loading rate, cyclic loading, or seismic loading. Since AWS D1.1/D1.1M does not automatically require that the filler metal used have specified notch toughness properties, it is important that filler metals used for such applications be of an AWS classification, where such properties are required. This information can be found in the various AWS filler metal specifications and is often contained on the filler metal manufacturer's certificate of conformance or product specification sheets.

When specifying filler metal and/or flux by AWS designation, the applicable standard specifications should be carefully reviewed to assure a complete understanding of the designation reference. This is necessary because the AWS designation systems are not consistent. For example, in the case of electrodes for shielded metal arc welding, AWS A5.1/A5.1M, Specification for Carbon Steel Electrodes for Shielded Metal Arc Welding (AWS, 2012), the first two or three digits indicate the nominal tensile strength classification, in ksi, of the filler metal and the final two digits indicate the type of coating. For metric designations, the first two digits times 10 indicate the nominal tensile strength classification in MPa. In the case of mild steel electrodes for submerged arc welding, AWS A5.17/A5.17M, Specification for Carbon Steel Electrodes and Fluxes for Submerged Arc Welding (AWS, 2007), the first one or two digits times 10 indicate the nominal tensile strength classification for both U.S. customary and metric units, while the final digit or digits times 10 indicate the testing
temperature in ${ }^{\circ} \mathrm{F}$, for filler metal impact tests. In the case of low-alloy steel covered arc welding electrodes, AWS A5.5/A5.5M, Specification for Low-Alloy Steel Electrodes for Shielded Metal Arc Welding (AWS, 2014), certain portions of the designation indicate a requirement for stress relief, while others indicate no stress relief requirement.

Engineers do not, in general, specify the exact filler metal to be employed on a particular structure. Rather, the decision as to which welding process and which filler metal is to be utilized is usually left with the fabricator or erector. Codes restrict the usage of certain filler materials, or impose qualification testing to prove the suitability of the specific electrode, so as to make certain that the proper filler metals are used.

## A4. STRUCTURAL DESIGN DRAWINGS AND SPECIFICATIONS

The abbreviated list of requirements in this Specification is intended to be compatible with and a summary of the more extensive requirements in the Code of Standard Practice Section 3. The user should refer there for further information.

## CHAPTER B <br> DESIGN REQUIREMENTS

## B1. GENERAL PROVISIONS

This Specification is meant to be primarily applicable to the common types of building frames with gravity loads carried by beams and girders and lateral loads carried by moment frames, braced frames or shear walls. However, there are many unusual buildings or building-like structures for which this Specification is also applicable. Rather than attempt to establish the purview of the Specification with an exhaustive classification of construction types, Section B1 requires that the design of members and their connections be consistent with the intended use of the structure and the assumptions made in the analysis of the structure.

Section B1 widens the purview of this Specification to a class of construction types broader than those addressed in previous editions of the Specification. Section B1 recognizes that a structural system is a combination of members connected in such a way that the structure can respond in different ways to meet different design objectives under different loads. Even within the purview of ordinary buildings, there can be enormous variety in the design details.

Previous to the 2005 edition, the Specification contained a section entitled "Types of Construction"; for example, Section A2 in the 1999 Load and Resistance Factor Design Specification for Structural Steel Buildings (AISC, 2000b). In this Specification there is no such section and the requirements related to "types of construction" have been divided between Section B1, Section B3.4 and Section J1.

## B2. LOADS AND LOAD COMBINATIONS

The loads, load combinations and nominal loads for use with this Specification are given in the applicable building code. In the absence of an applicable specific local, regional or national building code, the loads (for example, $D, L, L_{r}, S, R, W$ and $E$ ), load factors, load combinations and nominal loads (numeric values for $D, L$ and other loads) are as specified in Minimum Design Loads and Associated Criteria for Buildings and Other Structures, ASCE/SEI 7 (ASCE, 2016). This edition of ASCE/SEI 7 has adopted many of the seismic design provisions of the NEHRP Recommended Seismic Provisions for New Buildings and Other Structures (BSSC, 2015), as have the AISC Seismic Provisions for Structural Steel Buildings (AISC, 2016b). The reader is referred to the commentaries of these documents for an expanded discussion on loads, load factors and seismic design.

This Specification is based on strength limit states that apply to structural steel design in general. The Specification permits design for strength using either load and resistance factor design (LRFD) or allowable strength design (ASD). It should be noted that the terms strength and stress reflect whether the appropriate section property has
been applied in the calculation of the available strength. In most instances, the Specification uses strength rather than stress. In all cases it is a simple matter to recast the provisions into a stress format. The terminology used to describe load combinations in ASCE/SEI 7 is somewhat different from that used by this Specification. ASCE/SEI 7 Section 2.3 defines Combining Factored Loads Using Strength Design; these combinations are applicable to design using the LRFD approach. ASCE/SEI 7 Section 2.4 defines Combining Nominal Loads Using Allowable Stress Design; these combinations are applicable to design using the ASD load approach.

LRFD Load Combinations. If the LRFD approach is selected, the load combination requirements are defined in ASCE/SEI 7 Section 2.3.

The load combinations in ASCE/SEI 7 Section 2.3 are based on modern probabilistic load modeling and a comprehensive survey of reliabilities inherent in traditional design practice (Galambos et al., 1982; Ellingwood et al., 1982). These load combinations utilize a "principal action-companion action format," which is based on the notion that the maximum combined load effect occurs when one of the time-varying loads takes on its maximum lifetime value (principal action) while the other variable loads are at "arbitrary point-in-time" values (companion actions), the latter being loads that would be measured in a load survey at any arbitrary time. The dead load, which is considered to be permanent, is the same for all combinations in which the load effects are additive. Research has shown that this approach to load combination analysis is consistent with the manner in which loads actually combine on structural elements and systems in situations in which strength limit states may be approached. The load factors reflect uncertainty in individual load magnitudes and in the analysis that transforms load to load effect. The nominal loads in ASCE/SEI 7 are substantially in excess of the arbitrary point-in-time values. The basis for the LRFD load combinations can be found in the Commentary to ASCE/SEI 7 Section 2.3.

The return period associated with earthquake loads was revised in both the 2003 and 2009 editions of the NEHRP Recommended Seismic Provisions for New Buildings and Other Structures (BSSC, 2003, 2009). In the 2009 edition, adopted as the basis for ASCE/SEI 7-10 (ASCE, 2010), the earthquake loads at most locations are intended to produce a collapse probability of $1 \%$ in a 50 year period, a performance objective that is achieved by requiring that the probability of incipient collapse, given the occurrence of the Maximum Considered Earthquake (MCE), is less than 10\%. At some sites in regions of high seismic activity, where high intensity events occur frequently, deterministic limits on the ground motion result in somewhat higher collapse probabilities. The Commentary to Chapter 1 of ASCE/SEI 7 provides information on the intended maximum probability of structural failure under earthquake and other loads.

Load combinations of ASCE/SEI 7 Section 2.3, which apply specifically to cases in which the structural actions due to lateral forces and gravity loads counteract one another and the dead load stabilizes the structure, incorporate a load factor on dead load of 0.9 .

ASD Load Combinations. If the ASD approach is selected, the load combination requirements are defined in ASCE/SEI 7 Section 2.4.

The load combinations in ASCE/SEI 7 Section 2.4 are similar to those traditionally used in allowable stress design. In ASD, safety is provided by the safety factor, $\Omega$, and the nominal loads in the basic combinations involving gravity loads, earth pressure or fluid pressure are not factored. The reduction in the combined time-varying load effect in combinations incorporating wind or earthquake load is achieved by the load combination factor 0.75 . This load combination factor dates back to the 1972 edition of ANSI Standard A58.1 (ANSI, 1972), the predecessor of ASCE/SEI 7. It should be noted that in ASCE/SEI 7, the 0.75 factor applies only to combinations of variable loads; it is irrational to reduce the dead load because it is always present and does not fluctuate with time. It should also be noted that certain ASD load combinations may actually result in a higher required strength than similar load combinations for LRFD. Load combinations that apply specifically to cases in which the structural actions due to lateral forces and gravity loads counteract one another, where the dead load stabilizes the structure, incorporate a load factor on dead load of 0.6 . This eliminates a deficiency in the traditional treatment of counteracting loads in ASD and emphasizes the importance of checking stability. The earthquake load effect is multiplied by 0.7 in applicable combinations involving that load to align ASD for earthquake effects with the definition of $E$ in the sections of ASCE/SEI 7 defining seismic load effects and combinations.

The load combinations in Sections 2.3 and 2.4 of ASCE/SEI 7 apply to design for strength limit states. They do not account for gross error or negligence. Loads and load combinations for nonbuilding structures and other structures may be defined in ASCE/SEI 7 or other applicable industry standards and practices.

## B3. DESIGN BASIS

As stated in this Specification: "design shall be based on the principle that no applicable strength or serviceability limit state shall be exceeded when the structure is subjected to load from all appropriate load combinations."

A limit state is a condition in which a structural system or component becomes unfit for its intended purpose (serviceability limit state), or has reached its ultimate loadcarrying capacity (strength limit state). Limit states may be dictated by functional requirements, such as maximum deflections or drift; they may be related to structural behavior, such as the formation of a plastic hinge or mechanism; or they may represent the collapse of the whole or part of the structure, such as by instability or fracture. The design provisions in this Specification ensure that the probability of exceeding a limit state is acceptably small by stipulating the combination of load factors, resistance or safety factors, nominal loads, and nominal strengths consistent with the design assumptions.

Two kinds of limit states apply to structures: (a) strength limit states, which define safety against local or overall failure conditions during the intended life of the structure; and (b) serviceability limit states, which define functional requirements. This Specification, like other structural design codes, focuses primarily on strength limit states because of overriding considerations of public safety. This does not mean that limit states of serviceability (see Chapter L) are not important to the designer, who
must provide for functional performance and economy of design. However, serviceability considerations permit more exercise of judgment on the part of the designer.

Load and resistance factor design (LRFD) and allowable strength design (ASD) are distinct methods for satisfying strength limit states. They are equally acceptable by this Specification, but their provisions are not interchangeable. Indiscriminate use of combinations of the two methods could result in unpredictable performance or unsafe design. Thus, the LRFD and ASD methods are specified as alternatives. There are, however, circumstances in which the two methods could be used in the design, modification or renovation of a structural system without conflict, such as providing modifications to a structural floor system of an older building after assessing the asbuilt conditions.

Strength limit states vary from element to element, and several limit states may apply to a given element. The most common strength limit states are yielding, buckling and rupture. The most common serviceability limit states include deflections or drift, and vibrations.

## 1. Design for Strength Using Load and Resistance Factor Design (LRFD)

Design for strength by LRFD is performed in accordance with Equation B3-1. The left side of Equation B3-1, $R_{u}$, represents the required strength computed by structural analysis based on load combinations stipulated in ASCE/SEI 7 Section 2.3 (or their equivalent) (ASCE, 2016), while the right side, $\phi R_{n}$, represents the limiting structural resistance, or design strength, provided by the member or element.

The resistance factor, $\phi$, in this Specification is equal to or less than 1.00. When compared to the nominal strength, $R_{n}$, computed according to the methods given in Chapters D through K, a $\phi$ of less than 1.00 accounts for approximations in the theory and variations in mechanical properties and dimensions of members and frames. For limit states where $\phi=1.00$, the nominal strength is judged to be sufficiently conservative when compared to the actual strength that no reduction is needed.

The LRFD provisions are based on (1) probabilistic models of loads and resistance, (2) a calibration of the LRFD provisions to the 1978 edition of the ASD Specification for selected members (AISC, 1978), and (3) the evaluation of the resulting provisions by judgment and past experience aided by comparative design office studies of representative structures.

In the probabilistic basis for LRFD (Ravindra and Galambos, 1978; Ellingwood et al., 1982), the load effects, $Q$, and the resistances, $R$, are modeled as statistically independent random variables. In Figure C-B3.1, relative frequency distributions for $Q$ and $R$ are portrayed as separate curves on a common plot for a hypothetical case. As long as the resistance, $R$, is greater than (to the right of) the effects of the loads, $Q$, a margin of safety for the particular limit state exists. However, because $Q$ and $R$ are random variables, there is a small probability that $R$ may be less than $Q$. The probability of this limit state is related to the degree of overlap of the frequency distributions in Figure C-B3.1, which depends on the positioning of their mean values ( $R_{m}$ versus $Q_{m}$ ) and their dispersions.

The probability that $R$ is less than $Q$ depends on the distributions of the many variables (material, loads, etc.) that determine resistance and total load effect. Often, only the means and the standard deviations or coefficients of variation of the variables involved in the determination of $R$ and $Q$ can be estimated. However, this information is sufficient to build an approximate design provision that is independent of the knowledge of these distributions, by stipulating the following design condition:

$$
\begin{equation*}
\beta \sqrt{V_{R}^{2}+V_{Q}^{2}} \leq \ln \left(R_{m} / Q_{m}\right) \tag{C-B3-1}
\end{equation*}
$$

where
$R_{m}=$ mean value of the resistance, $R$
$Q_{m}=$ mean value of the load effect, $Q$
$V_{R}=$ coefficient of variation of the resistance, $R$
$V_{Q}=$ coefficient of variation of the load effect, $Q$

For structural elements and the usual loading, $R_{m}, Q_{m}$, and the coefficients of variation, $V_{R}$ and $V_{Q}$, can be estimated, so a calculation of

$$
\begin{equation*}
\beta=\frac{\ln \left(R_{m} / Q_{m}\right)}{\sqrt{V_{R}^{2}+V_{Q}^{2}}} \tag{C-B3-2}
\end{equation*}
$$

will give a comparative measure of reliability of a structure or component. The parameter $\beta$ is denoted the reliability index. Extensions to the determination of $\beta$ in Equation C-B3-2 to accommodate additional probabilistic information and more complex design situations are described in Ellingwood et al. (1982) and have been used in the development of the recommended load combinations in ASCE/SEI 7.

The original studies that determined the statistical properties (mean values and coefficients of variation) for the basic material properties and for steel beams, columns, composite beams, plate girders, beam-columns and connection elements that were used to develop the LRFD provisions are presented in a series of eight articles in the September 1978 issue of the Journal of the Structural Division (ASCE, 1978). The


Fig. C-B3.1. Frequency distribution of load effect, Q, and resistance, R.
corresponding load statistics are given in Galambos et al. (1982). Based on these statistics, the values of $\beta$ inherent in the 1978 Specification for the Design, Fabrication, and Erection of Structural Steel for Buildings (AISC, 1978) were evaluated under different load combinations (live/dead, wind/dead, etc.) and for various tributary areas for typical members (beams, columns, beam-columns, structural components, etc.). As might be expected, there was a considerable variation in the range of $\beta$-values. For example, compact rolled beams (flexure) and tension members (yielding) had $\beta$-values that decreased from about 3.1 at $L / D=0.50$ to 2.4 at $L / D=4$. This decrease is a result of ASD applying the same factor to dead load, which is relatively predictable, and live load, which is more variable. For bolted or welded connections, $\beta$ was in the range of 4 to 5 .

The variation in $\beta$ that was inherent to ASD is reduced substantially in LRFD by specifying several target $\beta$-values and selecting load and resistance factors to meet these targets. The Committee on Specifications set the point at which LRFD is calibrated to ASD at $L / D=3.0$ for braced compact beams in flexure and tension members at yield. The resistance factor, $\phi$, for these limit states is 0.90 , and the implied $\beta$ is approximately 2.6 for members and 4.0 for connections. The larger $\beta$-value for connections reflects the complexity in modeling their behavior, effects of workmanship, and the benefit provided by additional strength. Limit states for other members are handled similarly.

The databases on steel strength used in previous editions of the LRFD Specification (AISC, 1986, 1993, 2000b) were based mainly on research conducted prior to 1970. An important recent study of the material properties of structural shapes (Bartlett et al., 2003) reflected changes in steel production methods and steel materials that have occurred over the past 15 years. This study indicated that the new steel material characteristics did not warrant changes in the $\phi$-values.

## 2. Design for Strength Using Allowable Strength Design (ASD)

The ASD method is provided in this Specification as an alternative to LRFD for use by engineers who prefer to deal with ASD load combinations and allowable stresses in the traditional ASD format. The term "allowable strength" has been introduced to emphasize that the basic equations of structural mechanics that underlie the provisions are the same for LRFD and ASD.

Traditional ASD is based on the concept that the maximum stress in a component shall not exceed a specified allowable stress under normal service conditions. The load effects are determined on the basis of an elastic analysis of the structure, while the allowable stress is the limiting stress (at yielding, instability, rupture, etc.) divided by a safety factor. The magnitude of the safety factor and the resulting allowable stress depend on the particular governing limit state against which the design must produce a certain margin of safety. For any single element, there may be a number of different allowable stresses that must be checked.

The safety factor in traditional ASD provisions was a function of both the material and the component being considered. It may have been influenced by factors such as member length, member behavior, load source, and anticipated quality of workmanship. The traditional safety factors were based solely on experience and have remained unchanged for over 50 years. Although ASD-designed structures have performed adequately over the years, the actual level of safety provided was never known. This was a principal drawback of the traditional ASD approach. An illustration of typical performance data is provided in Bjorhovde (1978), where theoretical and actual safety factors for columns are examined.

Design for strength by ASD is performed in accordance with Equation B3-2. The ASD method provided in the Specification recognizes that the controlling modes of failure are the same for structures designed by ASD and LRFD. Thus, the nominal strength that forms the foundation of LRFD is the same nominal strength that provides the foundation for ASD. When considering available strength, the only difference between the two methods is the resistance factor in LRFD, $\phi$, and the safety factor in ASD, $\Omega$.

In developing appropriate values of $\Omega$ for use in this Specification, the aim was to ensure similar levels of safety and reliability for the two methods. A straightforward approach for relating the resistance factor and the safety factor was developed. As already mentioned, the original LRFD Specification (AISC, 1986) was calibrated to the 1978 ASD Specification (AISC, 1978) at a live load-to-dead load ratio of 3. Thus, by equating the designs for the two methods at a ratio of live-to-dead load of 3 , the relationship between $\phi$ and $\Omega$ can be determined. Using the live plus dead load combinations, with $L=3 D$, yields the following relationships.

For design according to Section B3.1 (LRFD)

$$
\begin{gather*}
\phi R_{n}=1.2 D+1.6 L=1.2 D+1.6(3 D)=6 D  \tag{C-B3-3}\\
R_{n}=\frac{6 D}{\phi}
\end{gather*}
$$

For design according to Section B3.2 (ASD)

$$
\begin{gather*}
\frac{R_{n}}{\Omega}=D+L=D+3 D=4 D  \tag{C-B3-4}\\
R_{n}=\Omega(4 D)
\end{gather*}
$$

Equating $R_{n}$ from the LRFD and ASD formulations and solving for $\Omega$ yields

$$
\begin{equation*}
\Omega=\frac{6 D}{\phi}\left(\frac{1}{4 D}\right)=\frac{1.5}{\phi} \tag{C-B3-5}
\end{equation*}
$$

Throughout this Specification, the values of $\Omega$ were obtained from the values of $\phi$ by Equation C-B3-5.

## 3. Required Strength

This Specification permits the use of elastic or inelastic, which includes plastic, structural analysis. Generally, design is performed by elastic analysis. Provisions for inelastic and plastic analysis are given in Appendix 1. The required strength is determined by the appropriate methods of structural analysis.

In some circumstances, as in the proportioning of stability bracing members that carry no calculated forces (see, for example, Appendix 6), the required strength is explicitly stated in this Specification.

A beam that is reliably restrained at one or both ends by connection to other members or by a support will have reserve capacity past yielding at the point with the greatest moment predicted by an elastic analysis. The additional capacity is the result of inelastic redistribution of moments. This Specification bases the design of the member on providing a resisting moment greater than the demand represented by the greatest moment predicted by the elastic analysis. This approach ignores the reserve capacity associated with inelastic redistribution. The $10 \%$ reduction of the greatest moment, predicted by elastic analysis with the accompanying $10 \%$ increase in the moment on the reverse side of the moment diagram, is an attempt to account approximately for this reserve capacity.

This adjustment is appropriate only for cases where the inelastic redistribution of moments is possible. For statically determinate spans (e.g., beams that are simply supported at both ends or for cantilevers), redistribution is not possible; therefore, the adjustment is not allowable in these cases. Members with fixed ends or beams continuous over a support can sustain redistribution. Members with cross sections that are unable to accommodate the inelastic rotation associated with the redistribution (e.g., because of local buckling) are also not permitted to use this redistribution. Thus, only compact sections qualify for redistribution in this Specification.

An inelastic analysis will automatically account for any redistribution. Therefore, the redistribution of moments only applies to moments computed from an elastic analysis.

The $10 \%$ reduction rule applies only to beams. Inelastic redistribution is possible in more complicated structures, but the $10 \%$ amount is only verified, at present, for beams. For other structures, the provisions of Appendix 1 should be used.

## 4. Design of Connections and Supports

This section provides the charging language for Chapter J and Chapter K on the design of connections and supports. Chapter J covers the proportioning of the individual elements of a connection (angles, welds, bolts, etc.) once the load effects on the connection are known. According to the provisions of this section, the modeling assumptions associated with the structural analysis must be consistent with the conditions used in Chapter J to proportion the connecting elements.

In many situations, it is not necessary to include the connection elements as part of the analysis of the structural system. For example, simple and fully restrained (FR) connections may often be idealized as pinned or fixed, respectively, for the purposes of structural analysis. Once the analysis has been completed, the deformations or forces computed at the joints may be used to proportion the connection elements. The classifications of FR and simple connections are meant to justify these idealizations for analysis with the provision that if, for example, one assumes a connection to be FR for the purposes of analysis, the actual connection must meet the FR conditions. In other words, it must have adequate strength and stiffness, as described in the provisions and discussed in the following.

In certain cases, the deformation of the connection elements affects the way the structure resists load and hence the connections must be included in the analysis of the structural system. These connections are referred to as partially restrained (PR) moment connections. For structures with PR connections, the connection flexibility must be estimated and included in the structural analysis, as described in the following sections. Once the analysis is complete, the load effects and deformations computed for the connection can be used to check the adequacy of the connecting elements.

For simple and FR connections, the connection proportions are established after the final analysis of the structural design is completed, thereby greatly simplifying the design cycle. In contrast, the design of PR connections (like member selection) is inherently iterative because one must assume values of the connection proportions in order to establish the force-deformation characteristics of the connection needed to perform the structural analysis. The life-cycle performance characteristics must also be considered. The adequacy of the assumed proportions of the connection elements can be verified once the outcome of the structural analysis is known. If the connection elements are inadequate, then the values must be revised and the structural analysis repeated. The potential benefits of using PR connections for various types of framing systems are discussed in the literature referenced in the following.

Connection Classification. The basic assumption made in classifying connections is that the most important behavioral characteristics of the connection can be modeled by a moment-rotation ( $M-\theta$ ) curve. Figure C-B3.2 shows a typical $M-\theta$ curve. Implicit in the moment-rotation curve is the definition of the connection as being a region of the column and beam along with the connecting elements. The connection response is defined this way because the rotation of the member in a physical test is generally measured over a length that incorporates the contributions of not only the connecting elements, but also the ends of the members being connected and the column panel zone.

Examples of connection classification schemes include those in Bjorhovde et al. (1990) and Eurocode 3 (CEN, 2005a). These classifications account directly for the stiffness, strength and ductility of the connections.

Connection Stiffness. Because the nonlinear behavior of the connection manifests itself even at low moment-rotation levels, the initial stiffness of the connection, $K_{i}$, (shown in Figure C-B3.2) does not adequately characterize connection response at service levels. Furthermore, many connection types do not exhibit a reliable initial stiffness, or it exists only for a very small moment-rotation range. The secant stiffness, $K_{s}$, at service loads is taken as an index property of connection stiffness. Specifically,

$$
\begin{equation*}
K_{s}=M_{s} / \theta_{s} \tag{C-B3-6}
\end{equation*}
$$

where
$M_{s}=$ moment at service loads, kip-in. (N-mm)
$\theta_{s}=$ rotation at service loads, rad

In the following discussion, $L$ and $E I$ are the length and bending rigidity, respectively, of the beam.

If $K_{s} L / E I \geq 20$, it is acceptable to consider the connection to be fully restrained (in other words, able to maintain the angles between members). If $K_{s} L / E I \leq 2$, it is acceptable to consider the connection to be simple (in other words, it rotates without developing moment). Connections with stiffnesses between these two limits are partially restrained and the stiffness, strength and ductility of the connection must be considered in the design (Leon, 1994). Examples of FR, PR and simple connection response curves are shown in Figure C-B3.3. The points marked $\theta_{s}$ indicate the service load states for the example connections and thereby define the secant stiffnesses for those connections.


Fig. C-B3.2. Definition of stiffness, strength and ductility characteristics of the moment-rotation response of a partially restrained connection.

Connection Strength. The strength of a connection is the maximum moment that it is capable of carrying, $M_{n}$, as shown in Figure C-B3.2. The strength of a connection can be determined on the basis of an ultimate limit-state model of the connection, or from physical tests. If the moment-rotation response does not exhibit a peak load then the strength can be taken as the moment at a rotation of 0.02 rad (Hsieh and Deierlein, 1991; Leon et al., 1996).

It is also useful to define a lower limit on strength below which the connection may be treated as a simple connection. Connections that transmit less than $20 \%$ of the fully plastic moment of the beam at a rotation of 0.02 rad may be considered to have no flexural strength for design. However, it should be recognized that the aggregate strength of many weak connections can be important when compared to that of a few strong connections (FEMA, 1997).

In Figure C-B3.3, the points marked $M_{n}$ indicate the maximum strength states of the example connections. The points marked $\theta_{u}$ indicate the maximum rotation states of the example connections. Note that it is possible for an FR connection to have a strength less than the strength of the beam. It is also possible for a PR connection to have a strength greater than the strength of the beam. The strength of the connection must be adequate to resist the moment demands implied by the design loads.

Connection Ductility. If the connection strength substantially exceeds the fully plastic moment strength of the beam, then the ductility of the structural system is controlled by the beam and the connection can be considered elastic. If the connection strength


Fig. C-B3.3. Classification of moment-rotation response of fully restrained (FR), partially restrained $(P R)$, and simple connections.
only marginally exceeds the fully plastic moment strength of the beam, then the connection may experience substantial inelastic deformation before the beam reaches its full strength. If the beam strength exceeds the connection strength, then deformations can concentrate in the connection. The ductility required of a connection will depend upon the particular application. For example, the ductility requirement for a braced frame in a nonseismic area will generally be less than the ductility required in a high seismic area. The rotation ductility requirements for seismic design depend upon the structural system (AISC, 2016b).

In Figure C-B3.2, the rotation capacity, $\theta_{u}$, can be defined as the value of the connection rotation at the point where either (a) the resisting strength of the connection has dropped to $0.8 M_{n}$ or (b) the connection has deformed beyond 0.03 rad . This second criterion is intended to apply to connections where there is no loss in strength until very large rotations occur. It is not prudent to rely on these large rotations in design.

The available rotation capacity, $\theta_{u}$, should be compared with the rotation required at the strength limit state, as determined by an analysis that takes into account the nonlinear behavior of the connection. (Note that for design by ASD, the rotation required at the strength limit state should be assessed using analyses conducted at 1.6 times the ASD load combinations.) In the absence of an accurate analysis, a rotation capacity of 0.03 rad is considered adequate. This rotation is equal to the minimum beam-tocolumn connection capacity as specified in the seismic provisions for special moment frames (AISC, 2016b). Many types of PR connections, such as top and seatangle connections, meet this criterion.

Structural Analysis and Design. When a connection is classified as PR, the relevant response characteristics of the connection must be included in the analysis of the structure to determine the member and connection forces, displacements, and the frame stability. Therefore, PR construction requires, first, that the moment-rotation characteristics of the connection be known and, second, that these characteristics be incorporated in the analysis and member design.

Typical moment-rotation curves for many PR connections are available from one of several databases (Goverdhan, 1983; Ang and Morris, 1984; Nethercot, 1985; Kishi and Chen, 1986). Care should be exercised when utilizing tabulated moment-rotation curves not to extrapolate to sizes or conditions beyond those used to develop the database because other failure modes may control (ASCE, 1997). When the connections to be modeled do not fall within the range of the databases, it may be possible to determine the response characteristics from tests, simple component modeling, or finite element studies (FEMA, 1995). Examples of procedures to model connection behavior are given in the literature (Bjorhovde et al., 1988; Chen and Lui, 1991; Bjorhovde et al., 1992; Lorenz et al., 1993; Chen and Toma, 1994; Chen et al., 1995; Bjorhovde et al., 1996; Leon et al., 1996; Leon and Easterling, 2002; Bijlaard et al., 2005; Bjorhovde et al., 2008).

The degree of sophistication of the analysis depends on the problem at hand. Design for PR construction usually requires separate analyses for the serviceability and strength limit states. For serviceability, an analysis using linear springs with a stiffness given by $K_{S}$ (see Figure C-B3.2) is sufficient if the resistance demanded of the connection is well below the strength. When subjected to strength load combinations, a procedure is needed whereby the characteristics assumed in the analysis are consistent with those of the connection response. The response is especially nonlinear as the applied moment approaches the connection strength. In particular, the effect of the connection nonlinearity on second-order moments and other stability checks needs to be considered (ASCE, 1997). The use of the direct analysis method with PR connections has been demonstrated (Surovek et al., 2005; White and Goverdhan, 2008).

## 5. Design of Diaphragms and Collectors

This section provides charging language for the design of structural steel components (members and their connections) of diaphragms and collector systems.

Diaphragms transfer in-plane lateral loads to the lateral force-resisting system. Typical diaphragm elements in a building structure are the floor and roof systems, which accumulate lateral forces due to gravity, wind and/or seismic loads, and distribute these forces to individual elements (braced frames, moment frames, shear walls, etc.) of the vertically oriented lateral force-resisting system of the building structure. Collectors (also known as drag struts) are often used to collect and deliver diaphragm forces to the lateral force-resisting system.

Diaphragms are classified into one of three categories: rigid, semi-rigid or flexible. Rigid diaphragms distribute the in-plane forces to the lateral force-resisting system with negligible in-plane deformation of the diaphragm. A rigid diaphragm may be assumed to distribute the lateral loads in proportion to the relative stiffness of the individual elements of the lateral force-resisting system. A semi-rigid diaphragm distributes the lateral loads in proportion to the in-plane stiffness of the diaphragm and the relative stiffness of the individual elements of the lateral force-resisting system. The in-plane stiffness of a flexible diaphragm is negligible compared to the stiffness of the lateral force-resisting system and, therefore, the distribution of lateral forces is independent of the relative stiffness of the individual elements of the lateral forceresisting system. In this case, the distribution of lateral forces may be computed in a manner analogous to a series of simple beams spanning between the lateral forceresisting system elements.

Diaphragms should be designed for the shear, moment and axial forces resulting from the design loads. The diaphragm response may be considered analogous to a deep beam where the flanges (often referred to as chords of the diaphragm) develop tension and compression forces, and the web resists the shear. The component elements of the diaphragm need to have strength and deformation capacity consistent with assumptions and intended behavior.

## 6. Design of Anchorages to Concrete

This section provides the charging language for Chapter I and Chapter J on design of anchorages to concrete.

## 7. Design for Stability

This section provides the charging language for Chapter C on design for stability.

## 8. Design for Serviceability

This section provides the charging language for Chapter L on design for serviceability.

## 9. Design for Structural Integrity

This section provides the minimum connection design criteria for satisfying structural integrity requirements where required by the applicable building code. Section 1615 of the International Building Code (ICC, 2015) assigns structural integrity requirements to high-rise buildings in risk category III or IV, which means that the number of buildings to which this requirement currently applies is limited.

Evaluation of built structures that have been subjected to extraordinary events indicates that structures that have a higher level of connectivity perform better than those that do not. The intent of the integrity requirements is to achieve this improved connectivity by limiting the possibility of a connection failure when it is subjected to unanticipated tension forces. The forces can result from a wide range of events such as cool-down after a fire, failure of adjacent structural members, and blast or impact loads on columns. The Specification integrity checks are similar in principle to those defined in other model codes and international codes which have provided good historical performance (Geschwindner and Gustafson, 2010). The fundamental aspect of the integrity requirement is that it is a connection design requirement only and is not a design force applied to any part of the structure other than the connection itself. In addition, the forces determined for the integrity check are not to be combined with any other forces and the integrity connection design check is to be conducted separately. The structural integrity requirements are a detailing requirement for the connection and not a load or force applied to the structure.

Section B3.9(a) provides the nominal tensile strength for column splices. The intent of this requirement is to provide a minimum splice capacity for the resistance of unanticipated forces. This requirement is based on the assumption that two floors are supported by the splice. Any live load reduction should be the same as that used for the design of the connections of the floor members framing to the column. The tension design force should be distributed reasonably uniformly between the flanges and web so that some bending and shear capacity is provided in addition to the tension capacity. A load path for this tension force does not need to be provided.

Section B3.9(b) provides the minimum nominal axial tensile strength of the end connection of beams that frame to girders and also for beams or girders that frame to columns. Geschwindner and Gustafson (2010) have shown that single-plate connections designed to resist shear according to this Specification will satisfy this requirement. Since inelastic deformation is permitted for the integrity check, it is
expected that most other framed connections, such as double-angle connections, can be shown to satisfy this requirement through nonlinear analysis or yield line analysis. The forces determined in this section are to be applied to only the connection design itself and are not to be included in the member design. In particular, checking the local bending of column and beam webs induced by the tension is not required by this section.

Section B3.9(c) provides the minimum nominal tensile force to brace columns. Maintaining column bracing is one of the fundamental principles for providing structural integrity. Since column bracing elements are usually much lighter than the column, extraordinary events have more potential to affect the bracing member or the slab surrounding the column than the column itself. This is the reason that the steel connection itself is required to provide the bracing force. The assumption is that the extraordinary event has compromised the ability of the column to be braced by the slab or by one of the beams framing to the column. This tensile bracing force requirement is to be applied separately from other bracing requirements, as specified in Appendix 6. Note that the requirements of this section will usually govern for the lower stories of high-rise buildings, whereas Section B3.9(a) will govern in most other situations.

Although the integrity requirements need be applied only when required by code, they should be considered for any building where improved structural performance under undefined extraordinary events is desired. For structures that have a defined extraordinary load, reference should be made to ASCE/SEI 7. For structures that are required to be designed to resist progressive (disproportionate) collapse, reference should be made to the ASCE/SEI 7 Commentary.

## 10. Design for Ponding

As used in this Specification, ponding refers to the retention of water due solely to the deflection of flat roof framing. The amount of accumulated water is dependent on the stiffness of the framing. Unbounded incremental deflections due to the incremental increase in retained water can result in the collapse of the roof. The problem becomes catastrophic when more water causes more deflection, resulting in more room for more water until the roof collapses.

Previous editions of this Specification suggested that ponding instability could be avoided by providing a minimum roof slope of $1 / 4 \mathrm{in}$. per $\mathrm{ft}(20 \mathrm{~mm}$ per meter). There are cases where this minimum roof slope is not enough to prevent ponding instability (Fisher and Pugh, 2007). This edition of the Specification requires that design for ponding be considered if water is impounded on the roof, irrespective of roof slope. Camber and deflections due to loads acting concurrently with rain loads must be considered in establishing the initial conditions.

Determination of ponding stability is typically done by structural analysis where the rain loads are increased by the incremental deflections of the framing system to the accumulated rain water, assuming the primary roof drains are blocked.

Detailed provisions and design aids for determining ponding stability and strength are given in Appendix 2.

## 11. Design for Fatigue

This section provides the charging language for Appendix 3 on design for fatigue.

## 12. Design for Fire Conditions

This section provides the charging language for Appendix 4 on structural design for fire resistance. Qualification testing is an acceptable alternative to design by analysis for providing fire resistance. Qualification testing is addressed in ASCE/SEI/SFPE Standard 29 (ASCE, 2008), ASTM E1 19 (ASTM, 2009b), and similar documents.

## 13. Design for Corrosion Effects

Steel members may deteriorate in some service environments. This deterioration may appear either as external corrosion, which would be visible upon inspection, or in undetected changes that would reduce member strength. The designer should recognize these problems by either factoring a specific amount of tolerance for damage into the design or providing adequate protection (for example, coatings or cathodic protection) and/or planned maintenance programs so that such problems do not occur.

Because the interior of an HSS is difficult to inspect, some concern has been expressed regarding internal corrosion. However, good design practice can eliminate the concern and the need for expensive protection. Corrosion occurs in the presence of oxygen and water. In an enclosed building, it is improbable that there would be sufficient reintroduction of moisture to cause severe corrosion. Therefore, internal corrosion protection is a consideration only in HSS exposed to weather.

In a sealed HSS, internal corrosion cannot progress beyond the point where the oxygen or moisture necessary for chemical oxidation is consumed (AISI, 1970). The oxidation depth is insignificant when the corrosion process must stop, even when a corrosive atmosphere exists at the time of sealing. If fine openings exist at connections, moisture and air can enter the HSS through capillary action or by aspiration due to the partial vacuum that is created if the HSS is cooled rapidly (Blodgett, 1967). This can be prevented by providing pressure-equalizing holes in locations that make it impossible for water to flow into the HSS by gravity.

Situations where conservative practice would recommend an internal protective coating include (a) open HSS where changes in the air volume by ventilation or direct flow of water is possible, and (b) open HSS subject to a temperature gradient that would cause condensation.

HSS that are filled or partially filled with concrete should not be sealed. In the event of fire, water in the concrete will vaporize and may create pressure sufficient to burst a sealed HSS. Care should be taken to keep water from remaining in the HSS during or after construction, since the expansion caused by freezing can create pressure that is sufficient to burst an HSS.

Galvanized HSS assemblies should not be completely sealed because rapid pressure changes during the galvanizing process tend to burst sealed assemblies.

## B4. MEMBER PROPERTIES

## 1. Classification of Sections for Local Buckling

Cross sections with a limiting width-to-thickness ratio, $\lambda$, greater than those provided in Table B4.1 are subject to local buckling limit states. Since the 2010 AISC Specification (AISC, 2010), Table B4.1 has been separated into two parts: B4.1a for compression members and B4.1b for flexural members. Separation of Table B4.1 into two parts reflects the fact that compression members are only categorized as either slender or nonslender, while flexural members may be slender, noncompact or compact. In addition, separation of Table B4.1 into two parts clarifies ambiguities in $\lambda_{r}$. The width-to-thickness ratio, $\lambda_{r}$, may be different for columns and beams, even for the same element in a cross section, reflecting both the underlying stress state of the connected elements and the different design methodologies between columns (Chapter E and Appendix 1) and beams (Chapter F and Appendix 1).

Limiting Width-to-Thickness Ratios for Compression Elements in Members Subject to Axial Compression. Compression members containing any elements with width-to-thickness ratios greater than $\lambda_{r}$ provided in Table B4.1a are designated as slender and are subject to the local buckling reductions detailed in Section E7. Nonslender compression members (all elements having width-to-thickness ratio $\leq \lambda_{r}$ ) are not subject to local buckling reductions.

Flanges of Built-Up I-Shaped Sections. In the 1993 Load and Resistance Factor Design Specification for Structural Steel Buildings (AISC, 1993), for built-up I-shaped sections under axial compression (Case 2 in Table B4.1a), modifications were made to the flange local buckling criterion to include web-flange interaction. The $k_{c}$ in the $\lambda_{r}$ limit is the same as that used for flexural members. Theory indicates that the web-flange interaction in axial compression is at least as severe as in flexure. Rolled shapes are excluded from this provision because there are no standard sections with proportions where the interaction would occur at commonly available yield stresses. In built-up sections where the interaction causes a reduction in the flange local buckling strength, it is likely that the web is also a thin stiffened element. The $k_{c}$ factor accounts for the interaction of flange and web local buckling demonstrated in experiments reported in Johnson (1985). The maximum limit of 0.76 corresponds to $F_{c r}=0.69 E / \lambda^{2}$, which was used as the local buckling strength in earlier editions of both the ASD and LRFD Specifications. An $h / t_{w}=27.5$ is required to reach $k_{c}=0.76$. Fully fixed restraint for an unstiffened compression element corresponds to $k_{c}=1.3$ while zero restraint gives $k_{c}=0.42$. Because of web-flange interactions, it is possible to get $k_{c}<0.42$ from the $k_{c}$ formula. If $h / t_{w}>5.70 \sqrt{E / F_{y}}$, use $h / t_{w}=5.70 \sqrt{E / F_{y}}$ in the $k_{c}$ equation, which corresponds to the 0.35 limit.

Rectangular HSS in Compression. The limits for rectangular HSS walls in uniform compression (Case 6 in Table B4.1a) have been used in AISC Specifications since 1969 (AISC, 1969). They are based on Winter (1968), where adjacent stiffened compression elements in box sections of uniform thickness were observed to provide negligible torsional restraint for one another along their corner edges.

Round HSS in Compression. The $\lambda_{r}$ limit for round HSS in compression (Case 9 in Table B4.1a) was first used in the 1978 Specification for the Design, Fabrication, and Erection of Structural Steel for Buildings (AISC, 1978). It was recommended in Schilling (1965) based upon research reported in Winter (1968). Excluding the use of round HSS with $D / t>0.45 E / F_{y}$ was also recommended in Schilling (1965). This is implied in Sections E7 and F8 where no criteria are given for round HSS with $D / t$ greater than this limit.

Limiting Width-to-Thickness Ratios for Compression Elements in Members Subject to Flexure. Flexural members containing compression elements, all with width-to-thickness ratios less than or equal to $\lambda_{p}$ as provided in Table B4.1b, are designated as compact. Compact sections are capable of developing a fully plastic stress distribution and they possess a rotation capacity, $R_{\text {cap }}$, of approximately 3 (see Figure C-A-1.2) before the onset of local buckling (Yura et al., 1978). Flexural members containing any compression element with width-to-thickness ratios greater than $\lambda_{p}$, but still with all compression elements having width-to-thickness ratios less than or equal to $\lambda_{r}$, are designated as noncompact. Noncompact sections can develop partial yielding in compression elements before local buckling occurs, but will not resist inelastic local buckling at the strain levels required for a fully plastic stress distribution. Flexural members containing any compression elements with width-to-thickness ratios greater than $\lambda_{r}$ are designated as slender. Slender-element sections have one or more compression elements that will buckle elastically before the yield stress is achieved. Noncompact and slender-element sections are subject to flange local buckling and/or web local buckling reductions as provided in Chapter F and summarized in Table User Note F1.1, or in Appendix 1.

The values of the limiting ratios, $\lambda_{p}$ and $\lambda_{r}$, specified in Table B4.1b are similar to those in the 1989 Specification for Structural Steel Buildings-Allowable Stress Design and Plastic Design (AISC, 1989) and Table 2.3.3.3 of Galambos (1978), except that $\lambda_{p}=0.38 \sqrt{E / F_{y}}$, limited in Galambos (1978) to determinate beams and to indeterminate beams when moments are determined by elastic analysis, was adopted for all conditions on the basis of Yura et al. (1978). For greater inelastic rotation capacities than provided by the limiting value of $\lambda_{p}$ given in Table B4.1b, and/or for structures in areas of high seismicity, see Chapter D and Table D1.1 of the AISC Seismic Provisions for Structural Steel Buildings (AISC, 2016b).

Webs in Flexure. In the 2010 Specification for Structural Steel Buildings (AISC, 2010), formulas for $\lambda_{p}$ were added as Case 16 in Table B4.1b for I-shaped beams with unequal flanges based on White (2008). In extreme cases where the plastic neutral axis is located in the compression flange, $h_{p}=0$ and the web is considered to be compact.
Rectangular HSS in Flexure. The $\lambda_{p}$ limit for compact sections is adopted from Limit States Design of Steel Structures (CSA, 2009). Lower values of $\lambda_{p}$ are specified for high-seismic design in the AISC Seismic Provisions for Structural Steel Buildings (AISC, 2016b) based upon tests (Lui and Goel, 1987) that have shown that rectangular HSS braces subjected to reversed axial load fracture catastrophically under relatively few cycles if a local buckle forms. This was confirmed in tests (Sherman,

1995a) where rectangular HSS braces sustained over 500 cycles when a local buckle did not form, even though general column buckling had occurred, but failed in less than 40 cycles when a local buckle developed. Since 2005, the $\lambda_{p}$ limit for webs in rectangular HSS flexural members (Case 19 in Table B4.1b) has been reduced from $\lambda_{p}=3.76 \sqrt{E / F_{y}}$ to $\lambda_{p}=2.42 \sqrt{E / F_{y}}$ based on the work of Wilkinson and Hancock (1998, 2002).

Box Sections in Flexure. In the 2016 Specification, box sections are defined separately from rectangular HSS. Thus, Case 21 has been added to Table B4.1b for flanges of box sections and box sections have been included in Case 19 for webs.

Round HSS in Flexure. The $\lambda_{p}$ values for round HSS in flexure (Case 20, Table B4.1b) are based on Sherman (1976), Sherman and Tanavde (1984), and Ziemian (2010). Beyond this, the local buckling strength decreases rapidly, making it impractical to use these sections in building construction.

## 2. Design Wall Thickness for HSS

ASTM A500/A500M tolerances allow for a wall thickness that is not greater than $\pm 10 \%$ of the nominal value. Because the plate and strip from which these HSS are made are produced to a much smaller thickness tolerance, manufacturers in the consistently produce these HSS with a wall thickness that is near the lower-bound wall thickness limit. Consequently, AISC and the Steel Tube Institute of North America (STI) recommend that 0.93 times the nominal wall thickness be used for calculations involving engineering design properties of these HSS. This results in a weight (mass) variation that is similar to that found in other structural shapes. The design wall thickness and section properties based upon this reduced thickness have been tabulated in AISC and STI publications since 1997.

Two new HSS material standards have been added to the 2016 Specification. ASTM A1085/A1085M is a standard in which the wall thickness is permitted to be no more than $5 \%$ under the nominal thickness and the mass is permitted to be no more than $3.5 \%$ under the nominal mass. This is in addition to a Charpy V-notch toughness limit and a limit on the range of yield strength that makes A1085/A1085M suitable for seismic applications. With these tolerances, the design wall thickness may be taken as the nominal thickness of the HSS. Other acceptable HSS products that do not have the same thickness and mass tolerances must still use the design thickness as 0.93 times the nominal thickness as discussed previously.

The other new material standard is ASTM A1065/A1065M. These HSS are produced by cold-forming two C-shaped sections and joining them with two electric-fusion seam welds to form a square or rectangular HSS. These sections are available in larger sizes than those produced in a tube mill. Since the thickness meets plate tolerance limits, the design wall thickness may be taken as the nominal thickness. In previous Specifications, they were classified as box sections because they were not produced according to an ASTM standard. With the new ASTM A1065/1065M standard, they are included as acceptable HSS and the term box section is used for sections made by corner welding four plates to form a hollow box.

## 3. Gross and Net Area Determination

## 3a. Gross Area

Gross area is the total area of the cross section without deductions for holes or ineffective portions of elements subject to local buckling.

## 3b. Net Area

The net area is based on net width and load transfer at a particular chain. Because of possible damage around a hole during drilling or punching operations, $1 / 16 \mathrm{in}$. ( 2 mm ) is added to the nominal hole diameter when computing the net area.

## B5. FABRICATION AND ERECTION

Section B5 provides the charging language for Chapter M on fabrication and erection.

## B6. QUALITY CONTROL AND QUALITY ASSURANCE

Section B6 provides the charging language for Chapter N on quality control and quality assurance.

## B7. EVALUATION OF EXISTING STRUCTURES

Section B7 provides the charging language for Appendix 5 on the evaluation of existing structures.

## CHAPTER C

## DESIGN FOR STABILITY

Design for stability is the combination of analysis to determine the required strengths of components and proportioning of components to have adequate available strengths. Various methods are available to provide for stability (Ziemian, 2010).

Chapter C addresses the stability design requirements for steel buildings and other structures. It is based upon the direct analysis method, which can be used in all cases. The effective length method and first-order analysis method are addressed in Appendix 7 as alternative methods of design for stability, and may be used when the limits in Appendix 7, Sections 7.2.1 and 7.3.1, respectively, are satisfied. A complete discussion of each of these methods, along with example problems, may be found in AISC Design Guide 28, Stability Design of Steel Buildings (Griffis and White, 2013). Other approaches are permitted provided the general requirements in Section C1 are satisfied. For example, Appendix 1 provides logical extensions to the direct analysis method, in which design provisions are provided for explicitly modeling member imperfections and/or inelasticity. First-order elastic structural analysis without stiffness reductions for inelasticity is not sufficient to assess stability because the analysis and the equations for component strengths are inextricably interdependent.

## C1. GENERAL STABILITY REQUIREMENTS

There are many parameters and behavioral effects that influence the stability of steelframed structures (Birnstiel and Iffland, 1980; McGuire, 1992; White and Chen, 1993; ASCE, 1997; Ziemian, 2010). The stability of structures and individual elements must be considered from the standpoint of the structure as a whole, including not only compression members, but also beams, bracing systems and connections.

Stiffness requirements for control of seismic drift are included in many building codes that prohibit sidesway amplification, $\Delta_{2 n d-\text { order }} / \Delta_{1 s t-\text { order }}$ or $B_{2}$, calculated with nominal stiffness, from exceeding approximately 1.5 to 1.6 (ICC, 2015). This limit usually is well within the more general recommendation that sidesway amplification, calculated with reduced stiffness, should be equal to or less than 2.5. The latter recommendation is made because at larger levels of amplification, small changes in gravity loads and/or structural stiffness can result in relatively larger changes in sidesway deflections and second-order effects, due to large geometric nonlinearities.

Table C-C1.1 shows how the five general requirements provided in Section C1 are addressed in the direct analysis method (Sections C2 and C3) and the effective length method (Appendix 7, Section 7.2). The first-order analysis method (Appendix 7, Section 7.3) is not included in Table C-C1.1 because it addresses these requirements in an indirect manner using a mathematical manipulation of the direct analysis method. The additional lateral load required in Appendix 7, Section 7.3.2(a) is calibrated to achieve roughly the same result as the collective effects of notional loads

# TABLE C-C1.1 <br> Comparison of Basic Stability Requirements with Specific Provisions 

| Basic Requirement in Section C1 |  |
| :--- | :--- | :--- | :--- |$\quad$| $\begin{array}{c}\text { Provision in Direct } \\ \text { Analysis Method } \\ \text { (DM) }\end{array}$ |
| :--- | \(\left.\begin{array}{l}Provision in Effective <br>

Length Method <br>
(ELM)\end{array}\right]\)
[a] In typical building structures, the "joint-position imperfections" refers to column out-of-plumbness.
[b] Second-order effects may be considered either by a computational $P-\Delta$ and $P-\delta$ analysis or by the approximate method (using $B_{1}$ and $B_{2}$ multipliers) specified in Appendix 8.
required in Section C2.2b, $P-\Delta$ effects required in Section C2.1(b), and the stiffness reduction required in Section C2.3. Additionally, a $B_{1}$ multiplier addresses $P$ - $\delta$ effects as defined in Appendix 8, Section 8.2.1.

In the 2010 AISC Specification (AISC, 2010), uncertainties in stiffness and strength was added to the list of effects that should be considered when designing for stability. Although all methods detailed in this Specification, including the direct analysis
method, the effective length method, and the first-order elastic method, satisfy this requirement, the effect is listed to ensure that it is included, along with the original four other effects, when any other rational method of designing for stability is employed.

## C2. CALCULATION OF REQUIRED STRENGTHS

Analysis to determine required strengths in accordance with this Section and the assessment of member and connection available strengths in accordance with Section C3 form the basis of the direct analysis method of design for stability. This method is useful for the stability design of all structural steel systems, including moment frames, braced frames, shear walls, and combinations of these and similar systems (AISC-SSRC, 2003a). While the precise formulation of this method is unique to the AISC Specification, some of its features are similar to those found in other major design specifications around the world, including the Eurocodes, the Australian standard, the Canadian standard, and ACI 318 (ACI, 2014).

The direct analysis method allows a more accurate determination of the load effects in the structure through the inclusion of the effects of geometric imperfections and stiffness reductions directly within the structural analysis. This also allows the use of $K=1.0$ in calculating the in-plane column strength, $P_{c}$, within the beam-column interaction equations of Chapter H. This is a significant simplification in the design of steel moment frames and combined systems. Verification studies for the direct analysis method are provided by Deierlein et al. (2002), Maleck and White (2003), and Martinez-Garcia and Ziemian (2006).

## 1. General Analysis Requirements

Deformations to be Considered in the Analysis. It is required that the analysis consider flexural, shear and axial deformations, and all other component and connection deformations that contribute to the displacement of the structure. However, it is important to note that "consider" is not synonymous with "include," and some deformations can be neglected after rational consideration of their likely effect. For example, the in-plane deformation of a concrete-on-steel deck floor diaphragm in an office building usually can be neglected, but that of a cold-formed steel roof deck in a large warehouse with widely spaced lateral force-resisting elements usually cannot. As another example, shear deformations in beams and columns in a low-rise moment frame usually can be neglected, but this may not be true in a high-rise framed-tube system with relatively deep members and short spans. For such frames, the use of rigid offsets to account for member depths may significantly overestimate frame stiffness and consequently underestimate second-order effects due to high shear stresses within the panel zone of the connections. For example, Charney and Johnson (1986) found that for the range of columns and beam sizes they studied the deflections of a subassembly modeled using centerline dimensions could vary from an overestimation of $23 \%$ to an underestimation of $20 \%$ when compared to a finite element model. Charney and Johnson conclude that analysis based on centerline dimensions may either underestimate or overestimate drift, with results depending on the span of the girder and on the web thickness of the column.

Second-Order Effects. The direct analysis method includes the basic requirement to calculate the internal load effects using a second-order analysis that accounts for both $P-\Delta$ and $P-\delta$ effects (see Figure C-C2.1). $P-\Delta$ effects are the effects of loads acting on the displaced location of joints or member-end nodes in a structure. $P-\delta$ effects are the effect of loads acting on the deflected shape of a member between joints or member-end nodes.

Many, but not all, modern commercial structural analysis programs are capable of accurately and directly modeling all significant $P-\Delta$ and $P-\delta$ second-order effects. Programs that accurately estimate second-order effects typically solve the governing differential equations either through the use of a geometric stiffness approach (McGuire et al., 2000; Ziemian, 2010) or the use of stability functions (Chen and Lui, 1987). What is, and just as importantly what is not, included in the analysis should be verified by the user for each particular program. Some programs neglect $P-\delta$ effects in the analysis of the structure, and because this is a common approximation that is permitted under certain conditions, it is discussed at the end of this section.

Methods that modify first-order analysis results through second-order multipliers are permitted. The use of the $B_{1}$ and $B_{2}$ multipliers provided in Appendix 8 is one such method. The accuracy of other methods should be verified.

Analysis Benchmark Problems. The following benchmark problems are recommended as a first-level check to determine whether an analysis procedure meets the requirements of a $P-\Delta$ and $P-\delta$ second-order analysis adequate for use in the direct analysis method (and the effective length method in Appendix 7). Some second-order analysis procedures may not include the effects of $P-\delta$ on the overall response of the structure. These benchmark problems are intended to reveal whether or not these effects are included in the analysis. It should be noted that in accordance with the requirements of Section C2.1(b), it is not always necessary to include $P-\delta$ effects in the second-order analysis (additional discussion of the consequences of neglecting these effects will follow).


Fig. C-C2.1. P- $\Delta$ and $\mathrm{P}-\delta$ effects in beam-columns.

The benchmark problem descriptions and solutions are shown in Figures C-C2.2 and C-C2.3. Proportional loading is assumed and axial, flexural and shear deformations are included. Case 1 is a simply supported beam-column subjected to an axial load concurrent with a uniformly distributed transverse load between supports. This problem contains only $P-\delta$ effects because there is no translation of one end of the member relative to the other. Case 2 is a fixed-base cantilevered beam-column subjected to an axial load concurrent with a lateral load at its top. This problem contains both $P-\Delta$ and $P-\delta$ effects. In confirming the accuracy of the analysis method, both moments and deflections should be checked at the locations shown for the various levels of axial load on the member and in all cases should agree within $3 \%$ and $5 \%$, respectively.


Major axis bending W14x48 (W360x72) $E=29,000 \mathrm{ksi}(200 \mathrm{GPa})$

Axial Force, $P$ (kips)	0	150	300	450
$M_{\text {mid }}$ (kip-in.)	235	270	316	380
	$[235]$	$[269]$	$[313]$	$[375]$
$\Delta_{\text {mid }}$ (in.)	0.202	0.230	0.269	0.322
	$[0.197]$	$[0.224]$	$[0.261]$	$[0.311]$


Axial Force, $P(\mathrm{kN})$	0	667	1334	2001
$M_{\text {mid }}(\mathrm{kN}-\mathrm{m})$	26.6	30.5	35.7	43.0
	$[26.6]$	$[30.4]$	$[35.4]$	$[42.4]$
$\Delta_{\text {mid }}(\mathrm{mm})$	5.13	5.86	6.84	8.21
	$[5.02]$	$[5.71]$	$[6.63]$	$[7.91]$

Analyses include axial, flexural and shear deformations. [Values in brackets] exclude shear deformations.

Fig. C-C2.2. Benchmark problem Case 1.


Axial Force, $P$ (kips)	0	100	150	200
$M_{\text {base }}$ (kip-in.)	336	470	601	856
	$[336]$	$[469]$	$[598]$	$[848]$
$\Delta_{\text {tip }}$ (in.)	0.907	1.34	1.77	2.60
	$[1.33]$	$[1.75]$	$[2.56]$	


Axial Force, $P(\mathrm{kN})$	0	445	667	890
$M_{\text {base }}(\mathrm{kN}-\mathrm{m})$	38.0	53.2	68.1	97.2
	$[38.0]$	$[53.1]$	$[67.7]$	$[96.2]$
$\Delta_{\text {tip }}(\mathrm{mm})$	23.1	34.2	45.1	66.6
	$[22.9]$	$[33.9]$	$[44.6]$	$[65.4]$

W14x48 (W360x72)
Analyses include axial, flexural and shear deformations. $E=29,000 \mathrm{ksi}(200 \mathrm{GPa})$
[Values in brackets] exclude shear deformations.

Fig. C-C2.3. Benchmark problem Case 2.

Given that there are many attributes that must be studied to confirm the accuracy of a given analysis method for routine use in the design of general framing systems, a wide range of benchmark problems should be employed. Several other targeted analysis benchmark problems can be found in Kaehler et al. (2010), Chen and Lui (1987), and McGuire et al. (2000). When using benchmark problems to assess the correctness of a second-order procedure, the details of the analysis used in the benchmark study, such as the number of elements used to represent the member and the numerical solution scheme employed, should be replicated in the analysis used to design the actual structure. Because the ratio of design load to elastic buckling load is a strong indicator of the influence of second-order effects, benchmark problems with such ratios on the order of 0.6 to 0.7 should be included.

Effect of Neglecting P- $\boldsymbol{\delta}$ A common type of approximate analysis is one that captures only $P-\Delta$ effects due to member end translations (for example, interstory drift) but fails to capture $P-\delta$ effects due to curvature of the member relative to its chord. This type of analysis is referred to as a $P-\Delta$ analysis. Where $P-\delta$ effects are significant, errors arise in approximate methods that do not accurately account for the effect of $P-\delta$ moments on amplification of both local ( $\delta$ ) and global ( $\Delta$ ) displacements and corresponding internal moments. These errors can occur both with second-order computer analysis programs and with the $B_{1}$ and $B_{2}$ amplifiers. For instance, the $R_{M}$ modifier in Equation A-8-7 is an adjustment factor that approximates the effects of $P-\delta$ (due to column curvature) on the overall sidesway displacements, $\Delta$, and the corresponding moments. For regular rectangular moment frames, a single-element-per-member $P-\Delta$ analysis is equivalent to using the $B_{2}$ amplifier of Equation A-8-6 with $R_{M}=1$, and hence, such an analysis neglects the effect of $P-\delta$ on the response of the structure.

Section C2.1(b) indicates that a $P$ - $\Delta$-only analysis (one that neglects the effect of $P-\delta$ deformations on the response of the structure) is permissible for typical building structures when the ratio of second-order drift to first-order drift is less than 1.7 and no more than one-third of the total gravity load on the building is on columns that are part of moment-resisting frames. The latter condition is equivalent to an $R_{M}$ value of 0.95 or greater. When these conditions are satisfied, the error in lateral displacement from a $P$ - $\Delta$-only analysis typically will be less than $3 \%$. However, when the $P-\delta$ effect in one or more members is large (corresponding to a $B_{1}$ multiplier of more than about 1.2), use of a $P$ - $\Delta$-only analysis may lead to larger errors in the nonsway moments in components connected to the high- $P-\delta$ members.

The engineer should be aware of this possible error before using a $P$ - $\Delta$-only analysis in such cases. For example, consider the evaluation of the fixed-base cantilevered beam-column shown in Figure C-C2.4 using the direct analysis method. The sidesway displacement amplification factor is 3.83 and the base moment amplifier is 3.32, giving $M_{u}=1,394 \mathrm{kip}-\mathrm{in}$. ( $158 \mathrm{kN}-\mathrm{m}$ ).

For the loads shown, the beam-column strength interaction according to Equation H1-1a is equal to 1.0. The sidesway displacement and base moment amplification determined by a single-element $P-\Delta$ analysis, which ignores the effect of $P-\delta$ on the response of the structure, is 2.55 , resulting in an estimated $M_{u}=1,070 \mathrm{kip}-\mathrm{in}$. ( 120 $\times 10^{6} \mathrm{~N}-\mathrm{mm}$ ) -an error of $23.2 \%$ relative to the more accurate value of $M_{u}$-and a beam-column interaction value of 0.91 .
$P-\delta$ effects can be captured in some (but not all) $P-\Delta$-only analysis methods by subdividing the members into multiple elements. For this example, three equal-length $P-\Delta$ analysis elements are required to reduce the errors in the second-order base moment and sidesway displacement to less than $3 \%$ and $5 \%$, respectively.

It should be noted that, in this case, the unconservative error that results from ignoring the effect of $P-\delta$ on the response of the structure is removed through the use of Equation A-8-8. For the loads shown in Figure C-C2.4, Equations A-8-6 and A-8-7 with $R_{M}=0.85$ gives a $B_{2}$ amplifier of 3.52 . This corresponds to $M_{u}=1,480 \mathrm{kip}-\mathrm{in}$. $\left(170 \times 10^{6} \mathrm{~N}-\mathrm{mm}\right)$ in the preceding example; approximately $6 \%$ over that determined from a computational second-order analysis that includes both $P-\Delta$ and $P-\delta$ effects.

For sway columns with nominally simply supported base conditions, the errors in the second-order internal moment and in the second-order displacements from a $P$ - $\Delta$-only analysis are generally smaller than $3 \%$ and $5 \%$, respectively, when $\alpha P_{r} / P_{e L} \leq 0.05$,
where

```
\(\alpha=1.0\) (LRFD)
 \(=1.6\) (ASD)
\(P_{e L}=\pi^{2} E I / L^{2}\) if the analysis uses nominal stiffness, kips (N)
 \(=0.8 \tau_{b} \pi^{2} E I / L^{2}\) if the analysis uses a flexural stiffness reduction of \(0.8 \tau_{b}\),
 kips (N)
\(P_{r}=\) required axial force, ASD or LRFD, kips (N)
```

For sway columns with rotational restraint at both ends of at least $1.5(E I / L)$ if the analysis uses nominal stiffness or $1.5\left(0.8 \tau_{b} E I / L\right)$ if the analysis uses a flexural stiffness reduction of $0.8 \tau_{b}$, the errors in the second-order internal moments and displacements from a $P$ - $\Delta$-only analysis are generally smaller than $3 \%$ and $5 \%$, respectively, when $\alpha P_{r} / P_{e L} \leq 0.12$.

$P_{u} / P_{y}=0.50, \tau=1.0$
$P_{u} / P_{y}=0.50, \tau=1.0$
$E=0.80 \tau(29,000 \mathrm{ksi})=23,200 \mathrm{ksi}(160 \mathrm{GPa})$
$E=0.80 \tau(29,000 \mathrm{ksi})=23,200 \mathrm{ksi}(160 \mathrm{GPa})$
$\mathrm{G}=E / 2(1+v)=8,920 \mathrm{ksi}(61.5 \mathrm{GPa})$
$\mathrm{G}=E / 2(1+v)=8,920 \mathrm{ksi}(61.5 \mathrm{GPa})$
Computational $P-\Delta$ and $P-\delta$ analysis:
Computational $P-\Delta$ and $P-\delta$ analysis:
$\Delta_{2 n d}=2.22 \mathrm{in} .(56.5 \mathrm{~mm})$
$\Delta_{2 n d}=2.22 \mathrm{in} .(56.5 \mathrm{~mm})$
$M_{u}=1,394 \mathrm{kip}-\mathrm{in} .(158 \mathrm{kN}-\mathrm{m})$
$M_{u}=1,394 \mathrm{kip}-\mathrm{in} .(158 \mathrm{kN}-\mathrm{m})$
$P_{u} / \phi_{c} P_{n}+(8 / 9)\left(M_{u} / \phi_{b} M_{n}\right)=1.00$
$P_{u} / \phi_{c} P_{n}+(8 / 9)\left(M_{u} / \phi_{b} M_{n}\right)=1.00$
Single-element $P-\Delta$ analysis:
Single-element $P-\Delta$ analysis:
$\Delta_{\text {1st }}=0.580 \mathrm{in} .(15 \mathrm{~mm})$
$\Delta_{\text {1st }}=0.580 \mathrm{in} .(15 \mathrm{~mm})$
$M_{1 s t}=H L=419 \mathrm{kip}-\mathrm{in} .(48 \mathrm{kN}-\mathrm{m})$
$M_{1 s t}=H L=419 \mathrm{kip}-\mathrm{in} .(48 \mathrm{kN}-\mathrm{m})$
$\frac{1}{1-\left[P_{u} /\left(H L / \Delta_{\text {ist }}\right)\right]}=2.55$
$\frac{1}{1-\left[P_{u} /\left(H L / \Delta_{\text {ist }}\right)\right]}=2.55$
$M_{u}^{P-\Delta}=2.55 M_{1 s t}=1,070$ kip-in. $(121 \mathrm{kN}-\mathrm{m})$
$M_{u}^{P-\Delta}=2.55 M_{1 s t}=1,070$ kip-in. $(121 \mathrm{kN}-\mathrm{m})$
$P_{u} / \phi_{c} P_{n}+(8 / 9)\left(M_{u}^{P-\Delta} / \phi_{b} M_{n}\right)=0.910$
$P_{u} / \phi_{c} P_{n}+(8 / 9)\left(M_{u}^{P-\Delta} / \phi_{b} M_{n}\right)=0.910$

Fig. C-C2.4. Illustration of potential errors associated with the use of a single-element-per-member P- $\Delta$ analysis.

For members subjected predominantly to nonsway end conditions, the errors in the second-order internal moments and displacements from a $P$ - $\Delta$-only analysis are generally smaller than $3 \%$ and $5 \%$, respectively, when $\alpha P_{r} / P_{e L} \leq 0.05$.

In meeting these limitations for use of a $P$ - $\Delta$-only analysis, it is important to note that in accordance with Section C2.1(b) the moments along the length of the member (i.e., the moments between the member-end nodal locations) should be amplified as necessary to include $P-\delta$ effects. One device for achieving this is the use of a $B_{1}$ factor.

Kaehler et al. (2010) provide further guidelines for the appropriate number of $P-\Delta$ analysis elements in cases where the $P$ - $\Delta$-only analysis limits are exceeded, as well as guidelines for calculating internal element second-order moments. They also provide relaxed guidelines for the number of elements required per member when using typical second-order analysis capabilities that include both $P-\Delta$ and $P-\delta$ effects.

As previously indicated, the engineer should verify the accuracy of second-order analysis software by comparisons to known solutions for a range of representative loadings. In addition to the examples presented in Chen and Lui (1987) and McGuire et al. (2000), Kaehler et al. (2010) provides five useful benchmark problems for testing second-order analysis of frames composed of prismatic members. In addition, they provide benchmarks for evaluation of second-order analysis capabilities for web-tapered members.

Analysis with Factored Loads. It is essential that the analysis of the system be made with loads factored to the strength limit state level because of the nonlinearity associated with second-order effects. For design by ASD, this load level is estimated as 1.6 times the ASD load combinations, and the analysis must be conducted at this elevated load to capture second-order effects at the strength level.

Because second-order effects are dependent on the ratios of applied loads and member forces to structural and member stiffnesses, equivalent results may be obtained by using 1.0 times ASD load combinations if all stiffnesses are reduced by a factor of 1.6 -i.e., using $0.5 E$ instead of $0.8 E$ in the second-order analysis (note that the use of $0.5 E$ is similar to the $12 / 23$ factor used in the definition of $F_{e}^{\prime}$ in earlier ASD Specifications). With this approach, required member strengths are provided directly by the analysis and do not have to be divided by 1.6 when evaluating member capacities using ASD design. Notional loads, $N_{i}$, would also be defined using 1.0 times ASD load combinations, i.e., $\alpha=1.0 . \tau_{b}$ would be redefined as $\tau_{b}=1.0$ when $P_{r} / P_{n s}$ $\leq 0.3$ and $\tau_{b}=4\left(P_{r} / 0.6 P_{n s}\right)\left(1-P_{r} / 0.6 P_{n s}\right)$ when $P_{r} / P_{n s}>0.3$. The stiffness of components comprised of other materials should be evaluated at design loads and reduced by the same 1.6 factor, although this may be overly conservative if these stiffnesses already include $\phi$ factors. Serviceability criteria may be assessed using $50 \%$ of the deflections from this analysis, although this will overestimate secondorder effects at service loads.

## 2. Consideration of Initial System Imperfections

Current stability design provisions are based on the premise that the member forces are calculated by second-order elastic analysis, where equilibrium is satisfied on the
deformed geometry of the structure. Initial imperfections in the structure, such as out-of-plumbness and material and fabrication tolerances, create additional destabilizing effects.

In the development and calibration of the direct analysis method, initial geometric imperfections are conservatively assumed equal to the maximum material, fabrication and erection tolerances permitted in the AISC Code of Standard Practice (AISC, 2016a): a member out-of-straightness equal to $L / 1,000$, where $L$ is the member length between brace or framing points, and a frame out-of-plumbness equal to $H / 500$, where $H$ is the story height. The permitted out-of-plumbness may be smaller in some cases, as specified in the AISC Code of Standard Practice.

Initial imperfections may be accounted for in the direct analysis method through direct modeling (Section C2.2a) or the inclusion of notional loads (Section C2.2b). When second-order effects are such that the maximum sidesway amplification $\Delta_{2 n d-\text { order }} / \Delta_{1 s t-\text { order }}$ or $B_{2} \leq 1.7$ using the reduced elastic stiffness (or 1.5 using the unreduced elastic stiffness) for all lateral load combinations, it is permitted to apply notional loads only in gravity load-only combinations and not in combination with other lateral loads. At this low range of sidesway amplification or $B_{2}$, the errors in internal forces caused by not applying the notional loads in combination with other lateral loads are relatively small. When $B_{2}$ is above this threshold, notional loads must also be applied in combination with other lateral loads.

In the 2016 AISC Specification, Appendix 1, Section 1.2 includes an extension to the direct analysis method that permits direct modeling of initial imperfections along the lengths of members (member imperfections) as well as at member ends (system imperfections). This extension permits axially loaded members (columns and beamcolumns according to Chapters E and H, respectively) to be designed by employing a nominal compressive strength that is taken as the cross-sectional strength; this is equivalent to the use of an effective member length, $L_{c}=0$, when computing the nominal compressive strength, $P_{n}$, of compression members.

The Specification requirements for consideration of initial imperfections are intended to apply only to analyses for strength limit states. It is not necessary, in most cases, to consider initial imperfections in analyses for serviceability conditions such as drift, deflection and vibration.

## 3. Adjustments to Stiffness

Partial yielding accentuated by residual stresses in members can produce a general softening of the structure at the strength limit state that further creates additional destabilizing effects. The direct analysis method is also calibrated against inelastic distributed-plasticity analyses that account for the spread of plasticity through the member cross section and along the member length. In these calibration studies, residual stresses in wide-flange shapes were assumed to have a maximum value of $0.3 F_{y}$ in compression at the flange tips, and a distribution matching the so-called Lehigh pattern - a linear variation across the flanges and uniform tension in the web (Ziemian, 2010).

Reduced stiffness $\left(E I^{*}=0.8 \tau_{b} E I\right.$ and $\left.E A^{*}=0.8 \tau_{b} E A\right)$ is used in the direct analysis method for two reasons. First, for frames with slender members, where the limit state is governed by elastic stability, the 0.8 factor on stiffness results in a system available strength equal to 0.8 times the elastic stability limit. This is roughly equivalent to the margin of safety implied in the design provisions for slender columns by the effective length procedure where, from Equation E3-3, $\phi P_{n}=0.90\left(0.877 P_{e}\right)=0.79 P_{e}$. Second, for frames with intermediate or stocky columns, the $0.8 \tau_{b}$ factor reduces the stiffness to account for inelastic softening prior to the members reaching their design strength. The $\tau_{b}$ factor is similar to the inelastic stiffness reduction factor implied in the column curve to account for loss of stiffness under high compression loads ( $\alpha P_{r}$ $>0.5 P_{n s}$ ), and the 0.8 factor accounts for additional softening under combined axial compression and bending. It is a fortuitous coincidence that the reduction coefficients for both slender and stocky columns are close enough, such that the single reduction factor of $0.8 \tau_{b}$ works over the full range of slenderness. For the 2016 AISC Specification, the definition for $\tau_{b}$ has been modified to account for the effects of local buckling of slender elements in compression members.

The use of reduced stiffness only pertains to analyses for strength and stability limit states. It does not apply to analyses for other stiffness-based conditions and criteria, such as for drift, deflection, vibration and period determination.

For ease of application in design practice, where $\tau_{b}=1$, the reduction on $E I$ and $E A$ can be applied by modifying $E$ in the analysis. However, for computer programs that do semi-automated design, one should ensure that the reduced $E$ is applied only for the second-order analysis. The elastic modulus should not be reduced in nominal strength equations that include $E$ (for example, $M_{n}$ for lateral-torsional buckling in an unbraced beam).

As shown in Figure C-C2.5, the net effect of modifying the analysis in the manner just described is to amplify the second-order forces such that they are closer to the actual internal forces in the structure. It is for this reason that the beam-column interaction for in-plane flexural buckling is checked using an axial strength, $P_{n L}$, calculated from the column curve using the actual unbraced member length, $L_{c}=L$, in other words, with $K=1.0$.

In cases where the flexibility of other structural components (connections, column base details, horizontal trusses acting as diaphragms) is modeled explicitly in the analysis, the stiffness of these components also should be reduced. The stiffness reduction may be taken conservatively as $E A^{*}=0.8 E A$ and/or $E I^{*}=0.8 E I$ for all cases. Surovek et al. (2005) discusses the appropriate reduction of connection stiffness in the analysis of partially restrained frames.

Where concrete or masonry shear walls or other nonsteel components contribute to the stability of the structure and the governing codes or standards for those elements specify a greater stiffness reduction, the greater reduction should be applied.

## C3. CALCULATION OF AVAILABLE STRENGTHS

Section C3 provides that when the analysis meets the requirements in Section C2, the member provisions for available strength in Chapters D through I and connection provisions in Chapters J and K complete the process of design by the direct analysis method. The effective length for flexural buckling may be taken as the unbraced length for all members in the strength checks.

Where beams and columns rely upon braces that are not part of the lateral forceresisting system to define their unbraced length, the braces themselves must have sufficient strength and stiffness to control member movement at the brace points (see Appendix 6). Design requirements for braces that are part of the lateral force-resisting system (that is, braces that are included within the analysis of the structure) are included within Chapter C.

(a) Effective length method ( $\mathrm{P}_{\mathrm{nKL}}$ is the nominal compressive strength used in the effective length method; see Appendix 7)

(b) Direct analysis method (DM)

Fig. C-C2.5. Comparison of in-plane beam-column interaction checks for (a) the effective length method and (b) the direct analysis method (DM).

For beam-columns in single-axis flexure and compression, the analysis results from the direct analysis method may be used directly with the interaction equations in Section H1.3, which address in-plane flexural buckling and out-of-plane lateral-torsional instability separately. These separated interaction equations reduce the conservatism of the Section H1.1 provisions, which combine the two limit state checks into one equation that uses the most severe combination of in-plane and out-of-plane limits for $P_{r} / P_{c}$ and $M_{r} / M_{c}$. A significant advantage of the direct analysis method is that the in-plane check with $P_{c}$ in the interaction equation is determined using the unbraced length of the member as its effective length.

## CHAPTER D

## DESIGN OF MEMBERS FOR TENSION

The provisions of Chapter D do not account for eccentricities between the lines of action of connected assemblies.

## D1. SLENDERNESS LIMITATIONS

The advisory upper limit on slenderness in the User Note is based on professional judgment and practical considerations of economics, ease of handling, and care required so as to minimize inadvertent damage during fabrication, transport and erection. This slenderness limit is not essential to the structural integrity of tension members; it merely assures a degree of stiffness such that undesirable lateral movement ("slapping" or vibration) will be unlikely. Out-of-straightness within reasonable tolerances does not affect the strength of tension members. Applied tension tends to reduce, whereas compression tends to amplify, out-of-straightness.

For single angles, the radius of gyration about the $z$-axis produces the maximum $L / r$ and, except for very unusual support conditions, the maximum effective slenderness ratio.

## D2. TENSILE STRENGTH

Because of strain hardening, a ductile steel bar loaded in axial tension can resist without rupture a force greater than the product of its gross area and its specified minimum yield stress. However, excessive elongation of a tension member due to uncontrolled yielding of its gross area not only marks the limit of its usefulness but can precipitate failure of the structural system of which it is a part. On the other hand, depending upon the reduction of area and other mechanical properties of the steel, the member can fail by rupture of the net area at a load smaller than required to yield the gross area. Hence, general yielding of the gross area and rupture of the net area both constitute limit states.

The length of the member in the net area is generally negligible relative to the total length of the member. Strain hardening is easily reached in the vicinity of holes and yielding of the net area at fastener holes does not constitute a limit state of practical significance.

Except for HSS that are subjected to cyclic load reversals, there is no information that the factors governing the strength of HSS in tension differ from those for other structural shapes, and the provisions in Section D2 apply.

## D3. EFFECTIVE NET AREA

This section deals with the effect of shear lag, applicable to both welded and bolted tension members. Shear lag is a concept used to account for uneven stress distribution in connected members where some but not all of their elements (flange, web, leg,
etc.) are connected. The reduction coefficient, $U$, is applied to the net area, $A_{n}$, of bolted members and to the gross area, $A_{g}$, of welded members. As the length of the connection, $l$, is increased, the shear lag effect diminishes. This concept is expressed empirically by the equation for $U$. Using this expression to compute the effective area, the estimated strength of some 1,000 bolted and riveted connection test specimens, with few exceptions, correlated with observed test results within a scatterband of $\pm 10 \%$ (Munse and Chesson, 1963). Newer research provides further justification for the current provisions (Easterling and Gonzales, 1993).

For any given profile and configuration of connected elements, $\bar{x}$ is the perpendicular distance from the connection plane, or face of the member, to the centroid of the member section resisting the connection force, as shown in Figure C-D3.1. The length, $l$, is a function of the number of rows of fasteners or the length of weld. The length, $l$, is illustrated as the distance, parallel to the line of force, between the first and last row of fasteners in a line for bolted connections. The number of bolts in a line, for the purpose of the determination of $l$, is determined by the line with the maximum number of bolts in the connection. For staggered bolts, the out-to-out dimension is used for $l$, as shown in Figure C-D3.2.


Fig. C-D3.1. Determination of $\overline{\mathrm{x}}$ for U .

For tension members with connections similar to that shown in Figure C-D3.1, the distance from the force in the member to the shear plane of the connection must be determined. For the I-shaped member with bolts in the flanges as shown in Figure C-D3.1(a), the member is treated as two WT-shapes. Because the section shown is symmetric about the horizontal axis and that axis is also the plastic neutral axis, the first moment of the area above the plastic neutral axis is $Z_{x} / 2$, where $Z_{x}$ is the plastic section modulus of the entire section, $Z=\sum\left|A_{i} d_{i}\right|$. The area above the plastic neutral axis is $A / 2$; therefore, by definition $\bar{x}_{1}=Z_{x} / A$. Thus, for use in calculating $U$, $\bar{x}_{1}=d / 2-Z_{x} / A$. For the I-shaped member with bolts in the web as shown in Figure C-D3.1(c), the shape is treated as two channels and the shear plane is assumed to be at the web centerline. Using the definitions just discussed, but related now to the $y$-axis, yields $\bar{x}=Z_{y} / A$. Note that the plastic neutral axis must be an axis of symmetry for this relationship to apply. Thus, it cannot be used for the case shown in Figure C-D3.1(b) where $\bar{x}$ would simply be determined from the properties of a channel.

There is insufficient data for establishing a value of $U$ if all lines have only one bolt, but it is probably conservative to use $A_{e}$ equal to the net area of the connected element. The limit states of block shear (Section J4.3) and bearing and tearout (Section J3.10), which must be checked, will probably control the design.

The ratio of the area of the connected element to the gross area is a reasonable lower bound for $U$ and allows for cases where the calculated $U$ based on $(1-\bar{x} / l)$ is very small or nonexistent, such as when a single bolt per gage line is used and $l=0$. This lower bound is similar to other design specifications; for example, the AASHTO Standard Specifications for Highway Bridges (AASHTO, 2002), which allow a $U$ based on the area of the connected portion plus half the gross area of the unconnected portion.
The effect of connection eccentricity is a function of connection and member stiffness and may sometimes need to be considered in the design of the tension connection or member. Historically, engineers have neglected the effect of eccentricity in both the member and the connection when designing tension-only bracing. In Cases 1a and 1b shown in Figure C-D3.3, the length of the connection required to


Fig. C-D3.2. Determination of 1 for U of bolted connections with staggered holes.

## WT member



Moment due to connection
 eccentricity resisted by connection; no moment in member
(a) Case 1a. End rotation restrained by connection to rigid abutments

## WT members



Moment due to connection
 eccentricity resisted by connection; no moment in members
(b) Case 1b. End rotation restrained by symmetry

(c) Case 2. End rotation not restrained-connection to thin plate

Fig. C-D3.3. The effect of connection restraint on eccentricity.
resist the axial loads will usually reduce the applied axial load on the bolts to a negligible value. For Case 2, the flexibility of the member and the connections will allow the member to deform such that the resulting eccentricity is relieved to a considerable extent.

For welded connections, $l$ is the length of the weld parallel to the line of force as shown in Figure C-D3.4 for longitudinal and longitudinal plus transverse welds. For welds with unequal lengths, use the average length.

End connections for HSS in tension are commonly made by welding around the perimeter of the HSS; in this case, there is no shear lag or reduction in the gross area. Alternatively, an end connection with gusset plates can be used. Single gusset plates may be welded in longitudinal slots that are located at the centerline of the cross section. Welding around the end of the gusset plate may be omitted for statically loaded connections to prevent possible undercutting of the gusset and having to bridge the gap at the end of the slot. In such cases, the net area at the end of the slot is the critical area as illustrated in Figure C-D3.5. Alternatively, a pair of gusset plates can be welded to opposite sides of a rectangular HSS with flare bevel groove welds with no reduction in the gross area.


Fig. C-D3.4. Determination of 1 for calculation of U for connections with longitudinal and transverse welds.


Fig. C-D3.5. Net area through slot for a single gusset plate.

For end connections with gusset plates, the general provisions for shear lag in Case 2 of Table D3.1 can be simplified and the connection eccentricity, $\bar{x}$, can be explicitly defined as in Cases 5 and 6. In Cases 5 and 6 it is implied that the weld length, $l$, should not be less than the depth of the HSS. In Case 5 , the use of $U=1$ when $l \geq 1.3 D$ is based on research (Cheng and Kulak, 2000) that shows rupture occurs only in short connections and in long connections the round HSS tension member necks within its length and failure is by member yielding and eventual rupture. Case 6 of Table D3.1 can also be applied to box sections of uniform wall thickness. However, the welds joining the plates in the box section should be at least as large as the welds attaching the gusset plate to the box section wall for a length required to resist the force in the connected elements plus the length $l$.

Prior to 2016, two plates connected with welds shorter in length than the distance between the welds were not accommodated in Table D3.1. In light of the need for this condition, a shear lag factor was derived and is now shown in Case 4. The shear lag factor is based on a fixed-fixed beam model for the welded section of the connected part. The derivation of the factor is presented in Fortney and Thornton (2012).

The shear lag factors given in Cases 7 and 8 of Table D3.1 are given as alternate $U$ values to the value determined from $1-\bar{x} / l$ given for Case 2 in Table D3.1. It is permissible to use the larger of the two values.

## D4. BUILT-UP MEMBERS

Although not commonly used, built-up member configurations using lacing, tie plates and perforated cover plates are permitted by this Specification. The length and thickness of tie plates are limited by the distance between the lines of fasteners, $h$, which may be either bolts or welds.

## D5. PIN-CONNECTED MEMBERS

Pin-connected members are occasionally used as tension members with very large dead loads. Pin-connected members are not recommended when there is sufficient variation in live loading to cause wearing of the pins in the holes. The dimensional requirements presented in Section D5.2 must be met to provide for the proper functioning of the pin.

## 1. Tensile Strength

The tensile strength requirements for pin-connected members use the same $\phi$ and $\Omega$ values as elsewhere in this Specification for similar limit states. However, the definitions of effective net area for tension and shear are different.

## 2. Dimensional Requirements

Dimensional requirements for pin-connected members are illustrated in Figure C-D5.1.

## D6. EYEBARS

Forged eyebars have generally been replaced by pin-connected plates or eyebars thermally cut from plates. Provisions for the proportioning of eyebars contained in this Specification are based upon standards evolved from long experience with forged eyebars. Through extensive destructive testing, eyebars have been found to provide balanced designs when they are thermally cut instead of forged. The more conservative rules for pin-connected members of nonuniform cross section and for members not having enlarged "circular" heads are likewise based on the results of experimental research (Johnston, 1939).

Stockier proportions are required for eyebars fabricated from steel having a yield stress greater than $70 \mathrm{ksi}(485 \mathrm{MPa})$ to eliminate any possibility of their "dishing" under the higher design stress.

## 1. Tensile Strength

The tensile strength of eyebars is determined as for general tension members, except that, for calculation purposes, the width of the body of the eyebar is limited to eight times its thickness.

## 2. Dimensional Requirements

Dimensional limitations for eyebars are illustrated in Figure C-D6.1. Adherence to these limits assures that the controlling limit state will be tensile yielding of the body; thus, additional limit state checks are unnecessary.


Dimensional Requirements

1. $a \geq 1.33 b_{e}$
2. $w \geq 2 b_{e}+d$
3. $c \geq a$
where

$$
b_{e}=2 t+0.63 \mathrm{in} .(2 t+16 \mathrm{~mm}) \leq b
$$

Fig. C-D5.1. Dimensional requirements for pin-connected members.


Fig. C-D6.1. Dimensional limitations for eyebars.

## CHAPTER E

## DESIGN OF MEMBERS FOR COMPRESSION

## E1. GENERAL PROVISIONS

The column equations in Section E3 are based on a conversion of research data into strength equations (Ziemian, 2010; Tide, 1985, 2001). These equations are the same as those that have been used since the 2005 AISC Specification for Structural Steel Buildings (AISC, 2005) and are essentially the same as those created for the initial LRFD Specification (AISC, 1986). The resistance factor, $\phi$, was increased from 0.85 to 0.90 in the 2005 AISC Specification, recognizing substantial numbers of additional column strength analyses and test results, combined with the changes in industry practice that had taken place since the original calibrations were performed in the 1970s and 1980s.

In the original research on the probability-based strength of steel columns (Bjorhovde, 1972, 1978, 1988), three column curves were recommended. The three column curves were the approximate means of bands of strength curves for columns of similar manufacture, based on extensive analyses and confirmed by full-scale tests (Bjorhovde, 1972). For example, hot-formed and cold-formed heat treated HSS columns fell into the data band of highest strength [SSRC Column Category 1P (Bjorhovde, 1972, 1988; Bjorhovde and Birkemoe, 1979; Ziemian, 2010)], while welded built-up wide-flange columns made from universal mill plates were included in the data band of lowest strength (SSRC Column Category 3P). The largest group of data clustered around SSRC Column Category 2P. Had the original LRFD Specification opted for using all three column curves for the respective column categories, probabilistic analysis would have resulted in a resistance factor $\phi=0.90$ or even slightly higher (Galambos, 1983; Bjorhovde, 1988; Ziemian, 2010). However, it was decided to use only one column curve, SSRC Column Category 2P, for all column types. This resulted in a larger data spread and thus a larger coefficient of variation, and so a resistance factor $\phi=0.85$ was adopted for the column equations to achieve a level of reliability comparable to that of beams (AISC, 1986).

Since then, a number of changes in industry practice have taken place: (a) welded built-up shapes are no longer manufactured from universal mill plates; (b) the most commonly used structural steel is now ASTM A992/A992M, with a specified minimum yield stress of 50 ksi ( 345 MPa ); and (c) changes in steelmaking practice have resulted in materials of higher quality and much better defined properties. The level and variability of the yield stress thus have led to a reduced coefficient of variation for the relevant material properties (Bartlett et al., 2003).

An examination of the SSRC Column Curve Selection Table (Bjorhovde, 1988; Ziemian, 2010) shows that the SSRC 3P Column Curve Category is no longer needed. It is now possible to use only the statistical data for SSRC Column Category

2P for the probabilistic determination of the reliability of columns. The curves in Figures C-E1.1 and C-E1.2 show the variation of the reliability index, $\beta$, with the live-to-dead load ratio, $L / D$, in the range of 1 to 5 for LRFD with $\phi=0.90$ and ASD with $\Omega=1.67$, respectively, for $F_{y}=50 \mathrm{ksi}(345 \mathrm{MPa})$. The reliability index does not fall below $\beta=2.6$. This is comparable to the reliability of beams.


Fig. C-E1.1. Reliability of columns (LRFD).


Fig. C-E1.2. Reliability of columns (ASD).

## E2. EFFECTIVE LENGTH

In the 2016 AISC Specification, the effective length, which since the 1963 AISC Specification (AISC, 1963) had been given as $K L$, is changed to $L_{c}$. This was done to simplify the definition of effective length for the various modes of buckling without having to define a specific effective length factor, $K$. The effective length is then defined as $K L$ in those situations where effective length factors, $K$, are appropriate. This change recognizes that there are several ways to determine the effective length that do not involve the direct determination of an effective length factor. It also recognizes that for some modes of buckling, such as torsional and flexural-torsional buckling, the traditional use of $K$ is not the best approach. The direct use of effective length without the $K$-factor can be seen as a return to the approach used in the 1961 AISC Specification (AISC, 1961), when column strength equations based on effective length were first introduced by AISC.

The concept of a maximum limiting slenderness ratio has experienced an evolutionary change from a mandatory "...The slenderness ratio, $K L / r$, of compression members shall not exceed 200..." in the 1978 AISC Specification (AISC, 1978) to no restriction at all in the 2005 AISC Specification (AISC, 2005). The 1978 ASD and the 1999 LRFD Specifications (AISC, 2000b) provided a transition from the mandatory limit to a limit that was defined in the 2005 AISC Specification by a User Note, with the observation that "...the slenderness ratio, $K L / r$, preferably should not exceed 200...." However, the designer should keep in mind that columns with a slenderness ratio of more than 200 will have a critical stress (Equation E3-3) less than 6.3 ksi (43 $\mathrm{MPa})$. The traditional upper limit of 200 was based on professional judgment and practical construction economics, ease of handling, and care required to minimize inadvertent damage during fabrication, transport and erection. These criteria are still valid and it is not recommended to exceed this limit for compression members except for cases where special care is exercised by the fabricator and erector.

## E3. FLEXURAL BUCKLING OF MEMBERS WITHOUT SLENDER ELEMENTS

Section E3 applies to compression members with all nonslender elements, as defined in Section B4.

The column strength equations in Section E3 are the same as those in the previous editions of the LRFD Specification, with the exception of the cosmetic replacement of the slenderness term, $\lambda_{c}=\frac{K L}{\pi r} \sqrt{\frac{F_{y}}{E}}$, by the more familiar slenderness ratio, $\frac{K L}{r}$, for 2005 and 2010, and by the simpler form of the slenderness ratio, $L_{C} / r$, for 2016. For the convenience of those calculating the elastic buckling stress, $F_{e}$, directly, without first calculating an effective length, the limits on the use of Equations E3-2 and E3-3 are also provided in terms of the ratio $F_{y} / F_{e}$, as shown in the following discussion.

Comparisons between the previous column design curves and those introduced in the 2005 AISC Specification and continued in this Specification are shown in Figures C-E3.1 and C-E3.2 for the case of $F_{y}=50 \mathrm{ksi}(345 \mathrm{MPa})$. The curves show the
variation of the available column strength with the slenderness ratio for LRFD and ASD, respectively. The LRFD curves reflect the change of the resistance factor, $\phi$, from 0.85 to 0.90 , as was explained in Commentary Section E1. These column equations provide improved economy in comparison with the previous editions of the Specification.
The limit between elastic and inelastic buckling is defined to be $\frac{L_{c}}{r}=4.71 \sqrt{\frac{E}{F_{y}}}$ or $\frac{F_{y}}{F_{e}}=2.25$. These are the same as $F_{e}=0.44 F_{y}$ that was used in the 2005 AISC Specification. For convenience, these limits are defined in Table C-E3.1 for the common values of $F_{y}$.


Fig. C-E3.1. LRFD column curves compared.


Fig. C-E3.2. ASD column curves compared.

Limiting values of $L_{c} / \mathrm{r}$ and $F_{e}$		
$\begin{gathered} F_{y}, \\ \text { ksi (MPa) } \end{gathered}$	$\text { Limiting } \frac{L_{c}}{r}$	$\begin{gathered} F_{e}, \\ \text { ksi }(\mathrm{MPa}) \end{gathered}$
36 (250)	134	16.0 (110)
50 (345)	113	22.2 (150)
65 (450)	99.5	28.9 (200)
70 (485)	95.9	31.1 (210)

One of the key parameters in the column strength equations is the elastic critical stress, $F_{e}$. Equation E3-4 presents the familiar Euler form for $F_{e}$. However, $F_{e}$ can also be determined by other means, including a direct frame buckling analysis or a torsional or flexural-torsional buckling analysis as addressed in Section E4.

The column strength equations of Section E3 can also be used for frame buckling and for torsional or flexural-torsional buckling (Section E4). They may also be entered with a modified slenderness ratio for single-angle members (Section E5).

## E4. TORSIONAL AND FLEXURAL-TORSIONAL BUCKLING OF SINGLE ANGLES AND MEMBERS WITHOUT SLENDER ELEMENTS

Section E4 applies to singly symmetric and unsymmetric members and certain doubly symmetric members, such as cruciform or built-up columns with all nonslender elements, as defined in Section B4 for uniformly compressed elements. It also applies to doubly symmetric members when the torsional buckling length is greater than the flexural buckling length of the member. In addition, Section E4 applies to single angles with $b / t>0.71 \sqrt{E / F_{y}}$, although there are no ASTM A36/A36M hotrolled angles for which this applies.

The equations in Section E4 for determining the torsional and flexural-torsional elastic buckling loads of columns are derived in textbooks and monographs on structural stability (Bleich, 1952; Timoshenko and Gere, 1961; Galambos, 1968a; Chen and Atsuta, 1977; Galambos and Surovek, 2008; and Ziemian, 2010). Since these equations apply only to elastic buckling, they must be modified for inelastic buckling by the appropriate equations of Section E3. Inelasticity has a more significant impact on warping torsion than St. Venant torsion. For consideration of inelastic effects, the full elastic torsional or flexural-torsional buckling stress is conservatively used to determine $F_{e}$ for use in the column equations of Section E3.

Torsional buckling of symmetric shapes and flexural-torsional buckling of unsymmetrical shapes are failure modes usually not considered in the design of hot-rolled columns. They generally do not govern, or the critical load differs very little from the minor-axis flexural buckling load. Torsional and flexural-torsional buckling modes may, however, control the strength of symmetric columns manufactured from relatively thin plate elements and unsymmetric columns and symmetric columns having torsional unbraced lengths significantly larger than the minor-axis flexural unbraced lengths.

Equations for determining the elastic critical stress for columns are given in Section E4. Table C-E4.1 serves as a guide for selecting the appropriate equations. Equation E4-4 is the general buckling expression that is applicable to doubly symmetric, singly symmetric and unsymmetric shapes. Equation E4-3 was derived from Equation E4-4 for the specific case of a singly symmetric shape in which the $y$-axis is the axis of symmetry (such as in WT sections). For members, such as channels, in which the $x$-axis is the axis of symmetry, $F_{e y}$ in Equation E4-3 should be replaced with $F_{e x}$.

For doubly symmetric shapes, the geometric centroid and shear center coincide resulting in $x_{o}=y_{o}=0$. Therefore, for a doubly symmetric section, Equation E4-4 results in three roots: flexural buckling about the $x$-axis, flexural buckling about the $y$-axis, and torsional buckling about the shear center of the section, with the lowest root controlling the capacity of the cross section. Most designers are familiar with evaluating the strength of a wide-flange column by considering flexural buckling about the $x$-axis and $y$-axis; however, torsional buckling as given by Equation E4-2 is another potential buckling mode that should be considered and may control when the unbraced length for torsional buckling exceeds the unbraced length for minoraxis flexural buckling. Equation E4-2 is applicable for columns that twist about the shear center of the section, which will be the case when lateral bracing details like that shown in Figure C-E4.1 are used. The rod that is used for the brace in this case restrains the column from lateral movement about the minor axis, but does not generally prevent twist of the section and therefore the unbraced length for torsional buckling may be larger than for minor-axis flexure, which is a case where torsional


Fig. C-E4.1. Lateral bracing detail resulting in twist about the shear center.

buckling may control. Most typical column base plate details will restrain twist at the base of the column. In addition, twist will often also be adequately restrained by relatively simple framing to beams. Many of the cases where inadequate torsional restraint is provided at a brace point will often occur at intermediate (between the ends of the column) brace locations.

Many common bracing details may result in situations where the lateral bracing is offset from the shear center of the section, such as columns or roof trusses restrained by a shear diaphragm that is connected to girts or purlins on the outside of the column or chord flange. Depending on the orientation of the primary member, the bracing may be offset along either the minor axis or the major axis as depicted in Figure C-E4.2. Since girts or purlins often have relatively simple connections that do not restrain twist, columns or truss chords can be susceptible to torsional buckling. However, in common cases due to the offset of the bracing relative to the shear center, the members are susceptible to constrained-axis torsional buckling.

Timoshenko and Gere (1961) developed the following expressions for constrainedaxis torsional buckling:

Bracing offset along the minor axis by an amount " $a$ " [see Figure C-E4.2(a)]:

$$
\begin{equation*}
F_{e}=\omega\left[\frac{\pi^{2} E I_{y}}{\left(L_{c z}\right)^{2}}\left(\frac{h_{o}^{2}}{4}+a^{2}\right)+G J\right] \frac{1}{A r_{o}^{2}} \tag{C-E4-1}
\end{equation*}
$$

Bracing offset along the major axis by an amount " $b$ " [(see Figure C-E4.2(b)]:

$$
\begin{equation*}
F_{e}=\omega\left[\frac{\pi^{2} E I_{y}}{\left(L_{c z}\right)^{2}}\left(\frac{h_{o}^{2}}{4}+\frac{I_{x}}{I_{y}} b^{2}\right)+G J\right] \frac{1}{A r_{o}^{2}} \tag{C-E4-2}
\end{equation*}
$$

where the polar radius of gyration is given by the expression:

$$
\begin{equation*}
r_{o}^{2}=\left(r_{x}^{2}+r_{y}^{2}+a^{2}+b^{2}\right) \tag{C-E4-3}
\end{equation*}
$$


(a) Bracing offset along minor axis

(b) Bracing offset along major axis

Fig. C-E4.2. Bracing details resulting in an offset relative to the shear center.

The terms in these equations are as defined in Section E4 with the exception of $a, b$ and $\omega$. The bracing offsets, $a$ and $b$, are measured relative to the shear center and $h_{o}$ is the distance between flange centroids as indicated in Figure C-E4.2. The empirical factor $\omega$ was included to address some of the assumptions made in the original derivation. The expressions from Timoshenko and Gere (1961) were developed assuming that continuous lateral restraint was provided that is infinitely stiff. The impact of the continuous bracing assumption is not that significant since the column will generally be checked for buckling between discrete brace points. However, the assumption of the infinitely stiff lateral bracing will result in a reduction in the capacity for systems with finite brace stiffness. The $\omega$-factor that is shown in Equations C-E4-1 and C-E42 is included to account for the reduction due to a finite brace stiffness. With a modest stiffness of the bracing (such as stiffness values recommended in the Appendix 6 lateral bracing provisions), the reduction is relatively small and a value of 0.9 is recommended based upon finite element studies (Errera, 1976; Helwig and Yura, 1999).

The specific method of calculating the buckling strength of double-angle and teeshaped members that had been given in the 2010 AISC Specification (AISC, 2010) has been deleted in preference for the use of the general flexural-torsional buckling equations because the deleted equation was usually more conservative than necessary.

Equations E4-2 and E4-7 contain a torsional buckling effective length, $L_{c z}$. This effective length may be conservatively taken as the length of the column. For greater accuracy, if both ends of the column have a connection that restrains warping, say by boxing the end over a length at least equal to the depth of the member, the effective length may be taken as 0.5 times the column length. If one end of the member is restrained from warping and the other end is free to warp, then the effective length may be taken as 0.7 times the column length.

At points of bracing both lateral and/or torsional bracing shall be provided, as required in Appendix 6. AISC Design Guide 9, Torsional Analysis of Structural Steel Members (Seaburg and Carter, 1997), provides an overview of the fundamentals of torsional loading for structural steel members. Design examples are also included.

## E5. SINGLE-ANGLE COMPRESSION MEMBERS

The compressive strength of single angles is to be determined in accordance with Sections E3 or E7 for the limit state of flexural buckling and Section E4 for the limit state of flexural-torsional buckling. However, single angles with $b / t \leq 0.71 \sqrt{E / F_{y}}$ do not require consideration of flexural-torsional buckling according to Section E4. This applies to all currently produced hot-rolled angles with $F_{y}=36 \mathrm{ksi}$. Use Section E4 to compute $F_{e}$ for single angles only when $b / t>0.71 \sqrt{E / F_{y}}$.
Section E5 also provides a simplified procedure for the design of single angles subjected to an axial compressive load introduced through one connected leg. The angle is treated as an axially loaded member by adjusting the member slenderness. The attached leg is to be attached to a gusset plate or the projecting leg of another member by welding or by a bolted connection with at least two bolts. The equivalent
slenderness expressions in this section presume significant restraint about the axis, which is perpendicular to the connected leg. This leads to the angle member tending to bend and buckle primarily about the axis parallel to the attached gusset. For this reason, $L / r_{a}$ is the slenderness parameter used, where the subscript, $a$, represents the axis parallel to the attached leg. This may be the $x$ - or $y$-axis of the angle, depending on which leg is the attached leg. The modified slenderness ratios indirectly account for bending in the angles due to the eccentricity of loading and for the effects of end restraint from the members to which they are attached.

The equivalent slenderness expressions also presume a degree of rotational restraint. Equations E5-3 and E5-4 [Section E5(b), referred to as case (b)] assume a higher degree of rotational restraint about the axis parallel to the attached leg than do Equations E5-1 and E5-2 [Section E5(a), referred to as case (a)]. Equations E5-3 and E5-4 are essentially equivalent to those employed for equal-leg angles as web members in latticed transmission towers in ASCE 10-97 (ASCE, 2000).

In space trusses, the web members framing in from one face typically restrain the twist of the chord at the panel points and thus provide significant restraint about the axis parallel to the attached leg for the angles under consideration. It is possible that the chords of a planar truss well restrained against twist justify use of case (b), in other words, Equations E5-3 and E5-4. Similarly, simple single-angle diagonal braces in braced frames could be considered to have enough end restraint such that case (a), in other words, Equations E5-1 and E5-2, could be employed for their design. This procedure, however, is not intended for the evaluation of the compressive strength of X-brace single angles.

The procedure in Section E5 permits use of unequal-leg angles attached by the smaller leg provided that the equivalent slenderness is increased by an amount that is a function of the ratio of the longer to the shorter leg lengths, and has an upper limit on $L / r_{z}$.

If the single-angle compression members cannot be evaluated using the procedures in this section, use the provisions of Section H2. In evaluating $P_{n}$, the effective length due to end restraint should be considered. With values of effective length about the geometric axes, one can use the procedure in Lutz (1992) to compute an effective radius of gyration for the column. To obtain results that are not too conservative, one must also consider that end restraint reduces the eccentricity of the axial load of single-angle struts and thus the value of $f_{r b w}$ or $f_{r b z}$ used in the flexural term(s) in Equation H2-1.

## E6. BUILT-UP MEMBERS

Section E6 addresses the strength and dimensional requirements of built-up members composed of two or more shapes interconnected by stitch bolts or welds.

Two types of built-up members are commonly used for steel construction: closely spaced steel shapes interconnected at intervals using welds or fasteners, and laced or battened members with widely spaced flange components. The compressive strength
of built-up members is affected by the interaction between the global buckling mode of the member and the localized component buckling mode between lacing points or intermediate connectors. Duan et al. (2002) refer to this type of buckling as compound buckling.

For both types of built-up members, limiting the slenderness ratio of each component shape between connection fasteners or welds, or between lacing points, as applicable, to $75 \%$ of the governing global slenderness ratio of the built-up member effectively mitigates the effect of compound buckling (Duan et al., 2002).

## 1. Compressive Strength

This section applies to built-up members such as double-angle or double-channel members with closely spaced individual components. The longitudinal spacing of connectors connecting components of built-up compression members must be such that the slenderness ratio, $L_{c} / r$, of individual shapes does not exceed three-fourths of the slenderness ratio of the entire member. However, this requirement does not necessarily ensure that the effective slenderness ratio of the built-up member is equal to that of a built-up member acting as a single unit.

For a built-up member to be effective as a structural member, the end connection must be welded or pretensioned bolted with Class A or B faying surfaces. Even so, the compressive strength will be affected by the shearing deformation of the intermediate connectors. This Specification uses the effective slenderness ratio to consider this effect. Based mainly on the test data of Zandonini (1985), Zahn and Haaijer (1987) developed an empirical formulation of the effective slenderness ratio for the 1986 LRFD Specification (AISC, 1986). When pretensioned bolted or welded intermediate connectors are used, Aslani and Goel (1991) developed a semi-analytical formula for use in the 1993, 1999 and 2005 AISC Specifications (AISC, 1993, 2000b, 2005). As more test data became available, a statistical evaluation (Sato and Uang, 2007) showed that the simplified expressions used in this Specification achieve the same level of accuracy.

Fastener spacing less than the maximum required for strength may be needed to ensure a close fit over the entire faying surface of components in continuous contact. Special requirements for weathering steel members exposed to atmospheric corrosion are given in Brockenbrough (1983).

## 2. Dimensional Requirements

This section provides additional requirements on connector spacing and end connection for built-up member design. Design requirements for laced built-up members where the individual components are widely spaced are also provided. Some dimensioning requirements are based upon judgment and experience. The provisions governing the proportioning of perforated cover plates are based upon extensive experimental research (Stang and Jaffe, 1948).

## E7. MEMBERS WITH SLENDER ELEMENTS

The structural engineer designing with hot-rolled shapes will seldom find an occasion to turn to Section E7. Among rolled shapes, the most frequently encountered cases requiring the application of this section are beam shapes used as columns, columns containing angles with thin legs, and tee-shaped columns having slender stems. Special attention to the determination of effective area must be given when columns are made by welding or bolting thin plates together or ultra-high strength steels are employed.

The provisions of Section E7 address the modifications to be made when one or more plate elements in the column cross section are slender. A plate element is considered to be slender if its width-to-thickness ratio exceeds the limiting value, $\lambda_{r}$, defined in Table B4.1a. As long as the plate element is not slender, it can support the full yield stress without local buckling. When the cross section contains slender elements, the potential reduction in capacity due to local-global buckling interaction must be accounted for.

The $Q$-factor approach to dealing with columns with slender elements was adopted in the 1969 AISC Specification (AISC, 1969), emulating the 1969 AISI Specification for the Design of Cold-Formed Steel Structural Members (AISI, 1969). Prior to 1969, the AISC practice was to remove the width of the plate that exceeded the $\lambda_{r}$ limit and check the remaining cross section for conformance with the allowable stress, which proved inefficient and uneconomical. Two separate philosophies were used: Unstiffened elements were considered to have attained their limit state when they reach the theoretical local buckling stress; stiffened elements, on the other hand, make use of the post-buckling strength inherent in a plate that is supported on both of its longitudinal edges, such as in HSS columns and webs of I-shaped columns. The effective width concept is used to obtain the added post-buckling strength. This dual philosophy reflects the 1969 practice in the design of cold-formed columns. Subsequent editions of the AISI Specifications, in particular, the North American Specification for the Design of Cold-Formed Steel Structural Members (AISI, 2001, 2007, 2012), hereafter referred to as the AISI North American Specification, adopted the effective width concept for both stiffened and unstiffened elements. This approach is adopted in this Specification.

## 1. Slender Element Members Excluding Round HSS

The effective width method is employed for determining the reduction in capacity due to local buckling. The effective width method was developed by von Kármán et al. (1932), empirically modified by Winter (1947), and generalized for local-global buckling interaction by Peköz (1987); see Ziemian (2010) for a complete summary. The point at which the slender element begins to influence column strength, $\lambda_{r} \sqrt{F_{y} / F_{c r}}$, is a function of element slenderness from Table B4.1a and column slenderness as reflected through $F_{c r}$. This reflects the unified effective width approach where the maximum stress in the effective width formulation is the column stress, $F_{c r}$ (as opposed to $F_{y}$ ). This implies that columns designated as having slender elements by Table B4.1a may not necessarily see any reduction in strength due to local buckling, depending on the column stress, $F_{c r}$.

Prior to this Specification, the effective width, $b_{e}$, of a stiffened element was expressed as

$$
\begin{equation*}
b_{e}=1.92 t \sqrt{\frac{E}{f}}\left(1-\frac{0.34}{(b / t)} \sqrt{\frac{E}{f}}\right) \leq b \tag{C-E7-1}
\end{equation*}
$$

where
$E=$ modulus of elasticity, ksi (MPa)
$b=$ width of stiffened compression element, in. (mm)
$f=$ critical stress when slender element is not considered, ksi (MPa)
$t=$ thickness of element, in. (mm)
This may be compared with the new generalized effective width Equation E7-3:

$$
\begin{equation*}
b_{e}=b\left(1-c_{1} \sqrt{\frac{F_{e l}}{F_{c r}}}\right) \sqrt{\frac{F_{e l}}{F_{c r}}} \tag{C-E7-2}
\end{equation*}
$$

where $F_{e l}$ is the local elastic buckling stress, and $c_{1}$ is the empirical correction factor typically associated with imperfection sensitivity. The two expressions are essentially equivalent if one recognizes that

$$
\begin{equation*}
F_{e l}=k \frac{\pi^{2} E}{12\left(1-v^{2}\right)}\left(\frac{t}{b}\right)^{2} \tag{C-E7-3}
\end{equation*}
$$

where

$$
v=\text { Poisson's ratio }=0.3
$$

and utilizes $k=4.0$ for the stiffened element, $c_{1}=0.18$ for the imperfection sensitivity factor, and sets $f=F_{c r}$.

Equation E7-3 provides an effective width expression applicable to both stiffened and unstiffened elements. Further, by making elastic local buckling explicit in the expression, the potential to use analysis to provide $F_{e l}$ is also allowed [see Seif and Schafer (2010)]. For ultra-high-strength steel sections or sections built-up from thin plates, this can be especially useful.

Equation E7-5 provides an explicit expression for elastic local buckling, $F_{e l}$. This expression is based on the assumptions implicit in Table B4.1a and was determined as follows. At the limiting width-to-thickness ratio: $\lambda=\lambda_{r}, b=b_{e}, F_{e l}=F_{e l-r}$; therefore, at this limit, local elastic buckling implies:

$$
\begin{equation*}
F_{e l-r}=k \frac{\pi^{2} E}{12\left(1-v^{2}\right)}\left(\frac{t}{b}\right)^{2}=k \frac{\pi^{2} E}{12\left(1-v^{2}\right)}\left(\frac{t}{\lambda_{r}}\right)^{2} \tag{C-E7-4}
\end{equation*}
$$

and the effective width expression simplifies to:

$$
\begin{equation*}
1=\left(1-c_{1} \sqrt{\frac{F_{e l-r}}{F_{y}}}\right) \sqrt{\frac{F_{e l-r}}{F_{y}}} \tag{C-E7-5}
\end{equation*}
$$

which may be used to back-calculate the plate buckling coefficient, $k$, assumed in Table B4.1a:

$$
\begin{equation*}
k=\left(\frac{1-\sqrt{1-4 c_{1}}}{2 c_{1}}\right)^{2} \frac{12\left(1-v^{2}\right)}{\pi^{2}} \frac{F_{y}}{E}\left(\frac{1}{\lambda_{r}}\right)^{2} \tag{C-E7-6}
\end{equation*}
$$

This relationship provides a prediction of the elastic local buckling stress consistent with the $k$ implicit in Table B4.1a, after substitution:

$$
\begin{equation*}
F_{e l}=\left(\frac{1-\sqrt{1-4 c_{1}}}{2 c_{1}} \frac{\lambda_{r}}{\lambda}\right)^{2} F_{y}=\left(c_{2} \frac{\lambda_{r}}{\lambda}\right)^{2} F_{y} \tag{C-E7-7}
\end{equation*}
$$

Thus, $\lambda_{r}$ from Table B4.1a may be used to determine $k$, which may be used to determine the elastic local buckling stress. Further, $c_{2}$ is shown to be determined by $c_{1}$ alone, and is used only for convenience.

Equation E7-3 has long been used in the AISI North American Specification with $c_{1}=0.22$ for both stiffened and unstiffened elements. The same $c_{1}$ factor is adopted here for all elements, except those that prior to the 2016 AISC Specification had explicit (and calibrated) effective width expressions.

One disadvantage of Equation E7-3, and the explicit use of $F_{e l}$, is the loss of convenience when working with a particular slender element. If Equation E7-5 is utilized directly, then Equation E7-3 may be simplified to

$$
\begin{equation*}
b_{e}=\left(1-c_{1} c_{2} \frac{\lambda_{r}}{\lambda} \sqrt{\frac{F_{y}}{F_{c r}}}\right) c_{2} \frac{\lambda_{r}}{\lambda} \sqrt{\frac{F_{y}}{F_{c r}}} b \tag{C-E7-8}
\end{equation*}
$$

or, more specifically, for case (a), stiffened elements, except walls of square and rectangular sections of uniform thickness:

$$
\begin{equation*}
b_{e}=\left(1-0.24 \frac{\lambda_{r}}{\lambda} \sqrt{\frac{F_{y}}{F_{c r}}}\right) 1.31 \frac{\lambda_{r}}{\lambda} \sqrt{\frac{F_{y}}{F_{c r}}} b \tag{C-E7-9}
\end{equation*}
$$

for case (b), walls of square and rectangular sections of uniform thickness:

$$
\begin{equation*}
b_{e}=\left(1-0.28 \frac{\lambda_{r}}{\lambda} \sqrt{\frac{F_{y}}{F_{c r}}}\right) 1.38 \frac{\lambda_{r}}{\lambda} \sqrt{\frac{F_{y}}{F_{c r}}} b \tag{C-E7-10}
\end{equation*}
$$

or, case (c), all other elements:

$$
\begin{equation*}
b_{e}=\left(1-0.33 \frac{\lambda_{r}}{\lambda} \sqrt{\frac{F_{y}}{F_{c r}}}\right) 1.49 \frac{\lambda_{r}}{\lambda} \sqrt{\frac{F_{y}}{F_{c r}}} b \tag{C-E7-11}
\end{equation*}
$$

These equations may be further simplified if the constants associated with the slenderness limit, $\lambda_{r}$, are combined with the constants in Table E7.1. This results in

$$
\begin{equation*}
b_{e}=c_{2} c_{3} t \sqrt{\frac{k_{c} E}{F_{c r}}}\left(1-\frac{c_{1} c_{2} c_{3}}{(b / t)} \sqrt{\frac{k_{c} E}{F_{c r}}}\right) \tag{C-E7-12}
\end{equation*}
$$

TABLE C-E7.1   Constants for Use in Equations C-E7-12 and C-E7-13							
Table B4.1a Case	Table E7. 1 Case	$k_{c}$	$c_{1}$	$c_{2}$	$c_{3}$	$c_{4}$	$c_{5}$
1	(c)	1.0	0.22	1.49	0.56	0.834	0.184
2	(c)	$k_{c}$	0.22	1.49	0.64	0.954	0.210
3	(c)	1.0	0.22	1.49	0.45	0.671	0.148
4	(c)	1.0	0.22	1.49	0.75	1.12	0.246
5	(a)	1.0	0.18	1.31	1.49	1.95	0.351
6	(b)	1.0	0.20	1.38	1.40	1.93	0.386
7	(a)	1.0	0.18	1.31	1.40	1.83	0.330
8	(a)	1.0	0.18	1.31	1.49	1.95	0.351

where $c_{3}$ is the constant associated with slenderness limits given in Table B4.1a (Geschwindner and Troemner, 2016). Combining the constants in Equation C-E7-12 with $c_{4}=c_{2} c_{3}$ and $c_{5}=c_{1} c_{2} c_{3}$ yields

$$
\begin{equation*}
b_{e}=c_{4} t \sqrt{\frac{k_{c} E}{F_{c r}}}\left(1-\frac{c_{5}}{(b / t)} \sqrt{\frac{k_{c} E}{F_{c r}}}\right) \tag{C-E7-13}
\end{equation*}
$$

The constants $c_{4}$ and $c_{5}$ are given in Table C-E7.1 for each of the cases in Table B4.1a.

The impact of the changes in this Specification for treatment of slender element compression members is greatest for unstiffened element compression members and may be negligible for stiffened element compression members as shown by Geschwindner and Troemner (2016).

## 2. Round HSS

The classical theory of longitudinally compressed cylinders overestimates the actual buckling strength, often by $200 \%$ or more. Inevitable imperfections of shape and the eccentricity of the load are responsible for the reduction in actual strength below
the theoretical strength. The limits in this section are based upon test evidence (Sherman, 1976), rather than theoretical calculations, that local buckling will not occur if $\frac{D}{t} \leq \frac{0.11 E}{F_{y}}$. When $D / t$ exceeds this value but is less than $\frac{0.45 E}{F_{y}}$, Equation E7-7 provides a reduction in the local buckling effective area. This Specification does not recommend the use of round HSS or pipe columns with $\frac{D}{t}>\frac{0.45 E}{F_{y}}$.
Following the SSRC recommendations (Ziemian, 2010) and the approach used for other shapes with slender compression elements, an effective area is used in Section E7 for round sections to account for interaction between local and column buckling. The effective area is determined based on the ratio between the local buckling stress and the yield stress. The local buckling stress for the round section is taken from AISI provisions based on inelastic action (Winter, 1970) and is based on tests conducted on fabricated and manufactured cylinders. Subsequent tests on fabricated cylinders (Ziemian, 2010) confirm that this equation is conservative.

## CHAPTER F

## DESIGN OF MEMBERS FOR FLEXURE

Chapter F applies to members subject to simple bending about one principal axis of the cross section. That is, the member is loaded in a plane parallel to a principal axis that passes through the shear center. Simple bending may also be attained if all load points and supports are restrained against twisting about the longitudinal axis. In all cases, the provisions of this chapter are based on the assumption that points of support for all members are restrained against rotation about their longitudinal axis.

Section F2 gives the provisions for the flexural strength of doubly symmetric compact I-shaped and channel members subject to bending about their major axis. For most designers, the provisions in this section will be sufficient to perform their everyday designs. The remaining sections of Chapter F address less frequently occurring cases encountered by structural engineers. Since there are many such cases, many equations and many pages in the Specification, the table in User Note F1.1 is provided as a map for navigating through the cases considered in Chapter F. The coverage of the chapter is extensive and there are many equations that appear formidable; however, it is stressed again that for most designs, the engineer need seldom go beyond Section F2. AISC Design Guide 25, Frame Design Using Web-Tapered Members (Kaehler et al., 2010), addresses flexural strength for webtapered members.

For all sections covered in Chapter F, the highest possible nominal flexural strength is the plastic moment, $M_{n}=M_{p}$. Being able to use this value in design represents the optimum use of the steel. In order to attain $M_{p}$, the beam cross section must be compact and the member must have sufficient lateral bracing.

Compactness depends on the flange and web width-to-thickness ratios, as defined in Section B4. When these conditions are not met, the nominal flexural strength diminishes. All sections in Chapter F treat this reduction in the same way. For laterally braced beams, the plastic moment region extends over the range of width-to-thickness ratios, $\lambda$, terminating at $\lambda_{p}$. This is the compact condition. Beyond these limits, the nominal flexural strength reduces linearly until $\lambda$ reaches $\lambda_{r}$. This is the range where the section is noncompact. Beyond $\lambda_{r}$ the section is a slender-element section. These three ranges are illustrated in Figure C-F1.1 for the case of rolled wide-flange members for the limit state of flange local buckling. The curve in Figure C-F1.1 shows the relationship between the flange width-to-thickness ratio, $b_{f} / 2 t_{f}$, and the nominal flexural strength, $M_{n}$.

The basic relationship between the nominal flexural strength, $M_{n}$, and the unbraced length, $L_{b}$, for the limit state of lateral-torsional buckling is shown by the solid curve in Figure C-F1.2 for a compact section that is simply supported and subjected to uniform bending with $C_{b}=1.0$.

There are four principal zones defined on the basic curve by the lengths $L_{m}, L_{p}$ and $L_{r}$. Equation F2-5 defines the maximum unbraced length, $L_{p}$, to reach $M_{p}$ with uniform moment. Elastic lateral-torsional buckling will occur when the unbraced length is greater than $L_{r}$, given by Equation F2-6. Equation F2-2 defines the range of inelastic lateral-torsional buckling as a straight line between the defined limits $M_{p}$ at $L_{p}$ and $0.7 F_{y} S_{x}$ at $L_{r}$. Buckling strength in the elastic region is given by Equation F2-3 in combination with Equation F2-4.


Fig. C-F1.1. Nominal flexural strength as a function of the flange width-to-thickness ratio of rolled I-shapes.


Fig. C-F1.2. Nominal flexural strength as a function of unbraced length and moment gradient.

The length $L_{m}$ is defined in Section F13.5 as the limiting unbraced length needed for plastic design. Although plastic design methods generally require more stringent limits on the unbraced length compared to elastic design, the magnitude of $L_{m}$ is often larger than $L_{p}$. The reason for this is because the $L_{m}$ expression accounts for moment gradient directly, while designs based upon an elastic analysis rely on $C_{b}$ factors to account for the benefits of moment gradient as outlined in the following.

For other than uniform moment along the member length, the lateral buckling strength is obtained by multiplying the basic strength in the elastic and inelastic region by $C_{b}$ as shown in Figure C-F1.2. However, in no case can the maximum nominal flexural strength exceed the plastic moment, $M_{p}$. Note that $L_{p}$ given by Equation F2-5 has physical meaning only for $C_{b}=1.0$. For $C_{b}$ greater than 1.0, members with larger unbraced lengths can reach $M_{p}$, as shown by the dashed curve for $C_{b}>1.0$ in Figure C-F1.2. The largest length at which $M_{n}=M_{p}$ is calculated by setting Equation F2-2 equal to $M_{p}$ and solving for $L_{b}$ using the actual value of $C_{b}$.

## F1. GENERAL PROVISIONS

Throughout Chapter F, the resistance factor and the safety factor remain unchanged, regardless of the controlling limit state. This includes the limit state defined in Section F13 for design of flexural members with holes in the tension flange where rupture is the controlling limit state (Geschwindner, 2010a).

In addition, the requirement that all supports for flexural members be restrained against rotation about the longitudinal axis is stipulated. Although there are provisions for members unbraced along their length, under no circumstances can the supports remain unrestrained torsionally.

Beginning with the 1961 AISC Specification (AISC, 1961) and continuing through the 1986 LRFD Specification (AISC, 1986), the following equation was used to adjust the lateral-torsional buckling equations for variations in the moment diagram within the unbraced length.

$$
\begin{equation*}
C_{b}=1.75+1.05\left(\frac{M_{1}}{M_{2}}\right)+0.3\left(\frac{M_{1}}{M_{2}}\right)^{2} \leq 2.3 \tag{C-F1-1}
\end{equation*}
$$

where
$M_{1}=$ smaller moment at end of unbraced length, kip-in. (N-mm)
$M_{2}=$ larger moment at end of unbraced length, kip-in. (N-mm)
( $M_{1} / M_{2}$ ) is positive when moments cause reverse curvature and negative for single curvature

This equation is applicable strictly only to moment diagrams that consist of straight lines between braced points-a condition that is rare in beam design. The equation provides a lower bound to the solutions developed in Salvadori (1956). Equation C-F1-1 can be applied to nonlinear moment diagrams by using a straight line between $M_{2}$ and the moment at the middle of the unbraced length, and taking $M_{1}$ as the value on this straight line at the opposite end of the unbraced length (AASHTO, 2014). If the moment at the middle of the unbraced length is greater than $M_{2}, C_{b}$ is conservatively taken equal to 1.0 when applying Equation C-F1.1 in this manner.

Kirby and Nethercot (1979) present an equation that is a direct fit to various nonlinear moment diagrams within the unbraced segment. Their original equation was slightly adjusted to give Equation C-F1-2a (Equation F1-1 in this Specification):

$$
\begin{equation*}
C_{b}=\frac{12.5 M_{\max }}{2.5 M_{\max }+3 M_{A}+4 M_{B}+3 M_{C}} \tag{C-F1-2a}
\end{equation*}
$$

This equation gives a more accurate solution for unbraced lengths in which the moment diagram deviates substantially from a straight line, such as the case of a fixed-end beam with no lateral bracing within the span, subjected to a uniformly distributed transverse load. It gives slightly conservative results compared to Equation C-F1-1, in most cases, for moment diagrams with straight lines between points of bracing. The absolute values of the three quarter-point moments and the maximum moment, regardless of its location, are used in Equation C-F1-2a. Wong and Driver (2010) review a number of approaches and recommend the following alternative quarter-point equation for use with doubly symmetric I-shaped members:

$$
\begin{equation*}
C_{b}=\frac{4 M_{\max }}{\sqrt{M_{\max }^{2}+4 M_{A}^{2}+7 M_{B}^{2}+4 M_{C}^{2}}} \tag{C-F1-2b}
\end{equation*}
$$

This equation gives improved predictions for a number of important cases, including cases with moderately nonlinear moment diagrams. The maximum moment in the unbraced segment is used in all cases for comparison with the nominal moment, $M_{n}$. In addition, the length between braces, not the distance to inflection points, is used in all cases.

The lateral-torsional buckling modification factor given by Equation C-F1-2a is applicable for doubly symmetric sections and singly symmetric sections in single curvature. It should be modified for application with singly symmetric sections in reverse curvature. Previous work considered the behavior of singly symmetric I-shaped beams subjected to gravity loading (Helwig et al., 1997). The study resulted in the following expression:

$$
\begin{equation*}
C_{b}=\left(\frac{12.5 M_{\max }}{2.5 M_{\max }+3 M_{A}+4 M_{B}+3 M_{C}}\right) R_{m} \leq 3.0 \tag{C-F1-3}
\end{equation*}
$$

For single curvature bending

$$
R_{m}=1.0
$$

For reverse curvature bending

$$
\begin{equation*}
R_{m}=0.5+2\left(\frac{I_{y} T o p}{I_{y}}\right)^{2} \tag{C-F1-4}
\end{equation*}
$$

where
$I_{y}$ Top $=$ moment of inertia of the top flange about an axis in the plane of the web, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$
$I_{y} \quad=$ moment of inertia of the entire section about an axis in the plane of the web, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$

Equation C-F1-3 was developed for gravity loading on beams with a horizontal orientation of the longitudinal axis. For more general cases, the top flange is defined as the flange on the opposite side of the web mid-depth from the direction of the transverse loading. The term in parentheses in Equation C-F1-3 is identical to Equation C-F1-2a, while the factor $R_{m}$ is a modifier for singly symmetric sections that is greater than unity when the top flange is the larger flange and less than unity when the top flange is the smaller flange. For singly symmetric sections subjected to reverse curvature bending, the lateral-torsional buckling strength should be evaluated by separately treating each flange as the compression flange and comparing the available flexural strength with the required moment that causes compression in the flange under consideration.

The $C_{b}$ factors discussed in the foregoing are defined as a function of the spacing between braced points. However, many situations arise where a beam may be subjected to reverse curvature bending and have one of the flanges continuously braced laterally by closely spaced joists and/or light gauge decking normally used for roofing or flooring systems. Although the lateral bracing provides significant restraint to one of the flanges, the other flange can still buckle laterally due to the compression caused by the reverse curvature bending. A variety of $C_{b}$ expressions have been developed that are a function of the type of loading, distribution of the moment, and the support conditions. For gravity loaded rolled I-section beams with the top flange laterally restrained, the following expression is applicable (Yura, 1995; Yura and Helwig, 2010):

$$
\begin{equation*}
C_{b}=3.0-\frac{2}{3}\left(\frac{M_{1}}{M_{o}}\right)-\frac{8}{3}\left[\frac{M_{C L}}{\left(M_{o}+M_{1}\right)^{*}}\right] \tag{C-F1-5}
\end{equation*}
$$

where
$M_{o} \quad=$ moment at the end of the unbraced length that gives the largest compressive stress in the bottom flange, kip-in. ( $\mathrm{N}-\mathrm{mm}$ )
$M_{1} \quad=$ moment at other end of the unbraced length, kip-in. ( $\mathrm{N}-\mathrm{mm}$ )
$M_{C L} \quad=$ moment at the middle of the unbraced length, kip-in. (N-mm)
$\left(M_{o}+M_{1}\right)^{*}=M_{o}$, if $M_{1}$ is positive, causing tension on the bottom flange
The unbraced length is defined as the spacing between locations where twist is restrained. The sign convention for the moments is shown in Figure C-F1.3. $M_{o}, M_{1}$ and $M_{C L}$ are all taken as positive when they cause compression on the top flange, and they are taken as negative when they cause compression on the bottom flange, as shown in the figure. The asterisk on the last term in Equation C-F1-5 indicates that $M_{1}$ is taken as zero in the last term if it is positive. For example, considering the distribution of moment shown in Figure C-F1.4, the $C_{b}$ value would be:

$$
C_{b}=3.0-\frac{2}{3}\left(\frac{+200}{-100}\right)-\frac{8}{3}\left(\frac{+50}{-100}\right)=5.67
$$

Note that $\left(M_{o}+M_{1}\right)^{*}$ is taken as $M_{o}$ since $M_{1}$ is positive.

In this case, $C_{b}=5.67$ would be used with the lateral-torsional buckling strength for the beam using an unbraced length of 20 ft , which is defined by the locations where twist or lateral movement of both flanges is restrained.

A similar buckling problem occurs with rolled I-shaped roofing beams subjected to uplift from wind loading. The light gauge metal decking that is used for the roofing system usually provides continuous restraint to the top flange of the beam; however, the uplift can be large enough to cause the bottom flange to be in compression. The sign convention for the moment is the same as indicated in Figure C-F1.3. The moment must cause compression in the bottom flange ( $M_{C L}$ negative) for the beam to buckle. Three different expressions are given in Figure C-F1.5 depending on whether the end moments are positive or negative (Yura and Helwig, 2010). As outlined in the foregoing, the unbraced length is defined as the spacing between points where both the top and bottom flange are restrained from lateral movement or between points restrained from twist.


Fig. C-F1.3. Sign convention for moments in Equation C-F1-5.


Fig. C-F1.4. Moment diagram for numerical example of application of Equation C-F1-5.

The equations for the limit state of lateral-torsional buckling in Chapter F assume that the loads are applied along the beam centroidal axis. $C_{b}$ may be conservatively taken equal to 1.0 , with the exception of some cases involving unbraced overhangs or members with no bracing within the span and with significant loading applied to the top flange. If the load is placed on the top flange and the flange is not braced, there is a tipping effect that reduces the critical moment; conversely, if the load is suspended from an unbraced bottom flange, there is a stabilizing effect that increases the critical moment (Ziemian, 2010). For unbraced top flange loading on compact I-shaped members, the reduced critical moment may be conservatively approximated by setting the square root expression in Equation F2-4 equal to unity.

An effective length factor of unity is implied in the critical moment equations to represent the worst-case simply supported unbraced segment. Consideration of any end restraint due to adjacent unbuckled segments on the critical segment can increase its strength. The effects of beam continuity on lateral-torsional buckling have been studied, and a simple conservative design method based on the analogy to endrestrained nonsway columns with an effective length less than unity is proposed in Ziemian (2010).


Fig. C-F1.5. $\mathrm{C}_{\mathrm{b}}$ factors for uplift loading on rolled I-shaped beams with the top flange continuously restrained laterally.

\left.| TABLE C-F2.1 |  |
| :---: | :---: |
| Comparison of Equations for |  |
| Nominal Flexural Strength |  |$\right]$

## F2. DOUBLY SYMMETRIC COMPACT I-SHAPED MEMBERS AND CHANNELS BENT ABOUT THEIR MAJOR AXIS

Section F2 applies to members with compact I-shaped or channel cross sections subject to bending about their major axis; hence, the only limit state to consider is lateral-torsional buckling. Almost all rolled wide-flange shapes listed in the AISC Steel Construction Manual (AISC, 2011) are eligible to be designed by the provisions of this section, as indicated in the User Note in this section.

The flexural strength equations in Section F2 are nearly identical to the corresponding equations in Section F1 of the 1999 LRFD Specification (AISC, 2000b), and are the same as those in the 2005 and 2010 Specifications (AISC, 2005, 2010). Table C-F2.1 gives the list of equivalent equations.

The only difference between the 1999 LRFD Specification (AISC, 2000b) and this Specification is that the stress at the interface between inelastic and elastic buckling has been changed from $F_{y}-F_{r}$ in the 1999 edition to $0.7 F_{y}$.

In the Specifications prior to the 2005 AISC Specification the residual stress, $F_{r}$, for rolled and welded shapes was different, namely $10 \mathrm{ksi}(69 \mathrm{MPa})$ and $16.5 \mathrm{ksi}(110$ MPa ), respectively, while since the 2005 AISC Specification the residual stress has been taken as $0.3 F_{y}$ so that the value of $F_{y}-F_{r}=0.7 F_{y}$ is adopted. This change was made in the interest of simplicity; in addition, this modification provides a slightly improved correlation with experimental data (White, 2008).

The elastic lateral-torsional buckling stress, $F_{c r}$, of Equation F2-4:

$$
\begin{equation*}
F_{c r}=\frac{C_{b} \pi^{2} E}{\left(\frac{L_{b}}{r_{t s}}\right)^{2}} \sqrt{1+0.078 \frac{J_{c}}{S_{x} h_{o}}\left(\frac{L_{b}}{r_{t s}}\right)^{2}} \tag{C-F2-1}
\end{equation*}
$$

is identical to Equation F1-13 in the 1999 LRFD Specification:

$$
\begin{equation*}
F_{c r}=\frac{M_{c r}}{S_{x}}=\frac{C_{b} \pi}{L_{b} S_{x}} \sqrt{E I_{y} G J+\left(\frac{\pi E}{L_{b}}\right)^{2} I_{y} C_{w}} \tag{C-F2-2}
\end{equation*}
$$

This equation may be rearranged to the form:

$$
\begin{equation*}
F_{c r}=\frac{C_{b} \pi^{2} E}{L_{b}^{2}} \frac{\sqrt{I_{y} C_{w}}}{S_{x}} \sqrt{1+\frac{G J}{E C_{w}}\left(\frac{L_{b}}{\pi}\right)^{2}} \tag{C-F2-3}
\end{equation*}
$$

By using the definitions:

$$
r_{t s}^{2}=\frac{\sqrt{I_{y} C_{w}}}{S_{x}}, C_{w}=\frac{I_{y} h_{o}^{2}}{4} \text { and } c=1
$$

for doubly symmetric I-shaped members, Equation C-F2-1 is obtained after some algebraic arrangement. Section F2 provides an alternate definition for $c$, based on the expression for $C_{w}$ of channels, which allows the use of Equation C-F2-1 for channel shapes.

Equation F2-5 is the same as F1-4 in the 1999 LRFD Specification and Equation F2-6 corresponds to F1-6. It is obtained by setting $F_{c r}=0.7 F_{y}$ in Equation F2-4 and solving for $L_{b}$. The format of Equation F2-6 was changed for the 2010 AISC Specification so that it is not undefined at the limit when $J=0$; otherwise it gives identical results. The term $r_{t s}$ can be approximated accurately as the radius of gyration of the compression flange plus one-sixth of the web.

These provisions are much simpler than the previous ASD provisions and are based on a more informed understanding of beam limit states behavior (White and Chang, 2007). The maximum allowable stress obtained in these provisions may be slightly higher than the previous limit of $0.66 F_{y}$, because the true plastic strength of the member is reflected by use of the plastic section modulus in Equation F2-1. The Section F2 provisions for unbraced length are satisfied through the use of two equations: one for inelastic lateral-torsional buckling (Equation F2-2), and one for elastic lateraltorsional buckling (Equation F2-3). Previous ASD provisions placed an arbitrary stress limit of $0.6 F_{y}$ when a beam was not fully braced and required that three equations be checked with the selection of the largest stress to determine the strength of a laterally unbraced beam. With the current provisions, once the unbraced length is determined, the member strength can be obtained directly from these equations.

## F3. DOUBLY SYMMETRIC I-SHAPED MEMBERS WITH COMPACT WEBS AND NONCOMPACT OR SLENDER FLANGES BENT ABOUT THEIR MAJOR AXIS

Section F3 is a supplement to Section F2 for the case where the flange of the section is either noncompact or slender (see Figure C-F1.1 where the linear variation of $M_{n}$ between $\lambda_{p f}$ and $\lambda_{r f}$ addresses the noncompact behavior and the curve beyond $\lambda_{r f}$ addresses the slender behavior). As pointed out in the User Note of Section F2, very few rolled wide-flange shapes are subject to this criterion. However, any built-up doubly symmetric I-shaped member with a compact web and a noncompact or slender flange would require use of the provisions in this section.

## F4. OTHER I-SHAPED MEMBERS WITH COMPACT OR NONCOMPACT WEBS BENT ABOUT THEIR MAJOR AXIS

The provisions of Section F4 are applicable to doubly symmetric I-shaped beams with noncompact webs and to singly symmetric I-shaped members with compact or noncompact webs (see the Table in User Note F1.1). This section addresses welded I-shaped beams where the webs are not slender. The flanges may be compact, noncompact or slender. The following section, F5, considers I-shapes with slender webs. The contents of Section F4 are based on White (2008).

Four limit states are considered in Section F4: (a) compression flange yielding; (b) lateral-torsional buckling; (c) compression flange local buckling; and (d) tension flange yielding. The effect of inelastic local buckling of the web is addressed indirectly by multiplying the moment causing yielding in the compression flange by a factor, $R_{p c}$, and the moment causing yielding in the tension flange by a factor, $R_{p t}$. These two factors can vary from unity to as high as $M_{p} / M_{y c}$ and $M_{p} / M_{y t} \leq 1.6$. The maximum limit of 1.6 is intended to ensure against substantial early yielding potentially leading to inelastic response under service conditions. They can be assumed to conservatively equal 1.0 although in many circumstances this will be much too conservative to be a reasonable assumption. The following steps are provided as a guide to the determination of $R_{p c}$ and $R_{p t}$.

Step 1. Calculate $h_{p}$ and $h_{c}$, as defined in Figure C-F4.1.


Fig. C-F4.1. Elastic and plastic stress distributions.

Step 2. Determine the web slenderness and the yield moments in compression and tension:

$$
\left\{\begin{array}{l}
\lambda=\frac{h_{c}}{t_{w}}  \tag{C-F4-1}\\
S_{x c}=\frac{I_{x}}{y} ; S_{x t}=\frac{I_{x}}{d-y} \\
M_{y c}=F_{y} S_{x c} ; \quad M_{y t}=F_{y} S_{x t}
\end{array}\right\}
$$

Step 3. Determine $\lambda_{p w}$ and $\lambda_{r w}$ :

$$
\left\{\begin{array}{l}
\lambda_{p w}=\frac{\frac{h_{c}}{h_{p}} \sqrt{\frac{E}{F_{y}}}}{\left[\frac{0.54 M_{p}}{M_{y}}-0.09\right)^{2}} \leq 5.70 \sqrt{\frac{E}{F_{y}}}  \tag{C-F4-2}\\
\lambda_{r w}=5.70 \sqrt{\frac{E}{F_{y}}}
\end{array}\right\}
$$

If $\lambda>\lambda_{r w}$, then the web is slender and the design is governed by Section F5. Otherwise, in extreme cases where the plastic neutral axis is located in the compression flange, $h_{p}=0$ and the web is considered to be compact.

Step 4. Calculate $R_{p c}$ and $R_{p t}$ using Section F4.
The basic maximum nominal moment is $R_{p c} M_{y c}=R_{p c} F_{y} S_{x c}$ corresponding to the compression flange, and $R_{p t} M_{y t}=R_{p t} F_{y} S_{x t}$ corresponding to tension flange yielding, which is applicable only when $M_{y t}<M_{y c}$, or $S_{x t}<S_{x c}$ (beams with the larger flange in compression). The Section F4 provisions parallel the rules for doubly symmetric members in Sections F2 and F3. Equations F2-4 and F2-6 are nearly the same as Equations F4-5 and F4-8, with the former using $S_{x}$ and the latter using $S_{x c}$, both representing the elastic section modulus to the compression side. This is a simplification that tends to be somewhat conservative if the compression flange is smaller than the tension flange, and it is somewhat unconservative when the reverse is true (White and Jung, 2003). It is required to check for tension flange yielding if the tension flange is smaller than the compression flange (Section F4.4).

For a more accurate solution, especially when the loads are not applied at the centroid of the member, the designer is directed to Galambos (2001), White and Jung (2003), and Ziemian (2010). The following alternative equations in lieu of Equations F4-5 and F4-8 are provided by White and Jung:

$$
\begin{equation*}
M_{n}=C_{b} \frac{\pi^{2} E I_{y}}{L_{b}^{2}}\left[\frac{\beta_{x}}{2}+\sqrt{\left(\frac{\beta_{x}}{2}\right)^{2}+\frac{C_{w}}{I_{y}}\left(1+0.0390 \frac{J}{C_{w}} L_{b}^{2}\right)}\right] \tag{C-F4-3}
\end{equation*}
$$

$L_{r}=\frac{1.38 E \sqrt{I_{y} J}}{S_{x c} F_{L}} \sqrt{\frac{2.6 \beta_{x} F_{L} S_{x c}}{E J}+1+\sqrt{\left(\frac{2.6 \beta_{x} F_{L} S_{x c}}{E J}+1\right)^{2}+\frac{27.0 C_{w}}{I_{y}}\left(\frac{F_{L} S_{x c}}{E J}\right)^{2}}}$
(C-F4-4)
where the coefficient of monosymmetry, $\beta_{x}=0.9 h \alpha\left(\frac{I_{y c}}{I_{y t}}-1\right)$, the warping constant, $C_{w}=h^{2} I_{y c} \alpha$, where $\alpha=\frac{1}{\frac{I_{y c}}{I_{y t}}+1}$, and $F_{L}$ is the magnitude of the flexural stress in compression at which the lateral-torsional buckling is influenced by yielding. In Equations F4-6a and F4-6b, this stress level is taken generally as the smaller of $0.7 F_{y}$ in the compression flange, or the compression flange stress when the tension flange reaches the yield strength, but not less than $0.5 F_{y}$.

## F5. DOUBLY SYMMETRIC AND SINGLY SYMMETRIC I-SHAPED MEMBERS WITH SLENDER WEBS BENT ABOUT THEIR MAJOR AXIS

This section applies to doubly and singly symmetric I-shaped members with a slender web, that is, $\frac{h_{c}}{t_{w}}>\lambda_{r}=5.70 \sqrt{\frac{E}{F_{y}}}$. As is the case in Section F4, four limit states are considered: (a) compression flange yielding; (b) lateral-torsional buckling; (c) compression flange local buckling; and (d) tension flange yielding. The provisions in this section have changed little since 1963. The provisions are based on research reported in Basler and Thürlimann (1963).

There is no seamless transition between the equations in Section F4 and F5. The bending strength of a girder with $F_{y}=50 \mathrm{ksi}(345 \mathrm{MPa})$ and a web slenderness, $h / t_{w}=137$, is not close to that of a girder with $h / t_{w}=138$. These two slenderness ratios are on either side of the limiting ratio. This gap is caused by the discontinuity between the lateral-torsional buckling resistances predicted by Section F4 and those predicted by Section F5 due to the implicit use of $J=0$ in Section F5. However, for typical I-shaped members with webs close to the noncompact web limit, the influence of $J$ on the lateral-torsional buckling resistance is relatively small (for example, the calculated $L_{r}$ values including $J$ versus using $J=0$ typically differ by less than $10 \%$ ). The implicit use of $J=0$ in Section F5 is intended to account for the influence of web distortional flexibility on the lateral-torsional buckling resistance for slender-web I-section members.

## F6. I-SHAPED MEMBERS AND CHANNELS BENT ABOUT THEIR MINOR AXIS

I-shaped members and channels bent about their minor axis do not experience lateral-torsional buckling or web local buckling. The only limit states to consider are yielding and flange local buckling. The user note informs the designer of the few
rolled shapes that need to be checked for flange local buckling. The limiting width-to-thickness ratios for rolled I-shaped members given in Table B4.1b are the same for major- and minor-axis bending. This is a conservative simplification. The limit of $1.6 F_{y} S_{y}$ in Equation F6-1 is intended to ensure against substantial early yielding in channels subjected to minor-axis bending, potentially leading to inelastic response under service conditions. The minor-axis plastic moment capacity of I-sections rarely exceeds this limit.

## F7. SQUARE AND RECTANGULAR HSS AND BOX SECTIONS

The provisions for the nominal flexural strength of HSS and box sections include the limit states of yielding, flange local buckling, web local buckling, and lateraltorsional buckling.

The provisions for local buckling of noncompact rectangular HSS are also the same as those in the previous sections of this chapter: $M_{n}=M_{p}$ for $b / t \leq \lambda_{p}$, and a linear transition from $M_{p}$ to $F_{y} S_{x}$ when $\lambda_{p}<b / t \leq \lambda_{r}$. The equation for the effective width of the compression flange when $b / t$ exceeds $\lambda_{r}$ is the same as that used for rectangular HSS in axial compression in the 2010 AISC Specification, except that the stress is taken as the yield stress. This implies that the stress in the corners of the compression flange is at yield when the ultimate post-buckling strength of the flange is reached. When using the effective width, the nominal flexural strength is determined from the effective section modulus referred to the compression flange using the distance from the shifted neutral axis. A slightly conservative estimate of the nominal flexural strength can be obtained by using the effective width for both the compression and tension flange, thereby maintaining the symmetry of the cross section and simplifying the calculations. For box sections, $\lambda_{r}$ is the same as that used for uniformly compressed slender elements under compression in the 2010 AISC Specification.

Although there are no HSS with slender webs in flexural compression, Section F7.3(c) has been added to account for box sections which may have slender webs. The provisions of Section F5 for I-shaped members have been adopted with a doubling of $a_{w}$ to account for two webs.

Because of the high torsional resistance of the closed cross section, the critical unbraced lengths, $L_{p}$ and $L_{r}$, which correspond to the development of the plastic moment and the yield moment, respectively, are typically relatively large. For example, as shown in Figure C-F7.1, an HSS20 $\times 4 \times 5 / 16$ (HSS508 $\times 101.6 \times 7.9$ ), which has one of the largest depth-to-width ratios among standard HSS, has $L_{p}$ of $6.7 \mathrm{ft}(2.0$ $\mathrm{m})$ and $L_{r}$ of $137 \mathrm{ft}(42 \mathrm{~m})$. An extreme deflection limit might correspond to a length-to-depth ratio of 24 or a length of $40 \mathrm{ft}(12 \mathrm{~m})$ for this member. Using the specified linear reduction between the plastic moment and the yield moment for lateral-torsional buckling, the plastic moment is reduced by only $7 \%$ for the $40 \mathrm{ft}(12 \mathrm{~m})$ length. In most practical designs with HSS where there is a moment gradient and the lateraltorsional buckling modification factor, $C_{b}$, is larger than unity, the reduction will be nonexistent or insignificant.

Section F7.4 has been added to account for the lateral-torsional buckling of very narrow box sections and box sections with plates thinner than HSS with the largest depth-to-width ratio. The provisions are those from the 1989 AISC Specification (AISC, 1989), which were removed in subsequent editions where only HSS were considered.

## F8. ROUND HSS

Round HSS are not subject to lateral-torsional buckling. The failure modes and postbuckling behavior of round HSS can be grouped into three categories (Sherman, 1992; Ziemian, 2010):
(a) For low values of $D / t$, a long plastic plateau occurs in the moment-rotation curve. The cross section gradually ovalizes, local wave buckles eventually form, and the moment resistance subsequently decays slowly. Flexural strength may exceed the theoretical plastic moment due to strain hardening.
(b) For intermediate values of $D / t$, the plastic moment is nearly achieved but a single local buckle develops and the flexural strength decays slowly with little or no plastic plateau region.
(c) For high values of $D / t$, multiple buckles form suddenly with very little ovalization and the flexural strength drops quickly.

The flexural strength provisions for round HSS reflect these three regions of behavior and are based upon five experimental programs involving hot-formed seamless pipe, electric-resistance-welded pipe, and fabricated tubing (Ziemian, 2010).


Fig. C-F7.1. Lateral-torsional buckling of rectangular HSS $\left[\mathrm{F}_{\mathrm{y}}=46\right.$ ksi $\left.(310 \mathrm{MPa})\right]$.

## F9. TEES AND DOUBLE ANGLES LOADED IN THE PLANE OF SYMMETRY

This section addresses both tees and double angles loaded in the plane of symmetry. Prior editions of the Specification did not distinguish between tees and double angles and as a result, there were instances when double angles would appear to have less strength than two single angles. This Specification has addressed this concern by providing separate provisions for tees and double angles. In those cases where double angles should have the same strength as two single angles, the provisions reference Section F10.

The lateral-torsional buckling strength of singly symmetric tee beams is given by a fairly complex formula (Ziemian, 2010). Equation F9-4 in the 2010 AISC Specification (AISC, 2010) is a simplified formulation based on Kitipornchai and Trahair (1980). See also Ellifritt et al. (1992).

This Specification has introduced a substantial change in Section F9.2 for the limit state of lateral-torsional buckling when the stem of the member is in tension; that is, when the flange is in compression. The 2010 AISC Specification transitioned abruptly from the full plastic moment to the elastic buckling range. The plastic range then often extended for a considerable length of the beam. A new linear transition from full plastic moment, $M_{p}$, to the yield moment, $M_{y}$, as shown by the dashed line in Figure C-F9.1, has been introduced to bring the members into conformance with the lateral-torsional buckling rules for I-shaped beams. It should be noted that the ratio of the plastic moment to the yield moment, $M_{p} / M_{y}$, is in excess of 1.6, and is


Fig.C-F9.1 Comparison of the 2016 and 2010 Specification lateral-torsional buckling formulas when the stem is in tension.
usually around 1.8 for tee and double-angle beams in flexure. The plastic moment value is limited to $1.6 M_{y}$ to preclude potential early yielding under service loading conditions. For double-angle legs in compression, the plastic moment is limited to $1.5 M_{y}$, while for tee stems in compression the plastic moment value is limited to $M_{y}$. The committee is unaware of any studies that show what strength tee stems in compression can achieve. Thus, this conservative limit from previous editions of this Specification has been continued.

The solid curve in Figure C-F9.1 defines the nominal moment criteria in the 2010 AISC Specification and the dashed line shows the modified form defined in the 2016 edition. The WT6 $\times 7$ illustrated is an extreme case. For most shapes, the length, $L_{r}$, is impractically long. Also shown in Figure C-F9.1 are two additional points: the square symbol is the length when the center deflection of the member equals $L_{b} / 1000$ under its selfweight. The round symbol defines the length when the length-to-depth ratio equals 24 .

The $C_{b}$ factor used for I-shaped beams is unconservative for tee beams with the stem in compression. For such cases, $C_{b}=1.0$ is appropriate. When beams are bent in reverse curvature, the portion with the stem in compression may control the lateraltorsional buckling resistance even though the moments may be small relative to other portions of the unbraced length with $C_{b} \approx 1.0$. This is because the lateral-torsional buckling strength of a tee with the stem in compression may be only about one-fourth of the strength for the stem in tension. Since the buckling strength is sensitive to the moment diagram, $C_{b}$ has been conservatively taken as 1.0 in Section F9.2. In cases where the stem is in tension, connection details should be designed to minimize any end restraining moments that might cause the stem to be in compression.

The 2005 AISC Specification did not have provisions for the local buckling strength of the stems of tee sections and the legs of double-angle sections under a flexural compressive stress gradient. The Commentary to this Section in the 2005 AISC Specification explained that the local buckling strength was accounted for in the equation for the lateral-torsional buckling limit state, Equation F9-4, when the unbraced length, $L_{b}$, approached zero. While this was thought to be an acceptable approximation at the time, it led to confusion and to many questions by users of the Specification. For this reason, Section F9.4, "Local Buckling of Tee Stems in Flexural Compression," was added to provide an explicit set of formulas for the 2010 AISC Specification.

The derivation of these formulas is provided here to explain the changes. The classical formula for the elastic buckling of a rectangular plate is (Ziemian, 2010):

$$
\begin{equation*}
F_{c r}=\frac{\pi^{2} E k}{12\left(1-v^{2}\right)\left(\frac{b}{t}\right)^{2}} \tag{C-F9-1}
\end{equation*}
$$

where
$v=0.3$ (Poisson's ratio)
$b / t=$ plate width-to-thickness ratio
$k=$ plate buckling coefficient
For the stem of tee sections, the width-to-thickness ratio is equal to $d / t_{w}$. The two rectangular plates in Figure C-F9.2 are fixed at the top, free at the bottom, and loaded,
respectively, with a uniform and a linearly varying compressive stress. The corresponding plate buckling coefficients, $k$, are 1.33 and 1.61 (Figure 4.4, Ziemian, 2010). The graph in Figure C-F9.3 shows the general scheme used historically in developing the local buckling criteria in AISC Specifications. The ordinate is the critical stress divided by the yield stress, and the abscissa is a nondimensional width-to-thickness ratio,

$$
\begin{equation*}
\bar{\lambda}=\frac{b}{t} \sqrt{\frac{F_{y}}{E}} \sqrt{\frac{12\left(1-v^{2}\right)}{\pi^{2} k}} \tag{C-F9-2}
\end{equation*}
$$

In the traditional scheme, it is assumed the critical stress is the yield stress, $F_{y}$, as long as $\bar{\lambda} \leq 0.7$. Elastic buckling, governed by Equation C-F9-1, commences when $\bar{\lambda}=1.24$ and $F_{c r}=0.65 F_{y}$. Between these two points, the transition is assumed linear to account for initial deflections and residual stresses. While these assumptions are arbitrary empirical values, they have proven satisfactory. The curve in Figure C-F9.3 shows the graph of the formulas adopted for the stem of tee sections when these elements are subject to flexural compression. The limiting width-to-thickness ratio up to which $F_{c r}=F_{y}$ is (using $v=0.3$ and $k=1.61$ ):

$$
\bar{\lambda}=0.7=\frac{b}{t} \sqrt{\frac{F_{y}}{E}} \sqrt{\frac{12\left(1-v^{2}\right)}{\pi^{2} k}} \rightarrow \frac{b}{t}=\frac{d}{t_{w}}=0.84 \sqrt{\frac{E}{F_{y}}}
$$



Fig. C-F9.2. Plate buckling coefficients for uniform compression and for linearly varying compressive stresses

The elastic buckling range was assumed to be governed by the same equation as the local buckling of the flanges of a wide-flange beam bent about its minor axis (Equation F6-4):

$$
F_{c r}=\frac{0.69 E}{\left(\frac{d}{t_{w}}\right)^{2}}
$$

The underlying plate buckling coefficient for this equation is $k=0.76$, which is a very conservative assumption for tee stems in flexural compression. An extensive direct analysis was performed by Richard Kaehler and Benjamin Schafer of the AISC Committee on Specifications Task Committee 4, on the elastic plate stability of a rolled WT-beam under bending causing compression at the tip of the stem, and it was found that the appropriate value for the plate-buckling coefficient is $k=1.68$, resulting in Equation F9-19:

$$
F_{c r}=\frac{\pi^{2} E k}{12\left(1-v^{2}\right)\left(\frac{b}{t}\right)^{2}}=\frac{1.52 E}{\left(\frac{d}{t_{w}}\right)^{2}}
$$

The transition point between the noncompact and slender range is:

$$
\left(\frac{d}{t_{w}}\right)_{r}=\lambda_{r}=1.52 \sqrt{\frac{E}{F_{y}}}
$$

as listed in Table B4.1b, Case 14.
(0.7, 1.0)


Fig. C-F9.3. General scheme for plate local buckling limit states.

The comparison between the web local buckling curves in the 2016 and the 2010 editions of the AISC Specification are illustrated in Figure C-F9.4.

Flexure about the $y$-axis of tees and double angles does not occur frequently and is not covered in this Specification. However, guidance is given here to address this condition. The yield limit state and the local buckling limit state of the flange can be checked by using Equations F6-1 through F6-3. Lateral-torsional buckling can conservatively be calculated by assuming the flange acts alone as a rectangular beam, using Equations F11-2 through F11-4. Alternately, an elastic critical moment given as:

$$
\begin{equation*}
M_{e}=\frac{\pi}{L_{b}} \sqrt{E I_{x} G J} \tag{C-F9-3}
\end{equation*}
$$

may be used in Equations F10-2 or F10-3 to obtain the nominal flexural strength.

## F10. SINGLE ANGLES

Flexural strength limits are established for the limit states of yielding, lateral-torsional buckling, and leg local buckling of single-angle beams. In addition to addressing the general case of unequal-leg single angles, the equal-leg angle is treated as a special case. Furthermore, bending of equal-leg angles about a geometric axis, an axis parallel to one of the legs, is addressed separately as it is a common case of angle bending.

The tips of an angle refer to the free edges of the two legs. In most cases of unrestrained bending, the flexural stresses at the two tips will have the same sign (tension or compression). For constrained bending about a geometric axis, the tip stresses will differ in sign. Provisions for both tension and compression at the tip should be checked, as appropriate, but in most cases it will be evident which controls.


Fig. C-F9.4. Local buckling of tee stem in flexural compression.

Appropriate serviceability limits for single-angle beams need to also be considered. In particular, for longer members subjected to unrestrained bending, deflections are likely to control rather than lateral-torsional buckling or leg local buckling strength.

The provisions in this section follow the general format for nominal flexural resistance (see Figure C-F1.2). There is a region of full plastification, a linear transition to the yield moment, and a region of local buckling.

## 1. Yielding

The strength at full yielding is limited to 1.5 times the yield moment. This limit acts as a limit on the ratio of plastic moment to yield moment, $M_{p} / M_{y}$, which can also be represented as $Z / S$. This ratio is also known as the shape factor. The limit in Equation F10-1 assures an upper bound plastic moment for an angle that could be bent about any axis, inasmuch as these provisions are applicable to all flexural conditions. A 1.25 factor had been used in the past and was known to be a conservative value. Research work (Earls and Galambos, 1997) has indicated that the 1.5 factor represents a better upper bound value. Since the shape factor for angles is in excess of 1.5, the nominal design strength, $M_{n}=1.5 M_{y}$, for compact members is justified provided that instability does not control.

## 2. Lateral-Torsional Buckling

Lateral-torsional buckling may limit the flexural strength of an unbraced single-angle beam. As illustrated in Figure C-F10.1, Equation F10-3 represents the elastic buckling portion with the maximum nominal flexural strength, $M_{n}$, equal to $75 \%$ of the theoretical buckling moment, $M_{c r}$. Equation F10-2 represents the inelastic buckling transition expression between $0.75 M_{y}$ and $1.5 M_{y}$. The maximum beam flexural


Fig. C-F10.1. Lateral-torsional buckling limits of a single-angle beam.
strength, $M_{n}=1.5 M_{y}$, will occur when the theoretical buckling moment, $M_{c r}$, reaches or exceeds $7.7 M_{y} . M_{y}$ is the moment at first yield in Equations F10-2 and F10-3, the same as the $M_{y}$ in Equation F10-1. These equations are modifications of those developed from the results of Australian research on single angles in flexure and on an analytical model consisting of two rectangular elements of length equal to the actual angle leg width minus one-half the thickness (AISC, 1975; Leigh and Lay, 1978, 1984; Madugula and Kennedy, 1985).

When bending is applied about one leg of a laterally unrestrained single angle, the angle will deflect laterally as well as in the bending direction. Its behavior can be evaluated by resolving the load and/or moments into principal axis components and determining the sum of these principal axis flexural effects. Subsection (i) of Section F10.2(2) is provided to simplify and expedite the calculations for this common situation with equal-leg angles. For such unrestrained bending of an equal-leg angle, the resulting maximum normal stress at the angle tip (in the direction of bending) will be approximately $25 \%$ greater than the calculated stress using the geometric axis section modulus. The value of $M_{c r}$ given by Equations F10-5a and F10-5b and the evaluation of $M_{y}$ using 0.80 of the geometric axis section modulus reflect bending about the inclined axis shown in Figure C-F10.2. Dumonteil (2009) compares the results using the geometric axis approach with that of the principal axis approach for lateral-torsional buckling.

The deflection calculated using the geometric axis moment of inertia has to be increased $82 \%$ to approximate the total deflection. Deflection has two components: a vertical component (in the direction of applied load) of 1.56 times the calculated value and a horizontal component of 0.94 times the calculated value. The resultant total deflection is in the general direction of the minor principal axis bending of the


Fig. C-F10.2. Deflection for geometric axis bending of laterally unrestrained equal-leg angles.
angle (see Figure C-F10.2). These unrestrained bending deflections should be considered in evaluating serviceability and will often control the design over lateraltorsional buckling.

The horizontal component of deflection being approximately $60 \%$ of the vertical deflection means that the lateral restraining force required to achieve purely vertical deflection must be $60 \%$ of the applied load value (or produce a moment $60 \%$ of the applied value), which is very significant.

Lateral-torsional buckling is limited by $M_{c r}$ (Leigh and Lay, 1978, 1984) as defined in Equation F10-5a, which is based on

$$
M_{c r}=\frac{2.33 E b^{4} t}{\left(1+3 \cos ^{2} \theta\right)(K L)^{2}}\left[\sqrt{\sin ^{2} \theta+\frac{0.156\left(1+3 \cos ^{2} \theta\right)(K L)^{2} t^{2}}{b^{4}}}+\sin \theta\right](\mathrm{C}-\mathrm{F} 10-1)
$$

(the general expression for the critical moment of an equal-leg angle) with $\theta=-45^{\circ}$ for the condition where the angle tip stress is compressive (see Figure C-F10.3). Lateral-torsional buckling can also limit the flexural strength of the cross section when the maximum angle tip stress is tensile from geometric axis flexure, especially with use of the flexural strength limits in Section F10.2. Using $\theta=45^{\circ}$ in Equation C-F10-1, the resulting expression is Equation F10-5b with a +1 instead of -1 as the last term.

Stress at the tip of the angle leg parallel to the applied bending axis is of the same sign as the maximum stress at the tip of the other leg when the single angle is unrestrained. For an equal-leg angle this stress is about one-third of the maximum stress. It is only necessary to check the nominal bending strength based on the tip of the angle leg with the maximum stress when evaluating such an angle. If an angle is sub-


Fig. C-F10.3. Equal-leg angle with general moment loading.
jected to an axial compressive load, the flexural limits obtained from Section F10.2(2) cannot be used due to the inability to calculate a proper moment magnification factor for use in the interaction equations.

For unequal-leg angles and for equal-leg angles in compression without lateral-torsional restraint, the applied load or moment must be resolved into components along the two principal axes in all cases and design must be for biaxial bending using the interaction equations in Chapter H .

Under major-axis bending of single angles, Equation F10-4 in combination with Equations F10-2 and F10-3 control the available moment against overall lateral-torsional buckling of the angle. This is based on $M_{c r}$ given in Equation C-F10-1 with $\theta=0^{\circ}$.

Lateral-torsional buckling will reduce the stress below $1.5 M_{y}$ only for $M_{c r}<7.7 M_{y}$. For an equal-leg angle bent about its major principal axis, this occurs for $L_{b} / t \geq$ $3,700 C_{b} / F_{y}$. If the $L_{b} t / b^{2}$ parameter is small (less than approximately $0.44 C_{b}$ for this case), local buckling will control the available moment and $M_{n}$ based on lateraltorsional buckling need not be evaluated. Local buckling must be checked using Section F10.3.

Lateral-torsional buckling about the major principal axis, $w$-axis, of an angle is controlled by $M_{c r}$ in Equation F10-4. The section property, $\beta_{w}$, which is nonzero for unequal-leg angles reflects the location of the shear center relative to the principal axis of the section and the bending direction under uniform bending. Positive $\beta_{w}$ and maximum $M_{c r}$ occurs when the shear center is in flexural compression while negative $\beta_{w}$ and minimum $M_{c r}$ occur when the shear center is in flexural tension (see Figure C-F10.4). This $\beta_{w}$ effect is consistent with the behavior of singly symmetric I-shaped beams, which are more stable when the compression flange is larger than the tension flange.


Fig. C-F10.4. Unequal-leg angle in bending.

TABLE C-F10.1 $\beta_{w}$ Values for Angles	
Angle size, in. (mm)	$\beta_{w}$, in. (mm) ${ }^{[\mathrm{ar}}$
$\begin{aligned} & 8 \times 6(203 \times 152) \\ & 8 \times 4(203 \times 102) \end{aligned}$	$\begin{aligned} & 3.31(84.1) \\ & 5.48(139) \end{aligned}$
$7 \times 4(178 \times 102)$	4.37 (111)
$\begin{gathered} 6 \times 4(152 \times 102) \\ 6 \times 3^{1 / 2}(152 \times 89) \end{gathered}$	$\begin{aligned} & 3.14(79.8) \\ & 3.69(93.7) \end{aligned}$
$\begin{gathered} 5 \times 3^{1 / 2} 2(127 \times 89) \\ 5 \times 3(127 \times 76) \end{gathered}$	$\begin{aligned} & 2.40(61.0) \\ & 2.99(75.9) \end{aligned}$
$\begin{gathered} 4 \times 3^{1 / 2} 2(102 \times 89) \\ 4 \times 3(102 \times 76) \end{gathered}$	$\begin{aligned} & 0.87 \text { (22.1) } \\ & 1.65 \text { (41.9) } \end{aligned}$
$\begin{gathered} 3^{1 / 2} 2 \times 3(89 \times 76) \\ 3^{1 / 2} \times 2^{1 / 2}(89 \times 64) \end{gathered}$	$\begin{aligned} & 0.87(22.1) \\ & 1.62(41.1) \end{aligned}$
$\begin{gathered} 3 \times 2^{1 / 2}(76 \times 64) \\ 3 \times 2(76 \times 51) \end{gathered}$	$\begin{aligned} & 0.86(21.8) \\ & 1.56(39.6) \end{aligned}$
$2^{1 / 2 \times 2}(64 \times 51)$	0.85 (21.6)
$2^{1 / 2} \times 1^{1 / 2}(64 \times 38)$	1.49 (37.8)
Equal legs	0.00
${ }^{[a]} \beta_{w}=\frac{1}{l_{w}} \int_{A} z\left(w^{2}+z^{2}\right) d A-2 z_{o}$   where   $z_{0}=$ coordinate along the $z$-axis of the shear center with respect to the centroid, in. (mm) $l_{w}=$ moment of inertia for the major principal axis, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$	
$\beta_{w}$ has a positive or negative value depending on the direction of bending (see Figure C-F10.4).	

For reverse curvature bending, part of the unbraced length has positive $\beta_{w}$, while the remainder has negative $\beta_{w}$; conservatively, the negative value is assigned for that entire unbraced segment.

The factor $\beta_{w}$ is essentially independent of angle thickness (less than $1 \%$ variation from mean value) and is primarily a function of the leg widths. The average values shown in Table C-F10.1 may be used for design.

## 3. Leg Local Buckling

The $b / t$ limits were modified for the 2010 AISC Specification to be more representative of flexural limits rather than using those for single angles under uniform compression. Typically, the flexural stresses will vary along the leg length permitting the use of the stress limits given. Even for the geometric axis flexure case, which produces uniform compression along one leg, use of these limits will provide a conservative value when compared to the results reported in Earls and Galambos (1997).

## F11. RECTANGULAR BARS AND ROUNDS

The provisions in Section F11 apply to solid bars with round and rectangular cross section. The prevalent limit state for such members is the attainment of the full plastic moment, $M_{p}$. The exception is the lateral-torsional buckling of rectangular bars where the depth is larger than the width. The requirements for design are identical to those given previously in Table A-F1.1 in the 1999 LRFD Specification (AISC, 2000b) and the same as those in use since the 2005 AISC Specification (AISC, 2005). Since the shape factor, $Z / S$, for a rectangular cross section is 1.5 and for a round section is 1.7 , consideration must be given to serviceability issues such as excessive deflection or permanent deformation under service-load conditions.

## F12. UNSYMMETRICAL SHAPES

When the design engineer encounters beams that do not contain an axis of symmetry, or any other shape for which there are no provisions in the other sections of Chapter F, the stresses are to be limited by the yield stress or the elastic buckling stress. The stress distribution and/or the elastic buckling stress must be determined from principles of structural mechanics, textbooks or handbooks, such as the SSRC Guide (Ziemian, 2010), papers in journals, or finite element analyses. Alternatively, the designer can avoid the problem by selecting cross sections from among the many choices addressed in the previous sections of Chapter F.

## F13. PROPORTIONS OF BEAMS AND GIRDERS

## 1. Strength Reductions for Members with Holes in the Tension Flange

Historically, provisions for proportions of rolled beams and girders with holes in the tension flange were based upon either a percentage reduction independent of material strength or a calculated relationship between the tension rupture and tension yield strengths of the flange, with resistance factors or safety factors included in the calculation. In both cases, the provisions were developed based upon tests of steel with a specified minimum yield stress of $36 \mathrm{ksi}(250 \mathrm{MPa})$ or less.

More recent tests (Dexter and Altstadt, 2004; Yuan et al., 2004) indicate that the flexural strength on the net section is better predicted by comparison of the quantities $F_{y} A_{f g}$ and $F_{u} A_{f n}$, with a slight adjustment when the ratio of $F_{y}$ to $F_{u}$ exceeds 0.8 . If the holes remove enough material to affect the member strength, the critical stress is adjusted from $F_{y}$ to $F_{u} A_{f n} / A_{f g}$ and this value is conservatively applied to the elastic section modulus, $S_{x}$.

The resistance factor and safety factor used throughout this chapter, $\phi=0.90$ and $\Omega=1.67$, are those normally applied for the limit state of yielding. In the case of rupture of the tension flange due to the presence of holes, the provisions of this chapter continue to apply the same resistance and safety factors. Since the effect of Equation F13-1 is to multiply the elastic section modulus by a stress that is always less than the yield stress, it can be shown that this resistance and safety factor always give conservative results when $Z / S \leq 1.2$. It can also be shown to be conservative when $Z / S>1.2$, and a more accurate model for the rupture strength is used (Geschwindner, 2010a).

## 2. Proportioning Limits for I-Shaped Members

The provisions of this section were taken directly from Appendix G, Section G1 of the 1999 LRFD Specification (AISC, 2000b) and have been the same since the 2005 AISC Specification (AISC, 2005). They have been part of the plate-girder design requirements since 1963 and are derived from Basler and Thürlimann (1963). The web depth-to-thickness limitations are provided so as to prevent the flange from buckling into the web. Equation F13-4 was slightly modified from the corresponding Equation A-G1-2 in the 1999 LRFD Specification to recognize the change in the definition of residual stress from a constant $16.5 \mathrm{ksi}(110 \mathrm{MPa})$ to $30 \%$ of the yield stress in the 2005 AISC Specification, as shown by the following derivation:

$$
\begin{equation*}
\frac{0.48 E}{\sqrt{F_{y}\left(F_{y}+16.5\right)}} \approx \frac{0.48 E}{\sqrt{F_{y}\left(F_{y}+0.3 F_{y}\right)}}=\frac{0.42 E}{F_{y}} \tag{C-F13-1}
\end{equation*}
$$

## 3. Cover Plates

Cover plates need not extend the entire length of the beam or girder. The end connection between the cover plate and beam must be designed to resist the full force in the cover plate at the theoretical cutoff point. The end force in a cover plate on a beam whose required strength exceeds the available yield strength, $\phi M_{y}=\phi F_{y} S_{x}$ (LFRD) or $M_{y} / \Omega=F_{y} S_{x} / \Omega$ (ASD), of the combined shape can be determined by an elastic-plastic analysis of the cross section but can conservatively be taken as the full yield strength of the cover plate for LRFD or the full yield strength of the cover plate divided by 1.5 for ASD. The forces in a cover plate on a beam whose required strength does not exceed the available yield strength of the combined section can be determined using the elastic distribution, $M Q / I$.

The requirements for minimum weld lengths on the sides of cover plates at each end reflect uneven stress distribution in the welds due to shear lag in short connections.

The requirement that the area of cover plates on bolted girders be limited was removed for this Specification since there was no justification to treat bolted girders any differently than welded girders when considering the size of the cover plate.

## 5. Unbraced Length for Moment Redistribution

The moment redistribution provisions of Section B3.3 refer to this section for setting the maximum unbraced length, $L_{m}$, when moments are to be redistributed. These provisions have been a part of the AISC Specification since the 1949 edition (AISC, 1949). Portions of members that would be required to rotate inelastically while the moments are redistributed need more closely spaced bracing than similar parts of a continuous beam. However, the magnitude of $L_{m}$ is often larger than $L_{p}$. This is because the $L_{m}$ expression accounts for moment gradient directly, while designs based upon an elastic analysis rely on $C_{b}$ factors from Section F1.1 to account for the
benefits of moment gradient. Equations F13-8 and F13-9 define the maximum permitted unbraced length in the vicinity of redistributed moment for doubly symmetric and singly symmetric I-shaped members with a compression flange equal to or larger than the tension flange bent about their major axis, and for solid rectangular bars and symmetric box beams bent about their major axis, respectively. These equations are identical to those in Appendix 1 of the 2005 AISC Specification (AISC, 2005) and the 1999 LRFD Specification (AISC, 2000b), and are based on research reported in Yura et al. (1978). They are different from the corresponding equations in Chapter N of the 1989 AISC Specification (AISC, 1989).

## CHAPTER G

## DESIGN OF MEMBERS FOR SHEAR

## G1. GENERAL PROVISIONS

Chapter G applies to webs of I-shaped members subject to shear in the plane of the web, single angles, tees, and HSS. It also applies to flanges of I-shaped members and tees subject to shear in the $y$-direction.

## G2. I-SHAPED MEMBERS AND CHANNELS

Two shear strength prediction methods are presented. The method in Section G2.1 accounts for the web shear post-bucking strength in members with unstiffened webs, members with transverse stiffeners spaced wider than $3 h$, and end panels of members with transverse stiffeners spaced closer than $3 h$. The method of Section G2.2 accounts for the web shear post-buckling strength of interior panels of members with stiffeners spaced at $3 h$ or smaller. Consideration of shear and bending interaction is not required because the shear and flexural resistances can be calculated with a sufficient margin of safety without considering this effect (White et al., 2008; Daley et al., 2016).

## 1. Shear Strength of Webs without Tension Field Action

Section G2.1 addresses the shear strength of I-shaped members subject to shear and bending in the plane of the web. The provisions in this section apply when post-buckling strength develops due to web stress redistribution but classical tension field action is not developed. They may be conservatively applied where it is desired to not use the tension field action enhancement for convenience in design.

The nominal shear strength of a web is defined by Equation G2-1, a product of the shear yield force, $0.6 F_{y} A_{w}$, and the shear post-buckling strength reduction factor, $C_{v 1}$. The formulation is based on the Rotated Stress Field Theory (Höglund, 1997), which includes post-buckling strength due to web stress redistribution in members with or without transverse stiffeners. Höglund presented equations for members with rigid end posts (in essence, vertical beams spanning between flanges) and nonrigid end posts such as regular bearing stiffeners. The latter equation was written in the form of the familiar $C_{v}$ formulation from prior AISC Specifications and modified slightly for use in Section G2.1 (Daley et al., 2016; Studer et al., 2015).
The provisions in Section G2.1(a) for rolled I-shaped members with $h / t_{w} \leq 2.24 \sqrt{E / F_{y}}$ are similar to the 1999 and earlier LRFD provisions, with the exception that $\phi$ has been increased from 0.90 to 1.00 (with a corresponding decrease of the safety factor from 1.67 to 1.50 ), thus making these provisions consistent with the 1989 provisions for allowable stress design (AISC, 1989). The value of $\phi$ of 1.00 is justified by comparison
with experimental test data and recognizes the minor consequences of shear yielding, as compared to tension and compression yielding, on the overall performance of rolled I-shaped members. This increase is applicable only to the shear yielding limit state of rolled I-shaped members.

Section G2.1(b) uses the shear post-buckling strength reduction factor, $C_{v 1}$, shown in Figure C-G2.1. The curve for $C_{v 1}$ has two segments whereas the previous AISC Section G2.1 provisions for $C_{v}$ had three (AISC, 2010).

For webs with $h / t_{w} \leq 1.10 \sqrt{k_{v} E / F_{y w}}$, the nominal shear strength, $V_{n}$, is based on shear yielding of the web, with $C_{v 1}=1.0$ as given by Equation G2-3. This $h / t_{w}$ yielding limit was determined by slightly increasing the limit from Höglund (1997) to match the previous yielding limit which was based on Cooper et al. (1978).

When $h / t_{w}>1.10 \sqrt{k_{v} E / F_{y w}}$, the web shear strength is based on the shear buckling and subsequent post-buckling strength of a web with nonrigid end posts. The resulting strength reduction factor, $C_{v 1}$, given by Equation G2-4, was determined by dividing the Höglund (1997) buckling plus post-buckling strength by the shear yield strength and increasing that ratio slightly to better match experimental measurements (Daley et al., 2016; Studer et al., 2015).

The plate buckling coefficient, $k_{v}$, for panels subject to pure shear having simple supports on all four sides is given by the following (Ziemian, 2010).

$$
k_{v}=\left\{\begin{array}{cc}
4.00+\frac{5.34}{(a / h)^{2}} & \text { for } a / h \leq 1  \tag{C-G2-1}\\
5.34+\frac{4.00}{(a / h)^{2}} & \text { for } a / h>1
\end{array}\right\}
$$



Fig. C-G2.1. Shear buckling coefficient for $\mathrm{F}_{\mathrm{y}}=50 \mathrm{ksi}(345 \mathrm{MPa})$.

For simplicity, these equations have been simplified without loss of accuracy herein and in AASHTO (2014) to the following equation which is based on Vincent (1969).

$$
\begin{equation*}
k_{v}=5+\frac{5}{(a / h)^{2}} \tag{C-G2-2}
\end{equation*}
$$

The plate buckling coefficient, $k_{v}$, is 5.34, for web panels with an aspect ratio, $a / h$, exceeding 3.0. This value is slightly larger than the value of 5.0 used in prior AISC Specifications, and is consistent with Höglund's developments (Höglund, 1997).

Prior AISC Specifications limited $a / h$ to $\left[260 /\left(h / t_{w}\right)\right]^{2}$, which was based on the following statement by Basler (1961): "In the range of high web slenderness ratios, the stiffener spacing should not be arbitrarily large. Although the web might still be sufficient to carry the shear, the distortions could be almost beyond control in fabrication and under load." The experimental evidence shows that I-shaped members develop the calculated resistances without the need for this restriction (White and Barker, 2008; White et al., 2008). Furthermore, for $a / h>1.5$, Equation F13-4 limits the maximum $h / t_{w}$ to 232 for $F_{y}=50 \mathrm{ksi}$, and for $a / h \leq 1.5$, Equation F13-3 limits the web slenderness to 289 for $F_{y}=50 \mathrm{ksi}$. These limits are considered sufficient to limit distortions during fabrication and handling. The engineer should be aware of the fact that sections with highly slender webs are more apt to be controlled by the web local yielding, web local crippling, and/or web compression buckling limit states of Sections J10.2, J10.3 and J10.5. Therefore, these limit states may limit the maximum practical web slenderness in some situations.

The provisions of Section G2.1 assume monotonically increasing loads. If a flexural member is subjected to load reversals causing cyclic yielding over large portions of a web, such as may occur during a major earthquake, special design considerations may apply (Popov, 1980).

Lee et al. (2008) presented a strength prediction method that applies when $a / h \leq 6$, and does not directly apply to members with long web panels. This method is accurate on average, but is not conservative enough to be used with $\phi=0.90$ (Daley et al., 2016); it also involves more calculations than the proposed method based on Höglund (1997).

## 2. Shear Strength of Interior Web Panels with $a / h \leq 3$ Considering Tension Field Action

The panels of the web of a built-up member, bounded on the top and bottom by the flanges and on each side by transverse stiffeners, are capable of carrying loads far in excess of their web buckling load. Upon reaching the theoretical web buckling limit, slight lateral web displacements will have developed. These deformations are of no structural significance, because other means are still present to provide further strength.

When transverse stiffeners are properly spaced and are stiff enough to resist out-ofplane movement of the post-buckled web, significant diagonal tension fields form in the web panels prior to the shear resistance limit. The web in effect acts like a Pratt truss composed of tension diagonals and compression verticals that are stabilized by
the transverse stiffeners. This effective Pratt truss furnishes the strength to resist applied shear forces unaccounted for by the linear buckling theory.

The key requirement in the development of tension field action in the web of plate girders is the ability of the stiffeners to provide sufficient flexural rigidity to stabilize the web along their length. In the case of end panels there is a panel only on one side. The anchorage of the tension field is limited in many situations at these locations and is thus neglected. In addition, the enhanced resistance due to tension field forces is reduced when the panel aspect ratio becomes large. For this reason, the inclusion of tension field action is not permitted when $a / h$ exceeds 3.0.

Analytical methods based on tension field action have been developed (Basler and Thürlimann, 1963; Basler, 1961) and corroborated in an extensive program of tests (Basler et al., 1960). Equation G2-7 is based on this research. The second term in the bracket represents the relative increase of the panel shear strength due to tension field action. The merits of Equation G2-7 relative to various alternative representations of web shear resistance are evaluated and Equation G2-7 is recommended for characterization of the shear strength of stiffened interior web panels in White and Barker (2008).

AISC Specifications prior to 2005 required explicit consideration of the interaction between the flexural and shear strengths when the web is designed using tension field action. White et al. (2008) show that the interaction between the shear and flexural resistances may be neglected by using a smaller tension field action shear strength for girders with $2 A_{w} /\left(A_{f t}+A_{f c}\right)>2.5$ or $h / b_{f t}>6$ or $h / b_{f c}>6$. Section G2.2 disallows the use of the traditional complete tension field action, Equation G2-7, for I-shaped members with relatively small flange-to-web proportions identified by these limits. For cases where these limits are violated, Equation G2-8 gives an applicable reduced tension field action resistance referred to as the "true Basler" tension field resistance. The true Basler resistance is based on the development of only a partial tension field, whereas Equation G2-7 is based on the development of a theoretical complete tension field. Similar limits are specified in AASHTO (2014).

## 3. Transverse Stiffeners

Numerous studies (Horne and Grayson, 1983; Rahal and Harding, 1990a, 1990b, 1991; Stanway et al., 1993, 1996; Lee et al., 2002b; Xie and Chapman, 2003; Kim et al., 2007; Kim and White, 2014) have shown that transverse stiffeners in I-girders designed for shear post-buckling strength, including tension field action, are loaded predominantly in bending due to the restraint they provide to lateral deflection of the web. Generally, there is evidence of some axial compression in the transverse stiffeners due to the tension field, but even in the most slender web plates permitted by this Specification, the effect of the axial compression transmitted from the post-buckled web plate is typically minor compared to the lateral loading effect. Therefore, the transverse stiffener area requirement from prior AISC Specifications is no longer specified. Rather, the demands on the stiffener flexural rigidity are increased in situations where the post-buckling resistance of the web is relied upon. Equation G2-13 is the same requirement as specified in AASHTO (2014).

## G3. SINGLE ANGLES AND TEES

Shear stresses in single-angle members and tee stems are the result of the gradient of the bending moment along the length (flexural shear) and the torsional moment.

For angles, the maximum elastic stress due to flexural shear is:

$$
\begin{equation*}
f_{v}=\frac{1.5 V_{b}}{b t} \tag{C-G3-1}
\end{equation*}
$$

where $V_{b}$ is the component of the shear force parallel to the angle leg with width $b$ and thickness $t$. The stress is constant throughout the thickness and it should be calculated for both legs to determine the maximum. The coefficient 1.5 is the calculated value for equal-leg angles loaded along one of the principal axes. For equal-leg angles loaded along one of the geometric axes, this factor is 1.35 . Factors between these limits may be calculated conservatively from $V_{b} Q / I t$ to determine the maximum stress at the neutral axis. Alternatively, if only flexural shear is considered, a uniform flexural shear stress in the leg of $V_{b} / b t$ may be used due to inelastic material behavior and stress redistribution.

If the angle is not laterally braced against twist, a torsional moment is produced equal to the applied transverse load times the perpendicular distance, $e$, to the shear center, which is at the point of intersection of the centerlines of the two legs. Torsional moments are resisted by two types of shear behavior: pure torsion (St. Venant torsion) and warping torsion (Seaburg and Carter, 1997). The shear stresses due to restrained warping are small compared to the St. Venant torsion (typically less than 20\%) and they can be neglected for practical purposes. The applied torsional moment is then resisted by pure shear stresses that are constant along the width of the leg (except for localized regions at the toe of the leg), and the maximum value can be approximated by

$$
\begin{equation*}
f_{v}=\frac{M_{T} t}{J}=\frac{3 M_{T}}{A t} \tag{C-G3-2}
\end{equation*}
$$

where

```
\(A=\) cross-sectional area of angle, in. \({ }^{2}\left(\mathrm{~mm}^{2}\right)\)
 \(J=\) torsional constant (approximated by \(\Sigma\left(b t^{3} / 3\right)\) when precomputed value is
 unavailable), in. \({ }^{4}\) (\(\mathrm{mm}^{4}\))
 \(M_{T}=\) torsional moment, kip-in. (N-mm)
```

For a study of the effects of warping, see Gjelsvik (1981). Torsional moments from laterally unrestrained transverse loads also produce warping normal stresses that are superimposed on the bending stresses. However, since the warping strength of single angles is relatively small, this additional bending effect, just like the warping shear effect, can be neglected for practical purposes.

## G4. RECTANGULAR HSS, BOX SECTIONS, AND OTHER SINGLY AND DOUBLY SYMMETRIC MEMBERS

The shear strength of rectangular HSS and box section webs is taken as the shear yield strength if web slenderness, $h / t_{w}$, does not exceed the yielding limit, or the shear buckling strength. Post-buckling strength from Section G2.1 is not included due to lack of experimental verification.

## G5. ROUND HSS

Little information is available on round HSS subjected to transverse shear; therefore, the recommendations are based on local buckling of cylinders due to torsion. However, since torsion is generally constant along the member length and transverse shear usually has a gradient, it is recommended to take the critical stress for transverse shear as 1.3 times the critical stress for torsion (Brockenbrough and Johnston, 1981; Ziemian, 2010). The torsion equations apply over the full length of the member, but for transverse shear it is reasonable to use the length between the points of maximum and zero shear force. Only thin HSS may require a reduction in the shear strength based upon first shear yield.

In the equation for the nominal shear strength, $V_{n}$, it is assumed that the shear stress at the neutral axis, $V Q / I b$, is at $F_{c r}$. For a thin round section with radius $R$ and thickness $t, I=\pi R^{3} t, Q=2 R^{2} t$ and $b=2 t$. This gives the stress at the centroid as $V / \pi R t$, in which the denominator is recognized as half the area of the round HSS.

## G6. WEAK-AXIS SHEAR IN DOUBLY SYMMETRIC AND SINGLY SYMMETRIC SHAPES

The weak-axis shear strength of I-shaped members and channel flanges is the shear yield strength if flange slenderness, $b_{f} / 2 t_{f}$ for I-shapes or $b_{f} / t_{f}$ for channels, does not exceed the limit $1.10 \sqrt{k_{v} E / F_{y}}$, or the shear buckling strength, otherwise. Because shear post-buckling strength is not included for these cases due to lack of experimental verification, the shear buckling coefficient, $C_{v 2}$, from Section G2.2 is used. The plate buckling coefficient, $k_{v}$, is 1.2 due to the presence of a free edge.

The maximum plate slenderness of all rolled shapes is $b_{f} / t_{f}=b_{f} / 2 t_{f}=13.8$. The lower bound of $1.10 \sqrt{k_{v} E / F_{y}}$, computed using $F_{y}=100 \mathrm{ksi}$, is

$$
1.10 \sqrt{(1.2)(29,000 \mathrm{ksi}) / 100}=20.5
$$

The maximum plate slenderness does not exceed the lower bound of the yielding limit; therefore, $C_{v 2}=1.0$, except for built-up shapes with very slender flanges.

## G7. BEAMS AND GIRDERS WITH WEB OPENINGS

Web openings may be used to accommodate various mechanical, electrical and other systems. Strength limit states, including local buckling of the compression flange or of the web, local buckling or yielding of the tee-shaped compression zone above or below the opening, lateral buckling and moment-shear interaction, or serviceability may control the design of a flexural member with web openings. The location, size, and number of openings are important and empirical limits for them have been identified. One general procedure for assessing these effects and the design of any needed reinforcement for both steel and composite beams is given in the ASCE Specification for Structural Steel Beams with Web Openings (ASCE, 1999), with background information provided in AISC Design Guide 2, Steel and Composite Beams with Web Openings (Darwin, 1990), and in ASCE (1992a, 1992b).

## CHAPTER H

## DESIGN OF MEMBERS FOR COMBINED FORCES AND TORSION

Chapters D, E, F and G of this Specification address members subject to only one type of force: axial tension, axial compression, flexure and shear, respectively, or to multiple forces that can be treated as only one type of force. This chapter addresses members subject to a combination of two or more of these individual forces, as well as possibly by additional forces due to torsion. The provisions fall into two categories: (a) the majority of the cases that can be handled by an interaction equation involving sums of ratios of required strengths to the available strengths; and (b) cases where the stresses due to the applied forces are added and compared to limiting buckling or yield stresses. Designers will have to consult the provisions of Sections H2 and H3 only in rarely occurring cases.

## H1. DOUBLY AND SINGLY SYMMETRIC MEMBERS SUBJECT TO FLEXURE AND AXIAL FORCE

## 1. Doubly and Singly Symmetric Members Subject to Flexure and Compression

This section contains design provisions for doubly symmetric and singly symmetric members under combined flexure and compression, and under combined flexure and tension. The provisions of this section apply typically to rolled wide-flange shapes, channels, tee-shapes, round, square and rectangular HSS, solid rounds, squares, rectangles or diamonds, and any of the many possible combinations of doubly or singly symmetric shapes fabricated from plates and/or shapes by welding or bolting. The interaction equations accommodate flexure about one or both principal axes as well as axial compression or tension. The restriction on the ratio $I_{y c} / I_{y}$ previously included in Section H1.1 was found to be unnecessary and has been removed.

In 1923, the first AISC Specification (AISC, 1923) required that the stresses due to flexure and compression be added and that the sum not exceed the allowable value. An interaction equation appeared first in the 1936 AISC Specification (AISC, 1936), stating "Members subject to both axial and bending stresses shall be so proportioned that the quantity $\frac{f_{a}}{F_{a}}+\frac{f_{b}}{F_{b}}$ shall not exceed unity," in which $F_{a}$ and $F_{b}$ are, respectively, the axial and flexural allowable stresses permitted by this Specification, and $f_{a}$ and $f_{b}$ are the corresponding stresses due to the axial force and the bending moment, respectively. This linear interaction equation was in force until the 1961 AISC Specification (AISC, 1961), when it was modified to account for frame stability and for the $P-\delta$ effect, that is, the secondary bending between the ends of the members (Equation C-H1-1). The $P-\Delta$ effect, that is, the second-order bending moment due to story sway, was not accommodated.

$$
\begin{equation*}
\frac{f_{a}}{F_{a}}+\frac{C_{m} f_{b}}{\left(1-\frac{f_{a}}{F_{e}^{\prime}}\right) F_{b}} \leq 1.0 \tag{C-H1-1}
\end{equation*}
$$

The allowable axial stress, $F_{a}$, was usually determined for an effective length that is larger than the actual member length for moment frames. The term $\frac{1}{1-\frac{f_{a}}{F_{e}^{\prime}}}$ is the amplification of the interspan moment due to member deflection multiplied by the axial force (the $P-\delta$ effect). $C_{m}$ accounts for the effect of the moment gradient. This interaction equation was part of all the subsequent editions of the AISC ASD Specifications from 1961 through 1989.

A new approach to the interaction of flexural and axial forces was introduced in the 1986 AISC Load and Resistance Factor Design Specification for Structural Steel Buildings (AISC, 1986). The following is an explanation of the thinking behind the interaction curves used. The equations

$$
\begin{align*}
& \frac{P}{P_{y}}+\frac{8}{9} \frac{M_{p c}}{M_{p}}=1 \text { for } \frac{P}{P_{y}} \geq 0.2  \tag{C-H1-2a}\\
& \frac{P}{2 P_{y}}+\frac{M_{p c}}{M_{p}}=1 \text { for } \frac{P}{P_{y}}<0.2 \tag{C-H1-2b}
\end{align*}
$$

define the lower-bound curve for the interaction of the nondimensional axial strength, $P / P_{y}$, and flexural strength, $M_{p c} / M_{p}$, for compact wide-flange stub-columns bent about their $x$-axis. The cross section is assumed to be fully yielded in tension and compression. The symbol $M_{p c}$ is the plastic moment strength of the cross section in the presence of an axial force, $P$. The curve representing Equations C-H1-2 almost overlaps the analytically exact curve for the major-axis bending of a W8 $\times 31$ cross section (see Figure C-H1.1). The major-axis bending equations for the exact yield capacity of a wide-flange shape are (ASCE, 1971):

For $0 \leq \frac{P}{P_{y}} \leq \frac{t_{w}\left(d-2 t_{f}\right)}{A}$ (for the plastic neutral axis in the web)

$$
\begin{equation*}
\frac{M_{p c}}{M_{p}}=1-\frac{A^{2}\left(\frac{P}{P_{y}}\right)^{2}}{4 t_{w} Z_{x}} \tag{C-H1-3a}
\end{equation*}
$$

For $\frac{t_{w}\left(d-2 t_{f}\right)}{A}<\frac{P}{P_{y}} \leq 1$ (for the plastic neutral axis in the flange)

$$
\begin{equation*}
\frac{M_{p c}}{M_{p}}=\frac{A\left(1-\frac{P}{P_{y}}\right)}{2 Z_{x}}\left[d-\frac{A\left(1-\frac{P}{P_{y}}\right)}{2 b_{f}}\right] \tag{C-H1-3b}
\end{equation*}
$$

For major-axis bending, an equation approximating the average yield strength of wide-flange shapes when $P \geq 1.5 P_{y}$ is given as

$$
\begin{equation*}
\frac{M_{p c}}{M_{p}}=1.18\left(1-\frac{P}{P_{y}}\right) \leq 1 \tag{C-H1-4}
\end{equation*}
$$

When $P<0.15 P_{y}, M_{p c}$ may be taken as $M_{p}$.
The curves in Figure C-H1.2 show the exact and approximate yield interaction curves for wide-flange shapes bent about the $y$-axis, and the exact curves for the solid rectangular and round shapes. It is evident that the lower-bound AISC interaction curves are very conservative for these shapes.

The idea of portraying the strength of stub beam-columns was extended to actual beam-columns with actual lengths by normalizing the required flexural strength, $M_{u}$, of the beam by the nominal strength of a beam without axial force, $M_{n}$, and the required axial strength, $P_{u}$, by the nominal strength of a column without bending moment, $P_{n}$. This rearrangement results in a translation and rotation of the original stub-column interaction curve, as seen in Figure C-H1.3.

The normalized equations corresponding to the beam-column with length effects included are shown as Equation C-H1-5:

$$
\begin{equation*}
\frac{P_{u}}{P_{n}}+\frac{8}{9} \frac{M_{u}}{M_{n}}=1 \text { for } \frac{P_{u}}{P_{n}} \geq 0.2 \tag{C-H1-5a}
\end{equation*}
$$



Fig. C-H1.1. Stub-column interaction curves: plastic moment versus axial force for wide-flange shapes, major-axis flexure $\left[W 8 \times 31, \mathrm{~F}_{\mathrm{y}}=50 \mathrm{ksi}(345 \mathrm{MPa})\right]$.

$$
\begin{equation*}
\frac{P_{u}}{2 P_{n}}+\frac{M_{u}}{M_{n}}=1 \text { for } \frac{P_{u}}{P_{n}}<0.2 \tag{C-H1-5b}
\end{equation*}
$$

The interaction equations are designed to be very versatile. The terms in the denominator fix the endpoints of the interaction curve. The nominal flexural strength, $M_{n}$, is determined by the appropriate provisions from Chapter F. It encompasses the limit states of yielding, lateral-torsional buckling, flange local buckling, and web local buckling.


Fig. C-H1.2. Stub-column interaction curves: plastic moment versus axial force for solid round and rectangular sections and for wide-flange shapes, minor-axis flexure.


Fig. C-H1.3. Interaction curve for stub beam-column and beam-column.

The axial term, $P_{n}$, is governed by the provisions of Chapter E, and it can accommodate nonslender or slender element columns, as well as the limit states of major- and minor-axis buckling, and torsional and flexural-torsional buckling. Furthermore, $P_{n}$ is calculated for the applicable effective length of the column to take care of frame stability effects, if the procedures of Appendix 7, Section 7.2 are used to determine the required moments and axial forces. These required moments and axial forces must include the amplification due to second-order effects.

The utility of the interaction equations is further enhanced by the fact that they also permit the consideration of biaxial bending without the presence of axial load.

## 2. Doubly and Singly Symmetric Members Subject to Flexure and Tension

Section H1.1 considers the most frequently occurring cases in design: members under flexure and axial compression. Section H1.2 addresses the less frequent cases of flexure and axial tension. Since axial tension increases the bending stiffness of the member to some extent, Section H1.2 permits the increase of $C_{b}$ in Chapter F. Thus, when the bending term is controlled by lateral-torsional buckling, the moment gradient factor, $C_{b}$, is increased by

$$
\sqrt{1+\frac{\alpha P_{r}}{P_{e y}}}
$$

For the 2010 AISC Specification (AISC, 2010), this multiplier was altered slightly as shown here to use the same constant, $\alpha$, as is used throughout the Specification when results at the ultimate strength level are required.

## 3. Doubly Symmetric Rolled Compact Members Subject to Single-Axis Flexure and Compression

For doubly symmetric wide-flange sections with moment applied about the $x$-axis, the bilinear interaction Equation C-H1-5 is conservative for cases where the axial limit state is out-of-plane buckling and the flexural limit state is lateral-torsional buckling (Ziemian, 2010). Since this condition is common in building structures, the provisions of this section may be quite useful to the designer and lead to a more economical structure than solutions using Section H1.1. Section H1.3 gives an optional equation for checking the out-of-plane resistance of such beam-columns.

The two curves labeled Equation H1-1 (out-of-plane) and Equation H1-3 (out-of-plane) in Figure C-H1.4 illustrate the difference between the bilinear and the parabolic interaction equations for out-of-plane resistance for the case of a W27×84 beam-column, $L_{b}=10 \mathrm{ft}(3.1 \mathrm{~m})$ and $F_{y}=50 \mathrm{ksi}(345 \mathrm{MPa})$, subjected to a linearly varying major-axis moment with zero moment at one end and maximum moment at the other end ( $C_{b}=1.67$ ). In addition, the figure shows the in-plane bilinear strength interaction for this member obtained from Equation H1-1. Note that the resistance term $C_{b} M_{c x}$ may be larger than $\phi_{b} M_{p}$ in LRFD and $M_{p} / \Omega_{b}$ in ASD. The smaller ordinate from the out-of-plane and in-plane resistance curves is the controlling strength.

Equation H1-3 is developed from the following fundamental form for the out-ofplane lateral-torsional buckling strength of doubly symmetric I-section members, in LRFD:

$$
\begin{equation*}
\left(\frac{M_{u}}{C_{b} \phi_{b} M_{n x\left(C_{b}=1\right)}}\right)^{2} \leq\left(1-\frac{P_{u}}{\phi_{c} P_{n y}}\right)\left(1-\frac{P_{u}}{\phi_{c} P_{e z}}\right) \tag{C-H1-6}
\end{equation*}
$$

Equation H1-3 is obtained by substituting a lower-bound of 2.0 for the ratio of the elastic torsional buckling resistance to the out-of-plane nominal flexural buckling resistance, $P_{e z} / P_{n y}$, for W-shape members with $L_{c y}=L_{c z}$. The 2005 AISC Specification (AISC, 2005) assumed an upper bound, $P_{e z} / P_{n y}=\infty$, in Equation C-H1-6 in the development of Equation H1-3 which lead to some cases where the out-of-plane strength was overestimated. In addition, the fact that the nominal out-of-plane flexural resistance term, $C_{b} M_{n x\left(C_{b}=1\right)}$, may be larger than $M_{p}$ was not apparent in the 2005 AISC Specification. These changes that were implemented for the 2010 AISC Specification have been maintained for this Specification.


Fig. C-H1.4. Comparison between bilinear (Equation H1-1), parabolic (Equation H1-3) out-of-plane strength interaction equations, and bilinear (Equation H1-1) in-plane strength interaction equation
$\left(W 27 \times 84, \mathrm{~F}_{\mathrm{y}}=50 k s i, \mathrm{~L}_{\mathrm{b}}=10 \mathrm{ft}, \mathrm{C}_{\mathrm{b}}=1.75\right)$.

The relationship between Equations H1-1 and H1-3 is further illustrated in Figures C-H1.5 (for LRFD) and C-H1.6 (for ASD). The curves relate the required axial force, $P$ (ordinate), and the required bending moment, $M$ (abscissa), when the interaction Equations H1-1 and H1-3 are equal to unity. The positive values of $P$ are compression and the negative values are tension. The curves are for a $10 \mathrm{ft} \mathrm{( } 3 \mathrm{~m}$ ) long W16×26 [ $\left.F_{y}=50 \mathrm{ksi}(345 \mathrm{MPa})\right]$ member subjected to uniform major-axis bending, $C_{b}=1$. The solid curve is for in-plane behavior, that is, lateral bracing prevents lat-eral-torsional buckling. The dotted curve represents Equation H1-1 for the case when there are no lateral braces between the ends of the beam-column. In the region of the tensile axial force, the curve is modified by the term

$$
\sqrt{1+\frac{\alpha P_{r}}{P_{e y}}}
$$

as permitted in Section H1.2. The dashed curve is Equation H1-3 for the case of axial compression, and it is taken as the lower-bound determined using Equation C-H1-6 with $P_{e z} / P_{n y}$ taken equal to infinity for the case of axial tension. For a given compressive or tensile axial force, Equations $\mathrm{H} 1-3$ and C-H1-6 allow a larger bending moment over most of their applicable range.


Fig. C-H1.5. Beam-columns under compressive and tensile axial force
(tension is shown as negative) (LRFD)
$\left(W 16 \times 26, \mathrm{~F}_{\mathrm{y}}=50 \mathrm{ksi}, \mathrm{L}_{\mathrm{b}}=10 \mathrm{ft}, \mathrm{C}_{\mathrm{b}}=1\right)$.

## H2. UNSYMMETRIC AND OTHER MEMBERS SUBJECT TO FLEXURE AND AXIAL FORCE

The provisions of Section H1 apply to beam-columns with cross sections that are either doubly or singly symmetric. However, there are many cross sections that are unsymmetrical, such as unequal-leg angles and any number of possible fabricated sections. For these situations, the interaction equations of Section H1 may not be appropriate. The linear interaction

$$
\left|\frac{f_{r a}}{F_{c a}}+\frac{f_{r b w}}{F_{c b w}}+\frac{f_{r b z}}{F_{c b z}}\right| \leq 1.0
$$

provides a conservative and simple way to deal with such problems. The lower case stresses, $f$, are the required axial and flexural stresses computed by elastic analysis for the applicable loads, including second-order effects where appropriate, and the upper case stresses, $F$, are the available stresses corresponding to the limit state of yielding or buckling. The subscripts $r$ and $c$ refer to the required and available stresses, respectively, while the subscripts $w$ and $z$ refer to the principal axes of the unsymmetric cross section. This Specification leaves the option to the designer to use the Section H 2 interaction equation for cross sections that would qualify for the more liberal interaction equation of Section H1.


Fig. C-H1.6. Beam-columns under compressive and tensile axial force (tension is shown as negative) (ASD)
$\left(W 16 \times 26, \mathrm{~F}_{\mathrm{y}}=50 \mathrm{ksi}, \mathrm{L}_{\mathrm{b}}=10 \mathrm{ft}, \mathrm{C}_{\mathrm{b}}=1\right)$.

The interaction equation, Equation H2-1, applies equally to the case where the axial force is in tension. Equation $\mathrm{H} 2-1$ was written in stress format as an aid in examining the condition at the various critical locations of the unsymmetric member. For unsymmetrical sections with uniaxial or biaxial flexure, the critical condition is dependent on the resultant direction of the moment. This is also true for singly symmetric members, such as for $x$-axis flexure of tees. The same elastic section properties are used to compute the corresponding required and available flexural stress terms which means that the moment ratio will be the same as the stress ratio.

There are two approaches for using Equation H2-1:
(a) Strictly using Equation H2-1 for the interaction of the critical moment about each principal axis, there is only one flexural stress ratio term for every critical location because moment and stress ratios are the same as noted previously. In this case, one would algebraically add the value of each of the ratio terms to obtain the critical condition at one of the extreme fibers.

Using Equation H2-1 is the conservative approach and is recommended for examining members such as single angles. The available flexural stresses at a particular location (tip of short or long leg or at the heel) are based on the yielding limit moment, the local buckling limit moment, or the lateral-torsional buckling moment consistent with the sign of the required flexural stress. In each case, the yield moment should be based on the smallest section modulus about the axis being considered. One would check the stress condition at the tip of the long and short legs and at the heel and find that at one of the locations the stress ratios would be critical.
(b) For certain load components, where the critical stress can transition from tension at one point on the cross section to compression at another, it may be advantageous to consider two interaction relationships depending on the magnitude of each component. This is permitted by the sentence at the end of Section H2 that permits a more detailed analysis in lieu of Equation H2-1 for the interaction of flexure and tension.

As an example, for a tee with flexure about both the $x$ - and $y$-axes creating tension at the tip of the stem, compression at the flange could control or tension at the stem could control the design. If $y$-axis flexure is large relative to $x$-axis flexure, the stress ratio need only be checked for compression at the flange using corresponding design compressive stress limits. However, if the $y$-axis flexure is small relative to the $x$-axis flexure, then one would check the tensile stress condition at the tip of the stem, this limit being independent of the amount of the $y$-axis flexure. The two differing interaction expressions are

$$
\begin{aligned}
&\left|\frac{f_{r a}}{F_{c a}}+\frac{f_{r b y}}{F_{c b y}}+\frac{f_{r b x}}{F_{c b x}}\right| \leq 1.0 \text { at tee flange } \\
& \text { and } \\
&\left|\frac{f_{r a}}{F_{c a}}+\frac{f_{r b x}}{F_{c b x}}\right| \leq 1.0 \text { at tee stem }
\end{aligned}
$$

The interaction diagrams for biaxial flexure of a WT using both approaches are illustrated in Figure C-H2.1.

Another situation in which one could benefit from consideration of more than one interaction relationship occurs when axial tension is combined with a flexural compression limit based on local buckling or lateral-torsional buckling. An example of this is when the stem of a tee in flexural compression is combined with axial tension. The introduction of the axial tension will reduce the compression which imposed the buckling stress limit. With a required large axial tension and a relatively small flexural compression, the design flexural stress could be set at the yield limit at the stem. The interaction equation is then,

$$
\begin{equation*}
\left|\frac{f_{r a}}{F_{c a}}+\frac{f_{r b x}}{F_{c b x}}\right| \leq 1.0 \tag{C-H2-1}
\end{equation*}
$$

where $F_{c b x}$ is the flange tension stress based on reaching $\phi F_{y}$ in the stem. There could be justification for using $F_{c b x}$ equal to $\phi F_{y}$ in this expression.

This interaction relationship would hold until the interaction between the flexural compressive stress at the stem with $F_{c b x}$ based on the local or lateral-torsional buckling limit, as increased by the axial tension, would control, resulting in the following interaction.

$$
\begin{equation*}
\left|\frac{f_{r a}}{F_{c a}}-\frac{f_{r b x}}{F_{c b x}}\right| \leq 1.0 \tag{C-H2-2}
\end{equation*}
$$

The interaction diagrams for this case, using both approaches, are illustrated in Figure C-H2.2.


Fig. C-H2.1. WT with biaxial flexure.

## H3. MEMBERS SUBJECT TO TORSION AND COMBINED TORSION, FLEXURE, SHEAR, AND/OR AXIAL FORCE

Section H3 provides provisions for cases not covered in the previous two sections. The first two parts of this section address the design of HSS members, and the third part is a general provision directed to cases where the designer encounters torsion in addition to normal stresses and shear stresses.

## 1. Round and Rectangular HSS Subject to Torsion

Hollow structural sections (HSS) are frequently used in space-frame construction and in other situations wherein significant torsional moments must be resisted by the members. Because of its closed cross section, an HSS is far more efficient in resisting torsion than an open cross section, such as an I-shape or a channel. While normal and shear stresses due to restrained warping are usually significant in shapes of open cross section, they are insignificant in closed cross sections. The total torsional moment can be assumed to be resisted by pure torsional shear stresses. These are often referred to in the literature as St. Venant torsional stresses.

The pure torsional shear stress in HSS sections is assumed to be uniformly distributed along the wall of the cross section, and it is equal to the torsional moment divided by a torsional shear constant for the cross section, $C$. In a limit state format, the nominal torsional resisting moment is the shear constant times the critical shear stress, $F_{c r}$.

Stress from Moment
(stem in compression)

A: Local buckling
B: Lateral-torsional buckling
C: Eq. F9-3 yield limit
Axial Tension Stress

Fig. C-H2.2. WT with flexural compression on the stem plus axial tension.

For round HSS, the torsional shear constant is equal to the polar moment of inertia divided by the radius:

$$
\begin{equation*}
C=\frac{\pi\left(D^{4}-D_{i}^{4}\right)}{32 D / 2} \approx \frac{\pi t(D-t)^{2}}{2} \tag{C-H3-1}
\end{equation*}
$$

where $D_{i}$ is the inside diameter.
For rectangular HSS, the torsional shear constant is obtained as $2 t A_{o}$ using the membrane analogy (Timoshenko, 1956), where $A_{o}$ is the area bounded by the midline of the section. Conservatively assuming an outside corner radius of $2 t$, the midline radius is $1.5 t$ and

$$
\begin{equation*}
A_{o}=(B-t)(H-t)-9 t^{2} \frac{(4-\pi)}{4} \tag{C-H3-2}
\end{equation*}
$$

resulting in

$$
\begin{equation*}
C=2 t(B-t)(H-t)-4.5 t^{3}(4-\pi) \tag{C-H3-3}
\end{equation*}
$$

The resistance factor, $\phi$, and the safety factor, $\Omega$, are the same as for flexural shear in Chapter G.

When considering local buckling in round HSS subjected to torsion, most structural members will either be long or of moderate length and the provisions for short cylinders will not apply. The elastic local buckling strength of long cylinders is unaffected by end conditions and the critical stress is given in Ziemian (2010) as

$$
\begin{equation*}
F_{c r}=\frac{K_{t} E}{\left(\frac{D}{t}\right)^{\frac{3}{2}}} \tag{C-H3-4}
\end{equation*}
$$

The theoretical value of $K_{t}$ is 0.73 but a value of 0.6 is recommended to account for initial imperfections. An equation for the elastic local buckling stress for round HSS of moderate length where the edges are not fixed at the ends against rotation is given in Schilling (1965) and Ziemian (2010) as

$$
\begin{equation*}
F_{c r}=\frac{1.23 E}{\left(\frac{D}{t}\right)^{\frac{5}{4}} \sqrt{\frac{L}{D}}} \tag{C-H3-5}
\end{equation*}
$$

This equation includes a $15 \%$ reduction to account for initial imperfections. The length effect is included in this equation for simple end conditions, and the approximately $10 \%$ increase in buckling strength is neglected for edges fixed at the end. A limitation is provided so that the shear yield strength, $0.6 F_{y}$, is not exceeded.

The critical stress provisions for rectangular HSS are identical to the flexural shear provisions of Section G4 with the shear buckling coefficient equal to $k_{v}=5.0$. The shear distribution due to torsion is uniform in the longest sides of a rectangular HSS, and this is the same distribution that is assumed to exist in the web of an I-shape beam. Therefore, it is reasonable that the provisions for buckling are the same in both cases.

## 2. HSS Subject to Combined Torsion, Shear, Flexure and Axial Force

Several interaction equation forms have been proposed in the literature for load combinations that produce both normal and shear stresses. In one common form, the normal and shear stresses are combined elliptically with the sum of the squares (Felton and Dobbs, 1967):

$$
\begin{equation*}
\left(\frac{f}{F_{c r}}\right)^{2}+\left(\frac{f_{v}}{F_{v c r}}\right)^{2} \leq 1 \tag{C-H3-6}
\end{equation*}
$$

In a second form, the first power of the ratio of the normal stresses is used:

$$
\begin{equation*}
\left(\frac{f}{F_{c r}}\right)+\left(\frac{f_{v}}{F_{v c r}}\right)^{2} \leq 1 \tag{C-H3-7}
\end{equation*}
$$

The latter form is somewhat more conservative, but not overly so (Schilling, 1965), and this is the form used in this Specification:

$$
\begin{equation*}
\left(\frac{P_{r}}{P_{c}}+\frac{M_{r}}{M_{c}}\right)+\left(\frac{V_{r}}{V_{c}}+\frac{T_{r}}{T_{c}}\right)^{2} \leq 1.0 \tag{C-H3-8}
\end{equation*}
$$

where the terms with the subscript $r$ represent the required strengths, and the ones with the subscript $c$ are the corresponding available strengths. Normal effects due to flexural and axial load effects are combined linearly and then combined with the square of the linear combination of flexural and torsional shear effects. When an axial compressive load effect is present, the required flexural strength, $M_{c}$, is to be determined by second-order analysis. When normal effects due to flexural and axial load effects are not present, the square of the linear combination of flexural and torsional shear effects underestimates the actual interaction. A more accurate measure is obtained without squaring this combination.

## 3. Non-HSS Members Subject to Torsion and Combined Stress

This section covers all the cases not previously covered. Examples are built-up unsymmetric crane girders and many other types of odd-shaped built-up cross sections. The required stresses are determined by elastic stress analysis based on established theories of structural mechanics. The three limit states to consider and the corresponding available stresses are:
(a) Yielding under normal stress- $F_{y}$
(b) Yielding under shear stress- $0.6 F_{y}$
(b) Buckling- $F_{c r}$

In most cases it is sufficient to consider normal stresses and shear stresses separately because maximum values rarely occur in the same place in the cross section or at the same place in the span. AISC Design Guide 9, Torsional Analysis of Structural Steel Members (Seaburg and Carter, 1997), provides a complete discussion on torsional analysis of open shapes.

## H4. RUPTURE OF FLANGES WITH HOLES SUBJECTED TO TENSION

Equation $\mathrm{H} 4-1$ is provided to evaluate the limit state of tensile rupture of the flanges of beam-columns. This provision is only applicable in cases where there are one or more holes in the flange in net tension under the combined effect of flexure and axial forces. When both the axial and flexural stresses are tensile, their effects are additive. When the stresses are of opposite sign, the tensile effect is reduced by the compression effect.

## CHAPTER I

DESIGN OF COMPOSITE MEMBERS

Chapter I includes the following major changes and additions in this edition of the Specification:
(1) References to ACI 318 have been updated to reflect the complete reorganization of that document.
(2) A new method for calculating cross-sectional strength for noncompact and slender composite sections-the effective stress-strain method-has been added in Section I1.2d.
(3) The minimum yield stress specified for reinforcing bars has been set at $80 \mathrm{ksi}(550 \mathrm{MPa})$ in Section I1.3(c).
(4) Provisions for the stiffness of encased composite members and filled composite members to be used with the direct analysis method of design have been added in the new Section I1.5.
(5) The coefficients $C_{1}$ in Equation I2-6 and $C_{3}$ in Equation I2-12 have been modified to reflect new research. The change to Equation I2-7 reduced the considerable conservatism from the corresponding equation in the previous editions. The changes in Equation I2-13, on the other hand, will sometimes reduce the capacity from that in previous editions.
(6) A requirement to consider steel-anchor ductility has been added to Section I3.2d.
(7) Section 15 now has explicit equations for calculating axial and bending strength of noncompact and slender sections.
(8) Section I6 was revised to address load transfer in noncompact and slender composite cross sections and to update the direct bond force transfer mechanism to allow for explicit consideration of the section type and slenderness ratio.
(9) Steel headed stud anchor diameters larger than $3 / 4 \mathrm{in}$. ( 19 mm ) are now permitted for shear transfer in solid slabs in Section I8.1.

## I1. GENERAL PROVISIONS

Design of composite sections requires consideration of both steel and concrete behavior. These provisions were developed with the intent both to minimize conflicts between current steel and concrete design and detailing provisions, and to give proper recognition to the advantages of composite design.

As a result of the attempt to minimize design conflicts, this Specification uses a cross-sectional strength approach for compression member design consistent with that used in reinforced concrete design (ACI, 2014). This approach, in addition, results in a consistent treatment of cross-sectional strengths for both composite columns and beams.

The provisions in Chapter I address strength design of the composite sections only. The designer needs to consider the loads resisted by the steel section alone when determining load effects during the construction phase. The designer also needs to consider deformations throughout the life of the structure and the appropriate cross section for those deformations. When considering these latter limit states, due allowance should be made for the additional long-term changes in stresses and deformations due to creep and shrinkage of the concrete.

## 1. Concrete and Steel Reinforcement

Reference is made to ACI 318 and ACI 318 M (ACI, 2014), subsequently referred to as ACI 318, for provisions related to the concrete and reinforcing steel portion of composite design and detailing, such as anchorage and splice lengths, intermediate column ties, reinforcing spirals, and shear and torsion provisions.

Exceptions and limitations are provided as follows:
(1) The intent of this Specification is to exclude provisions of ACI 318 that are specifically related to composite columns and that conflict with the Specification to take advantage of recent research into composite behavior (Ziemian, 2010; Hajjar, 2000; Shanmugam and Lakshmi, 2001; Leon et al., 2007; Jacobs and Goverdhan, 2010; Lai et al., 2014; Lai et al., 2016; Denavit et al., 2016a; Lai and Varma, 2015).

The previous edition of the Specification excluded specific sections of ACI 31808 (ACI, 2008); however, due to the reorganization of ACI 318-14 (ACI, 2014), a compact listing of affected sections is no longer practical, thus the exclusion now takes the form of a general statement of intent. Specific sections of ACI 31814 covered by this statement include, but are not limited to, the following:

Section 6.2.5.2 (radius of gyration for composite columns)
Section 6.6.4.4.5 (calculation of $(E I)_{\text {eff }}$ for composite columns)
Section 10.3.1.6 (thickness of steel encasement)
Section 10.5.2.2 (force transfer between steel section and concrete)
Section 10.6.1.2 (limits for area of longitudinal bars)
Section 10.7.3.2 (placement of longitudinal bars)
Section 10.7.5.3.2 (bearing at ends of composite columns)
Section 10.7.6.1.4 (limits for ties)
Section 16.3.1.3 (bases of composite columns)
Section 19.2.1.1 (limits on concrete material strength)
Section 20.4.2.2 (limit on $f_{y}$ for encased structural steel)
Section 22.4.2.1 (nominal axial compressive strength)
Section 25.7.2.1 (spacing of ties)
(2) Concrete limitations in addition to those given in ACI 318 are provided to reflect the applicable range of test data on composite members.
(3) ACI 318 provisions for tie reinforcing of noncomposite reinforced concrete compression members should be followed in addition to the provisions specified in Section I2.1a(b).

The limitation of $0.01 A_{g}$ in ACI 318 for the minimum longitudinal reinforcing ratio of reinforced concrete compression members is based upon the phenomenon of stress transfer under service load levels from the concrete to the reinforcement due to creep and shrinkage. It is also intended for resisting incidental bending not captured in the analysis. The inclusion of an encased structural steel section meeting the requirements of Section I2.1a aids in mitigating these effects and consequently allows a reduction in minimum longitudinal reinforcing requirements. See also Commentary Section I2.1a(c).

The design basis for ACI 318 is strength design. Designers using allowable strength design for steel design must be aware of the different load factors between the two specifications.

## 2. Nominal Strength of Composite Sections

The cross-section strength of composite members is computed based on one of the four methods presented in this section of the Specification. This forms the basis for calculating the nominal axial and flexural strength for composite members which are then used to determine member strength under interaction. The first method is the plastic stress distribution method, which provides a general method for calculating the cross-section strength for composite members with compact cross sections. The second method is the strain compatibility method, which provides an alternative method for calculating the cross-section strength for composite members with compact cross sections. The third approach is the elastic stress distribution method, which has been retained from previous editions of the Specification to allow for the calculation of the strength of composite beams with noncompact webs. The fourth method, added in this edition of the Specification, is the effective stress-strain method, which provides guidance for calculating the cross-section strength (axial force-moment strength interaction) for composite members with noncompact or slender cross sections. The plastic stress distribution method provides a simple and convenient calculation method for the most common design situations, and is thus treated first. Further discussion related to the effects of member slenderness and second-order forces on interaction equations are given in Commentary Section I5.

## 2a. Plastic Stress Distribution Method

The plastic stress distribution method is based on the plastic limit analysis of the cross section, which is assumed to undergo complete plastification and form a mechanism (plastic hinge). Steel and concrete materials are assumed to have rigid-plastic uniaxial behavior with the steel yield stress equal to $F_{y}$ in either tension or compression and the concrete compressive stress equal to $0.85 f_{c}^{\prime}$ (for most cases). The concrete is assumed to have zero tension stress capacity. Force equilibrium is established over the cross section to calculate points for the axial force-plastic moment section strength for the composite cross section. The actual cross-section strength for a composite section based on the plastic stress distribution method is similar to that of a reinforced concrete cross section, as shown in Figure C-I1.1. As a simplification, a conservative linear relation between four or five anchor points can be used (Roik and Bergmann, 1992; Ziemian, 2010). These points are identified as A, B, C, D and

E in Figure C-I1.1. Note that the formulas originally utilized for Point E have since been revised (Denavit et al., 2016b).

The plastic stress distribution method assumes (a) that sufficient strains have developed in the steel and concrete for both to reach their yield strength and (b) that local buckling is delayed until yielding and concrete crushing have taken place, based on the use of a compact section. Tests and analyses have shown that these are reasonable assumptions for both concrete-encased steel sections with steel anchors and for HSS sections that comply with these provisions (Hajjar, 2000; Shanmugam and Lakshmi, 2001; Varma et al., 2002; Leon et al., 2007; Ziemian, 2010). For round HSS, these provisions allow for the increase of the usable concrete stress to $0.95 f_{c}^{\prime}$ for calculating both axial compressive and flexural strengths to account for the beneficial effects of the restraining hoop action arising from transverse confinement (Leon et al., 2007).

Based on similar assumptions, but allowing for slip between the steel beam and the composite slab, simplified expressions can also be derived for typical composite beam sections. Strictly speaking, these distributions are not based on slip, but on the strength of the shear connection. Full interaction is assumed if the shear connection strength exceeds that of either (a) the tensile yield strength of the steel section or the compressive strength of the concrete slab when the composite beam is loaded in positive moment, or (b) the tensile yield strength of the longitudinal reinforcing bars in the slab or the compressive strength of the steel section when loaded in negative moment.

When steel anchors are provided in sufficient numbers to fully develop this flexural strength, any slip that occurs prior to yielding has a negligible effect on behavior. When full interaction is not present, the beam is said to be partially composite. The effects of slip on the elastic properties of a partially composite beam can be significant and should be accounted for in calculations of deflections and stresses at service loads. Approximate elastic properties of partially composite beams are given in Commentary Section I3.


Fig. C-II.1. Comparison between exact and simplified moment-axial compressive force cross-section strength envelopes.

## 2b. Strain Compatibility Method

The principles used to calculate cross-sectional strength in Section I1.2a may not be applicable to all design situations or possible cross sections. As an alternative, Section I1.2b permits the use of a generalized strain-compatibility approach that allows the use of any reasonable uniaxial stress-strain model for the steel and concrete. This method is focused on ultimate strength and does not contemplate the use of pseudomaterial properties to explicitly account for three-dimensional phenomena like local buckling and confinement that may arise in noncompact and slender sections.

## 2c. Elastic Stress Distribution Method

The use of an elastic stress distribution is recognized for composite beams, encased composite members, and filled composite members for which the plastic stress distribution method is not applicable. Additional discussion for this method can be found in Commentary Sections I3.2a and I3.3.

## 2d. Effective Stress-Strain Method

This methodology has been added to provide one alternative for calculating the crosssection strength (axial force-moment strength interaction) for composite members, including noncompact and slender cross sections. The effective stress-strain method is applicable when using a fiber-based approach for calculating the cross section axial force-moment strength interaction, while assuming strain compatibility and utilizing modified material stress-strain curves to account implicitly for the effects of steel HSS local buckling, yielding, residual stresses, concrete cracking, concrete crushing, confinement, and any other effects that significantly impact the strength of the cross section (Sakino et al., 2004; Han et al., 2005; Liang, 2009; Lai and Varma, 2016).

## 3. Material Limitations

The material limitations given in Section I1.3 reflect the range of material properties available from experimental testing (Ziemian, 2010; Hajjar, 2000; Shanmugam and Lakshmi, 2001; Varma et al., 2002; Leon et al., 2007). As for reinforced concrete design, a limit of $10 \mathrm{ksi}(70 \mathrm{MPa})$ is imposed for strength calculations, both to reflect the scant data available above this strength and the changes in behavior observed (Varma et al., 2002). A lower limit of $3 \mathrm{ksi}(21 \mathrm{MPa})$ is specified for both normal and lightweight concrete and an upper limit of $6 \mathrm{ksi}(42 \mathrm{MPa})$ is specified for lightweight concrete to encourage the use of good quality, yet readily available, grades of structural concrete. The use of higher strengths in computing the modulus of elasticity is permitted, and the limits given can be extended for strength calculations if appropriate testing and analyses are carried out. The specified minimum yield stress of reinforcing bars has been increased to $80 \mathrm{ksi}(550 \mathrm{MPa})$ in coordination with ACI 318 (2014).

## 4. Classification of Filled Composite Sections for Local Buckling

The behavior of filled composite members is fundamentally different from the behavior of hollow steel members. The concrete infill has a significant influence on the stiffness, strength and ductility of composite members. As the steel section area decreases, the concrete contribution becomes even more significant.

The elastic local buckling of the steel HSS is influenced significantly by the presence of the concrete infill. The concrete infill changes the buckling mode of the steel HSS (both within the cross section and along the length of the member) by preventing it from deforming inwards as shown in Figures C-I1.2 and C-I1.3. Bradford et al. (1998) analyzed the elastic local buckling behavior of filled composite compression members, showing that for rectangular steel HSS, the plate buckling coefficient, $k$-factor, in the elastic plate buckling equation (Ziemian, 2010) changes from 4.00 for hollow tubes to 10.6 for filled sections. As a result, the elastic plate buckling stress increases by a factor of 2.65 for filled sections as compared to hollow structural sections. Similarly, Bradford et al. (2002) showed that the elastic local buckling stress for filled round sections is 1.73 times that for hollow round sections.


Fig. C-II.2. Cross-sectional buckling mode with concrete infill.


Fig. C-II.3. Changes in buckling mode with length due to the presence of infill.

For rectangular filled sections, the elastic local buckling stress, $F_{c r}$, from the plate buckling equation simplifies to Equation I2-10. This equation indicates that yielding will occur for plates with $b / t$ less than or equal to $3.00 \sqrt{E / F_{y}}$, which designates the limit between noncompact and slender sections, $\lambda_{r}$. This limit does not account for the effects of residual stresses or geometric imperfections because the concrete contribution governs for these larger $b / t$ ratios and the effects of reducing steel stresses is small. The maximum permitted $b / t$ value is based on the lack of experimental data above the limit of $5.00 \sqrt{E / F_{y}}$, and the potential effects (plate deflections and locked-in stresses) of concrete placement in extremely slender filled HSS cross sections. For flexure, the $b / t$ limits for the flanges are the same as those for walls in axial compression due to the similarities in loading and behavior. The compact/noncompact limit, $\lambda_{p}$, for webs in flexure was established conservatively as $3.00 \sqrt{E / F_{y}}$. The noncompact/slender limit, $\lambda_{r}$, for the web was established conservatively as $5.70 \sqrt{E / F_{y}}$, which is also the maximum permitted for hollow structural sections. This limit was also established as the maximum permitted value due to the lack of experimental data and concrete placement concerns for thinner filled HSS cross sections (Lai et al., 2014).

For round filled sections in axial compression, the noncompact/slender limit, $\lambda_{r}$, was established as $0.19 E / F_{y}$, which is 1.73 times the limit $\left(0.11 E / F_{y}\right)$ for hollow round sections. This was based on the findings of Bradford et al. (2002) and it compares well with experimental data. The maximum permitted $D / t$ equal to $0.31 E / F_{y}$ is based on the lack of experimental data and the potential effects of concrete placement in extremely slender filled HSS cross sections. For round filled sections in flexure, the compact/noncompact limit, $\lambda_{p}$, in Table I1.1b was developed conservatively as 1.25 times the limit $0.07 E / F_{y}$ for round hollow structural sections. The noncompact/slender limit, $\lambda_{r}$, was assumed conservatively to be the same as for round hollow structural sections, $0.31 E / F_{y}$. This limit was also established as the maximum permitted value due to lack of experimental data and concrete placement concerns for thinner filled HSS cross sections (Lai and Varma, 2015).

## 5. Stiffness for Calculation of Required Strengths

This section along with Chapter C forms the basis of the direct analysis method of design for structural systems including encased composite members or filled composite members. The method is identical to the method for bare steel with the exception of the adjustments to stiffness prescribed for the analysis to determine required strengths. The reasoning for the reduced stiffness, $E I^{*}=0.8 \tau_{b} E I_{\text {eff }}$, where $E I_{e f f}$ is as calculated in Section I2, and $E A^{*}=0.8\left(E_{s} A_{s}+E_{s} A_{s r}+E_{c} A_{c}\right)$, mirrors that of bare steel. First, for frames with slender members, where the limit state is governed by elastic stability, the factor of $0.8 \tau_{b}(=0.64)$ on the effective flexural stiffness results in a system available strength equal to 0.64 times the elastic stability limit. This is roughly equivalent to the margin of safety implied in the design provisions for slender columns by the effective length procedure, where from Equation I2-3, $\phi P_{n}=0.75\left(0.877 P_{e}\right)=0.66 P_{e}$. Second, for frames with intermediate or stocky columns, the $0.8 \tau_{b}$ factor reduces the stiffness to account for inelastic softening (e.g., concrete cracking and steel partial yielding) prior to the members reaching their design strength.

Unlike for bare steel, the $\tau_{b}$ factor is a constant value and does not vary with required axial compressive strength. As a consequence, the use of $\tau_{b}=1.0$ by applying additional notional load such as described in Section C2.3(3) is inaccurate and not permitted. For the case of a structure containing both composite members and highly loaded ( $\alpha P_{r}>0.5 P_{y}$ ) bare steel members, a conservative approach to avoid a variable stiffness in the analysis would be to apply the additional notional load so that $\tau_{b}=1.0$ can be used for the bare steel members and maintain $\tau_{b}=0.8$ for the composite members.

Research indicates that the stiffness prescribed in this section may result in unconservative errors for very stability sensitive structures (Denavit et al., 2016a).

The Specification has traditionally not accounted for long-term effects due to creep and shrinkage; as such, the stiffness prescribed in this section was developed based on studies examining only short-term behavior. Refer to Commentary Sections I1 and I3.2 for additional discussion.

The use of reduced stiffness only pertains to analyses for strength and stability limit states. It does not apply to analyses for other stiffness-based conditions and criteria, such as for drift, deflection, vibration and period determination. The effective stiffness, $E I_{\text {eff }}$, has been found to provide a reasonable value for use in determining drifts (Denavit and Hajjar, 2014).

This section does not apply to the effective length method. It is recommended that when using the effective length method with composite compression members that either (a) the nominal stiffness be taken as the effective stiffness ( $E I=E I_{\text {eff }}$ ) and the interaction strength of Section H1.1 be used, or (b) the nominal stiffness be taken as 0.8 times the effective stiffness ( $E I=0.8 E I_{\text {eff }}$ ) and the interaction strength be determined using one of the methods described in Commentary Section I5.

## I2. AXIAL FORCE

The design of encased and filled composite members is treated separately, although they have much in common. The intent is to facilitate design by keeping the general principles and detailing requirements for each type of compression member separate.

An ultimate strength cross-section model is used to determine the section strength (Leon et al., 2007; Leon and Hajjar, 2008). This model is similar to that used in previous LRFD Specifications. The design equations in Section I2 for computing compressive axial strength including length effects apply only to doubly symmetric sections. For singly symmetric and unsymmetric sections, only the strain compatibility approach utilizing reasonable limitations on strains (e.g., 0.003 for concrete and 0.02 for steel) is applicable for determining cross-sectional strength. As for steelonly columns, more advanced methods are necessary to design singly symmetric and unsymmetric columns to include length effects. Generalized approaches, such as those in Chapters E and F for steel-only columns, are not yet available for composite columns as the variety of sections possible does not lend itself to simplifications.

The design for length effects is consistent with that for steel compression members. The equations used are the same as those in Chapter E modified for use in composite design. As the percentage of concrete in the section decreases, the design defaults
to that of a steel section, although with different resistance and safety factors. The equations for $E I_{\text {eff }}$ were updated in this Specification following a reevaluation of the experimental data and an analytical investigation. The changes represent a significant increase in strength for some encased composite members and a moderate decrease in strength for some filled composite members (Denavit et al., 2016a). Comparisons between the provisions in the Specification and experimental data show that the method is generally accurate; however, the coefficient of variation resulting from the application of the strength prediction model is significant given the relatively large statistical scatter associated with the experimental data (Leon et al., 2007).

## 1. Encased Composite Members

## 1a. Limitations

(a) Encased composite compression members must have a minimum area of steel core such that the steel core area divided by the gross area of the member is equal to or greater than $1 \%$.
(b) The requirements for transverse reinforcement are intended to provide good confinement to the concrete. According to Section I1.1(c), the transverse tie provisions of ACI 318 are to be followed, in addition to the limits provided.
(c) A minimum amount of longitudinal reinforcing steel is prescribed to ensure that unreinforced concrete encasements are not designed with these provisions. Continuous longitudinal bars should be placed at each corner of the cross section. Other longitudinal bars may be needed to provide the required restraint to the cross-ties, but that longitudinal steel cannot be counted towards the minimum area of longitudinal reinforcing nor the cross-sectional strength unless it is continuous and properly anchored.

## 1b. Compressive Strength

The compressive strength of the cross section, $P_{n o}$, is given as the sum of the ultimate strengths of the components. The nominal strength, $P_{n}$, is not capped as in reinforced concrete compression member design for a combination of the following reasons: (a) the resistance factor is 0.75 ; (b) the required transverse steel provides better performance than a typical reinforced concrete compression member; (c) the presence of a steel section near the center of the section reduces the possibility of a sudden failure due to buckling of the longitudinal reinforcing steel; and (d) there will typically be moment present due to the manner in which stability is addressed in the Specification.

## 1c. Tensile Strength

This section clarifies the tensile strength to be used in situations where uplift is a concern and for computations related to beam-column interaction. The provision focuses on the limit state of yielding of the gross area. Where appropriate for the structural configuration, consideration should also be given to other tensile strength and connection strength limit states as specified in Chapters D and J.

## 2. Filled Composite Members

## 2a. Limitations

(a) As discussed for encased compression members, it is permissible to design filled composite compression members with a steel ratio as low as $1 \%$.
(b) Filled composite sections are classified as compact, noncompact or slender depending on the hollow structural section (HSS) slenderness, $b / t$ or $D / t$, and the limits in Table I1.1a.
(c) Walls of rectangular filled sections may be susceptible to deformations during casting if a large hydrostatic pressure is exerted. These deformations will affect the location and initiation of local buckling. To control these deformations, the following serviceability limits are suggested by Leon et al. (2011):

$$
\begin{gather*}
\sigma_{\max }=\max \left[\begin{array}{c}
\left(\frac{2 h_{c}}{b_{c}+4 h_{c}}\right) \frac{p h_{c}^{2}}{t^{2}} \\
\frac{1}{3}\left(\frac{3 b_{c}+4 h_{c}}{b_{c}+4 h_{c}}\right) \frac{p h_{c}^{2}}{t^{2}}
\end{array}\right] \leq 0.5 F_{y}  \tag{C-I2-1}\\
\delta_{\max }=\frac{1}{32}\left(\frac{5 b_{c}+4 h_{c}}{b_{c}+4 h_{c}}\right) \frac{p h_{c}^{4}}{E_{s} t^{3}} \leq \frac{L}{2,000} \tag{C-I2-2}
\end{gather*}
$$

where, $h_{c}$ and $b_{c}$ are, respectively, the longer and the shorter inner widths of the rectangular cross section ( $\left.h_{c}=h-2 t ; b_{c}=b-2 t\right), t$ is the wall thickness, $b$ and $h$ are the overall outside dimensions, $L$ is the pressure length, and $p$ is the hydrostatic pressure. If either the corresponding stresses or deformations in rectangular filled composite cross sections exceed the limits given in Equations C-I2-1 or C-I2-2, it is recommended that external supports be added during casting.

## 2b. Compressive Strength

A compact hollow structural section (HSS) has sufficient thickness to develop yielding of the steel HSS in longitudinal compression, and to provide confinement to the concrete infill to develop its compressive strength ( 0.85 or $0.95 f_{c}^{\prime}$ ). A noncompact section has sufficient HSS thickness to develop yielding of the HSS in the longitudinal direction, but it cannot adequately confine the concrete infill after it reaches $0.70 f_{c}^{\prime}$ compressive stress in the concrete and starts undergoing significant inelasticity and volumetric dilation, thus pushing against the steel HSS. A slender section can neither develop yielding of the steel HSS in the longitudinal direction, nor confine the concrete after it reaches $0.70 f_{c}^{\prime}$ compressive stress in the concrete and starts undergoing inelastic strains and significant volumetric dilation pushing against the HSS (Lai et al., 2014; Lai and Varma, 2015).

Figure C-I2.1 shows the variation of the nominal axial compressive strength, $P_{n o}$, of the composite section with respect to the HSS wall slenderness. As shown, compact sections can develop the full plastic strength, $P_{p}$, in compression. The nominal axial strength, $P_{n o}$, of noncompact sections can be determined using a quadratic interpolation between the plastic strength, $P_{p}$, and the yield strength, $P_{y}$, with respect to the

HSS slenderness. This interpolation is quadratic because the ability of the HSS to confine the concrete infill undergoing inelasticity and volumetric dilation decreases rapidly with HSS wall slenderness. Slender sections are limited to developing the critical buckling stress, $F_{c r}$, of the steel HSS and $0.70 f_{c}^{\prime}$ of the concrete infill (Lai et al., 2014; Lai and Varma, 2015).

The nominal axial strength, $P_{n}$, of composite compression members, including length effects, may be determined using Equations I2-2 and I2-3, while using $E I_{\text {eff }}$ (from Equation I2-12) to account for composite section rigidity and $P_{n o}$ to account for the effects of local buckling as described in the preceding. This approach is slightly different than the one used for HSS found in Section E7. This approach was not implemented for filled compression members because (a) their axial strength is governed significantly by the contribution of the concrete infill, (b) concrete inelasticity occurs within the compression member failure segment irrespective of the buckling load, and (c) the calculated nominal strengths compare conservatively with experimental results (Lai et al., 2014; Lai and Varma, 2015).

## 2c. Tensile Strength

As for encased compression members, this section specifies the tensile strength for filled composite members. Similarly, while the provision focuses on the limit state of yielding of the gross area, where appropriate, consideration should also be given to other tensile strength and connection strength limit states as specified in Chapters D and J.

## I3. FLEXURE

## 1. General

Three types of composite flexural members are addressed in this section: fully encased steel beams, filled HSS, and steel beams with mechanical anchorage to a concrete slab which are generally referred to as composite beams.


Fig. C-I2.1. Nominal axial strength, $\mathrm{P}_{\mathrm{n} 0}$, versus $H S S$ wall slenderness.

## 1a. Effective Width

The same effective width rules apply to composite beams with a slab on either one side or both sides of the beam. In cases where the effective stiffness of a beam with a one-sided slab is important, special care should be exercised because this model can substantially overestimate stiffness (Brosnan and Uang, 1995). To simplify design, the effective width is based on the full span, center-to-center of supports, for both simple and continuous beams.

## 1b. Strength During Construction

Composite beam design requires care in considering the loading history. Loads applied to an unshored beam before the concrete has cured are resisted by the steel section alone; total loads applied before and after the concrete has cured are considered to be resisted by the composite section. It is usually assumed for design purposes that concrete has hardened when it attains $75 \%$ of its design strength. Unshored beam deflection caused by fresh concrete tends to increase slab thickness and dead load. For longer spans this may lead to instability analogous to roof ponding. Excessive increase of slab thickness may be avoided by beam camber. Pouring the slab to a constant thickness will also help eliminate the possibility of ponding instability (Ruddy, 1986). When forms are not attached to the top flange, lateral bracing of the steel beam during construction may not be continuous and the unbraced length may control flexural strength, as defined in Chapter F.

This Specification does not include special requirements for strength during construction. For these noncomposite beams, the provisions of Chapter F apply.

Load combinations for construction loads should be determined for individual projects considering the project-specific circumstances, using ASCE/SEI 37-14 (ASCE, 2014) as a guide.

## 2. Composite Beams with Steel Headed Stud or Steel Channel Anchors

This section applies to simple and continuous composite beams with steel anchors, constructed with or without temporary shores.

When a composite beam is controlled by deflection, the design should limit the behavior of the beam to the elastic range under serviceability load combinations. Alternatively, the amplification effects of inelastic behavior should be considered when deflection is checked.

Accurate prediction of flexural stiffness for composite beam members is difficult to achieve, and an examination of previous studies (Leon, 1990; Leon and Alsamsam, 1993) indicates a wide variation between predicted and experimental deflections. More recent studies indicate that the use of the equivalent moment of inertia, $I_{\text {equiv }}$, for deflection calculations results in a prediction of short-term deflections roughly equivalent to the statistical average of the experimental tests reviewed (Zhao and Leon, 2013). Previous editions of the Specification recommended an additional reduction factor of 0.75 be applied to $I_{\text {equiv }}$ to form an effective moment of inertia; however, this approach has been removed as its basis could not be substantiated. An
alternate approach is the lower bound moment of inertia, $I_{L B}$, which is, as the name implies, a lower bound approach that provides a conservative estimate of short-term deflections; values obtained by the $I_{L B}$ approach correspond roughly to the mean plus one standard deviation ( $84 \%$ ) based on the 120 tests examined (Zhao and Leon, 2013).

The lower bound moment of inertia, $I_{L B}$, is defined as

$$
\begin{equation*}
I_{L B}=I_{s}+A_{s}\left(Y_{E N A}-d_{3}\right)^{2}+\left(\Sigma Q_{n} / F_{y}\right)\left(2 d_{3}+d_{1}-Y_{E N A}\right)^{2} \tag{C-I3-1}
\end{equation*}
$$

where
$A_{s}=$ area of steel cross section, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
$d_{1}=$ distance from the compression force in the concrete to the top of the steel section, in. (mm)
$d_{3}=$ distance from the resultant steel tension force for full section tension yield to the top of the steel, in. (mm)
$I_{L B}=$ lower bound moment of inertia, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$
$I_{S}=$ moment of inertia for the structural steel section, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$
$\Sigma Q_{n}=$ sum of the nominal strengths of steel anchors between the point of maximum positive moment and the point of zero moment to either side, kips ( kN )
$Y_{E N A}=\left[A_{s} d_{3}+\left(\Sigma Q_{n} / F_{y}\right)\left(2 d_{3}+d_{1}\right)\right] /\left[A_{s}+\left(\Sigma Q_{n} / F_{y}\right)\right]$, in. (mm)
The equivalent moment of inertia, $I_{\text {equiv }}$, is defined as

$$
\begin{equation*}
I_{e q u i v}=I_{s}+\sqrt{\left(\Sigma Q_{n} / C_{f}\right)}\left(I_{t r}-I_{s}\right) \tag{C-I3-3}
\end{equation*}
$$

where
$C_{f}=$ compression force in concrete slab for fully composite beam; smaller of $A_{s} F_{y}$ and $0.85 f_{c}^{\prime} A_{c}$, kips (N)
$A_{c}=$ area of concrete slab within the effective width, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
$I_{t r}=$ moment of inertia for the fully composite uncracked transformed section, in. ${ }^{4}$ ( $\mathrm{mm}^{4}$ )

The effective section modulus, $S_{\text {eff }}$, referred to the tension flange of the steel section for a partially composite beam, may be approximated by

$$
\begin{equation*}
S_{e f f}=S_{s}+\sqrt{\left(\Sigma Q_{n} / C_{f}\right)}\left(S_{t r}-S_{s}\right) \tag{C-I3-4}
\end{equation*}
$$

where
$S_{s}=$ section modulus for the structural steel section, referred to the tension flange, in. ${ }^{3}\left(\mathrm{~mm}^{3}\right)$
$S_{t r}=$ section modulus for the fully composite uncracked transformed section, referred to the tension flange of the steel section, in. ${ }^{3}\left(\mathrm{~mm}^{3}\right)$

Equations C-I3-3 and C-I3-4 should not be used for ratios, $\Sigma Q_{n} / C_{f}$, less than 0.25 . This restriction is to prevent excessive slip and the resulting substantial loss in beam stiffness. Studies indicate that Equations C-I3-3 and C-I3-4 adequately reflect the reduction in beam stiffness and strength, respectively, when fewer anchors are used than required for full composite action (Grant et al., 1977).

The use of a constant stiffness in elastic analyses of continuous beams is analogous to the practice in reinforced concrete design. The stiffness calculated using a weighted average of moments of inertia in the positive moment region and negative moment regions may take the following form:

$$
\begin{equation*}
I_{t}=a I_{p o s}+b I_{n e g} \tag{C-I3-5}
\end{equation*}
$$

where
$I_{p o s}=$ effective moment of inertia for positive moment, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$
$I_{\text {neg }}=$ effective moment of inertia for negative moment, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$
For continuous beams subjected to gravity loads only, the value of $a$ may be taken as 0.6 and the value of $b$ may be taken as 0.4 . For composite beams used as part of a lateral force-resisting system in moment frames, the value of $a$ and $b$ may be taken as 0.5 for calculations related to drift.
U.S. practice does not generally require the following items to be considered. These items are highlighted here for designers evaluating atypical conditions for which they might apply.
(a) Horizontal shear strength of the slab: For the case of girders with decks with narrow troughs or thin slabs, shear strength of the slab may govern the design (for example, see Figure C-I3.1). Although the configuration of decks built in the U.S. tends to preclude this mode of failure, it is important that it be checked if the force in the slab is large or an unconventional assembly is chosen. The shear strength of the slab may be calculated as the superposition of the shear strength of the concrete plus the contribution of any slab steel crossing the shear plane. The required shear strength, as shown in the figure, is given by the difference in the force between the regions inside and outside the potential failure surface. Where experience has shown that longitudinal cracking detrimental to serviceability is likely to occur, the slab should be reinforced in the direction transverse to the supporting steel section. It is recommended that the area of such reinforcement be at least 0.002 times the concrete area in the longitudinal direction of the beam and that it be uniformly distributed.


Fig. C-I3.1. Longitudinal shear in the slab [after Chien and Ritchie (1984)].
(b) Rotational capacity of hinging zones: There is no required rotational capacity for hinging zones. Where plastic redistribution to collapse is allowed, the moments at a cross section may be as much as $30 \%$ lower than those given by a corresponding elastic analysis. This reduction in load effects is predicated, however, on the ability of the system to deform through very large rotations. To achieve these rotations, very strict local buckling and lateral-torsional buckling requirements must be fulfilled (Dekker et al., 1995). For cases in which a $10 \%$ redistribution is utilized, as permitted in Section B3.3, the required rotation capacity is within the limits provided by the local and lateral-torsional buckling provisions of Chapter F. Therefore, a rotational capacity check is not normally required for designs using this provision.
(c) Long-term deformations due to shrinkage and creep: There is no direct guidance in the computation of the long-term deformations of composite beams due to creep and shrinkage. The long-term deformation due to shrinkage can be calculated with the simplified model shown in Figure C-I3.2, in which the effect of shrinkage is taken as an equivalent set of end moments given by the shrinkage force (long-term restrained shrinkage strain times modulus of concrete times effective area of concrete) times the eccentricity between the center of the slab and the elastic neutral axis. If the restrained shrinkage coefficient for the aggregates is not known, the shrinkage strain, $e_{s h}$, for these calculations may be taken as $0.02 \%$. The long-term deformations due to creep, which can be quantified using a model similar to that shown in the figure, are small unless the spans are long and the permanent live loads large. For shrinkage and creep effects, special attention should be given to lightweight aggregates, which tend to have higher


Fig. C-I3.2. Calculation of shrinkage effects [from Chien and Ritchie (1984)].
creep coefficients and moisture absorption and lower modulus of elasticity than conventional aggregates, exacerbating any potential deflection problems. Engineering judgment is required, as calculations for long-term deformations require consideration of the many variables involved and because linear superposition of these effects is not strictly correct (ACI, 1997; Viest et al., 1997).

## 2a. Positive Flexural Strength

The flexural strength of a composite beam in the positive moment region may be controlled by the strength of the steel section, the concrete slab, or the steel headed stud anchors. In addition, web buckling may limit flexural strength if the web is slender and a sufficient portion of the web is in compression.

Plastic Stress Distribution for Positive Moment. When flexural strength is determined from the plastic stress distribution shown in Figure C-I3.3, the compression force, $C$, in the concrete slab is the smallest of:

$$
\begin{gather*}
C=A_{s} F_{y}  \tag{C-I3-6}\\
C=0.85 f_{c}^{\prime} A_{c}  \tag{C-I3-7}\\
C=\Sigma Q_{n} \tag{C-I3-8}
\end{gather*}
$$

where
$A_{c}=$ area of concrete slab within effective width, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
$A_{s}=$ area of steel cross section, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
$F_{y}=$ specified minimum yield stress of steel, ksi (MPa)
$\Sigma Q_{n}=$ sum of nominal strengths of steel headed stud anchors between the point of maximum positive moment and the point of zero moment to either side, kips (N)
$f_{c}^{\prime}=$ specified compressive strength of concrete, $\mathrm{ksi}(\mathrm{MPa})$
Longitudinal slab reinforcement makes a negligible contribution to the compression force, except when Equation C-I3-7 governs. In this case, the area of longitudinal


Fig. C-I3.3. Plastic stress distribution for positive moment in composite beams.
reinforcement within the effective width of the concrete slab times the yield stress of the reinforcement may be added in determining $C$.

The depth of the compression block is:

$$
\begin{equation*}
a=\frac{C}{0.85 f_{c}^{\prime} b} \tag{C-I3-9}
\end{equation*}
$$

where
$b=$ effective width of concrete slab, in. (mm)
A fully composite beam corresponds to the case where $C$ is governed by either Equation C-I3-6 or C-I3-7. If $C$ is governed by Equation C-I3-8, the beam is partially composite.

The plastic stress distribution may have the plastic neutral axis, PNA, in the web, in the top flange of the steel section, or in the slab, depending on the governing $C$.

Using Figure C-I3.3, the nominal plastic moment strength of a composite beam in positive bending is given by:

$$
\begin{equation*}
M_{n}=C\left(d_{1}+d_{2}\right)+P_{y}\left(d_{3}-d_{2}\right) \tag{C-I3-10}
\end{equation*}
$$

where
$P_{y}=$ tensile strength of the steel section; $P_{y}=F_{y} A_{s}$, kips (N)
$d_{1}=$ distance from the centroid of the compression force, $C$, in the concrete to the top of the steel section, in. (mm)
$d_{2}=$ distance from the centroid of the compression force in the steel section to the top of the steel section, in. (mm). For the case of no compression in the steel section, $d_{2}=0$.
$d_{3}=$ distance from $P_{y}$ to the top of the steel section, in. (mm)
Equation C-I3-10 is applicable for steel sections symmetrical about one or two axes.
According to Table B4.1b, Case 15, local web buckling does not reduce the plastic strength of a bare steel beam if the width-to-thickness ratio of the web is not larger than $3.76 \sqrt{E / F_{y}}$. In the absence of web buckling research on composite beams, the same ratio is conservatively applied to composite beams. All current ASTM A6 W-shapes have compact webs for $F_{y} \leq 70 \mathrm{ksi}(485 \mathrm{MPa})$.
Elastic Stress Distribution. For beams with more slender webs, this Specification conservatively adopts first yield as the flexural strength limit using the elastic stress distribution method. In this case, stresses on the steel section from permanent loads applied to unshored beams before the concrete has cured must be superimposed on stresses on the composite section from loads applied to the beams after hardening of concrete. For shored beams, all loads may be assumed to be resisted by the composite section.

When first yield is the flexural strength limit, the elastic transformed section is used to calculate stresses on the composite section. The modular ratio, $n=E_{s} / E_{c}$, used to determine the transformed section, depends on the specified unit weight and strength of concrete.

## 2b. Negative Flexural Strength

Plastic Stress Distribution for Negative Moment. When an adequately braced compact steel section and adequately developed longitudinal reinforcing bars act compositely in the negative moment region, the nominal flexural strength is determined from the plastic stress distribution, as shown in Figure C-I3.4. Loads applied to a continuous composite beam with steel anchors throughout its length, after the slab is cracked in the negative moment region, are resisted in that region by the steel section and by properly anchored longitudinal slab reinforcement.

The tensile force, $T$, in the reinforcing bars is the smaller of:

$$
\begin{gather*}
T=F_{y r} A_{r}  \tag{C-I3-11}\\
T=\Sigma Q_{n} \tag{C-I3-12}
\end{gather*}
$$

where
$A_{r}=$ area of properly developed slab reinforcement parallel to the steel beam and within the effective width of the slab, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
$F_{y r}=$ specified minimum yield stress of the slab reinforcement, ksi (MPa)
$\Sigma Q_{n}=$ sum of the nominal strengths of steel headed stud anchors between the point of maximum negative moment and the point of zero moment to either side, kips ( N )

A third theoretical limit on $T$ is the product of the area and yield stress of the steel section; however, this limit is redundant in view of practical limitations for slab reinforcement.

Using Figure C-I3.4, the nominal plastic moment strength of a composite beam in negative bending is given by:

$$
\begin{equation*}
M_{n}=T\left(d_{1}+d_{2}\right)+P_{y c}\left(d_{3}-d_{2}\right) \tag{C-I3-13}
\end{equation*}
$$

where
$P_{y c}=$ compressive strength of the steel section; $P_{y c}=A_{s} F_{y}$, kips (N)
$d_{1}=$ distance from the centroid of the longitudinal slab reinforcement to the top of the steel section, in. (mm)
$d_{2}=$ distance from the centroid of the tension force in the steel section to the top of the steel section, in. (mm)
$d_{3}=$ distance from $P_{y c}$ to the top of the steel section, in. (mm)


Fig. C-I3.4. Plastic stress distribution for negative moment.

## 2c. Composite Beams with Formed Steel Deck

Figure C-I3.5 is a graphic presentation of the terminology used in Section I3.2c.
The design rules for composite construction with formed steel deck are based upon a study (Grant et al., 1977) of the then-available test results. The limiting parameters


Fig. C-I3.5. Steel deck limits.
listed in Section I3.2c were established to keep composite construction with formed steel deck within the available research data.

The Specification requires steel headed stud anchors to project a minimum of $1 \frac{1}{1} 2 \mathrm{in}$. $(38 \mathrm{~mm})$ above the deck flutes. This is intended to be the minimum in-place projection, and stud lengths prior to installation should account for any shortening of the stud that could occur during the welding process. The minimum specified cover over a steel headed stud anchor of $1 / 2 \mathrm{in}$. ( 13 mm ) after installation is intended to prevent the anchor from being exposed after construction is complete. In achieving this requirement, the designer should carefully consider tolerances on steel beam camber, concrete placement and finishing tolerances, and the accuracy with which steel beam deflections can be calculated. In order to minimize the possibility of exposed anchors in the final construction, the designer should consider increasing the bare steel beam size to reduce or eliminate camber requirements (this also improves floor vibration performance), checking beam camber tolerances in the fabrication shop, and monitoring concrete placement operations in the field. Wherever possible, the designer should also consider providing for anchor cover requirements above the $\frac{1}{2}$ in. (13 mm ) minimum by increasing the slab thickness while maintaining the $1^{1 / 2} \mathrm{in}$. (38 mm ) requirement for anchor projection above the top of the steel deck as required by the Specification.

The maximum spacing of 18 in . ( 450 mm ) for connecting composite decking to the support is intended to address a minimum uplift requirement during the construction phase prior to placing concrete (SDI, 2001).

## 2d. Load Transfer between Steel Beam and Concrete Slab

## 1. Load Transfer for Positive Flexural Strength

Shear connection at the interface of a concrete slab and supporting steel members is an assembly consisting of the connector, typically a steel headed stud anchor, its weld to the steel member, and the surrounding concrete with a specific deck flute geometry. Shear connection deforms when subjected to shear at the interface. Its ability to deform without fracturing is known as slip capacity or ductility of the shear connection. It is important to note that the term ductility does not merely relate to the ductility of the connector itself, but to the ductility of the overall shear connection assembly. While the slip capacity of the shear connection consisting of a $3 / 4 \mathrm{in}$. ( 19 mm ) diameter steel headed stud anchor embedded in a solid slab is about $1 / 4 \mathrm{in}$. ( 6 mm ) (Oehlers and Coughlan, 1986), the shear connection with the same connector embedded in a slender concrete slab rib will possess only a fraction of this slip capacity (Lyons et al., 1994; Roddenberry et al., 2002a). Similarly, these same sources show that shear connection ductility can be significantly larger for some configurations.

Flexural strength of a composite section based on a plastic stress distribution is the most typical manner for establishing the member strength. It assumes sufficiently ductile steel and concrete components capable of developing a fully plastic stress block across the depth of the composite section. This analysis also assumes a sufficiently ductile shear connection, allowing for the shear at the interface to be evenly shared among the connectors located between the points of zero and
maximum moment. Reliability studies evaluating the computational models for the flexural strength of composite beams (Galambos and Ravindra, 1978; Roddenberry et al., 2002a; Mujagic and Easterling, 2009) are based on the plastic stress distribution methodology. An implicit assumption of the theory is that the shear demands at the interface can be uniformly distributed over the shear span because the connectors are ductile and can redistribute the demands (Viest et al., 1997). Even when shear connections possess adequate ductility to accommodate interfacial slip, excessive slip demand at the interface will cause excessive discontinuities in the strain diagram at the interface of the concrete slab and cause early departure from the elastic behavior, and as a consequence, invalidate the design approach. It is therefore important to limit the shear connection ductility demand at the interface.

The determination of flexural strength based on the plastic stress distribution method without any specific slip capacity checks was reasonable until the mid1980s, given that low amounts of interaction were uncommon in design and that most spans were relatively short. Today, the design for composite beams often involves much longer spans that are governed by serviceability criteria and therefore require less composite action to achieve their required strength. The simultaneous use of lower levels of composite action and longer spans results in additional deformation demands on the shear studs. Mujagic et al. (2015) and Selden et al. (2015) indicate that long beams designed at low levels of partial interaction may not reach their nominal strength due to lack of connector deformation capacity.

The consideration of ductility demand at the interface of composite beams can come in the form of a number of different approaches of varying degrees of complexity. These approaches generally fall into two groups. First, the effect of shear at the interface can be taken into account directly in the determination of member strength through modeling of the interface slip. The complexity of such an analysis varies greatly based upon whether all components of the composite beams are idealized as linearly elastic (Newmark, et al., 1951; Robinson and Naraine, 1988; Viest et al., 1997), or considered using a nonlinear analysis by capturing inelastic behavior of a partially yielded section and nonlinear behavior of the shear connection along the span (Salari et al., 1998; Salari and Spacone, 2001; Zona and Ranzi, 2014). Second, various indirect analytical models have been proposed. Such models aim to provide convenient computational models suitable for routine design use by either idealizing various components of the composite beam as fully elastic or fully plastic and capturing most dominant elements driving the shear connection ductility demand (Oehlers and Sved, 1995) or by parametrically relating the results of rigorous nonlinear finite element analyses to the most critical design properties affecting shear connection ductility through simple algebraic relationships (Johnson and Molenstra, 1991).

Configurations of composite beams as designed in routine practice depend on strength and serviceability requirements, detailing rules, construction sequence, framing details, fabrication logistics, fire rating requirements, as well as various other considerations related to standard practice. Many of these elements will
directly or indirectly affect the ductility performance of the shear connection, and the effect of some is difficult to quantify. Based on the available studies (Mujagic et al., 2015; Selden et al., 2015), beams are not susceptible to connector failure due to insufficient deformation capacity, and thus, need not be checked for this limit state if they meet one or more of the following conditions:
(1) Beams with span not exceeding $30 \mathrm{ft}(9.1 \mathrm{~m})$;
(2) Beams with a degree of composite action of at least $50 \%$; or
(3) Beams with an average nominal shear connector capacity of at least 16 kips per $\mathrm{ft}(233 \mathrm{kN}$ per m$)$ along their shear span, corresponding to a ${ }^{3 / 4}-\mathrm{in}$. $(19 \mathrm{~mm})$ steel headed stud anchor placed at $12-\mathrm{in}$. ( 300 mm ) spacing on average.

Beams that do not meet the foregoing criteria may still be acceptable, and can be evaluated through direct nonlinear modeling of the member capturing all sources of deformation. Such modeling should be performed under factored loads using strength and stiffness properties of the member. The analysis should meet the pertinent requirements of Appendix 1. Furthermore, the analytical model should be validated using experimental data with respect to the load-deformation properties of both the member global behavior and the behavior of the shear connection at the interface of the slab and beam. Such validation should utilize strength and stiffness properties that match the constitutive models reflected in the actual experimental data. Experimental data providing insight into the load-deformation response of shear connection and the composite member as a whole is provided by Lyons et al. (1994) and Roddenberry et al. (2002a). As another alternative, the mixed analysis approach provided by Oehlers and Sved (1995) can be used.

When steel headed stud anchors are used on beams with formed steel deck, they may be welded directly through the deck or through prepunched or cut-in-place holes in the deck. The usual procedure is to install steel headed stud anchors by welding directly through the deck. However, special precautions and procedures recommended by the stud manufacturer should be followed when:
(1) The deck thickness is greater than 16 gage $(1.5 \mathrm{~mm})$ for single thickness or 18 gage ( 1.2 mm ) for each sheet of double thickness; or
(2) The total thickness of galvanized coating is greater than 1.25 ounces $/ \mathrm{ft}^{2}(0.38$ $\mathrm{kg} / \mathrm{m}^{2}$ ).

Composite beam tests in which the longitudinal spacing of steel headed stud anchors was varied according to the intensity of the static shear, and duplicate beams in which the anchors were uniformly spaced, exhibited approximately the same ultimate strength and approximately the same amount of deflection at nominal loads. Under distributed load conditions, only a slight deformation in the concrete near the more heavily stressed anchors is needed to redistribute the horizontal shear to other less heavily stressed anchors. The important consideration is that the total number of anchors be sufficient to develop the shear on either side of the point of maximum moment. The provisions of this Specification are based upon this concept of composite action.

## 2. Load Transfer for Negative Flexural Strength

In computing the available flexural strength at points of maximum negative bending, reinforcement parallel to the steel beam within the effective width of the slab may be included, provided such reinforcement is properly anchored beyond the region of negative moment. However, steel anchors are required to transfer the ultimate tensile force in the reinforcement from the slab to the steel beam.

When the steel deck includes units for carrying electrical wiring, crossover headers are commonly installed over the cellular deck perpendicular to the ribs. These create trenches that completely or partially replace sections of the concrete slab above the deck. These trenches, running parallel to or transverse to a composite beam, may reduce the effectiveness of the concrete flange. Without special provisions to replace the concrete displaced by the trench, the trench should be considered as a complete structural discontinuity in the concrete flange.

When trenches are parallel to the composite beam, the effective flange width should be determined from the known position of the trench.

Trenches oriented transverse to composite beams should, if possible, be located in areas of low bending moment and the full required number of studs should be placed between the trench and the point of maximum positive moment. Where the trench cannot be located in an area of low moment, the beam should be designed as noncomposite.

## 3. Encased Composite Members

Tests of concrete-encased beams demonstrate that (a) the encasement drastically reduces the possibility of lateral-torsional instability and prevents local buckling of the encased steel, (b) the restrictions imposed on the encasement practically prevent bond failure prior to first yielding of the steel section, and (c) bond failure does not necessarily limit the moment strength of an encased steel beam (ASCE, 1979). Accordingly, this Specification permits three alternative design methods for the determination of the nominal flexural strength: (a) based on an elastic stress distribution using first yield in the tension flange of the composite section; (b) based on the plastic flexural strength of the steel section alone; and (c) based on the strength of the composite section obtained from the plastic stress distribution method or the strain-compatibility method. An assessment of the data indicates that the same resistance and safety factors may be used for all three approaches (Leon et al., 2007). For concrete-encased composite beams, method (c) is applicable only when shear anchors are provided along the steel section and reinforcement of the concrete encasement meets the specified detailing requirements. For concrete-encased composite beams, no limitations are placed on the slenderness of either the composite beam or the elements of the steel section, because the encasement effectively inhibits both local and lateral buckling.

In method (a), stresses on the steel section from permanent loads applied to unshored beams before the concrete has hardened must be superimposed on stresses on the composite section from loads applied to the beams after hardening of the concrete. In this superposition, all permanent loads should be multiplied by the dead load
factor and all live loads should be multiplied by the live load factor. For shored beams, all loads may be assumed as resisted by the composite section. Complete interaction (no slip) between the concrete and steel is assumed.

Insufficient research is available to allow coverage of partially composite encased or filled sections subjected to flexure.

## 4. Filled Composite Members

Tests of filled composite beams indicate that (a) the steel HSS drastically reduces the possibility of lateral-torsional instability, (b) the concrete infill changes the local buckling mode of the steel HSS, and (c) bond failure does not necessarily limit the moment strength of a filled composite beam (Leon et al., 2007).

Figure C-I3.6 shows the variation of the nominal flexural strength, $M_{n}$, of the filled section with respect to the HSS wall slenderness. As shown, compact sections can develop the full plastic strength, $M_{p}$, in flexure. The nominal flexural strength, $M_{n}$, of noncompact sections can be determined using a linear interpolation between the plastic strength, $M_{p}$, and the elastic strength based on the yield strength, $M_{y}$, with respect to the HSS wall slenderness. Slender sections are limited to developing the first yield moment, $M_{c r}$, of the composite section where the tension flange reaches first yielding, while the compression flange is limited to the critical buckling stress, $F_{c r}$, and the concrete is limited to linear elastic behavior with maximum compressive stress equal to $0.7 f_{c}^{\prime}$ (Lai et al., 2014). The nominal flexural strengths calculated using the Specification compare conservatively with experimental results (Lai et al., 2014; Lai and Varma, 2015). Figure C-I3.7 shows typical stress blocks for determining the nominal flexural strengths of compact, noncompact and slender filled rectangular box sections.


Fig. C-I3.6. Nominal flexural strength of a filled beam versus HSS wall slenderness.

## I4. SHEAR

## 1. Filled and Encased Composite Members

Three methods for determining the shear strength of filled and encased composite members are provided:
(a) The intent is to allow the designer to ignore the concrete contribution entirely and simply use the provisions of Chapter $G$ with their associated resistance or safety factors.


Neutral axis location for force equilibrium: $a_{p}=\frac{2 F_{y} H t_{w}+0.85 f_{c}^{\prime} b_{i} t_{f}}{4 t_{w} F_{y}+0.85 f_{c}^{\prime} b_{i}}$
(a) Compact section-stress blocks for calculating $\mathrm{M}_{\mathrm{p}}$


Neutral axis location for force equilibrium: $a_{y}=\frac{2 F_{y} H t_{w}+0.35 f_{c}^{\prime} b_{i} t_{f}}{4 t_{w} F_{y}+0.35 f_{c}^{\prime} b_{i}}$
${ }^{\dagger}$ Neglecting stress variation over flange thickness
(b) Noncompact section—stress blocks for calculating $\mathrm{M}_{\mathrm{y}}$

Fig. C-I3.7. Stress blocks for calculating nominal flexural strengths of filled rectangular box sections (Lai et al., 2014).
(b) When using only the strength of the reinforcing and concrete, a resistance factor of 0.75 or the corresponding safety factor of 2.00 is to be applied, which is consistent with ACI 318.
(c) When using the strength of the steel section in combination with the contribution of the transverse reinforcing bars, the nominal shear strength of the steel section alone should be determined according to the provisions of Chapter G and then combined with the nominal shear strength of the transverse reinforcing as determined by ACI 318 . This combined nominal strength should then be multiplied by an overall resistance factor of 0.75 or divided by the safety factor of 2.00 to determine the available shear strength of the member.

Though it would be logical to suggest provisions where both the contributions of the steel section and reinforced concrete are superimposed, there is insufficient research available to justify such a combination.

## 2. Composite Beams with Formed Steel Deck

A conservative approach to shear provisions for composite beams with steel headed stud or steel channel anchors is adopted by assigning all shear to the steel section in accordance with Chapter G. This method neglects any concrete contribution and serves to simplify design.

## I5. COMBINED FLEXURE AND AXIAL FORCE

As with all frame analyses in this Specification, required strengths for composite beam-columns should be obtained from second-order analysis or amplified firstorder analysis, as specified in Chapter C and Appendix 7, respectively. Section I1.5


Neutral axis location for force equilibrium: $a_{c r}=\frac{F_{y} H t_{w}+\left(0.35 f_{c}^{\prime}+F_{y}-F_{c r}\right) b_{i} t_{f}}{t_{w}\left(F_{c r}+F_{y}\right)+0.35 f_{c}^{\prime} b_{i}}$
${ }^{\dagger}$ Neglecting stress variation over flange thickness
(c) Slender section—stress blocks for calculating first yield moment, $\mathrm{M}_{\mathrm{cr}}$

Fig. C-I3. 7 (continued). Stress blocks for calculating nominal flexural strengths of filled rectangular box sections (Lai et al., 2014).
provides the appropriate stiffness for composite members to be used with the direct analysis method of Chapter C. For the assessment of available strength, the Specification provisions for interaction between axial force and flexure in composite members are the same as for bare steel members as covered in Section H1.1. The provisions also permit an analysis based on the strength provisions of Section I1.2 that leads to an interaction diagram similar to those used in reinforced concrete design. The latter approach is discussed here.

For encased composite members, the available axial strength, including the effects of buckling, and the available flexural strength can be calculated using either the plastic stress distribution method or the strain-compatibility method (Leon et al., 2007; Leon and Hajjar, 2008). For filled composite members, the available axial and flexural strengths can be calculated using Sections I2.2 and I3.4, respectively, which also include the effects of local buckling for noncompact and slender sections (classified according to Section I1.4).

The following commentary describes three different approaches to designing composite beam-columns that are applicable to both concrete-encased steel shapes and compact filled HSS, and a fourth approach that is applicable to noncompact or slender filled sections. The first two approaches are based on variations in the plastic stress distribution method while the third method references AISC Design Guide 6, Load and Resistance Factor Design of W-Shapes Encased in Concrete (Griffis, 1992), which is based on an earlier version of the Specification. The strain compatibility method is similar to that used in the design of concrete compression members as specified in ACI 318 Chapter 22 (ACI, 2014).

Method 1-Interaction Equations of Section H1. The first approach applies to doubly symmetric composite beam-columns, the most common geometry found in building construction. For this case, the interaction equations of Section H1 provide a conservative assessment of the available strength of the member for combined axial compression and flexure (see Figure C-I5.1). These provisions may also be used for combined axial tension and flexure. The degree of conservatism generally depends on the extent of concrete contribution to the overall strength relative to the steel contribution. The larger the load carrying contribution coming from the steel section, the less conservative the strength prediction of the interaction equations from Section H1. Thus, for example, the equations are generally more conservative for members with high concrete compressive strength as compared to members with low concrete compressive strength. The advantages of this method include the following: (a) the same interaction equations used for steel beam-columns are applicable; and (b) only two anchor points are needed to define the interaction curves-one for pure flexure (point B) and one for pure axial load (point A). Point A is determined using Equations I2-2 or I2-3, as applicable. Point B is determined as the flexural strength of the section according to the provisions of Section I3. Note that slenderness must also be considered using the provisions of Section I2.

The nominal strengths predicted using the equations of Section H1 compare conservatively with a wide range of experimental data for noncompact/slender rectangular and round filled sections (Lai et al., 2014; Lai and Varma, 2015).

Method 2-Interaction Curves from the Plastic Stress Distribution Method. The second approach applies to doubly symmetric encased and compact filled composite beam-columns and is based on developing interaction surfaces for combined axial compression and flexure at the nominal strength level using the plastic stress distribution method. This approach results in interaction surfaces similar to those shown in Figure C-I5.2. The four points, A through D, identified in Figure C-I5.2, are defined by the plastic stress distribution used in their determination. The strength equations for concrete encased W-shapes and filled HSS shapes used to define each point are provided in Geschwindner (2010b) and will be available in the 15th Edition AISC Steel Construction Manual Part 6. Point A is the pure axial strength determined according to Section I2. Point B is determined as the flexural strength of the section according to the provisions of Section I3. Point C corresponds to a plastic neutral axis location that results in the same flexural strength as point B , but including axial compression. Point D corresponds to an axial compressive strength of one-half of that determined for point C. An additional point E (see Figure C-I1.1b) is included (between points A and C ) for encased W -shapes bent about their weak axis. Point E is an arbitrary point, generally corresponding to a plastic neutral axis location at the flange tips of the encased W-shape, necessary to better reflect bending strength for weak-axis bending of encased shapes. Linear interpolation between these anchor points may be used. However, with this approach, care should be taken in reducing point D by a resistance factor or to account for member slenderness, as this may lead to an unsafe situation whereby additional flexural strength is permitted at a lower axial compressive strength than predicted by the cross-section strength of the member. This potential problem may be avoided through a simplification to this method whereby point D is removed from the interaction surface. Figure C-I5.3 demonstrates this simplification with the vertical dashed line that connects point $\mathrm{C}^{\prime \prime}$ to point $\mathrm{B}^{\prime \prime}$. Once the nominal strength interaction surface is determined, length effects according


Fig. C-I5.1. Interaction diagram for composite beam-column design-Method 1.
to Equations I2-2 and I2-3 must be applied to obtain points A' through E'. Note that the same slenderness reduction factor ( $\lambda=\mathrm{A}^{\prime} / \mathrm{A}$ in Figure C-I5.2, equal to $P_{n} / P_{n o}$, where $P_{n}$ and $P_{n o}$ are calculated from Section I2) applies to points A, C, D and E. The available strength is then determined by applying the compression and bending resistance factors or safety factors to points $\mathrm{A}^{\prime \prime}$ through $\mathrm{E}^{\prime \prime}$.

Using linear interpolation between points $\mathrm{A}^{\prime \prime}, \mathrm{C}^{\prime \prime}$ and $\mathrm{B}^{\prime \prime}$ in Figure C-I5.3, the following interaction equations may be derived for composite beam-columns subjected to combined axial compression plus biaxial flexure:
(a) If $P_{r}<P_{C}$

$$
\begin{equation*}
\frac{M_{r x}}{M_{C x}}+\frac{M_{r y}}{M_{C y}} \leq 1 \tag{C-I5-1a}
\end{equation*}
$$

(b) If $P_{r} \geq P_{C}$

$$
\begin{equation*}
\frac{P_{r}-P_{C}}{P_{A}-P_{C}}+\frac{M_{r x}}{M_{C x}}+\frac{M_{r y}}{M_{C y}} \leq 1 \tag{C-15-1b}
\end{equation*}
$$

where
$P_{r}=$ required compressive strength, kips (N)
$P_{A}=$ available axial compressive strength at point $\mathrm{A}^{\prime \prime}$, kips ( N )
$P_{C}=$ available axial compressive strength at point $\mathrm{C}^{\prime \prime}$, kips (N)
$M_{r}=$ required flexural strength, kip-in. (N-mm)
$M_{C}=$ available flexural strength at point $\mathrm{C}^{\prime \prime}$, kip-in. (N-mm)
$x=$ subscript relating symbol to strong-axis bending
$y=$ subscript relating symbol to weak-axis bending


Fig. C-I5.2. Interaction diagram for composite beam-columns-Method 2.

## For design according to Section B3.3 (LRFD):

$P_{r}=P_{u}=$ required compressive strength using LRFD load combinations, kips (N)
$P_{A}=$ design axial compressive strength at point $\mathrm{A}^{\prime \prime}$ in Figure C-I5.3, determined in accordance with Section I2, kips (N)
$P_{C}=$ design axial compressive strength at point $\mathrm{C}^{\prime \prime}$, kips ( N )
$M_{r}=$ required flexural strength using LRFD load combinations, kip-in. (N-mm)
$M_{C}=$ design flexural strength at point $\mathrm{C}^{\prime \prime}$, determined in accordance with Section I3, kip-in. (N-mm)

For design according to Section B3.4 (ASD):
$P_{r}=P_{a}=$ required compressive strength using ASD load combinations, kips (N)
$P_{A}=$ allowable compressive strength at point A" in Figure C-I5.3, determined in accordance with Section I2, kips (N)
$P_{C}=$ allowable axial compressive strength at point $\mathrm{C}^{\prime \prime}$, kips (N)
$M_{r}=$ required flexural strength using ASD load combinations, kip-in. (N-mm)
$M_{C}=$ allowable flexural strength at point $\mathrm{C}^{\prime \prime}$, determined in accordance with Section I3, kip-in. (N-mm)

For biaxial bending, the value of the axial compressive strength at point C may be different when computed for the strong and weak axis. The smaller of the two values should be used in Equation C-I5-1b and for the limits in Equations C-I5-1a and b.

Method 3—Design Guide 6. The approach presented in AISC Design Guide 6 (Griffis, 1992) may also be used to determine the beam-column strength of concrete encased W-shapes. Although this method is based on an earlier version of the Specification, axial load and moment strengths can conservatively be determined directly from the tables in this design guide. The difference in resistance factors from the earlier Specification may safely be ignored.


Fig. C-I5.3. Interaction diagram for composite beam-columns-Method 2 simplified.

Method 4—Direct Interaction Method for Noncompact and Slender Filled Sections. For filled noncompact and slender composite members, the interaction equations in Section H1.1 can be conservative (Lai et al., 2016). The interaction between axial compression, $P$, and flexure, $M$, in filled composite members is typically seen to vary with the strength ratio, $c_{s r}$, which is calculated using Equation I5-2 as the yield strength of the steel components divided by the compressive strength of the concrete component. As the $c_{s r}$ ratio increases, the steel component dominates. As the ratio decreases, the concrete component dominates.

This behavior is illustrated in Figure C-I5.4, which shows interaction curves developed using Equations I5-1a and b. Lai et al. (2016) developed these equations as a bilinear simplification of the parabolic $P-M$ interaction curves for filled composite members with noncompact or slender cross sections. The three anchor points of the normalized interaction curve include: (a) the member available axial compressive strength as a column, $P_{c}$, determined using Section I2.2b; (b) the member available flexural strength, $M_{c}$, determined using Section I3.4; and (c) the balance point with coordinates $\left(c_{m}, c_{p}\right)$. The balance point coordinates are functions of the strength ratio, $c_{s r}$, and calculated using Table I5.1 for rectangular and round filled composite members.

The interaction curve developed using Equations I5-1a and b is recommended for noncompact or slender filled composite members: (a) with governing unsupported length-to-diameter, $L / D$, or length-to-width, $L / B$ ratios, less than or equal to 20 ; and (b) not providing stability support to leaning or gravity-only columns with significant


Fig. C-I5.4. Interaction diagram for filled composite members with noncompact or slender cross section developed using Equations I5-1a and b.
axial loading. In situations where (a) and (b) are not met, the balance point with coordinates $\left(c_{m}, c_{p}\right)$ may be reduced further due to slenderness effects. This potential problem can be addressed through the simplified method described earlier and shown in Figure C-15.3, where the increased available flexural strength due to axial compression is removed from the interaction curve.

## I6. LOAD TRANSFER

## 1. General Requirements

External forces are typically applied to composite members through direct connection to the steel member, bearing on the concrete, or a combination thereof. Design of the connection for force application shall follow the applicable limit states within Chapters J and K of the Specification as well as the provisions of Section I6. Note that for concrete bearing checks on filled composite members, confinement can affect the bearing strength for external force application as discussed in Commentary Section I6.2.

Once a load path has been provided for the introduction of external force to the member, the interface between the concrete and steel must be designed to transfer the longitudinal shear required to obtain force equilibrium within the composite section. Section I6.2 contains provisions for determining the magnitude of longitudinal shear to be transferred between the steel and concrete depending upon the external force application condition. Section I6.3 contains provisions addressing mechanisms for the transfer of longitudinal shear.

The load transfer provisions of this Specification are primarily intended for the transfer of longitudinal shear due to applied axial forces. Load transfer of longitudinal shear due to applied bending moments is beyond the scope of the Specification; however, tests (Lu and Kennedy, 1994; Prion and Boehme, 1994; Wheeler and Bridge, 2006) indicate that filled composite members can develop their full plastic moment capacity based on bond alone without the use of additional anchorage.

## 2. Force Allocation

This Specification addresses conditions in which the entire external force is applied to the steel or concrete as well as conditions in which the external force is applied to both materials concurrently. The provisions are based upon the assumption that in order to achieve equilibrium across the cross section, transfer of longitudinal shears along the interface between the concrete and steel shall occur such that the resulting force levels within the two materials may be proportioned according to the relative cross-sectional strength contributions of each material. Load allocation based on the cross-sectional strength contribution model is represented by Equations I6-1 and I6-2. Equation I6-1 represents the magnitude of force that is present within the concrete encasement or concrete fill at equilibrium. The longitudinal shear generated by loads applied directly to the steel section is determined based on the amount of force to be distributed to the concrete according to Equation I6-1. Conversely, when load is applied to the concrete section only, the longitudinal shear required for cross-
sectional equilibrium is based upon the amount of force to be distributed to the steel according to Equation I6-2. Where loads are applied concurrently to the two materials, the longitudinal shear force to be transferred to achieve cross-sectional equilibrium can be taken as either the difference in magnitudes between the portion of external force applied directly to the concrete and that required by Equation I6-1 or the portion of external force applied directly to the steel section and that required by Equations I6-2a and $b$. The steel contribution to the overall nominal axial compressive strength of the cross section decreases with increasing slenderness ratio ( $B / t$ or $D / t)$. As a result, it is not permitted to apply axial force directly to the steel wall of filled composite sections classified as slender because the stress concentrations associated with force application could cause premature local buckling. Additionally, the magnitude of longitudinal shears required to be transferred to the concrete infill would require impractical load transfer lengths.

When external forces are applied to the concrete of a filled composite member via bearing, it is acceptable to assume that adequate confinement is provided by the steel encasement to allow the maximum available bearing strength permitted by Equation J8-2 to be used. This strength is obtained by setting the term $\sqrt{A_{2} / A_{1}}$ equal to 2 . This discussion is in reference to the introduction of external load to the compression member. The transfer of longitudinal shear within the compression member via bearing mechanisms such as internal steel plates is addressed directly in Section I6.3a.

The Specification provisions assume that the required external force to be allocated imparts compression to the composite section. For applied tensile force, it is generally acceptable to design the component of the composite member to which the force is applied (i.e., either the steel section or the longitudinal reinforcement) to resist the entire tensile force, and no further force transfer calculations are necessary. For atypical conditions where the magnitude of required external tensile force necessitates the use of longitudinal reinforcement in conjunction with the steel section, force allocation to each component may be determined as follows.

When the entire external tensile force is applied directly to the steel section:

$$
\begin{equation*}
V_{r}^{\prime}=P_{r}\left(1-F_{y} A_{s} / P_{n}\right) \tag{C-I6-1}
\end{equation*}
$$

When the entire external tensile force is applied directly to the longitudinal reinforcement:

$$
\begin{equation*}
V_{r}^{\prime}=P_{r}\left(F_{y} A_{s} / P_{n}\right) \tag{C-I6-2}
\end{equation*}
$$

where
$P_{n}=$ nominal axial tensile strength, determined by Equation I2-8 for encased composite members, and Equation I2-14 for filled composite members, kips ( N )
$P_{r}=$ required external tensile force applied to the composite member, kips (N)
$V_{r}^{\prime}=$ required longitudinal shear force to be transferred to the steel section or longitudinal reinforcement, kips (N)

Where longitudinal reinforcing bars are used to resist tension forces, they must use appropriate lap splices in accordance with ACI 318 as directed by Section I1. For sustained tension, mechanical splices are required by ACI 318 Section 25.5.7.4 (ACI, 2014).

## 3. Force Transfer Mechanisms

Transfer of longitudinal shear by direct bearing via internal bearing mechanisms, such as internal bearing plates or shear connection via steel anchors, is permitted for both filled and encased composite members. Transfer of longitudinal shear via direct bond interaction is permitted solely for compact and noncompact filled composite members. Although it is recognized that force transfer also occurs by direct bond interaction between the steel and concrete for encased composite columns, this mechanism is typically ignored and shear transfer is generally carried out solely with steel anchors (Griffis, 1992).

The use of the force transfer mechanism providing the largest resistance is permissible. Superposition of force transfer mechanisms is not permitted as the experimental data indicate that direct bearing or shear connection often does not initiate until after direct bond interaction has been breached, and little experimental data is available regarding the interaction of direct bearing and shear connection via steel anchors.

## 3a. Direct Bearing

For the general condition of load applied directly to concrete in bearing, and considering a supporting concrete area that is wider on all sides than the loaded area, the nominal bearing strength for concrete may be taken as

$$
\begin{equation*}
R_{n}=0.85 f_{c}^{\prime} A_{1} \sqrt{A_{2} / A_{1}} \tag{C-I6-3}
\end{equation*}
$$

where
$A_{1}=$ loaded area of concrete, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
$A_{2}=$ maximum area of the portion of the supporting surface that is geometrically similar to and concentric with the loaded area, in. ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
$f_{c}^{\prime}=$ specified compressive concrete strength, ksi (MPa)
The value of $\sqrt{A_{2} / A_{1}}$ must be less than or equal to 2 (ACI, 2014).
For the specific condition of transferring longitudinal shear by direct bearing via internal bearing mechanisms, the Specification uses the maximum nominal bearing strength allowed by Equation C-I6-1 of $1.7 f_{c}^{\prime} A_{1}$ as indicated in Equation I6-3. The resistance factor for bearing, $\phi_{B}$, is 0.65 (and the associated safety factor, $\Omega_{B}$, is 2.31) in accordance with ACI 318.

## 3b. Shear Connection

Steel anchors shall be designed according to the provisions for composite components in Section I8.3.

## 3c. Direct Bond Interaction

Force transfer by direct bond is commonly used in filled composite members as long as the connections are detailed to limit local deformations (API, 1993; Roeder et al., 1999). While chemical adhesion provides some contribution, direct bond is primarily a frictional resistance mechanism. There is large scatter in the experimental data on the bond of filled composite compression members; however, some trends have been identified (Roeder et al., 1999; Zhang et al., 2012). Larger cross sections, thinner
walls, rectangular shapes, smoothed or oiled interfaces, and high-shrinkage concrete contribute to lower apparent bond strengths. Smaller cross sections, thicker walls, circular shapes, rougher interfaces, expansive concrete, and the presence of bending moment (including eccentric loading such as from shear tabs) contribute to higher apparent bond strengths.

The equations for direct bond interaction for filled composite compression members assume the entire interface perimeter is engaged in the transfer of stress. Accordingly, and in contrast to the previous edition of the Specification, the strength is compared to the sum of the force required to be transferred from connecting elements framing in from all sides. The scatter in the experimental data leads to the recommended low value of the resistance factor, $\phi$, and the corresponding high value of the safety factor, $\Omega$.

## 4. Detailing Requirements

To avoid overstressing the structural steel section or the concrete at connections in encased or filled composite members, transfer of longitudinal shear is required to occur within the load introduction length. The load introduction length is taken as two times the minimum transverse dimension of the composite member both above and below the load transfer region. The load transfer region is generally taken as the depth of the connecting element as indicated in Figure C-I6.1. In cases where the applied forces are of such a magnitude that the required longitudinal shear transfer cannot take place within the prescribed load introduction length, the designer should treat the compression member as noncomposite along the additional length required for shear transfer.


Fig. C-I6.1. Load transfer region/load introduction length.

For encased composite members, steel anchors are required throughout the compression member length in order to maintain composite action of the member under incidental moments (including flexure induced by incipient buckling). These anchors are typically placed at the maximum permitted spacing according to Section I8.3e. Additional anchors required for longitudinal shear transfer shall be located within the load introduction length as described previously.

Unlike concrete encased members, steel anchors in filled members are required only when used for longitudinal shear transfer and are not required along the length of the member outside of the introduction region. This difference is due to the adequate confinement provided by the steel encasement which prevents the loss of composite action under incidental moments.

## I7. COMPOSITE DIAPHRAGMS AND COLLECTOR BEAMS

In composite construction, floor or roof slabs consisting of composite metal deck and concrete fill are typically connected to the structural framing to form composite diaphragms. Diaphragms are horizontally spanning members, analogous to deep beams, which distribute lateral loads from their origin to the lateral force-resisting system either directly or in combination with load transfer elements known as collectors or collector beams (also known as diaphragm struts and drag struts).

Diaphragms serve the important structural function of interconnecting the components of a structure to help it behave as a unit. Diaphragms are commonly analyzed as simple-span or continuously spanning deep beams, and hence, are subject to shear, moment and axial forces, as well as the associated deformations. Further information on diaphragm classifications and behavior can be found in AISC (2012) and SDI (2015).

Composite Diaphragm Strength. Diaphragms should be designed to resist all forces associated with the collection and distribution of lateral forces to the lateral forceresisting system. In some cases, loads from other floors should also be included, such as at a level where a horizontal offset in the lateral force-resisting system exists. Several methods exist for determining the in-place shear strength of composite diaphragms. Three such methods are as follows:
(a) As determined for the combined strength of composite deck and concrete fill, including the considerations of composite deck configuration, as well as type and layout of deck attachments. One publication which is considered to provide such guidance is the SDI Diaphragm Design Manual (SDI, 2015). This publication covers many aspects of diaphragm design, including strength and stiffness calculations. Calculation procedures are also provided for alternative deck-toframing connection methods, such as puddle welding and mechanical fasteners in cases where anchors are not used. Where stud anchors are used, stud shear strength values shall be as determined according to Section I8.
(b) As the thickness of concrete over the steel deck is increased, the shear strength can approach that for a concrete slab of the same thickness. For example, in composite floor deck diaphragms having cover depths between 2 in . ( 50 mm ) and
$6 \mathrm{in} .(150 \mathrm{~mm})$, measured shear stresses on the order of $0.11 \sqrt{f_{c}^{\prime}}$ (where $f_{c}^{\prime}$ is in units of ksi) have been reported. In such cases, the diaphragm strength of concrete metal deck slabs can conservatively be based on the principles of reinforced concrete design (ACI, 2014) using the concrete and reinforcement above the metal deck ribs and ignoring the beneficial effect of the concrete in the flutes.
(c) Results from in-plane tests of filled diaphragms.

Collector Beams and Other Composite Elements. Horizontal diaphragm forces are transferred to the steel lateral force-resisting frame as axial forces in collector beams (also known as diaphragm struts or drag struts). The design of collector beams has not been addressed directly in this Chapter. The rigorous design of composite beamcolumns (collector beams) is complex and few detailed guidelines exist on such members. Until additional research becomes available, a reasonable simplified design approach is provided as follows:
Force Application. Collector beams can be designed for the combined effects of axial load due to diaphragm forces, as well as flexure due to gravity and/or lateral loads. The effect of the vertical offset (eccentricity) between the plane of the diaphragm and the centerline of the collector element results in additional shear reactions that should be investigated for design.
Axial Strength. The available axial strength of collector beams can be determined according to the noncomposite provisions of Chapter D and Chapter E. For compressive loading, collector beams are generally considered unbraced for buckling between braced points about their strong axis, and fully braced by the composite diaphragm for buckling about the weak axis. The limit state of constrained-axis torsional buckling about the top flange as discussed in the Commentary Section E4 may also apply.
Flexural Strength. The available flexural strength of collector beams can be determined using either the composite provisions of Chapter I or the noncomposite provisions of Chapter F. It is recommended that all collector beams, even those designed as noncomposite members, should consider shear connector slip capacity as discussed in Commentary Section I3. This recommendation is intended to prevent designers from utilizing a small number of anchors solely to transfer diaphragm forces on a beam designed as a noncomposite member. Anchors designed only to transfer horizontal shear due to lateral forces will still be subjected to horizontal shear due to flexure from gravity loads superimposed on the composite section and could become overloaded under gravity loading conditions. Overloading the anchors could result in loss of stud strength, which could inhibit the ability of the collector beam to function as required for the transfer of diaphragm forces due to lateral loads.
Interaction. Combined axial force and flexure can be assessed using the interaction equations provided in Chapter H. As a reasonable simplification for design purposes, it is acceptable to use the noncomposite axial strength and the composite flexural strength in combination for determining interaction.
Shear Connection. It is not required to superimpose the horizontal shear due to lateral forces with the horizontal shear due to flexure for the determination of steel anchor requirements. The reasoning behind this methodology is twofold. First, the
load combinations as presented in ASCE/SEI 7 (ASCE, 2016) provide reduced live load levels for load combinations containing lateral loads. This reduction decreases the demand on the steel anchors and provides additional capacity for diaphragm force transfer. Secondly, horizontal shear due to flexure in a simply supported member flows in two directions. For a uniformly loaded beam, the shear flow emanates outwards from the center of the beam as illustrated in Figure C-I7.1(a). Lateral loads on collector beams induce shear in one direction. As these shears are superimposed, the horizontal shears on one portion of the beam are increased and the horizontal shears on the opposite portion of the beam are decreased as illustrated in Figure C-I7.1(b). In lieu of additional research, it is considered acceptable for the localized additional loading of the steel anchors in the additive beam segment to be considered offset by the concurrent unloading of the steel anchors in the subtractive beam segment up to a force level corresponding to the summation of the nominal strengths of all studs placed on the beam. It is considered that the shear connectors in typically practical configurations possess an adequate degree of slip capacity to accommodate this mechanism.

(a) Shear flow due to gravity loads only

(b) Shear flow due to gravity and lateral loads in combination

Fig. C-I7.1. Shear flow at collector beams.

## 18. STEEL ANCHORS

## 1. General

This section covers the strength, placement and limitations on the use of steel anchors in composite construction. The term "steel anchor," first introduced in the 2010 AISC Specification, includes the traditional "shear connector," now defined as a "steel headed stud anchor" and a "steel channel anchor" both of which have been part of previous Specifications. Both steel headed stud anchors and hot-rolled steel channel anchors are addressed in the Specification. The design provisions for steel anchors are given for composite beams with solid slabs or with formed steel deck and for composite components. A composite component is defined as a member, connecting element or assemblage in which steel and concrete elements work as a unit in the distribution of internal forces. This term excludes composite beams with solid slabs or formed steel deck. The provisions for composite components include the use of a resistance factor or safety factor applied to the nominal strength of the steel anchor, while for composite beams the resistance factor and safety factor are part of the composite beam resistance and safety factor.

Steel headed stud anchors up to 1 in . ( 25 mm ) in diameter are now permitted for use in beams with solid slabs based on a review of available data and their history of successful performance in bridge applications. The limitation of $3 / 4-\mathrm{in}$. ( 19 mm ) anchors for all other conditions represents the limits of push-out data for decked members as well as the limits of applicability of the current composite component provisions. Though larger anchors for use in composite components are not addressed by this Specification, their strength may be determined by ACI 318 Chapter 17 (ACI, 2014).

Studs not located directly over the web of a beam tend to tear out of a thin flange before attaining full shear strength. To guard against this contingency, the size of a stud not located over the beam web is limited to $2^{1} / 2$ times the flange thickness (Goble, 1968). The practical application of this limitation is to select only beams with flanges thicker than the stud diameter divided by 2.5 .

Section I8.2 requires a minimum overall headed stud anchor height to the shank diameter ratio of four when calculating the nominal shear strength of a steel headed stud anchor in a composite beam. This requirement has been used in previous Specifications and has had a record of successful performance. For calculating the nominal shear strength of a steel headed stud anchor in other composite components, Section I8.3 increases this minimum ratio to five for normal weight concrete and seven for lightweight concrete. Additional increases in the minimum ratio are required for computing the nominal tensile strength or the nominal strength for interaction of shear and tension in Section I8.3. The provisions of Section I8.3 also establish minimum edge distances and center-to-center spacings for steel headed stud anchors if the nominal strength equations in that section are to be used. These limits are established in recognition of the fact that only steel failure modes are checked in the calculation of the nominal anchor strengths in Equations I8-3, I8-4 and I8-5. Concrete failure modes are not checked explicitly in these equations (Pallarés and Hajjar, 2010a, 2010b), whereas concrete failure is checked in Equation I8-1. This is discussed further in Commentary Section I8.3.

## 2. Steel Anchors in Composite Beams

## 2a. Strength of Steel Headed Stud Anchors

The present strength equations for composite beams and steel headed stud anchors are based on the considerable research that has been published in recent years (Jayas and Hosain, 1988a, 1988b; Mottram and Johnson, 1990; Easterling et al., 1993; Roddenberry et al., 2002a). Equation I8-1 contains $R_{g}$ and $R_{p}$ factors to bring these composite beam strength requirements to a comparable level with other codes around the world. Other codes use a stud strength expression similar to the AISC Specification but the stud strength is reduced by a $\phi$ factor of 0.8 in the Canadian code (CSA, 2009) and by an even lower partial safety factor $(\phi=0.60)$ for the corresponding stud strength equations in Eurocode 4 (CEN, 2009). The AISC Specification includes the stud anchor resistance factor as part of the overall composite beam resistance factor.

The majority of composite steel floor decks used today have a stiffening rib in the middle of each deck flute. Because of the stiffener, studs must be welded off-center in the deck rib. Studies have shown that steel studs behave differently depending upon their location within the deck rib (Lawson, 1992; Easterling et al., 1993; Van der Sanden, 1996; Yuan, 1996; Johnson and Yuan, 1998; Roddenberry et al., 2002a, 2002b). The so-called "weak" (unfavorable) and "strong" (favorable) positions are illustrated in Figure C-I8.1. Furthermore, the maximum value shown in these studies for studs welded through steel deck is on the order of 0.7 to $0.75 F_{u} A_{s c}$. Studs placed in the weak position have strengths as low as $0.5 F_{u} A_{s c}$.

The strength of stud anchors installed in the ribs of concrete slabs on formed steel deck with the ribs oriented perpendicular to the steel beam is reasonably estimated by the strength of stud anchors computed from Equation I8-1, which sets the default value for steel stud strength equal to that for the weak stud position. Both AISC (1997a) and the Steel Deck Institute (SDI, 2001) recommend that studs be detailed in the strong position, but ensuring that studs are placed in the strong position is not necessarily an easy task because it is not always easy for the installer to determine where along the beam the particular rib is located relative to the end, midspan, or point of zero shear. Therefore, the installer may not be clear on which location is the strong, and which is the weak position.


Fig. C-I8.1. Weak and strong stud positions
[Roddenberry et al. (2002b)].

In most composite floors designed today, the ultimate strength of the composite section is governed by the strength of the shear connection, as full composite action is typically not the most economical solution to resist the required strength. The degree of composite action, as represented by the ratio of the total shear connection strength divided by the lesser of the yield strength of the steel cross section and the compressive strength of the concrete slab, $\Sigma Q_{n} /\left[\min \left(F_{y} A_{s}, 0.85 f_{c}^{\prime} A_{c}\right)\right]$, influences the flexural strength as shown in Figure C-I8.2.

It can be seen from Figure C-I8.2 that a relatively large change in shear connection strength results in a much smaller change in flexural strength. Thus, formulating the influence of steel deck on shear anchor strength by conducting beam tests and backcalculating through the flexural model, as was done in the past, leads to an inaccurate assessment of stud strength when installed in metal deck.

The changes in stud anchor requirements that occurred in the 2005 AISC Specification (AISC, 2005) were not a result of either structural failures or performance problems. Designers concerned about the strength of existing structures based on earlier Specification requirements should note that the slope of the curve shown in Figure C-I8.2 is rather flat as the degree of composite action approaches one. Thus, even a large change in steel stud strength does not result in a proportional decrease of the flexural strength. In addition, the current expression does not account for all the possible shear force transfer mechanisms, primarily because many of them are difficult or impossible to quantify. However, as noted in Commentary Section I3.1, as the degree of composite action decreases, the deformation demands on steel studs increase. This effect is reflected by the increasing slope of the relationship shown in Figure C-I8.2 as the degree of composite action decreases. Thus, designers should


Fig. C-I8.2. Normalized flexural strength versus shear connection strength ratio ( $\left.\mathrm{W} 16 \times 31, \mathrm{~F}_{\mathrm{y}}=50 \mathrm{ksi}, \mathrm{Y} 2=4.5 \mathrm{in}.\right)$
consider the influence of increased ductility demand, when evaluating existing composite beams with less than $50 \%$ composite action.

The reduction factor, $R_{p}$, for headed stud anchors used in composite beams with no decking was reduced from 1.0 to 0.75 in the 2010 AISC Specification. The methodology used for headed stud anchors that incorporates $R_{g}$ and $R_{p}$ was implemented in the 2005 AISC Specification. The research (Roddenberry et al., 2002a) in which the factors $R_{g}$ and $R_{p}$ were developed focused almost exclusively on cases involving the use of headed stud anchors welded through the steel deck. The research pointed to the likelihood that the solid slab case should use $R_{p}=0.75$; however, the body of test data had not been established to support the change. More recent research has shown that the 0.75 factor is appropriate (Pallarés and Hajjar, 2010a).

## 2b. Strength of Steel Channel Anchors

Equation I8-2 is a modified form of the formula for the strength of channel anchors presented in Slutter and Driscoll (1965), which was based on the results of pushout tests and a few simply supported beam tests with solid slabs by Viest et al. (1952). The modification has extended its use to lightweight concrete.

Eccentricities need not be considered in the weld design for cases where the welds at the toe and heel of the channel are greater than ${ }^{3} / 16 \mathrm{in}$. ( 5 mm ) and the anchor meets the following requirements:

$$
\begin{aligned}
& 1.0 \leq \frac{t_{f}}{t_{w}} \leq 5.5 \\
& \frac{H}{t_{w}} \geq 8.0 \\
& \frac{L_{c}}{t_{f}} \geq 6.0 \\
& 0.5 \leq \frac{R}{t_{w}} \leq 1.6
\end{aligned}
$$

where
$H=$ height of anchor, in. (mm)
$L_{c}=$ length of anchor, in. (mm)
$R=$ radius of the fillet between the flange and the web of the channel anchor, in. (mm)
$t_{f}=$ thickness of channel anchor flange, in. (mm)
$t_{w}=$ thickness of channel anchor web, in. (mm)

## 2d. Detailing Requirements

Uniform spacing of shear anchors is permitted, except in the presence of heavy concentrated loads.

The minimum distances from the center of an anchor to a free edge in the direction of the shear force that are shown in this Specification are based on data reported by Nelson Stud Welding Division (Nelson, 1977). Data for various steel headed anchor diameters, concrete compressive strengths, and unit weights are reported. The provisions
selected for inclusion in the Specification result in no reduced strength for $3 / 4$-in.$(19 \mathrm{~mm})$ diameter anchors in 4 -ksi ( 28 MPa ) concrete, which were deemed to be representative of most composite beam construction. Other values are available in the report for use by the designer if deemed to be more applicable.

The minimum spacing of anchors along the length of the beam, in both flat soffit concrete slabs and in formed steel deck with ribs parallel to the beam, is six diameters; this spacing reflects the development of shear planes in the concrete slab (Ollgaard et al., 1971). Because most test data are based on the minimum transverse spacing of four diameters, this transverse spacing was set as the minimum permitted. If the steel beam flange is narrow, this spacing requirement may be achieved by staggering the studs with a minimum transverse spacing of three diameters between the staggered row of studs. When deck ribs are parallel to the beam and the design requires more studs than can be placed in the rib, the deck may be split so that adequate spacing is available for stud installation. Figure C-I8.3 shows possible anchor arrangements.

## 3. Steel Anchors in Composite Components

This section applies to steel headed stud anchors used primarily in the load transfer (connection) region of composite compression members and beam-columns, encased and filled composite beams, composite coupling beams, and composite walls, where the steel and concrete are working compositely within a member. An example of the use of steel headed stud anchors in a composite wall is shown in Figure C-I8.4. In such cases, it is possible that the steel anchor will be subjected to shear, tension, or interaction of shear and tension. As the strength of the connectors in the load transfer region must be assessed directly, rather than implicitly within the strength assessment of a composite member, a resistance or safety factor should be applied, comparable to the design of bolted connections in Chapter J.

These provisions are not intended for hybrid construction where the steel and concrete are not working compositely, such as with embed plates. Section I8.2 specifies the strength of steel anchors embedded in a solid concrete slab or in a concrete slab with formed steel deck in a composite beam.


Fig. C-I8.3. Steel anchor arrangements.

Data from a wide range of experiments indicate that the failure of steel headed stud anchors subjected to shear occurs in the steel shank or weld in a large percentage of cases if the ratio of the overall height to the shank diameter of the steel headed stud anchor is greater than five for normal weight concrete. In the case of lightweight concrete, the necessary minimum ratio between the overall height of the stud and the diameter increases up to seven (Pallarés and Hajjar, 2010a). Use of anchors meeting the dimensional limitations for shear loading preclude the limit state of concrete pryout as defined by ACI 318 Chapter 17 (ACI, 2014). A similarly large percentage of failures occur in the steel shank or weld of steel headed stud anchors subjected to tension or interaction of shear and tension if the ratio of the overall height to shank diameter of the steel headed stud anchor is greater than eight for normal weight concrete. In the case of lightweight concrete, the necessary minimum ratio between the overall height of the stud and the diameter increases up to ten for steel headed stud anchors subjected to tension (Pallarés and Hajjar, 2010b). For steel headed stud anchors subjected to interaction of shear and tension in lightweight concrete, there are so few experiments available that it is not possible to discern sufficiently when the steel material will control the failure mode. For the strength of steel headed stud anchors in lightweight concrete subjected to interaction of shear and tension, it is recommended that the provisions of ACI 318 Chapter 17 be used. Use of anchors


Fig. C-I8.4. Typical reinforcement detailing in a composite wall for steel headed stud anchors subjected to tension.
meeting the dimensional limitations for tension loading preclude the limit states of concrete breakout and pryout as defined by ACI 318 Chapter 17 where analysis indicates no cracking at service load levels, as would generally be the case in compression zones and regions of high confinement typical of composite construction. Where the engineer determines that concrete cracking under service load levels can occur, it is recommended that the provisions of ACI 318 Chapter 17 be used.

The use of edge distances in ACI 318 Chapter 17 to compute the strength of a steel anchor subjected to concrete crushing failure is complex. It is rare in composite construction that there is a nearby edge that is not uniformly supported in a way that prevents the possibility of concrete breakout failure due to a close edge. Thus, for brevity, the provisions in this Specification simplify the assessment of whether it is warranted to check for a concrete failure mode. Additionally, if an edge is supported uniformly, as would be common in composite construction, it is assumed that a concrete failure mode will not occur due to the edge condition. Thus, if these provisions are to be used, it is important that it be deemed by the engineer that a concrete breakout failure mode in shear is directly avoided through having the edges perpendicular to the line of force supported, and the edges parallel to the line of force sufficiently distant that concrete breakout through a side edge is not deemed viable. For loading in shear, the determination of whether breakout failure in the concrete is a viable failure mode for the stud anchor is left to the engineer. Alternatively, the provisions call for required anchor reinforcement with provisions comparable to those of ACI 318 Section 17.5.2.9 (ACI, 2014). In addition, the provisions of the applicable building code or ACI 318 Chapter 17 may be used directly to compute the strength of the steel headed stud anchor.

The steel limit states, resistance factors and corresponding safety factors covered in this section match with the corresponding limit states of ACI 318 Chapter 17 (ACI, 2014), although they were assessed independently for these provisions. As only steel limit states are required to be checked if there are no edge conditions, experiments that satisfy the minimum height/diameter ratio but that included failure of the steel headed stud anchor either in the steel or in the concrete were included in the assessment of the resistance and safety factors (Pallarés and Hajjar, 2010a, 2010b).

For steel headed stud anchors subjected to tension or combined shear and tension interaction, it is recommended that anchor reinforcement always be included around the stud to mitigate premature failure in the concrete. If the ratio of the diameter of the head of the stud to the shank diameter is too small, the provisions call for use of ACI 318 Chapter 17 to compute the strength of the steel headed stud anchor. If the distance to the edge of the concrete or the distance to the neighboring anchor is too small, the provisions call for required anchor reinforcement with provisions comparable to those of ACI 318 Section 17.4.2.9 (ACI, 2014). Alternatively, the provisions of the applicable building code or ACI 318 Chapter 17 may also be used directly to compute the strength of the steel headed stud anchor.

## CHAPTER J

DESIGN OF CONNECTIONS

The provisions of Chapter J cover the design of connections not subject to cyclic loads. Wind and other environmental loads are generally not considered to be cyclic loads. The provisions generally apply to connections other than HSS and box sections. See Chapter K for provisions specific to HSS and box-section connections, and Appendix 3 for fatigue provisions.

## J1. GENERAL PROVISIONS

## 1. Design Basis

In the absence of defined design loads, a minimum design load should be considered. Historically, a value of $10 \mathrm{kips}(44 \mathrm{kN})$ for LRFD and $6 \mathrm{kips}(27 \mathrm{kN})$ for ASD have been used as reasonable values. For smaller elements such as lacing, sag rods, girts or similar small members, a load more appropriate to the size and use of the part should be used. Both design requirements and construction loads should be considered when specifying minimum loads for connections.

## 2. Simple Connections

Simple connections are considered in this section and Section B3.4a. In Section B3.4a, simple connections are defined in an idealized manner for the purpose of analysis. The assumptions made in the analysis determine the outcome of the analysis that serves as the basis for design; for connections, that means the force and deformation demands that the connection must resist. This section focuses on the actual proportioning of the connection elements to achieve the required resistance. Thus, Section B3.4a establishes the modeling assumptions that determine the design forces and deformations for use in Section J1.2.

This section and Section B3.4a are not mutually exclusive. If a "simple" connection is assumed for analysis, the actual connection, as finally designed, must perform consistent with that assumption. A simple connection must be able to meet the required rotation and must not introduce strength and stiffness that significantly alters the rotational response.

## 3. Moment Connections

Two types of moment connections are defined in Section B3.4b: fully restrained (FR) and partially restrained (PR). FR moment connections must have sufficient strength and stiffness to transfer moment and maintain the angle between connected members. PR moment connections are designed to transfer moments but also allow rotation between connected members as the loads are resisted. The response characteristics of a PR connection must be documented in the technical literature or established by analytical or experimental means. The component elements of a PR connection must have sufficient strength, stiffness and deformation capacity to satisfy the design assumptions.

## 4. Compression Members with Bearing Joints

The provisions in Section J1.4(b), for compression members other than columns finished to bear, are intended to account for member out-of-straightness and also to provide a degree of robustness in the structure to resist unintended or accidental lateral loadings that may not have been considered explicitly in the design.

A provision analogous to that in Section $\mathrm{J} 1.4(\mathrm{~b})(1)$, requiring that splice materials and connectors have an available strength of at least $50 \%$ of the required compressive strength, has been in the AISC Specification since 1946 (AISC, 1946). The current Specification clarifies this requirement by stating that the force for proportioning the splice materials and connectors is a tensile force. This avoids uncertainty as to how to handle situations where compression on the connection imposes no force on the connectors.

Proportioning the splice materials and connectors for $50 \%$ of the required member strength is simple, but can be very conservative. In Section J1.4(b)(2), the Specification offers an alternative that addresses directly the design intent of these provisions. The lateral load of $2 \%$ of the required compressive strength of the member simulates the effect of a kink at the splice caused by an end finished slightly out-of-square or other construction condition. Proportioning the connection for the resulting moment and shear also provides a degree of robustness in the structure.

## 5. Splices in Heavy Sections

Solidified but still hot weld metal contracts significantly as it cools to ambient temperature. Shrinkage of large groove welds between elements that are not free to move so as to accommodate the shrinkage causes strains in the material adjacent to the weld that can exceed the yield point strain. In thick material, the weld shrinkage is restrained in the thickness direction and in the width and length directions causing triaxial stresses to develop that may inhibit the ability to deform in a ductile manner. Under these conditions, the possibility of brittle fracture increases.

The web-to-flange intersection and the web center of heavy hot-rolled shapes, as well as the interior portions of heavy plates, may contain a coarser grain structure and/or lower notch toughness than other areas of these products.

When splicing hot-rolled shapes with flange thickness exceeding 2 in . 50 mm ) or heavy welded built-up members, these potentially harmful weld shrinkage strains can be avoided by using bolted splices, fillet-welded lap splices, or splices that combine a welded and bolted detail as seen in Figure C-J1.1. Details and techniques that perform well for materials of modest thickness usually must be changed or supplemented by more demanding requirements when welding thick material.

The provisions of AWS D1.1/D1.1M (AWS, 2015) are minimum requirements that apply to most structural welding situations. However, when designing and fabricating welded splices of hot-rolled shapes with flange thicknesses exceeding 2 in . ( 50 mm ) and similar built-up cross sections, special consideration must be given to all aspects of the welded splice detail:
(1) Notch-toughness requirements are required to be specified for tension members as discussed in Commentary Section A3.1c.
(2) Generously sized weld access holes (see Section J1.6) are required to provide increased relief from concentrated weld shrinkage strains, to avoid close juncture of welds in orthogonal directions, and to provide adequate clearance for the exercise of high quality workmanship in hole preparation, welding, and for ease of inspection.
(3) Preheating for thermal cutting is required to minimize the formation of a hard surface layer. (See Section M2.2.)
(4) Grinding of copes and weld access holes to bright metal to remove the hard surface layer is required.

In addition to tension splices of truss chord members and tension flanges of flexural members, other joints fabricated from heavy sections subject to tension should be given special consideration during design and fabrication.

Alternative details that do not generate shrinkage strains can be used. In connections where the forces transferred approach the member strength, direct welded groove joints may still be the most effective choice.

Until 1999, the Specification mandated that backing bars and weld tabs be removed from all splices of heavy sections. These requirements were deliberately removed, being judged unnecessary and, in some situations, potentially resulting in more harm than good. This Specification still permits the engineer of record to specify their removal when this is judged appropriate.

The previous requirement for the removal of backing bars necessitated, in some situations, that such operations be performed out-of-position; that is, the welding required to restore the backgouged area had to be applied in the overhead position. This may necessitate difficult equipment for gaining access, different welding equipment, processes and/or procedures, and other practical constraints. When box sections


Fig. C-J1.1. Alternative splices that minimize weld restraint tensile stresses.
made of plate are spliced, access to the interior side, necessary for backing removal, is typically impossible.

Weld tabs that are left in place on splices act as "short attachments" and attract little stress. Even though it is acknowledged that weld tabs might contain regions of inferior quality weld metal, the stress concentration effect is minimized since little stress is conducted through the attachment.

Previous editions of this Specification required magnetic particle or dye-penetrant inspection of thermally cut weld access holes for splices in heavy sections. This requirement was deliberately removed as anecdotal evidence suggested this inspection was not necessary because cracks from thermal cutting rarely occurred when the other Specification requirements were met. The previously prescribed magnetic particle testing or penetrant testing was replaced with a requirement for visual inspection of weld access holes after welding (see Table N5.4-3).

## 6. Weld Access Holes

Weld access holes are frequently required in the fabrication of structural components. The geometry of these structural details can affect the components' performance. The size and shape of beam copes and weld access holes can have a significant effect on the ease of depositing sound weld metal, the ability to conduct nondestructive examinations, and the magnitude of the stresses at the geometric discontinuities produced by these details.

Weld access holes used to facilitate welding operations are required to have a minimum length from the toe of the weld preparation (see Figure C-J1.2) equal to 1.5 times the thickness of the material in which the hole is made. This minimum length is expected to accommodate a significant amount of the weld shrinkage strains at the web-to-flange intersection.

The height of the weld access hole must provide sufficient clearance for ease of welding and inspection and must be large enough to allow the welder to deposit sound weld metal through and beyond the web. A weld access hole height equal to 1.0 times the thickness of the material with the access hole, but not less than $3 / 4 \mathrm{in}$. ( 19 mm ), has been judged to satisfy these welding and inspection requirements. The height of the weld access hole need not exceed 2 in . ( 50 mm ).

The geometry of the reentrant corner between the web and the flange determines the level of stress concentration at that location. A $90^{\circ}$ reentrant corner having a very small radius produces a very high stress concentration that may lead to rupture of the flange. Consequently, to minimize the stress concentration at this location, the edge of the web is sloped or curved from the surface of the flange to the reentrant surface of the weld access hole.

Stress concentrations along the perimeter of weld access holes also can affect the performance of the joint. Consequently, weld access holes are required to be free of stress raisers such as notches and gouges. The NDT requirement of access holes in earlier editions of the Specification has been removed in response to reports that these examinations had revealed no defects.

Stress concentrations at web-to-flange intersections of built-up shapes can be decreased by terminating the weld away from the access hole. Thus, for built-up shapes with fillet welds or partial-joint-penetration groove welds that join the web to the flange, the weld access hole may terminate perpendicular to the flange, provided that the weld is terminated a distance equal to or greater than one weld size away from the access hole.

## 7. Placement of Welds and Bolts

Slight eccentricities between the gravity axis of single- and double-angle members and the center of gravity of connecting bolts or rivets have long been ignored as having negligible effect on the static strength of such members. Tests have shown that similar practice is warranted in the case of welded members in statically loaded structures (Gibson and Wake, 1942).


Alternate 1


Alternate 2

Rolled shapes and built-up shapes assembled prior to cutting the weld access hole.


## Alternate 3

Built-up shapes assembled after cutting the weld access hole.

Notes: These are typical details for joints welded from one side against steel backing.
Alternative details are discussed in the commentary text.

1. Length: Greater of $1.5 t_{w}$ or $1 \frac{1}{2} \mathrm{in}$. $(38 \mathrm{~mm})$
2. Height: Greater of $1.0 t_{w}$ or $3 / 4 \mathrm{in}$. ( 19 mm ) but need not exceed 2 in . ( 50 mm )
3. $R: 3 / 8 \mathrm{in}$. min . ( 10 mm ). Grind the thermally cut surfaces of weld access holes in heavy shapes as defined in Sections A3.1(c) and (d).
4. Slope 'a' forms a transition from the web to the flange. Slope ' $b$ ' may be horizontal.
5. The bottom of the top flange is to be contoured to permit the tight fit of backing bars where they are to be used.
6. The web-to-flange weld of built-up members is to be held back a distance of at least the weld size from the edge of the access hole.

Fig. C-J1.2. Weld access hole geometry.

However, the fatigue life of eccentrically loaded welded angles has been shown to be very short (Klöppel and Seeger, 1964). Notches at the roots of fillet welds are harmful when alternating tensile stresses are normal to the axis of the weld, as could occur due to bending when axial cyclic loading is applied to angles with end welds not balanced about the neutral axis. Accordingly, balanced welds are required when such members are subjected to cyclic loading (see Figure C-J1.3).

## 8. Bolts in Combination with Welds

As in previous editions, this Specification does not permit bolts or rivets to share the load with welds except for conditions where shear is resisted at the faying surface. In joints where the strength is based on the strength of bolts and welds acting together, the compatibility of deformations of the various components of the connection at the ultimate load level are important factors in determining the connection strength. Physical tests (Kulak and Grondin, 2003) and finite element models (Shi et al., 2011) have shown that bolts designed as part of a slip-critical connection and properly tightened according to the requirements for a slip-critical connection can share the load with longitudinal fillet welds, provided a reasonable proportion of the load is carried by each. The limits established are $50 \%$ minimum for the welds and $33 \%$ minimum for the high-strength bolts. The strength of transverse welds is not permitted to be included with the strength of bolts because these welds have less ductility. The provisions of this section are generally intended to be applied in cases where retrofit work is required to accommodate higher design loads, or cases where the mean slip coefficient in the field may not have complied with the value assumed in the design [special testing is required according to Appendix A of the RCSC Specification (RCSC, 2014) in such cases to validate the slip coefficient, $\mu$, value used in the final retrofitted design].

The intent of this 2016 provision as prescribed in the second paragraph is to ensure the combined joint will provide the required strength just prior to when the welds fracture, which defines the ultimate load level. The ultimate load is defined by the


Fig. C-J1.3. Balanced welds.
capacity of the welds and the slip resistance from the bolt pretension clamping force. No additional bearing or tearout capacity check is required. The use of a single resistance factor $(\phi=0.75)$ or safety factor $(\Omega=2.00)$ on the nominal strength of the bolts and welds combined is intended to improve the reliability of the connection compared to the use of the higher resistance factor $(\phi=1.00)$ and lower safety factor ( $\Omega=1.50$ ) permitted for standard holes in slip-critical bolted connections alone. For existing connections with high-strength bolts originally tightened by other methods than turn-of-nut, an additional $1 / 3$ turn for ASTM F3125 Grades A325 or A325M and $1 / 2$ turn for Grades A490 or A490M bolts would allow the bolts to be considered pretensioned by turn-of-nut relative to this section. Over-rotation of a bolt is not cause for rejection per the RCSC Specification. The additional rotation may occasionally result in bolt rupture which will occur at the time the bolts are rotated. Broken bolts can be replaced with equivalent bolts installed using the turn-of-nut method. Note that the connection strength need not be taken as less than the strength of the bolts alone or the strength of the welds alone. The heat of welding near bolts will not alter the mechanical properties of the bolts.

The restrictions on bolts in combination with welds do not apply to typical bolted/welded beam-to-girder and beam-to-column connections, and other comparable connections where the bolts and welds are used on separate faying surfaces (Kulak et al., 1987).

## 10. High-Strength Bolts in Combination with Rivets

When high-strength bolts are used in combination with rivets, the ductility of the rivets permits the direct addition of the strengths of the two fastener types.

## J2. WELDS

Selection of weld type [complete-joint-penetration (CJP) groove weld versus fillet versus partial-joint-penetration (PJP) groove weld] depends on base connection geometry (butt versus T or corner), in addition to required strength, and other issues discussed in the following. Notch effects and the ability to evaluate with nondestructive testing may affect joint selection for cyclically loaded joints or joints expected to deform plastically.

## 1. Groove Welds

## 1a. Effective Area

Tables J2.1 and J2.2 show that the effective throat of PJP and flare groove welds is dependent upon the weld process and the position of the weld. It is recommended that the design drawings show either the required strength or the required effective throat size and allow the fabricator to select the process and determine the position required to meet the specified requirements. Effective throats larger than those in Table J2.2 can be qualified by tests. Weld reinforcement is not used in determining the effective throat of a groove weld, but reinforcing fillets on T- and corner-joints are accounted for in the effective throat. See AWS D1.1/D1.1M Annex A (AWS, 2015).

## 1b. Limitations

Table J2.3 gives the minimum effective throat thickness of a PJP groove weld. Notice that for PJP groove welds Table J2.3 goes up to a plate thickness of over 6 in. (150 mm ) and a minimum weld throat of $5 / 8 \mathrm{in}$. $(16 \mathrm{~mm})$, whereas for fillet welds Table J2.4 goes up to a plate thickness of over ${ }^{3} / 4 \mathrm{in}$. $(19 \mathrm{~mm})$ and a minimum leg size of fillet weld of only $5 / 16 \mathrm{in}$. ( 8 mm ). The additional thickness for PJP groove welds is intended to provide for reasonable proportionality between weld and material thickness. The use of single-sided PJP groove welds in joints subject to rotation about the toe of the weld is discouraged.

## 2. Fillet Welds

## 2a. Effective Area

The effective throat of a fillet weld does not include the weld reinforcement, nor any penetration beyond the weld root. Some welding procedures produce a consistent penetration beyond the root of the weld. This penetration contributes to the strength of the weld. However, it is necessary to demonstrate that the weld procedure to be used produces this increased penetration. In practice, this can be done initially by cross-sectioning the runoff tabs of the joint. Once this is done, no further testing is required, as long as the welding procedure is not changed.

## 2b. Limitations

Table J2.4 provides the minimum size of a fillet weld for a given thickness of the thinner part joined. The requirements are not based on strength considerations, but on the quench effect of thick material on small welds. Very rapid cooling of weld metal may result in a loss of ductility. Furthermore, the restraint to weld metal shrinkage provided by thick material may result in weld cracking.

The use of the thinner part to determine the minimum size weld is based on the prevalence of the use of filler metal considered to be "low hydrogen." Because a ${ }^{5} / 16$-in. ( 8 mm ) fillet weld is the largest that can be deposited in a single pass by the SMAW process and still be considered prequalified under AWS D1.1/D1.1M (AWS, 2015), $5 / 16 \mathrm{in}$. ( 8 mm ) applies to all material greater than $3 / 4 \mathrm{in}$. ( 19 mm ) in thickness, but minimum preheat and interpass temperatures are required by AWS D1.1/D1.1M. The design drawings should reflect these minimum sizes and the production welds should be of these minimum sizes.

For thicker members in lap joints, it is possible for the welder to melt away the upper corner, resulting in a weld that appears to be full size but actually lacks the required weld throat dimension. See Figure C-J2.1(a). On thinner members, the full weld throat is likely to be achieved, even if the edge is melted away. Accordingly, when the plate is $1 / 4 \mathrm{in}$. ( 6 mm ) or thicker, the maximum fillet weld size is $1 / 16 \mathrm{in}$. ( 2 mm ) less than the plate thickness, $t$, which is sufficient to ensure that the edge remains. See Figure C-J2.1(b).

By providing a minimum lap of five times the thickness of the thinner part of a lap joint, the resulting rotation of the joint when pulled will not be excessive, as shown
in Figure C-J2.2, where the condition shown in the righthand figure subjects the fillet weld to torsion. Fillet welded lap joints under tension tend to open and apply a tearing action at the root of the weld as shown in Figure C-J2.3(b), unless restrained by a force, $F$, as shown in Figure C-J2.3(a). The minimum length reduces stresses due to Poisson effects.

The use of single-sided fillet welds in joints subject to rotation around the toe of the weld is discouraged. End returns are not essential for developing the full length of fillet welded connections and have a negligible effect on their strength. Their use has been encouraged to ensure that the weld size is maintained over the length of the weld, to enhance the fatigue resistance of cyclically loaded flexible end connections, and to increase the plastic deformation capability of such connections.

The weld strength database on which the Specification was developed had no end returns. This includes the study reported in Higgins and Preece (1968), the seat angle tests in Lyse and Schreiner (1935), the seat and top angle tests in Lyse and Gibson (1937), the tests on beam webs welded directly to a column or girder by fillet welds in Johnston and Deits (1942), and the tests on eccentrically loaded welded connections reported by Butler et al. (1972). Hence, the current strength values and joint design

(a) Incorrect for $\mathrm{t} \geq 1 / 4 \mathrm{in}$.

(b) Correct for $\mathrm{t} \geq 1 / 4 \mathrm{in}$.

Fig. C-J2.1. Identification of plate edge.


Fig. C-J2.2. Minimum lap.
models do not require end returns when the required weld size is provided. Johnston and Green (1940) noted that movement consistent with the design assumption of no end restraint (in other words, joint flexibility) was enhanced without end returns. They also verified that greater plastic deformation of the connection was achieved when end returns existed, although the strength was not significantly different.

When longitudinal fillet welds parallel to the stress are used to transmit the load to the end of an axially loaded member, the welds are termed "end loaded." Typical examples of such welds include, but are not limited to (a) longitudinally welded lap joints at the end of axially loaded members, (b) welds attaching bearing stiffeners, and (c) similar cases. Typical examples of longitudinally loaded fillet welds that are not considered end loaded include, but are not limited to (a) welds that connect plates or shapes to form built-up cross sections in which the shear force is applied to each increment of length of weld depending upon the distribution of the shear along the length of the member, and (b) welds attaching beam web connection angles and shear plates because the flow of shear force from the beam or girder web to the weld is essentially uniform throughout the weld length; that is, the weld is not end-loaded despite the fact that it is loaded parallel to the weld axis. Neither does the reduction coefficient, $\beta$, apply to welds attaching stiffeners to webs because the stiffeners and welds are not subject to calculated axial stress but merely serve to keep the web flat.

The distribution of stress along the length of end-loaded fillet welds is not uniform and is dependent upon complex relationships between the stiffness of the longitudinal fillet weld relative to the stiffness of the connected materials. Experience has shown that when the length of the weld is equal to approximately 100 times the weld size or less, it is reasonable to assume that the full length is effective. For weld lengths greater than 100 times the weld size, the effective length should be taken less than the actual length. The reduction factor, $\beta$, provided in Section J2.2b is the equivalent to that given in CEN (2005a), which is a simplified approximation of exponential formulas developed by finite element studies and tests performed in Europe over many years. The provision is based on the combined consideration of the nominal strength for fillet welds with leg size less than $\frac{1}{1}$ in. ( 6 mm ) and of a judgment-based serviceability limit of slightly less than ${ }^{1 / 32} \mathrm{in}$. ( 1 mm ) displacement at the end of the weld for welds with leg size $\frac{1}{1} / \mathrm{in}$. ( 6 mm ) and larger. Given the empirically derived mathematical form of the $\beta$ factor, as the ratio of weld length to weld size, $w$, increases beyond 300 , the effective length of the weld begins to decrease, illogically causing a weld of greater length to have progressively less strength. Therefore, the effective length is taken as $0.6(300) w=180 w$ when the weld length is greater than 300 times the leg size.


Fig. C-J2.3. Restraint of lap joints.

In most cases, fillet weld terminations do not affect the strength or serviceability of connections. However, in certain cases the disposition of welds affect the planned function of the connection, and notches may affect the static strength and/or the resistance to crack initiation if cyclic loads of sufficient magnitude and frequency occur. For these cases, termination details at the end of the joint are specified to provide the desired profile and performance. In cases where profile and notches are less critical, terminations are permitted to run to the end. In most cases, stopping the weld short of the end of the joint will not reduce the strength of the weld. The small loss of weld area due to stopping the weld short of the end of the joint by one to two weld sizes is not typically considered in the calculation of weld strength. Only short weld lengths will be significantly affected by this.

The following situations require special attention:
(1) For lapped joints where one part extends beyond the end or edge of the part to which it is welded and if the parts are subject to calculated tensile stress at the start of the overlap, it is important that the weld terminate a short distance from the stressed edge. For one typical example, the lap joint between the tee chord and the web members of a truss, the weld should not extend to the edge of the tee stem (see Figure C-J2.4). The best technique to avoid inadvertent notches at this critical location is to strike the welding arc at a point slightly back from the edge and proceed with welding in the direction away from the edge (see Figure C-J2.5). Where framing angles extend beyond the end of the beam web to which they are welded, the free end of the beam web is subject to zero stress; thus, it is permissible for the fillet weld to extend continuously across the top end, along the side, and along the bottom end of the angle to the extreme end of the beam (see Figure C-J2.6).
(2) For connections such as framing angles and framing tees, which are assumed in the design of the structure to be flexible connections, the tension edges of the outstanding legs or flanges must be left unwelded over a substantial portion of their


Fig. C-J2.4. Fillet welds near tension edges.
length to provide flexibility in the connection. Tests have shown that the static strength of the connection is the same with or without end returns; therefore, the use of returns is optional, but if used, their length must be restricted to not more than four times the weld size (Johnston and Green, 1940) (see Figure C-J2.7).
(3) Experience has shown that when ends of intermediate transverse stiffeners on the webs of plate girders are not welded to the flanges (the usual practice), small torsional distortions of the flange occur near shipping bearing points in the normal course of shipping by rail or truck and may cause high out-of-plane bending stresses (up to the yield point) and fatigue cracking at the toe of the web-toflange welds. This has been observed even with closely fitted stiffeners. The


Fig. C-J2.5. Suggested direction of welding travel to avoid notches.


Fig. C-J2.6. Fillet weld details on framing angles.
intensity of these out-of-plane stresses may be effectively limited and cracking prevented if "breathing room" is provided by terminating the stiffener weld away from the web-to-flange welds. The unwelded distance should not exceed six times the web thickness so that column buckling of the web within the unwelded length does not occur.
(4) For fillet welds that occur on opposite sides of a common plane, it is difficult to deposit a weld continuously around the corner from one side to the other without causing a gouge in the corner of the parts joined; therefore, the welds must be interrupted at the corner (see Figure C-J2.8). AWS D1.1/D1.1M (AWS, 2015) added a specific exception that permits continuous welds around opposite sides of a common plane where the engineer requires sealed joints.


Fig. C-J2.7. Flexible connection returns optional unless subject to fatigue.


Fig. C-J2.8. Details for fillet welds that occur on opposite sides of a common plane.

## 3. Plug and Slot Welds

A plug weld is a weld made in a circular hole in one member of a joint fusing that member to another member. A slot weld is a weld made in an elongated hole in one member of a joint fusing that member to another member. Both plug and slot welds are only applied to lap joints. Care should be taken when plug or slot welds are applied to structures subject to cyclic loading as the fatigue performance of these welds is limited.

A fillet weld inside a hole or slot is not a plug weld. A "puddle weld," typically used for joining decking to the supporting steel, is not the same as a plug weld.

## 3a. Effective Area

When plug and slot welds are detailed in accordance with Section J2.3b, the strength of the weld is controlled by the size of the fused area between the weld and the base metal. The total area of the hole or slot is used to determine the effective area.

## 3b. Limitations

Plug and slot welds are limited to situations where they are loaded in shear, or where they are used to prevent elements of a cross section from buckling, such as for web doubler plates on deeper rolled sections. Plug and slot welds are only allowed where the applied loads result in shear between the joined materials-they are not to be used to resist direct tensile loads. This restriction does not apply to fillets in holes or slots.

The geometric limitations on hole and slot sizes are prescribed in order to provide a geometry that is conducive to good fusion. Deep, narrow slots and holes make it difficult for the welder to gain access and see the bottom of the cavity into which weld metal must be placed. Where access is difficult, fusion may be limited, and the strength of the connection reduced.

## 4. Strength

The strength of welds is governed by the strength of either the base material or the deposited weld metal. Table J2.5 presents the nominal weld strengths and the $\phi$ and $\Omega$ factors, as well as the limitations on filler metal strength levels.

The strength of a joint that contains a complete-joint-penetration (CJP) groove weld, whether loaded in tension or compression, is dependent upon the strength of the base metal, and no computation of the strength of the CJP groove weld is required. For tension applications, matching strength filler metal is required, as defined in AWS D1.1/D1.1M Table 3.1 (AWS, 2015). For compression applications, up to a 10 ksi ( 69 MPa ) decrease in filler metal strength is permitted, which is equivalent to one strength level.

CJP groove welds loaded in tension or compression parallel to the weld axis, such as for the groove welded corners of box columns, do not transfer primary loads across the joint. In cases such as this, no computation of the strength of the CJP groove weld strength is required.

CJP groove welded tension joints are intended to provide strength equivalent to the base metal; therefore, matching filler metal is required. CJP groove welds have been shown not to exhibit compression failure even when they are undermatched. The amount of undermatching before unacceptable deformation occurs has not been established, but one standard strength level is conservative and therefore permitted. Joints in which the weld strength is calculated based on filler metal classification strength can be designed using any filler metal strength equal to or less than matching. Filler metal selection is still subject to compliance with AWS D1.1/D1.1M.

The nominal strength of partial-joint-penetration (PJP) groove welded joints in compression is higher than for other joints because compression limit states are not observed on weld metal until significantly above the yield strength.

Connections that contain PJP groove welds designed to bear in accordance with Section J1.4(b), and where the connection is loaded in compression, are not limited in strength by the weld since the surrounding base metal can transfer compression loads. When not designed in accordance with Section J1.4(b), an otherwise similar connection must be designed considering the possibility that either the weld or the base metal may be the critical component in the connection.

The factor of 0.6 on $F_{\text {EXX }}$ for the tensile strength of PJP groove welds has been used since the early 1960s to compensate for factors such as the notch effect of the unfused area of the joint and uncertain quality in the root of the weld due to the difficulty in performing nondestructive evaluation. It does not imply that the tensile failure mode is by shear stress on the effective throat, as in fillet welds.

Column splices have historically been connected with relatively small PJP groove welds. Frequently, erection aids are available to resist construction loads. Columns are intended to be in bearing in splices and on base plates. Section M4.4 recognizes that, in the as-fitted product, the contact may not be consistent across the joint and therefore provides rules assuring some contact that limits the potential deformation of weld metal and the material surrounding it. These welds are intended to hold the columns in place, not to transfer the compressive loads. Additionally, the effects of very small deformation in column splices are accommodated by normal construction practices. Similarly, the requirements for base plates and normal construction practice assure some bearing at bases. Therefore, the compressive stress in the weld metal does not need to be considered, as the weld metal will deform and subsequently stop when the columns bear.

Other PJP groove welded joints connect members that may be subject to unanticipated loads and may fit with a gap. Where these connections are finished to bear, fit-up may not be as good as that specified in Section M4.4, but some bearing is anticipated and the weld is designed to resist loads defined in Section J1.4(b) using the factors, strengths and effective areas in Table J2.5. Where the joints connect members that are not finished to bear, the welds are designed for the total load using the available strengths and areas in Table J2.5.

In Table J2.5, the nominal strength of fillet welds is determined from the effective throat area, whereas the strengths of the connected parts are governed by their respective thicknesses. Figure C-J2.9 illustrates the shear planes for fillet welds and base material:
(1) Plane 1-1, in which the strength is governed by the shear strength of material A
(2) Plane 2-2, in which the strength is governed by the shear strength of the weld metal
(3) Plane 3-3, in which the strength is governed by the shear strength of material B

The strength of the welded joint is the lowest of the strengths calculated in each plane of shear transfer. Note that planes 1-1 and 3-3 are positioned away from the fusion areas between the weld and the base material. Tests have demonstrated that the stress on this fusion area is not critical in determining the shear strength of fillet welds (Preece, 1968).

The shear planes for plug and PJP groove welds are shown in Figure C-J2. 10 for the weld and base metal. Generally, the base metal will govern the shear strength.

The instantaneous center of rotation method is a valid approach to calculate the strength of weld groups consisting of elements oriented in various directions relative to the load. The instantaneous center of rotation method considers strain compatibility among the elements in the weld group. Aspects of the method were previously included in the Specification. These aspects along with a more comprehensive explanation of the method are discussed in the AISC Steel Construction Manual (AISC, 2011).

## 5. Combination of Welds

When determining the strength of a combination PJP groove weld and fillet weld contained within the same joint, the total throat dimension is not the simple addition of the fillet weld throat and the groove weld throat. In such cases, the resultant throat of the combined weld (shortest dimension from the root to face of the final weld) must be determined and the design based upon this dimension.


Fig. C-J2.9. Shear planes for fillet welds loaded in longitudinal shear.

## 6. Filler Metal Requirements

Applied and residual stresses and geometrical discontinuities from backing bars with associated notch effects contribute to sensitivity to fracture. Additionally, some weld metals in combination with certain procedures result in welds with low notch toughness. Accordingly, this Specification requires a minimum specified toughness for weld metals in those joints that are subject to more significant applied stresses and toughness demands. The level of toughness required is selected as one level more conservative than the base metal requirement for hot-rolled shapes with a flange thickness exceeding 2 in . ( 50 mm ).

(a) Plug welds

(b) Partial-joint-penetration groove welds

Fig. C-J2.10. Shear planes for plug and partial-joint-penetration groove welds.

## 7. Mixed Weld Metal

Problems can occur when incompatible weld metals are used in combination and notch-tough composite weld metal is required. For instance, tack welds deposited using a self-shielded process with aluminum deoxidizers in the electrodes and subsequently covered by SAW weld passes can result in a composite weld metal with low notch-toughness, despite the fact that each process by itself could provide notchtough weld metal.

Potential concern about intermixing weld metal types is limited to situations where one of the two weld metals is deposited by the self-shielded flux-cored arc welding (FCAW-s) process. Changes in tensile and elongation properties have been demonstrated to be of insignificant consequence. Notch toughness is the property that can be affected the most. Many compatible combinations of FCAW-s and other processes are commercially available.

## J3. BOLTS AND THREADED PARTS

## 1. High-Strength Bolts

In general, except as provided in this Specification, the use of high-strength bolts is required to conform to the provisions of the Specification for Structural Joints Using High-Strength Bolts (RCSC, 2014) as approved by the Research Council on Structural Connections. Kulak (2002) provides an overview of the properties and use of high-strength bolts.

Provisions in this Specification vary from the RCSC Specification as follows:
(a) RCSC Specification limits bolt grades to ASTM A325, A325M, A490 and A490M. This Specification allows bolt grades of ASTM F3125 Grades A325, A325M, A490, A490M, F1852 and F2280.
(b) This Specification also allows the use of ASTM F3043, F3111, A354 Grade BC, A354 Grade BD, and A449 bolts.
(c) This Specification designates the following bolt groups:
(1) Group A: ASTM F3125 Grades A325, A325M, F1852 and ASTM A354 Grade BC
(2) Group B: ASTM F3125 Grades A490, A490M, F2280 and ASTM A354 Grade BD
(3) Group C: ASTM F3043 and F3111
(d) Bolt hole sizes listed in RCSC Specification Table 3.1 are as listed in this Specification Table J3.3.
(e) Bolt strengths listed in RCSC Specification Table 5.1 are as listed in this Specification Table J3.2.
(f) Minimum bolt pretensions listed in RCSC Specification Table 8.1 are as listed in this Specification Table J3.1.
(g) RCSC Specification Section 5.2 shall be replaced with Section J3.7 of this Specification.

Occasionally the need arises for the use of high-strength bolts of diameters in excess of those permitted for ASTM F3125 Grades A325 or A325M and Grades A490 or A490M bolts (or lengths exceeding those available in these grades). For joints requiring diameters in excess of $1 \frac{1}{2} \mathrm{in}$. ( 38 mm ) or lengths in excess of about 8 in . $(200 \mathrm{~mm}$ ), Section J3.1 permits the use of ASTM A449 bolts and ASTM A354 Grade BC and BD threaded rods. When ASTM A354 or A449 bolts are to be pretensioned they must have geometry matching that of A325 (A325M) or A490 (A490M) bolts. The fastener dimensions should be specified as heavy hex structural bolts and the threads specified as Unified Coarse Thread Series with Class 2A tolerances per ASME B18.2.6 (ASME, 2010). The minimum tensile strength of ASTM A449 bolts reduces for bolts greater than one inch ( 25 mm ) in diameter and again for bolts greater than $1^{1 / 2} \mathrm{in}$. ( 38 mm ) in diameter. Therefore, these bolts should be designed as threaded parts in Table J3.2. Note that anchor rods are more preferably specified as ASTM F1554 material. Fasteners made of materials with $150-\mathrm{ksi}(1030 \mathrm{MPa})$ tensile strength or higher, such as ASTM A354 Grade BD, and pretensioned to near the yield strength may be susceptible to hydrogen embrittlement. Designers are cautioned to evaluate the effects of galvanizing and of threads rolled after heat treatment. Some exposures can increase susceptibility. ASTM A143 (ASTM, 2014) includes some information helpful in reducing internal hydrogen embrittlement. External hydrogen embrittlement should also be considered.

High-strength bolts have been grouped by strength levels into three categories:
(1) Group A bolts, which have a strength similar to ASTM F3125 Grade A325 bolts
(2) Group B bolts, which have a strength similar to ASTM F3125 Grade A490 bolts
(3) Group C bolts, which are $200-\mathrm{ksi}(830 \mathrm{MPa})$ strength as in ASTM F3111 bolts

Group C fastener assemblies have been added in this Specification. They are based upon fastener assemblies of strength designation Grade 14.9 [200-ksi ( 1400 MPa ) tensile strength] used in building structures in Japan. The bolt steel is produced to minimize risk of internal hydrogen embrittlement, with bolt design features to minimize stress and strain concentrations including increased radius under the bolt head, a shank transition near the threads, and a wider, smoother radius at the thread root. Basic head, shank and nut dimensions are compatible with installation tools used for Group A and Group B fasteners, as specified in ASME B18.2.6 (ASME, 2010). Group C Grade 1 assemblies use an ASME B1.15 UNJ thread root profile, and Grade 2 assemblies use a proprietary thread root profile (ASME, 1995).

The use of Group C fasteners is limited to applications and locations that would not subject the fastener assembly to environmental hydrogen embrittlement. Use is intended for building interiors that are normally dry, including where the structural steel is embedded in concrete, encased in masonry, or protected by membrane or noncorrosive contact type fireproofing, as well as for building interiors and exteriors that are normally dry and under roof with the installed assemblies soundly protected by a shop-applied or field-applied coating to the structural steel system. Use is not intended for the following: (1) structural steel framing not under roof; (2) chemical or heavy industrial environments where strong concentrations of highly corrosive gases, fumes or chemicals, either in solution or as concentrated liquids or solids,
contact the fasteners or the structural steel coating system; (3) locations with high humidity environments maintaining almost continuous condensation; (4) locations submerged in water or soil; or, (5) cathodically protected environments where current is applied to the structural steel system by the sacrificial anode method or the DC power method.

Group C Grade 2 fasteners have been subjected to testing to validate the prescribed pretensioning methods, and have their thread root profile performance validated by successful performance in numerous projects. Group C Grade 1 fasteners, as of the date of this standard, have not been subjected to testing to validate the prescribed pretensioning methods, and have not been tested to validate that the sharper UNJ thread root profile is adequate for performance in a pretensioned application. Therefore, Grade 2 fasteners are permitted to be used in snug-tight, pretensioned and slip-critical joints, and Grade 1 fasteners are restricted to use in the snug-tight condition.

The Group C transition shank cross-sectional area approximates the tensile stress area of the bolt. The tensile stress area of the Grade 2 assembly is approximately 4\% greater than that for Grade 1. For simplicity, the nominal shear strength for transition shank or threads included in the shear plane is based upon $80 \%$ of the full shank cross-sectional area. Nominal tensile strength is based upon $75 \%$ of the bolt's specified minimum tensile strength. As only the Grade 2 is permitted to be pretensioned, the bolt pretension is based upon the Grade 2 tensile stress area.

Snug-tightened installation is the most economical installation procedure and is permitted for bolts in bearing-type connections, except where pretensioning is required in the Specification. Only Group A bolts in tension or combined shear and tension, and Group B bolts in shear, where loosening or fatigue are not design considerations, are permitted to be installed snug tight. Two studies have been conducted to investigate possible reductions in strength because of varying levels of pretension in bolts within the same connection. The studies found that no significant loss of strength resulted from having different pretensions in bolts within the same connection, even with ASTM F3125 Grade A490 or A490M fasteners. See Commentary Section J3.6 for more details.

There are no specified minimum or maximum pretensions for snug-tight installation of bolts. The only requirement is that the bolts bring the plies into firm contact. Depending on the thickness of material and the possible distortion due to welding, portions of the connection may not be in contact.

There are practical cases in the design of structures where slip of the connection is desirable to allow for expansion and contraction of a joint in a controlled manner. Regardless of whether force transfer is required in the direction normal to the slip direction, the nuts should be hand-tightened with a spud wrench and then backed off one-quarter turn. Furthermore, it is advisable to deform the bolt threads or use a locking nut or jamb nut to ensure that the nut does not back off further under service conditions. Thread deformation is commonly accomplished with a cold chisel and hammer applied at one location. Note that tack-welding of the nut to the bolt threads is not recommended.

## 2. Size and Use of Holes

Standard holes or short-slotted holes transverse to the direction of load are permitted for all applications complying with the requirements of this Specification. To accommodate manufacturing process tolerances and provide fit and rotation capacity proportional to the size of connections typically using large diameter bolts, the size of standard holes for bolts 1 in . diameter and larger was increased to $1 / 8 \mathrm{in}$. over the bolt diameter. The size of standard holes in S.I. units already provided sufficient tolerance and were not increased. In addition, to provide some latitude for adjustment in plumbing a frame during erection, three types of enlarged holes are permitted, subject to the approval of the designer. The nominal maximum sizes of these holes are given in Table J3.3 or J3.3M. The use of these enlarged holes is restricted to connections assembled with high-strength bolts and is subject to the provisions of Sections J3.3 and J3.4.

## 3. Minimum Spacing

The minimum spacing dimension of $2^{2} / 3$ times the nominal diameter is to facilitate construction and does not necessarily satisfy the bearing and tearout strength requirements in Section J3.10.

## 4. Minimum Edge Distance

Prior to the 2010 AISC Specification (AISC, 2010), separate minimum edge distances were given in Tables J3.4 and J3.4M for sheared edges and for rolled or thermally cut edges. Sections J3.10 and J4 are used to prevent exceeding bearing and tearout limits, are suitable for use with both thermally cut, sawed and sheared edges, and must be met for all bolt holes. Accordingly, the edge distances in Tables J3.4 and J 3.4 M are workmanship standards and are no longer dependent on edge condition or fabrication method.

## 5. Maximum Spacing and Edge Distance

Limiting the edge distance to not more than 12 times the thickness of the connected part under consideration, but not more than 6 in. ( 150 mm ), is intended to provide for the exclusion of moisture in the event of paint failure, thus preventing corrosion between the parts that might accumulate and force these parts to separate. More restrictive limitations are required for connected parts of unpainted weathering steel exposed to atmospheric corrosion.

The longitudinal spacing applies only to elements consisting of a shape and a plate, or two plates. For elements, such as back-to-back angles not subject to corrosion, the longitudinal spacing may be as required for structural requirements.

## 6. Tension and Shear Strength of Bolts and Threaded Parts

Tension loading of fasteners is usually accompanied by some bending due to the deformation of the connected parts. Hence, the resistance factor, $\phi$, and the safety factor, $\Omega$, are relatively conservative. The nominal tensile strength values in Table J3.2 were obtained from the equation

$$
\begin{equation*}
F_{n t}=0.75 F_{u} \tag{C-J3-2}
\end{equation*}
$$

The factor of 0.75 included in this equation accounts for the approximate ratio of the effective tension area of the threaded portion of the bolt to the area of the shank of the bolt for common sizes. Thus $A_{b}$ is defined as the area of the unthreaded body of the bolt, and the value given for $F_{n t}$ in Table J3.2 is calculated as $0.75 F_{u}$.

The tensile strength given by Equation C-J3-2 is independent of whether the bolt was initially installed pretensioned or snug-tightened. Tests confirm that the performance of ASTM F3125 Grade A325 and A325M bolts in tension not subjected to fatigue are unaffected by the original installation condition (Amrine and Swanson, 2004; Johnson, 1996; Murray et al., 1992). While the equation was developed for bolted connections, it was also conservatively applied to threaded parts (Kulak et al., 1987).

Previously for ASTM A325 and A325M, the specified minimum tensile strength, $F_{u}$, was lower for bolts with diameters in excess of 1 in . ( 25 mm ). This difference no longer exists under the ASTM F3125 standard. This is also reflected in the minimum bolt pretensions provided in Table J3.1.

The values of nominal shear strength in Table J3.2 were obtained from the following equations rounded to the nearest whole ksi (MPa):
(a) When threads are excluded from the shear planes

$$
\begin{equation*}
F_{n v}=0.563 F_{u} \tag{C-J3-3}
\end{equation*}
$$

(b) When threads are not excluded from the shear plane

$$
\begin{equation*}
F_{n v}=0.45 F_{u} \tag{C-J3-4}
\end{equation*}
$$

The factor 0.563 accounts for the effect of a shear/tension ratio of 0.625 and a 0.90 length reduction factor. The factor of 0.45 is $80 \%$ of 0.563 , which accounts for the reduced area of the threaded portion of the fastener when the threads are not excluded from the shear plane. The initial reduction factor of 0.90 is imposed on connections with lengths up to and including 38 in . $(950 \mathrm{~mm})$. The resistance factor, $\phi$, and the safety factor, $\Omega$, for shear in bearing-type connections in combination with the initial 0.90 factor accommodate the effects of differential strain and second-order effects in connections less than or equal to 38 in . $(950 \mathrm{~mm}$ ) in length.

In connections consisting of only a few fasteners and length not exceeding approximately $16 \mathrm{in} .(400 \mathrm{~mm})$, the effect of differential strain on the shear in bearing fasteners is negligible (Kulak et al., 1987; Fisher et al., 1978; Tide, 2010). In longer tension and compression joints, the differential strain produces an uneven distribution of load between fasteners, those near the end taking a disproportionate part of the total load, so that the maximum strength per fastener is reduced. This Specification does not limit the length but requires that the initial 0.90 factor be replaced by 0.75 when determining bolt shear strength for connections longer than 38 in . $(950 \mathrm{~mm}$ ). In lieu of another column of design values, the appropriate values are obtained by multiplying the tabulated values by $0.75 / 0.90=0.833$, as given in the Table J 3.2 footnote.

The foregoing discussion is primarily applicable to end-loaded tension and compression connections, but for connection lengths less than or equal to 38 in . $(950 \mathrm{~mm}$ ) it is applied to all connections to maintain simplicity. For shear-type connections used in beams and girders with lengths greater than 38 in . 950 mm ), there is no need to
make the second reduction. Examples of end-loaded and non-end-loaded connections are shown in Figure C-J3.1.

When determining the shear strength of a fastener, the area, $A_{b}$, is multiplied by the number of shear planes. While developed for bolted connections, the equations were also conservatively applied to threaded parts. The value given for ASTM A307 bolts was obtained from Equation C-J3-4 but is specified for all cases regardless of the position of threads.

Additional information regarding the development of the provisions in this section can be found in the Commentary to the RCSC Specification (RCSC, 2014).

In Table J3.2, footnote c , the specified reduction of $1 \%$ for each ${ }^{1} 16 \mathrm{in}$. ( 2 mm ) over 5 diameters for ASTM A307 bolts is a carryover from the reduction that was specified for long rivets. Because the material strengths are similar, it was decided a similar reduction was appropriate


Fig. C-J3.1. End-loaded and non-end-loaded connection examples; $1_{\mathrm{pl}}=$ fastener pattern length .

## 7. Combined Tension and Shear in Bearing-Type Connections

Tests have shown that the strength of bearing fasteners subject to combined shear and tension resulting from externally applied forces can be closely defined by an ellipse (Kulak et al., 1987). The relationship is expressed as:

For design according to Section B3.1 (LRFD)

$$
\begin{equation*}
\left(\frac{f_{t}}{\phi F_{n t}}\right)^{2}+\left(\frac{f_{v}}{\phi F_{n v}}\right)^{2}=1 \tag{C-J3-5a}
\end{equation*}
$$

For design according to Section B3.2 (ASD)

$$
\begin{equation*}
\left(\frac{\Omega f_{t}}{F_{n t}}\right)^{2}+\left(\frac{\Omega f_{v}}{F_{n v}}\right)^{2}=1 \tag{C-J3-5b}
\end{equation*}
$$

where
$F_{n t}=$ nominal tensile stress, ksi (MPa)
$F_{n v}=$ nominal shear stress, ksi (MPa)
$f_{t}=$ required tensile stress, $\operatorname{ksi}(\mathrm{MPa})$
$f_{v}=$ required shear stress, ksi (MPa)
The elliptical relationship can be replaced, with only minor deviations, by three straight lines as shown in Figure C-J3.2. The sloped portion of the straight-line representation follows.

For design according to Section B3.1 (LRFD)

$$
\begin{equation*}
\left(\frac{f_{t}}{\phi F_{n t}}\right)+\left(\frac{f_{v}}{\phi F_{n v}}\right)=1.3 \tag{C-J3-6a}
\end{equation*}
$$

For design according to Section B3.2 (ASD)

$$
\begin{equation*}
\left(\frac{\Omega f_{t}}{F_{n t}}\right)+\left(\frac{\Omega f_{v}}{F_{n v}}\right)=1.3 \tag{C-J3-6b}
\end{equation*}
$$

which results in Equations J3-3a and J3-3b (Carter et al., 1997).
This latter representation offers the advantage that no modification of either type of stress is required in the presence of fairly large magnitudes of the other type. Note that Equations J3-3a and J3-3b can be rewritten so as to find the nominal shear strength per unit area, $F_{n v}^{\prime}$, as a function of the required tensile stress, $f_{t}$. These formulations are:

For design according to Section B3.1 (LRFD)

$$
\begin{equation*}
F_{n v}^{\prime}=1.3 F_{n v}-\frac{F_{n v}}{\phi F_{n t}} f_{t} \leq F_{n v} \tag{C-J3-7a}
\end{equation*}
$$

For design according to Section B3.2 (ASD)

$$
\begin{equation*}
F_{n v}^{\prime}=1.3 F_{n v}-\frac{\Omega F_{n v}}{F_{n t}} f_{t} \leq F_{n v} \tag{C-J3-7b}
\end{equation*}
$$

The linear relationship was adopted for use in Section J3.7; generally, use of the elliptical relationship is acceptable (see Figure C-J3.2). A similar formulation using the elliptical solution follows.

For design according to Section B3.1 (LRFD)

$$
\begin{equation*}
F_{n v}^{\prime}=F_{n v} \sqrt{1-\left(\frac{f_{t}}{\phi F_{n t}}\right)^{2}} \tag{C-J3-8a}
\end{equation*}
$$

For design according to Section B3.2 (ASD)

$$
\begin{equation*}
F_{n v}^{\prime}=F_{n v} \sqrt{1-\left(\frac{\Omega f_{t}}{F_{n t}}\right)^{2}} \tag{C-J3-8b}
\end{equation*}
$$

## 8. High-Strength Bolts in Slip-Critical Connections

The design provisions for slip-critical connections have remained substantially the same for many years. The original provisions, using standard holes with $1 / 16-\mathrm{in}$. ( 2 mm ) clearance, were based on a $10 \%$ probability of slip at code loads when tightened by the calibrated wrench method. This was comparable to a design for slip at approximately 1.4 to 1.5 times code loads. Because slip resistance was considered to be a serviceability design issue, this was determined to be an adequate safety factor. Per the RCSC Guide to the Design Criteria for Bolted and Riveted Joints (Kulak et al., 1987), the provisions were revised to include oversized and slotted holes (Allan and Fisher, 1968). The revised provisions included a reduction in the allowable strength of $15 \%$ for oversize holes, $30 \%$ for long slots perpendicular, and $40 \%$ for long slots parallel to the direction of the load.


Fig. C-J3.2. Straight-line representation of elliptical solution.

Except for minor changes and adding provisions for LRFD, the design of slip-critical connections was unchanged until the 2005 AISC Specification (AISC, 2005) added a higher reliability level for slip-critical connections designed for use where selected by the engineer of record. The reason for this added provision was twofold. First, the use of slip-critical connections with oversize holes had become very popular because of the economy they afforded, especially with large bolted trusses and heavy vertical bracing systems. While the Commentary to the RCSC Specification (RCSC, 2014) indicated that only the engineer of record can determine if potential slippage at service loads could reduce the ability of the frame to resist factored loads, it did not give any guidance on how to do this. The 2005 AISC Specification provided a procedure to design to resist slip at factored loads if slip at service loads could reduce the ability of the structure to support factored loads.

Second, many of these connection details require large filler plates. There was a question about the need to develop these fills and how to do it. The 1999 LRFD Specification (AISC, 2000b) stated that as an alternative to developing the filler "the joint shall be designed as slip critical." The RCSC Specification at this time stated, "The joint shall be designed as a slip-critical joint. The slip resistance of the joint shall not be reduced for the presence of fillers or shims." Both Specifications required the joint to be checked as a bearing connection, which normally would require development of large fillers.

The answer to both of these issues seemed to provide a method for designing a connection with oversize holes to resist slip at the strength level and not require the bearing strength check for the connection. In order to do this, it was necessary to first determine as closely as possible what the slip resistance currently was for oversize holes. Then it was necessary to establish what would be an adequate level of slip resistance to be able to say the connection could resist slip at factored loads.

Three major research projects formed the primary sources for the development of the 2010 AISC Specification (AISC, 2010) provisions for slip-critical connections:
(1) Dusicka and Iwai (2007) evaluated slip-critical connections with fills for the Research Council on Structural Connections. The work provides results relevant to all slip-critical connections with fills.
(2) Grondin et al. (2007) is a two-part study that assembles slip resistance data from all known sources and analyzes reliability of SC connections indicated by that data. A structural system configuration-a long span roof truss-is evaluated to see if slip required more reliability in slip-critical connections.
(3) Borello et al. (2009) conducted 16 large-scale tests of slip-critical connections in both standard and oversize holes, with and without thick fillers.

Deliberations considered in development of the 2010 AISC Specification slip-critical provisions include the following:

Slip Coefficient for Class A Surfaces. Grondin et al. (2007) rigorously evaluated the test procedures and eliminated a substantial number of tests that did not meet the required protocol. The result was a recommended slip coefficient for Class A surfaces between 0.31 and 0.32 . Part of the problem is the variability of what is considered to
be clean mill scale. Current data on galvanized surfaces indicated more research was required and the American Galvanizers Association is sponsoring a series of tests to determine if further changes in the slip coefficient for these types of surfaces is needed.

Oversized Holes and Loss of Pretension. Borello et al. (2009) confirms that there is no additional loss of pretension and that connections with oversized holes had similar slip resistance to the control group with standard holes.

Higher Pretension with Turn-of-Nut Method. The difficulty in knowing in advance what method of pretensioning would be used resulted in leaving the value of $D_{u}$ at 1.13 as established for the calibrated wrench method. The Specification does, however, allow the use of a higher $D_{u}$ value when approved by the engineer of record.

Shear/Bearing Strength. Borello et al. (2009) verified that connections with oversized holes, regardless of fill size, can develop the available bearing strength when the fill is developed. There was some variation in shear strength with filler size but the maximum reduction for thick fillers was approximately $15 \%$ when undeveloped.

Fillers in Slip-Critical Connections. Borello et al. (2009) indicated that filler thickness did not reduce the slip resistance of the connection. Borello et al. (2009) and Dusicka and Iwai (2007) indicated that multiple fillers, as shown in Figure C-J3.3, reduced the slip resistance. It was determined that a factor for the number of fillers should be included in the design equation. A plate welded to the connected member or connection plate is not a filler plate and does not require this reduction factor.

The 2010 AISC Specification provisions for slip-critical connections were based on the following conclusions:
(1) The mean and coefficient of variation in Class A slip-critical connections supports the use of a $\mu=0.31$, not 0.33 or 0.35 . It was expected that the use of $\mu=0.30$ would achieve more consistent reliability while using the same resistance factors for both slip classes. The value of $\mu=0.30$ was selected and the resistance and safety factors reflect this value.
(2) A factor, $h_{f}$, to reflect the use of multiple filler plates was added to the equation for nominal slip resistance resulting in

$$
\begin{equation*}
R_{n}=\mu D_{u} h_{f} T_{b} n_{s} \tag{C-J3-9}
\end{equation*}
$$

where
$h_{f}=$ factor for fillers; coefficient to reflect the reduction in slip due to multiple fills


Fig C-J3.3. Single and multiple filler plate configurations.

## TABLE C-J3.1 <br> Reliability Factors, $\beta$, for Slip Resistance

		Turn-of-Nut Method		Other Methods	
Group	Class	Standard Holes,   Parallel Slots	Oversized   Holes	Standard Holes,   Parallel Slots	Oversized   Holes
Group A   (A325,   A325M)	Class A   $(\mu=0.30)$	2.39	2.92	1.82	2.41
	Class B   $(\mu=0.50)$	2.78	3.52	2.17	2.83
Group B   (A490,   A490M $)$	Class A   $(\mu=0.30)$	2.01	2.63	1.53	2.13
	Class B   $(\mu=0.50)$	2.47	3.20	1.86	2.54

(3) $D_{u}$ is defined as a parameter derived from statistical analysis to calculate nominal slip resistance from statistical means developed as a function of installation method and minimum specified pretension and the level of slip probability selected.
(4) The surfaces of fills must be prepared to the same or higher slip coefficient as the other faying surfaces in the connection.
(5) The reduction in design slip resistance for oversized and slotted holes is not due to a reduction in tested slip resistance but is a factor used to reflect the consequence of slip. It was continued at the 0.85 level but clearly documented as a factor increasing the slip resistance of the connection.

Slip-critical connections with a single filler of any thickness with proper surface preparation may be designed without any reduction in slip resistance. Slip-critical connections with multiple fillers may be designed without any reduction in slip resistance provided the joint has either all faying surfaces with Class B surfaces or Class A surfaces with turn-of-nut tensioning. This provision for multiple fillers is based on the additional reliability of Class B surfaces or on the higher pretension achieved with turn-of-nut tensioning.

The Specification also recognizes a special type of slip-resistant connection for use in built-up compression members in Section E6 where pretensioned bolts and a minimum of Class A surfaces are required but the connection is designed using the bearing strength of the bolts. This is based on the need to prevent relative movement between elements of the compression member at the ends.

Reliability levels for slip resistance in oversized holes and slots parallel to the load given in Table C-J3.1 exceed reliability levels associated with the nominal strength of main members in the Specification when turn-of-nut pretensioning is used. Reliability of slip resistance when other tightening methods are used exceeds previous levels and is sufficient to prevent slip at load levels where inelastic deformation
of the connected parts is expected. Since the effect of slip in standard holes is less than that of slip in oversized holes, the reliability factors permitted for standard holes are lower than those for oversized holes. This increased data on the reliability of these connections allowed the return to a single design level of slip resistance similar to the RCSC Specification (RCSC, 2014) and previous AISC Specifications.

## 10. Bearing and Tearout Strength at Bolt Holes

Provisions for bearing strength of pins differ from those for bearing strength of bolts; refer to Section J7.

Bearing strength values are provided as a measure of the strength of the material upon which a bolt bears, not as a protection to the fastener, which needs no such protection. Accordingly, the same bearing value applies to all joints assembled by bolts, regardless of fastener shear strength or the presence or absence of threads in the bearing area.

Material bearing strength may be limited either by bearing deformation of the hole or by tearout (a bolt-by-bolt block shear rupture) of the material upon which the bolt bears. In previous editions of the Specification, both limit states were defined by one equation and termed bearing limit states. For this edition, the limit states were separated to permit clear reference to each of the limits and their corresponding equations. Kim and Yura (1996) and Lewis and Zwerneman (1996) confirmed the bearing strength provisions for the bearing case wherein the nominal bearing strength, $R_{n}$, is equal to $C d t F_{u}$ and $C$ is equal to $2.4,3.0$ or 2.0 depending upon hole type and/or acceptability of hole ovalization at ultimate load, as indicated in Section J3.10. However, this same research indicated the need for different bearing strength provisions when tearout failure would control. Appropriate equations for bearing strength as a function of clear distance, $l_{c}$, are therefore provided and this formulation is consistent with that in the RCSC Specification (RCSC, 2014).

Frank and Yura (1981) demonstrated that hole elongation greater than $1 / 4 \mathrm{in}$. ( 6 mm ) will generally begin to develop as the bearing force is increased beyond $2.4 d t F_{u}$, especially if it is combined with high tensile stress on the net section, even though rupture does not occur. For a long-slotted hole with the slot perpendicular to the direction of force, the same is true for a bearing force greater than $2.0 d t F_{u}$. An upper bound of $3.0 d t F_{u}$ anticipates hole ovalization [deformation greater than $1 / 4 \mathrm{in}$. ( 6 mm )] at maximum strength.

Additionally, to simplify and generalize such bearing strength calculations, the current provisions have been based upon a clear-distance formulation. Provisions prior to 1999 utilized edge distances and bolt spacings measured to hole centerlines with adjustment factors to account for varying hole type and orientation, as well as minimum edge distance requirements. The effective strength of an individual fastener is the lesser of the fastener shear strength per Section J3.6 and the bearing and tearout strength at the bolt hole per Section J3.10. The strength of a bolt group is a function of strain compatibility and is dependent on the relative stiffnesses of the bolts and connected parts. For typical connections, such as those shown in the AISC Steel Construction Manual (AISC, 2011) it is acceptable to calculate the shear, bearing and tearout limit
states for each bolt in the same connected part and sum the lowest value of the bolt shear or the controlling bearing or tearout limit for each bolt to determine the group strength. The intent is that the separate bearing and tearout equations in this Specification be treated in the same way as the combined equations in the 2010 AISC Specification. This ignores the potential for interaction of these limit states in multiple connected parts, but that impact is small enough in common connection details within the range of the connections shown in Part 10 of the AISC Manual, to allow the benefit of this practical simplification in design. Nonstandard connections may be more sensitive to this interaction; if so, a more exact approach may be necessary.

## 12. Wall Strength at Tension Fasteners

With any connection configuration where the fasteners transmit a tensile force to the HSS wall, a rational analysis must be used to determine the appropriate limit states. These may include a yield-line mechanism in the HSS wall and/or pull-out through the HSS wall, in addition to applicable limit states for the fasteners subject to tension.

## J4. AFFECTED ELEMENTS OF MEMBERS AND CONNECTING ELEMENTS

## 1. Strength of Elements in Tension

Tests have shown that $A_{e}$ may be limited by the ability of the stress to distribute in the member. Analysis procedures such as the Whitmore section should be used to determine $A_{e}$ in these cases.

## 2. Strength of Elements in Shear

Prior to the 2005 AISC Specification, the resistance factor for shear yielding had been 0.90 , which was equivalent to a safety factor of 1.67 . In the 1989 ASD Specification (AISC, 1989), the allowable shear yielding stress was $0.4 F_{y}$, which was equivalent to a safety factor of 1.5 . To make the LRFD approach in the 2005 AISC Specification consistent with prior editions of the ASD Specification, the resistance and safety factors for shear yielding became 1.00 and 1.50 , respectively. The resulting increase in LRFD design strength of approximately $10 \%$ is justified by the long history of satisfactory performance of ASD use.

## 3. Block Shear Strength

Tests on coped beams indicated that a tearing failure mode (rupture) can occur along the perimeter of the bolt holes as shown in Figure C-J4.1 (Birkemoe and Gilmor, 1978). This block shear mode combines tensile failure on one plane and shear failure on a perpendicular plane. The failure path is defined by the centerlines of the bolt holes. This same condition exists on welded connections at beam copes. The tensile plane is the length of the horizontal portion of the weld and the shear plane runs from the horizontal weld to the bottom of the cope.

The block shear failure mode is not limited to coped ends of beams; other examples are shown in Figures C-J4.1 and C-J4.2. The block shear failure mode must also be checked around the periphery of welded connections.

Failure by tearing out of shaded portion


Fig. C-J4.1. Failure surface for block shear rupture limit state.

(a) Cases for which $\mathrm{U}_{\mathrm{bs}}=1.0$

(b) Cases for which $\mathrm{U}_{\mathrm{bs}}=0.5$

Fig. C-J4.2. Block shear tensile stress distributions.

This Specification has adopted a conservative model to predict block shear strength. The mode of failure in coped beam webs and angles is different than that of gusset plates because the shear resistance is present on only one plane, in which case there must be some rotation of the block of material that is providing the total resistance.

Although tensile failure is observed through the net section on the end plane, the distribution of tensile stresses is not always uniform (Ricles and Yura, 1983; Kulak and Grondin, 2001; Hardash and Bjorhovde, 1985). A reduction factor, $U_{b s}$, has been included in Equation J4-5 to approximate the nonuniform stress distribution on the tensile plane. The tensile stress distribution is nonuniform in the two row connection in Figure C-J4.2(b) because the rows of bolts nearest the beam end pick up most of the shear load. For conditions not shown in Figure C-J4.2, $U_{b s}$ may be taken as $(1-e / l)$, where $e / l$ is the ratio of the eccentricity of the load to the centroid of the resistance divided by the block length. This fits data reported by Kulak and Grondin (2001), Kulak and Grondin (2002), and Yura et al. (1982).

Block shear is a rupture or tearing phenomenon, not a yielding limit state. However, gross yielding on the shear plane can occur when tearing on the tensile plane commences if $0.6 F_{u} A_{n v}$ exceeds $0.6 F_{y} A_{g v}$. Hence, Equation J4-5 limits the term $0.6 F_{u} A_{n v}$ to not greater than $0.6 F_{y} A_{g v}$ (Hardash and Bjorhovde, 1985). Equation J4-5 is consistent with the philosophy in Chapter D for tension members where the gross area is used for the limit state of yielding and the net area is used for the limit state of rupture.

## 4. Strength of Elements in Compression

To simplify connection calculations, the nominal strength of elements in compression when the element slenderness ratio is not greater than 25 is $F_{y} A_{g}$. This is a very slight increase over that obtained if the provisions of Chapter E are used. For more slender elements, the provisions of Chapter E apply.

Since a corner gusset plate is restrained along two edges, it is difficult to establish either $L$, the laterally unbraced length of the element, or $K$, the effective length factor. Dowswell (2006) provides guidance for determining $K$ and $L$ based on empirical data. When the gusset is found to be compact $\left(t_{g}>t_{b}\right)$, the slenderness ratio can be assumed to be less than or equal to 25 , though buckling need not be checked.

## 5. Strength of Elements in Flexure

Affected and connecting elements are often short enough and thick enough that flexural effects, if present at all, do not impact the design. When such elements are long enough and thin enough that flexural effects must be considered, the AISC Manual provides guidance relative to several specific conditions. Part 9 of the AISC Manual contains procedures to check the flexural strength of a coped beam. Part 9 also contains a discussion of prying action, which incorporates a weak-axis flexural strength check for framing-angle connections, end-plate connections, flanges, and other similar elements. Part 10 contains procedures to determine the flexural strength of plates used in the extended configuration of the single-plate shear connection. For all other conditions, the checks provided in Section F11 can be used.

The available flexural strength of connecting elements in LRFD can be calculated as the minimum of $0.9 F_{y} Z_{\text {gross }}$ and $0.75 F_{u} Z_{\text {net }}$, or in ASD as the minimum of $F_{y} Z_{\text {gross }} /$ 1.67 and $F_{u} Z_{\text {net }} / 2.00$. Consequences of large deflections and supported member or plate instability must be considered when these values are used. If deflection is a concern, the factored loads should also be checked against $0.9 F_{y} S_{\text {gross }}$ (Mohr and Murray, 2008).

The net plastic section modulus, $Z_{\text {net }}$, for an odd number of rows of bolts is:

$$
\begin{equation*}
Z_{n e t}=\frac{1}{4} t\left(s-d_{h}^{\prime}\right)\left(n^{2} s-d_{h}^{\prime}\right) \tag{C-J4-1}
\end{equation*}
$$

and for an even number of rows of bolts is:

$$
\begin{equation*}
Z_{n e t}=\frac{1}{4} t\left(s-d_{h}^{\prime}\right) n^{2} s \tag{C-J4-2}
\end{equation*}
$$

Section F13.1 contains checks related to the strength reduction for members with holes in the tension flange, which in some instances may be governed by net flexural rupture.

## J5. FILLERS

As noted in Commentary Section J3.8, research reported in Borello et al. (2009) resulted in significant changes in the design of bolted connections with fillers. Starting with the 2010 AISC Specification (AISC, 2010), bearing connections with fillers over $3 / 4 \mathrm{in}$. ( 19 mm ) thick were no longer required to be developed provided the bolts were designed by multiplying the shear strength by a 0.85 factor. A test has shown that fillers welded to resist their proportion of the load will prevent a loss of shear strength in the bolts (Borello et. al., 2009).
Filler plates may be used in lap joints of welded connections that splice parts of different thickness, or where there may be an offset in the joint.

## J7. BEARING STRENGTH

In general, the bearing strength design of finished surfaces is governed by the limit state of bearing (local compressive yielding) at nominal loads. The nominal bearing strength of milled contact surfaces exceeds the yield strength because adequate safety is provided by post-yield strength as deformation increases. Tests on pin connections (Johnston, 1939) and rockers (Wilson, 1934) have confirmed this behavior.

## J8. COLUMN BASES AND BEARING ON CONCRETE

The provisions of this section are identical to equivalent provisions in ACI 318 and ACI 318M (ACI, 2014).

## J9. ANCHOR RODS AND EMBEDMENTS

The term "anchor rod" is used for threaded rods embedded in concrete to anchor structural steel. The term "rod" is intended to clearly indicate that these are threaded rods, not structural bolts, and should be designed as threaded parts per Table J3.2 using the material specified in Section A3.4.

Generally, the largest tensile force for which anchor rods must be designed is that produced by bending moment at the column base and augmented by any uplift caused by the overturning tendency of a building under lateral load.

Shear at the base of a column is seldom resisted by bearing of the column base plate against the anchor rods. Even considering the lowest conceivable slip coefficient, the friction due to the vertical load on a column is generally more than sufficient to transfer the shear from the column base to the foundation. The possible exception is at the base of braced frames and moment frames where larger shear forces may require that shear transfer be accomplished by embedding the column base or providing a shear key at the top of the foundation.

The anchor rod hole sizes listed in Tables C-J9.1 and C-J9.1M are recommended to accommodate the variations that are common for setting anchor rods cast in concrete. These larger hole sizes are not detrimental to the integrity of the supported structure when used with proper washers. The slightly conical hole that results from punching operations or thermal cutting is acceptable.

If plate washers are utilized to resolve horizontal shear, bending in the anchor rod must be considered in the design and the layout of anchor rods must accommodate plate washer clearances. In this case, special attention must be given to weld clearances, accessibility, edge distances on plate washers, and the effect of the tolerances between the anchor rod and the edge of the hole.

It is important that the placement of anchor rods be coordinated with the placement and design of reinforcing steel in the foundations as well as the design and overall size of base plates. It is recommended that the anchorage device at the anchor rod bottom be as small as possible to avoid interference with the reinforcing steel in the foundation. A heavy-hex nut or forged head is adequate to develop the concrete shear cone. See AISC Design Guide 1, Base Plate and Anchor Rod Design (Fisher and Kloiber, 2006) for design of base plates and anchor rods. See also ACI 318 and ACI 318M (ACI, 2014) and ACI 349 (ACI, 2013) for embedment design; and OSHA Safety and Health Regulations for Construction, Standards-29 CFR 1926 Subpart R-Steel Erection (OSHA, 2015) for anchor rod design and construction requirements for erection safety.

## J10. FLANGES AND WEBS WITH CONCENTRATED FORCES

This Specification separates flange and web strength requirements into distinct categories representing different limit states: flange local bending (Section J10.1), web local yielding (Section J10.2), web local crippling (Section J10.3), web sidesway buckling (Section J10.4), web compression buckling (Section J10.5), and web panelzone shear (Section J10.6). These limit state provisions are applied to two distinct types of concentrated forces normal to member flanges:
(1) Single concentrated forces may be tensile (such as those delivered by tension hangers) or compressive (such as those delivered by bearing plates at beam interior positions, reactions at beam ends, and other bearing connections).

TABLE C-J9.1	
Anchor Rod Hole Diameters, in.	
Anchor Rod Diameter	Anchor Rod Hole Diameter
$1 / 2$	$1^{1 / 16}$
$5 / 8$	$1^{3 / 16}$
$3 / 4$	$1^{5 / 16}$
$7 / 8$	$1^{9 / 16}$
1	$1^{13 / 16}$
$11 / 4$	$2^{1 / 16}$
$1^{11 / 2}$	$2^{5 / 16}$
$1^{3 / 4}$	$2^{3 / 4}$
$\geq 2$	$d_{b}+1^{1 / 1 / 4}$


TABLE C-J9.1M	
Anchor Rod Hole Diameters, mm	
Anchor Rod Diameter	Anchor Rod Hole Diameter
18	32
22	36
24	42
27	48
30	51
33	54
36	60
39	63
42	74

(2) Double concentrated forces, one tensile and one compressive, form a couple on the same side of the loaded member, such as that delivered to column flanges through welded and bolted moment connections.

Flange local bending applies only for tensile forces, web local yielding applies to both tensile and compressive forces, and the remainder of these limit states apply only to compressive forces.

Transverse stiffeners, also called continuity plates, and web doubler plates are only required when the concentrated force exceeds the available strength given for the applicable limit state. It is often more economical to choose a heavier member than
to provide such reinforcement (Carter, 1999; Troup, 1999). The demand may be determined as the largest flange force from the various load cases, although the demand may also be taken as the gross area of the attachment delivering the force multiplied by the specified minimum yield strength, $F_{y}$. Stiffeners and/or doublers and their attaching welds are sized for the difference between the demand and the applicable limit state strength. Detailing and other requirements for stiffeners are provided in Section J10.7 and Section J10.8; requirements for doublers are provided in Section J10.9.

The provisions in J10 have been developed for use with wide-flange sections and similar built-up shapes. With some judgment they can also be applied to other shapes. The Commentary related to the individual subsections provides further detail relative to testing and assumptions. A brief guidance related the application of these checks to other sections is provided here. When applied to members with multiple webs, such as rectangular HSS and box sections, the strength calculated in this section should be multiplied by the number of webs.

Flange local bending assumes a single concentrated line load applied transverse to the beam web. It is not generally applicable to other shapes or other loading conditions. For instance, point loads, such as those delivered through bolts in tension, are typically addressed using yield-line methods (Dowswell, 2013). The web local yielding provisions assume that concentrated loads are distributed into the member spread out with a slope of 2.5:1. This model is likely appropriate for conditions beyond rolled wide flanges. For example, it could be used to determine the local yielding strength for C-shapes where the concentrated load is delivered opposite the web. It has also been applied to HSS where $k$ is typically taken as the outside corner radius. If the radius is not known, it can be assumed to be $1.5 t$, as implied in Section $\mathrm{B} 4.1 \mathrm{~b}(\mathrm{~d})$. If a fillet weld is present at the juncture of the web and the flange, additional distribution of stress through this weld is often assumed. Web local crippling has been applied to HSS members assuming $t_{f}$ and $t_{w}$ are both equal to the design wall thickness and the depth, $d$, is equal to the flat dimension of the HSS sidewall. When the radius is not known, it is typically assumed to be $1.5 t$, leading to a depth of $H-3 t$. For box sections, $d$ and $h$ can be taken as the clear distance between the flanges. Equations J10-4, J10-5a and J10-5b assume restraint between the flange and the web, which may not be present when small and/or intermittent welds join the elements of built-up sections. Web sidesway buckling is not generally a consideration for typical closed sections like HSS members. Web compression buckling has been applied to HSS members assuming $t_{f}$ and $t_{w}$ are both equal to the design wall thickness and the depth, $d$, is equal to the flat dimension of the HSS sidewall. For box sections, $h$ can be taken as the clear distance between the flanges. Equation J10-8 assumes pinned restraints at the ends of the web. The web panel-zone shear equations are applicable to rolled wide-flange sections and similar built-up shapes. The equations in Section J10.6 neglect web stability. For deep members with thin webs, stability should not be neglected. See Chapter G and AISC Design Guide 16, Flush and Extended Multiple-Row Moment End-Plate Connections (Murray and Shoemaker, 2002). Additional inelastic shear strength due to flange deformation is recognized in Equations J10-11 and J10-12, which should not be applied to sections other than rolled wide-flange sections and similar built-up shapes. Though the Specification
only provides explicit equations for rolled wide-flange sections, panel-zone shear is a consideration for other member types, such as HSS and box sections where moment is transferred at a panel zone.

## 1. Flange Local Bending

Where a tensile force is applied through a plate welded across a flange, that flange must be sufficiently rigid to prevent deformation of the flange and the corresponding high stress concentration in the weld in line with the web.

The effective column flange length for local flange bending is $12 t_{f}$ (Graham et al., 1960). Thus, it is assumed that yield lines form in the flange at $6 t_{f}$ in each direction from the point of the applied concentrated force. To develop the fixed edge consistent with the assumptions of this model, an additional $4 t_{\text {f }}$, and therefore a total of $10 t_{f}$, is required for the full flange-bending strength given by Equation J10-1. In the absence of applicable research, a $50 \%$ reduction has been introduced for cases wherein the applied concentrated force is less than $10 t_{f}$ from the member end.

The strength given by Equation J10-1 was originally developed for moment connections but also applies to single concentrated forces, such as tension hangers consisting of a plate welded to the bottom flange of a beam and transverse to the beam web. In the original tests, the strength given by Equation J10-1 was intended to provide a lower bound to the force required for weld fracture, which was aggravated by the uneven stress and strain demand on the weld caused by the flange deformation (Graham et al., 1959).

Recent tests on welds with minimum Charpy V-notch (CVN) toughness requirements show that weld fracture is no longer the failure mode when the strength given by Equation J10-1 is exceeded. Rather, it was found that the strength given by Equation J10-1 is consistently less than the force required to separate the flanges in typical column sections by $1 / 4$ in. ( 6 mm ) (Hajjar et al., 2003; Prochnow et al., 2000). This amount of flange deformation is on the order of the tolerances in ASTM A6/A6M, and it is believed that if the flange deformation exceeded this level it could be detrimental to other aspects of the performance of the member, such as flange local buckling. Although this deformation could also occur under compressive normal forces, it is customary that flange local bending is checked only for tensile forces (because the original concern was weld fracture). Therefore, it is not required to check flange local bending for compressive forces.

The provision in Section J10.1 is not applicable to moment end-plate and tee-stub type connections. For these connections, see AISC Design Guide 13, Stiffening of Wide-Flange Columns at Moment Connections: Wind and Seismic Applications (Carter, 1999) or the AISC Steel Construction Manual (AISC, 2011).

## 2. Web Local Yielding

The web local yielding provisions (Equations J10-2 and J10-3) apply to both compressive and tensile forces of bearing and moment connections. These provisions are intended to limit the extent of yielding in the web of a member into which a force is being transmitted. The provisions are based on tests on two-sided directly welded
girder-to-column connections (cruciform tests) (Sherbourne and Jensen, 1957) and were derived by considering a stress zone that spreads out with a slope of $2: 1$. Graham et al. (1960) report pull-plate tests and suggest that a $2.5: 1$ stress gradient is more appropriate. Recent tests confirm that the provisions given by Equations J10-2 and J10-3 are slightly conservative and that the yielding is confined to a length consistent with the slope of 2.5:1 (Hajjar et al., 2003; Prochnow et al., 2000).

## 3. Web Local Crippling

The web local crippling provisions (Equations J10-4 and J10-5) apply only to compressive forces. Originally, the term "web crippling" was used to characterize a phenomenon now called web local yielding, which was then thought to also adequately predict web crippling. The first edition of the AISC LRFD Specification (AISC, 1986) was the first AISC Specification to distinguish between web local yielding and web local crippling. Web local crippling was defined as crumpling of the web into buckled waves directly beneath the load, occurring in more slender webs, whereas web local yielding is yielding of that same area, occurring in stockier webs.

Equations J10-4 and J10-5 are based on research reported in Roberts (1981). The increase in Equation $\mathrm{J} 10-5 \mathrm{~b}$ for $l_{b} / d>0.2$ was developed after additional testing to better represent the effect of longer bearing lengths at ends of members (Elgaaly and Salkar, 1991). All tests were conducted on bare steel beams without the expected beneficial contributions of any connection or floor attachments. Thus, the resulting provisions are considered conservative for such applications. Kaczinski et al. (1994) reported tests on cellular box beams with slender webs and confirmed that these provisions are appropriate in this type of member as well.

The equations were developed for bearing connections but are also generally applicable to moment connections. Equation J10-5a and J10-5b are intended to be applied to beam ends where the web of the beam end is not supported, for example, at the end of a seated connection. Where beam end connections are accomplished with the use of web connections, Equation J10-4 should be used to calculate the available strength for the limit state of web local crippling. Figure C-J10.1 illustrates examples of appropriate applications of Equations J10-4 and J10-5 when checking web local crippling for various framing conditions.

The web local crippling phenomenon has been observed to occur in the web adjacent to the loaded flange. For this reason, a three-quarter stiffener (or stiffeners) or a doubler plate is needed to eliminate this limit state. The stiffener depth was changed in this Specification in response to research by Salker et al. (2015).

## 4. Web Sidesway Buckling

The web sidesway buckling provisions (Equations J10-6 and J10-7) apply only to compressive forces in bearing connections and do not apply to moment connections. The web sidesway buckling provisions were developed after observing several unexpected failures in tested beams (Summers and Yura, 1982; Elgaaly, 1983). In those tests, the compression flanges were braced at the concentrated load, the web was subjected to compression from a concentrated load applied to the flange, and the tension flange buckled (see Figure C-J10.2).


Fig. C-J10.1. Examples of application of the web local crippling equations.


Fig. C-J10.2. Web sidesway buckling.

Web sidesway buckling will not occur in the following cases:
(a) For flanges restrained against rotation (such as when connected to a slab), when

$$
\begin{equation*}
\frac{h / t_{w}}{L_{b} / b_{f}}>2.3 \tag{C-J10-1}
\end{equation*}
$$

(b) For flanges not restrained against rotation, when

$$
\begin{equation*}
\frac{h / t_{w}}{L_{b} / b_{f}}>1.7 \tag{C-J10-2}
\end{equation*}
$$

where $L_{b}$ is as shown in Figure C-J10.3.
Web sidesway buckling can be prevented by the proper design of lateral bracing or stiffeners at the load point. It is suggested that local bracing at both flanges be designed for $1 \%$ of the concentrated force applied at that point. If stiffeners are used, they must extend from the load point through at least one-half the beam or girder depth. In addition, the pair of stiffeners must be designed to carry the full load. If flange rotation is permitted at the loaded flange, neither stiffeners nor doubler plates are effective.


Fig. C-J10.3. Unbraced flange length for web sidesway buckling.

## 5. Web Compression Buckling

The web compression buckling provision (Equation J10-8) applies only when there are compressive forces on both flanges of a member at the same cross section, such as might occur at the bottom flange of two back-to-back moment connections under gravity loads. Under these conditions, the slenderness of the member web must be limited to avoid the possibility of buckling. Equation J10-8 is applicable to a pair of moment connections and to other pairs of compressive forces applied at both flanges of a member, for which $l_{b} / d$ is approximately less than 1 , where $l_{b}$ is the length of bearing and $d$ is the depth of the member. When $l_{b} / d$ is not small, the member web should be designed as a compression member in accordance with Chapter E.

Equation J10-8 is predicated on an interior member loading condition. In the absence of applicable research, a $50 \%$ reduction has been introduced for cases wherein the compressive forces are close to the member end.

## 6. Web Panel-Zone Shear

This section addresses panel-zone behavior of wide-flange sections and similar builtup shapes. Panel-zone shear can also occur in other members, such as HSS and deep and tapered built-up shapes. For these general conditions, the shear strength should be determined in accordance with Chapter G.

Column web shear stresses may be significant within the boundaries of the rigid connection of two or more members with their webs in a common plane. Such webs must be reinforced when the required force, $\Sigma R_{u}$ for LRFD or $\Sigma R_{a}$ for ASD, along plane A-A in Figure C-J10.4 exceeds the column web available strength, $\phi R_{n}$ or $R_{n} / \Omega$, respectively.

For design according to Section B3.1 (LRFD)

$$
\begin{equation*}
\Sigma F_{u}=\frac{M_{u 1}}{d_{m 1}}+\frac{M_{u 2}}{d_{m 2}}-V_{u} \tag{C-J10-3a}
\end{equation*}
$$

where
$M_{u 1} \quad=M_{u 1 L}+M_{u 1 G}$
= sum of the moments due to the factored lateral loads, $M_{u 1 L}$, and the moments due to factored gravity loads, $M_{u 1 G}$, on the windward side of the connection, kip-in. ( $\mathrm{N}-\mathrm{mm}$ )
$M_{u 2}=M_{u 2 L}-M_{u 2 G}$
= difference between the moments due to the factored lateral loads, $M_{u 2 L}$, and the moments due to factored gravity loads, $M_{u 2 G}$, on the leeward side of the connection, kip-in. (N-mm)
$d_{m 1}, d_{m 2}=$ distance between flange forces in the moment connection, in. (mm)
For design according to Section B3.2 (ASD)

$$
\begin{equation*}
\Sigma F_{a}=\frac{M_{a 1}}{d_{m 1}}+\frac{M_{a 2}}{d_{m 2}}-V_{a} \tag{C-J10-3b}
\end{equation*}
$$

where
$M_{a 1}=M_{a 1 L}+M_{a 1 G}$
= sum of the moments due to the nominal lateral loads, $M_{a 1 L}$, and the moments due to nominal gravity loads, $M_{a 1 G}$, on the leeward side of the connection, kip-in. (N-mm)

$$
M_{a 2}=M_{a 2 L}-M_{a 2 G}
$$

$=$ difference between the moments due to the nominal lateral loads, $M_{a 2 L}$, and the moments due to nominal gravity loads, $M_{a 2 G}$, on the windward side of the connection, kip-in. (N-mm)

Historically (and conservatively), 0.95 times the beam depth has been used for $d_{m}$.
If, for LRFD, $\Sigma F_{u} \leq \phi R_{n}$, or for ASD, $\Sigma F_{a} \leq R_{n} / \Omega$, no reinforcement is necessary; in other words, $t_{\text {req }} \leq t_{w}$, where $t_{w}$ is the column web thickness.

Equations J10-9 and J10-10 limit panel-zone behavior to the elastic range. While such connection panels possess large reserve capacity beyond initial general shear yielding, the corresponding inelastic joint deformations may adversely affect the strength and stability of the frame or story (Fielding and Huang, 1971; Fielding and Chen, 1973). Panel-zone shear yielding affects the overall frame stiffness and, therefore, the resulting second-order effects may be significant. The shear/axial interaction expression of Equation J10-10, as shown in Figure C-J10.5, provides elastic panel behavior.

If adequate connection ductility is provided and the frame analysis considers the inelastic panel-zone deformations, the additional inelastic shear strength is recognized in Equations J10-11 and J10-12 by the factor

$$
\left(1+\frac{3 b_{c f} t_{c f}^{2}}{d_{b} d_{c} t_{w}}\right)
$$



Fig. C-J10.4. LRFD forces in panel zone (ASD forces are similar).

This increase in shear strength due to inelasticity has been most often utilized for the design of frames in high-seismic applications and should be used when the panel zone is designed to develop the strength of the members from which it is formed.

The shear/axial interaction expression incorporated in Equation J10-12 (see Figure C-J10.6) recognizes that when the panel-zone web has completely yielded in shear, the axial column load is resisted by the flanges.

## 7. Unframed Ends of Beams and Girders

Full-depth stiffeners are required at unframed ends of beams and girders not otherwise restrained to avoid twisting about their longitudinal axes. These stiffeners are full depth but not fitted. They connect to the restrained flange but do not need to continue beyond the toe of the fillet at the far flange unless connection to the far flange is necessary for other purposes, such as resisting compression from a concentrated load on the far flange.

## 8. Additional Stiffener Requirements for Concentrated Forces

For guidelines on column stiffener design, see Carter (1999), Troup (1999), and Murray and Sumner (2004).

For rotary-straightened W-shapes, an area of reduced notch toughness is sometimes found in a limited region of the web immediately adjacent to the flange, referred to as the " $k$-area," as illustrated in Figure C-J10.7 (Kaufmann et al., 2001). The $k$-area


Fig. C-J10.5. Interaction of shear and axial force-elastic.
is defined as the region of the web that extends from the tangent point of the web and the flange-web fillet (AISC $k$-dimension) a distance $1^{1 / 2}$ in. ( 38 mm ) into the web beyond the $k$-dimension. Following the 1994 Northridge earthquake, there was a tendency to specify thicker transverse stiffeners that were groove welded to the web and flange, and thicker doubler plates that were often groove welded in the gap between the doubler plate and the flanges. These welds were highly restrained and may have caused cracking during fabrication in some cases (Tide, 1999). AISC (1997b) recommended that the welds for continuity plates terminate away from the $k$-area.


Fig. C-J10.6. Interaction of shear and axial force-inelastic.


Fig. C-J10.7. Representative "k-area" of a wide-flange shape.

Pull-plate tests (Dexter and Melendrez, 2000; Prochnow et al., 2000; Hajjar et al., 2003) and full-scale beam-column joint testing (Bjorhovde et al., 1999; Dexter et al., 2001; Lee et al., 2002a) have shown that this problem can be avoided if the column stiffeners are fillet welded to both the web and the flange, the corner is clipped at least $1^{1} / 2 \mathrm{in}$. ( 38 mm ), and the fillet welds are stopped short by a weld leg length from the edges of the cutout, as shown in Figure C-J10.8. These tests also show that groove welding the stiffeners to the flanges or the web is unnecessary, and that the fillet welds performed well with no problems. If there is concern regarding the development of the stiffeners using fillet welds, the corner clip can be made so that the dimension along the flange is ${ }^{3} / 4 \mathrm{in}$. $(20 \mathrm{~mm})$ and the dimension along the web is $1^{1 / 2}$ in. $(38 \mathrm{~mm})$.

Tests have also shown the viability of fillet welding doubler plates to the flanges, as shown in Figure C-J10.9 (Prochnow et al., 2000; Dexter et al., 2001; Lee et al., 2002a; Hajjar et al., 2003). It was found that it is not necessary to groove weld the doubler plates and that they do not need to be in contact with the column web to be fully effective.


Fig. C-J10.8. Recommended placement of stiffener fillet welds to avoid contact with "k-area."

## 9. Additional Doubler Plate Requirements for Concentrated Forces

When required, doubler plates are to be designed using the appropriate limit state requirements for the type of loading. The sum of the strengths of the member element and the doubler plate(s) must exceed the required strength, and the doubler plate must be welded to the member element.


Fig. C-J10.9. Example of fillet welded doubler plate and stiffener details.

## 10. Transverse Forces on Plate Elements

Designing connections to resist forces transverse to the plane of plate elements as shown in Figure C-J10.10 is often not the best solution but, where it is required, there must be sufficient flexure and shear strength. This section addresses only strength. Stiffness may also be a consideration; in particular, for moment connections, Section B3.4b must be satisfied. Simple beam connections are required to provide for rotational ductility and usually do not need to have transverse plate elements designed for flexure.


Fig. C-J10.10. Yield lines due to transverse forces on plate elements.

## CHAPTER K

## ADDITIONAL REQUIREMENTS FOR HSS AND BOX-SECTION CONNECTIONS

Chapter K addresses the strength of connections to hollow structural sections (HSS) and box sections of uniform wall thickness, where seam welds between box-section elements are complete-joint-penetration groove welds in the connection region. The provisions are based on failure modes that have been reported in international research on HSS, much of which has been sponsored and synthesized by CIDECT (International Committee for the Development and Study of Tubular Construction) since the 1960s. This work has also received critical review by the International Institute of Welding (IIW) Subcommission XVE on "Tubular Structures." The HSS connection design recommendations are generally in accord with the design recommendations by this Subcommission (IIW, 1989). Some minor modifications to the IIW recommended provisions for some limit states have been made by the adoption of the formulations for the same limit states elsewhere in this Specification. These IIW connection design recommendations have also been implemented and supplemented in later design guides by CIDECT (Wardenier et al., 1991; Packer et al., 1992), in the design guide by the Canadian Institute of Steel Construction (Packer and Henderson, 1997), and in CEN (2005a). Parts of these IIW design recommendations are also incorporated in AWS (2015). A large amount of research data generated by CIDECT research programs up to the mid-1980s is summarized in CIDECT Monograph No. 6 (Giddings and Wardenier, 1986). Further information on CIDECT publications and reports can be obtained from their website: www.cidect.com.

Chapter K does not prohibit using joints which fall outside the listed limits of applicability; however, this Specification and commentary do not provide connection capacities or guidance when doing so. A rational approach to their design is left to the designer. This commentary gives some insight into the failure modes that should be considered. However, some of the discussions presented later concerning which limit states need to be checked, which can be eliminated, and when they can be eliminated, may or may not apply when outside the limits of applicability. There is also one notable failure mode (local buckling of the chord face) that has been eliminated from consideration in both the Specification and commentary due to the fact that, in tests, it did not control the connection strength when staying within the limits. All potential failure modes should be investigated by the designer when working outside the limits of applicability listed in Chapter K.

When inelastic finite element analysis is used, peak strains in the thick shell $(T \times T \times T)$ elements should not exceed $0.02 / T$ at the nominal capacity, where $T$ is the thickness in inches.

The connection capacities calculated in Chapter K are based on strength limit states only. There is no connection deformation limit state considered in these provisions. Sub-commission XV-E of IIW, in their most recent design recommendations (IIW, 2012), have now adopted a limit of $0.03 D$ for round and $0.03 B$ for rectangular HSS as the maximum acceptable connection displacement, perpendicular to the main member face at the ultimate load capacity. This limit state equates to approximately $1 \%$ of connection deformation at service loads.

While the majority of Chapter K is in agreement with the previous IIW design recommendations (IIW, 1989), it was determined that adopting a connection deformation limit state for HSS would not be consistent with this Specification, which does not include deformation limit states for connections; however, designers should be aware of the potential for relatively large connection deformations in certain HSS joint configurations. In order to meet the new deformation limit state, IIW and ISO have made some modifications to the range of validity of T, Y, X and K gap connections and to the calculations of connection strengths, including changes to the strength reduction based on the chord or main member stress function, $Q_{f}$. The change in the chord stress function is particularly noticeable in high tension areas of main members where no chord stress reduction is necessary when using strength checks only. $Q_{f}$ currently is 1.0 for main members in tension.

Where connection deformations would be a concern due to serviceability or stability, the IIW (2012) or CIDECT (Wardenier et al., 2008; Packer et al., 2009) recommendations could be used.

The scopes of Sections K2 and K3 note that the centerlines of the branch member(s) and the chord members must lie in a single plane. For other configurations, such as multi-planar connections, connections with partially or fully flattened branch member ends, doublechord connections, connections with a branch member that is offset so that its centerline does not intersect with the centerline of the chord, or connections with round branch members joined to a square or rectangular chord member, the provisions of IIW (1989), CIDECT (Wardenier et al., 1991; Packer et al., 1992), CISC (Packer and Henderson, 1997; Marshall, 1992; AWS, 2015), or other verified design guidance or tests can be used.

To be consistent with the requirements of Chapter K, box-section members require com-plete-joint-penetration groove seam welds in the connection region to ensure that each of the member's faces acts as a single element and is able to develop the full capacity of that element for all viable failure modes depending on the type of connection, geometric parameters, and loading. This constraint guarantees that box-section connections behave in a manner similar to HSS member connections with the same applicable failure modes. The length of the connection region along each member is determined based on the maximum extent of influence of all possible failure modes for the connection. These failure modes are described by Wardenier (1982) for both rectangular HSS truss connections and rectangular HSS moment connections. A conservative distance equal to the width of the member away from the face of the intersecting member in the connection can be used to define the connection region.

Connection available strengths in Chapter K assume a main member with sufficient end distances, $l_{\text {end }}$, on both sides of the connection. A new limit of applicability has been added to Tables K2.1A, K3.1A and K3.2A, which limits how close a branch or plate can be connected to the end of the chord. When a branch or plate is connected near to the end of a chord, there is not enough length to develop the typically assumed yield line patterns. A modified yield line pattern can be shown to develop an equal strength if the branch or plate is at least a distance equal to the limiting $l_{\text {end }}$ from the chord end. Where the end distance is less than the limit, a cap plate or a reduction in the resistance are commonly accepted alternatives. The reduction in resistance may not be a linear proportion of the end distance. When the branch or plate is closer to the unreinforced end of a chord than indicated, the strengths predicted in Tables K3.1 and K3.2 can conservatively be reduced by $50 \%$. The branch member or plate supplying the load must have sufficient lateral restraint.

Cap plates attached to the ends of round and rectangular HSS members contribute to stiffening the end of the member. If a cap plate is welded on all sides, a transverse load applied near the end of the member can be conservatively treated as if it were applied to a continuous member with load applied far from the end of the member. Therefore, there is no minimum end distance requirement in the case of a cap plate. The cap plate will allow the HSS member to develop either the strength of the connected face (plastification or shear yielding) or the strength of the sidewalls (yielding or crippling).

## K1. GENERAL PROVISIONS AND PARAMETERS FOR HSS CONNECTIONS

The classification of HSS truss-type connections as K- (which includes N-), Y(which includes T-), or cross- (also known as X -) connections is based on the method of force transfer in the connection, not on the physical appearance of the connection. Examples of such classification are shown in Figure C-K1.1.

When branch members transmit part of their load as K-connections and part of their load as T-, Y- or cross-connections, the adequacy of each branch is determined by linear interaction of the proportion of the branch load involved in each type of load transfer. One K-connection, shown in Figure C-K1.1(b), illustrates that the branch force components normal to the chord member may differ by as much as $20 \%$ and still be deemed to exhibit K-connection behavior. This is to accommodate slight variations in branch member forces along a typical truss, caused by a series of panel-point loads. The N-connection in Figure C-K1.1(c), however, has a ratio of branch force components normal to the chord member of $2: 1$. In this case, the connection is analyzed as both a "pure" K-connection (with balanced branch forces) and a cross-connection (because the remainder of the diagonal branch load is being transferred through the connection), as shown in Figure C-K3.3. For the diagonal tension branch in that connection, the following check is also made:

$$
\begin{aligned}
& \left(0.5 P_{r} \sin \theta / \mathrm{K} \text {-connection available strength }\right) \\
& \quad+\left(0.5 P_{r} \sin \theta / \text { cross-connection available strength }\right) \leq 1.0
\end{aligned}
$$

## 2. Rectangular HSS

Due primarily to the flexibility of the connecting face of the chord, the full width of a branch may not be effective. The resulting uneven load distribution is manifested by local buckling of a compression branch or premature yield failure of a tension branch. For plates framing transverse to the longitudinal axis of an HSS chord member, the full area of the plate may not be effective. For T-, Y- and cross-connections, the two walls of the HSS branch transverse to the chord may only be partially effective, whereas for gapped K-connections only one wall of the branch transverse to the chord is likely to be partially effective, because the HSS chord will be "reinforced" by the equal and opposite force from the other member. This is reflected in the equations for gapped K-connections. The effective width term, $B_{e}$, is introduced in Section


Fig. C-K1.1. Examples of HSS connection classification.

K1.2 to consolidate separate effective width terms, such as $b_{e o i}$ and $b_{e o v}$, that appeared in the 2010 AISC Specification but which provided equivalent information. The effective width parameter has been derived from research on transverse plate-toHSS connections (Davies and Packer, 1982), and the constant of 10 in the calculation of the effective width, $B_{e}$, incorporates a $\phi$ factor of 0.80 or $\Omega$ factor of 1.88 . Applying the same logic as for the limit state of punching shear, a global $\phi$ factor of 0.95 or $\Omega$ factor of 1.58 has been adopted in AWS D1.1/D1.1M (AWS, 2015), and this has been carried over to this Specification. A $\phi$ factor of 1.00 is used in IIW (1989).

When the branch (plate or HSS) width exceeds $85 \%$ of the connecting chord width, the transverse force from the branch can be assumed to be transferred predominately from the branch to the sidewalls of the chord. In such cases, the limit states associated with concentrated forces on the webs of I-sections, web local yielding (Section J10.2), web local crippling (Section J10.3), and web compression buckling (Section J10.5), can be used to determine the strength of the sidewalls of the chord.

When the branch (plate or HSS) width is less than $85 \%$ of the connecting chord width, the transverse force from the branch must pass though the face of the chord to be delivered to the sidewalls. Bending and shear on the chord face must be checked.

An analytical yield-line solution for flexure of the connecting chord face serves to limit connection deformations and is known to be well below the ultimate connection strength. A $\phi$ factor of 1.00 or $\Omega$ factor of 1.50 is thus appropriate. When the branch width exceeds $85 \%$ of the chord width, a yield-line failure mechanism will result in a noncritical connection capacity.

Punching shear can be based on the effective punching shear perimeter around the branch considering the effective width from Section K1.2 with the total branch perimeter being an upper limit on this length.

## K2. CONCENTRATED FORCES ON HSS

Sections K2.2 and K2.3, although pertaining to all concentrated forces on HSS, are particularly oriented towards plate-to-HSS welded connections.

Wide-flange beam-to-HSS PR moment connections can be modelled as a pair of transverse plates at the beam flanges, neglecting the effect of the web. The beam moment is thus produced by a force couple in the beam flanges. The connection flexural strength is then given by the plate-to-HSS connection strength multiplied by the distance between the beam flange centers.

## 1. Definitions of Parameters

Some of the notation used in Chapter K is illustrated in Figure C-K2.1.

## 2. Round HSS

The limits of applicability in Table K2.1A stem primarily from limitations on tests conducted to date.

## 3. Rectangular HSS

When connecting single-plate shear connections to HSS columns the AISC Manual (AISC, 2011) includes recommendations based on Sherman and Ales (1991) and Sherman (1995b, 1996), where a large number of simple framing connections between wide-flange beams and rectangular HSS columns are investigated, in which the load transferred was predominantly shear. A review of costs also showed that sin-gle-plate and single-angle connections were the most economical, with double-angle and fillet-welded tee connections being more expensive. Through-plate and flarebevel welded tee connections were among the most expensive (Sherman, 1995b). Over a wide range of connections tested, only one limit state was identified for the rectangular HSS column: punching shear failure related to end rotation of the beam, when a thick shear plate was joined to a relatively thin-walled HSS. In previous editions of the Specification, the available shear strength of the HSS wall was compared to the available tensile strength of the plate. Because the check only applies to sin-gle-plate shear connections, it has been removed from the Specification. A check has been added to the AISC Manual that investigates punching shear of the HSS wall due to a beam end reaction applied eccentrically, with the eccentricity being the distance from the HSS wall to the center-of-gravity of the bolt group.

The strength of a square or rectangular HSS wall with load transferred through a cap plate (or the flange of a T-stub), as shown in Figure C-K2.2, can be calculated by considering the limits states of local yielding and local crippling. In general, the


Fig. C-K2.1. Common notation for HSS connections.
rectangular HSS could have dimensions of $B \times H$, but the illustration shows the bearing length (or width), $b$, oriented for lateral load dispersion into the wall of dimension $B$. A conservative distribution slope can be assumed as $2.5: 1$ from each face of the tee web (Wardenier et al., 1991; Kitipornchai and Traves, 1989), which produces a dispersed load width of $\left(5 t_{p}+b\right)$ relative to local yielding. If this is less than $B$, only the two side walls of dimension $B$ are effective in resisting the load, and even they will both be only partially effective. If ( $5 t_{p}+b$ ) $\geq B$, all four walls of the rectangular HSS will be engaged, and all will be fully effective; however, the cap plate (or T-stub flange) must be sufficiently thick for this to happen. If the weld leg size is known, it is acceptable to assume load dispersion from the toes of the welds. Neglecting the effect of the weld is conservative. The same load dispersion model as shown in Figure C-K2.2 can also be applied to round HSS-to-cap plate connections.

If a longitudinal plate-to-rectangular HSS connection is made by passing the plate through a slot in the HSS and then welding the plate to both the front and back HSS faces to form a "through-plate connection," the nominal strength can be taken as equal to the sum of the yield-line strength of each wall (Kosteski and Packer, 2003).

## K3. HSS-TO-HSS TRUSS CONNECTIONS

A $30^{\circ}$ minimum branch angle is a practical limit for good fabrication. Smaller branch angles are possible, but prior agreement with the fabricator should be made.

The limits of applicability in Table K3.1A and Table K3.2A generally represent the parameter range over which the equations have been verified in experiments. The following limitations bear explanation.


Fig. C-K2.2. Load dispersion from a concentrated force through a cap plate.

The restriction on the minimum overlap is applied so that there is an adequate interconnection of the branches to enable effective shear transfer from one branch to the other.

If the gap size in a gapped K - (or $\mathrm{N}-$ ) connection [for example, Figure C-K1.1(a)] becomes large and exceeds the value permitted by the eccentricity limit, the K-connection should be treated as two independent Y-connections. In cross-connections, such as Figure C-K1.1(e), where the branches are close together or overlapping, the combined "footprint" of the two branches can be taken as the loaded area on the chord member. In K-connections, such as Figure C-K1.1(d), where a branch has very little or no loading, the connection can be treated as a Y-connection, as shown.

The design of welded HSS connections is based on potential limit states that may arise for particular connection geometry and loading, which in turn, represent possible failure modes that may occur within prescribed limits of applicability. Some typical failure modes for truss-type connections, shown for rectangular HSS, are given in Figure C-K3.1.

Connections in Tables K3.1 and K3.2 are for branches subject to axial loading only. Two analysis methods that will result in branches with axial loads are:
(a) Pin-jointed analysis, or
(b) Analysis using web members pin-connected to continuous chord members, as shown in Figure C-K3.2.

## 1. Definitions of Parameters

Some parameters are defined in Figure C-K2.1.

## 2. Round HSS

The wall slenderness limit for the compression branch is a restriction so that connection strength is not reduced by branch local buckling.

The minimum width ratio limit for gapped K-connections is based on Packer (2004), who showed that for width ratios less than 0.4 , Equation K3-4 may be potentially unconservative when evaluated against proposed equations for the design of such connections by the American Petroleum Institute (API, 1993).

The restriction on the minimum gap size is stated so that adequate space is available to enable welding at the toes of the branches to be satisfactorily performed. The minimum gap limit also ensures no development of excessive load concentration and reflects the limits of testing.

The restriction on the minimum overlap is applied so that there is an adequate interconnection of the branches to enable effective shear transfer from one branch to the other.

The provisions given in Table K3.1 for T-, Y-, cross and K-connections are generally based, with the exception of the punching shear provision, on semi-empirical "characteristic strength" expressions that have a confidence of $95 \%$, taking into account the variation in experimental test results as well as typical variations in mechanical
and geometric properties. These "characteristic strength" expressions are then multiplied by resistance factors for LRFD or divided by safety factors for ASD to further allow for the relevant failure mode.

In the case of the chord plastification failure mode, $\phi=0.90$ and $\Omega=1.67$, whereas in the case of punching shear, $\phi=0.95$ and $\Omega=1.58$. For the case of punching shear, $\phi=1.00$ (equivalent to $\Omega=1.50$ ) in many recommendations or specifications [for example, IIW (1989), Wardenier et al. (1991) and Packer and Henderson (1997)] to reflect the large degree of reserve strength beyond the analytical nominal strength expression, which is itself based on the shear yield (rather than ultimate) strength of the material. In this Specification, however, $\phi=0.95$ and $\Omega=1.58$ are used to maintain consistency with the factors for similar failure modes in Table K3.2.


Fig. C-K3.1. Typical limit states for HSS-to-HSS truss connections.

If the tensile stress, $F_{u}$, were adopted as a basis for a punching shear rupture criterion, the accompanying $\phi$ would be 0.75 and $\Omega$ would be 2.00 , as elsewhere in this Specification. Then $0.75\left(0.6 F_{u}\right)=0.45 F_{u}$ would yield a very similar value to 0.95 $\left(0.6 F_{y}\right)=0.57 F_{y}$, and in fact the latter is even more conservative for HSS with specified nominal $F_{y} / F_{u}$ ratios less than 0.79 . Equation K3-1 need not be checked when $D_{b}>(D-2 t)$ because this is the physical limit at which the branch can punch into (or out of) the main tubular member.

With round HSS in axially loaded K-connections, the size of the compression branch dominates the determination of the connection strength. Hence, the term $D_{b \text { comp }}$ in Equation K3-4 pertains only to the compression branch and is not an average of the two branches. Thus, if one requires the connection strength expressed as a force in the tension branch, one can resolve the answer from Equation K3-4 into the direction of the tension branch, using Equation K3-5. That is, it is not necessary to repeat a calculation similar to Equation K3-4 with $D_{b}$ as the tension branch.

## 3. Rectangular HSS

The restriction on the minimum gap ratio in Table K3.2A is modified from IIW (1989), according to Packer and Henderson (1997), to be more practical. The minimum gap size, $g$, is only specified so that adequate space is available to enable welding at the toes of the branches to be satisfactorily performed. The minimum gap limit also ensures no development of excessive load concentration and reflects the limits of testing.

The limit state of punching shear, evident in Equation K3-8, is based on the effective punching shear perimeter around the branch, with the total branch perimeter being an upper limit on this length. The term $\beta_{\text {eop }}$ in Equation K3-8 represents the chord face


Fig. C-K3.2. Modeling assumption using web members pin-connected to continuous chord members.
effective punching shear width ratio adjacent to one of the branch walls transverse to the chord axis. This $\beta_{e o p}$ term incorporates $\phi=0.80$ or $\Omega=1.88$. Applying to generally one dimension of the rectangular branch footprint, this was deemed by AWS to be similar to a global $\phi=0.95$ or $\Omega=1.58$ for the whole expression, so this expression for punching shear appears in AWS (2015) with an overall $\phi=0.95$. This $\phi=0.95$ or $\Omega=1.58$ has been carried over to this Specification, and this topic is discussed further in Commentary Section K3.2. The limitation specified for Equation K3-8 in Table K3.2 indicates when this failure mode is either physically impossible or noncritical. In particular, note that shear yielding is noncritical for square HSS branches.

For axially loaded, gapped K-connections, plastification of the chord connecting face under the "push-pull" action of the branches is by far the most prevalent and critical failure mode. Indeed, if all the HSS members are square, this failure mode is critical and Equation K3-7 is the only one to be checked. This formula for chord face plastification is a semi-empirical "characteristic strength" expression, which has a confidence of $95 \%$, taking into account the variation in experimental test results as well as typical variations in mechanical and geometric properties. Equation K3-7 is then multiplied by a $\phi$ factor for LRFD or divided by an $\Omega$ factor for ASD, to further allow for the failure mode and provide an appropriate safety margin. A reliability calibration (Packer et al., 1984) for this equation, using a database of 263 gapped K -connections and the exponential expression for the resistance factor (with a safety index of 3.0 and a coefficient of separation of 0.55 ) derived a $\phi=0.89$ and a corresponding $\Omega=1.69$, while also imposing the parameter limits of validity. Since this failure mode dominates the test database, there is insufficient supporting test data to calibrate Equations K3-8 and K3-9.

For the limit state of shear yielding of the chord in the gap of gapped K-connections, Table K3.2 differs from international practice [for example, IIW (1989)] by recommending application of another section of this Specification-Section G4. This limit state need only be checked if the chord member is rectangular, not square, and is also oriented such that the shorter wall of the chord section lies in the plane of the truss, hence providing a more critical chord shear condition due to the short "webs." The axial force present in the gap region of the chord member may also have an influence on the shear strength of the chord sidewalls in the gap region.

For K-connections, the scope covers both gapped and overlapped connections. Note that the latter are generally more difficult and more expensive to fabricate than K-connections with a gap. However, an overlapped connection will, in general, produce a connection with a higher static strength and fatigue resistance, as well as a stiffer truss than its gapped connection counterpart.

For rectangular HSS meeting the limits of applicability in Table K3.2A, the sole failure mode to be considered for design of overlapped connections is the limit state of uneven load distribution in the branches, manifested by either local buckling of the compression branch or premature yield failure of the tension branch. The design procedure presumes that one branch is welded solely to the chord and hence only has a single cut at its end. This can be considered good practice and the "thru member" is termed the overlapped member. For partial overlaps of less than $100 \%$, the other
branch is then double-cut at its end and welded to both the thru branch as well as the chord.

The branch to be selected as the "thru" or overlapped member should be the one with the larger overall width. If both branches have the same width, the thicker branch should be the overlapped branch.

For a single failure mode to be controlling (and not have failure by one branch punching into or pulling out of the other branch, for example), limits are placed on various connection parameters, including the relative width and relative thickness of the two branches. The foregoing fabrication advice for rectangular HSS also pertains to round HSS overlapped K-connections, but the latter involves more complicated profiling of the branch ends to provide good saddle fits.

Overlapped rectangular HSS K-connection strength calculations (Equations K3-10, K3-11 and K3-12) are performed initially just for the overlapping branch, regardless of whether it is in tension or compression, and then the resistance of the overlapped branch is determined from that. The equations for connection strength, expressed as a force in a branch, are based on the load-carrying contributions of the four side walls of the overlapping branch and follow the design recommendations of the International Institute of Welding (IIW, 1989; Packer and Henderson, 1997; AWS, 2015). The effective widths of overlapping branch member walls transverse to the chord, $B_{e}$, depend on the flexibility of the surface on which they land, and are derived from plate-to-HSS effective width measurements (Rolloos, 1969; Wardenier et al., 1981; Davies and Packer, 1982).

The applicability of Equations K3-10, K3-11 and K3-12 depends on the amount of overlap, $O_{v}$, where $O_{v}=\left(l_{o v} / l_{p}\right) \times 100$. It is important to note that $l_{p}$ is the projected length (or imaginary footprint) of the overlapping branch on the connecting face of the chord, even though it does not physically contact the chord. Also, $l_{o v}$ is the overlap length measured along the connecting face of the chord beneath the region of overlap of the branches. This is illustrated in Figure C-K2.1.

A maximum overlap of $100 \%$ occurs when one branch sits completely on the other branch. In such cases, the overlapping branch is sometimes moved slightly up the overlapped branch so that the heel of the overlapping branch can be fillet welded to the face of the overlapped branch. If the connection is fabricated in this manner, an overlap slightly greater than $100 \%$ is created. In such cases, the connection strength for a rectangular HSS connection can be calculated by Equation K3-12 but with the $B_{b i}$ term replaced by another $B_{e}$ term. Also, with regard to welding details, it has been found experimentally that it is permissible to just tack weld the "hidden toe" of the overlapped branch, providing that the components of the two branch member forces normal to the chord substantially balance each other and providing that the welds are designed for the yield capacity of the connected branch walls. The "hidden toe" should be fully welded to the chord if the normal components of the two branch forces differ by more than $20 \%$ or the welds to the branches are designed using an effective length approach. More discussion is provided in Commentary Section K5. If the components of the two branch forces normal to the chord do in fact differ
significantly, the connection should also be checked for behavior as a T-, Y- or crossconnection, using the combined footprint and the net force normal to the chord (see Figure C-K3.3).

For the design of round branches connecting to rectangular chords in $\mathrm{T}-, \mathrm{Y}-, \mathrm{X}$ - and K-gapped connections under static loading, a conversion method can be used to check chord wall plastification if the branch to chord width ratio, $D_{b} / B$, is less than 0.85. Supported by Packer et al. (2007), the conversion involves the replacement of the round branch (or branches) of diameter $D_{b}$ by equivalent square branches of width $B_{b}=\pi D_{b} / 4$ and the same thickness; then the design rule for chord wall plastification in rectangular HSS-to-rectangular HSS connections in Table K3.2 can be applied to round HSS-to-rectangular HSS connections. For round HSS-to-rectangular HSS K-overlapped connections, the conversion method can be used if the chord width ratio, $D_{b} / B$, is less than 0.8 to check local yielding of branch/branches due to uneven load distribution for $\beta \geq 0.25$. Many failure modes for HSS connections depend on the perimeter or cross-sectional area of the branch member, and both the perimeter and area of a round HSS, when compared to that of a square HSS, have a ratio of $\pi: 4$.

## K4. HSS-TO-HSS MOMENT CONNECTIONS

Section K4 on HSS-to-HSS connections under moment loading is applicable to frames with partially restrained or fully restrained moment connections, such as Vierendeel girders. The provisions of Section K4 are not generally applicable to typical planar triangulated trusses, which are covered by Section K3, because the latter should be analyzed in a manner that results in no bending moments in the web members (see Commentary Section K3). Thus, K-connections with moment loading on the branches are not covered by this Specification.

Available testing for HSS-to-HSS moment connections is much less extensive than that for axially-loaded T-, Y-, cross- and K-connections. Hence, the governing limit states to be checked for axially loaded connections can be used as a basis for the possible limit states in moment-loaded connections. Thus, the design criteria for round


Fig. C-K3.3. Checking of $K$-connection with imbalanced branch member loads.

HSS moment connections are based on the limit states of chord plastification and punching shear failure, with $\phi$ and $\Omega$ factors consistent with Section K3, while the design criteria for rectangular HSS moment connections can be based on the limit states of plastification of the chord connecting face, uneven load distribution, and chord sidewall local yielding, crippling and buckling. The "chord distortional failure" mode is applicable only to rectangular HSS T-connections with an out-ofplane bending moment on the branch. Rhomboidal distortion of the branch can be prevented by the use of stiffeners or diaphragms to maintain the rectangular crosssectional shape of the chord. The limits of applicability of the equations in Section K4 are predominantly reproduced from Section K3. The equations in Section K4 have also been adopted in CIDECT Design Guide No. 9 (Kurobane et al., 2004).

## K5. WELDS OF PLATES AND BRANCHES TO RECTANGULAR HSS

Section K5 consolidates all the welding rules for plates and branch members to the face of an HSS into one section.

Due to differences in relative flexibilities of main members loaded normal to its surface and the branch member carrying membrane forces parallel to its surface, transfer of load across the weld is highly nonuniform and local yielding can be expected before the connection reaches its design load.

To prevent progressive failure of the weld and ensure ductile behavior of the joint, simple T-, Y- and K-connection welds shall be capable of developing at their ultimate strength the branch member yield strength. This requirement is presumed to be satisfied when using matching filler metal and either the prequalified joint details in AWS D1.1/D1.1M (AWS, 2015) for T-, Y- and K-connections, or when the effective throat of the fillet weld is equal to 1.1 times the branch member thickness for branch members with $F_{y} \leq 50 \mathrm{ksi}(345 \mathrm{MPa})$ per Eurocode 3 (CEN, 2005a).

Alternately, welds of rectangular hollow structural sections (RHSS) may be designed as "fit for purpose" to resist branch forces that are typically known in RHSS trusstype connections by using what is known as the "effective length concept." Many HSS truss web members are subjected to low axial loads and in such situations, this weld design philosophy is ideal. However, the nonuniform loading of the weld perimeter due to the flexibility of the connecting HSS face must be taken into account by using weld effective lengths. Suitable effective lengths for plates and various rectangular HSS connections subject to branch axial loading (and/or moment loading in some cases) are given in Table K5.1. Several of these provisions are similar to those given in AWS (2015) and are based on full-scale HSS connection and truss tests that studied weld failures (Frater and Packer, 1992a, 1992b; Packer and Cassidy, 1995).

Effective lengths used to determine weld sizing for T-, Y- and cross connections with moments and for overlapped connections are based on a rational extrapolation of the effective length concept used for design of the member itself. Diagrams that show the locations of the effective weld lengths (most of which are less than $100 \%$ of the total weld length) are shown in Table K5.1.

The effective length approach to weld design recognizes that a branch-to-main member connection becomes stiffer along its edges, relative to the center of the HSS face, as the angle of the branch to the connecting face and/or the width ratio (the width of a branch member relative to the connecting face) increase. Thus, the effective length used for sizing the weld may decrease as either the angle of the branch member (when over $50^{\circ}$ relative to the connecting face) or the branch member width (creating width ratios over 0.85 ) increase. Note that for ease of calculation and because the error is insignificant, the weld corners were assumed as square for determination of the weld line section properties in certain cases.

As noted in Commentary Section K3, when the welds in overlapped joints are adequate to develop the strength of the remaining member walls, it has been found experimentally that it is permissible to eliminate the weld on the "hidden toe" of the overlapped branch, provided that the components of the two branch member forces normal to the chord substantially balance each other. The "hidden toe" should be fully welded to the chord if the normal components of the two branch forces differ by more than $20 \%$. If the "fit for purpose" weld design philosophy is used in an overlapped joint, the hidden weld should be completed even though the effective weld length may be much less than the perimeter of the HSS. This helps account for the moments that can occur in typical HSS connections due to joint rotations and face deformations, but are not directly accounted for in design.

Until further investigation proves otherwise, directional strength increases typically used in the design of fillet welds are not allowed in Section K5 when welding to the face of HSS members in truss-type connections. Additionally, the design weld size in all cases shown in Table K5.1, including the hidden weld underneath an overlapped member as discussed in the foregoing, is the smallest weld throat around the connection perimeter; adding up the strengths of individual sections of a weld group with varying throat sizes around the perimeter of the cross section is not a viable approach to HSS connection design.

## CHAPTER L

## DESIGN FOR SERVICEABILITY

## L1. GENERAL PROVISIONS

Serviceability limit states are conditions in which the functions of a building are impaired because of local damage, deterioration or deformation of building components, or occupant discomfort. While serviceability limit states generally do not involve collapse of a building, loss of life, or injury, they can seriously impair the usefulness of a building and lead to costly repairs and other economic consequences. Serviceability provisions are essential to provide satisfactory performance of building structural systems. Neglect of serviceability may result in structures that are excessively flexible or otherwise perform unacceptably in service.

The general types of structural behavior that are indicative of impaired serviceability in steel structures are:
(1) Excessive deflections or rotations that may affect the appearance, function, or drainage of the building, or may cause damaging transfer of load to nonstructural components and attachments
(2) Excessive drift due to wind that may damage cladding and nonstructural walls and partitions
(3) Excessive vibrations produced by the activities of the building occupants or mechanical equipment, that may cause occupant discomfort or malfunction of building service equipment
(4) Excessive wind-induced motions that may cause occupant discomfort
(5) Excessive effects of expansion and contraction caused by temperature differences as well as creep and shrinkage of concrete and yielding of steel
(6) Effects of connection slip, resulting in excessive deflections and rotations that may have deleterious effects similar to those produced by load effects

In addition, excessive local damage (local yielding, buckling, slip or cracking) or deterioration (weathering, corrosion and discoloration) may also affect the function and serviceability of the structure during its service life.

Serviceability limit states depend on the occupancy or function of the building, the perceptions of its occupants, and the type of structural system. Limiting values of structural behavior intended to provide adequate levels of serviceability should be determined by a team consisting of the building owner/developer, the architect, and the structural engineer after a careful analysis of all functional and economic requirements and constraints. In arriving at serviceability limits, the team should recognize that building occupants are able to perceive structural deformations, motions, cracking, or other signs of distress at levels that are much lower than those that would
indicate impending structural damage or failure. Such signs of distress may be viewed as an indication that the building is unsafe and diminish its economic value and, therefore, must be considered at the time of design.

Service loads that may require consideration in checking serviceability include: (1) static loads from the occupants, snow or rain on the roof, or temperature fluctuations; and (2) dynamic loads from human activities, wind effects, the operation of mechanical or building service equipment, or traffic near the building. Service loads are loads that act on the structure at an arbitrary point in time and may be only a fraction of the corresponding nominal load. The response of the structure to service loads generally can be analyzed assuming elastic behavior. Members that accumulate residual deformations under service loads also may require examination with respect to this long-term behavior.

Serviceability limit states and appropriate load combinations for checking conformance to serviceability requirements can be found in ASCE/SEI 7, Minimum Design Loads and Associated Criteria for Buildings and Other Structures, Section 1.3.2, Commentary 1.3.2, Appendix C, and Commentary Appendix C (ASCE, 2016).

## L2. DEFLECTIONS

Excessive vertical deflections and misalignment arise primarily from three sources: (a) gravity loads, such as dead, live and snow loads; (b) effects of temperature, creep and differential settlement; and (c) construction tolerances and errors. Such deformations may be visually objectionable; cause separation, cracking or leakage of exterior cladding, doors, windows and seals; and cause damage to interior components and finishes. Appropriate limiting values of deformations depend on the type of structure, detailing and intended use (Galambos and Ellingwood, 1986). Historically, common deflection limits for horizontal members have been $1 / 360$ of the span for floors subjected to reduced live load and $1 / 240$ of the span for roof members. Deflections of about $1 / 300$ of the span (for cantilevers, $1 / 150$ of the length) are visible and may lead to general architectural damage or cladding leakage. Deflections greater than $1 / 200$ of the span may impair operation of moveable components such as doors, windows and sliding partitions.

Deflection limits depend very much on the function of the structure and the nature of the supported construction. Traditional limits expressed as a fraction of the span length should not be extrapolated beyond experience. For example, the traditional limit of $1 / 360$ of the span worked well for controlling cracks in plaster ceilings with spans common in the first half of the twentieth century. Many structures with more flexibility have performed satisfactorily with the now common, and more forgiving, ceiling systems. On the other hand, with the advent of longer structural spans, serviceability problems have been observed with flexible grid ceilings where actual deflections were far less than $1 / 360$ of the span, because the distance between partitions or other elements that may interfere with ceiling deflection are far less than the span of the structural member. Proper control of deflections is a complex subject requiring careful application of professional judgment. AISC Design Guide 3, Serviceability Design Considerations for Steel Buildings, 2nd Edition (West and Fisher, 2003) provide an extensive discussion of the issues.

Deflection computations for composite beams should include an allowance for slip, creep and shrinkage as discussed in Commentary Section I3.

In certain long-span floor systems, it may be necessary to place a limit, independent of span, on the maximum deflection to minimize the possibility of damage of adjacent nonstructural elements (ISO, 1977). For example, damage to non-load-bearing partitions may occur if vertical deflections exceed more than about ${ }^{3} / 8 \mathrm{in}$. ( 10 mm ) unless special provision is made for differential movement (Cooney and King, 1988); however, many components can and do accept larger deformations.

Load combinations for checking static deflections can be developed using first-order reliability analysis (Galambos and Ellingwood, 1986). Current static deflection guidelines for floor and roof systems are adequate for limiting superficial damage in most buildings. A combined load with an annual probability of being exceeded of 5\% is appropriate in most instances. For serviceability limit states involving visually objectionable deformations, repairable cracking, or other damage to interior finishes, and other short-term effects, the suggested load combinations are:

$$
\begin{gathered}
D+L \\
D+0.5 S
\end{gathered}
$$

For serviceability limit states involving creep, settlement or similar long-term or permanent effects, the suggested load combination is:

$$
D+0.5 L
$$

The dead load effect, $D$, may be that portion of dead load that occurs following attachment of nonstructural elements. For example, in composite construction, the dead load effects frequently are taken as those imposed after the concrete has cured. For ceiling related calculations, the dead load effects may include only those loads placed after the ceiling structure is in place.

## L3. DRIFT

Drift (lateral deflection) in a steel building is a serviceability issue primarily from the effects of wind. Drift limits are imposed on buildings to minimize damage to cladding and to nonstructural walls and partitions. Lateral frame deflection is evaluated for the building as a whole, where the applicable parameter is the total building drift, defined as the lateral frame deflection at the top of the most occupied floor divided by the height of the building to that level, $\Delta / \mathrm{H}$. For each floor, the applicable parameter is interstory drift, defined as the lateral deflection of a floor relative to the lateral deflection of the floor immediately below, divided by the distance between floors, $\left(\delta_{n}-\delta_{n-1}\right) / h$.

Typical drift limits in common usage vary from $\mathrm{H} / 100$ to $\mathrm{H} / 600$ for total building drift and $h / 200$ to $h / 600$ for interstory drift, depending on building type and the type of cladding or partition materials used. The most widely used values are $H$ (or $h$ )/400 to $H$ (or $h$ )/ 500 (ASCE, 1988). These limits generally are sufficient to minimize damage to cladding and nonstructural walls and partitions. Smaller drift limits may be appropriate if the cladding is brittle. AISC Design Guide 3 (West and

Fisher, 2003) contains recommendations for higher drift limits that have successfully been used in low-rise buildings with various cladding types. It also contains recommendations for buildings containing cranes. An absolute limit on interstory drift is sometimes imposed by designers in light of evidence that damage to nonstructural partitions, cladding and glazing may occur if the interstory drift exceeds about $3 / 8$ in. ( 10 mm ), unless special detailing practices are employed to accommodate larger movements (Cooney and King, 1988; Freeman, 1977). Many components can accept deformations that are significantly larger. More specific information on the damage threshold for building materials is available in the literature (Griffis, 1993).

It is important to recognize that frame racking or shear distortion is the real cause of damage to building elements such as cladding and partitions. Lateral drift only captures the horizontal component of the racking and does not include potential vertical racking, as from differential column shortening in tall buildings, which also contributes to damage. Moreover, some lateral drift may be caused by rigid body rotation of the cladding or partition which by itself does not cause strain and, therefore, damage. A more precise parameter, the drift damage index used to measure the potential damage, has been proposed (Griffis, 1993).

It must be emphasized that a reasonably accurate estimate of building drift is essential to controlling damage. The structural analysis must capture all significant components of potential frame deflection, including flexural deformation of beams and columns, axial deformation of columns and braces, shear deformation of beams and columns, beam-column joint rotation (panel-zone deformation), the effect of member joint size, and the $P-\Delta$ effect (Charney, 1990). For many low-rise steel frames with normal bay widths of 30 to 40 ft ( 9 to 12 m ), use of center-to-center dimensions between columns without consideration of actual beam-to-column joint size and panel zone effects will usually suffice for checking drift limits. The stiffening effect of nonstructural cladding, walls and partitions may be taken into account if substantiating information (stress versus strain behavior) regarding their effect is available.

The level of wind load used in drift limit checks varies among designers depending upon the frequency with which the potential damage can be tolerated. Many designers use a 50 -year, 20 -year or 10 -year mean recurrence interval wind load when checking serviceability limit states (Griffis, 1993; ASCE, 2016).

It is important to recognize that drift control limits by themselves, in wind-sensitive buildings, do not provide comfort of the occupants under wind load. See Section L5 for additional information regarding perception of motion in wind sensitive buildings.

## L4. VIBRATION

The increasing use of high-strength materials with efficient structural systems and open plan architectural layouts leads to longer spans and more flexible floor systems having less damping. Therefore, floor vibrations have become an important design consideration. Acceleration is the recommended standard for evaluation.

An extensive treatment of vibration in steel-framed floor systems and pedestrian bridges is found in AISC Design Guide 11, Vibrations of Steel-Framed Structural

Systems Due to Human Activity (Murray et al., 2016). This guide provides basic principles and simple analytical tools to evaluate steel-framed floor systems and footbridges for vibration serviceability due to human activities, including walking and rhythmic activities. Both human comfort and the need to control movement for sensitive equipment are considered.

## L5. WIND-INDUCED MOTION

Designers of wind-sensitive buildings have long recognized the need for controlling annoying vibrations under the action of wind to protect the psychological well-being of the occupants (Chen and Robertson, 1972). The perception of building motion under the action of wind may be described by various physical quantities including maximum displacement, velocity, acceleration, and rate of change of acceleration (sometimes called "jerk"). Acceleration has become the standard for evaluation because it is readily measured in the field and can be easily calculated analytically. Human response to building motion is a complex phenomenon involving many psychological and physiological factors. Perception and tolerance thresholds of acceleration as a measure of building motion are known to depend on factors such as frequency of the building, occupant gender, age, body posture (sitting, standing or reclining), body orientation, expectation of motion, body movement, visual cues, acoustic cues, and the type of motion (translational or torsional) (ASCE, 1981). Different thresholds and tolerance levels exist for different people and responses can be very subjective. It is known that some people can become accustomed to building motion and tolerate higher levels than others. Limited research exists on this subject, but certain standards have been applied for design as discussed in the following.

Acceleration in wind-sensitive buildings may be expressed as either root mean square (RMS) or peak acceleration. Both measures are used in practice and there is no clear agreement as to which is the more appropriate measure of motion perception. Some researchers believe that peak acceleration during wind storms is a better measure of actual perception but that RMS acceleration during the entire course of a wind storm is a better measure of actual discomfort. Target peak accelerations of 21 milli-g ( 0.021 times the acceleration of gravity) for commercial buildings (occupied mostly during daylight hours) and 15 milli-g for residential buildings (occupied during the entire day) under a 10-year mean recurrence interval wind storm have been successfully used in practice for many tall building designs (Griffis, 1993). The target is generally more strict for residential buildings because of the continuous occupancy, the perception that people are less sensitive and more tolerant at work than at home, the fact that there is more turnover in commercial buildings, and the fact that commercial buildings are more easily evacuated for peak wind events. Peak acceleration and RMS acceleration in wind-sensitive buildings are related by the "peak factor" best determined in a wind tunnel study and generally in the range of 3.5 for tall buildings (in other words, peak acceleration $=$ peak factor $\times$ RMS acceleration). Guidance for design acceleration levels used in building design may be found in the literature (Chen and Robertson, 1972; Hansen et al., 1973; Irwin, 1986; NRCC, 1990; Griffis, 1993).

It is important to recognize that perception to building motion is strongly influenced by building mass and available damping as well as stiffness (Vickery et al., 1983). For this reason, building drift limits by themselves should not be used as the sole measure of controlling building motion (Islam et al., 1990). Damping levels for use in evaluating building motion under wind events are generally taken as approximately $1 \%$ of critical damping for steel buildings.

## L6. THERMAL EXPANSION AND CONTRACTION

The satisfactory accommodation of thermal expansion and contraction cannot be reduced to a few simple rules, but must depend largely upon the judgment of a qualified engineer. The problem is likely to be more serious in buildings with masonry walls than with prefabricated units. Complete separation of the framing at widely spaced expansion joints is generally more satisfactory than more frequently located devices that depend upon the sliding of parts in bearing, and usually less expensive than rocker or roller expansion bearings.

Creep and shrinkage of concrete and yielding of steel are among the causes, other than temperature, for dimensional changes. Conditions during construction, such as temperature effects before enclosure of the structure, should also be considered. Engineers may also consider that damage to building cladding can cause water penetration and may lead to corrosion. Guidelines for the recommended size and spacing of expansion joints in buildings may be found in NRC (1974).

## L7. CONNECTION SLIP

In bolted connections with bolts in holes having only small clearances, such as standard holes and slotted holes loaded transversely to the axis of the slot, the amount of possible slip is small. Slip at these connections is not likely to have serviceability implications. Possible exceptions include certain unusual situations where the effect of slip is magnified by the configuration of the structure, such as a connection at the base of a shallow cantilever beam or post where a small amount of bolt slip may produce unacceptable rotation and deflection.

This Specification requires that connections with oversized holes or slotted holes loaded parallel to the axis of the slot be designed as slip-critical connections. For a discussion of slip at these connections, see Commentary Section J3.8. Where slip at service loads is a realistic possibility in these connections, the effect of connection slip on the serviceability of the structure must be considered.

# CHAPTER M FABRICATION AND ERECTION 

## M1. SHOP AND ERECTION DRAWINGS

Supplementary information relevant to shop drawing documentation and associated fabrication, erection and inspection practices may be found in the AISC Code of Standard Practice for Steel Buildings and Bridges (AISC, 2016a) and in Schuster (1997).

## M2. FABRICATION

## 1. Cambering, Curving and Straightening

In addition to mechanical means, local application of heat is permitted for curving, cambering and straightening. Maximum temperatures are specified to avoid metallurgical damage and inadvertent alteration of mechanical properties: for ASTM A514/A514M and A852/A852M steels, the maximum is $1,100^{\circ} \mathrm{F}\left(590^{\circ} \mathrm{C}\right)$; for other steels, the maximum is $1,200^{\circ} \mathrm{F}\left(650^{\circ} \mathrm{C}\right)$. In general, these should not be viewed as absolute maximums; they include an allowance for a variation of about $100^{\circ} \mathrm{F}\left(38^{\circ} \mathrm{C}\right)$, which is a common range achieved by experienced fabricators (FHWA, 1999).

Temperatures should be measured by appropriate means, such as temperatureindicating crayons and steel color. Precise temperature measurements are seldom called for. Also, surface temperature measurements should not be made immediately after removing the heating torch because it takes a few seconds for the heat to soak into the steel.

Local application of heat has long been used as a means of straightening or cambering beams and girders. With this method, selected zones are rapidly heated and tend to expand. But the expansion is resisted by the restraint provided by the surrounding unheated areas. Thus, the heated areas are "upset" (increase in thickness) and, upon cooling, they shorten to effect a change in curvature. In the case of trusses and girders, cambering can be built in during assembly of the component parts.

Although the desired curvature or camber can be obtained by these various methods, including at room temperature (cold cambering) (Bjorhovde, 2006), it must be realized that some deviation due to workmanship considerations, as well as some permanent change due to handling, is inevitable. Camber is usually defined by one mid-ordinate, because control of more than one point is difficult and not normally needed. Reverse cambers are difficult to achieve and are discouraged. Long cantilevers are sensitive to camber and may deserve closer control.

## 2. Thermal Cutting

Thermal cutting is preferably done by machine. The requirement in Section M2.2 for preheat before thermal cutting is to minimize the creation of a hard surface layer and the formation of cracks. This requirement for preheat for thermal cutting does not apply when the radius portion of the access hole or cope is drilled and the thermally cut portion is essentially linear. Such thermally cut surfaces are required to be ground in accordance with Section J1.6. After welding, the weld access hole surface is to be visually inspected in accordance with Table N5.4-3. The surface resulting from two straight torch cuts meeting at a point is not considered to be a curve.

## 4. Welded Construction

To avoid weld contamination, the light oil coating that is generally present after manufacturing an HSS should be removed with a suitable solvent in locations where welding will be performed. In cases where an external coating has been applied at the mill, the coating should be removed at the location of welding or the manufacturer should be consulted regarding the suitability of welding in the presence of the coating.

## 5. Bolted Construction

In most connections made with high-strength bolts, it is only required to install the bolts to the snug-tight condition. This includes bearing-type connections where slip is permitted and, for ASTM F3125 Grade A325 or A325M bolts only, tension (or combined shear and tension) applications where loosening or fatigue due to vibration or load fluctuations are not design considerations.

It is suggested that snug-tight bearing-type connections with ASTM F3125 Grade A325 or A325M or ASTM F3125 Grade A490 or A490M bolts be used in applications where ASTM A307 bolts are permitted.

This section provides rules for the use of oversized and slotted holes paralleling the provisions that have been in the RCSC Specification for High-Strength Bolts since 1972 (RCSC, 2014), extended to include ASTM A307 bolts, which are outside the scope of the RCSC Specification.

The Specification previously limited the methods used to form holes, based on common practice and equipment capabilities. Fabrication methods have changed and will continue to do so. To reflect these changes, this Specification has been revised to define acceptable quality instead of specifying the method used to form the holes, and specifically to permit thermally cut holes. AWS C4.1, Sample 3, is useful as an indication of the thermally cut profile that is acceptable (AWS, 2015). The use of numerically controlled or mechanically guided equipment is anticipated for the forming of thermally cut holes. To the extent that the previous limits may have related to safe operation in the fabrication shop, fabricators are referred to equipment manufacturers for equipment and tool operating limits.

## 10. Drain Holes

Because the interior of an HSS is difficult to inspect, concern is sometimes expressed regarding internal corrosion. However, good design practice can eliminate the concern and the need for expensive protection. Corrosion occurs in the presence of oxygen and water. In an enclosed building, it is improbable that there would be sufficient reintroduction of moisture to cause severe corrosion. Therefore, internal corrosion protection is a consideration only in HSS that are exposed to weather. In a sealed HSS, internal corrosion cannot progress beyond the point where the oxygen or moisture necessary for chemical oxidation is consumed (AISI, 1970). The oxidation depth is insignificant when the corrosion process must stop, even when a corrosive atmosphere exists at the time of sealing. If fine openings exist at connections, moisture and air can enter the HSS through capillary action or by aspiration due to the partial vacuum that is created if the HSS is cooled rapidly (Blodgett, 1967). This can be prevented by providing pressure-equalizing holes in locations that make it impossible for water to flow into the HSS by gravity.

Situations where an internal protective coating may be required include (1) open HSS where changes in the air volume by ventilation or direct flow of water is possible, and (2) open HSS subject to a temperature gradient that causes condensation. In such instances, it may also be prudent to use a minimum ${ }^{5} / 16-\mathrm{in}$. ( 8 mm ) wall thickness.

HSS that are filled or partially filled with concrete should not be sealed. In the event of fire, water in the concrete will vaporize and may create pressure sufficient to burst a sealed HSS. Care should be taken to ensure that water does not remain in the HSS during or after construction, since the expansion for HSS exposed to freezing can create pressure that is sufficient to burst an HSS.

Galvanized HSS assemblies should not be completely sealed because rapid pressure changes during the galvanizing process tend to burst sealed assemblies.

## 11. Requirements for Galvanized Members

Cracking has been observed in steel members during hot-dip galvanizing. The occurrence of these cracks has been correlated to several characteristics including, but not limited to, highly restrained details, base material chemistry, galvanizing practices, and fabrication workmanship. The requirement to grind beam copes before galvanizing will not prevent all cope cracks from occurring during galvanizing. However, it has been shown to be an effective means to reduce the occurrence of this phenomenon.

Galvanizing of structural steel and hardware, such as fasteners, is a process that depends on special design, detailing and fabrication to achieve the desired level of corrosion protection. ASTM publishes the following standards related to galvanized structural steel.

ASTM A123 (ASTM, 2015c) provides a standard for the galvanized coating and its measurement, and includes provisions for the materials and fabrication of the products to be galvanized.

ASTM A153/153M (ASTM, 2009a) is a standard for galvanized hardware, such as fasteners, that are to be centrifuged.

ASTM A384/384M (ASTM, 2013b) is the Standard Practice for Safeguarding Against Warpage and Distortion During Hot-Dip Galvanizing of Steel Assemblies. It includes information on factors that contribute to warpage and distortion as well as suggestions for correction for fabricated assemblies.

ASTM A385/385M (ASTM, 2015a) is the Standard Practice for Providing High Quality Zinc Coatings (Hot-Dip). It includes information on base materials, venting, treatment of contacting surfaces, and cleaning. Many of these provisions should be indicated on the design and detail drawings.

ASTM A780/A780M (ASTM, 2015b) provides for repair of damaged and uncoated areas of hot-dip galvanized coatings.

## M3. SHOP PAINTING

## 1. General Requirements

The surface condition of unpainted steel framing of long-standing buildings that have been demolished has been found to be unchanged from the time of its erection, except at isolated spots where leakage may have occurred. Even in the presence of leakage, the shop coat is of minor influence (Bigos et al., 1954).

This Specification does not define the type of paint to be used when a shop coat is required. Final exposure and individual preference with regard to finish paint are factors that determine the selection of a proper primer. A comprehensive treatment of the subject is found in various SSPC publications.

## 3. Contact Surfaces

Special concerns regarding contact surfaces of HSS should be considered. As a result of manufacturing, a light oil coating is generally present on the outer surface of the HSS. If paint is specified, HSS must be cleaned of this oil coating with a suitable solvent.

## 5. Surfaces Adjacent to Field Welds

This Specification allows for welding through surface materials, including appropriate shop coatings that do not adversely affect weld quality nor create objectionable fumes.

## M4. ERECTION

## 2. Stability and Connections

For information on the design of temporary lateral support systems and components for low-rise buildings, see AISC Design Guide 10, Erection Bracing of Low-Rise Structural Steel Buildings (Fisher and West, 1997).

## 4. Fit of Column Compression Joints and Base Plates

Tests on spliced full-size columns with joints that had been intentionally milled out-ofsquare, relative to either the strong- or weak-axis, demonstrated that the loadcarrying capacity was the same as that for similar columns without splices (Popov and Stephen, 1977). In the tests, gaps of $1 / 16 \mathrm{in}$. ( 2 mm ) were not shimmed; gaps of $1 / 4 \mathrm{in}$. ( 6 mm ) were shimmed with nontapered mild steel shims. Minimum size partial-joint-penetration groove welds were used in all tests. No tests were performed on specimens with gaps greater than $1 / 4 \mathrm{in}$. ( 6 mm ).

## 5. Field Welding

The Specification incorporates AWS D1.1/D1.1M (AWS, 2015) by reference. Surface preparation requirements are defined in that code. The erector is responsible for repair of routine damage and corrosion occurring after fabrication. Welding on coated surfaces demands consideration of quality and safety. Wire brushing has been shown to result in adequate quality welds in many cases. Erector weld procedures accommodate project site conditions within the range of variables normally used on structural steel welding. Welds to material in contact with concrete and welded assemblies in which shrinkage may add up to a substantial dimensional variance may be improved by judicious selection of weld procedure variables and fit up. These conditions are dependent on other variables such as the condition and content of the concrete and the design details of the welded joint. The range of variables permitted in the class of weld procedures, considered to be prequalified in the process used by the erector, is the range normally used.

## CHAPTER N

## QUALITY CONTROL AND QUALITY ASSURANCE

This chapter on quality control and quality assurance does not address a number of applications associated with structural steel. The following is a list of references that may help with quality control and quality assurance for some of these items:
(1) Steel (open web) joists and joist girders-Each model specification of the Steel Joist Institute contains a section on quality.
(2) Concrete reinforcing bars, concrete materials, or placement of concrete for composite members-ACI 318 and ACI 318M (ACI, 2014).
(3) Surface preparations for painting or coatings-SSPC Painting Manual, Volumes 1 and 2 (SSPC, 2002, 2012).

## N1. GENERAL PROVISIONS

This chapter provides minimum requirements for quality control (QC), quality assurance (QA) and nondestructive testing (NDT) for structural steel systems for buildings and other structures. Chapter N also addresses the inspection of field installed shear stud connectors of composite slab construction that are frequently within the scope of the fabricator and/or erector. The inspection requirements for the other elements of composite construction, such as concrete, formwork, reinforcement, and the related dimensional tolerances, are addressed elsewhere. Three publications of the American Concrete Institute may be applicable. These are ACI 117-10, Specifications for Tolerances for Concrete Construction and Commentary (ACI, 2010a), ACI 301-10, Specifications for Structural Concrete (ACI, 2010b), and ACI 318 and ACI 318M, Building Code Requirements for Structural Concrete and Commentary (ACI, 2014). Minimum observation and inspection tasks deemed necessary to ensure quality structural steel construction are defined.

This chapter also defines a comprehensive system of "Quality Control" requirements on the part of the steel fabricator and erector and similar requirements for "Quality Assurance" on the part of the project owner's representatives when such is deemed necessary to complement the contractor's quality control function. These requirements exemplify recognized principles of developing involvement of all levels of management and the workforce in the quality control process as the most effective method of achieving quality in the constructed product. The chapter supplements these quality control requirements with quality assurance responsibilities as are deemed suitable for a specific task. The requirements follow the same requirements for inspections utilized in AWS D1.1/D1.1M (AWS, 2015) and the RCSC Specification (RCSC, 2014).

Under AISC Code of Standard Practice Section 8 (AISC, 2016a), the fabricator or erector is to implement a QC system as part of their normal operations. Those that participate in AISC Quality Certification or similar programs are required to develop QC systems as part of those programs. The engineer of record should evaluate what is already a part of the fabricator's or erector's QC system in determining the QA needs for each project. Where the fabricator's or erector's QC system is considered adequate for the project, including compliance with any specific project needs, the special inspection or quality assurance plan may be modified to reflect this. Similarly, where additional needs are identified, supplementary requirements should be specified.

The terminology adopted is intended to provide a clear distinction between fabricator and erector requirements and the requirements of others. The definitions of QC and QA used here are consistent with usage in related industries, such as the steel bridge industry, and they are used for the purposes of this Specification. It is recognized that these definitions are not the only definitions in use. For example, QC and QA are defined differently in the AISC Quality Certification program in a fashion that is useful to that program and are consistent with the International Standards Organization and the American Society for Quality.

For the purposes of this Specification, QC includes those tasks performed by the steel fabricator and erector that have an effect on quality or are performed to measure or confirm quality. QA tasks performed by organizations other than the steel fabricator and erector are intended to provide a level of assurance that the product meets the project requirements.

The terms quality control and quality assurance are used throughout this Chapter to describe inspection tasks required to be performed by the steel fabricator and erector and project owner's representatives, respectively. The QA tasks are inspections often performed when required by the applicable building code or authority having jurisdiction (AHJ), and designated as "Special Inspections," or as otherwise required by the project owner or engineer of record.

Chapter N defines two inspection levels for required inspection tasks and labels them as either "observe" or "perform." The choice in terminology reflects the multi-task nature of welding and high-strength bolting operations, and the required inspections during each specific phase.

## N2. FABRICATOR AND ERECTOR QUALITY CONTROL PROGRAM

Many quality requirements are common from project to project. Many of the processes used to produce structural steel have an effect on quality and are fundamental and integral to the fabricator's or erector's success. Consistency in imposing quality requirements between projects facilitates more efficient procedures for both.

The construction documents referred to in this chapter are, of necessity, the versions of the design drawings, specifications, and approved shop and erection drawings that have been released for construction, as defined in the AISC Code of Standard Practice (AISC, 2016a). When responses to requests for information and change orders exist that modify the construction documents, these also are part of the construction documents.

When a building information model is used on the project, it also is a part of the construction documents.

Elements of a quality control program can include a variety of documentation, such as policies, internal qualification requirements, and methods of tracking production progress. Any procedure that is not apparent subsequent to the performance of the work should be considered important enough to be part of the written procedures. Any documents and procedures made available to the quality assurance inspector (QAI) should be considered proprietary and not distributed inappropriately.

The inspection documentation should include the following information:
(1) The product inspected
(2) The inspection that was conducted
(3) The name of the inspector and the time period within which the inspection was conducted
(4) Nonconformances and corrections implemented

Records can include marks on pieces, notes on drawings, process paperwork, or electronic files. A record showing adherence to a sampling plan for pre-welding compliance during a given time period may be sufficient for pre-welding observation inspection.

The level of detail recorded should result in confidence that the product is in compliance with the requirements.

## N3. FABRICATOR AND ERECTOR DOCUMENTS

## 1. Submittals for Steel Construction

The documents listed must be submitted so that the engineer of record (EOR) or the EOR's designee can evaluate that the items prepared by the fabricator or erector meet the EOR's design intent. This is usually done through the submittal of shop and erection drawings. In many cases, digital building models are produced in order to develop drawings for fabrication and erection. In lieu of submitting shop and erection drawings, the digital building model can be submitted and reviewed by the EOR for compliance with the design intent. For additional information concerning this process, refer to the AISC Code of Standard Practice (AISC, 2016a).

## 2. Available Documents for Steel Construction

The documents listed must be available for review by the EOR. Certain items are of a nature that submittal of substantial volumes of documentation is not practical, and therefore it is acceptable to have these documents reviewed at the fabricator's or erector's facility by the engineer or designee, such as the QA agency. Additional commentary on some of the documentation listed in this section follows:
(1) This section requires documentation to be available for the fastening of deck. For deck fasteners, such as screws and power fasteners, catalog cuts and/or manufacturers installation instructions are to be available for review. There is no requirement for certification of any deck fastening products.
(2) Because the selection and proper use of welding filler metals is critical to achieving the necessary levels of strength, notch toughness, and quality, the availability for review of welding filler metal documentation and welding procedure specifications (WPS) is required. This allows a thorough review on the part of the engineer and allows the engineer to have outside consultants review these documents, if needed.
(3) The fabricator and erector maintain written records of welding personnel qualification testing. Such records should contain information regarding date of testing, process, WPS, test plate, position, and the results of the testing. In order to verify the six-month limitation on welder qualification, the fabricator and erector should also maintain a record documenting the dates that each welder has used a particular welding process.
(4) The fabricator should consider AISC Code of Standard Practice Section 6.1, in establishing material control procedures for structural steel.

## N4. INSPECTION AND NONDESTRUCTIVE TESTING PERSONNEL

## 1. Quality Control Inspector Qualifications

The fabricator or erector determines the qualifications, training and experience required for personnel conducting the specified inspections. Qualifications should be based on the actual work to be performed and should be incorporated into the fabricator's or erector's QC program. Inspection of welding should be performed by an individual who, by training and/or experience in metals fabrication, inspection and testing, is competent to perform inspection of the work. This is in compliance with AWS D1.1/D1.1M clause 6.1.4 (AWS, 2015). Recognized certification programs are a method of demonstrating some qualifications but they are not the only method nor are they required by Chapter N for QC inspectors.

## 2. Quality Assurance Inspector Qualifications

The QA agency determines the qualifications, training and experience required for personnel conducting the specified QA inspections. This may be based on the actual work to be performed on any particular project. AWS D1.1/D1.1M clause 6.1.4.1(3) states "An individual who, by training or experience, or both, in metals fabrication, inspection and testing, is competent to perform inspection of the work." Qualification for the QA inspector may include experience, knowledge and physical requirements. These qualification requirements are documented in the QA agency's written practice. AWS B5.1 (AWS, 2013) is a resource for qualification of a welding inspector.

The use of assistant welding inspectors under direct supervision is as permitted in AWS D1.1/D1.1M clause 6.1.4.3.

## 3. NDT Personnel Qualifications

NDT personnel should have sufficient education, training and experience in those NDT methods they will perform. ASNT SNT-TC-1a (ASNT, 2011a) and ASNT CP189 (ASNT, 2011b) prescribe visual acuity testing, topical outlines for training,
written knowledge, hands-on skills examinations, and experience levels for the NDT methods and levels of qualification.

As an example, under the provisions of ASNT SNT-TC-1a, an NDT Level II individual should be qualified to set up and calibrate equipment and to interpret and evaluate results with respect to applicable codes, standards and specifications. The NDT Level II individual should be thoroughly familiar with the scope and limitations of the methods for which they are qualified and should exercise assigned responsibility for on-the-job training and guidance of trainees and NDT Level I personnel. The NDT Level II individual should be able to organize and report the results of NDT tests.

## N5. MINIMUM REQUIREMENTS FOR INSPECTION OF STRUCTURAL STEEL BUILDINGS

## 1. Quality Control

The welding inspection tasks listed in Tables N5.4-1 through N5.4-3 are inspection items contained in AWS D1.1/D1.1M (AWS, 2015), but have been organized in the tables in a more rational manner for scheduling and implementation using categories of before welding, during welding and after welding. Similarly, the bolting inspection tasks listed in Tables N5.6-1 through N5.6-3 are inspection items contained in the RCSC Specification (RCSC, 2014), but have been organized in a similar manner for scheduling and implementation using traditional categories of before bolting, during bolting and after bolting. The details of each table are discussed in Commentary Sections N5.4 and N5.6.

Typical model building codes, such as the 2015 International Building Code (IBC) (ICC, 2015) or NFPA 5000 (NFPA, 2015), make specific statements about inspecting to "approved construction documents"-the original and revised design drawings and specifications as approved by the building official or authority having jurisdiction (AHJ). AISC Code of Standard Practice Section 4.2(a) (AISC, 2016a) requires the transfer of information from the contract documents (design drawings and project specifications) into accurate and complete shop and erection drawings. Therefore, relevant items in the design drawings and project specifications that must be followed in fabrication and erection should be placed on the shop and erection drawings or in typical notes issued for the project. Because of this provision, QC inspection may be performed using shop drawings and erection drawings, not the original design drawings.

The applicable referenced standards in construction documents are commonly this standard, the AISC Code of Standard Practice, AWS D1.1/D1.1M, and the RCSC Specification.

## 2. Quality Assurance

AISC Code of Standard Practice Section 8.5.2 contains the following provisions regarding the scheduling of shop fabrication inspection: "Inspection of shop work by the Inspector shall be performed in the Fabricator's shop to the fullest extent possible. Such inspections shall be timely, in-sequence, and performed in such a manner
as will not disrupt fabrication operations and will permit the repair of nonconforming work prior to any required painting while the material is still in-process in the fabrication shop."

Similarly, AISC Code of Standard Practice Section 8.5.3 states "Inspection of field work shall be promptly completed without delaying the progress or correction of the work."

AISC Code of Standard Practice Section 8.5.1 states "The Fabricator and the Erector shall provide the Inspector with access to all places where the work is being performed. A minimum of 24 hours notification shall be given prior to the commencement of work." However, the inspector's timely inspections are necessary for this to be achieved, while the scaffolding, lifts or other means provided by the fabricator or erector for their personnel are still in place or are readily available.

IBC Section 2203.1 (ICC, 2015) states "Identification of structural steel members shall comply with the requirements contained in AISC 360 .... Steel that is not readily identifiable as to grade from marking and test records shall be tested to determine conformity to such standards."

AISC Code of Standard Practice Section 6.1 states "Identification of Material. The fabricator shall be able to demonstrate by a written procedure and actual practice a method of material identification, visible up to the point of assembling members..."

AISC Code of Standard Practice Section 8.2 states "Material test reports shall constitute sufficient evidence that the mill product satisfies material order requirements. The Fabricator shall make a visual inspection of material that is received from the mill, ...." AISC Code of Standard Practice Sections 5.2 and 6.1 address the traceability of material test reports to individual pieces of steel, and the identification requirements for structural steel in the fabrication stage.

Model building codes, such as the IBC or NFPA 5000 (NFPA, 2015), make specific statements about inspecting to "approved construction documents" and the original and revised design drawings and specifications as approved by the building official or the authority having jurisdiction (AHJ). Because of these IBC provisions, the QAI should inspect using the original and revised design drawings and project specifications. The QAI may also use the shop drawings and erection drawings to assist in the inspection process.

## 3. Coordinated Inspection

Coordination of inspection tasks may be needed for fabricators in remote locations or distant from the project itself, or for erectors with projects in locations where inspection by a local firm or individual may not be feasible or where tasks are redundant.

The approval of both the AHJ and EOR is required for quality assurance to rely upon quality control, so there must be a level of assurance provided by the quality activities that are accepted. It may also serve as an intermediate step short of waiving QA as described in Section N6.

## 4. Inspection of Welding

AWS D1.1/D1.1M requires inspection, and any inspection task should be done by the fabricator or erector (termed contractor within AWS D1.1/D1.1M) under the terms of clause 6.1.2.1, as follows:

Contractor's Inspection. This type of inspection and test shall be performed as necessary prior to assembly, during assembly, during welding, and after welding to ensure that materials and workmanship meet the requirements of the contract documents. Fabrication/erection inspection and testing shall be the responsibility of the Contractor unless otherwise provided in the contract documents.

This is further clarified in clause 6.1.3.3, which states:
Inspector(s). When the term inspector is used without further qualification as to the specific inspector category described above, it applies equally to inspection and verification within the limits of responsibility described in 6.1.2.

The basis of Tables N5.4-1, N5.4-2 and N5.4-3 are inspection tasks, as well as quality requirements, and related detailed items contained within AWS D1.1/D1.1M. Commentary Tables C-N5.4-1, C-N5.4-2 and C-N5.4-3 provide specific references to clauses in AWS D1.1/D1.1M. In the determination of the task lists, and whether the task is designated "observe" or "perform," the pertinent terms of the following AWS D1.1/ D1.1M clauses were used:

### 6.5 Inspection of Work and Records

6.5.1 Size, Length, and Location of Welds. The Inspector shall ensure that the size, length, and location of all welds conform to the requirements of this code and to the detail drawings and that no unspecified welds have been added without the approval of the Engineer.
6.5.2 Scope of Examinations. The Inspector shall, at suitable intervals, observe joint preparation, assembly practice, the welding techniques, and performance of each welder, welding operator, and tack welder to ensure that the applicable requirements of this code are met.
6.5.3 Extent of Examination. The Inspector shall examine the work to ensure that it meets the requirements of this code. ... Size and contour of welds shall be measured with suitable gages. ...
"Observe" tasks are as described in clauses 6.5.2 and 6.5.3. Clause 6.5.2 uses the term "observe" and also defines the frequency to be "at suitable intervals." "Perform" tasks are required for each weld by AWS D1.1/D1.1M, as stated in clause 6.5 .1 or 6.5 .3 , or are necessary for final acceptance of the weld or item. The use of the term "perform" is based upon the use in AWS D1.1/D1.1M of the phrases "shall examine the work" and "size and contour of welds shall be measured"; hence, "perform" items are limited to those functions typically performed at the completion of each weld.

TABLE C-N5.4-1	
Reference to AWS D1.1/D1.1M (AWS, 2015)	
Clauses for Inspection Tasks Prior to Welding	

The words "all welds" in clause 6.5 .1 clearly indicate that all welds are required to be inspected for size, length and location in order to ensure conformity. Chapter N follows the same principle in labeling these tasks "perform," which is defined as "Perform these tasks for each welded joint or member."

The words "suitable intervals" used in clause 6.5 . 2 characterize that it is not necessary to inspect these tasks for each weld, but as necessary to ensure that the applicable requirements of AWS D1.1/D1.1M are met. Following the same principles and terminology, Chapter N labels these tasks as "observe," which is defined as "Observe these items on a random basis."

TABLE C-N5.4-2   Reference to AWS D1.1/D1.1M (AWS, 2015) Clauses for Inspection Tasks During Welding	
Inspection Tasks During Welding	Clauses
Use of qualified welders	6.4
Control and handling of welding consumables   - Packaging   - Exposure control	6.2 5.3 .1 5.3.2 (for SMAW), 5.3.3 (for SAW)
No welding over cracked tack welds	5.17
Environmental conditions   - Wind speed within limits   - Precipitation and temperature	$\begin{aligned} & 5.11 .1 \\ & 5.11 .2 \end{aligned}$
WPS followed   - Settings on welding equipment   - Travel speed   - Selected welding materials   - Shielding gas type/flow rate   - Preheat applied   - Interpass temperature maintained (min/max.)   - Proper position (F, V, H, OH)	$6.3 .3,6.5 .2,5.5,5.20$ $5.6,5.7$
Welding techniques   - Interpass and final cleaning   - Each pass within profile limitations   - Each pass meets quality requirements	$\begin{gathered} 6.5 .2,6.5 .3,5.23 \\ 5.29 .1 \end{gathered}$

The selection of suitable intervals as used in AWS D1.1/D1.1M is not defined within AWS D1.1/D1.1M, other than the AWS statement "to ensure that the applicable requirements of this code are met." The establishment of "at suitable intervals" is dependent upon the quality control program of the fabricator or erector, the skills and knowledge of the welders themselves, the type of weld, and the importance of the weld. During the initial stages of a project, it may be advisable to have increased levels of observation to establish the effectiveness of the fabricator's or erector's quality control program, but such increased levels need not be maintained for the duration of the project, nor to the extent of inspectors being on site. Rather, an appropriate level of observation intervals can be used which is commensurate with the observed performance of the contractor and their personnel. More inspection may be warranted for weld fit-up and monitoring of welding operations for complete-joint-penetration (CJP) and partial-joint-penetration (PJP) groove welds loaded in transverse tension, compared to the time spent on groove welds loaded in compression or shear, or time spent on fillet welds. More time may be warranted observing welding operations for multi-pass fillet welds, where poor quality root passes and poor fit-up may be obscured by subsequent weld beads, when compared to single pass fillet welds.

TABLE C-N5.4-3	
Reference to AWS D1.1/D1.1M (AWS, 2015)	
Clauses for Inspection Tasks After Welding	

* $k$-area issues were identified in AISC (1997b). See Commentary Section A3.1c and Section J10.8.

The terms "perform" and "observe" are not to be confused with the terms "periodic special inspection" and "continuous special inspection" used in the IBC for other construction materials. Both sets of terms establish two levels of inspection. The IBC terms specify whether the inspector is present at all times or not during the course of the work. Chapter N establishes inspection levels for specific tasks within each major inspection area. "Perform" indicates each item is to be inspected and "observe" indicates samples of the work are to be inspected. It is likely that the number of inspection tasks will determine whether an inspector has to be present full time but it is not in accordance with Chapter N to let the time an inspector is on site determine how many inspection tasks are done.

AWS D1.1/D1.1M clause 6.3 states that the contractor's (fabricator/erector) inspector is specifically responsible for the WPS, verification of prequalification or proper qualification, and performance in compliance with the WPS. Quality assurance inspectors monitor welding to make sure QC is effective. For this reason, Tables N5.4-1 and N5.4-2 maintain an inspection task for the QA for these functions. For welding to be performed, and for this inspection work to be done, the WPS must be
available to both welder and inspector. A separate inspection for tubular T-, Y-, K-connections was added to recognize the separate fit-up tolerances for these joints in AWS D1.1/D1.1M Table 9.8 and their importance to achieving an acceptable root.

Material verification of weld filler materials is accomplished by observing that the consumable markings correspond to those in the WPS and that certificates of compliance are available for consumables used.

The footnote to Table N5.4-1 states that "The fabricator or erector, as applicable, shall maintain a system by which a welder who has welded a joint or member can be identified. Stamps, if used, shall be the low-stress type." AWS D1.1/D1.1M does not require a welding personnel identification system. However, the inspector must verify the qualifications of welders, including identifying those welders whose work "appears to be below the requirements of this code." Also, if welds are to receive nondestructive testing (NDT), it is essential to have a welding personnel identification system to reduce the rate of NDT for good welders and increase the rate of NDT for welders whose welds frequently fail NDT. This welder identification system can also benefit the contractor by clearly identifying welders who may need additional training.

Table N5.4-3 includes requirements for observation that "No prohibited welds have been added without the approval of the engineer." AWS D1.1/D1.1M clause 5.17 includes specific provisions for tack welds incorporated into final welds, tack welds not incorporated into final welds, and construction aid welds.

AWS D1.1/D1.1M clause 7 on Stud Welding includes requirements regarding the stud welding materials and their condition, base metal condition, stud application qualification testing, pre-production welding inspection and bend testing, qualification of the welding operator, visual inspection of completed studs and bend testing of certain studs when required, and the repair of nonconforming studs. For manually welded studs, special requirements apply to the stud base and the welding procedures.

The proper fit-up for groove welds and fillet welds prior to welding should first be checked by the fitter and/or welder. Such detailed dimensions should be provided on the shop or erection drawings, as well as included in the WPS. Fitters and welders must be equipped with the necessary measurement tools to ensure proper fit-up prior to welding.

AWS D1.1/D1.1M clause 6.2 on Inspection of Materials and Equipment states that, "The Contractor's Inspector shall ensure that only materials and equipment conforming to the requirements of this code shall be used." For this reason, the check of welding equipment is assigned to QC only, and is not required for QA.

## 5. Nondestructive Testing of Welded Joints

## 5a. Procedures

Buildings are subjected to static loading unless fatigue is specifically addressed as prescribed in Appendix 3. Section J2 provisions contain exceptions to AWS D1.1/D1.1M.

## 5b. CJP Groove Weld NDT

For statically loaded structures, AWS D1.1/D1.1M and the Specification have no specific nondestructive testing (NDT) requirements, leaving it to the engineer to determine the appropriate NDT method(s), locations or categories of welds to be tested, and the frequency and type of testing (full, partial or spot), in accordance with AWS D1.1/D1.1M clause 6.15.

The Specification implements a selection of NDT methods and a rate of ultrasonic testing (UT) based upon a rational system of risk of failure. If based upon a model building code such as the International Building Code (ICC, 2015) or NFPA 5000 (NFPA, 2015), the applicable building code will assign every building or structure to one of four different risk categories. Where there is no applicable building code, then Section A1 requires that the risk category be assigned in accordance with ASCE/SEI 7 (ASCE, 2016).

Complete-joint-penetration (CJP) groove welds loaded in tension applied transversely to their axis are assumed to develop the capacity of the smaller steel element being joined, and therefore have the highest demand for quality. CJP groove welds in compression or shear are not subjected to the same crack propagation risks as welds subjected to tension. Partial-joint-penetration (PJP) groove welds are designed using a limited design strength when in tension, based upon the root condition, and therefore are not subjected to the same high stresses and subsequent crack propagation risk as a CJP groove weld. PJP groove welds in compression or shear are similarly at substantially less risk of crack propagation than CJP groove welds.

Fillet welds are designed using limited strengths, similar to PJP groove welds, and are designed for shear stresses regardless of load application, and therefore do not warrant NDT.

The selection of joint type and thickness ranges for ultrasonic testing (UT) are based upon AWS D1.1/D1.1M clause 6.19.1, which limits the procedures and standards as stated in Part F of AWS D1.1/D1.1M to groove welds and heat affected zones between the thicknesses of $5 / 16 \mathrm{in}$. and 8 in . ( 8 mm and 200 mm ), inclusive. The requirement to inspect $10 \%$ of CJP groove welds is a requirement that the full length of $10 \%$ of the CJP groove welds shall be inspected.

## 5c. Welded Joints Subjected to Fatigue

CJP groove welds in butt joints so designated in Appendix 3 Table A-3.1, Sections 5 and 6.1, require that internal soundness be verified using ultrasonic testing (UT) or radiographic testing (RT), meeting the acceptance requirements of AWS D1.1/D1.1M clause 6.12 or 6.13 , as appropriate.

## 5e. Reduction of Ultrasonic Testing Rate

For statically loaded structures in risk categories III and IV, reduction of the rate of UT from $100 \%$ is permitted for individual welders who have demonstrated a high level of skill, proven after a significant number of their welds have been tested.

## 5f. Increase in Ultrasonic Testing Rate

For risk category II, where $10 \%$ of CJP groove welds loaded in transverse tension are tested, an increase in the rate of UT is required for individual welders who have failed to demonstrate a high level of skill, established as a failure rate of more than $5 \%$, after a sufficient number of their welds have been tested. To implement this effectively, and not necessitate the retesting of welds previously deposited by a welder who has a high reject rate established after the 20 welds have been tested, it is suggested that at the start of the work, a higher rate of UT be performed on each welder's completed welds.

## 6. Inspection of High-Strength Bolting

The RCSC Specification (RCSC, 2014), like the referenced welding standard, defines bolting inspection requirements in terms of inspection tasks and scope of examinations. The RCSC Specification uses the term "routine observation" for the inspection of all pretensioned bolts, further validating the choice of the term "observe" in this chapter of the Specification.

Table N5.6-1 includes requirements for observation of "Fasteners marked in accordance with ASTM requirements." This includes the required package marking of the fasteners and the product marking of the fastener components in accordance with the applicable ASTM standard. As an example, ASTM F3125 Grade A325 requires the following items for package marking: ASTM designation and type; size; name and brand or trademark of the manufacturer; number of pieces; lot number; purchase order number; and country of origin. ASTM F3125 Grade A325 also requires manufacturer identification and grade identification on the head of each bolt.

Snug-tightened joints are required to be inspected to ensure that the proper fastener components are used and that the faying surfaces are brought into firm contact during installation of the bolts. The magnitude of the clamping force that exists in a snug-tightened joint is not a consideration and need not be verified.

Pretensioned joints and slip-critical joints are required to be inspected to ensure that the proper fastener components are used and that the faying surfaces are brought into firm contact during the initial installation of the bolts. Pre-installation verification testing is required for all pretensioned bolt installations, and the nature and scope of installation verification will vary based on the installation method used. The following provisions from the RCSC Specification serve as the basis for Tables N5.6-1, N5.6-2 and N5.6-3. In the following, underlining has been added for emphasis of terms:
9.2.1. Turn-of-Nut Pretensioning: The inspector shall observe the preinstallation verification testing required in Section 8.2.1. Subsequently, it shall be ensured by routine observation that the bolting crew properly rotates the turned element relative to the unturned element by the amount specified in Table 8.2. Alternatively, when fastener assemblies are matchmarked after the initial fit-up of the joint, but prior to pretensioning; visual inspection after pretensioning is permitted in lieu of routine observation.
9.2.2. Calibrated Wrench Pretensioning: The inspector shall observe the pre-installation verification testing required in Section 8.2.2. Subsequently, it shall be ensured by routine observation that the bolting crew properly applies the calibrated wrench to the turned element. No further evidence of conformity is required.
9.2.3. Twist-Off-Type Tension Control Bolt Pretensioning: The inspector shall observe the pre-installation verification testing required in Section 8.2.3. Subsequently, it shall be ensured by routine observation that the splined ends are properly severed during installation by the bolting crew.
9.2.4. Direct-Tension Indicator Pretensioning: The inspector shall observe the pre-installation verification testing required in Section 8.2.4. Subsequently, but prior to pretensioning, it shall be ensured by routine observation that the appropriate feeler gage is accepted in at least half of the spaces between the protrusions of the direct tension indicator and that the protrusions are properly oriented away from the work.

The presence of the inspector is dependent upon whether the installation method provides visual evidence of completed installation. Turn-of-nut installation with matchmarking, installation using twist-off bolts, and installation using direct tension indicators provides visual evidence of a completed installation, and therefore "observe" is stated for these methods. Turn-of-nut installation without matchmarking and calibrated wrench installation provides no such visual evidence, and the inspector is to be "engaged" onsite, although not necessarily watching every bolt or joint as it is being pretensioned.

The inspection provisions of the RCSC Specification rely upon observation of the work, hence all tables use "observe" for the designated tasks. Commentary Tables C-N5.6-1, C-N5.6-2 and C-N5.6-3 provide the applicable RCSC Specification references for inspection tasks prior to, during and after bolting.

## 7. Inspection of Galvanized Structural Steel Main Members

Cracks have been observed on the cut surfaces of rolled shapes, plates and on the corners of hollow structural sections (HSS) that have been galvanized. The propensity for cracking is related to residual and thermal stresses, geometric stress concentrations, and a potential for hydrogen or liquid metal assisted cracking. These characteristics can be modified, but no provisions have been found that eliminate all potential for cracking. Inspection should be focused near changes in direction of the cut surface, at edges of welded details, or at changes in section dimensions. In HSS, indications may appear on the inside corner near the exposed end. The word "exposed" in this section is intended to mean cut surface that is not covered by weld or a connected part.

## 8. Other Inspection Tasks

IBC requires that anchor rods for steel be set accurately to the pattern and dimensions called for on the plans. In addition, it is required that the protrusion of the threaded ends through the connected material be sufficient to fully engage the threads of the nuts, but not be greater than the length of the threads on the bolts.

TABLE C-N5.6   Reference to RCSC Specifica Sections for Inspection Tasks	$7 \text { (RCSC, 2014) }$ rior to Bolting
Inspection Tasks Prior to Bolting	Sections
Manufacturer's certifications available for fastener materials	2.1, 9.1
Fasteners marked in accordance with ASTM requirements	Figure C-2.1, 9.1 (also see ASTM standards)
Correct fasteners selected for the joint detail (grade, type, bolt length if threads are to be excluded from shear plane)	2.3.2, 2.7.2, 9.1
Correct bolting procedure selected for joint detail	4, 8
Connecting elements, including the appropriate faying surface condition and hole preparation, if specified, meet applicable requirements	3, 9.1, 9.3
Pre-installation verification testing by installation personnel observed and documented for fastener assemblies and methods used	7, 9.2
Protected storage provided for bolts, nuts, washers, and other fastener components	2.2, 8, 9.1

## TABLE C-N5.6-2 <br> Reference to RCSC Specification (RCSC, 2014) Sections for Inspection Tasks During Bolting

Inspection Tasks During Bolting	Sections
Fastener assemblies placed in all holes and washers   (if required) are positioned as required	$7.1(1), 8.1,9.1$
Joint brought to the snug-tight condition prior to the   pretensioning operation	$8.1,9.1$
Fastener component not turned by the wrench prevented   from rotating	$8.2,9.2$
Fasteners are pretensioned in accordance with a method   approved by RCSC and progressing systematically from   most rigid point toward free edges	$8.2,9.2$


TABLE C-N5.6-3	
Reference to RCSC Specification (RCSC, 2014)	
Sections for Inspection Tasks After Bolting	
Inspection Tasks After Bolting	Sections
Document acceptance or rejection of botted connections	not addressed by RCSC


#### Abstract

AISC Code of Standard Practice, Section 7.5.1, states that anchor rods, foundation bolts, and other embedded items are to be set by the owner's designated representative for construction. The erector is likely not on site to verify placement, therefore it is assigned solely to the quality assurance inspector (QAI). Because it is not possible to verify proper anchor rod materials and embedment following installation, it is required that the QAI be onsite when the anchor rods are being set.


## N6. APPROVED FABRICATORS AND ERECTORS

IBC Section 1704.2.5.1 (ICC, 2015) states that:
Special inspections during fabrication are not required where the work is done on the premises of a fabricator registered and approved to perform such work without special inspection.

Approval shall be based upon review of the fabricator's written procedural and quality control manuals and periodic auditing of fabrication practices by an approved agency.

An example of how these approvals may be made by the building official or authority having jurisdiction (AHJ) is the use of the AISC Certification program. A fabricator certified to the AISC Certification Program for Structural Steel Fabricators, Standard for Steel Building Structures (AISC, 2006), meets the criteria of having a quality control manual, written procedures, and annual onsite audits conducted by AISC's independent auditing company, Quality Management Company, LLC. Similarly, steel erectors may be an AISC Certified Erector or AISC Advanced Certified Steel Erector. The audits confirm that the company has the personnel, knowledge, organization, equipment, experience, capability, procedures and commitment to produce the required quality of work for a given certification category.

Granting a waiver of QA inspections in a fabrication shop does not eliminate the required NDT of welds; instead of being performed by QA, such inspections are instead performed by the fabricator's QC. Even when QA inspection is waived, the NDT reports prepared by the fabricator's QC are available for review by a third party QA.

## APPENDIX 1

## DESIGN BY ADVANCED ANALYSIS

General provisions for designing for stability are presented in Chapter C, in which specific details are provided for the direct analysis method. This Appendix provides details for explicitly modeling system and member imperfections and/or inelasticity within the analysis.

### 1.1. GENERAL REQUIREMENTS

The provisions of this Appendix permit the use of analysis methods that are more sophisticated than those required by Chapter C. The provisions also permit the use of computational analysis (e.g., the finite element method) to replace certain Specification equations used to evaluate limit states covered by Chapters D through H, J and K . The application of these provisions requires a complete understanding of the provisions of this Appendix as well as the equations they supersede. It is the responsibility of the engineer using these provisions to fully verify the completeness and accuracy of the analysis software used for this purpose.

### 1.2. DESIGN BY ELASTIC ANALYSIS

In more traditional approaches, design for stability involves the combination of employing an analysis to determine the required strengths of components and the use of prescriptive code equations to proportion components to ensure they have adequate available strengths. Many traditional second-order analysis methods commonly available to designers account for $P-\Delta$ and $P-\delta$ effects in flexure, but typically do not ensure equilibrium is satisfied on the deformed geometry of the system. They may also not account for twisting effects that can cause additional second-order effects that sometimes should be considered in design. The resulting effects of this approximation, such as neglecting twisting effects, have traditionally been accounted for when proportioning components and historically have been incorporated as part of the design requirements of Chapters D through K.

With more sophisticated analysis software being made available to designers, it is now possible to extend design methods, such as the direct analysis method, to provide engineers more opportunities to better approach complex design problems. Examples include, but are not limited to, defining the unbraced length of an arch or defining the effective length of an unbraced Vierendeel truss in which the axial force in the compression chord varies along its length.

A rigorous second-order elastic analysis, in which equilibrium and compatibility are satisfied on the deformed geometry of the system and its components, combined with adequate stiffness reductions for representing potential inelasticity, will indicate that deflections and internal force and moments will become unbounded as a structural system or any of its components approach instability. With instabilities such as
flexural buckling of compressive members now being monitored by the analysis, the check for adequate design strength can be simplified to only needing to confirm adequate cross-section strength.

In this method of design, it is very important for a designer to ensure that the analysis adequately captures all applicable second-order effects (including twist of the member which can be important in some situations). Guidance is provided in this Commentary with a benchmark problem to ensure all significant second-order effects are being considered in order to use this method of design.

This new design approach is very useful in problems where it is not clearly evident what the unbraced lengths actually are for members in compression. Examples of such a situation occur when designing an arch structure for in-plane buckling effects under axial load, or when designing a through-truss (pony truss) where the top chord is continuous and seemingly unbraced out of plane. For these types of problems, the designer can perform a rigorous second-order elastic analysis as defined in this Appendix and avoid a direct consideration of length effects for axially loaded compression members, while using the member cross-sectional strength in the appropriate limit state design equations. In such a case, buckling and instability are accounted for in producing additional second-order moments and shears caused by member twist.

## 1. General Stability Requirements

This section references the five requirements from Chapter $C$ that make up a rigorous second-order elastic analysis. The requirements are similar to those contained in earlier Specification requirements defining a traditional second-order analysis that considered $P-\Delta$ and $P-\delta$ effects in flexure, but now include the requirement to capture twisting and torsional effects that must be included as part of the design in some problems with long unbraced lengths that are subject to additional internal forces caused by member twist. A rigorous second-order analysis can also capture the beneficial effects of member torsional strength due to warping restraint, for software that is written to include this component of member torsional strength, which adds to the member strength when a member is subjected to twisting effects. Software programs that do consider member twisting by providing for equilibrium on the deformed shape under each increment of loading, but do not consider the beneficial effects of torsional strength due to warping restraint (consideration of the $C_{w}$ member property), will provide a conservative solution to the member internal forces. The designer is cautioned to carefully examine the effects of twist and resulting secondorder effects for each problem when using this method of analysis.

It is noted that this method is currently restricted to doubly symmetric sections, including I-shapes, HSS and box sections, because current analytical testing has generally taken place with these section types. The designer can consider using singly symmetric shapes or other shapes as long as an investigation is undertaken to ensure the results are properly capturing twisting effects and generally produce designs comparable to the traditional design approach as specified in Chapter C and the other design requirements contained in Chapters D through K.

## 2. Calculation of Required Strengths

The details for the level of second-order analysis required for use of this design method are contained in Section 1.2.2. Traditional second-order analysis methods readily available to designers in most modern software, and commonly used in recent years, have traditionally only included flexural second-order effects defined by the $P-\Delta$ and $P-\delta$ effects. These effects are explained in detail in Commentary Section C2. The difference between these traditional second-order analysis methods and the more rigorous second-order analysis referred to herein is the additional requirement for consideration of member twist, which results when an unbraced member is subjected to transverse load with or without axial load and containing an initial imperfection, such as camber or sweep, perpendicular to the plane of loading. Twist can also occur due to biaxial bending in a beam alone or in a beam-column with or without transverse loading that contains an out-of-plane imperfection.

Any analysis method that properly considers twist in a member due to an out-ofplane imperfection, or simply due to the tendency to twist under the effects of elastic or inelastic lateral-torsional buckling, will have additional moments caused by the twisting that must be resisted in the design. It has been found that twist becomes an important consideration in unbraced wide-flange sections as the unbraced length of the member approaches $L_{r}$ and as the ratio of strong-axis to weak-axis moment stiffness and strength increases. For such cases, the member capacity is reached with twist of the cross section in the range of 0.03 to $0.05 \mathrm{rad}\left(1.7\right.$ to $\left.2.9^{\circ}\right)$. Software that considers twisting effects using a large displacement analysis, where equilibrium is accounted for during each increment of loading in a line element model, or software that contains additional degrees of freedom ( 14 degrees of freedom) in a line element member model that includes twisting and warping restraint effects, is able to pick up these additional second-order effects not customarily accounted for in traditional software using a 12 degree of freedom line element member model considering only $P-\Delta$ and $P-\delta$ effects. While finite element models are able to pick up twisting and warping restraint effects and are readily available in some commercial software, they are not routinely used in a design office practice for most analyses.

Deformations to be Considered in the Analysis. The requirement for exactly what imperfection deformations are to be modeled as part of the rigorous second-order analysis is left to the designer for each particular design case. Normally, the imperfection limits (camber, sweep and twist) specified in the various ASTM Specifications for the member type would be consulted. Typically, for W-shaped column members, an imperfection out-of-plane of $1 / 1000$ times the member's unbraced length would be used, unless a larger or smaller tolerance is justified by the fabrication. Generally, it is only necessary to consider the imperfection about the axis where buckling is likely to occur. It has been observed that the second-order internal forces in a member are incurred because of the natural tendency of the member to twist under loading, regardless of the imperfection used in the analysis. The important point is for some member perturbation to exist for the second-order effects to be picked up in the rigorous second-order analysis. For system imperfections caused by erection tolerances, the $1 / 500$ out-of-plumbness, or a similar deviation in the nominal member end locations, should be included in the analysis unless justification
exists for the particular design case that warrants use of a different level of erection tolerance. Regardless of the imperfection chosen for the analysis, it is important for the designer to understand the sensitivity of the analysis results to the level of imperfection chosen. Past studies have shown that the second-order internal forces can be very sensitive to the magnitude of the imperfection chosen, especially in the case of member twist. Some analysis software may only consider the effects of member twist by using a large displacement algorithm that considers member equilibrium in the deformed shape produced by each applied load increment, but without any consideration of the beneficial effects of torsional strength from warping resistance of the cross section. Using the internal member force results from such an analysis is conservative.

If these additional second-order effects caused by member twist are accounted for in the structural analysis, it is possible to design the members for axial load using their cross-sectional strength, without consideration of flexural or flexural-torsional buckling of members caused by unbraced length effects.

Adjustments to Stiffness. Partial yielding accentuated by residual stresses in members can produce a general softening of the structure at the strength limit state that further creates destabilizing effects. The design method provided in this section is similar to the direct analysis method presented in Chapter C, and is also calibrated against distributed-plasticity analyses that account for the spread of yielding through the member cross section and along the member length. In these calibration studies, the residual stresses in W -shapes were assumed to have a maximum value of $0.3 F_{y}$ in compression at the flange tips, and a distribution matching the so-called Lehigh pattern-a linear variation across the flanges and uniform tension in the web (Ziemian, 2010).

Reduced stiffness $\left(E I^{*}=0.8 \tau_{b} E I\right.$ and $\left.E A^{*}=0.8 E A\right)$ is used in the method provided in this section, just as it is for the direct analysis method of Chapter C. However, the stiffness reduction of 0.8 is also required for all other member properties, including $J$ and $C_{w}$ to properly account for twisting effects in the analysis. The $\tau_{b}$ factor is similar to the inelastic stiffness reduction factor implied in the column curve to account for loss of stiffness under high compression loads ( $\alpha P_{r}>0.5 P_{y}$ ), and the 0.8 factor accounts for additional softening under combined axial compression and bending. It is a fortuitous coincidence that the reduction coefficients for both slender and stocky columns are close enough, such that the single reduction factor of $0.8 \tau_{b}$ works fairly well over the full range of slenderness.

The use of reduced stiffness only pertains to analyses for strength and stability limit states. It does not apply to analyses for other stiffness-based conditions and criteria, such as for drift, deflection, vibration and period determination.

For ease of application in design practice, where $\tau_{b}=1.0$, the 0.8 reduction on $I, A$, $J$ and $C_{w}$ can be applied by modifying $E$ and $G$ by 0.8 in the analysis. However, for computer software that does semi-automated design, one should ensure that the reduced $E$ and $G$ is applied only for the second-order analysis. The elastic modulus should not be reduced in nominal strength equations that include $E$ for consideration of local buckling or slender-element effects.

Analysis Benchmark Problem. It is important for an engineer to understand the capabilities and limitations of the analysis software used in design. In order to provide a confidence level that a program is able to account for the second-order effects caused by the combination of axial force, flexure, and twist, it is strongly suggested that several benchmark problems be run to confirm the adequacy of the software being used. The following benchmark problem has been developed as one to consider in evaluating the accuracy of the analysis software required for application of the design method provided in Appendix 1, Section 1.2.

The results of an analysis procedure that does not consider member twist versus a procedure that does is demonstrated in Figure C-A-1.1. In this case, a member is subjected to loading that results in major-axis and minor-axis bending. As the figure indicates, a simply supported member with only ends restrained against twisting and simultaneously subjected to major-axis and minor-axis flexure will, in reality, twist to some extent. This twisting changes the magnitude of the components of major-axis and minor-axis moments when they are resolved to a coordinate system that references the cross-section axes of the deformed (twisted) state of the member.

Table C-A-1.1 provides numerical results at mid-span for a $\mathrm{W} 18 \times 65$ beam-column spanning 20 ft and subjected to four different combinations of loading. The axial and uniformly distributed loads are assumed factored and are applied proportionally. The uniformly distributed load is applied in the vertical gravity direction throughout the loading history. The member is simply supported with rotation at the member ends restrained from twisting, with warping unrestrained. Therefore, the member ends are torsionally pinned (Seaburg and Carter, 1997). With a $\tau$-factor equaling 1.0, because the axial force in all combinations is less than 0.5 times the axial yield force, the stiffness reduction applied to all section properties, including $A, I_{x}, I_{y}, J$ and $C_{w}$, is 0.8 (or equivalently, the factor 0.8 could be applied to both $E$ and $G$ ). To provide some degree of transparency in the results, and because the length-to-height and length-towidth ratios of the member are approximately 13 and 32 , respectively, shear deformations have been assumed negligible and are therefore neglected ${ }^{1}$. For each combination of loading, three sets of results are provided.

In Table C-A-1.1, rows labeled (a) provide analysis results from a traditional secondorder analysis meeting the expectations of Section C2.1. In this case, a nominally straight member is assumed and only in-plane $P-\delta$ effects on flexure need be considered. With no out-of-plane behavior occurring, there is no resulting twist, out-of-plane deflection, or minor-axis bending moments. According to Section C3, the interaction of axial force and flexure is assessed by the requirements of Chapter H , in which the nominal compressive strength defined in Section E3 is based on an effective length equaling the unbraced length of the member.

Analysis results provided in rows (b) and (c) of Table C-A-1.1 correspond to the requirements of Appendix 1, Section 1.2. In these cases, an out-of-plane member imperfection in the shape of a sine curve with an amplitude of $L / 1000$ at midspan is included in the computational model. A more rigorous elastic analysis procedure is

[^51]employed that ensures equilibrium and compatibility are satisfied on the deformed shape of the member, and thereby includes second-order effects attributed to both $P-\delta$ and twist effects. Hence, the combination of the applied loads ( $P$ and $w_{y}$ ), initial out-of-plane imperfection ( $\delta_{o x}=L / 1000$ ), and the resulting deflections and twist ( $\delta_{x}, \delta_{y}$ and $\theta$ ) produce both major-axis and minor-axis bending moments, which at midspan are
\[

$$
\begin{align*}
& M_{u x}^{\prime}=\left(\frac{w_{y} L^{2}}{8}+P \delta_{y}\right) \cos \theta-P\left(\delta_{o x}+\delta_{x}\right) \sin \theta  \tag{C-A-1-1}\\
& M_{u y}^{\prime}=\left(\frac{w_{y} L^{2}}{8}+P \delta_{y}\right) \sin \theta+P\left(\delta_{o x}+\delta_{x}\right) \cos \theta \tag{C-A-1-2}
\end{align*}
$$
\]

In calculating the results given in row (b), the warping resistance of the section produced by cross-flange bending along the length of the member is neglected $\left(E C_{w}=0\right)$ and torsional resistance is provided only by St. Venant stiffness $(G J)$. Such warping resistance, as well as the St. Venant stiffness, is included in the analysis results provided in row (c). The beneficial effects of including warping resistance are evident by significant reductions in deflections ( $\delta_{x}, \delta_{y}$ and $\theta$ ) and minor-axis bending


Fig. C-A-1.1. Deflection of cross section at midspan.

TABLE C-A-1.1   Results for Benchmark Problem Shown in Figure C-A-1.1 W18x65, $L=20$ ft					
$P$, kips		0	75	125	175
$\begin{aligned} & \left(w_{x}=0\right) \\ & w_{y}, \mathrm{kip} / \mathrm{ft} \end{aligned}$		4	3	2	1
$M_{u x}^{\prime}$, kip-in.	(a)	2400	1833	1237	626
	(b)	2386	1826	1235	624
	(c)	2399	1832	1237	626
$M_{u y}^{\prime}$, kip-in.	(a)	0	0	0	0
	(b)	258	234	192	309
	(c)	55.8	104	140	284
$\delta_{y}$, in.	(a)	0.580	0.443	0.299	0.151
	(b)	0.694	0.524	0.342	0.201
	(c)	0.589	0.460	0.318	0.186
$\delta_{x}$, in.	(a)	0	0	0	0
	(b)	0.967	0.951	0.833	1.397
	(c)	0.214	0.435	0.616	1.292
$\theta$, rad	(a)	0	0	0	0
	(b)	0.1078	0.0790	0.0471	0.0358
	(c)	0.0233	0.0290	0.0266	0.0260
Eq. H1-1	(a)	0.62	0.77	0.87	0.96
	(b)	0.87	0.75	0.58	0.62
	(c)	0.68	0.62	0.53	0.60
(a) Analysis per Section C 2.1 ; without member imperfection   (b) Analysis per Appendix 1, Section 1.2; $\delta_{o x}=L / 1000 ; E C_{w}=0$   (c) Analysis per Appendix 1, Section 1.2; $\delta_{0 x}=L / 1000$					

moments. Based on Appendix 1, Section 1.2.3, the interaction of axial force and flexure is assessed according to the requirements of Chapter H , in which the nominal compressive strength, $P_{n}$, is taken as the cross-section compressive strength, $P_{n s}$, which for this nonslender section is $F_{y} A_{g}$. In all cases, the nominal major-axis and minor-axis flexural strengths are determined according to the provisions of Chapter F .

Analysis with Factored Loads. As with the direct analysis method presented in Chapter C, and because of the high nonlinearity associated with second-order effects, it is essential that the analysis of the system be made with loads factored to the strength limit-state level.

The Specification requirements for consideration of initial imperfections are intended to apply only to analyses for strength limit states. It is not necessary, in most cases, to consider initial imperfections in analyses for serviceability conditions such as drift, deflection and vibration.

Where concrete shear walls or other nonsteel components contribute to the stability of the structure and the governing codes or standards for those elements specify a greater stiffness reduction, the greater reduction should be applied.

## 3. Calculation of Available Strengths

When the analysis meets the requirements of Appendix 1, Section 1.2.2, the member cross-sectional strength provisions for available strength in axially loaded members from Chapters D, E and H can be used. Otherwise, the provisions in Chapters F through K complete the process of design by this method. The effects of local buckling and reductions in member capacity because of slender elements of the member must still be considered for $P_{n}$. The effective length factor, $K$, and member buckling from length effects in axially loaded members in general need not be considered because they are directly accounted for in the structural analysis. The interaction of flexure and compression should be checked at all points along the member length, with the nominal flexural strengths, $M_{n}$, determined from Chapter F.

It should be noted that the AASHTO Specification (AASHTO, 2014) addresses the consideration of flange lateral bending due to minor-axis bending moment, plus warping due to torsion, in the design of general curved and straight I-section members for flexure. White and Grubb (2005) provides an overview of the background to these equations. For beam-columns with significant flange bending due to twist, the minor-axis flexural capacity ratio for the flange subjected to the largest combined lateral bending due to overall minor-axis bending plus torsion may be used with Equations H1-1 as a conservative assessment. Aghayere and Vigil (2014) provide a straightforward discussion of this type of calculation with references to additional background research studies.

Where beams and columns rely upon braces for stability, they should generally be included as part of the lateral force-resisting system in the analysis. As long as imperfections are considered as specified, sufficient strength and stiffness to control member movement at the brace points can automatically be assessed.

### 1.3. DESIGN BY INELASTIC ANALYSIS

This section contains provisions for the inelastic analysis and design of structural steel systems, including continuous beams, moment frames, braced frames and combined systems. The Appendix has been modified from the previous Specification to allow for the use of a wider range of inelastic analysis methods, varying from the
traditional plastic design approaches to the more advanced nonlinear finite element analysis methods. In several ways, this Appendix represents a logical extension of the direct analysis method of Chapter C, in which second-order elastic analysis is used. The provision for moment redistribution in continuous beams, which is permitted for elastic analysis only, is provided in Section B3.3.

## 1. General Requirements

These requirements directly parallel the general requirements of Chapter C and are further discussed in Commentary Section C1.

Various levels of inelastic analysis are available to the designer (Ziemian, 2010; Chen and Toma, 1994). All are intended to account for the potential redistribution of member and connection forces and moments that are a result of localized yielding as a structural system reaches a strength limit state. At the higher levels, they have the ability to model complex forms of nonlinear behavior and detect member and/or frame instabilities well before the formation of a plastic mechanism. Many of the strength design equations in this Specification, for members subject to compression, flexure and combinations thereof, were developed using refined methods of inelastic analysis along with experimental results and engineering judgment (Yura et al., 1978; Kanchanalai and Lu, 1979; Bjorhovde, 1988; Ziemian, 2010). Also, research over the past twenty years has yielded significant advances in procedures for the direct application of second-order inelastic analysis in design (Ziemian et al., 1992; White and Chen, 1993; Liew et al., 1993; Ziemian and Miller, 1997; Chen and Kim, 1997; Surovek, 2010). Correspondingly, there has been a steady increase in the inclusion of provisions for inelastic analysis in commercial steel design software, but the level varies widely. Use of any analysis software requires an understanding of the aspects of structural behavior it simulates, the quality of its methods, and whether or not the software's ductility and analysis provisions are equivalent to those of Appendix 1, Sections 1.2 and 1.3. There are numerous studies available for verifying the accuracy of the inelastic analysis (Kanchanalai, 1977; El-Zanaty et al., 1980; White and Chen, 1993; Maleck and White, 2003; Martinez-Garcia and Ziemian, 2006; Ziemian, 2010).

With this background, it is the intent of this Appendix to allow certain levels of inelastic analysis to be used in place of the Specification design equations as a basis for confirming the adequacy of a member or system. In all cases, the strength limit state behavior being addressed by the corresponding provisions of the Specification needs to be considered. For example, Section E3 provides equations that define the nominal compressive strength corresponding to the flexural buckling of members without slender elements. The strengths determined by these equations account for many factors, which primarily include the initial out-of-straightness of the compression member, residual stresses that result from the fabrication process, and the reduction of flexural stiffness due to second-order effects and partial yielding of the cross section. If these factors are directly incorporated within the inelastic analysis and a comparable or higher level of reliability can be ensured, then the specific strength equations of Section E3 need not be evaluated. In other words, the inelastic analysis will indicate the limit state of flexural buckling and the design can be evaluated accordingly. On the other hand, suppose that the same inelastic analysis is not
capable of modeling flexural-torsional buckling. In this case, the provisions of Section E4 would need to be evaluated. Other examples of strength limit states not detected by the analysis may include, but are not limited to, lateral-torsional buckling strength of flexural members, connection strength, and shear yielding or buckling strengths.

Item (e) of the General Requirements given in Appendix 1, Section 1.3.1 states that "...uncertainty in system, member, and connection strength and stiffness..." shall be taken into account. Member and connection reliability requirements are fulfilled by the probabilistically derived resistance factors and load factors of load and resistance factor design of this Specification. System reliability considerations are still a project-by-project exercise, and no overall methods have, as yet, been developed for steel building structures. Introduction to the topic of system reliability can be found in textbooks, for example, Ang and Tang (1984), Thoft-Christensen and Murotsu (1986), and Nowak and Collins (2000), as well as in many publications, for example, Buonopane and Schafer (2006).

Because this type of analysis is inherently conducted at ultimate load levels, the provisions of this Appendix are limited to the design basis of Section B3.1 (LRFD).

In accordance with Section B3.8, the serviceability of the design should be assessed with specific requirements given in Chapter L. In satisfying these requirements in conjunction with a design method based on inelastic analysis, consideration should be given to the degree of steel yielding permitted at service loads. Of particular concern are (a) permanent deflections that may occur due to steel yielding, and (b) stiffness degradation due to yielding and whether this is modeled in the inelastic analysis.

Although the use of inelastic analysis has great potential in earthquake engineering, the specific provisions beyond the general requirements of this Appendix do not apply to seismic design. The two primary reasons for this are:
(a) In defining "equivalent" static loads for use in elastic seismic design procedures, member yielding and inelastic force redistribution is already implied through the specification of seismic response modification factors ( $R$-factors) that are greater than unity. Therefore, it would not be appropriate to use the equivalent seismic loads with a design approach based on inelastic analysis.
(b) The ductility requirements for seismic design based on inelastic analysis are more stringent than those provided in this Specification for nonseismic loads.

Criteria and guidelines for the use of inelastic analysis and design for seismic applications are provided in Chapter 16 of the ASCE/SEI 7 (ASCE, 2016), ASCE/SEI 41 (ASCE, 2013), and Resource Paper 9, "Seismic Design using Target Drift, Ductility, and Plastic Mechanism as Performance Criteria" in the NEHRP Recommended Seismic Provisions for New Buildings and Other Structures (BSSC, 2009). As described in these documents, when nonlinear (inelastic) static analysis is used for seismic design, the earthquake loading effects are typically quantified in terms of target displacements that are determined from ground motion spectral acceleration. Alternatively, for nonlinear (inelastic) dynamic analysis, the earthquake loading effects are defined in terms of input ground motions that are selected and scaled to
match ground motion spectra. For the seismic design of new buildings, capacity design strategies are highly recommended to control the locations of inelastic action to well defined mechanisms (BSSC, 2009; Deierlein et al., 2010).

Connections adjacent to plastic hinges must be designed with sufficient strength and ductility to sustain the forces and deformations imposed under the required loads. The practical implementation of this rule is that the applicable requirements of Section B3.4 and Chapter J must be strictly adhered to. These provisions for connection design have been developed from plasticity theory and verified by extensive testing, as discussed in ASCE (1971) and in many books and papers. Thus, the connections that meet these provisions are inherently qualified for use in designing structures based on inelastic analysis.

Any method of design that is based on inelastic analysis and satisfies the given general requirements is permitted. These methods may include the use of nonlinear finite element analyses (Crisfield, 1991; Bathe, 1995) that are based on continuum elements to design a single structural component, such as a connection, or the use of second-order inelastic frame analyses (McGuire et al., 2000; Clarke et al., 1992) to design a structural system consisting of beams, columns and connections.

Appendix 1, Sections 1.3.2 and 1.3.3, collectively define provisions that can be used to satisfy the ductility and analysis requirements of Appendix 1, Section 1.3.1. They provide the basis for an approved second-order inelastic frame analysis method. These provisions are not intended to preclude other approaches meeting the requirements of Appendix 1, Section 1.3.1.

## 2. Ductility Requirements

Because an inelastic analysis will provide for the redistribution of internal forces due to yielding of structural components such as members and connections, it is imperative that these components have adequate ductility and be capable of maintaining their design strength while accommodating inelastic deformation demands. Factors that affect the inelastic deformation capacity of components include the material properties, the slenderness of cross-sectional elements, and the unbraced length. There are two general methods for assuring adequate ductility: (1) limiting the aforementioned factors, and (2) making direct comparisons of the actual inelastic deformation demands with predefined values of inelastic deformation capacities. The former is provided in this Appendix. It essentially decouples inelastic local buckling from inelastic lateral-torsional buckling. It has been part of the plastic design provisions for several previous editions of the Specification. Examples of the latter approach in which ductility demands are compared with defined capacities appear in Galambos (1968b), Kato (1990), Kemp (1996), Gioncu and Petcu (1997), FEMA 350 (FEMA, 2000), ASCE 41 (ASCE, 2013), and Ziemian (2010).

## 2a. Material

Extensive past research on the plastic and inelastic behavior of continuous beams, rigid frames and connections has amply demonstrated the suitability of steel with yield stress levels up to 65 ksi ( 450 MPa ) (ASCE, 1971).

## 2b. Cross Section

Design by inelastic analysis requires that, up to the peak of the structure's loaddeflection curve, the moments at the plastic hinge locations remain at the level of the plastic moment, which itself should be reduced for the presence of axial force. This implies that the member must have sufficient inelastic rotation capacity to permit the redistribution of additional moments. Sections that are designated as compact in Section B4 have a minimum rotation capacity of approximately $R_{\text {cap }}=3$ (see Figure $\mathrm{C}-\mathrm{A}-1.2$ ) and are suitable for developing plastic hinges. The limiting width-to-thickness ratio designated as $\lambda_{p}$ in Table B4.1b, and designated as $\lambda_{p d}$ in this Appendix, is the maximum slenderness ratio that will permit this rotation capacity to be achieved. Further discussion of the antecedents of these provisions is given in Commentary Section B4.

The additional slenderness limits in Equations A-1-1 through A-1-4 apply to cases not covered in Table B4.1b. Equations A-1-1 and A-1-2, which define height-tothickness ratio limits of webs of wide-flange and rectangular HSS sections under combined flexure and compression, have been part of the plastic design requirements since the 1969 AISC Specification (AISC, 1969) and are based on research documented in Plastic Design in Steel, A Guide and a Commentary (ASCE, 1971). The equations for the flanges of HSS and other box sections (Equation A-1-3), and for round HSS sections (Equation A-1-4), are from the Specification for the Design of Steel Hollow Structural Sections (AISC, 2000a).

Limiting the slenderness of elements in a cross section to ensure ductility at plastic hinge locations is permissible only for doubly symmetric shapes. In general, singleangle, tee and double-angle sections are not permitted for use in plastic design because the inelastic rotation capacity in the regions where the moment produces compression in an outstanding leg will typically not be sufficient.


Fig. C-A-1.2. Definition of rotation capacity.

## 2c. Unbraced Length

The ductility of structural members with plastic hinges can be significantly reduced by the possibility of inelastic lateral-torsional buckling. In order to provide adequate rotation capacity, such members may need more closely spaced bracing than would be otherwise needed for design in accordance with elastic theory. Equations A-1-5 and A-1-7 define the maximum permitted unbraced length in the vicinity of plastic hinges for wide-flange shapes bent about their major axis, and for rectangular shapes and symmetric box-section beams, respectively. These equations are a modified version of those appearing in the 2005 AISC Specification (AISC, 2005), which were based on research reported by Yura et al. (1978) and others. The intent of these equations is to ensure a minimum rotation capacity, $R_{\text {cap }} \geq 3$, where $R_{\text {cap }}$ is defined as shown in Figure C-A-1.2.

Equations A-1-5 and A-1-7 have been modified to account for nonlinear moment diagrams and for situations in which a plastic hinge does not develop at the brace location corresponding to the larger end moment. The moment $M_{2}$ in these equations is the larger moment at the end of the unbraced length, taken as positive in all cases. The moment $M_{1}^{\prime}$ is the moment at the opposite end of the unbraced length corresponding to an equivalent linear moment diagram that gives the same target rotation capacity. This equivalent linear moment diagram is defined as follows:
(a) For cases in which the magnitude of the bending moment at any location within the unbraced length, $M_{\max }$, exceeds $M_{2}$, the equivalent linear moment diagram is taken as a uniform moment diagram with a value equal to $M_{\max }$ as illustrated in Figure C-A-1.3(a). Since the equivalent moment diagram is uniform, the appropriate value for $L_{p d}$ can be obtained by using $M_{1}^{\prime} / M_{2}=+1$.
(b) For cases in which the internal moment distribution along the unbraced length of the beam is indeed linear, or when a linear moment diagram between $M_{2}$ and the actual moment $M_{1}$ at the opposite end of the unbraced length gives a larger magnitude moment in the vicinity of $M_{2}$ as illustrated in Figure C-A-1.3(b), $M_{1}^{\prime}$ is taken equal to the actual moment, $M_{1}$.
(c) For all other cases in which the internal moment distribution along the unbraced length of the beam is nonlinear and a linear moment diagram between $M_{2}$ and the actual moment, $M_{1}$, underestimates the moment in the vicinity of $M_{2}, M_{1}^{\prime}$ is defined as the opposite end moment for a line drawn between $M_{2}$ and the moment at the middle of the unbraced length, $M_{\text {mid }}$, as illustrated in Figure C-A-1.3(c).

The moments $M_{1}$ and $M_{\text {mid }}$ are individually taken as positive when they cause compression in the same flange as the moment $M_{2}$, and negative, otherwise.

For conditions in which lateral-torsional buckling cannot occur, such as members with square and round compact cross sections and doubly symmetric compact sections subjected to minor-axis bending or sufficient tension, the ductility of the member is not a factor of the unbraced length.

## 2d. Axial Force

The provision in this section restricts the axial force in a compression member to $0.75 F_{y} A_{g}$ or approximately $80 \%$ of the design yield load, $\phi_{c} F_{y} A$. This provision is a cautionary limitation, because insufficient research has been conducted to ensure that sufficient inelastic rotation capacity remains in members subject to high levels of axial force.

## 3. Analysis Requirements

For all structural systems with members subject to axial force, the equations of equilibrium must be formulated on the geometry of the deformed structure. The use of second-order inelastic analysis to determine load effects on members and connections is discussed in the Guide to Stability Design Criteria for Metal Structures (Ziemian, 2010). Textbooks [for example, Chen and Lui (1991), Chen and Sohal (1995), and McGuire et al. (2000)] present basic approaches to inelastic analysis, as well as worked examples and computer software for detailed study of the subject.


Fig. C-A-1.3. Equivalent linear moment diagram used to calculate $\mathrm{M}_{1}^{\prime}$.

Continuous and properly braced beams not subject to axial loads can be designed by first-order inelastic analysis (traditional plastic analysis and design). First-order plastic analysis is treated in ASCE (1971), in steel design textbooks [for example, Salmon et al. (2008)], and in textbooks dedicated entirely to plastic design [for example, Beedle (1958), Horne and Morris (1982), Bruneau et al. (2011), and Wong (2009)]. Tools for plastic analysis of continuous beams are readily available to the designer from these and other books that provide simple ways of calculating plastic mechanism loads. It is important to note that such methods use LRFD load combinations, either directly or implicitly, and, therefore, should be modified to include a reduction in the plastic moment capacity of all members by a factor of 0.9 . First-order inelastic analysis may also be used in the design of continuous steel-concrete composite beams. Design limits and ductility criteria for both the positive and negative plastic moments are given by Oehlers and Bradford (1995).

## 3a. Material Properties and Yield Criteria

This section provides an accepted method for including uncertainty in system, member, and connection strength and stiffness. The reduction in yield strength and member stiffness is equivalent to the reduction of member strength associated with the AISC resistance factors used in elastic design. In particular, the factor of 0.9 is based on the member and component resistance factors of Chapters E and F, which are appropriate when the structural system is composed of a single member and in cases where the system resistance depends critically on the resistance of a single member. For systems where this is not the case, the use of such a factor is conservative. The reduction in stiffness will contribute to larger deformations, and, in turn, increased second-order effects.

The inelastic behavior of most structural members is primarily the result of normal stresses in the direction of the longitudinal axis of the member equaling the yield strength of the material. Therefore, the normal stresses produced by the axial force and major- and minor-axis bending moments should be included in defining the plastic strength of member cross sections (Chen and Atsuta, 1976).

Modeling of strain hardening that results in strengths greater than the plastic strength of the cross section is not permitted.

## 3b. Geometric Imperfections

Because initial geometric imperfections may affect the nonlinear behavior of a structural system, it is imperative that they be included in the second-order analysis. Discussion on how frame out-of-plumbness may be modeled is provided in Commentary Section C2.2. Additional information is provided in ECCS (1984), Bridge and Bizzanelli (1997), Bridge (1998), and Ziemian (2010).

Member out-of-straightness should be included in situations in which it can have a significant impact on the inelastic behavior of the structural system. The significance of such effects is a function of (1) the relative magnitude of the member's applied axial force and bending moments, (2) whether the member is subject to single or reverse curvature bending, and (3) the slenderness of the member.

In all cases, initial geometric imperfections should be modeled to represent the potential maximum destabilizing effects.

## 3c. Residual Stresses and Partial Yielding Effects

Depending on the ratio of a member's plastic section modulus, $Z$, to its elastic section modulus, $S$, the partial yielding that occurs before the formation of a plastic hinge may significantly reduce the flexural stiffness of the member. This is particularly the case for minor-axis bending of I-shapes. Any change to bending stiffness may result in force redistribution and increased second-order effects, and thus needs to be considered in the inelastic analysis.

The impact of partial yielding is further accentuated by the presence of thermal residual stresses, which are due to nonuniform cooling during the manufacturing and fabrication processes. Because the relative magnitude and distribution of these stresses is dependent on the process and the cross-section geometry of the member, it is not possible to specify a single idealized pattern for use in all levels of inelastic analysis. Residual stress distributions used for common hot-rolled doubly symmetric shapes are provided in the literature, including ECCS (1984) and Ziemian (2010). In most cases, the maximum compressive residual stress is 30 to $50 \%$ of the yield stress.

The effects of partial yielding and residual stresses may either be included directly in inelastic distributed-plasticity analyses or by modifying plastic hinge based methods of analysis. An example of the latter is provided by Ziemian and McGuire (2002) and Ziemian et al. (2008), in which the flexural stiffness of members are reduced according to the amount of axial force and major- and minor-axis bending moments being resisted. This Specification permits the use of a similar strategy, which is provided in Section C2.3 and described in the Commentary to that section. If the residual stress effect is not included in the analysis and the provisions of Section C2.3 are employed, the stiffness reduction factor of 0.9 specified in Appendix 1, Section 1.3.3a (which accounts for uncertainty in strength and stiffness) must be changed to 0.8 . The reason for this is that the provisions given in Section C2.3 assume that the analysis does not account for partial yielding. Also, to avoid cases in which the use of Section C2.3 may be unconservative, it is further required that the yield or plastic hinge criterion used in the inelastic analysis be defined by the interaction Equations H1-1a and H1-1b. This condition on cross-section strength does not have to be met when the residual stress and partial yielding effects are accounted for in the analysis.

## APPENDIX 2

## DESIGN FOR PONDING

Ponding stability is determined by ascertaining that the conditions of Appendix 2 Equations A-2-1 and A-2-2 are fulfilled. These equations provide a conservative evaluation of the stiffness required to avoid runaway deflection, giving a safety factor of four against ponding instability.

Since Equations A-2-1 and A-2-2 yield conservative results, it may be advantageous to perform a more detailed stress analysis to check whether a roof system that does not meet these equations is still safe against ponding failure.

For the purposes of this Appendix, secondary members are the beams or joists that directly support the distributed ponding loads on the roof of the structure, and primary members are the beams or girders that support the concentrated reactions from the secondary members framing into them. Representing the deflected shape of the primary and critical secondary member as a half-sine wave, the weight and distribution of the ponded water can be estimated and, from this, the contribution that the deflection of each of these members makes to the total ponding deflection can be expressed as follows (Marino, 1966):

For the primary member

$$
\begin{equation*}
\Delta_{w}=\frac{\alpha_{p} \Delta_{o}\left[1+0.25 \pi \alpha_{s}+0.25 \pi \rho\left(1+\alpha_{s}\right)\right]}{1-0.25 \pi \alpha_{p} \alpha_{s}} \tag{C-A-2-1}
\end{equation*}
$$

For the secondary member

$$
\begin{equation*}
\delta_{w}=\frac{\alpha_{s} \delta_{o}\left[1+\frac{\pi^{3}}{32} \alpha_{p}+\frac{\pi^{2}}{8 \rho}\left(1+\alpha_{p}\right)+0.185 \alpha_{s} \alpha_{p}\right]}{1-0.25 \pi \alpha_{p} \alpha_{s}} \tag{C-A-2-2}
\end{equation*}
$$

In these expressions, $\Delta_{o}$ and $\delta_{o}$ are, respectively, the primary and secondary beam deflections due to loading present at the initiation of ponding, and

$$
\begin{gather*}
\alpha_{p}=C_{p} /\left(1-C_{p}\right)  \tag{C-A-2-3a}\\
\alpha_{s}=C_{s} /\left(1-C_{s}\right)  \tag{C-A-2-3b}\\
\rho=\delta_{o} / \Delta_{o}=C_{S} / C_{p} \tag{C-A-2-3c}
\end{gather*}
$$

Using these expressions for $\Delta_{w}$ and $\delta_{w}$, the ratios $\Delta_{w} / \Delta_{o}$ and $\delta_{w} / \delta_{o}$ can be computed for any given combination of primary and secondary beam framing using the computed values of coefficients $C_{p}$ and $C_{s}$, respectively, defined in the Appendix.

Even on the basis of unlimited elastic behavior, it is seen that the ponding deflections would become infinitely large unless

$$
\begin{equation*}
\left(\frac{C_{p}}{1-C_{p}}\right)\left(\frac{C_{s}}{1-C_{s}}\right)<\frac{4}{\pi} \tag{C-A-2-4}
\end{equation*}
$$

Since elastic behavior is not unlimited, the effective bending strength available in each member to resist the stress caused by ponding action is restricted to the difference between the yield stress of the member and the stress, $f_{o}$, produced by the total load supported by it before consideration of ponding is included.

Note that elastic deflection is directly proportional to stress. The admissible amount of ponding in either the primary or critical (midspan) secondary member, in terms of the applicable ratio, $\Delta_{w} / \Delta_{o}$ and $\delta_{w} / \delta_{o}$, can be represented as $\left(0.8 F_{y}-f_{o}\right) / f_{o}$, assuming a safety factor of 1.25 against yielding under the ponding load. Substituting this expression for $\Delta_{w} / \Delta_{o}$ and $\delta_{w} / \delta_{o}$, and combining with the foregoing expressions for $\Delta_{w}$ and $\delta_{w}$, the relationship between the critical values for $C_{p}$ and $C_{s}$ and the available elastic bending strength to resist ponding is obtained. The curves presented in Figures A-2.1 and A-2.2 are based upon this relationship. They constitute a design aid for use when a more exact determination of required flat roof framing stiffness is needed than given by the Specification provision: $C_{p}+0.9 C_{s} \leq 0.25$.

Given any combination of primary and secondary framing, the stress index is computed as follows:

For the primary member

$$
\begin{equation*}
U_{p}=\left(\frac{0.8 F_{y}-f_{o}}{f_{o}}\right)_{p} \tag{C-A-2-5}
\end{equation*}
$$

For the secondary member

$$
\begin{equation*}
U_{s}=\left(\frac{0.8 F_{y}-f_{o}}{f_{o}}\right)_{s} \tag{C-A-2-6}
\end{equation*}
$$

where
$f_{o}=$ stress due to impounded water due to either nominal rain or snow loads (exclusive of the ponding contribution), and other loads acting concurrently, as specified in Section B 2 , ksi (MPa)

Depending upon geographic location, this loading should include such amount of snow as might also be present, although ponding failures have occurred more frequently during torrential summer rains when the rate of precipitation exceeded the rate of drainage runoff and the resulting hydraulic gradient over large roof areas caused substantial accumulation of water some distance from the eaves.

Given the size, spacing and span of a tentatively selected combination of primary and secondary beams, for example, one may enter Figure A-2.1 at the level of the computed stress index, $U_{p}$, determined for the primary beam, move horizontally to the computed $C_{s}$ value of the secondary beams, then move downward to the abscissa scale. The combined stiffness of the primary and secondary framing is sufficient to prevent ponding if the flexibility coefficient read from this latter scale is larger than the value of $C_{p}$ computed for the given primary member; if not, a stiffer primary or secondary beam, or combination of both, is required.

If the roof framing consists of a series of equally spaced wall-bearing beams, the beams would be considered as secondary members, supported on an infinitely stiff primary member. For this case, one would use Figure A-2.2. The limiting value of $C_{s}$ would be determined by the intercept of a horizontal line representing the $U_{s}$ value and the curve for $C_{p}=0$.

The ponding deflection contributed by a metal deck is usually such a small part of the total ponding deflection of a roof panel that it is sufficient merely to limit its moment of inertia to 0.000025 ( 3940 ) times the fourth power of its span length [in. ${ }^{4}$ per foot ( $\mathrm{mm}^{4}$ per meter) of width normal to its span], as provided in Equation A-2-2. However, the stability against ponding of a roof consisting of a metal roof deck of relatively slender depth-to-span ratio, spanning between beams supported directly on columns, may need to be checked. This can be done using Figures A-2.1 or A-2.2 with the following computed values:
$U_{p}=$ stress index for the supporting beam
$U_{s}=$ stress index for the roof deck
$C_{p}=$ flexibility coefficient for the supporting beams
$C_{s}=$ flexibility coefficient for $1 \mathrm{ft}(0.305 \mathrm{~m})$ width of the roof deck $(S=1.0)$
Since the shear rigidity of the web system is less than that of a solid plate, the moment of inertia of steel joists and trusses should be taken as somewhat less than that of their chords (Fisher and Pugh, 2007).

## APPENDIX 3

## FATIGUE

When the limit state of fatigue is a design consideration, its severity is most significantly affected by the number of load applications, the magnitude of the stress range, and the severity of the stress concentrations associated with particular details. Issues of fatigue are not normally encountered in building design; however, when encountered and if the severity is great enough, fatigue is of concern and all provisions of this Appendix must be satisfied.

### 3.1. GENERAL PROVISIONS

This Appendix deals with high cycle fatigue (i.e., $>20,000$ cycles); this behavior occurs when elastic stresses are involved. In situations where inelastic (plastic) stresses are involved, fatigue cracks may initiate at far fewer than 20,000 cyclesperhaps as few as a dozen. However, unlike the conditions prescribed in this Appendix, low cycle fatigue involves cyclic, inelastic stresses. This is because the applicable cyclic allowable stress range will be limited by the static allowable stress. At low levels of cyclic tensile stress, a point is reached where the stress range is so low that fatigue cracking will not initiate regardless of the number of cycles of loading. This level of stress is defined as the fatigue threshold, $F_{T H}$.

Extensive test programs using full-size specimens, substantiated by theoretical stress analysis, have confirmed the following general conclusions (Fisher et al., 1970; Fisher et al., 1974):
(1) Stress range and notch severity are the dominant stress variables for welded details and beams.
(2) Other variables such as minimum stress, mean stress and maximum stress are not significant for design purposes.
(3) Structural steels with a specified minimum yield stress of 36 to 100 ksi ( 250 to 690 MPa ) do not exhibit significantly different fatigue strengths for given welded details fabricated in the same manner.

Fatigue crack growth rates are generally inversely proportional to the modulus of elasticity and therefore, at higher temperatures, crack growth rates increase. At $500^{\circ} \mathrm{F}$ $\left(260^{\circ} \mathrm{C}\right)$, crack growth rates on ASTM A212B steel (ASTM, 1967) are essentially the same as for room temperature (Hertzberg et al., 2012). The Appendix is conservatively limited to applications involving temperatures not to exceed $300^{\circ} \mathrm{F}\left(150^{\circ} \mathrm{C}\right)$. Elevated temperature applications may also have corrosion effects that are not considered by the Appendix.

The Appendix does not have a lower temperature limit because fatigue crack growth rates are lower. Fatigue tests as low as $-100^{\circ} \mathrm{F}\left(-75^{\circ} \mathrm{C}\right)$ have been conducted with no observed change in crack growth rates (Roberts et al., 1980). It should be recognized
that at low temperatures, brittle fracture concerns increase. The critical size to which a crack can grow before the onset of brittle fracture will be smaller for low temperature applications than will be the case for a room temperature application.

### 3.2. CALCULATION OF MAXIMUM STRESSES AND STRESS RANGES

Fluctuation in stress that does not involve tensile stress does not cause crack propagation and is not considered to be a fatigue situation. On the other hand, in elements of members subject solely to calculated compressive stress, fatigue cracks may initiate in regions of high tensile residual stress. In such situations, the cracks generally do not propagate beyond the region of the residual tensile stress, because the residual stress is relieved by the crack. For this reason, stress ranges that are completely in compression need not be investigated for fatigue. For cases involving cyclic reversal of stress, the calculated stress range must be taken as the sum of the compressive stress and the tensile stress caused by different directions or patterns of the applied live load. When part of the stress cycle is compressive, the stress range may exceed $0.66 F_{y}$.

### 3.3. PLAIN MATERIAL AND WELDED JOINTS

Fatigue resistance has been derived from an exponential relationship between the number of cycles to failure, $N$, and the stress range, $S_{r}$, called an $S-N$ relationship, of the form

$$
\begin{equation*}
N=\frac{C_{f}}{S_{r}^{n}} \tag{C-A-3-1}
\end{equation*}
$$

The general relationship is often plotted as a linear $\log$-log function $(\log N=A-n$ $\log S_{r}$ ). Figure C-A-3.1 shows the family of fatigue resistance curves identified as stress categories A, B, B', C, D, E, E' and G. These relationships were established based on an extensive database developed in the United States and abroad (Keating and Fisher, 1986). The allowable stress range has been developed by adjusting the coefficient, $C_{f}$, so that a design curve is provided that lies two standard deviations of the standard error of estimate of the fatigue cycle life below the mean $S-N$ relationship of the actual test data. These values of $C_{f}$ correspond to a probability of failure of $2.5 \%$ of the design life.
The number of stress range fluctuations in a design life, $n_{S R}$, in Equation A-3-1, can often be calculated as

$$
\begin{align*}
n_{S R}= & (\text { number of stress fluctuations per day }) \times \\
& (365 \text { days }) \times(\text { years in design life }) \tag{C-A-3-2}
\end{align*}
$$

Stress category F is shown in Figure C-A-3.2 and has a slope different than the other stress categories. The fatigue resistance of stress category $\mathrm{C}^{\prime}$ or $\mathrm{C}^{\prime \prime}$ details is determined by applying a reduction factor, $R_{P J P}$ or $R_{F I L}$, respectively, to the stress category C stress range, which shifts the fatigue resistance curve for stress category C downward by a factor proportional to the reduction. Unlike stress category C, stress category $\mathrm{C}^{\prime}$ and $\mathrm{C}^{\prime \prime}$ details do not have a fatigue threshold.

Prior to the 1999 AISC Load and Resistance Factor Design Specification for Structural Steel Buildings (AISC, 2000b), stepwise tables meeting the criteria discussed in the foregoing, including cycles of loading, stress categories, and allowable stress ranges were provided in the Specification. A single table format (Table A-3.1) was introduced in the 1999 AISC LRFD Specification that provides the stress categories, ingredients for the applicable equation, and information and examples, including the sites of concern for potential crack initiation (AISC, 2000b).


Fig. C-A-3.1. Fatigue resistance curves.


Fig. C-A-3.2. Fatigue resistance curves for stress categories $C$ and $F$.

Table A-3.1 is organized into eight sections of general conditions for fatigue design, as follows:
(1) Section 1 provides information and examples for the steel material at copes, holes, cutouts or as produced.
(2) Section 2 provides information and examples for various types of mechanically fastened joints, including eyebars and pin plates.
(3) Section 3 provides information related to welded connections used to join builtup members, such as longitudinal welds, access holes and reinforcements.
(4) Section 4 deals only with longitudinal load carrying fillet welds at shear splices.
(5) Section 5 provides information for various types of groove and fillet welded joints that are transverse to the applied cyclic stress.
(6) Section 6 provides information on a variety of groove-welded attachments to flange tips and web plates, as well as similar attachments, connected with either fillet or partial-joint-penetration groove welds.
(7) Section 7 provides information on several short attachments to structural members.
(8) Section 8 collects several miscellaneous details, such as shear connectors, shear on the throat of fillet, plug and slot welds, and their impact on base metal. It also provides for tension on the stress area of various bolts, threaded anchor rods, and hangers.

A similar format and consistent criteria are used by other specifications.
When fabrication details involving more than one stress category occur at the same location in a member, the stress range at that location must be limited to that of the most restrictive category. The need for a member larger than required by static loading will often be eliminated by locating notch-producing fabrication details in regions subject to smaller ranges of stress.

A detail not explicitly covered before 1989 (AISC, 1989) was added in the 1999 AISC LRFD Specification (AISC, 2000b) to cover tension-loaded plate elements connected at their end by transverse partial-joint-penetration groove or fillet welds in which there is more than a single site for the initiation of fatigue cracking, one of which will be more critical than the others depending upon welded joint type and size, and material thickness (Frank and Fisher, 1979). Regardless of the site within the joint at which potential crack initiation is considered, the allowable stress range provided is applicable to connected material at the toe of the weld.

### 3.4. BOLTS AND THREADED PARTS

The fatigue resistance of bolts subject to tension is predictable in the absence of pretension and prying action; provisions are given for such nonpretensioned details as hanger rods and anchor rods. In the case of pretensioned bolts, deformation of the connected parts through which pretension is applied introduces prying action, the magnitude of which is not completely predictable (Kulak et al., 1987). The effect of
prying is not limited to a change in the average axial tension on the bolt but includes bending in the threaded area under the nut. Because of the uncertainties in calculating prying effects, definitive provisions for the allowable stress range for bolts subject to applied axial tension are not included in this Specification. To limit the uncertainties regarding prying action on the fatigue of pretensioned bolts in details which introduce prying, the allowable stress range provided in Table A-3.1 is appropriate for extended cyclic loading only if the prying induced by the applied load is small.

The tensile stress range of bolts that are pretensioned to the requirements of Table J3.1 or J3.1M can be conservatively approximated as $20 \%$ of the absolute value of the applied cyclic axial load and moment from dead, live and other loads. AISC Design Guide 17, High Strength Bolts: A Primer for Structural Engineers (Kulak, 2002) states that the final bolt force is the initial pretension force plus a component of the externally applied load that depends on the relative areas of the bolt and the area of the connected material in compression. Test results show that this approach is a good predictor and that the increase in bolt pretension can be expected to be on the order of not more than about $5 \%$ to $10 \%$, which affirms that the $20 \%$ rule is a conservative upper bound. The approximated stress range is compared with the allowable and threshold stress range.

Fatigue provisions in Appendix 3 and in the RCSC Specification (RCSC, 2014) are applied differently, but produce similar results. Some key differences are:
(1) Appendix 3 allows bolts that are pretensioned or not pretensioned to be subjected to cyclic axial loads, where the RCSC Specification only allows pretensioned bolts.
(2) Appendix 3 is applied using a bolt net area in tension, where RCSC Specification Table 5.2 is applied based upon the cross-sectional area determined from the nominal diameter.
(3) Appendix 3 is applied by determining a maximum allowable stress range and a stress range threshold regardless of the bolt material, where RCSC Specification Table 5.2 is applied by determining a maximum bolt stress, which does depend on the bolt material. Therefore, the stresses obtained from Appendix 3 should be compared to the tensile stress range including prying, while the stresses obtained from RCSC Specification Table 5.2 should be compared to the total applied tensile stress including prying.

Nonpretensioned fasteners are not permitted under this Specification for joints subject to cyclic shear forces. Bolts installed in joints meeting all the requirements for slip-critical connections survive unharmed when subject to cyclic shear stresses sufficient to fracture the connected parts; provisions for such bolts are given in Section 2 of Table A-3.1.

### 3.5. FABRICATION AND ERECTION REQUIREMENTS FOR FATIGUE

It is essential that when longitudinal backing bars are to be left in place, they be continuous or spliced using flush-ground complete-joint-penetration groove welds before attachment to the parts being joined. Otherwise, the transverse nonfused
section constitutes a crack-like defect that can lead to premature fatigue failure or even brittle fracture of the built-up member.

Welds that attach left-in-place longitudinal backing to the structural member will affect the fatigue performance of the structural member. Continuous longitudinal fillet welds are stress category B ; intermittent fillet welds are stress category E . Longitudinal backing may be attached to the joint by tack welding in the groove, attaching the backing to one member with a fillet weld, or attaching the backing to both members with fillet welds.

In transversely loaded joints subjected to tension, a lack-of-fusion plane in T-joints acts as an initial crack-like condition. In groove welds, the root at the backing bar often has discontinuities that can reduce the fatigue resistance of the connection. Removing the backing, back gouging the joint, and rewelding eliminates the undesirable discontinuities.

The addition of contoured fillet welds at transverse complete-joint-penetration groove welds in T- and corner joints and at reentrant corners reduces the stress concentration and improves fatigue resistance.

Experimental studies on welded built-up beams demonstrated that if the surface roughness of flame-cut edges was less than $1,000 \mu \mathrm{in}$. ( $25 \mu \mathrm{~m}$ ), fatigue cracks would not develop from the flame-cut edge but from the longitudinal fillet welds connecting the beam flanges to the web (Fisher et al., 1970, 1974). This provides stress category B fatigue resistance without the necessity for grinding flame-cut edges.

Reentrant corners at cuts, copes and weld access holes provide a stress concentration point that can reduce fatigue resistance if discontinuities are introduced by punching or thermal cutting. Reaming sub-punched holes and grinding the thermally cut surface to bright metal prevents any significant reduction in fatigue resistance.

For Cases 1.4, 1.5 and 3.3 in Table A-3.1, Yam and Cheng (1990) reported that fatigue performance of reentrant corners less than 1 in . and not ground smooth is similar to stress category C when calculated with a stress concentration factor. To be consistent with other cases in this Appendix, reentrant corners with radii as small as $3 / 8$ in. and not ground are assigned stress category $\mathrm{E}^{\prime}$ and do not have to be calculated with a stress concentration factor. Reentrant corners with a radius of at least 1 in . and meeting surface requirements and NDE requirements are associated with stress category C, except for built-up members, where it is stress category D .

For Cases 3.5 and 3.6 in Table A-3.1, coverplates and other attachments wider than the flange with welds across the ends are subject to fatigue stress categories E and $\mathrm{E}^{\prime}$, depending on the thickness of the flange. There has been little research on connections with coverplates that are wider than the flange, where the flange is thicker than 0.8 in . and without welds across the ends; therefore, this detail is not recommended, as indicated for Case 3.7. Cover-plated flanges thicker than 0.8 in . are permitted when the ends are welded.

As shown in Case 7.1 in Table A-3.1, base metal subject to longitudinal loading at details with parallel or transverse welds with no transition radius is subject to stress category E or $\mathrm{E}^{\prime}$ fatigue stresses depending on the length and thickness of the attachment.

Attachments with no transition result in abrupt changes in stiffness of the stressed member corresponding to the stress the attachment attracts from the main member. Larger attachments attract more stress and make the attachment connection stiffer. These stiffness changes act as stress concentrations and aggravate fatigue crack growth.

The use of run-off tabs at transverse butt-joint groove welds enhances weld soundness at the ends of the joint. Subsequent removal of the tabs and grinding of the ends flush with the edge of the member removes discontinuities that are detrimental to fatigue resistance.

## APPENDIX 4

## STRUCTURAL DESIGN FOR FIRE CONDITIONS

### 4.1. GENERAL PROVISIONS

Appendix 4 provides structural engineers with criteria for designing steel-framed building systems and components, including columns, and floor and truss assemblies, for fire conditions. Compliance with the performance objective in Section 4.1.1 can be demonstrated by either structural analysis or component qualification testing.

Thermal expansion and progressive decrease in strength and stiffness are the primary structural responses to elevated temperatures that may occur during fires. An assessment of a design of building components and systems based on structural mechanics that allows designers to address the fire-induced restrained thermal expansions, deformations and material degradation at elevated temperatures can lead to a more robust structural design for fire conditions.

## 1. Performance Objective

The performance objective underlying the provisions in this Specification is that of life safety. Fire safety levels should depend on the building occupancy, height of the building, the presence of active fire mitigation measures, and the effectiveness of fire-fighting. Three limit states exist for elements serving as fire barriers (compartment walls and floors): (1) heat transmission leading to unacceptable rise of temperature on the unexposed surface; (2) breach of barrier due to cracking or loss of integrity; and (3) loss of load-bearing capacity. In general, all three must be considered by the engineer to achieve the desired performance. These three limit states are interrelated in fire-resistant design. For structural elements that are not part of a separating element, the governing limit state is loss of load-bearing capacity.

Specific performance objectives for a facility are determined by the stakeholders in the building process, within the context of the general performance objective and limit states discussed in the preceding paragraph. In some instances, applicable building codes may stipulate that steel in buildings of certain occupancies and heights be protected by fire-resistant materials or assemblies to achieve specified performance goals.

## 2. Design by Engineering Analysis

The strength design criteria for steel beams and columns at elevated temperatures are based on Tagaki and Deierlein (2007). These strength equations do not transition smoothly to the strength equations used to design steel members under ambient conditions. The practical implications of the discontinuity are minor, as the temperatures in the structural members during a fully developed fire are far in excess of the temperatures at which this discontinuity might otherwise be of concern in design. Nevertheless, to avoid the possibility of misinterpretation, the scope of applicability
of the analysis methods in Appendix 4, Section 4.2 is limited to temperatures above $400^{\circ} \mathrm{F}\left(200^{\circ} \mathrm{C}\right)$.

Structural behavior under severe fire conditions is highly nonlinear in nature as a result of the constitutive behavior of materials at elevated temperatures and the relatively large deformations that may develop in structural systems at sustained elevated temperatures. As a result of this behavior, it is difficult to develop design equations to ensure the necessary level of structural performance during severe fires using elastically based ASD methods. Accordingly, structural design for fire conditions by analysis should be performed using LRFD methods, in which the nonlinear structural actions arising during severe fire exposures and the temperature-dependent design strengths can be properly taken into account.

## 4. Load Combinations and Required Strength

Fire safety measures are aimed at three levels of performance: (1) to prevent the outbreak of fires through elimination of ignition sources or hazardous practices; (2) to prevent uncontrolled fire development and flashover through early detection and suppression; and (3) to prevent loss of life or structural collapse through fire protection systems, compartmentation, exit ways, and provision of general structural integrity and other passive measures. Specific structural design provisions to check structural integrity and risk of progressive failure due to severe fires can be developed from principles of structural reliability theory (Ellingwood and Leyendecker, 1978; Ellingwood and Corotis, 1991).

The limit state probability of failure due to fire can be written as

$$
\begin{equation*}
P(F)=P(F \mid D, I) P(D \mid I) P(I) \tag{C-A-4-1}
\end{equation*}
$$

where
$P(I)=$ probability of ignition
$P(D \mid I)=$ probability of development of a structurally significant fire
$P(F \mid D, I)=$ probability of failure, given the occurrence of the two preceding events

Measures taken to reduce $P(I)$ and $P(D \mid I)$ are mainly nonstructural in nature. Measures taken by the structural engineer to design fire resistance into the structure impact the term $P(F \mid D, I)$.

The development of structural design requirements requires a target reliability level, reliability being measured by $P(F)$ from Equation C-A-4-1. Analysis of reliability of structural systems for gravity dead and live load (Galambos et al., 1982) suggests that the limit state probability of individual steel members and connections is on the order of $10^{-5}$ to $10^{-4}$ per year. For redundant steel frame systems, $P(F)$ is on the order of $10^{-6}$ to $10^{-5}$. The de minimis risk, that is, the level below which the risk is of regulatory or legal concern and the economic or social benefits of risk reduction are small, is on the order of $10^{-7}$ to $10^{-6}$ per year (Pate-Cornell, 1994). If $P(I)$ is on the order of $10^{-4}$ per year for typical buildings and $P(D \mid I)$ is on the order of $10^{-2}$ for office or commercial buildings in urban areas with suppression systems or other protective measures, then $P(F \mid D, I)$ should be approximately 0.1 to ascertain that the risk due to structural failure caused by fire is socially acceptable.

The use of first-order structural reliability analysis based on this target (conditional) limit state probability leads to the gravity load combination presented as Equation A-4-1. Load combination Equation A-4-1 is similar to Equation 2.5-1 that appears in ASCE/SEI 7-16 (ASCE, 2016), where the probabilistic basis for load combinations for extraordinary events is explained in detail. The factor 0.9 is applied to the dead load when the effect of the dead load is to stabilize the structure; otherwise, the factor 1.2 is applied. The companion action load factors on $L$ and $S$ in that equation reflect the fact that the probability of a coincidence of the peak time-varying load with the occurrence of a fire is negligible (Ellingwood and Corotis, 1991).

The overall stability of the structural system is checked by considering the effect of a small notional lateral load equal to $0.2 \%$ of the story gravity force, as defined in Section C2.2, acting in combination with the gravity loads. The required strength of the structural component or system, designed using the load combination given by Equation A-4-1, is on the order of 60 to $70 \%$ of the required strength under full gravity or wind load at normal temperature.

### 4.2. STRUCTURAL DESIGN FOR FIRE CONDITIONS BY ANALYSIS

## 1. Design-Basis Fire

Once a fuel load has been agreed upon for the occupancy, the designer should demonstrate the effect of various fires on the structure by assessing the temperaturetime relationships for various ventilation factors. NFPA 557 (NFPA, 2012) and SFPE S. 01 (SFPE, 2011), as well as other published standards, can be consulted in this regard. These heating effects may result in different structural responses, and it is useful to demonstrate the capability of the structure to withstand such exposures. The effects of a localized fire should also be assessed to ascertain that local damage is not excessive. Based on these results, members, connections and edge details can be specified to provide a structure that is sufficiently robust.

## 1a. Localized Fire

Localized fires may occur in large open spaces, such as the pedestrian area of covered malls, concourses of airport terminals, warehouses, and factories, where fuel packages are separated by large aisles or open spaces. In such cases, the radiant heat flux can be estimated by a point source approximation, requiring the heat release rate of the fire and separation distance between the center of the fuel package and the closest surface of the steelwork. The heat release rate can be determined from experimental results or may be estimated if the mass loss rate per unit floor area occupied by the fuel is known. Otherwise, a steady-state fire may be assumed.

## 1b. Post-Flashover Compartment Fires

Caution should be exercised when determining temperature-time profiles for spaces with high aspect ratios, for example 5:1 or greater, or for large spaces, for example those with an open (or exposed) floor area in excess of $5,000 \mathrm{ft}^{2}\left(460 \mathrm{~m}^{2}\right)$. In such cases, it is unlikely that all combustibles will burn in the space simultaneously. Instead, burning will be most intense in, or perhaps limited to, the combustibles
nearest to a ventilation source. For modest-sized compartments with low aspect ratios, the temperature history of the design fire can be determined by algebraic equations or computer models, such as those described in the SFPE Handbook of Fire Protection Engineering (SFPE, 2002).

Caution should be exercised when determining the fire duration for spaces with high aspect ratios, for example 5:1 or greater, or for large spaces, for example those with a floor area in excess of $5,000 \mathrm{ft}^{2}\left(460 \mathrm{~m}^{2}\right)$. The principal difficulty lies in obtaining a realistic estimate for the mass loss rate, given that all combustibles within the space may not be burning simultaneously. Failure to recognize uneven burning will result in an overestimation of the mass burning rate and an underestimation of the fire duration by a significant margin. Note: Some computation methods may implicitly determine the duration of the fire, in which case the calculation of mass loss rate is unnecessary.

Where a parametric curve is used to define a post-flashover fire, the duration is determined by means of the fuel versus ventilation provisions, not explicitly by loss of mass. This clause should not limit the use of temperature-time relationships to those where duration is calculated, as stated in the foregoing, as these tend to be localized fires and external fire.

## 1c. Exterior Fires

A design guide is available for determining the exposure resulting from an exterior fire (AISI, 1979).

## 1d. Active Fire Protection Systems

Due consideration should be given to the reliability and effectiveness of active fire protection systems when describing the design-basis fire. When an automatic sprinkler system is installed, the total fuel load may be reduced by up to $60 \%$ based on Eurocode 1 (CEN, 1991). The maximum reduction in the fuel load should be considered only when the automatic sprinkler system is considered to be of the highest reliability, for example reliable and adequate water supply, supervision of control valves, regular schedule for maintenance of the automatic sprinkler system developed in accordance with NFPA (2002a), or alterations of the automatic sprinkler system are considered any time alterations for the space are considered.

For spaces with automatic smoke and heat vents, computer models are available to determine the smoke temperature (SFPE, 2002). Reduction in the temperature profile as a result of smoke and heat vents should only be considered for reliable installations of smoke and heat vents. As such, a regular maintenance schedule for the vents needs to be established in accordance with NFPA (2002b).

## 2. Temperatures in Structural Systems under Fire Conditions

The heat transfer analysis may range from one-dimensional analyses where the steel is assumed to be at uniform temperature to three-dimensional analyses. The uniform temperature assumption is appropriate in a "lumped heat capacity analysis" where a steel column, beam or truss element is uniformly heated along the entire length and
around the entire perimeter of the exposed section and the protection system is uniform along the entire length and around the entire perimeter of the section. In cases with nonuniform heating or where different protection methods are used on different sides of the column, a one-dimensional analysis should be conducted for steel column assemblies. Two-dimensional analyses are appropriate for beams, bar joists or truss elements supporting floor or roof slabs.

Heat transfer analyses should consider changes in material properties with increasing temperature for all materials included in the assembly. This may be done in the lumped heat capacity analysis using an effective property value, determined at a temperature near the estimated midpoint of the temperature range expected to be experienced by that component over the duration of the exposure. In the one- and two-dimensional analyses, the variation in properties with temperature should be explicitly included.

The boundary conditions for the heat transfer analysis should consider radiation heat transfer in all cases and convection heat transfer if the exposed element is submerged in the smoke or is being subjected to flame impingement. The presence of fire-resistive materials in the form of insulation, heat screens, or other protective measures should be taken into account, if appropriate.

Lumped Heat Capacity Analysis. This first-order analysis to predict the temperature rise of steel structural members can be conducted using algebraic equations iteratively. This approach assumes that the steel member has a uniform temperature, applicable to cases where the steel member is unprotected or uniformly protected (on all sides), and is exposed to fire around the entire perimeter of the assembly containing the steel member. Caution should be used when applying this method to steel beams supporting floor and roof slabs, as the approach will overestimate the temperature rise in the beam. In addition, where this analysis is used as input for the structural analysis of a fire-exposed steel beam supporting a floor and roof slab, the thermally induced moments will not be simulated as a result of the uniform temperature assumption.

Unprotected Steel Members. The temperature rise in an unprotected steel section in a short time period is determined by:

$$
\begin{equation*}
\Delta T_{s}=\frac{a}{c_{s}\left(\frac{W}{D}\right)}\left(T_{F}-T_{s}\right) \Delta t \tag{C-A-4-2}
\end{equation*}
$$

where
$a=$ heat transfer coefficient, Btu/(ft $\left.{ }^{2}-\mathrm{ss}^{\circ} \mathrm{F}\right)\left(\mathrm{W} / \mathrm{m}^{2}{ }^{\circ}{ }^{\circ} \mathrm{C}\right)$ $=a_{c}+a_{r}$
$a_{c}=$ convective heat transfer coefficient
$a_{r}=$ radiative heat transfer coefficient, given as:

$$
\begin{equation*}
=\frac{\mathrm{S}_{B} \varepsilon_{F}}{T_{F}-T_{S}}\left(T_{F K}^{4}-T_{S K}^{4}\right) \tag{C-A-4-4}
\end{equation*}
$$

$c_{s}=$ specific heat of the steel, Btu/lb- ${ }^{\circ} \mathrm{F}\left(\mathrm{J} / \mathrm{kg}-{ }^{\circ} \mathrm{C}\right)$
$D=$ heat perimeter, in. (m)

TABLE C-A-4. 1 Guidelines for Estimating $\varepsilon_{F}$	
Type of Assembly	$\varepsilon_{F}$
Column, exposed on all sides	0.7
Floor beam: Embedded in concrete floor slab, with only bottom flange of beam exposed to fire	0.5
Floor beam, with concrete slab resting on top flange of beam	
Flange width-to-beam depth ratio $\geq 0.5$	0.5
Flange width-to-beam depth ratio $<0.5$	0.7
Box girder and lattice girder	0.7

```
\(S_{B}=\) Stefan-Boltzmann constant \(=3.97 \times 10^{-14} \mathrm{Btu} / \mathrm{ft}-\mathrm{in}-\mathrm{s}-{ }^{\circ} \mathrm{F}^{4}\)
 \(\left(5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2}-{ }^{\circ} \mathrm{C}^{4}\right)\)
\(T_{F}=\) temperature of the fire, \({ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)\)
\(T_{F K}=\) temperature of the fire, \({ }^{\circ} \mathrm{K}\)
 \(=\left(T_{S}+459\right) / 1.8\) for \(T_{F}\) in \({ }^{\circ} \mathrm{F}\)
 \(=\left(T_{S}+273\right)\) for \(T_{F}\) in \({ }^{\circ} \mathrm{C}\)
\(T_{S}=\) temperature of the steel, \({ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)\)
\(T_{S K}=\) temperature of the steel, \({ }^{\circ} \mathrm{K}\)
 \(=\left(T_{S}+459\right) / 1.8\) for \(T_{S}\) in \({ }^{\circ} \mathrm{F}\)
 \(=\left(T_{S}+273\right)\) for \(T_{S}\) in \({ }^{\circ} \mathrm{C}\)
\(W\) = weight (mass) per unit length, \(\mathrm{lb} / \mathrm{ft}(\mathrm{kg} / \mathrm{m})\)
\(\varepsilon_{F}=\) emissivity of the fire and view coefficient as suggested in Table C-A-4.1
\(\Delta t=\) time interval, s
```

For the standard exposure, the convective heat transfer coefficient, $a_{c}$, can be approximated as $1.02 \times 10^{-4} \mathrm{Btu} /\left(\mathrm{ft}-\mathrm{in} .-\mathrm{s}^{\circ}{ }^{\circ} \mathrm{F}\right)\left(25 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}\right)$.

For accuracy reasons, a maximum limit for the time step, $\Delta t$, is suggested as 5 s .
The fire temperature needs to be determined based on the results of the design fire analysis. As alternatives, the standard time-temperature curves indicated in ASTM E119 (ASTM, 2009b) for building fires or ASTM E1529 (ASTM, 2006) for petrochemical fires may be selected.

Protected Steel Members. This method is most applicable for steel members with contour protection schemes, in other words where the insulating or (protection) material follows the shape of the section. Application of this method for box protection methods will generally result in the temperature rise being overestimated. The approach assumes that the outside insulation temperature is approximately equal to the fire temperature. Alternatively, a more complex analysis may be conducted that determines the exterior insulation temperature from a heat transfer analysis between the assembly and the exposing fire environment.

If the thermal capacity of the insulation is much less than that for the steel, such that the following inequality is satisfied:

$$
\begin{equation*}
c_{s} W / D>2 d_{p} \rho_{p} c_{p} \tag{C-A-4-5}
\end{equation*}
$$

then, Equation C-A-4-6 can be applied to determine the temperature rise in the steel:

$$
\begin{equation*}
\Delta T_{s}=\frac{k_{p}}{c_{s} d_{p}\left(\frac{W}{D}\right)}\left(T_{F}-T_{s}\right) \Delta t \tag{C-A-4-6}
\end{equation*}
$$

If the thermal capacity of the insulation needs to be considered (such that the inequality in Equation C-A-4-5 is not satisfied), then Equation C-A-4-7 should be applied:

$$
\begin{equation*}
\Delta T_{s}=\frac{k_{p}}{d_{p}}\left[\frac{T_{F}-T_{s}}{c_{s}\left(\frac{W}{D}\right)+\frac{c_{p} \rho_{p} d_{p}}{2}}\right] \Delta t \tag{C-A-4-7}
\end{equation*}
$$

where
$c_{p}=$ specific heat of the fire protection material, $\mathrm{Btu} / \mathrm{lb}-{ }^{\mathrm{o}} \mathrm{F}\left(\mathrm{J} / \mathrm{kg}-{ }^{-} \mathrm{C}\right)$
$d_{p}=$ thickness of the fire protection material, in. $(\mathrm{m})$
$k_{p}=$ thermal conductivity of the fire protection material, Btu/ft-sec-$-\mathrm{F}\left(\mathrm{W} / \mathrm{m}-{ }^{\circ} \mathrm{C}\right)$
$\rho_{p}=$ density of the fire protection material, $\mathrm{lb} / \mathrm{ft}^{3}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$

Note that the maximum limit for the time step, $\Delta t$, should be 5 s .
Ideally, material properties should be considered as a function of temperature. Alternatively, characteristic material properties may be evaluated at a mid-range temperature expected for that component or from calibrations to test data. For protected steel members, the material properties may be evaluated at $572^{\circ} \mathrm{F}\left(300^{\circ} \mathrm{C}\right)$, and for protection materials, a temperature of $932^{\circ} \mathrm{F}\left(500^{\circ} \mathrm{C}\right)$ may be considered.

External Steelwork. Temperature rise can be determined by applying the following equation:

$$
\begin{equation*}
\Delta T_{s}=\frac{q^{\prime \prime}}{c_{s}\left(\frac{W}{D}\right)} \Delta t \tag{C-A-4-8}
\end{equation*}
$$

where $q^{\prime \prime}$ is the net heat flux incident on the steel member.
All given equations assume applications in consistent dimensional units within either the customary U.S. or SI systems. For Equations C-A-4-2, C-A-4-5, C-A-4-6 and C-A-4-7, the $W / D$ in the U.S. customary system needs to be replaced by $M / D$ for SI systems, where $M$ is the mass per unit length. To convert $W / D$, typically given in lb/ft/in. to the appropriate $M / D$ units of $\mathrm{kg} / \mathrm{m}^{2}$ in SI, multiply the $\mathrm{lb} / \mathrm{ft} / \mathrm{in}$. value for $W / D$ by 58.6.

Advanced Calculation Methods. The thermal response of steel members may be assessed by application of a computer model. A computer model for analyzing the thermal response of the steel members should consider the following:
(1) Exposure conditions are established based on the definition of a design fire. The exposure conditions need to be stipulated either in terms of a time-temperature history, along with radiation and convection heat transfer parameters associated with the exposure, or as an incident heat flux. The incident heat flux is depend-
ent on the design fire scenario and the location of the structural assembly. The heat flux emitted by the fire or smoke can be determined from a fire hazard analysis. Exposure conditions are established based on the definition of a design fire. The exposure conditions are stipulated either in terms of a time-temperature history, along with radiation and convection heat transfer parameters associated with the exposure, or as an incident heat flux.
(2) Temperature-dependent material properties.
(3) Temperature variation within the steel member and any protection components, especially where the exposure varies from side-to-side.

## 3. Material Strengths at Elevated Temperatures

The material properties used to assess the performance of steel and concrete structures at elevated temperatures should account for nonlinearities in stress versus strain response, thermal expansion, and time dependent creep effects. As these effects are highly variable, the uncertainties in the properties should be considered in measuring and using the derived properties to determine whether structural components and systems achieve the required reliability index target for deformation and strength limit states. While the Specification permits the determination of steel material properties from test data, in practice this is challenging, given that there are no universally accepted test methods to consistently establish all of the required properties.

In lieu of test data on material properties, this Specification allows the use of properties for steel and concrete at elevated temperatures adopted from the ECCS Model Code on Fire Engineering (ECCS, 2001), Section III.2, "Material Properties." These generic properties are consistent with those in Eurocode 3 (CEN, 2005b) and Eurocode 4 (CEN, 2009), and reflect the consensus of the international fire engineering and research community. As such, they are considered to implicitly incorporate the nonlinear stress versus strain response, including the effects of creep, as appropriate for evaluating structural response of buildings under fires. The background information for the mechanical properties of structural steel at elevated temperatures can be found in Cooke (1988) and Kirby and Preston (1988).

The stress-strain response of steel at elevated temperatures is more nonlinear than at room temperature and experiences less strain hardening. At elevated temperatures, the deviation from linear behavior is represented by the proportional limit, $F_{p}(T)$, and the yield strength, $F_{y}(T)$, is defined at a $2 \%$ strain as shown in Figure C-A4.1. At $1,000^{\circ} \mathrm{F}\left(540^{\circ} \mathrm{C}\right)$, the yield strength, $F_{y}(T)$, reduces to about $66 \%$ of its value at room temperature, and the proportional limit $F_{p}(T)$ occurs at $29 \%$ of the ambient temperature yield strength, $F_{y}$. Finally, at temperatures above $750^{\circ} \mathrm{F}\left(400^{\circ} \mathrm{C}\right)$, the elevated temperature ultimate strength is essentially the same as the elevated temperature yield strength; in other words, $F_{y}(T)$ is equal to $F_{u}(T)$.

Table A-4.2.3 provides properties for Group A and B high-strength bolts at elevated temperatures expressed as strength retention factors, which are the ratios of bolt shear or tension strength at high temperatures with respect to the corresponding property at ambient temperature. The strength retention factors are based on a review of available experimental data (Gonzalez and Lange, 2009; Hanus et al., 2010, 2011; Kirby, 1995;

Kodur et al., 2012; Li et al., 2001; Lou et al., 2010; Yu and Frank, 2009), and are consistent with values given in Eurocode 3 (CEN, 2005b). The available data indicates that retention factors are similar for both the shear and tensile strength of bolts, and are also similar for both Group A and B bolts. Consequently, Table A-4.2.3 specifies a single set of retention factors which are not, however, applicable to Group C bolts.

The strength of bolts depends both on temperature and temperature history. The strength retention factors given in Table A-4.2.3 assume the given temperature is the highest temperature to which the bolt has been exposed. For example, if a bolt is heated to $1,000^{\circ} \mathrm{F}\left(540^{\circ} \mathrm{C}\right)$, and this is the highest temperature the bolt has seen, the strength of the bolt at $1,000^{\circ} \mathrm{F}\left(540^{\circ} \mathrm{C}\right)$ can be computed as $42 \%$ of its normal room temperature value, as indicated in Table A-4.2.3. However, if the bolt has been heated to, say $1,600^{\circ} \mathrm{F}\left(870^{\circ} \mathrm{C}\right)$, and then cools to $1,000^{\circ} \mathrm{F}\left(540^{\circ} \mathrm{C}\right)$, then the strength of the bolt at $1,000^{\circ} \mathrm{F}\left(540^{\circ} \mathrm{C}\right)$ may be less than $42 \%$ of the room temperature value. Limited data on the temperature history dependence of bolt strength is provided by Hanus et al. (2011). The temperature history dependence of bolt strength can be important when evaluating connection strength during the cooling stage of a fire. An additional important consequence of this behavior is that bolts can suffer a significant permanent loss of strength after being heated in a fire and then cooled to room temperature. This permanent loss of strength can be important when evaluating the condition of a steel structure after a fire. Information on the post-fire properties of high-strength bolts are reported by Yu and Frank (2009).

Appendix 4 does not currently include provisions for computing the elevated temperature strength of welds because of the lack of experimental data on elevated temperature properties of welds made using typical U.S. welding processes, procedures and consumables. However, some guidance on the elevated temperature strength of welds is provided in Eurocode 3 (CEN, 2005b).


Fig. C-A-4.1. Parameters of idealized stress-strain curve at elevated temperatures (Takagi and Deierlein, 2007).

## 4. Structural Design Requirements

The resistance of the structural system in the design basis fire may be determined by:
(1) Structural analysis of individual elements where the effects of restraint to thermal expansion and bowing may be ignored but the reduction in strength and stiffness with increasing temperature is incorporated
(2) Structural analysis of assemblies/subframes where the effects of restrained thermal expansion and thermal bowing are considered by incorporating geometric and material nonlinearities
(3) Global structural analysis where restrained thermal expansion, thermal bowing, material degradation, and geometric nonlinearity are considered

## 4a. General Structural Integrity

The requirement for general structural integrity is consistent with that appearing in Section 1.4 of ASCE (2016). Structural integrity is the ability of the structural system to absorb and contain local damage or failure without developing into a progressive collapse that involves the entire structure or a disproportionately large part of it.

The Commentary C1.4 of ASCE (2016) contains guidelines for the provision of general structural integrity. Compartmentation (subdivision of buildings/stories in a building) is an effective means of achieving resistance to progressive collapse as well as preventing fire spread, as a cellular arrangement of structural components that are well tied together provides stability and integrity to the structural system as well as insulation.

Most typical structural steel connections will comply with the new Chapter B tieforce requirements for structural integrity at ambient conditions without reinforcement or other modifications. The exceptions to this generalization are seated, single-angle, and bolted-welded double-angle ("knife") connections (Gustafson, 2009). However, these, and other types of simple shear connections, will likely need additional design enhancements for ductility and resistance to the higher tensile forces that may develop during the design basis fire exposure (Agarwal et al., 2014b; Fischer and Varma, 2015; Selden et al., 2016). A fire exposure will not only affect the magnitude of member end reactions, but may also change the nature of the reaction to a limit state different from the controlling mode at ambient.

## 4b. Strength Requirements and Deformation Limits

As structural elements are heated, their expansion is restrained by adjacent elements and connections. Material properties degrade with increasing temperature. Load transfer can occur from hotter elements to adjacent cooler elements. Excessive deformation may be of benefit in a fire as it allows release of thermally induced stresses. Deformation is acceptable once horizontal and vertical separation, as well as the overall load bearing capacity of the structural system, is maintained.

Membrane action of concrete floor slabs supported by steel beams has received growing international research attention over the last 15 years. Beginning with the landmark Cardington fire tests conducted during the mid-1990s in the United Kingdom (Newman, 1999), this high-temperature strength mechanism has been identified, better understood and developed as a fire resistant design alternative for steel beam and concrete floor slab systems. The novel advantage of this membrane action design is that it permits the secondary (infill) steel floor beams to be left unprotected, since they are designed for strength and stiffness primarily at ambient conditions. The tradeoffs are that the concrete slab, all the fire protected perimeter girders of the floor bays, and their end connections must have adequate strength to bridge over an entire floor bay and the severely thermally weakened infill beams such that an adequate load path is maintained to transmit the gravity design loads of the floor bay. Agarwal and Varma (2014) and Agarwal et al. (2014b) have demonstrated that the presence of steel reinforcement (greater than the minimum shrinkage reinforcement) in the concrete slabs, and fire protection of the single-plate connections facilitates the redistribution of gravity loading through membrane action and reduces the risk of progressive collapse of the structure. Bailey (2004) provides further background and the design criteria for how to effectively mobilize membrane action at large vertical deflections. There have been numerous other published papers on this research advancement, such as Zhao et al. (2008); Huang et al. (2004); and Bednar et al. (2013).

## 4c. Design by Advanced Methods of Analysis

Advanced methods are required when the overall structural system response to fire, the interaction between structural members and separating elements in fire, or the residual strength of the structural system following a fire must be considered. Advanced analysis should explicitly account for the deterioration in strength and stiffness with increasing temperature, the effects of thermal expansions, large deformations, time-dependent effects such as creep, and uncertainties resulting from variability in material properties at elevated temperature. Boundary conditions and connection fixity must represent the proposed structural design. The models for advanced analysis models should account for all potential limit states, such as excessive deflections, connection ruptures, and overall or local buckling. For example, Agarwal and Varma (2014) and Agarwal et al. (2014b) conducted advanced analysis of 3D building structures while accounting for all potential limit states, namely, inelastic column buckling, composite slab cracking, yielding of the steel floor beams and reinforcement in the slabs, and deformation and fracture of the various shear connections. They used the Eurocode stress-strain-temperature relationships to account for the deterioration in strength and stiffness with increasing temperature. Sample results from one of their advanced analyses are shown in Figure C-A-4.2.

## 4d. Design by Simple Methods of Analysis

Simple methods may suffice when a structural member or component can be assumed to be subjected to uniform heat flux on all sides and the assumption of a uniform temperature is reasonable as, for example, in a free-standing column surrounded by fire.

Takagi and Deierlein (2007) have shown that the standard strength equations of this Specification (at ambient temperature), with steel properties ( $E, F_{y}$ and $F_{u}$ ) reduced for elevated temperatures, can overestimate considerably the strengths of members that are sensitive to stability effects. Special high temperature equations developed by Takagi and Deierlein (2007) more accurately represent the strength of compression members subjected to flexural buckling and flexural members subjected to lateral-torsional buckling. As shown in Figure C-A-4.3, these equations,


Fig. C-A-4.2. Advanced analysis of 3D building for design fire.
first introduced in the 2010 AISC Specification (AISC, 2010) and unchanged in this Specification, are much more accurate in comparison to equations from the ECCS (2001) and to detailed finite element method analyses (represented by the square symbol in the figure), which have been validated against test data.

The stability of steel structures under fire loading is governed by the fire resistance of gravity columns because they are most likely to reach critical temperatures and structural failure due to high utilization ratios (Agarwal and Varma, 2011, 2014). The fire resistance of gravity columns may be improved due to the rotational restraints offered by cooler columns in the stories above and below. The increase in design strength can be accounted for by reducing the column slenderness ( $L_{c} / r$ ) used to calculate $F_{e}(T)$ in Equation A-4-2 to $\left(L_{C} / r\right)_{T}$ as follows:

$$
\begin{equation*}
\left(\frac{L_{c}}{r}\right)_{T}=\left(1-\frac{T-32}{n(3,600)}\right)\left(\frac{L_{c}}{r}\right)-\frac{35}{n(3,600)}(T-32) \geq 0 \tag{C-A-4-9}
\end{equation*}
$$

where
$T=$ steel temperature, ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$
$n=1$ for columns with cooler columns both above and below
$n=2$ for columns with cooler columns either above or below only
Figure C-A-4.4 shows this reduction in $\left(L_{C} / r\right)_{T}$ with increasing temperature for columns with rotational restraints at both ends and one end only.

Compression members subject to uniform heating have greater heat flux from all sides than members subjected to nonuniform heating. As a result, compression members subjected to uniform heating reach their failure temperatures much earlier than members subjected to nonuniform heating. Uniform heating will be the governing case for most fire scenarios (Agarwal et al., 2014a) in terms of time to failure.


Fig. C-A-4.3. Comparison of compressive and flexural strengths at $500^{\circ} \mathrm{C}\left(930^{\circ} \mathrm{F}\right)$ (Takagi and Deierlein, 2007).

Thermal gradients due to nonuniform heating reduce the axial load capacity of compression members due to elevated temperatures, bowing deformations resulting from uneven thermal expansion, and asymmetry in the column cross section resulting from uneven degradation of material properties (yield stress and elastic modulus). Several researchers have discussed these effects and proposed alternate design methods for columns with thermal gradients. Agarwal et al. (2014a) and Choe et al. (2016)

(a) Rotational restraint at both ends

(b) Rotational restraint at one end

Fig. C-A-4.4. Effects of rotational restraints on column slenderness as a function of elevated temperature (from Equation C-A-4-9).
conducted experimental and numerical studies to develop and verify design equations for compression members with thermal gradients. The parameters included in the study were member length, cross section, and axial loading magnitude. Three different heating scenarios were considered: uniform heating, thermal gradient along the flanges, and thermal gradient along the web. The studies indicated that columns subjected to uniform heating have much greater heat influx, and therefore reach higher average temperatures faster than columns exposed to nonuniform heating. In most cases, uniformly heated columns reached their failure temperature earlier than nonuniform heated columns with thermal gradients. Exceptions were slender columns with very high axial compression (more than $50 \%$ of ambient capacity). The design strength of such columns can be calculated using equations presented by Agarwal et al. (2014a). These equations quantify the effects of elevated temperature, bowing, and cross-section asymmetry mentioned earlier. They were verified using the results of large-scale tests and numerical parametric studies.

The design strength for structural steel members and connections is calculated as $\phi R_{n}$, in which $R_{n}=$ nominal strength when the deterioration in strength at elevated temperature is taken into account, and $\phi$ is the resistance factor. The nominal strength is determined from Chapters C through K and Appendix 4, using material strength and stiffnesses at elevated temperatures defined in Tables A-4.2.1, A-4.2.2 and A-4.2.3. For limit states governed by steel yielding or fracture, the ambient equations for nominal strength are used with elevated temperature material properties from Appendix 4, Section 4.2.3, and the corresponding Tables. For limit states governed by buckling or instability, equations for nominal strength are provided in this section. For example, nominal strength equations are provided for design for compression and for flexure governed by lateral-torsional buckling.

While ECCS (2001) and Eurocode 1 (CEN, 1991) specify partial material factors as equal to 1.0 for "accidental" limit states, the uncertainties in strength at elevated temperatures are substantial and in some cases are unknown. Research is continuing on this topic. In the interim, ambient resistance factors should be used when determining design strength.

For composite beams, Selden and Varma (2016) developed and benchmarked numerical models to determine their flexural strength at elevated temperatures, $M_{n}(T)$, while considering the distribution of temperatures over the depth of the composite section, the degree or percent composite action in the section, member length, and the effects of elevated temperature on the material stiffness and strength of the steel beam, concrete slab, steel reinforcement (if any), and the shear force-slip behavior of the stud anchors. The results of comprehensive parametric analyses conducted by Selden (2014) were used to develop Equation A-4-11 and the retention factor Table A-4-2.4.

### 4.3. DESIGN BY QUALIFICATION TESTING

## 1. Qualification Standards

Qualification testing is an acceptable alternative to design by analysis for providing fire resistance. Fire resistance ratings of building elements are generally determined
in accordance with procedures set forth in ASTM E119, Standard Test Methods for Fire Tests of Building Construction and Materials (ASTM, 2009b). Tested building element designs, with their respective fire resistance ratings, may be found in special directories and reports published by testing agencies. Additionally, calculation procedures based on standard test results may be used as specified in Standard Calculation Methods for Structural Fire Protection (ASCE, 2005).

For building elements that are required to prevent the spread of fire, such as walls, floors and roofs, the test standard provides for measurement of the transmission of heat. For loadbearing building elements, such as columns, beams, floors, roofs and loadbearing walls, the test standard also provides for measurement of the load-carrying ability under the standard fire exposure.

For beam, floor and roof specimens tested under ASTM E119, two fire resistance classifications-restrained and unrestrained-may be determined, depending on the conditions of restraint and the acceptance criteria applied to the specimen.

## 2. Restrained Construction

The ASTM E119 standard provides for tests of loaded beam specimens only in the restrained condition, where the two ends of the beam specimen (including slab ends for composite steel-concrete beam specimens) are placed tightly against the test frame that supports the beam specimen. Therefore, during fire exposure, the thermal expansion and rotation of the beam specimen ends are resisted by the test frame. A similar restrained condition is provided in the ASTM E119 tests on restrained loaded floor or roof assemblies, where the entire perimeter of the assembly is placed tightly against the test frame.

The practice of restrained specimens dates back to the early fire tests (over 100 years ago), and it is predominant today in the qualification of structural steel framed and reinforced concrete floors, roofs and beams in North America. While the current ASTM E119 standard does provide for an option to test loaded floor and roof assemblies in the unrestrained condition, this testing option is rarely used for structural steel and concrete. However, unrestrained loaded floor and roof specimens, with sufficient space around the perimeter to allow for free thermal expansion and rotation, are common in the tests of wood and cold-formed-steel framed assemblies.

Gewain and Troup (2001) provide a detailed review of the background research and practices in the qualification fire resistance testing and rating of structural steel (and composite steel/concrete) girders, beams, and steel framed floors and roofs. The restrained assembly fire resistance ratings (developed from tests on loaded restrained floor or roof specimens) and the restrained beam fire resistance ratings (developed from tests on loaded restrained beam specimens) are commonly applicable to all types (with minor exceptions) of steel-framed floors, roofs, girders and beams, as recommended in Table X3.1 of ASTM E119, especially where they incorporate or support cast-in-place or prefabricated concrete slabs. AISC Design Guide 19, Fire Resistance of Structural Steel Framing (Ruddy et al., 2003), provides several detailed examples of steel-framed floor and roof designs by qualification testing.

## 3. Unrestrained Construction

An unrestrained condition is one in which thermal expansion at the support of loadcarrying elements is not resisted by forces external to the element, and the supported ends are free to expand and rotate.

However, in the common practice for structural steel (and composite steel-concrete) beams and girders, the unrestrained beam ratings are developed from ASTM E119 tests on loaded restrained beam specimens or from ASTM E119 tests on loaded restrained floor or roof specimens, based only on temperature measurements on the surface of structural steel members. For steel-framed floors and roofs, the unrestrained assembly ratings are developed from ASTM E119 tests on loaded restrained floor and roof specimens, based only on temperature measurements on the surface of the steel deck (if any) and on the surface of structural steel members. As such, the unrestrained fire resistance ratings are temperature-based ratings indicative of the time when the steel reaches specified temperature limits. These unrestrained ratings do not bear much direct relevance to the unrestrained condition or the load-bearing functions of the specimens in fire tests.

Nevertheless, unrestrained ratings provide useful supplementary information and they are used as a conservative estimate of fire resistance (in lieu of the restrained ratings) in cases where the surrounding or supporting construction cannot be expected to accommodate the thermal expansion of steel beams or girders. For instance, as recommended in ASTM E119 Table X3.1, a steel member bearing on a wall in a single span, or at the end span of multiple spans, should be considered unrestrained when the wall has not been designed and detailed to resist thermal thrust.

## ADDITIONAL BIBLIOGRAPHY

The following references provide further information on key issues related to fire-resistant design of steel building systems and components, and are representative of the extensive literature on the topic. These additional references were selected because they are archival in nature or otherwise easily accessible by engineers seeking to design fire-resistance into building structures.

Bailey, C.G. (2000), "The Influence of the Thermal Expansion of Beams on the Structural Behavior of Columns in Steel-Framed Structures During a Fire," Engineering Structures, Vol. 22, No. 7, pp. 755-768.

Bennetts, I.D. and Thomas, I.R. (2002), "Design of Steel Structures under Fire Conditions," Progress in Structural Engineering and Materials, Vol. 4, No. 1, pp. 6-17.

Boring, D.F., Spence, J.C. and Wells, W.G. (1981), Fire Protection Through Modern Building Codes, 5th Ed., American Iron and Steel Institute, Washington, DC.

Brozzetti, J., Law, M., Pettersson, O. and Witteveen, J. (1983), "Safety Concepts and Design for Fire Resistance of Steel Structures," IABSE Surveys S-22/83, IABSE Periodica 1/1983, ETH-Honggerberg, Zurich, Switzerland.

Chalk, P.L. and Corotis, R.B. (1980), "Probability Model for Design Live Loads," Journal of the Structures Division, ASCE, Vol. 106, No. ST10, pp. 2,017-2,033.

Culver, C.G. (1978), "Characteristics of Fire Loads in Office Buildings," Fire Technology, Vol. 1,491, pp. 51-60.

Huang, Z., Burgess, I.W. and Plank, R.J. (2000), "Three-Dimensional Analysis of Composite Steel-Framed Buildings in Fire," Journal of Structural Engineering, ASCE, Vol. 126, No. 3, pp. 389-397.

Jeanes, D.C. (1985), "Application of the Computer in Modeling Fire Endurance of Structural Steel Floor Systems," Fire Safety Journal, Vol. 9, pp. 119-135.

Kruppa, J. (2000), "Recent Developments in Fire Design," Progress in Structures Engineering and Materials, Vol. 2, No. 1, pp. 6-15.

Lane, B. (2000), "Performance-Based Design for Fire Resistance," Modern Steel Construction, AISC, December, pp. 54-61.

Lawson, R.M. (2001), "Fire Engineering Design of Steel and Composite Buildings," Journal of Constructional Steel Research, Vol. 57, pp. 1,233-1,247.

Lie, T.T. (1978), "Fire Resistance of Structural Steel," Engineering Journal, AISC, Vol. 15, No. 4, pp. 116-125.

Lie, T.T. and Almand, K.H. (1990), "A Method to Predict the Fire Resistance of Steel Building Columns," Engineering Journal, AISC, Vol. 27, No. 4, pp. 158-167.

Magnusson, S.E. and Thelandersson, S. (1974), "A Discussion of Compartment Fires," Fire Technology, Vol. 10, No. 4, pp. 228-246.

Milke, J.A. (1985), "Overview of Existing Analytical Methods for the Determination of Fire Resistance," Fire Technology, Vol. 21, No. 1, pp. 59-65.

Milke, J.A. (1992), "Software Review: Temperature Analysis of Structures Exposed to Fire," Fire Technology, Vol. 28, No. 2, pp. 184-189.

Nwosu, D.I. and Kodur, V.K.R. (1999), "Behavior of Steel Frames Under Fire Conditions," Canadian Journal of Civil Engineering, Vol. 26, pp. 156-167.

Sakumoto, Y. (1992), "High-Temperature Properties of Fire-Resistant Steel for Buildings," Journal of Structural Engineering, ASCE, Vol. 18, No. 2, pp. 392-407.

Sakumoto, Y. (1999), "Research on New Fire-Protection Materials and Fire-Safe Design," Journal of Structural Engineering, ASCE, Vol. 125, No. 12, pp. 1,415-1,422.

Toh, W.S., Tan, K.H. and Fung, T.C. (2001), "Strength and Stability of Steel Frames in Fire: Rankine Approach," Journal of Structural Engineering, ASCE, Vol. 127, No. 4, pp. 461-468.

Usmani, A.S., Rotter, J.M., Lamont, S., Sanad, A.M. and Gillie, M. (2001), "Fundamental Principles of Structural Behaviour Under Thermal Effects," Fire Safety Journal, Vol. 36, No. 8.

Wang, Y.C. and Moore, D.B. (1995), "Steel Frames in Fire: Analysis," Engineering Structures, Vol. 17, No. 6, pp. 462-472.

Wang, Y.C. and Kodur, V.K.R. (2000), "Research Toward Use of Unprotected Steel Structures," Journal of Structural Engineering, ASCE, Vol. 120, No. 12, pp. 1,442-1,450.

Wang, Y.C. (2000), "An Analysis of the Global Structural Behavior of the Cardington SteelFramed Building During the Two BRE Fire Tests," Engineering Structures, Vol. 22, pp. 401-412.

## APPENDIX 5

## EVALUATION OF EXISTING STRUCTURES

### 5.1. GENERAL PROVISIONS

The load combinations referred to in this chapter pertain to static loading because it is the most prevalent condition encountered. If other loading conditions are a consideration, the appropriate load combination from ASCE/SEI 7 (ASCE, 2016) or from the applicable building code should be used.

For seismic evaluation of existing buildings, ASCE/SEI 31 (ASCE, 2003) provides a three-tiered process for determination of the design and construction adequacy of existing buildings to resist earthquakes. The standard defines evaluation requirements as well as detailed evaluation procedures. Buildings may be evaluated in accordance with this standard for life safety or immediate occupancy performance levels. Where seismic rehabilitation of existing structural steel buildings is required, engineering of seismic rehabilitation work may be performed in accordance with the ASCE/SEI 41 (ASCE, 2013) standard or other standards. Use of these two standards for seismic evaluation and seismic rehabilitation of existing structural steel buildings is subject to the approval of the authority having jurisdiction.

### 5.2. MATERIAL PROPERTIES

## 1. Determination of Required Tests

The extent of tests required depends on the nature of the project, the criticality of the structural system or member evaluated, and the availability of records pertinent to the project. Thus, the engineer of record has the responsibility to determine the specific tests required and the locations from which specimens are to be obtained.

## 2. Tensile Properties

Samples required for tensile tests should be removed from regions of reduced stress, such as at flange tips at beam ends and external plate edges, to minimize the effects of the reduced area. The number of tests required will depend on whether they are conducted to merely confirm the strength of a known material or to establish the strength of some other material.

It should be recognized that the yield stress determined by standard ASTM methods and reported by mills and testing laboratories is somewhat greater than the static yield stress because of dynamic effects of testing. Also, the test specimen location may have an effect. These effects have already been accounted for in the nominal strength equations in the Specification. However, when strength evaluation is done by load testing, this effect should be accounted for in test planning because yielding will tend to occur earlier than otherwise anticipated. The static yield stress, $F_{y s}$, can be estimated from that determined by routine application of ASTM methods, $F_{y}$, by the following equation (Ziemian, 2010):

$$
\begin{gather*}
F_{y s}=R\left(F_{y}-4\right)  \tag{C-A-5-1}\\
F_{y s}=R\left(F_{y}-27\right) \tag{C-A-5-1M}
\end{gather*}
$$

where

$$
\begin{aligned}
F_{y} & =\text { reported yield stress, } \mathrm{ksi}(\mathrm{MPa}) \\
F_{y s} & =\text { static yield stress, ksi }(\mathrm{MPa}) \\
R & =0.95 \text { for tests taken from web specimens } \\
& =1.00 \text { for tests taken from flange specimens }
\end{aligned}
$$

The $R$ factor in Equation C-A-5-1 accounts for the effect of the coupon location on the reported yield stress. Prior to 1997, certified material test reports for structural shapes were based on specimens removed from the web, in accordance with ASTM A6/A6M. Subsequently, the specified coupon location was changed to the flange.

## 4. Base Metal Notch Toughness

The engineer of record should specify the location of samples. Samples should be cored, flame cut or saw cut. The distance from the edge of flat tension specimens (generally, specimens $\frac{1}{1 / 2}$ in. ( 13 mm ) thick or less) need to be made only large enough to obtain the grip width. The distance from the center of a cylindrical tension specimen to either of the thermal cut edges should be one inch ( 25 mm ) or larger. The engineer of record will determine if remedial actions are required, such as the possible use of bolted splice plates.

## 5. Weld Metal

Because connections typically have a greater reliability index than structural members (see Commentary Section B3.1), strength testing of weld metal is not usually necessary. However, field investigations have sometimes indicated that complete-joint-penetration groove welds, such as at beam-to-column connections, were not made in accordance with AWS D1.1/D1.1M (AWS, 2015). The specified provisions in AWS D1.1/D1.1M provide a means for judging the quality of such a weld. Where feasible, any samples removed should be obtained from compression splices rather than tension splices, because the effects of repairs to restore the sampled area are less critical.

## 6. Bolts and Rivets

Because connections typically have a greater reliability index than structural members (see Commentary Section B3.1), removal and strength testing of fasteners is not usually necessary. However, strength testing of bolts is required where they cannot be properly identified otherwise. Because removal and testing of rivets is difficult, assuming the lowest rivet strength grade simplifies the investigation. Rivet strength can often be determined by referring to Section 1.3 of AISC Design Guide 15, AISC Rehabilitation and Retrofit Guide, A Reference for Historic Shapes and Specifications (Brockenbrough, 2002.)

### 5.3. EVALUATION BY STRUCTURAL ANALYSIS

## 2. Strength Evaluation

Resistance and safety factors reflect variations in determining strength of members and connections, such as uncertainty in theory and variations in material properties
and dimensions. If an investigation of an existing structure indicates that there are variations in material properties or dimensions significantly greater than those anticipated in new construction, the engineer of record should consider the use of more conservative values.

### 5.4. EVALUATION BY LOAD TESTS

## 1. Determination of Load Rating by Testing

Generally, structures that can be designed according to the provisions of this Specification need no confirmation of calculated results by testing. However, special situations may arise when it is desirable to confirm by tests the results of calculations. Minimal test procedures are provided to determine the live load rating of a structure. The live load rating established by testing presumes $\phi=1.0$ for all failure modes.

It is essential that the engineer of record take all necessary precautions to ascertain that the structure does not fail catastrophically during testing. A careful assessment of structural conditions before testing is a fundamental requirement. This includes accurate measurement and characterization of the size and strength of members, connections and details. All safety regulations of OSHA and other pertinent bodies must be strictly followed. Shoring and scaffolding should be used as required in the proximity of the test area to mitigate against unexpected circumstances. Deformations must be carefully monitored and structural conditions must be continually evaluated. In some cases, it may be desirable to monitor strains as well.

The engineer of record must use judgment to determine when deflections are becoming excessive and terminate the tests at a safe level even if the desired loading has not been achieved. Incremental loading is specified so that deformations can be accurately monitored and the performance of the structure carefully observed. Load increments should be small enough initially so that the onset of significant yielding can be determined. The increment can be reduced as the level of inelastic behavior increases, and the behavior at this level carefully evaluated to determine when to safely terminate the test. Periodic unloading, after the onset of inelastic behavior, will help the engineer of record determine when to terminate the test to avoid excessive permanent deformation or catastrophic failure.

It must be recognized that the margin of safety at the maximum load level used in the test may be very small, depending on such factors as the original design, the purpose of the tests, and the condition of the structure. Thus, it is imperative that all appropriate safety measures be adopted. It is recommended that the maximum live load used for load tests be selected conservatively. It should be noted that experience in testing more than one bay of a structure is limited.

The provision limiting increases in deformations for a period of one hour is given so as to have positive means to confirm that the structure is stable at the loads evaluated.

## 2. Serviceability Evaluation

In certain cases, serviceability performance must be determined by load testing. It should be recognized that complete recovery (in other words, return to the pre-tested
deflected shape) after removal of maximum load is unlikely because of phenomena such as local yielding, slip at the slab interface in composite construction, creep in concrete slabs, localized crushing or deformation at shear connections in slabs, slip in bolted connections, and effects of continuity. Because most structures exhibit some slack when load is first applied, it is appropriate to project the load-deformation curve back to zero load to determine the slack and exclude it from the recorded deformations. Where desirable, the applied load sequence can be repeated to demonstrate that the structure is essentially elastic under service loads and that the permanent set is not detrimental.

### 5.5. EVALUATION REPORT

Extensive evaluation and load testing of existing structures is often performed when appropriate documentation no longer exists or when there is considerable disagreement about the condition of a structure. The resulting evaluation is only effective if well documented, particularly when load testing is involved. Furthermore, as time passes, various interpretations of the results can arise unless all parameters of the structural performance, including material properties, strength and stiffness, are well documented.

## APPENDIX 6

MEMBER STABILITY BRACING

This Commentary provides background to the development of the Appendix 6 equations and explains their application in the design for bracing of beams, columns and beam-columns.

In the design of bracing for trusses, the compression chord may be treated as the compression flange of a beam. Further discussion of specific bracing applications for trusses and other systems can be found in this Commentary.

### 6.1. GENERAL PROVISIONS

Winter $(1958,1960)$ developed the concept of a dual requirement for bracing design, which involves criteria for both strength and stiffness. Additional discussions are provided by Ziemian (2010). The design requirements of Appendix 6 are based upon this approach and consider two general types of bracing systems, panel and point, as shown in Figure C-A-6.1. In past editions of the Specification, the term relative bracing was used for panel bracing and nodal bracing was used for point bracing. The name change was made for clarity.

A panel-bracing system for a column is attached to two locations along the column length. The distance between these locations is the unbraced length, $L_{b r}$, of the column. The panel bracing system shown in Figure C-A-6.1(a) consists of the diagonals and struts that control the movement at one end of the unbraced length, point $A$, with respect to the other end of the unbraced length, point $B$. The forces in these bracing elements are resolved by forces in the beams and columns in the frame that is braced. The diagonal and strut both contribute to the strength and stiffness of the panel-bracing system. However, when the strut is a floor beam and the diagonal a brace, the floor beam stiffness is usually large compared to the stiffness of the brace. In such a case, the brace strength and stiffness often controls the strength and stiffness of the panel-bracing system.

A point brace for a column controls movement only at the point it braces, and without direct interaction with adjacent braced points. The distance between adjacent braced points is the unbraced length, $L_{b r}$, of the column. The point-bracing system shown in Figure C-A-6.1(a) consists of a series of independent braces, which connect to a rigid abutment from the braced points including point C and point D . The forces in these bracing elements are resolved by other structural elements not part of the frame that is braced.

As illustrated in Figure C-A-6.1(b), a panel-bracing system for a beam often consists of a system with diagonals; a point bracing system commonly exists when there is a link to an external support (such as another lateral brace) or a cross-frame torsional brace between two adjacent beams. The cross-frame prevents twist (not lateral displacement) of the beams at the particular cross-frame location. With the required
lateral and rotational restraint provided at the beam ends, the unbraced length, $L_{b r}$, in all of these cases is the distance from the support to the braced point.

The bracing requirements stipulated in Sections 6.2 and 6.3 allow for a member to develop a maximum load based on effective lengths, $L_{c}$ and $L_{b}$, taken equal to the unbraced lengths between the brace points. The bracing requirements in Sections 6.2 and 6.3 generally are not sufficient to permit the development of member strengths based on $L_{c}$ and/or $L_{b}$ smaller than $L_{b r}$; that is, the development of column or beam

(a) Column bracing

(b) Beam bracing

Fig. C-A-6.1. Types of bracing.
strengths based on a corresponding effective length factor of $K<1$. Figure C-A-6.2 shows the critical buckling load versus the brace stiffness for an elastic cantilevered column with a brace of variable stiffness at its top. The ideal bracing stiffness for this column associated with $L_{c}=L_{b r}=L$; that is, the bracing stiffness necessary to develop a column critical buckling load of $P_{c r}=P_{e}=\pi^{2} E I / L_{b}{ }^{2}$, is $P_{e} / L_{b r}$. A brace having five times this stiffness is required for the column to reach a critical load of $95 \%$ of $P_{c r}=\pi^{2} E I /\left(0.7 L_{b r}\right)^{2}$ based on $L_{c}=0.7 L_{b r}$. An infinitely stiff brace is required theoretically to reach $P_{c r}=\pi^{2} E I /\left(0.7 L_{b r}\right)^{2}$.

In addition, the determination of bracing required to reach specified rotation capacities or ductility limits is beyond the scope of the Appendix 6 provisions.

The provisions in Sections 6.2 and 6.3 for columns and beams, respectively, stipulate a required brace stiffness, $\beta_{b r}$, equal to $2 / \phi$ (LRFD) and $2 \Omega$ (ASD) times the ideal bracing stiffness, where $\phi=0.75$ and $\Omega=2.00$. The required brace strength, $P_{b r}$, is a function of the initial out-of-alignment of the brace points (out-of-plumbness in the case of vertical columns), $\Delta_{o}$, and the brace stiffness, $\beta$. The brace strength requirements are based on the nominal brace stiffness without the inclusion of $\phi$ and $\Omega$. Separate resistance factors and safety factors are applied in the design of the bracing system components to resist these forces.

For a panel lateral bracing system on a column, the relationship between column load, brace stiffness and sway displacement is shown in Figure C-A-6.3. If the bracing stiffness, $\beta$, is equal to the ideal brace stiffness for a perfectly plumb member, $\beta_{i}$, the displacement of the bracing system becomes large as $P$ approaches $P_{e}$. Such large displacements would produce large bracing forces, and $\Delta$ must be kept small for practical design.

For the panel-bracing system shown in Figure C-A-6.3, the use of $\beta_{b r}=2 \beta_{i}$ and the assumption of an initial displacement of $\Delta_{o}=L_{b r} / 500$ results in $V_{b r}$ equal to $0.4 \%$ of $P_{e}$. In the foregoing, $L_{b r}$ is the distance between adjacent braced points as shown in


Fig. C-A-6.2. Cantilevered column with a variable stiffness brace at its top.

Figure C-A-6.4, and $\Delta_{o}$ is the relative lateral displacement of the braced points from the plumb (or aligned) position caused by erection tolerances, first-order effects from gravity and/or lateral loading on the structure, and first-order effects (i.e., the effects prior to amplification from member axial compression) from any other sources such as temperature movement, connection slip, etc.

As discussed in the user note in Chapter C, $\Delta_{o}=L_{b r} / 500$ corresponds to an erection tolerance equal to maximum frame out-of-plumbness specified in the AISC Code of Standard Practice for Steel Buildings and Bridges (AISC, 2016a). Similarly, for torsional bracing of beams an initial rotation, $\theta_{o}=L_{b r} /\left(500 h_{o}\right)$, is assumed, where $h_{o}$ is the distance between flange centroids. For other values of $\Delta_{o}$ and $\theta_{o}$, it is permissible to modify the bracing required strengths, $V_{b r}, P_{b r}$ and $M_{b r}$, by direct proportion.


Fig. C-A-6.3. Effect of initial out-of-plumbness.

For cases where multiple columns are being braced and it is unlikely that all of the columns will be out-of-plumb in the same direction, Chen and Tong (1994) recommend the use of an average initial displacement due to erection tolerances of $\Delta_{o}=L_{b r} /\left(500 \sqrt{n_{o}}\right)$, where $n_{o}$ is the number of columns, each with a random $\Delta_{o}$, stabilized by the bracing system. This reduced $\Delta_{o}$ is added with the first-order effects causing any additional out-of-plumbness or out-of-alignment between the brace points to determine the total force in the bracing system. In this situation, assuming a panelbracing system, the total shear force in the bracing system can be calculated as

$$
\begin{equation*}
V_{b r}=V_{1 s t}+2 \frac{P_{r}}{L_{b r}} \Delta_{o . t o t a l} \tag{C-A-6-1}
\end{equation*}
$$

where
$L_{b r} \quad=$ unbraced length within the panel under consideration, in. (mm)
$P_{r} \quad=$ sum of the required axial forces in the columns being stabilized, kips ( N )
$V_{1 s t} \quad=$ first-order shear force in the bracing system due to gravity and/or lateral loading on the structure, temperature effects, etc., kips (N)
$\Delta_{\text {o.total }}=$ total relative displacement between the ends of the unbraced length under consideration due to erection tolerances, first-order effects of gravity and/ or lateral loads on the structure, and first-order effects (i.e., the effects prior to amplification from member axial compression) from any other sources such as temperature movement, connection slip, etc., in. (mm)

In the absence of any first-order forces in the bracing system, if the actual bracing stiffness provided (nominal stiffness with no stiffness reduction), $\beta_{a c t}$, is larger than $\beta_{b r}$, the required brace strength, $V_{b r}$, in the case of a panel lateral brace, or $P_{b r}$ in the case of a point lateral brace, can be multiplied by the following factor:

$$
\begin{equation*}
\frac{1}{2-\frac{\beta_{b r}}{\beta_{a c t}}} \tag{C-A-6-2}
\end{equation*}
$$



Fig. C-A-6.4. Definitions of initial displacements for panel and point braces.

In the case of a panel-bracing system that contains a first-order shear force, this factor can be applied to the second term of Equation C-A-6-1, giving

$$
\begin{equation*}
V_{b r}=V_{1 s t}+\frac{1}{1-\frac{\beta_{b r}}{2 \beta_{a c t}}} \frac{P_{r}}{L_{b r}} \Delta_{o . t o t a l} \tag{C-A-6-3}
\end{equation*}
$$

By substituting the expression for $\beta_{b r}$ from Equation A-6-2, one can show that Equation C-A-6-3 states that the total shear force in the panel-bracing system is simply equal to the first-order shear force plus a $P-\Delta$ effect from the total vertical load being stabilized, $P_{r}$, acting through the second-order relative end displacement of the panel (Griffis and White, 2013). The second term in the previously given equations for $V_{b r}$ is based on the assumption of pins inserted in the column at each of the braced points, as in Winter's point bracing model (Winter, 1960). To account for the additional brace forces due to member curvature and member continuity across the braced points, the brace force, as defined by Equation A-6-1, is increased for point bracing as explained later in Commentary Appendix 6, Section 6.2.

Prado and White (2015) and Lokhande and White (2015) observed that Equation C-A-6-2 tends to overestimate the reduction in the torsional bracing brace strength requirement with increasing $\beta_{a c t} / \beta_{b r}$. Therefore, this equation is not recommended for application with torsional bracing.

Connections in the bracing system, if they are flexible or can slip, should be considered in the assessment of the bracing requirements. The connection and the bracing system should be handled as components in series for the calculation of the bracing stiffness. As such, for point bracing, the actual bracing stiffness is related to the connection and the brace stiffnesses by the relationship

$$
\begin{equation*}
\frac{1}{\beta_{\text {act }}}=\frac{1}{\beta_{\text {conn }}}+\frac{1}{\beta_{\text {brace }}} \tag{C-A-6-4}
\end{equation*}
$$

The resulting bracing system stiffness, $\beta_{a c t}$, is less than the smaller of the connection stiffness, $\beta_{\text {conn }}$, and the brace stiffness, $\beta_{\text {brace }}$. Connection slip may be considered by increasing the value of $\Delta_{o}$ used in the calculation of the bracing force requirements, as long as $\Delta_{o}$ is small enough such that the brace is engaged well before the member reaches its maximum strength. Slip in connections with standard holes need not be considered, except when only a few bolts are used. This is in addition to the consideration of the fact that the initial $\Delta_{o}$ or $\theta_{o}$ is unlikely to be the same in each of the members, via recommendations such as those by Chen and Tong (1994) discussed previously.

When evaluating the bracing of rows of columns or beams, consideration must be given to the accumulation of the bracing forces, which may result in a different displacement at each column or beam location. In general, bracing forces can be minimized by increasing the number of braced bays and using stiff braces.

In certain cases, it may be more effective to obtain the bracing stiffness requirements as $2 / \phi$ (LRFD) or $2 \Omega$ (ASD) times the ideal bracing stiffness determined from a
computational buckling analysis. Although this approach can be applied to any column, beam and beam-column, specific cases of interest include members with brace spacings that vary significantly along the member length, members with stepped and/or tapered geometry, situations where it is desired to increase the bracing stiffness and/or strength to satisfy high demands in one portion of a member but use lighter bracing in other regions, and partially braced members. The buckling analysis should account for the reduction in stiffness associated with the member elastic and inelastic strength limit states. Togay et al. (2015) summarize the stiffness reduction factors corresponding to limit states of Chapter E column buckling and Chapter F I-shaped member lateral-torsional buckling. For design by ASD, the buckling analysis must be carried out under 1.6 times the ASD load combinations and the resulting ideal bracing stiffness values are then multiplied by $2 \Omega / 1.6$ to obtain the required bracing stiffnesses.

### 6.2. COLUMN BRACING

This section addresses lateral bracing of columns. Recommendations for torsional bracing of columns can be found in Helwig and Yura (1999). Commentary Section E4 discusses the calculation of the strength of columns that are restrained laterally at a location other than their shear center, and thus fail by constrained-axis torsional buckling. Lateral bracing requirements for the general case of beam-column members restrained laterally at a location other than their shear center are addressed later in Commentary Appendix 6, Section 6.4.

For point column bracing, the critical stiffness is a function of the number of intermediate braces (Winter, 1958, 1960). For one intermediate brace, $\beta_{i}=2 P_{r} / L_{b r}$, and for many braces, $\beta_{i}=4 P_{r} / L_{b r}$. The relationship between the critical stiffness and the number of braces, $n$, can be approximated (Yura, 1995) as:

$$
\begin{equation*}
\beta_{i}=\left(4-\frac{2}{n}\right) \frac{P_{r}}{L_{b r}} \tag{C-A-6-5}
\end{equation*}
$$

The most severe case (many braces) is adopted for the brace stiffness requirement in Equation A-6-4, i.e., $\beta_{b r}=2 \times 4 P_{r} / L_{b r}$. The brace stiffness in Equation A-6-4 can be multiplied by the following ratio to account for the actual number of braces:

$$
\left(\frac{2 n-1}{2 n}\right)
$$

In Equation A-6-4, when the actual brace spacing is less than the value of the effective length, $L_{c}$, that enables the column to reach $P_{r}$, the calculated required stiffness may become quite conservative since the stiffness equations are inversely proportional to $L_{b r}$. In such cases, $L_{b r}$ can be taken equal to $L_{c}$. This practice constitutes a simple method of designing for partial bracing; that is, bracing that is sufficient to develop the member's required strength but is not sufficient to develop the member's strength based on $L_{c}=L_{b r}$. This substitution is also permitted for beam point lateral bracing in Equation A-6-8.

For example, a W12×53 (W310×79) with $P_{u}=400$ kips ( 1800 kN ) for LRFD or $P_{a}=267 \mathrm{kips}(1200 \mathrm{kN})$ for ASD can have a maximum unbraced length of 18 ft
$(5.5 \mathrm{~m})$ for ASTM A992/A992M steel. If the actual brace spacing is $8 \mathrm{ft}(2.4 \mathrm{~m})$, $18 \mathrm{ft}(5.5 \mathrm{~m})$ may be used in Equation A-6-4 to determine the required stiffness. The use of $L_{b r}$ equal to the value of $L_{c}$ in Equation A-6-4 provides reasonable estimates of the brace stiffness requirements; however, in some cases, this solution is significantly conservative. Improved accuracy can be obtained by treating the system as a continuous bracing system or directly determining the buckling strength of the partially braced member and the corresponding ideal bracing stiffness (Lutz and Fisher, 1985; Ziemian, 2010; Togay et al., 2015). The required bracing stiffness is taken as $2 / \phi$ (LRFD) or $2 \Omega$ (ASD) times the ideal bracing stiffness. (Note that, as discussed in Commentary Appendix 6, Section 6.1, for ASD, the ideal bracing stiffness must be determined using 1.6 times the applicable load combinations and the resulting ideal bracing stiffness values are then multiplied by $2 \Omega / 1.6$ to obtain the required brace stiffnesses).

With regard to brace strength requirements, Winter's point bracing model only accounts for force effects from lateral displacement of the brace points and would derive a brace force equal to $0.8 \%$ of $P_{r}$. To account for the additional brace forces due to member curvature and member continuity across the brace points, this theoretical force is increased to $1 \%$ of $P_{r}$ in Equation A-6-3. Member curvature and continuity across the brace points has a comparable effect on panel-bracing requirements. As such, the panel-bracing strength requirement of Equation A-6-1 is increased from 0.4 to $0.5 \%$ of $P_{r}$. Similar increases are applied to the panel and point lateral bracing strength requirements for beams in Equations A-6-5 and A-6-7.

### 6.3. BEAM BRACING

Beam bracing must control twist of the section, but need not prevent lateral displacement. Both lateral bracing, such as a steel joists attached to the compression flange of a simply supported beam, and torsional bracing, such as a cross-frame or vertical diaphragm element between adjacent girders, can be used to control twist. Note, however, that lateral bracing systems that are attached only near the beam shear center are generally ineffective in controlling twist.

For beams subject to reverse-curvature bending, an unbraced inflection point cannot be considered a braced point because significant twist can occur at that point (Ziemian, 2010). Bracing provided near an inflection point must be attached at or near both flanges to prevent twist; alternatively, torsional bracing can be provided. A lateral brace on one flange is ineffective near an inflection point.

The beam bracing requirements of this section are based predominantly on the recommendations from Yura (2001).

## 1. Lateral Bracing

For beam lateral bracing, the following stiffness requirement is derived following Winter's approach:

$$
\begin{equation*}
\beta_{b r}=\frac{2 N_{i} C_{t} P_{f} C_{d}}{\phi L_{b r}} \tag{C-A-6-7}
\end{equation*}
$$

where
$C_{d}=$ double curvature factor, which accounts for the potential larger demands on the lateral bracing in unbraced lengths containing inflection points, applied only to the point brace closest to the inflection point or to the panel brace corresponding to the unbraced length containing the inflection point, as well as the panel brace in the adjacent unbraced length closest to the inflection point
$=1+\left(M_{S} / M_{L}\right)^{2}$, where the $C_{d}$ factor is applicable as defined
$=1.0$, otherwise
$C_{t}=1.0$ for centroidal loading
$=1+(1.2 / n)$ for top-flange loading
$I_{y c}=$ moment of inertia of the compression flange about its principal axis within the plane of the web, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$
$M_{L}=$ absolute value of the maximum moment causing compression in the braced flange within the overall length, composed of an unbraced length containing an inflection point and the adjacent unbraced length closest to the inflection point, kip-ft ( $\mathrm{N}-\mathrm{mm}$ )
$M_{S}=$ absolute value of the maximum moment causing tension in the braced flange within the overall length, composed of the unbraced length containing an inflection point and the adjacent unbraced length closest to the inflection point, kip-ft ( $\mathrm{N}-\mathrm{mm}$ )
$N_{i}=1.0$ for panel bracing
$=(4-2 / n)$ for point bracing
$P_{f}=$ beam compressive flange force, kips (N)
$n=$ number of intermediate braces
The $C_{d}$ factor varies between 1 and 2, and is applied only to the point brace closest to the inflection point or to the panel brace corresponding to the unbraced length containing the inflection point and the adjacent panel brace closest to the inflection point. The term $\left(2 N_{i} C_{t}\right)$ can be conservatively approximated as 10 for any number of point braces and 4 for panel bracing, and $P_{f}$ can be approximated by $M_{r} / h_{o}$, which simplifies Equation C-A-6-7 to the stiffness requirements given by Equations A-6-6 and A-6-8. Equation C-A-6-7 can be used in lieu of Equations A-6-6 and A-6-8. The brace strength requirement for panel bracing is

$$
\begin{equation*}
P_{b r}=\frac{0.005 M_{r} C_{t} C_{d}}{h_{o}} \tag{C-A-6-8a}
\end{equation*}
$$

and for point bracing is

$$
\begin{equation*}
P_{b r}=\frac{0.01 M_{r} C_{t} C_{d}}{h_{o}} \tag{C-A-6-8b}
\end{equation*}
$$

These requirements are based on an assumed initial lateral displacement of the compression flange of $\Delta_{o}=0.002 L_{b r}$. The brace strength requirements of Equations A-6-5 and A-6-7 are derived from Equations C-A-6-8a and C-A-6-8b by assuming top flange loading ( $C_{t}=2$ ). Equations C-A-6-8a and C-A-6-8b can be used in lieu of Equations A-6-5 and A-6-7, respectively.

## 2. Torsional Bracing

Torsional bracing can either be attached continuously along the length of the beam (for example, a metal deck or slab) or located at discrete points along the length of the member (for example, cross-frames or secondary beam members). With respect to the girder response, torsional bracing attached to the tension flange is just as effective as a brace attached at mid-depth or to the compression flange, as long as distortion of the beam cross section is controlled. Although the girder response is generally not sensitive to the brace location, the position of the brace on the cross section influences the stiffness of the brace itself. For example, a torsional brace attached on the bottom flange will tend to bend in single curvature (with a flexural stiffness of $2 E I / L$ based on the brace properties), while a brace attached on the top flange will tend to bend in reverse curvature (with a flexural stiffness of $6 E I / L$ based on the brace properties). Partially restrained connections of the bracing to the girder being braced can be used if their flexibility is considered in evaluating the torsional brace stiffness (Ziemian, 2010).

The torsional brace requirements are based on the buckling strength of a beam with a continuous torsional brace along its length, as presented in Taylor and Ojalvo (1966) and modified for cross-section distortion in Yura (2001):

$$
\begin{equation*}
M_{r} \leq M_{c r}=\sqrt{\left(C_{b u} M_{o}\right)^{2}+\frac{C_{b}^{2} E I_{y e f f} \bar{\beta}_{T}}{2 C_{t t}}} \tag{C-A-6-9}
\end{equation*}
$$

The term $C_{b u} M_{o}$ is the buckling strength of the beam without torsional bracing. $C_{t t}=1.2$ when there is top flange loading and $C_{t t}=1.0$ for centroidal loading. $\bar{\beta}_{T}=n \beta_{T} / L$ is the continuous torsional brace stiffness per unit length or its equivalent when $n$ point braces, each with a stiffness $\beta_{T}$, are used along the span, $L$, and the factor 2 accounts for initial out-of-straightness (the continuous torsional ideal bracing stiffness is thus taken as $\bar{\beta}_{T} / 2$ ). Neglecting the unbraced beam buckling term gives a conservative estimate of the torsional brace stiffness requirement as expressed in Equation A-611. For a doubly symmetric I-shaped cross section, $I_{\text {yeff }}$ is equal to the moment of inertia about the principal axis within the plane of the web of the section, $I_{y}$. For a singly symmetric I-shaped cross section,

$$
\begin{equation*}
I_{\text {yeff }}=I_{y c}+(t / c) I_{y t} \tag{C-A-6-10}
\end{equation*}
$$

where
$I_{y c}$ and $I_{y t}=$ respective moments of inertia of compression and tension flanges about their principal axes within the plane of the web, in. ${ }^{4}\left(\mathrm{~mm}^{4}\right)$
$c \quad=$ distance from the neutral axis to the extreme compressive fibers, in. (mm)
$t \quad=$ distance from the neutral axis to the extreme tensile fibers, in. (mm)
The strength requirement for beam torsional bracing is developed based upon an assumed initial twist imperfection of $\theta_{o}=0.002 L_{b} / h_{o}$, where $h_{o}$ is equal to the depth of the beam. Based on the use of an effective bracing stiffness equal to two times the ideal torsional bracing stiffness, the torsional bracing required moment resistance may be estimated as $M_{r b}=\beta_{T} \theta_{o}$. Using the formulation of Equation A-6-11 (without $\phi$ or $\Omega$ ), the strength requirement for the torsional bracing is

$$
\begin{equation*}
M_{b r}=\beta_{T} \theta_{o}=\left(\frac{2.4 L M_{r}^{2}}{n E I_{\text {yeff }} C_{b}^{2}}\right)\left(\frac{L_{b r}}{500 h_{o}}\right) \tag{C-A-6-11}
\end{equation*}
$$

The 2010 Specification commentary (AISC, 2010) showed the simplification of this equation as Equation A-6-9, provided here as Equation C-A-6-12:

$$
\begin{equation*}
M_{b r}=\frac{0.024 M_{r} L}{n C_{b} L_{b r}} \tag{C-A-6-12}
\end{equation*}
$$

The underlying development of this equation involves the assumption that the rigidity of the fully elastic beam is available to assist the torsional bracing in resisting the brace point displacements. In addition, the derivation does not account for the fact that, in beams where the lateral-torsional buckling resistance is limited by the strength corresponding to the yielding limit state, the increase in lateral-torsional buckling resistance due to moment gradient effects is smaller than the factor $C_{b}$ (e.g., for compact-section beams, the flexural resistance is never greater than $\phi_{b} M_{p}$, irrespective of the $C_{b}$ value). Furthermore, in cases involving top flange loading, the $C_{t t}$ factor of 1.2 tends to be offset by $C_{b}>1.0$.

Prado and White (2015) and Lokhande and White (2015) investigated a range of member bracing cases having different degrees of inelasticity at the member strength limit. A value of $2 \%$ of the corresponding member moment was found to accurately capture the torsional bracing strength requirement in all cases. Equation A-6-9 has been simplified to $0.02 M_{r}$ based on the results of these studies.

The $\beta_{\text {sec }}$ term in Equation A-6-10, and defined in Equations A-6-12 and A-6-13 accounts for cross-section distortion. A web stiffener at the brace point reduces crosssectional distortion and improves the effectiveness of a torsional brace. When a cross frame is attached near both flanges or a vertical diaphragm element is approximately the same depth as the girder, then web distortion will be insignificant and $\beta_{\text {sec }}$ may be taken as infinity. The required bracing flexural stiffness, $\beta_{b r}$, given by Equation A-6-10 is obtained by solving the following expression, which represents the brace system stiffness including distortion effects:

$$
\begin{equation*}
\frac{1}{\beta_{T}}=\frac{1}{\beta_{b r}}+\frac{1}{\beta_{s e c}} \tag{C-A-6-13}
\end{equation*}
$$

Yura (2001) provides additional guidance regarding the handling of cross-section distortional flexibility for cases where the bracing system is attached through only a portion of the depth of the member being braced.

Parallel chord trusses with both chords subjected only to flexural loading and with both chords extended to the end of the span and attached to supports can be treated the same as beams. In Equations A-6-5 through A-6-9, $M_{r}$ may be taken as the maximum compressive chord force times the depth of the truss to determine the torsional brace strength and stiffness requirements. Cross-section distortion effects, $\beta_{\text {sec }}$, need not be considered when full-depth cross-frames are used for bracing. When either chord does not extend to the end of the span, consideration should be given to the control of twisting near the ends of the span by the use of cross-frames or ties.

Beams-Point Torsional Bracing Combined with Lateral Bracing at the Compression Flange. Recent studies (Prado and White, 2015; Lokhande and White, 2015) have suggested that for beams having point torsional bracing combined with panel or point lateral bracing on the flange subjected to flexural compression, the required torsional and lateral brace stiffnesses can be reduced relative to the base values specified in Sections 6.3.1 and 6.3.2, but should satisfy this interaction equation:

$$
\begin{equation*}
\frac{\beta_{T b r}}{\beta_{\text {Tbro }}}+\frac{\beta_{\text {Lbr }}}{\beta_{\text {Lbro }}} \geq 1.0 \tag{C-A-6-14}
\end{equation*}
$$

where
$\beta_{L b r}=$ actual or provided lateral brace stiffness, kip/in. (N/mm)
$\beta_{\text {Lbro }}=$ required lateral brace stiffness given by Equation A-6-6 for panel bracing or Equation A-6-8 for point bracing acting alone, kip/in. (N/mm)
$\beta_{\text {Tbr }}=$ actual or provided torsional brace stiffness, kip-in./rad ( $\mathrm{N}-\mathrm{mm} / \mathrm{rad}$ )
$\beta_{\text {Tbro }}=$ required torsional brace stiffness given by Equation A-6-10 acting alone, kip-in./rad ( $\mathrm{N}-\mathrm{mm} / \mathrm{rad}$ )
Beams—Point Torsional Bracing Combined with Lateral Bracing at the Tension Flange. For beams having point torsional bracing combined with panel or point lateral bracing on the flange subjected to flexural tension, Equation C-A-6-14 applies and, in addition, the required torsional brace stiffness should be greater than or equal to the smaller of $\beta_{\text {Pbro }} h_{o}^{2}$ or $\beta_{\text {Tbro }}$,
where
$\beta_{\text {Pbro }}=$ required point lateral brace stiffness given by Equation A-6-8, calculated using the unbraced length between the torsional brace points, kip/in. (N/mm)
$h_{o} \quad=$ distance between the flange centroids, in. (mm)
The provisions of Sections 6.3.1 and 6.3.2 apply for the lateral and the torsional brace strength requirements.

## Reduction in Beam Bracing Requirements with Combined Torsional and Lateral

Bracing. Equation C-A-6-14 recognizes the typical reduction in the beam torsional and lateral bracing stiffness requirements when lateral and torsional bracing are used in combination, thus restraining both twisting and lateral movement at the braced points. This linear interaction equation is known to provide a conservative estimate of the bracing stiffness requirements in cases where the lateral bracing is provided at or near the flange subjected to flexural compression (Yura, et al., 1992; Prado and White, 2015; Lokhande and White, 2015).

For situations where the lateral bracing is located at or near the flange subjected to flexural tension, the lateral bracing system is ineffective on its own. However, a point torsional brace works effectively as a lateral brace to the compression flange, in the limit that the lateral bracing system stiffness becomes large. Prado and White (2015) and Lokhande and White (2015) show that the point lateral bracing stiffness requirement of Equation A-6-8, denoted by $\beta_{\text {Pbro }}$, when multiplied by $h_{o}^{2}$, serves as an accurate to conservative minimum limit on the required torsional bracing stiffness obtained from Equation C-A-6-14 for the case of point torsional bracing combined with lateral bracing at the tension flange.

Furthermore, where $\beta_{\text {Pbro }} h_{o}^{2}$ is greater than the base torsional bracing stiffness requirement from Equation A-6-10, the torsional bracing stiffness need not be greater than the requirement from Equation A-6-10.

The minimum required strength of the separate lateral and torsional bracing components is still governed by the provisions of Sections 6.3.1 and 6.3.2. The strength demands on the separate brace components are not necessarily reduced by the combination.

### 6.4. BEAM-COLUMN BRACING

The provisions for beam-column bracing are modified slightly in this edition of the Specification to reflect new research by Lokhande and White (2015) and White et al. (2011). In addition, this research proposed the following additional new guidelines for beam-column bracing.

Beam-Columns Braced by a Combination of Lateral and Torsional Bracing. For beam-columns braced by a combination of lateral and torsional bracing, the following rules apply:
(1) The required lateral bracing stiffness can be determined using Equations A-6-2 for panel lateral bracing, or Equations A-6-4 for point lateral bracing, based on the required member axial force, $P_{r}$. In Equations A-6-4, $L_{b r}$ can be taken as the actual unbraced length; the provision in Section 6.2.2 that $L_{b r}$ need not be taken less than the maximum permitted effective length based on $P_{r}$ should not be applied.
(2) The required torsional bracing stiffness can be determined using Equation A-6-10, with an equivalent moment equal to $M_{r}+P_{r} h_{o} / 2$, where $P_{r}$ is the axial force in the member being braced.
(3) The required lateral brace strength can be determined using Equation A-6-1 for panel lateral bracing, or Equation A-6-3 for point lateral bracing, based on 1.3 of the required axial force, 1.3 $P_{r}$.
(4) The required torsional brace strength can be determined using Equation A-6-9 with an equivalent moment equal to $M_{r}+P_{r} h_{o} / 2$, where $P_{r}$ is the axial force in the member being braced.

Beam-Columns Braced by a Single Lateral Bracing System. For beam-columns braced by a single lateral bracing system attached at or near a flange subjected to flexural compression throughout the member length, the following rules apply:
(1) For panel bracing, when the opposite flange is subjected to a net tension force due to the axial and moment loading throughout the member length, the required bracing stiffness can be taken as the sum of the values determined using Equations A-6-2 with an equivalent axial force equal to $P_{r} / 2$ and Equations A-6-6 with the required moment, $M_{r}$. The required bracing strength can be taken as the sum of the values determined using Equation A-6-1 with an equivalent axial force equal to $P_{r} / 2$ and Equation A-6-5 with the required moment, $M_{r}$.
(2) For panel bracing, when the opposite flange is subjected to a net compression force due to the axial and moment loading at any position within the member length,
the required bracing stiffness can be taken as the sum of the values determined using Equation A-6-2 with an equivalent axial force equal to $2.5 P_{r}$ and Equation A-6-6 with the required moment, $M_{r}$. The required bracing strength can be taken as the sum of the values determined using Equation A-6-1 with an equivalent axial force equal to $2.5 P_{r}$ and Equation A-6-5 with the required moment, $M_{r}$.
(3) For point bracing, when the opposite flange is subjected to a net tension force due to the axial and moment loading throughout the member length, the required bracing stiffness can be taken as the sum of the values determined using Equations A-6-4 with an equivalent axial force equal to $P_{r} / 2$ and Equations A-6-8 with the required moment, $M_{r}$. In Equations A-6-4 and A-6-8, $L_{b r}$ can be taken as the actual unbraced length; the provisions in Appendix 6, Sections 6.2.2 and 6.3.1b, that $L_{b r}$ need not be taken less than the maximum permitted effective length based on $P_{r}$ and $M_{r}$, should not be applied. The required bracing strength can be taken as the sum of the values determined using Equation A-6-3 with an equivalent axial force equal to $P_{r} / 2$ and Equation A-6-7 with the required moment, $M_{r}$.
(4) For point bracing, when the opposite flange is subjected to a net compression force due to the axial and moment loading at any position within the member length, the required bracing stiffness can be taken as the sum of the values determined using Equation A-6-4 with an equivalent axial force equal to $2.5 P_{r}$ and Equation A-6-8 with the required moment, $M_{r}$. In Equations A-6-4 and A-6-8, $L_{b r}$ can be taken as the actual unbraced length; the provisions in Sections 6.2.2 and 6.3.1b, that $L_{b r}$ need not be taken less than the maximum permitted effective length based on $P_{r}$ and $M_{r}$, should not be applied. The required bracing strength can be taken as the sum of the values determined using Equation A-6-3 with an equivalent axial force equal to $2.5 P_{r}$ and Equation A-6-7 with the required moment, $M_{r}$.

In the application of these rules, where the member is subjected to axial compression larger than $P_{c} / 10$, the slenderness ratio, $L_{b r} / r_{y f}$, of the flange that does not have the additional lateral bracing should not be greater than 200 ,
where
$L_{b r}=$ unbraced length between the points where the flange having the larger unbraced length is restrained laterally, in. (mm)
$P_{c}=$ available axial compressive strength of the member determined according to Chapter E, kip (N)
$r_{y f}=$ radius of gyration of the flange having the larger unbraced length, taken about its principal axis parallel to the plane of the web, in. (mm)

This avoids potential excessive amplification of the bracing demands in cases where one flange is braced at closer intervals while the other flange has a large brace spacing.

Summary-Additional Guidelines for Beam-Column Bracing. The guidelines for beam-column bracing recommended in the preceding discussion utilize a simplified combination of the requirements for columns and for beams from Sections 6.2 and 6.3 , respectively.

For beam-columns braced by a combination of lateral and torsional bracing, the lateral bracing is designed based on the column bracing provisions of Section 6.2 given the required axial compression of $1.0 P_{r}$ for the lateral bracing stiffness requirement and $1.3 P_{r}$ for the lateral bracing strength requirement. Correspondingly, the torsional bracing is designed based on the beam torsional bracing provisions of Section 6.3 using an equivalent moment equal to $M_{r} / C_{b}+P_{r} h_{o} / 2$. The second term in this expression accounts for the increased demands on the torsional bracing caused by the presence of the axial compression force.

For beam-columns braced by a single lateral bracing system attached at or near a flange subjected to flexural compression throughout the member length, and when the opposite flange is subjected to a net tension due to the axial and moment loading at any position within the member length, the lateral bracing may be designed based on the sum of the requirements from the column bracing rules of Section 6.2 with an axial force of $P_{r} / 2$ and the beam torsional bracing rules of Section 6.3 with the moment $M_{r}$.

The bracing requirements for other more general bracing configurations may be determined using a buckling analysis or a second-order load deflection analysis as discussed in Section 6.1.

## APPENDIX 7

## ALTERNATIVE METHODS OF DESIGN FOR STABILITY

The effective length method and first-order analysis method are addressed in this Appendix as alternatives to the direct analysis method, which is presented in Chapter C. These alternative methods of design for stability can be used when the limits on their use as defined in Appendix 7, Sections 7.2.1 and 7.3.1, respectively, are satisfied.

Both methods in this Appendix utilize the nominal geometry and the nominal elastic stiffnesses ( $E I, E A$ ) in the analysis. Accordingly, it is important to note that the sidesway amplification ( $\Delta_{2 \text { nd-order }} / \Delta_{1 s t-\text { order }}$ or $B_{2}$ ) limits specified in Chapter $C$ and this Appendix are different. For the direct analysis method in Chapter C, the limit of 1.7 for certain requirements is based upon the use of reduced stiffnesses ( $E I^{*}$ and $E A^{*}$ ). For the effective length method and first-order analysis method, the equivalent limit of 1.5 is based upon the use of unreduced stiffnesses ( $E I, E A$ ).

### 7.2. EFFECTIVE LENGTH METHOD

The effective length method (though it was not originally identified by this name) has been used in various forms in the AISC Specification since 1961. The current provisions are essentially the same as those in Appendix 7 of the 2010 AISC Specification (AISC, 2010), with the following exceptions.

These provisions, together with the use of a column effective length greater than the actual length for calculating available strength in some cases, account for the effects of initial out-of-plumbness and member stiffness reductions due to the spread of plasticity. No stiffness reduction is required in the analysis.

The effective length, $L_{c}=K L$, for column buckling based upon elastic (or inelastic) stability theory, or alternatively the equivalent elastic column buckling stress, $F_{e}=$ $\pi^{2} E /\left(L_{c} / r\right)^{2}$, is used to calculate an axial compressive strength, $P_{c}$, through an empirical column curve that accounts for geometric imperfections and distributed yielding (including the effects of residual stresses). This column strength is then combined with the available flexural strength, $M_{c}$, and second-order member forces, $P_{r}$ and $M_{r}$, in the beam-column interaction equations.

Braced Frames. Braced frames are commonly idealized as vertically cantilevered pin-connected truss systems, ignoring any secondary moments within the system. The effective length factor, $K$, of components of the braced frame is normally taken as 1.0 , unless a smaller value is justified by structural analysis and the member and connection design is consistent with this assumption. If connection fixity is modeled in the analysis, the resulting member and connection moments must be accommodated in the design.

If $K<1.0$ is used for the calculation of $P_{n}$ in braced frames, the additional demands on the stability bracing systems and the influence on the second-order moments in beams providing restraint to the columns must be considered. The provisions in Appendix 6 do not address the additional demands on bracing members from the use of $K<1.0$. Generally, a $P-\Delta$ and $P-\delta$ second-order elastic analysis is necessary for calculation of the second-order moments in beams providing restraint to column members designed based on $K<1.0$. Therefore, design using $K=1.0$ is recommended, except in those special situations where the additional calculations are deemed justified.

The effective length, $L_{c}$, may be taken as $0.5 L$ for both in-plane and out-of-plane buckling of concentrically loaded compression braces in X-braced frames, where $L$ is the overall length of the brace between work points, with identically sized brace members when the compression and tension braces are attached at the midpoint and the magnitude of compression and tension forces in the braces are approximately equal (McGuire et al., 2000). Greater unbraced lengths for out-of-plane buckling may be required for X -braced frames with unbalanced brace forces, particularly those with discontinuous midpoint connections (Davaran, 2001). Shorter unbraced lengths may also be justified (El-Tayem and Goel, 1986; Picard and Beaulieu, 1987; Nair, 1997; Moon et al., 2008).

Moment Frames. Moment frames rely primarily upon the flexural stiffness of the connected beams and columns for stability. Stiffness reductions due to shear deformations may require consideration when bay sizes are small and/or members are deep.

When the effective length method is used, the design of all beam-columns in moment frames must be based on an effective length, $L_{c}=K L$, greater than the actual laterally unbraced length, $L$, except when specific exceptions based upon high structural stiffness are met. When the sidesway amplification ( $\Delta_{2 \text { nd-order }} / \Delta_{1 s t-o r d e r}$ or $B_{2}$ ) is equal to or less than 1.1, the frame design may be based on the use of $K=1.0$ for the columns. This simplification for stiffer structures results in a $6 \%$ maximum error in the in-plane beam-column strength checks of Chapter H (White and Hajjar, 1997a). When the sidesway amplification is larger, $K$ must be calculated.

A wide range of methods has been suggested in the literature for the calculation of K-factors (Kavanagh, 1962; Johnston, 1976; LeMessurier, 1977; ASCE, 1997; White and Hajjar, 1997b). These range from simple idealizations of single columns, as shown in Table C-A-7.1, to complex buckling solutions for specific frames and loading conditions. In some types of frames, $K$-factors are easily estimated or calculated and are a convenient tool for stability design. In other types of structures, the determination of accurate $K$-factors is determined by tedious hand procedures, and system stability may be assessed more effectively with the direct analysis method.

Alignment Charts. The most common method for determining $K$ is through use of the alignment charts, which are shown in Figure C-A-7.1 for frames with sidesway inhibited and Figure C-A-7.2 for frames with sidesway uninhibited (Kavanagh,

Approximate Values of Effective Length Factor, K						
Buckled shape of column is shown by dashed line		(b)	(c)	(d)	(e)	(f)
Theoretical $K$ value	0.5	0.7	1.0	1.0	2.0	2.0
Recommended design value when ideal conditions are approximated	0.65	0.80	1.2	1.0	2.1	2.0
End condition code	щшш Rotation fixed and translation fixed   Rotation free and translation fixed   Rotation fixed and translation free   Rotation free and translation free					

1962). These charts are based on assumptions of idealized conditions, which seldom exist in real structures, as follows:
(1) Behavior is purely elastic.
(2) All members have constant cross section.
(3) All joints are rigid.
(4) For columns in frames with sidesway inhibited, rotations at opposite ends of the restraining beams are equal in magnitude and opposite in direction, producing single curvature bending.
(5) For columns in frames with sidesway uninhibited, rotations at opposite ends of the restraining beams are equal in magnitude and direction, producing reverse curvature bending.
(6) The stiffness parameter $L \sqrt{P / E I}$ of all columns is equal.
(7) Joint restraint is distributed to the column above and below the joint in proportion to $E I / L$ for the two columns.
(8) All columns buckle simultaneously.
(9) No significant axial compression force exists in the girders.
(10) Shear deformations are neglected.

The alignment chart for sidesway inhibited frames shown in Figure C-A-7.1 is based on the following equation:

$$
\begin{equation*}
\frac{G_{A} G_{B}}{4}(\pi / K)^{2}+\left(\frac{G_{A}+G_{B}}{2}\right)\left[1-\frac{\pi / K}{\tan (\pi / K)}\right]+\frac{2 \tan (\pi / 2 K)}{(\pi / K)}-1=0 \tag{C-A-7-1}
\end{equation*}
$$

The alignment chart for sidesway uninhibited frames shown in Figure C-A-7.2 is based on the following equation:

$$
\begin{equation*}
\frac{G_{A} G_{B}(\pi / K)^{2}-36}{6\left(G_{A}+G_{B}\right)}-\frac{(\pi / K)}{\tan (\pi / K)}=0 \tag{C-A-7-2}
\end{equation*}
$$



Fig. C-A-7.1. Alignment chart-sidesway inhibited (braced frame).
where

$$
\begin{equation*}
G=\frac{\Sigma\left(E_{c o l} I_{c o l} / L_{c o l}\right)}{\Sigma\left(E_{g} I_{g} / L_{g}\right)}=\frac{\Sigma(E I / L)_{c o l}}{\Sigma(E I / L)_{g}} \tag{C-A-7-3}
\end{equation*}
$$

The subscripts $A$ and $B$ refer to the joints at the ends of the column being considered. The symbol $\Sigma$ indicates a summation of all members rigidly connected to that joint and located in the plane in which buckling of the column is being considered. $E_{c o l}$ is the elastic modulus of the column, $I_{\text {col }}$ is the moment of inertia of the column, and $L_{c o l}$ is the unsupported length of the column. $E_{g}$ is the elastic modulus of the girder, $I_{g}$ is the moment of inertia of the girder, and $L_{g}$ is the unsupported length of the girder or other restraining member. $I_{\text {col }}$ and $L_{g}$ are taken about axes perpendicular to the plane of buckling being considered. The alignment charts are valid for different materials if an appropriate effective rigidity, $E I$, is used in the calculation of $G$.

It is important to remember that the alignment charts are based on the assumptions of idealized conditions previously discussed-and that these conditions seldom exist in real structures. Therefore, adjustments are often required.


Fig. C-A-7.2. Alignment chart-sidesway uninhibited (moment frame).

Adjustments for Columns With Differing End Conditions. For column ends supported by, but not rigidly connected to, a footing or foundation, $G$ is theoretically infinity but unless designed as a true friction-free pin, may be taken as 10 for practical designs. If the column end is rigidly attached to a properly designed footing, $G$ may be taken as 1.0. Smaller values may be used if justified by analysis.

Adjustments for Girders With Differing End Conditions. For sidesway inhibited frames, these adjustments for different girder end conditions may be made:
(a) If rotation at the far end of a girder is prevented, multiply $(E I / L)_{g}$ of the member by 2 .
(b) If the far end of the girder is pinned, multiply $(E I / L)_{g}$ of the member by 1.5 .

For sidesway uninhibited frames and girders with different boundary conditions, the modified girder length, $L_{g}{ }^{\prime}$, should be used in place of the actual girder length, where

$$
\begin{equation*}
L_{g}^{\prime}=L_{g}\left(2-M_{F} / M_{N}\right) \tag{C-A-7-4}
\end{equation*}
$$

$M_{F}$ is the far end girder moment and $M_{N}$ is the near end girder moment from a firstorder lateral analysis of the frame. The ratio of the two moments is positive if the girder is in reverse curvature. If $M_{F} / M_{N}$ is more than 2.0 , then $L_{g}^{\prime}$ becomes negative, in which case $G$ is negative and the alignment chart equation must be used. For sidesway uninhibited frames, the following adjustments for different girder end conditions may be made:
(a) If rotation at the far end of a girder is prevented, multiply $(E I / L)_{g}$ of the member by $2 / 3$.
(b) If the far end of the girder is pinned, multiply $(E I / L)_{g}$ of the member by $1 / 2$.

Adjustments for Girders with Significant Axial Load. For both sidesway conditions, multiply $(E I / L)_{g}$ by the factor $\left(1-Q / Q_{c r}\right)$, where $Q$ is the axial load in the girder and $Q_{c r}$ is the in-plane buckling load of the girder based on $K=1.0$.

Adjustments for Column Inelasticity. For both sidesway conditions, replace ( $E_{\text {col }} I_{\text {col }}$ ) with $\tau_{b}\left(E_{c o l} I_{c o l}\right)$ for all columns in the expression for $G_{A}$ and $G_{B}$. It is noted that $\tau_{b}$ is being used as an approximation for the $\tau_{a}$ expression that appeared in previous editions of the Commentary (AISC, 2005).

Adjustments for Connection Flexibility. One important assumption in the development of the alignment charts is that all beam-column connections are fully restrained (FR) connections. When the far end of a beam does not have an FR connection that behaves as assumed, an adjustment must be made. When a beam connection at the column under consideration is a shear-only connection, that is, there is no moment, then that beam cannot participate in the restraint of the column and it cannot be considered in the $\Sigma(E I / L)_{g}$ term of the equation for $G$. Only FR connections can be used directly in the determination of $G$. Partially restrained (PR) connections with a documented moment-rotation response can be utilized, but $(E I / L)_{g}$ of each beam must be adjusted to account for the connection flexibility. ASCE (1997) provides a detailed discussion of frame stability with PR connections.

Combined Systems. When combined systems are used, all the systems must be included in the structural analysis. Consideration must be given to the variation in stiffness inherent in concrete or masonry shear walls due to various degrees to which these elements may experience cracking. This applies to load combinations for serviceability as well as strength. It is prudent for the designer to consider a range of possible stiffnesses, as well as the effects of shrinkage, creep and load history, in order to envelope the likely behavior and provide sufficient strength in all interconnecting elements between systems. Following the analysis, the available strength of compression members in moment frames must be assessed with effective lengths calculated as required for moment-frame systems; other compression members may be assessed using $K=1.0$.

Leaning Columns and Distribution of Sidesway Instability Effects. Columns in gravity framing systems can be designed as pin-ended columns with $K=1.0$. However, the destabilizing effects ( $P-\Delta$ effects) of the gravity loads on all such columns, and the load transfer from these columns to the lateral force-resisting system, must be accounted for in the design of the lateral force-resisting system.

It is important to recognize that sidesway instability of a building is a story phenomenon involving the sum of the sway resistances of all the lateral force-resisting elements in the story and the sum of the factored gravity loads in the columns in that story. No individual column in a story can buckle in a sidesway mode without the entire story buckling.

If every column in a story is part of a moment frame and each column is designed to support its own axial load, $P$, and $P-\Delta$ moment such that the contribution of each column to the lateral stiffness or to the story buckling load is proportional to the axial load supported by the column, all the columns will buckle simultaneously. Under this idealized condition, there is no interaction among the columns in the story; column sway instability and frame instability occur at the same time. Typical framing, however, does not meet this idealized condition, and real systems redistribute the story $P-\Delta$ effects to the lateral force-resisting elements in that story in proportion to their stiffnesses. This redistribution can be accomplished using such elements as floor diaphragms or horizontal trusses.
In a building that contains columns that contribute little or nothing to the sway stiffness of the story, such columns are referred to as leaning or gravity-only columns. These columns can be designed using $K=1.0$, but the lateral force-resisting elements in the story must be designed to support the destabilizing $P-\Delta$ effects developed from the loads on these leaning columns. The redistribution of $P-\Delta$ effects among columns must be considered in the determination of $K$ and $F_{e}$ for all the columns in the story for the design of moment frames. The proper $K$-factor for calculation of $P_{c}$ in moment frames, accounting for these effects, is denoted in the following by the symbol $K_{2}$.

Effective Length for Story Stability. Two approaches for evaluating story stability are recognized: the story stiffness approach (LeMessurier, 1976, 1977) and the story buckling approach (Yura, 1971). Additionally, a simplified approach proposed by LeMessurier (1995) is also discussed.

The column effective length factor associated with lateral story buckling is expressed as $K_{2}$ in the following discussions. The value of $K_{2}$ determined from Equation C-A-$7-5$ or Equation C-A-7-8 may be used directly in the equations of Chapter E. However, it is important to note that this substitution is not appropriate when calculating the story buckling mode as the summation of $\pi^{2} E I /\left(K_{2} L\right)^{2}$. Also, note that the value of $P_{c}$ calculated using $K_{2}$ by either method cannot be taken greater than the value of $P_{c}$ determined based on sidesway-inhibited buckling.

Story Stiffness Approach. For the story stiffness approach, $K_{2}$ is defined as

$$
\begin{equation*}
K_{2}=\sqrt{\frac{P_{\text {story }}}{R_{M} P_{r}}\left(\frac{\pi^{2} E I}{L^{2}}\right)\left(\frac{\Delta_{H}}{H L}\right)} \geq \sqrt{\frac{\pi^{2} E I}{L^{2}}\left(\frac{\Delta_{H}}{1.7 H_{c o l} L}\right)} \tag{C-A-7-5}
\end{equation*}
$$

in which $R_{M}$ is used to approximate the influence of $P-\delta$ effects on the sidesway stiffness of the columns in a story and is defined in Equation A-8-8 as

$$
\begin{equation*}
R_{M}=1-0.15\left(P_{m f} / P_{\text {story }}\right) \tag{C-A-7-6}
\end{equation*}
$$

where $P_{m f}, P_{\text {story }}$ and $H$ are as defined in Appendix 8, Section 8.2.2.
It is possible that certain columns, having only a small contribution to the lateral force resistance in the overall frame, will have a $K_{2}$ value less than 1.0 based on the term to the left of the inequality. The limit on the righthand side is a minimum value for $K_{2}$ that accounts for the interaction between sidesway and non-sidesway buckling (ASCE, 1997; White and Hajjar, 1997b). The term $H_{\text {col }}$ is the shear in the column under consideration, produced by the lateral forces used to compute $\Delta_{H}$.

Equation C-A-7-5 can be reformulated to obtain the column buckling load, $P_{e 2}$, as

$$
\begin{equation*}
P_{e 2}=\left(\frac{H L}{\Delta_{H}}\right) \frac{P_{r}}{P_{\text {story }}} R_{M} \leq 1.7 H_{\text {col }} L / \Delta_{H} \tag{C-A-7-7}
\end{equation*}
$$

$P_{\text {story }}$ in Equations C-A-7-5 to C-A-7-7 includes all columns in the story, including any leaning columns, and $P_{r}$ is for the column under consideration. The column buckling load, $P_{e 2}$, calculated from Equation C-A-7-7 may be larger than $\pi^{2} E I / L^{2}$, but may not be larger than the limit on the right-hand side of this equation.

In Appendix 8, the story stiffness approach is the basis for the $B_{2}$ calculation (for $P-\Delta$ effects). In Equation A-8-7, the buckling load for the story is expressed in terms of the story drift ratio, $\Delta_{H} / L$, from a first-order lateral load analysis at a given applied lateral load level. In preliminary design, $\Delta_{H} / L$ may be taken in terms of a target maximum value for this drift ratio. This approach focuses the engineer's attention on the most fundamental stability requirement in building frames: providing adequate overall story stiffness in relation to the total vertical load, $P_{\text {story }}$, supported by the story. The elastic story stiffness expressed in terms of the drift ratio and the total horizontal load acting on the story is $H /\left(\Delta_{H} / L\right)$.

Story Buckling Approach. For the story buckling approach, $K_{2}$ is defined as

$$
\begin{equation*}
K_{2}=\sqrt{\frac{\frac{\pi^{2} E I}{L^{2}}}{P_{r}}\left[\frac{P_{\text {story }}}{\Sigma \frac{\pi^{2} E I}{\left(K_{n 2} L\right)^{2}}}\right]} \geq \sqrt{\frac{5}{8}} K_{n 2} \tag{C-A-7-8}
\end{equation*}
$$

where $K_{n 2}$ is defined as the value of $K$ determined directly from the alignment chart in Figure C-A-7.2.

The value of $K_{2}$ calculated from Equation C-A-7-8 may be less than 1.0. The limit on the righthand side is a minimum value for $K_{2}$ that accounts for the interaction between sidesway and non-sidesway buckling (ASCE, 1997; White and Hajjar, 1997b; Geschwindner, 2002; AISC-SSRC, 2003b). Other approaches to calculating $K_{2}$ are given in previous editions of this Commentary and the foregoing references. Equation C-A-7-8 can be reformulated to obtain the column buckling load, $P_{e 2}$, as

$$
\begin{equation*}
P_{e 2}=\left(\frac{P_{r}}{P_{\text {story }}}\right) \Sigma \frac{\pi^{2} E I}{\left(K_{n 2} L\right)^{2}} \leq 1.6 \frac{\pi^{2} E I}{\left(K_{n 2} L\right)^{2}} \tag{C-A-7-9}
\end{equation*}
$$

$P_{\text {story }}$ in Equations C-A-7-8 and C-A-7-9 includes all columns in the story, including any leaning columns, and $P_{r}$ is for the column under consideration. The column buckling load, $P_{e 2}$, calculated from Equation C-A-7-9 may be larger than $\pi^{2} E I / L^{2}$ but may not be larger than the limit on the righthand side of this equation.

LeMessurier Approach. Another simple approach for the determination of $K_{2}$ (LeMessurier, 1995), based only on the column end moments, is:

$$
\begin{equation*}
K_{2}=\left[1+\left(1-\frac{M_{1}}{M_{2}}\right)^{4}\right] \sqrt{1+\frac{5}{6}\left(\frac{P_{\text {story }}-P_{m f}}{P_{m f}}\right)} \tag{C-A-7-10}
\end{equation*}
$$

In this equation, $M_{1}$ and $M_{2}$ are the smaller and larger end moments, respectively, in the column. These moments are determined from a first-order analysis of the frame under lateral load. Column inelasticity is considered in the derivation of this equation. The unconservative error in $P_{c}$, when it is based on $K_{2}$ determined from Equation C-A-7-10, is less than 3\%, as long as the following inequality is satisfied:

$$
\begin{equation*}
\left(\frac{\Sigma P_{y m f}}{H L / \Delta_{H}}\right)\left(\frac{P_{\text {story }}}{P_{m f}}\right) \leq 0.45 \tag{C-A-7-11}
\end{equation*}
$$

where $\Sigma P_{y m f}$ is the sum of the axial yield strengths of all columns in the story that are part of moment frames, if any, in the direction of translation being considered.

Some Conclusions Regarding K. Column design using $K$-factors can be tedious and confusing for complex building structures containing leaning columns and/or combined framing systems, particularly where column inelasticity is considered. This confusion can be avoided if the direct analysis method of Chapter C is used, where
$P_{c}$ is always based on $K=1.0$. Subject to certain limitations, the direct analysis method may be simplified to the first-order analysis method of Appendix 7, Section 7.3. Furthermore, when $\Delta_{2 \text { nd-order }} / \Delta_{1 \text { st-order }}$ or $B_{2}$ is sufficiently low, $K=1.0$ may be assumed in the effective length method as specified in Appendix 7, Section 7.2.3(b).

Comparison of the Effective Length Method and the Direct Analysis Method.
Figure C-C2.5(a) shows a plot of the in-plane interaction equation for the effective length method, where the anchor point on the vertical axis, $P_{n K L}$, is determined using an effective length, $L_{c}=K L$. Also shown in this plot is the same interaction equation with the first term based on the yield load, $P_{y}$. For W-shapes, this in-plane beam-column interaction equation is a reasonable estimate of the internal force state associated with full cross-section plastification.

The $P$ versus $M$ response of a typical member, obtained from second-order spread-of-plasticity analysis and labeled "actual response," indicates the maximum axial force, $P_{r}$, that the member can sustain prior to the onset of instability. The loaddeflection response from a second-order elastic analysis using the nominal geometry and elastic stiffness, as conducted with the effective length method, is also shown. The "actual response" curve has larger moments than the second-order elastic curve due to the combined effects of distributed yielding and geometric imperfections, which are not included in the second-order elastic analysis.

In the effective length method, the intersection of the second-order elastic analysis curve with the $P_{n K L}$ interaction curve determines the member strength. The plot in Figure C-C2.5(a) shows that the effective length method is calibrated to give a resultant axial strength, $P_{c}$, consistent with the actual response. For slender columns, the calculation of the effective length, $L_{c}=K L$, (and $P_{n K L}$ ) is critical to achieving an accurate solution when using the effective length method.

One consequence of the procedure is that it underestimates the actual internal moments under the factored loads, as shown in Figure C-C2.5(a). This is inconsequential for the beam-column in-plane strength check because $P_{n K L}$ reduces the effective strength in the correct proportion. However, the reduced moment can affect the design of the beams and connections, which provide rotational restraint to the column. This is of greatest concern when the calculated moments are small and axial loads are large, such that $P-\Delta$ moments induced by column out-of-plumbness can be significant.

The important difference between the direct analysis method and the effective length method is that where the former uses reduced stiffness in the analysis and $K=1.0$ in the beam-column strength check, the latter uses nominal stiffness in the analysis and $K$ from a sidesway buckling analysis in the beam-column strength check. The direct analysis method can be more sensitive to the accuracy of the second-order elastic analysis because analysis at reduced stiffness increases the magnitude of secondorder effects. However, this difference is important only at high sidesway amplification levels; at those levels the accuracy of the calculation of $K$ for the effective length method also becomes important.

### 7.3. FIRST-ORDER ANALYSIS METHOD

This section provides a method for designing frames using a first-order elastic analysis with the effective length, $L_{c}$, taken as the laterally unbraced length ( $K=1.0$ ), provided the limitations in Appendix 7, Section 7.3.1 are satisfied. This method is derived from the direct analysis method by mathematical manipulation [see AISC Design Guide 28, Stability Design of Steel Buildings, (Griffis and White, 2013)] so that the second-order internal forces and moments are determined directly as part of the first-order analysis. It is based upon a target maximum drift ratio, $\Delta / L$, and assumptions, including:
(1) The sidesway amplification $\Delta_{2 n d}$ order $/ \Delta_{1 \text { st order }}$ or $B_{2}$ is assumed equal to 1.5.
(2) The initial out-of-plumbness in the structure is assumed as $\Delta_{o} / L=1 / 500$, but the initial out-of-plumbness does not need to be considered in the calculation of $\Delta$.

The first-order analysis is performed using the nominal (unreduced) stiffness; stiffness reduction is accounted for solely within the calculation of the amplification factors. The nonsway amplification of beam-column moments is addressed within the procedure specified in this section by applying the $B_{1}$ amplifier of Appendix 8 , Section 8.2.1 conservatively to the total member moments. In many cases involving beam-columns not subject to transverse loading between supports in the plane of bending, $B_{1}=1.0$.

The target maximum drift ratio, corresponding to drifts under either the LRFD strength load combinations or 1.6 times the ASD strength load combinations, can be assumed at the start of design to determine the additional lateral load, $N_{i}$. As long as that drift ratio is not exceeded at any strength load level, the design will be conservative.

AISC Design Guide 28 presents the details of this method. If this approach is employed, it can be shown that, for $B_{2} \leq 1.5$ and $\tau_{b}=1.0$, the required additional lateral load to be applied with other lateral loads in a first-order analysis of the structure, using the nominal (unreduced) stiffness, is

$$
\begin{equation*}
N_{i}=\left(\frac{B_{2}}{1-0.2 B_{2}}\right) \frac{\Delta}{L} Y_{i} \geq\left(\frac{B_{2}}{1-0.2 B_{2}}\right) 0.002 Y_{i} \tag{C-A-7-12}
\end{equation*}
$$

where these variables are as defined in Chapter C, Appendix 7 and Appendix 8. Note that if $B_{2}$ based on the unreduced stiffness is set equal to the 1.5 limit prescribed in Chapter C, then

$$
\begin{equation*}
N_{i}=2.1\left(\frac{\Delta}{L}\right) Y_{i} \geq 0.0042 Y_{i} \tag{C-A-7-13}
\end{equation*}
$$

This is the additional lateral load required in Appendix 7, Section 7.3.2. The minimum value of $N_{i}$ of $0.0042 Y_{i}$ is based on the assumption of a minimum first-order drift ratio, due to any effects, of $\Delta / L=1 / 500$.

## APPENDIX 8

## APPROXIMATE SECOND-ORDER ANALYSIS

Section C2.1(b) states that a second-order analysis that captures both $P-\Delta$ and $P-\delta$ effects is required. As an alternative to a more rigorous second-order elastic analysis, the amplification and summation of first-order elastic analysis forces and moments by the approximate procedure in this Appendix is permitted. The main approximation in this technique is that it evaluates $P-\Delta$ and $P-\delta$ effects separately, through separate multipliers, $B_{2}$ and $B_{1}$, respectively, considering the influence of $P-\delta$ effects on the overall response of the structure (which, in turn, influences $P-\Delta$ ) only indirectly, through the factor $R_{M}$. A more rigorous sec-ond-order elastic analysis is recommended for accurate determination of the frame internal forces when $B_{1}$ is larger than 1.2 in members that have a significant effect on the response of the overall structure.

This procedure uses a first-order elastic analysis with amplification factors that are applied to the first-order forces and moments so as to obtain an estimate of the second-order forces and moments. In the general case, a member may have first-order load effects not associated with sidesway that are multiplied by a factor $B_{1}$, and first-order load effects produced by sidesway that are multiplied by a factor $B_{2}$. The factor $B_{1}$ estimates the $P-\delta$ effects on the nonsway moments in compression members. The factor $B_{2}$ estimates the $P-\Delta$ effects on the forces and moments in all members. These effects are shown graphically in Figures C-C2.1 and C-A-8.1.


Fig. C-A-8.1. Moment amplification.

The factor $B_{2}$ applies only to internal forces associated with sidesway and is calculated for an entire story. In building frames designed to limit $\Delta_{H} / L$ to a predetermined value, the factor $B_{2}$ may be found in advance of designing individual members by using the target maximum limit on $\Delta_{H} / L$ within Equation A-8-7. Drift limits may also be set for design of various categories of buildings so that the effect of secondary bending is reduced (ATC, 1978; Kanchanalai and Lu, 1979). However, drift limits alone are not sufficient to allow stability effects to be neglected (LeMessurier, 1977).

In determining $B_{2}$ and the second-order effects on the lateral force-resisting system, it is important that $\Delta_{H}$ include not only the interstory displacement in the plane of the lateral force-resisting system, but also any additional displacement in the floor or roof diaphragm or horizontal framing system that may increase the overturning effect of columns attached to and "leaning" against the horizontal system. Either the maximum displacement or a weighted average displacement, weighted in proportion to column load, should be considered.

The current Specification provides only one equation, Equation A-8-7, for determining the elastic bucking strength of a story. This formula is based on the lateral stiffness of the story as determined from a first-order analysis and is applicable to all buildings. The 2005 AISC Specification (AISC, 2005) offered a second formula, Equation C2-6a, based on the lateral buckling strength of individual columns, applicable only to buildings in which lateral stiffness is provided entirely by moment frames. That equation is

$$
\begin{equation*}
P_{e \text { story }}=\Sigma \frac{\pi^{2} E I}{\left(K_{2} L\right)^{2}} \tag{C-A-8-1}
\end{equation*}
$$

where

$$
\begin{array}{ll}
K_{2}= & \text { effective length factor in the plane of bending, calculated from a sidesway buck- } \\
& \text { ling analysis } \\
L & = \\
\text { story height, in. }^{(\mathrm{mm})} \\
P_{\text {e story }}= & \text { elastic buckling strength of the story, kips (N) }
\end{array}
$$

This equation for the story elastic buckling strength was eliminated from the 2010 AISC Specification (AISC, 2010) because of its limited applicability, the difficulty involved in calculating $K_{2}$ correctly, and the greater ease of application of the story stiffness-based formula. Additionally, with the deletion of this equation, the symbol $\Sigma P_{e 2}$ was changed to $P_{e}$ story because the story buckling strength is not the summation of the strengths of individual columns, as implied by the earlier symbol.

First-order member forces and moments with the structure restrained against sidesway are labeled $P_{n t}$ and $M_{n t}$; the first-order effects of lateral translation are labeled $P_{l t}$ and $M_{l t}$. For structures where gravity load causes negligible lateral translation, $P_{n t}$ and $M_{n t}$ are the effects of gravity load and $P_{l t}$ and $M_{l t}$ are the effects of lateral load. In the general case, $P_{n t}$ and $M_{n t}$ are the results of an analysis with the structure restrained against sidesway; $P_{l t}$ and $M_{l t}$ are from an analysis with the lateral reactions from the first analysis (as used to find and $P_{n t}$ and $M_{n t}$ ) applied as lateral loads. Algebraic addition of the two sets of forces and moments after application of multipliers $B_{1}$ and $B_{2}$, as specified in Equations A-8-1 and A-8-2, gives reasonably accurate values of the overall second-order forces and moments.

The $B_{2}$ multiplier is applicable to forces and moments, $P_{l t}$ and $M_{l t}$, in all members, including beams, columns, bracing diagonals and shear walls, that participate in resisting lateral
load. $P_{l t}$ and $M_{l t}$ will be zero in members that do not participate in resisting lateral load; hence, $B_{2}$ will have no effect on them. The $B_{1}$ multiplier is applicable only to compression members.

If $B_{2}$ for a particular direction of translation does not vary significantly among the stories of a building, it will be convenient to use the maximum value for all stories, leading to just two $B_{2}$ values, one for each direction, for the entire building. Where $B_{2}$ does vary significantly between stories, the multiplier for beams between stories should be the larger value.

When first-order end moments in columns are magnified by $B_{1}$ and $B_{2}$ factors, equilibrium requires that they be balanced by moments in the beams that connect to them (for example, see Figure C-A-8.1). The $B_{2}$ multiplier does not cause any difficulty in this regard, since it is applied to all members. The $B_{1}$ multiplier, however, is applied only to compression members; the associated second-order internal moments in the connected members can be accounted for by amplifying the moments in those members by the $B_{1}$ value of the compression member (using the largest $B_{1}$ value if there are two or more compression members at the joint). Alternatively, the difference between the magnified moment (considering $B_{1}$ only) and the first-order moment in the compression member(s) at a given joint may be distributed to any other moment-resisting members attached to the compression member (or members) in proportion to the relative stiffness of those members. Minor imbalances may be neglected, based upon engineering judgment. Complex conditions may be treated more expediently with a more rigorous second-order analysis.

In braced frames and moment frames, $P_{c}$ is governed by the maximum slenderness ratio regardless of the plane of bending, if the member is subject to significant biaxial bending, or the provisions in Section H1.3 are not utilized. Section H1.3 is an alternative approach for checking beam-column strength that provides for the separate checking of beam-column in-plane and out-of-plane stability in members predominantly subject to bending within the plane of the frame. However, $P_{e 1}$ expressed by Equation A-8-5 is always calculated using the slenderness ratio in the plane of bending. Thus, when flexure in a beam-column is about the major axis only, two different values of slenderness ratio may be involved in the amplified first-order elastic analysis and strength check calculations.

The factor $R_{M}$ in Equation A-8-7 accounts for the influence of $P-\delta$ effects on sidesway amplification. $R_{M}$ can be taken as 0.85 as a lower bound value for stories that include moment frames (LeMessurier, 1977); $R_{M}=1$ if there are no moment frames in the story. Equation A-8-8 can be used for greater precision between these extreme values.

Second-order internal forces from separate structural analyses cannot normally be combined by superposition since second-order amplification is a nonlinear effect based on the total axial forces within the structure; therefore, a separate analysis must be conducted for each load combination considered in the design. However, in the amplified first-order elastic analysis procedure of Appendix 8, the first-order internal forces, calculated prior to amplification may be superimposed to determine the total first-order internal forces.

Equivalent Uniform Moment Factor, $\mathbf{C}_{\mathbf{m}}$, and Effective Length Factor, K. Equations A-83 and A-8-4 are used to approximate the maximum second-order moments in compression members with no relative joint translation and no transverse loads between the ends of the member. Figure C-A-8.2 compares the approximation for $C_{m}$ in Equation A-8-4 to the exact
theoretical solution for beam-columns subjected to applied end moments (Chen and Lui, 1987). The approximate and analytical values of $C_{m}$ are plotted versus the end-moment ratio, $M_{1} / M_{2}$, for several values of $P / P_{e}\left(P_{e}=P_{e 1}\right.$ with $\left.K=1\right)$. The corresponding approximate and analytical solutions are shown in Figure C-A-8.3 for the maximum second-order elastic moment within the member, $M_{r}$, versus the axial load level, $P / P_{e}$, for several values of the end moment ratio, $M_{1} / M_{2}$.

For beam-columns with transverse loadings, the second-order moment can be approximated for simply supported members with

$$
\begin{equation*}
C_{m}=1+\psi \alpha P_{r} / P_{e 1} \tag{C-A-8-2}
\end{equation*}
$$

where
$M_{o}=$ maximum first-order moment within the member due to the transverse loading, kipin. ( $\mathrm{N}-\mathrm{mm}$ )
$\alpha=1.0(\mathrm{LRFD})$ or 1.6 (ASD)
$\psi=\frac{\pi^{2} \delta_{o} E I}{M_{o} L^{2}}-1$
$\delta_{o}=$ maximum deflection due to transverse loading, in. (mm)
For restrained ends, some limiting cases are given in Table C-A-8.1 together with two cases of simply supported beam-columns (Iwankiw, 1984). These values of $C_{m}$ are always used with the maximum moment in the member. For the restrained-end cases, the values of $B_{1}$


Fig. C-A-8.2. Equivalent uniform moment factor, $\mathrm{C}_{\mathrm{m}}$, for beam-columns subjected to applied end moments.
are most accurate if the effective length in the plane of bending, corresponding to the member end conditions, used in calculating $P_{e 1}$, is less than the laterally unbraced length of the member ( $K<1.0$ ).

In lieu of using the equations given in Table C-A-8.1, the use of $C_{m}=1.0$ is conservative for all transversely loaded members. It can be shown that the use of $C_{m}=0.85$ for members with restrained ends, as specified in AISC Specifications prior to 2005, can sometimes result in a significant underestimation of the internal moments. Therefore, the use of $C_{m}=1.0$ is recommended as a simple conservative approximation for all cases involving transversely loaded members.

In approximating a second-order analysis by amplification of the results of a first-order analysis, the effective length, $L_{c 1}$, is used in the determination of the elastic critical buckling load, $P_{e 1}$, for a member. This elastic critical buckling load is then used for calculation of the corresponding amplification factor, $B_{1}$.
$B_{1}$ is used to estimate the $P-\delta$ effects on the nonsway moments, $M_{n t}$, in compression members. The unbraced length, $L_{c 1}$, is calculated in the plane of bending on the basis of no translation of the ends of the member and is normally set to the laterally unbraced length of the member, unless a smaller value is justified on the basis of analysis.

Since the amplified first-order elastic analysis involves the calculation of elastic buckling loads as a measure of frame and column stiffness, only elastic effective length $K$-factors are appropriate for this use.


## Analytical solution (Ketter, 1961)

— — Approximate solution (Austin, 1961)

Fig. C-A-8.3. Maximum second-order moments, $\mathrm{M}_{\mathrm{r}}$, for beam-columns subjected to applied end moments.

TABLE C-A-8.1   Factor $\psi$ and Equivalent Uniform Moment Factor, $\boldsymbol{C}_{\boldsymbol{m}}$		
Case	$\Psi$	$C_{m}$
	0	1.0
	-0.4	$1-0.4 \frac{\alpha P_{r}}{P_{e 1}}$
匇1,1111,	-0.4	$1-0.4 \frac{\alpha P_{r}}{P_{e 1}}$
	-0.2	$1-0.2 \frac{\alpha P_{r}}{P_{e 1}}$
	-0.3	$1-0.3 \frac{\alpha P_{r}}{P_{e 1}}$
	-0.2	$1-0.2 \frac{\alpha P_{r}}{P_{e 1}}$

Summary—Application of Multipliers $\boldsymbol{B}_{\mathbf{1}}$ and $\boldsymbol{B}_{\mathbf{2}}$. There is a single $B_{2}$ value for each story and each direction of lateral translation of the story, say $B_{2 X}$ and $B_{2 Y}$ for the two global directions. Multiplier $B_{2 X}$ is applicable to all axial and shear forces and moments produced by story translation in the global $X$-direction. Thus, in the common case where gravity load produces no lateral translation and all $X$ translation is the result of lateral load in the $X$-direction, $B_{2 X}$ is applicable to all axial and shear forces, and moments produced by lateral load in the global $X$-direction. Similarly, $B_{2 Y}$ is applicable in the $Y$-direction.

Note that $B_{2 X}$ and $B_{2 Y}$ are associated with global axes $X$ and $Y$ and the direction of story translation or loading, but are completely unrelated to the direction of bending of individual members. Thus, for example, if lateral load or translation in the global $X$-direction causes moments $M_{x}$ and $M_{y}$ about member $x$ - and $y$-axes in a particular member, $B_{2 X}$ must be applied to both $M_{x}$ and $M_{y}$.

There is a separate $B_{1}$ value for every member subject to compression and flexure and each direction of bending of the member, say $B_{1 x}$ and $B_{1 y}$ for the two member axes. Multiplier $B_{1 x}$ is applicable to the member $x$-axis moment, regardless of the load that causes that moment. Similarly, $B_{1 y}$ is applicable to the member $y$-axis moment, regardless of the load that causes that moment.

## REFERENCES

AASHTO (2002), Standard Specifications for Highway Bridges, 17th Ed., American Association of State Highway and Transportation Officials, Washington, DC.

AASHTO (2014), LRFD Bridge Design Specifications, 7th Ed., American Association of State Highway and Transportation Officials, Washington, DC.

ACI (1997), Prediction of Creep, Shrinkage and Temperature Effects in Concrete Structures, ACI 209R-92, American Concrete Institute, Farmington Hills, MI.

ACI (2008), Building Code Requirements for Structural Concrete, ACI 318-08 and ACI 318M-08, American Concrete Institute, Farmington Hills, MI.

ACI (2010a), Specifications for Tolerances for Concrete Construction and Materials and Commentary, ACI 117-10, American Concrete Institute, Farmington Hills, MI.

ACI (2010b), Specification for Structural Concrete, ACI 301-10, American Concrete Institute, Farmington Hills, MI.

ACI (2013), Code Requirements for Nuclear Safety Related Concrete Structures, ACI 349-13, American Concrete Institute, Farmington Hills, MI.

ACI (2014), Building Code Requirements for Structural Concrete and Commentary, ACI 318-14 and ACI 318M-14, American Concrete Institute, Farmington Hills, MI.

Agarwal, A. and Varma, A.H. (2011), "Design of Steel Columns for Fire Loading Including Effects of Rotational Restraints," Engineering Journal, AISC, Vol. 48, No.4, pp. 297-314.

Agarwal, A., Choe, L. and Varma, A.H. (2014a), "Fire Design of Steel Columns: Effects of Thermal Gradients," Journal of Constructional Steel Research, Elsevier, Vol. 93, pp. 107-118.

Agarwal, A., Selden, K. and Varma, A.H. (2014b), "Stability Behavior of Steel Building Structures in Fire Conditions: Role of Composite Floor System with Shear-Tab Connections," Journal of Structural Fire Engineering, Multi Science Publishing, Vol. 5, No. 2, pp. 77-96.

Agarwal, A. and Varma, A.H. (2014), "Fire Induced Progressive Collapse of Steel Building Structures: The Role of Interior Gravity Columns," Engineering Structures, Special Issue on Fire Analysis of Structures, Elsevier, Vol. 58, pp. 129-140.

Aghayere, A. and Vigil, J. (2014), Structural Steel Design, A Practice Oriented Approach, 2nd Ed., Prentice Hall, NJ.

AISC (1923), Standard Specification for Structural Steel Buildings, American Institute of Steel Construction, New York, NY, June 1.

AISC (1936), Specification for the Design, Fabrication, and Erection of Structural Steel for Buildings, American Institute of Steel Construction, New York, NY, June.

AISC (1946), Specification for the Design, Fabrication, and Erection of Structural Steel for Buildings, American Institute of Steel Construction, New York, NY, February.

AISC (1949), Specification for the Design, Fabrication, and Erection of Structural Steel for Buildings, American Institute of Steel Construction, New York, NY, June 23.

AISC (1961), Specification for the Design, Fabrication, and Erection of Structural Steel for Buildings, American Institute of Steel Construction, New York, NY, November 30.

AISC (1963), Specification for the Design, Fabrication, and Erection of Structural Steel for Buildings, American Institute of Steel Construction, New York, NY, April 17.

AISC (1969), Specification for the Design, Fabrication, and Erection of Structural Steel for Buildings, American Institute of Steel Construction, Chicago, IL, February 12.

AISC (1973), "Commentary on Highly Restrained Welded Connections," Engineering Journal, American Institute of Steel Construction, Vol. 10, No. 3, pp. 61-73.

AISC (1975), Australian Standard AS1250, Australian Institute of Steel Construction, Sydney, Australia.

AISC (1978), Specification for the Design, Fabrication, and Erection of Structural Steel for Buildings, American Institute of Steel Construction, Chicago, IL, November 1.

AISC (1986), Load and Resistance Factor Design Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, IL, September 1.

AISC (1989), Specification for Structural Steel Buildings-Allowable Stress Design and Plastic Design, American Institute of Steel Construction, Chicago, IL, June.

AISC (1993), Load and Resistance Factor Design Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, IL, December 1.

AISC (1997a), A Guide to Engineering and Quality Criteria for Steel Structures, American Institute of Steel Construction, Chicago, IL.

AISC (1997b), "AISC Advisory Statement on Mechanical Properties Near the Fillet of Wide Flange Shapes and Interim Recommendations, January 10, 1997," Modern Steel Construction, American Institute of Steel Construction, Chicago, IL, February, p. 18.

AISC (2000a), Specification for the Design of Steel Hollow Structural Sections, American Institute of Steel Construction, Chicago, IL.

AISC (2000b), Load and Resistance Factor Design Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, IL, December 27.

AISC (2005), Specification for Structural Steel Buildings, ANSI/AISC 360-05, American Institute of Steel Construction, Chicago, IL, March 9.

AISC (2006), Standard for Steel Building Structures, AISC 201-06, Certification Program for Structural Steel Fabricators, American Institute of Steel Construction, Chicago, IL.

AISC (2010), Specification for Structural Steel Buildings, ANSI/AISC 360-10, American Institute of Steel Construction, Chicago, IL, June 22.

AISC (2011), Steel Construction Manual, 14th Ed., American Institute of Steel Construction, Chicago, IL.

AISC (2012), Seismic Design Manual, 2nd Ed., American Institute of Steel Construction, Chicago, IL.

AISC (2016a), Code of Standard Practice for Steel Buildings and Bridges, ANSI/AISC 303-16, American Institute of Steel Construction, Chicago, IL.

AISC (2016b), Seismic Provisions for Structural Steel Buildings, ANSI/AISC 341-16, American Institute of Steel Construction, Chicago, IL.

AISC (2016c), Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications, ANSI/AISC 358-16, American Institute of Steel Construction, Chicago, IL.

AISC-SSRC (2003a), "Background and Illustrative Examples on Proposed Direct Analysis Method for Stability Design of Moment Frames," Technical White Paper, AISC Technical Committee 10, AISC-SSRC Ad Hoc Committee on Frame Stability, American Institute of Steel Construction, Chicago, IL.

AISC-SSRC (2003b), "Basic Design for Stability: Lecture 3—Frame Stability—Alignment Charts and Modifications," American Institute of Steel Construction and Structural Stability Research Council, Chicago, IL.

AISI (1969), Specification for the Design of Cold-Formed Steel Structural Members, American Iron and Steel Institute, Washington, DC.

AISI (1970), "Interior Corrosion of Structural Steel Closed Sections," Bulletin 18, February, American Iron and Steel Institute, Washington, DC.

AISI (1979), Fire-Safe Structural Design-A Design Guide, American Iron and Steel Institute, Washington, DC.

AISI (2001), North American Specification for the Design of Cold-Formed Steel Structural Members, American Iron and Steel Institute, Washington, DC.

AISI (2007), North American Specification for the Design of Cold-Formed Steel Structural Members, ANSI/AISI Standard S100 2007, American Iron and Steel Institute, Washington, DC.

AISI (2012), North American Specification for the Design of Cold-Formed Steel Structural Members, AISI S100-12, American Iron and Steel Institute, Washington, DC.

Allan, R.N. and Fisher, J.W. (1968), "Bolted Joints with Oversize and Slotted Holes," Journal of the Structural Division, ASCE, Vol. 94, No. ST9, pp. 2,061-2,080.

Amrine, J.J. and Swanson, J.A. (2004), "Effects of Variable Pretension on Bolted Connection Behavior," Engineering Journal, AISC, Vol. 41, No. 3, pp. 107-116.

Ang, A.H-S. and Tang, H.T. (1984), Probability Concepts in Engineering Planning and Design, Vol.II: Decision, Risk and Reliability, John Wiley \& Sons Inc., New York, NY.

Ang, K.M. and Morris, G.A. (1984), "Analysis of Three-Dimensional Frames with Flexible Beam-Column Connections," Canadian Journal of Civil Engineering, NRC Research Press, Vol. 11, No. 2, pp. 245-254.

ANSI (1972), Minimum Design Loads for Buildings and Other Structures, ANSI A58.1-1972, American National Standards Institute, New York.

API (1993), Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms-Load and Resistance Factor Design, 1st Ed., American Petroleum Institute, Washington, DC, July.

API (2012), Specification for Line Pipe, 45th Ed., American Petroleum Institute, Washington, DC.

ASCE (1971), Plastic Design in Steel, A Guide and a Commentary, ASCE Manuals and Reports on Engineering Practice No. 41, American Society of Civil Engineers, New York, NY.

ASCE (1978), Journal of the Structural Division, Vol. 104, No. ST9, American Society of Civil Engineers, New York, NY.

ASCE (1979), Structural Design of Tall Steel Buildings, American Society of Civil Engineers, New York, NY.

ASCE (1981), "Planning and Environmental Criteria for Tall Buildings, A Monograph on Planning and Design of Tall Buildings," Vol. PC, Chapter PC-13, American Society of Civil Engineers, New York, NY.

ASCE (1988), "Wind Drift Design of Steel-Framed Buildings: State of the Art," Task Committee on Drift Control of Steel Building Structures, Journal of the Structural Division, American Society of Civil Engineers, Vol. 114, No. 9, pp. 2,085-2,108.

ASCE (1992a), "Proposed Specification for Structural Steel Beams with Web Openings," Task Committee on Design Criteria for Composite Structures in Steel and Concrete, Journal of Structural Engineering, American Society of Civil Engineers, Vol. 118, No. ST12, pp. 3,315-3,324.

ASCE (1992b), "Commentary on Proposed Specification for Structural Steel Beams with Web Openings," Task Committee on Design Criteria for Composite Structures in Steel and Concrete, Journal of Structural Engineering, American Society of Civil Engineers, Vol. 118, No. ST12, pp. 3,325-3,349.

ASCE (1997), Effective Length and Notional Load Approaches for Assessing Frame Stability: Implications for American Steel Design, Task Committee on Effective Length, American Society of Civil Engineers, New York, NY.

ASCE (1999), Specification for Structural Steel Beams with Web Openings, ASCE/SEI 23-97, American Society of Civil Engineers, Reston, VA.

ASCE (2000), Design of Latticed Steel Transmission Structures, ASCE 10-97, American Society of Civil Engineers, Reston, VA.

ASCE (2003), Seismic Evaluation of Existing Buildings, ASCE/SEI 31-03, American Society of Civil Engineers, Reston, VA.

ASCE (2005), Standard Calculation Methods for Structural Fire Protection, ASCE/SEI/ SFPE 29-05, American Society of Civil Engineers, Reston, VA.

ASCE (2008), Standard Calculation Methods for Structural Fire Protection, ASCE/SEI/ SFPE 29-08, American Society of Civil Engineers, Reston, VA.

ASCE (2010), Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 7-10, American Society of Civil Engineers, Reston, VA

ASCE (2013), Seismic Evaluation and Retrofit of Existing Buildings, ASCE/SEI 41-13, American Society of Civil Engineers, Reston, VA.

ASCE (2014), Design Loads on Structures During Construction, ASCE/SEI 37-14, American Society of Civil Engineers, Reston, VA.

ASCE (2016), Minimum Design Loads and Associated Criteria for Buildings and Other Structures, ASCE/SEI 7-16, American Society of Civil Engineers, Reston, VA.

Aslani, F. and Goel, S.C. (1991), "An Analytical Criteria for Buckling Strength of Built-Up Compression Members," Engineering Journal, AISC, Vol. 28, No. 4, pp. 159-168.

ASME (1995), Unified Inch Screw Threads (UNJ Thread Form), B1.15, American Society of Mechanical Engineers, New York, NY.

ASME (2010), Fasteners for Use in Structural Applications, B18.2.6, American Society of Mechanical Engineers, New York, NY.

ASNT (2011a), Personnel Qualification and Certification in Nondestructive Testing, ASNT SNT-TC-1A-2011, American Society of Nondestructive Testing, Columbus, OH.

ASNT (2011b), Standard for Qualification and Certification of Nondestructive Testing Personnel, ANSI/ASNT CP-189-2011, American Society of Nondestructive Testing, Columbus, OH.

ASTM (1967), Specification for High Tensile Strength Carbon-Silicon Steel Plates for Boilers and Other Pressure Vessels, ASTM 212, ASTM International, West Conshohocken, PA.

ASTM (2006), Standard Test Methods for Determining Effects of Large Hydrocarbon Pool Fires on Structural Members and Assemblies, ASTM E1529-06, ASTM International, West Conshohocken, PA.

ASTM (2009a), Standard Specification for Zinc Coating (Hot-Dip) on Iron and Steel Hardware, ASTM A153/153M-09, ASTM International, West Conshohocken, PA.

ASTM (2009b), Standard Test Methods for Fire Tests of Building Construction and Materials, ASTM E119-09c, ASTM International, West Conshohocken, PA.

ASTM (2012a), Standard Specification for Steel Castings, Surface Acceptance Standards, Magnetic Particle and Liquid Penetrant Inspection, ASTM A903/A903M-99(2012)e1, ASTM International, West Conshohocken, PA.

ASTM (2012b), Standard Practice for Castings, Carbon, Low-Alloy, and Martensitic Stainless Steel, Ultrasonic Examination Thereof, ASTM A609/A609M-91(2012), ASTM International, West Conshohocken, PA.

ASTM (2013a), Standard Reference Photographs for Magnetic Particle Indications on Ferrous Castings, ASTM E125-63(2013), ASTM International, West Conshohocken, PA.

ASTM (2013b), Standard Practice for Safeguarding Against Warpage and Distortion During Hot-Dip Galvanizing of Steel Assemblies, ASTM A384/A384M-13, ASTM International, West Conshohocken, PA.

ASTM (2014), Standard Practice for Safeguarding Against Embrittlement of Hot-Dip Galvanized Structural Steel Products and Procedure for Detecting Embrittlement, ASTM A143/A143M, ASTM International, West Conshohocken, PA.

ASTM (2015a), Standard Practice for Providing High-Quality Zinc Coatings (Hot-Dip), ASTM A385/A385M-15, ASTM International, West Conshohocken, PA.

ASTM (2015b), Standard Practice for Repair of Damaged and Uncoated Areas of HotDip Galvanized Coatings, ASTM A780/A780M-15, ASTM International, West Conshohocken, PA.

ASTM (2015c), Standard Specification for Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products, ASTM A123/A123M-09, ASTM International, West Conshohocken, PA.

ASTM (2015d), Standard Practice for Steel Castings, Surface Acceptance Standards, Visual Examination, ASTM A802-95(2015), ASTM International, West Conshohocken, PA.

ASTM (2015e), Standard Practice for Radiographic Examination of Metallic Castings, ASTM E1030/E1030M, ASTM International, West Conshohocken, PA.

ASTM (2016), Standard Practice for Ultrasonic Examination of Steel Forgings, ASTM A388/A388M-16, ASTM International, West Conshohocken, PA.

ATC (1978), "Tentative Provisions for the Development of Seismic Regulations for Buildings," Publication 3-06, Applied Technology Council, Redwood City, CA, June.

Austin, W.J. (1961), "Strength and Design of Metal Beam-Columns," Journal of the Structural Division, ASCE, Vol. 87, No. ST4, pp.1-32.

AWS (2007), Specification for Carbon Steel Electrodes and Fluxes for Submerged Arc Welding, AWS A5.17/A5.17M-97 (R2007), American Welding Society, Miami, FL.

AWS (2012), Specification for Carbon Steel Electrodes for Shielded Metal Arc Welding, AWS A5.1/A5.1M:2012, American Welding Society, Miami, FL.

AWS (2013), Specification for the Qualification of Welding Inspectors, 2nd Ed., AWS B5.1.2013-AMD 1, November 14, 2012, Amendment October 7, 2014, American Welding Society, Miami, FL.

AWS (2014), Specification for Low-Alloy Steel Electrodes for Shielded Metal Arc Welding, AWS A5.5/A5.5M:2014, American Welding Society, Miami, FL.

AWS (2015), Structural Welding Code—Steel, AWS D1.1/D1.1M:2015, American Welding Society, Miami, FL.

Bailey, C. (2004), "Membrane Action of Composite Floor Systems in Fire," Proceedings of Third International Workshop, Structures in Fire, Ottawa, ON, Canada, May.

Bartlett, R.M., Dexter, R.J., Graeser, M.D., Jelinek, J.J., Schmidt, B.J. and Galambos, T.V. (2003), "Updating Standard Shape Material Properties Database for Design and Reliability," Engineering Journal, AISC, Vol. 40, No. 1, pp. 2-14.

Basler, K., Yen, B.T., Mueller, J.A. and Thürlimann, B. (1960), "Web Buckling Tests on Welded Plate Girders," Welding Research Council Bulletin No. 64, September, New York, NY.

Basler, K. (1961), "Strength of Plate Girders in Shear," Journal of the Structural Division, ASCE, Vol. 104, No. ST9, pp. 151-180.

Basler, K. and Thürlimann, B. (1963), "Strength of Plate Girders in Bending," Transactions, ASCE, Vol. 128, Part II, pp. 655-682.

Bathe, K. (1995), Finite Element Procedures, Prentice-Hall, Upper Saddle River, NJ.
Bednar, J., Wald, F., Vodicka, J. and Kohoutkova, A. (2013), "Experiments on Membrane Action of Composite Floors With Steel Fibre Reinforced Concrete Slab Exposed to Fire," Fire Safety Journal, Elsevier, Vol. 59, pp. 111-121.

Beedle, L.S. (1958), Plastic Design of Steel Frames, John Wiley \& Sons Inc., New York, NY.
Bigos, J., Smith, G.W., Ball, E.F. and Foehl, P.J. (1954), "Shop Paint and Painting Practice," Proceedings of AISC National Engineering Conference, Milwaukee, WI, AISC, Chicago, IL.

Bijlaard, F.S.K., Gresnigt, A.M. and van der Vegte, G.J. (eds.) (2005), Connections in Steel Structures V, Bouwen met Staal, Delft, the Netherlands.

Birkemoe, P.C. and Gilmor, M.I. (1978), "Behavior of Bearing-Critical Double-Angle Beam Connections," Engineering Journal, AISC, Vol. 15, No. 4, pp. 109-115.

Birnstiel, C. and Iffland, J.S.B. (1980), "Factors Influencing Frame Stability," Journal of the Structural Division, ASCE, Vol. 106, No. 2, pp. 491-504.

Bjorhovde, R. (1972), "Deterministic and Probabilistic Approaches to the Strength of Steel Columns," Ph.D. Dissertation, Lehigh University, Bethlehem, PA, May.

Bjorhovde, R. (1978), "The Safety of Steel Columns," Journal of the Structural Division, ASCE, Vol. 104, No. ST9, pp. 1,371-1,387.

Bjorhovde, R. and Birkemoe, P.C. (1979), "Limit States Design of HSS Columns," Canadian Journal of Civil Engineering, NRC Research Press, Vol. 6, No. 2, pp. 276-291.

Bjorhovde, R., Brozzetti, J. and Colson, A. (eds.) (1988), Connections in Steel Structures: Behaviour, Strength and Design, Elsevier Applied Science, London, England.

Bjorhovde, R. (1988), "Columns: From Theory to Practice," Engineering Journal, AISC, Vol. 25, No. 1, pp. 21-34.

Bjorhovde, R., Colson, A. and Brozzetti, J. (1990), "Classification System for Beam-toColumn Connections," Journal of Structural Engineering, ASCE, Vol. 116, No. 11, pp. 3,059-3,076.

Bjorhovde, R., Colson, A., Haaijer, G. and Stark, J.W.B. (eds.) (1992), Connections in Steel Structures II: Behavior, Strength and Design, AISC, Chicago, IL.

Bjorhovde, R., Colson, A. and Zandonini, R. (eds.) (1996), Connections in Steel Structures III: Behaviour, Strength and Design, Pergamon Press, London, England.

Bjorhovde, R., Goland, L.J. and Benac, D.J. (1999), "Tests of Full-Scale Beam-to-Column Connections," Southwest Research Institute, San Antonio, TX and Nucor-Yamato Steel Company, Blytheville, AR.

Bjorhovde, R. (2006), "Cold Bending of Wide-Flange Shapes for Construction," Engineering Journal, AISC, Vol. 43, No. 4, pp. 271-286.

Bjorhovde, R., Bijlaard, F.S.K. and Geschwindner, L.F. (eds.) (2008), Connections in Steel Structures VI, AISC, Chicago, IL.

Bleich, F. (1952), Buckling Strength of Metal Structures, McGraw-Hill, New York, NY.
Blodgett, O.W. (1967), "The Question of Corrosion in Hollow Steel Sections," Welding Design Studies in Steel Structures, Lincoln Electric Company, D610.163, Cleveland, OH, August.

Borello, D.J., Denavit, M.D. and Hajjar, J.F. (2009), "Behavior of Bolted Steel Slip-Critical Connections with Fillers," Report No. NSEL-017, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, August.

Bradford, M.A., Wright, H.D. and Uy, B. (1998), "Local Buckling of the Steel Skin in Lightweight Composites Induced by Creep and Shrinkage," Advances in Structural Engineering, Multi Science Publishing, Vol. 2, No. 1, pp. 25-34.

Bradford, M.A., Loh, H.Y. and Uy, B. (2002), "Slenderness Limits for Filled Circular Steel Tubes," Journal of Constructional Steel Research, Elsevier, Vol. 58, No. 2, pp. 243-252.

Bridge, R.Q. and Bizzanelli, P. (1997), Imperfections in Steel Structures, Proceedings1997 Annual Technical Session, and Meeting, SSRC, pp. 447-458.

Bridge, R.Q. (1998), "The Inclusion of Imperfections in Probability-Based Limit States Design," Proceedings of the 1998 Structural Engineering World Congress, San Francisco, CA, July.

Brockenbrough, R.B. and Johnston, B.G. (1981), USS Steel Design Manual, United States Steel Corporation, Pittsburgh, PA.

Brockenbrough, R.L. (1983), "Considerations in the Design of Bolted Joints for Weathering Steel," Engineering Journal, AISC, Vol. 20, No. 1, pp. 40-45.

Brockenbrough, R.L. (2002), AISC Rehabilitation and Retrofit Guide, A Reference for Historic Shapes and Specifications, Design Guide 15, AISC, Chicago, IL.

Brosnan, D.P. and Uang, C.M. (1995), "Effective Width of Composite L-Beams in Buildings," Engineering Journal, AISC, Vol. 30, No. 2, pp. 73-81.

Bruneau, M., Uang, C.-M. and Sabelli, R. (2011), Ductile Design of Steel Structures, 2nd Ed., McGraw Hill, New York, NY.

BSSC (2003), NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, FEMA 450-1, Building Seismic Safety Council, Washington, DC.

BSSC (2009), NEHRP Recommended Seismic Provisions for New Buildings and Other Structures, FEMA P-750, Building Seismic Safety Council, Washington, DC.

BSSC (2015), NEHRP Recommended Seismic Provisions for New Buildings and Other Structures, FEMA P-1050, Building Seismic Safety Council, Washington, DC.

Buonopane, S.G. and Schafer, B.W. (2006), "Reliability of Steel Frames Designed with Advanced Analysis," Journal of Structural Engineering, ASCE, Vol. 132, No. 2, pp. 267-276.

Butler, L.J., Pal, S. and Kulak, G.L. (1972), "Eccentrically Loaded Welded Connections," Journal of the Structural Division, ASCE, Vol. 98, No. ST5, pp. 989-1,005.

Carter, C.J., Tide, R.H. and Yura, J.A. (1997), "A Summary of Changes and Derivation of LRFD Bolt Design Provisions," Engineering Journal, AISC, Vol. 34, No. 3, pp. 75-81.

Carter, C.J. (1999), Stiffening of Wide-Flange Columns at Moment Connections: Wind and Seismic Applications, Design Guide 13, AISC, Chicago, IL.

CEN (1991), Eurocode 1: Basis of Design and Actions on Structures, EC1 1991-2-2, Comite Européen de Normalisation, Brussels, Belgium.

CEN (2005a), Eurocode 3: Design of Steel Structures, Comite Européen de Normalisation, Brussels, Belgium.

CEN (2005b), Eurocode 3: Design of Steel Structures, Part 1-2: General Rules, Structural Fire Design, Comite Européen de Normalisation, Brussels, Belgium.

CEN (2009), Eurocode 4: Design of Composite Steel and Concrete Structures, Comite Européen de Normalisation, Brussels, Belgium.

Charney, F.A. and Johnson, R. (1986), The Effect of Joint Deformations on the Drift of Steel Frame Structures, Structures Congress, New Orleans, LA, ASCE, September 15-18.

Charney, F.A. (1990), "Wind Drift Serviceability Limit State Design of Multi-story Buildings," Journal of Wind Engineering and Industrial Aerodynamics, IAWE, Vol. 36, pp. 203-212.

Chen, P.W. and Robertson, L.E. (1972), "Human Perception Thresholds of Horizontal Motion," Journal of the Structural Division, ASCE, Vol. 98, No. ST8, pp. 1,681-1,695.

Chen, S. and Tong, G. (1994), "Design for Stability: Correct Use of Braces," Steel Structures, Journal of the Singapore Structural Steel Society, SSSS, Vol. 5, No. 1, December, pp. 15-23.

Chen, W.F. and Atsuta, T. (1976), Theory of Beam-Columns, Volume I: In-Plane Behavior and Design, and Volume II: Space Behavior and Design, McGraw-Hill, New York, NY.

Chen, W.F. and Atsuta, T. (1977), Theory of Beam Columns, Volume II: Space Behavior and Design, McGraw-Hill, New York, NY.

Chen, W.F. and Lui, E.M. (1987), Structural Stability: Theory and Implementation, Elsevier, New York, NY.

Chen, W.F. and Lui, E.M. (1991), Stability Design of Steel Frames, CRC Press, Boca Raton, FL.
Chen, W.F. and Toma, S. (eds.) (1994), Advanced Analysis of Steel Frames: Theory, Software and Applications, CRC Press, Boca Raton, FL.

Chen, W.F. and Sohal, I. (1995), Plastic Design and Second-Order Analysis of Steel Frames, Springer Verlag, New York, NY.

Chen, W.F., Goto, Y. and Liew, J.Y.R. (1995), Stability Design of Semi-Rigid Frames, John Wiley \& Sons Inc., New York, NY.

Chen, W.F. and Kim, S.E. (1997), LRFD Steel Design Using Advanced Analysis, CRC Press, Boca Raton, FL.

Cheng, J.J.R. and Kulak, G.L. (2000), "Gusset Plate Connection to Round HSS Tension Members," Engineering Journal, AISC, Vol. 37, No. 4, pp. 133-139.

Chien, E.Y.L. and Ritchie, J.K. (1984), Composite Floor Systems, CISC, Willowdale, Ontario, Canada.

Choe, L., Agarwal, A. and Varma A.H. (2016), "Steel Columns Subjected to Thermal Gradients from Fire Loading: Experimental Evaluations," Journal of Structural Engineering, ASCE, Vol. 142, No. 7.

Clarke, M.J., Bridge, R.Q., Hancock, G.J. and Trahair, N.S. (1992), "Advanced Analysis of Steel Building Frames," Journal of Constructional Steel Research, Elsevier, Vol. 23, No. $1-3$, pp. 1-29.

Cooke, G.M.E. (1988), "An Introduction to the Mechanical Properties of Structural Steel at Elevated Temperatures," Fire Safety Journal, Elsevier, Vol. 13, pp. 45-54.

Cooney, R.C. and King, A.B. (1988), "Serviceability Criteria for Buildings," BRANZ Report SR14, BRANZ, Porirua, New Zealand.

Cooper, P.B., Galambos, T.V. and Ravindra, M.K. (1978), "LRFD Criteria for Plate Girders," Journal of the Structural Division, ASCE, Vol. 104, No. ST9, pp. 1,389-1,407.

Crisfield, M.A. (1991), Nonlinear Finite Element Analysis of Solids and Structures, John Wiley \& Sons Inc., New York, NY.

CSA (2009), Limit States Design of Steel Structures, CSA Standard S16-09, Canadian Standards Association, Rexdale, Ontario, Canada.

CSA (2013), General Requirements for Rolled or Welded Structural Quality Steel/Structural Quality Steel, CAN/CSA-G40.20/G40.21-13, Canadian Standards Association, Mississauga, Ontario, Canada.

Daley, A.J., Davis, D.B. and White, D.W. (2016), "Research—Shear Strength of Unstiffened Steel I-Section Members," University of Kentucky, Lexington, KY and Georgia Institute of Technology, Atlanta, GA.

Darwin, D. (1990), Steel and Composite Beams with Web Openings, Design Guide 2, AISC, Chicago, IL.

Davaran, A. (2001) "Effective Length Factor for Discontinuous X-Bracing Systems," Journal of Structural Engineering, ASCE, Vol. 127, No. 2, pp. 106-112.

Davies, G. and Packer, J.A. (1982), "Predicting the Strength of Branch Plate—RHS Connections for Punching Shear," Canadian Journal of Civil Engineering, NRC Research Press, Vol. 9, pp. 458-467.

Deierlein, G.G., Hajjar, J.F., Yura, J.A, White, D.W. and Baker, W.F. (2002), "Proposed New Provisions for Frame Stability Using Second-Order Analysis," Proceedings-Annual Stability Conference, SSRC, Seattle, WA.

Deierlein, G.G., Reinhorn, A.M. and Willford, M.R. (2010), "Nonlinear Structural Analysis for Seismic Design," NEHRP Seismic Design Technical Brief No. 4, produced by the NEHRP Consultants Joint Venture, a partnership of the Applied Technology Council and the Consortium of Universities for Research in Earthquake Engineering, for the National Institute of Standards and Technology, Gaithersburg, MD, NIST GCR 10-917-5.

Dekker, N.W., Kemp, A.R. and Trinchero, P. (1995), "Factors Influencing the Strength of Continuous Composite Beams in Negative Bending," Journal of Constructional Steel Research, Elsevier, Vol. 34, Nos. 2-3, pp. 161-185.

Denavit, M.D. and Hajjar, J.F. (2014), "Characterization of Behavior of Steel-Concrete Composite Members and Frames with Applications for Design," Report No. NSEL-034, Newmark Structural Laboratory Report Series (ISSN 1940-9826), Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL.

Denavit, M.D., Hajjar, J.F., Perea, T. and Leon, R.T. (2016a), "Stability Analysis and Design of Composite Structures," Journal of Structural Engineering, ASCE, Vol. 142, No. 3, pp. 1-12.

Denavit, M.D., Hajjar, J.F. and Leon, R.T. (2016b), "Cross Section Strength of Circular Concrete-Filled Steel Tube Beam-Columns," Engineering Journal, AISC, Vol. 53, No. 2, pp. 99-105.

Dexter, R.J. and Melendrez, M.I. (2000), "Through-Thickness Properties of Column Flanges in Welded Moment Connections," Journal of Structural Engineering, ASCE, Vol. 126, No. 1, pp. 24-31.

Dexter, R.J., Hajjar, J.F., Prochnow, S.D., Graeser, M.D., Galambos, T.V. and Cotton, S.C. (2001), "Evaluation of the Design Requirements for Column Stiffeners and Doublers and the Variation in Properties of A992 Shapes," Proceedings of the North American Steel Construction Conference, Fort Lauderdale, FL, May 9-12, 2001, AISC, Chicago, IL, pp. 14.1-14.21.

Dexter, R.J. and Altstadt, S.A. (2004), "Strength and Ductility of Tension Flanges in Girders," Recent Developments in Bridge Engineering, Proceedings of the Second New York City Bridge Conference, October 20-21, 2003, New York, NY, Mahmoud, K.M. (ed.), A.A. Balkema/Swets \& Zeitlinger, Lisse, the Netherlands, pp. 67-81.

Dowswell, B. (2006), "Effective Length Factors for Gusset Plate Buckling," Engineering Journal, AISC, Vol. 43, No. 2, pp. 91-101.

Dowswell, B. (2013), "Flange Bending in Single Curvature," Engineering Journal, AISC, Vol. 50, No. 2, pp. 71-99.

Duan, L., Reno, M. and Uang, C.M. (2002), "Effect of Compound Buckling on Compression Strength of Built-Up Members," Engineering Journal, AISC, Vol. 39, No. 1, pp. 30-37.

Dumonteil, P. (2009), "Design Aspects of Single Angle Members," Engineering Journal, AISC, Vol 46, No. 4, pp. 273-288.

Dusicka, P. and Iwai, R. (2007), "Development of Linked Column Frame Lateral Load Resisting System," 2nd Progress Report for the American Institute of Steel Construction and Oregon Iron Works, Portland State University, Portland, OR.

Earls, C.J. and Galambos, T.V. (1997), "Design Recommendations for Equal Leg Single Angle Flexural Members," Journal of Constructional Steel Research, Elsevier, Vol. 43, Nos. 1-3, pp. 65-85.

Easterling, W.S., Gibbings, D.R. and Murray, T.M. (1993), "Strength of Shear Studs in Steel Deck on Composite Beams and Joists," Engineering Journal, AISC, Vol. 30, No. 2, pp. 44-55.

Easterling, W.S. and Gonzales, L. (1993), "Shear Lag Effects in Steel Tension Members," Engineering Journal, AISC, Vol. 30, No. 3, pp. 77-89.

ECCS (1984), Ultimate Limit States Calculations of Sway Frames With Rigid Joints, Publications No. 33, European Convention for Constructional Steelwork, Rotterdam, The Netherlands.

ECCS (2001), Model Code on Fire Engineering, 1st Ed., European Convention for Constructional Steelwork Technical Committee 3, Brussels, Belgium.

Elgaaly, M. (1983), "Web Design under Compressive Edge Loads," Engineering Journal, AISC, Vol. 20, No. 4, pp. 153-171.

Elgaaly, M. and Salkar, R. (1991), "Web Crippling Under Edge Loading," Proceedings, National Steel Construction Conference, Washington, DC, AISC.

Ellifritt, D.S., Wine, G., Sputo, T. and Samuel, S. (1992), "Flexural Strength of WT Sections," Engineering Journal, AISC, Vol. 29, No. 2, pp. 67-74.

Ellingwood, B. and Leyendecker, E.V. (1978), "Approaches for Design Against Progressive Collapse," Journal of the Structural Division, ASCE, Vol. 104, No. 3, pp. 413-423.

Ellingwood, B.E., MacGregor, J.G., Galambos, T.V. and Cornell, C.A. (1982), "ProbabilityBased Load Criteria: Load Factors and Load Combinations," Journal of the Structural Division, ASCE, Vol. 108, No. 5, pp. 978-997.

Ellingwood, B. and Corotis, R.B. (1991), "Load Combinations for Building Exposed to Fires," Engineering Journal, AISC, Vol. 28, No. 1, pp. 37-44.

El-Tayem, A.A. and Goel, S.C. (1986), "Effective Length Factor for the Design of XBracing Systems," Engineering Journal, AISC, Vol. 23, No. 1, pp. 41-45.

El-Zanaty, M.H., Murray, D.W. and Bjorhovde, R. (1980), "Inelastic Behavior of Multistory Steel Frames," Structural Engineering Report No. 83, University of Alberta, Alberta, BC.

Errera, S. (1976), "Design of I-shaped Columns with Diaphragm Bracing," Journal of the Structural Division, ASCE, Vol. 102, No. ST9, pp. 1,685-1,701.

Felton, L.P. and Dobbs, M.W. (1967), "Optimum Design of Tubes for Bending and Torsion," Journal of the Structural Division, ASCE, Vol. 93, No. ST4, pp. 185-200.

FEMA (1995), Interim Guidelines: Evaluation, Repair, Modification and Design of Welded Steel Moment Frame Structures, Bulletin No. 267, Federal Emergency Management Agency, Washington, DC.

FEMA (1997), "Seismic Performance of Bolted and Riveted Connections" Background Reports; Metallurgy, Fracture Mechanics, Welding, Moment Connections and Frame Systems Behavior, Bulletin No. 288, Federal Emergency Management Agency, Washington, DC.

FEMA (2000), Steel Moment-Frame Buildings: Design Criteria for New Buildings, FEMA350, Prepared by the SAC Joint Venture for the Federal Emergency Management Agency, Washington, DC.

FHWA (1999), "FHWA Demonstration Project—Heat Straightening Repair for Damaged Steel Bridges," FHWA Report No. FHWA-IF-99-004, Federal Highway Administration, Washington, DC.

FIA (1985), Forging Industry Handbook, Forging Industry Association, Cleveland, OH.
Fielding, D.J. and Huang, J.S. (1971), "Shear in Steel Beam-to-Column Connections," The Welding Journal, AWS, Vol. 50, No. 7, Research Supplement, pp. 313-326.

Fielding, D.J. and Chen, W.F. (1973), "Steel Frame Analysis and Connection Shear Deformation," Journal of the Structural Division, ASCE, Vol. 99, No. ST1, pp. 1-18.

Fisher, J.W., Frank, K.H., Hirt, M.A. and McNamee, B.M. (1970), "Effect of Weldments on the Fatigue Strength of Beams," Report 102, National Cooperative Highway Research Program, Washington, DC.

Fisher, J.W., Albrecht, P.A., Yen, B.T., Klingerman, D.J. and McNamee, B.M. (1974), "Fatigue Strength of Steel Beams with Welded Stiffeners and Attachments," Report 147, National Cooperative Highway Research Program, Washington, DC.

Fisher, J.W., Galambos, T.V., Kulak, G.L. and Ravindra, M.K. (1978), "Load and Resistance Factor Design Criteria for Connectors," Journal of the Structural Division, ASCE, Vol. 104, No. ST9, pp. 1,427-1,441.

Fisher, J.M. and West, M.A. (1997), Erection Bracing of Low-Rise Structural Steel Buildings, Design Guide 10, AISC, Chicago, IL.

Fisher, J.M. and Kloiber, L.A. (2006), Base Plate and Anchor Rod Design, 2nd Ed., Design Guide 1, AISC, Chicago, IL.

Fisher, J.W. and Pugh, C.W. (2007), Technical Digest 3: Structural Design of Steel Joist Roofs to Resist Ponding Loads, SJI, Myrtle Beach, SC.

Fischer, E. and Varma, A.H. (2015), "Numerical Models for Predicting Fire Behavior of Composite Beams with Simple Connections," Journal of Constructional Steel Research, Elsevier, Vol. 111, August, pp. 112-125.

Fortney, P.J. and Thornton, W.A. (2012), "Recommendations for Shear Lag Factors for Longitudinally Welded Tension Members," Engineering Journal, AISC, Vol. 49, No. 1, pp. 11-32.

Frank, K.H. and Fisher, J.W. (1979), "Fatigue Strength of Fillet Welded Cruciform Joints," Journal of the Structural Division, ASCE, Vol. 105, No. ST9.

Frank, K.H. and Yura, J.A. (1981), "An Experimental Study of Bolted Shear Connections," FHWA/RD-81/148, Federal Highway Administration, Washington, DC, December.

Frater, G.S. and Packer, J.A. (1992a), "Weldment Design for RHS Truss Connections. I: Applications," Journal of Structural Engineering, ASCE, Vol. 118, No. 10, pp. 2,784-2,803.

Frater, G.S. and Packer, J.A. (1992b), "Weldment Design for RHS Truss Connections. II: Experimentation," Journal of Structural Engineering, ASCE, Vol. 118, No. 10, pp. 2,804-2,820.

Freeman, S. (1977), "Racking Tests of High Rise Building Partitions," Journal of the Structural Division, ASCE, Vol. 103, No. 8, pp. 1,673-1,685.

Galambos, T.V. (1968a), Structural Members and Frames, Prentice-Hall, Englewood Cliffs, NJ.
Galambos, T.V. (1968b), "Deformation and Energy Absorption Capacity of Steel Structures in the Inelastic Range," Steel Research for Construction Bulletin No. 8, AISI, Washington, DC.

Galambos, T.V. (1978), "Proposed Criteria for Load and Resistance Factor Design of Steel Building Structures," AISI Bulletin No. 27, AISI, Washington, DC, January.

Galambos, T.V. and Ravindra, M.K. (1978), "Properties of Steel for Use in LRFD," Journal of the Structural Division, ASCE, Vol. 104, No. ST9, pp. 1,459-1,468.

Galambos, T.V., Ellingwood, B., MacGregor, J.G. and Cornell, C.A. (1982), "ProbabilityBased Load Criteria: Assessment of Current Design Practice," Journal of the Structural Division, ASCE, Vol. 108, No. ST5, pp. 959-977.

Galambos, T.V. (1983), "Reliability of Axially Loaded Columns," Engineering Structures, AISC, Vol. 5, No. 1, pp. 73-78.
Galambos, T.V. and Ellingwood, B. (1986), "Serviceability Limit States: Deflections," Journal of the Structural Division, ASCE, Vol. 112, No. 1, pp. 67-84.

Galambos, T.V. (2001), "Strength of Singly Symmetric I-Shaped Beam-Columns," Engineering Journal, AISC, Vol. 38, No. 2, pp. 65-77.

Galambos, T.V. and Surovek, A.E. (2008), Structural Stability of Steel-Concepts and Applications for Structural Engineers, John Wiley \& Sons Inc., New York, NY.

Geschwindner, L.F. (2002), "A Practical Approach to Frame Analysis, Stability and Leaning Columns," Engineering Journal, AISC, Vol. 39, No. 4, pp. 167-181.

Geschwindner, L.F. (2010a), "Notes on the Impact of Hole Reduction on the Flexural Strength of Rolled Beams," Engineering Journal, AISC, Vol. 47, No. 1, pp. 37-40.

Geschwindner, L.F. (2010b), "Discussion of Limit State Response of Composite Columns and Beam-Columns Part II: Application of Design Provisions for the 2005 AISC Specification," Engineering Journal, AISC, Vol. 47, No. 2, pp. 131-139.

Geschwindner, L.F. and Gustafson, K. (2010), "Single-Plate Shear Connection Design to Meet Structural Integrity Requirements," Engineering Journal, AISC, Vol. 47, No. 3, pp. 125-202.

Geschwindner, L.F. and Troemner, M. (2016), "Notes on the AISC 360-16 Provisions for Slender Compression Elements in Compression Members," Engineering Journal, AISC, Vol. 53, No. 3, pp. 137-146.

Gewain, R.G. and Troup, E.W.J. (2001), "Restrained Fire Resistance Ratings in Structural Steel Buildings," Engineering Journal, AISC, Vol. 38, No. 2, pp. 78-89.

Gibson, G.T. and Wake, B.T. (1942), "An Investigation of Welded Connections for Angle Tension Members," The Welding Journal, AWS, January, p. 44.

Giddings, T.W. and Wardenier, J. (1986), "The Strength and Behaviour of Statically Loaded Welded Connections in Structural Hollow Sections," CIDECT Monograph No. 6, Sections 1-10, British Steel Corporation Tubes Division, Corby, England.

Gioncu, V. and Petcu, D. (1997), "Available Rotation Capacity of Wide-Flange Beams and Beam-Columns, Part 1. Theoretical Approaches, and Part 2. Experimental and Numerical Tests," Journal of Constructional Steel Research, Elsevier, Vol. 43, Nos. 1-3, pp. 161-244.

Gjelsvik, A. (1981), The Theory of Thin-Walled Bars, John Wiley \& Sons, Inc., New York, NY.
Goble, G.G. (1968), "Shear Strength of Thin Flange Composite Specimens," Engineering Journal, AISC, Vol. 5, No. 2, pp. 62-65.

Gonzalez, F. and Lange, J. (2009), "Behaviour of High Strength Grade 10.9 Bolts Under Fire Conditions," Proceedings, Application of Structural Fire Design, Prague, Czech Republic.

Goverdhan, A.V. (1983), "A Collection of Experimental Moment Rotation Curves: Evaluation of Predicting Equations for Semi-Rigid Connections," M.S. Thesis, Vanderbilt University, Nashville, TN.

Graham, J.D., Sherbourne, A.N. and Khabbaz, R.N. (1959), "Welded Interior Beam-toColumn Connections," AISC, New York, NY.

Graham, J.D., Sherbourne, A.N., Khabbaz, R.N. and Jensen, C.D. (1960), "Welded Interior Beam-to-Column Connections," Bulletin, WRC, No. 63, pp. 1-28.

Grant, J.A., Fisher, J.W. and Slutter, R.G. (1977), "Composite Beams with Formed Steel Deck," Engineering Journal, AISC, Vol. 14, No. 1, pp. 24-43.

Griffis, L.G. (1992), Load and Resistance Factor Design of W-Shapes Encased in Concrete, Design Guide 6, AISC, Chicago, IL.

Griffis, L.G. (1993), "Serviceability Limit States Under Wind Load," Engineering Journal, AISC, Vol. 30, No. 1, pp. 1-16.

Griffis, L.G. and White, D.W. (2013), Stability Design of Steel Buildings, Design Guide 28, AISC, Chicago, IL.

Grondin, G., Jin, M. and Josi, G. (2007), "Slip Critical Bolted Connections—A Reliability Analysis for the Design at the Ultimate Limit State," Preliminary Report prepared for the American Institute of Steel Construction, University of Alberta, Edmonton, Alberta, CA.

Gustafson, K. (2009), "Meeting the 2009 IBC Structural Integrity Requirements," Proceedings of the North American Steel Construction Conference, Phoenix, AZ, AISC.

Hajjar, J.F. (2000), "Concrete-Filled Steel Tube Columns under Earthquake Loads," Progress in Structural Engineering and Materials, John Wiley \& Sons, Vol. 2, No. 1, pp. 72-82.

Hajjar, J.F., Dexter, R.J., Ojard, S.D., Ye, Y. and Cotton, S.C. (2003), "Continuity Plate Detailing for Steel Moment-Resisting Connections," Engineering Journal, AISC, No. 4, pp. 81-97.

Han L.H., Yao, G.H. and Zhao, X.L. (2005), "Tests and Calculations for Hollow Structural Steel (HSS) Stub Columns Filled with Self-Consolidating Concrete (SCC)," Journal of Constructional Steel Research, Elsevier, Vol. 61, No. 9, pp. 1,241-1,269,

Hansen, R.J., Reed, J.W. and Vanmarcke, E.H. (1973), "Human Response to Wind-Induced Motion of Buildings," Journal of the Structural Division, ASCE, Vol. 99, No. ST7, pp. 1,589-1,606.

Hanus F., Zilli G. and Franssen J.M. (2010), "Experimental Investigations and Analytical Model for the Behavior of Grade 8.8 Bolts and Butt Welds Under Heating and Subsequent Cooling," Sixth International Conference on Structures in Fire, June, DEStech Publications, Inc., East Lansing, MI.

Hanus F., Zilli, G. and Franssen J.M. (2011), "Behavior of Grade 8.8 Bolts Under Natural Fire Conditions-Tests and Model," Journal of Constructional Steel Research, Elsevier, Vol. 67, pp. 1,292-1,298.

Hardash, S.G. and Bjorhovde, R. (1985), "New Design Criteria for Gusset Plates in Tension," Engineering Journal, AISC, Vol. 22, No. 2, pp. 77-94.

Helwig, T.A., Frank, K.H. and Yura, J.A. (1997), "Lateral-Torsional Buckling of SinglySymmetric I-Beams," Journal of Structural Engineering, ASCE, Vol. 123, No. 9, pp. 1,172-1,179.

Helwig, Todd A. and Yura, J.A. (1999), "Torsional Bracing of Columns," Journal of Structural Engineering, ASCE, Vol. 125, No. 5, pp. 547-555.

Hertzberg, R.W., Vinci, R.P. and Hertzberg, J.L. (2012), Deformation and Fracture Mechanics of Engineering Materials, 5th Ed., John Wiley \& Sons.

Higgins, T.R. and Preece, F.R. (1968), "AWS-AISC Fillet Weld Study, Longitudinal and Transverse Shear Tests," Internal Report, Testing Engineers, Inc., Oakland, CA, May 31.

Höglund, T. (1997), "Shear Buckling Resistance of Steel and Aluminum Plate Girders," Thin-Walled Structures, Elsevier, Vol. 29, No. 1-4, pp. 13-30.

Horne, M.R. and Morris, L.J. (1982), Plastic Design of Low-Rise Frames, MIT Press, Cambridge, MA.

Horne, M.R. and Grayson, W.R. (1983), "Parametric Finite Element Study of Transverse Stiffeners for Webs in Shear," Instability and Plastic Collapse of Steel Structures, Proceedings of the Michael R. Horne Conference, L.J. Morris (ed.), Granada Publishing, London, pp. 329-341.

Hsieh, S.H. and Deierlein, G.G. (1991), "Nonlinear Analysis of Three-Dimensional Steel Frames with Semi-Rigid Connections," Computers and Structures, Elsevier, Vol. 41, No. 5, pp. 995-1,009.

Huang, Z., Burgess, I. and Plank, R. (2004), "Fire Resistance of Composite Floors Subject to Compartment Fires," Journal of Constructional Steel Research, Elsevier, Vol. 60, pp. 339-360.

ICC (2015), International Building Code, International Code Council, Falls Church, VA.

IIW (1989), "Design Recommendations for Hollow Section Joints—Predominantly Statically Loaded," 2nd Ed., IIW Document XV-701-89, IIW Annual Assembly, Subcommission XV-E, International Institute of Welding, Helsinki, Finland.

IIW (2012), "Static Design Procedure for Welded Hollow Section Joints-Recommendations," 2nd Ed., IIW Document XV-1402-12, IIW Annual Assembly, Subcommission XV-E, International Institute of Welding, Denver, CO.

Irwin, A.W. (1986), "Motion in Tall Buildings," Second Century of the Skyscraper, L.S. Beedle (ed.), Van Nostrand Reinhold Co., New York, NY.

Islam, M.S., Ellingwood, B. and Corotis, R.B. (1990), "Dynamic Response of Tall Buildings to Stochastic Wind Load," Journal of Structural Engineering, ASCE, Vol. 116, No. 11, pp. 2,982-3,002.

ISO (1977), "Bases for the Design of Structures-Deformations of Buildings at the Serviceability Limit States," ISO 4356, International Standards Organization, Geneva, Switzerland.

Iwankiw, N. (1984), "Note on Beam-Column Moment Amplification Factor," Engineering Journal, AISC, Vol. 21, No. 1, pp. 21-23.
Jacobs, W.J. and Goverdhan, A.V. (2010), "Review and Comparison of Encased Composite Steel-Concrete Column Detailing Requirements," Composite Construction in Steel and Concrete VI, R. Leon et al. (eds.), ASCE, Reston, VA.

Jayas, B.S. and Hosain, M.U. (1988a), "Composite Beams with Perpendicular Ribbed Metal Deck," Composite Construction in Steel and Concrete II, C.D. Buckner and I.M. Viest (eds.), ASCE, New York, NY, pp. 511-526.

Jayas, B.S. and Hosain, M.U. (1988b), "Behaviour of Headed Studs in Composite Beams: Push-Out Tests," Canadian Journal of Civil Engineering, NRC Research Press, Vol. 15, pp. 240-253.

Johnson, D.L. (1985), "An Investigation into the Interaction of Flanges and Webs in WideFlange Shapes," Proceedings of the Annual Technical Session and Meeting, Cleveland, OH, April 16-17, 1985, SSRC, Bethlehem, PA, pp. 397-405.

Johnson, D.L. (1996), "Final Report on Tee Stub Tests," Butler Corporation Research Report, Grandview, MO, May.
Johnson, R.P. and Molenstra, I.N. (1991), "Partial shear connection in composite beams for buildings," Proceedings of the Institution of Civil Engineers, ICE, Vol. 91, Issue 4, pp. 679-704.

Johnson, R.P. and Yuan, H. (1998), "Existing Rules and New Tests for Stud Shear Connectors in Troughs of Profiled Sheeting," Proceedings of the Institution of Civil Engineers: Structures and Buildings, ICE, Vol. 128, No. 3, pp. 244-251.

Johnston, B.G. (1939), "Pin-Connected Plate Links," Transactions, ASCE, Vol. 104, pp. 314-339.

Johnston, B.G. and Green, L.F. (1940), "Flexible Welded Angle Connections," The Welding Journal, AWS, October.

Johnston, B.G. and Deits, G.R. (1942), "Tests of Miscellaneous Welded Building Connections," The Welding Journal, AWS, November, p. 5.

Johnston, B.G. (ed.) (1976), Guide to Stability Design for Metal Structures, 3rd Ed., SSRC, John Wiley \& Sons, Inc., New York, NY.

Kaczinski, M.R., Schneider, C.R., Dexter, R.J. and Lu, L.-W. (1994), "Local Web Crippling of Unstiffened Multi-Cell Box Sections," Proceedings of the ASCE Structures Congress '94, Atlanta, GA, Vol. 1, ASCE, New York, NY, pp. 343-348.

Kaehler, R.C., White, D.W. and Kim, Y.D. (2010), Frame Design Using Web-Tapered Members, Design Guide 25, MBMA and AISC, Chicago, IL.

Kanchanalai, T. (1977), The Design and Behavior of Beam-Columns in Unbraced Steel Frames, AISI Project No. 189, Report No. 2, Civil Engineering/Structures Research Lab, University of Texas, Austin, TX.

Kanchanalai, T. and Lu, L.-W. (1979), "Analysis and Design of Framed Columns under Minor Axis Bending," Engineering Journal, AISC, Vol. 16, No. 2, pp. 29-41.

Kato, B. (1990), "Deformation Capacity of Steel Structures," Journal of Constructional Steel Research, Elsevier, Vol. 17, No. 1-2, pp. 33-94.

Kaufmann, E.J., Metrovich, B., Pense, A.W. and Fisher, J.W. (2001), "Effect of Manufacturing Process on k-Area Properties and Service Performance," Proceedings of the North American Steel Construction Conference, Fort Lauderdale, FL, May 9-12, 2001, AISC, Chicago, IL, pp. 17.1-17.24.

Kavanagh, T.C. (1962), "Effective Length of Framed Columns," Transactions, Part II, ASCE, Vol. 127, pp. 81-101.

Keating, P.B. and Fisher, J.W. (1986), "Evaluation of Fatigue Tests and Design Criteria on Welded Details," NCHRP Report No. 286, TRB, Washington DC, September.

Kemp, A.R. (1996), "Inelastic Local and Lateral Buckling in Design Codes," Journal of Structural Engineering, ASCE, Vol. 122, No. 4, pp. 374-382.

Ketter, R.L. (1961), "Further Studies of the Strength of Beam-Columns," Journal of the Structural Division, ASCE, Vol. 87, No. ST6, pp. 135-152.

Kim, H.J. and Yura, J.A. (1996), "The Effect of End Distance on the Bearing Strength of Bolted Connections," PMFSEL Report No. 96-1, University of Texas, Austin, TX.

Kim, Y.D., Jung, S.-K. and White, D.W. (2007), "Transverse Stiffener Requirements in Straight and Horizontally Curved Steel I-Girders," Journal of Bridge Engineering, ASCE, Vol. 12, No. 2, pp. 174-183.

Kim, Y. and White, D. (2014), "Transverse Stiffener Requirements to Develop ShearBuckling and Postbuckling Resistance of Steel I-Girders," Journal of Structural Engineering, ASCE, Vol. 140, No. 4.

Kirby, P.A. and Nethercot, D.A. (1979), Design for Structural Stability, John Wiley \& Sons Inc., New York, NY.

Kirby, B.R. and Preston, R.R. (1988), "High Temperature Properties of Hot-Rolled Structural Steels for Use in Fire Engineering Design Studies," Fire Safety Journal, Elsevier, Vol. 13, pp. 27-37.

Kirby B.R. (1995), "The Behavior of High-Strength Grade 8.8 Bolts in Fire," Journal of Constructional Steel Research, Elsevier, Vol. 33, No. 1-2, pp. 3-38.

Kishi, N. and Chen, W.F. (1986), "Data Base of Steel Beam-to-Column Connections," Vol. 1 and 2, Structural Engineering Report No. CE-STR-86-26, School of Civil Engineering, Purdue University, West Lafayette, IN.

Kitipornchai, S. and Trahair, N.S. (1980), "Buckling Properties of Monosymmetric I-Beams," Journal of the Structural Division, ASCE, Vol. 106, No. ST5, pp. 941-957.

Kitipornchai, S. and Traves, W.H. (1989), "Welded-Tee End Connections for Circular Hollow Tubes," Journal of Structural Engineering, ASCE, Vol. 115, No. 12, pp. 3,155-3,170.

Klöppel, K. and Seeger, T. (1964), "Dauerversuche Mit Einschnittigen HV-Verbindurgen Aus ST37," Der Stahlbau, Vol. 33, No. 8, August, pp. 225-245 and Vol. 33, No. 11, November, pp. 335-346.

Kodur, V., Kand, S. and Khaliq, W. (2012), "Effect of Temperature on Thermal Properties and Mechanical Properties of Steel Bolts," Journal of Materials Engineering, ASCE, Vol. 24, No. 6, pp. 765-774.
Kosteski, N. and Packer, J.A. (2003), "Longitudinal Plate and Through Plate-to-HSS Welded Connections," Journal of Structural Engineering, ASCE, Vol. 129, No. 4, pp. 478-486.

Kulak, G.L., Fisher, J.W. and Struik, J.H.A. (1987), Guide to Design Criteria for Bolted and Riveted Joints, 2nd Ed., John Wiley \& Sons Inc., New York, NY.

Kulak, G.L. and Grondin, G.Y. (2001), "AISC LRFD Rules for Block Shear—A Review," Engineering Journal, AISC, Vol. 38, No. 4, pp. 199-203.

Kulak, G.L. (2002), High Strength Bolts: A Primer for Structural Engineers, Design Guide 17, AISC, Chicago, IL.

Kulak, G.L. and Grondin, G.Y. (2002), "Closure: AISC LRFD Rules for Block Shear-A Review," Engineering Journal, AISC, Vol. 39, No. 4, p. 241.

Kulak, G.L. and Grondin, G.Y. (2003), "Strength of Joints that Combine Bolts and Welds," Engineering Journal, AISC, Vol. 40, No. 2, pp. 89-98.

Kurobane, Y., Packer, J.A., Wardenier, J. and Yeomans, N.F. (2004), "Design Guide for Structural Hollow Section Column Connections," CIDECT Design Guide No. 9, CIDECT (ed.) and Verlag TÜV Rheinland, Köln, Germany.

Lai, Z., Varma, A.H. and Zhang, K. (2014), "Noncompact and Slender Rectangular CFT Members: Experimental Database, Analysis, and Design," Journal of Constructional Steel Research, Elsevier, Vol. 101, October, pp. 455-468.

Lai, Z. and Varma, A.H. (2015), "Noncompact and Slender Circular CFT Members: Experimental Database, Analysis, and Design," Journal of Constructional Steel Research, Elsevier, Vol. 106, March, pp. 220-233.

Lai, Z., Varma, A.H. and Griffis, L.G. (2016), "Analysis and Design of Noncompact and Slender CFT Beam-columns," Journal of Structural Engineering, ASCE, Vol. 142, No. 1, pp. 1-14.

Lai, Z. and Varma, A.H. (2016), "Effective Stress-Strain Relationships for Analysis of Noncompact and Slender Filled Composite (CFT) Members," Engineering Structures, Elsevier, Vol. 124, pp. 457-472.

Lawson, R.M. (1992), "Shear Connection in Composite Beams," Composite Construction in Steel and Concrete II, W.S. Easterling and W.M.K. Roddis, (eds.), ASCE, New York, NY.

Lee, D., Cotton, S., Dexter, R.J., Hajjar, J.F., Ye, Y. and Ojard, S.D. (2002a), "Column Stiffener Detailing and Panel Zone Behavior of Steel Moment Frame Connections," Report No. ST-01-3.2, Department of Civil Engineering, University of Minnesota, Minneapolis, MN.

Lee, S.C., Yoo, C.H. and Yoon, D.Y. (2002b), "Behavior of Intermediate Transverse Stiffeners Attached on Web Panels," Journal of Structural Engineering, ASCE, Vol. 128, No. 3, pp. 337-345.

Lee, S.C., Lee, D.S. and Yoo, C.H. (2008), "Ultimate Shear Strength of Long Web Panels," Journal of Constructional Steel Research, Elsevier, Vol. 64, No. 12, pp. 1,357-1,365.

Leigh, J.M. and Lay, M.G. (1978), "Laterally Unsupported Angles with Equal and Unequal Legs," Report MRL 22/2, July, Melbourne Research Laboratories, Clayton, Victoria, Australia.

Leigh, J.M. and Lay, M.G. (1984), "The Design of Laterally Unsupported Angles," Steel Design Current Practice, Section 2, Bending Members, AISC, Chicago, IL, January.

LeMessurier, W.J. (1976), "A Practical Method of Second Order Analysis, Part 1—PinJointed Frames," Engineering Journal, AISC, Vol. 13, No. 4, pp. 89-96.

LeMessurier, W.J. (1977), "A Practical Method of Second Order Analysis, Part 2—Rigid Frames," Engineering Journal, AISC, Vol. 14, No. 2, pp. 49-67.

LeMessurier, W.J. (1995), "Simplified K Factors for Stiffness Controlled Designs," Restructuring: America and Beyond, Proceedings of ASCE Structures Congress XIII, Boston, MA, ASCE, New York, NY, pp. 1,797-1,812.

Leon, R.T. (1990), "Serviceability of Composite Floor," Proceedings of the 1990 National Steel Construction Conference, AISC, pp. 18:1-18:23.
Leon, R.T. and Alsamsam, I. (1993), Performance and Serviceability of Composite Floors, Structural Engineering in Natural Hazards Mitigation: Proceedings of the ASCE Structures Congress, Irvine, CA, ASCE, pp. 1,479-1,484.

Leon, R.T. (1994), "Composite Semi-Rigid Construction," Engineering Journal, AISC, Vol. 31. No. 2, pp. 57-67.

Leon, R.T., Hoffman, J. and Staeger, T. (1996), Design of Partially Restrained Composite Connections, Design Guide 8, AISC, Chicago, IL.

Leon, R.T. and Easterling, W.S. (eds.) (2002), Connections in Steel Structures IV—Behavior, Strength and Design, AISC, Chicago, IL.

Leon, R.T., Kim, D.K. and Hajjar, J.F. (2007), "Limit State Response of Composite Columns and Beam-Columns Part 1: Formulation of Design Provisions for the 2005 AISC Specification," Engineering Journal, AISC, Vol. 44, No. 4, pp. 341-358.

Leon, R.T. and Hajjar, J.F. (2008), "Limit State Response of Composite Columns and BeamColumns Part 2: Application of Design Provisions for the 2005 AISC Specification," Engineering Journal, AISC, Vol. 45, No. 1, pp. 21-46.

Leon, R.T., Perea, T., Hajjar, J.F. and Denavit, M.D. (2011), "Towards Systems Behavior Factors for Composite Frames: Experimental and Analytical Studies," Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL.

Lewis, B.E. and Zwerneman, F.J. (1996), "Edge Distance, Spacing, and Bearing in Bolted Connections," Research Report, Department of Civil and Environmental Engineering, Oklahoma State University, Stillwater, OK, July.

Li, G., Li, M. and Yin, Y. (2001), "Experimental Studies on the Behavior of High-Strength Bolts Made of 20MnTiB Steel at Elevated Temperatures," China Civil Engineering Journal, Vol. 34, No. 5, pp. 100-104 (in Chinese).

Liang, Q.Q. (2009), "Performance-Based Analysis of Concrete-Filled Steel Tubular BeamColumns, Part I: Theory and algorithms," Journal of Constructional Steel Research, Elsevier, Vol. 65, No. 2, pp. 363-372.

Liew, J.Y., White, D.W. and Chen, W.F. (1993), "Second-Order Refined Plastic-Hinge Analysis for Frame Design, Parts I and II," Journal of Structural Engineering, ASCE, Vol. 119, No. 11, pp. 3,196-3,237.

Lokhande, A. and White, D.W. (2015), "Evaluation of Steel I-Section Beam and BeamColumn Bracing Requirements by Test Simulation," Research Report to the American Institute of Steel Construction, School of Civil and Environmental Engineering, Georgia Institute of Technology, June, 286 p.

Lorenz, R.F., Kato, B. and Chen, W.F. (eds.) (1993), Semi-Rigid Connections in Steel Frames, CTBUH, Bethlehem, PA.

Lou, G., Yu, S. and Wang, R. (2010), "Experimental Study of Mechanical Properties of High-Strength Bolts After Fire," Sixth International Conference Structures in Fire, East Lansing, MI.

Lu, Y.O. and Kennedy, D.J.L. (1994), "The Flexural Behaviour of Concrete-Filled Hollow Structural Sections," Canadian Journal of Civil Engineering, NRC Research Press, Vol. 21, No. 1, pp. 111-130.

Lui, Z. and Goel, S.C. (1987), "Investigation of Concrete-Filled Steel Tubes Under Cyclic Bending and Buckling," UMCE Report 87-3, Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI.

Lutz, L.A. and Fisher, J.M. (1985), "A Unified Approach for Stability Bracing Requirements, Engineering Journal, AISC, Vol. 22, No. 4, pp. 163-167.

Lutz, L.A. (1992), "Critical Slenderness of Compression Members with Effective Lengths about Non-Principal Axes," Proceedings of the Annual Technical Session and Meeting, Pittsburgh, PA, SSRC, Bethlehem, PA.

Lyons, C.J., Easterling, W.S. and Murray, T.M. (1994), "Strength of Welded Shear Studs, Volumes I and II," Report No. CE/VPI-ST 94-07, Virginia Polytechnic Institute and State University, Blacksburg, VA.

Lyse, I. and Schreiner, N.G. (1935), "An Investigation of Welded Seat Angle Connections," The Welding Journal, AWS, February, p. 1.

Lyse, I. and Gibson, G.J. (1937), "Effect of Welded Top Angles on Beam-Column Connections," The Welding Journal, AWS, October.

Madugula, M.K.S. and Kennedy, J.B. (1985), Single and Compound Angle Members, Elsevier, New York, NY.

Maleck, A.E. and White, D.W. (2003), "Direct Analysis Approach for the Assessment of Frame Stability: Verification Studies," Proceedings-Annual Technical Session and Meeting, Baltimore, MD, SSRC, pp. 423-441.

Marino, F.J. (1966), "Ponding of Two-Way Roof Systems," Engineering Journal, AISC, Vol. 3, No. 3, pp. 93-100.

Marshall, P.W. (1992), Design of Welded Tubular Connections: Basis and Use of AWS Code Provisions, Elsevier, Amsterdam, the Netherlands.

Martinez-Garcia, J.M. and Ziemian, R.D. (2006), "Benchmark Studies to Compare Frame Stability Provisions," Proceedings-Annual Technical Session and Meeting, San Antonio, TX, SSRC, pp. 425-442.

McGuire, W. (1992), "Computer-Aided Analysis," Constructional Steel Design: An International Guide, P.J. Dowling, J.E. Harding and R. Bjorhovde (eds.), Elsevier, New York, NY, pp. 915-932.

McGuire, W., Gallagher, R.H. and Ziemian, R.D. (2000), Matrix Structural Analysis, 2nd Ed., John Wiley \& Sons Inc., New York, NY.

Mohr, B.A. and Murray, T.M. (2008), "Bending Strength of Steel Bracket and Splice Plates," Engineering Journal, AISC, Vol. 45, No. 2, pp. 97-106.

Moon, J., Yoon, K., Han, T. and Lee, H. (2008), "Out-of-plane Buckling and Design of X-bracing Systems with Discontinuous Diagonals," Journal of Constructional Steel Research, Elsevier, Vol. 64, No. 3, pp. 285-294.

Mottram, J.T. and Johnson, R.P. (1990), "Push Tests on Studs Welded Through Profiled Steel Sheeting," The Structural Engineer, ISE, Vol. 68, No. 10, pp. 187-193.

Mujagic, J.R. and Easterling, W.S. (2009),"Reliability Assessment of Composite Beams," Journal of Constructional Steel Research, Elsevier, Vol. 65, No. 12, pp. 2,111-2,128.

Mujagic, J.R., Easterling, W.S., Bennett, J.S. and Varma, A.H. (2015), "Assessment of Shear Connection Ductility in Composite Beams-Implications on the U.S. Design Practice," Report No. CE/VPI-15/12, Virginia Polytechnic Institute and State University, Blacksburg, VA.

Munse, W.H. and Chesson, Jr., E., (1963), "Riveted and Bolted Joints: Net Section Design," Journal of the Structural Division, ASCE, Vol. 89, No. ST1, pp. 107-126.

Murray, T.M., Kline, D.P. and Rojani, K.B. (1992), "Use of Snug-Tightened Bolts in EndPlate Connections," Connections in Steel Structures II, R. Bjorhovde, A. Colson, G. Haaijer and J.W.B. Stark, (eds.), AISC, Chicago, IL.

Murray, T.M. and Shoemaker, W.L. (2002), Flush and Extended Multiple-Row Moment End-Plate Connections, Design Guide 16, AISC, Chicago, IL.

Murray, T.M. and Sumner, E.A. (2004), End-Plate Moment Connections-Wind and Seismic Applications, Design Guide 4, 2nd Ed., AISC, Chicago, IL.

Murray, T.M., Allen, D.E. and Ungar, E.E. (2016), Vibrations of Steel-Framed Structural Systems Due to Human Activity, Design Guide 11, 2nd Ed., AISC, Chicago, IL.

Nair, S. (1997), "Practical Application of Energy Methods to Structural Stability Problems," Engineering Journal, AISC, Vol. 34, No. 4, pp. 126-134.

Nelson (1977), Embedment Properties of Headed Studs, TRW Nelson Stud Welding Division, Lorain, OH.

Nethercot, D.A. (1985), "Steel Beam to Column Connections-A Review of Test Data and Their Applicability to the Evaluation of the Joint Behaviour of the Performance of Steel Frames," CIRIA, London, England.

Newmark, N.M., Siess, C.P. and Viest, I.M. (1951), Tests and Analysis of Composite Beams with Incomplete Interaction," Proceedings, SESA, Vol. 9, pp. 75-92.

Newman, G. (1999), "The Cardington Fire Tests," Proceedings of the North American Steel Construction Conference, Toronto, Canada, AISC, Chicago, IL, pp. 28.1-28.22.

NFPA (2002a), Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems, NFPA 25, National Fire Protection Association, Quincy, MA.

NFPA (2002b), Standard on Smoke and Heat Venting, NFPA 204, National Fire Protection Association, Quincy, MA.

NFPA (2012), Standard for Determination of Fire Loads for Use in Structural Fire Protection Design, NFPA 557, National Fire Protection Association, Quincy, MA.

NFPA (2015), Building Construction and Safety Codes, NFPA 5000, National Fire Protection Association, Quincy, MA.

Nowak, A.S. and Collins, K.R. (2000), Reliability of Structures, McGraw-Hill, New York, NY.
NRC (1974), "Expansion Joints in Buildings," Technical Report No. 65, Standing Committee on Structural Engineering of the Federal Construction Council, Building Research Advisory Board, Division of Engineering, National Research Council, National Academy of Sciences, Washington, DC.

NRCC (1990), National Building Code of Canada, National Research Council of Canada, Ottawa, Ontario, Canada.

Oehlers, D.J. and Coughlan, C.G. (1986), "The Shear Stiffness of Stud Shear Connections in Composite Beams," Journal of Constructional Steel Research, Elsevier, Vol. 6, No. 4, pp. 273-284.

Oehlers, D.J. and Bradford, M.A. (1995), Composite Steel and Concrete Members, Elsevier, Tarrytown, NY.

Oehlers, D.J. and Sved, G. (1995), "Flexural Strength of Composite Beams with Limited Slip Capacity Shear Connectors," Journal of Structural Engineering, ASCE, Vol. 121, No.6, pp. 932-938.

Ollgaard, J.G., Slutter, R.G. and Fisher, J.W. (1971), "Shear Strength of Stud Shear Connections in Lightweight and Normal Weight Concrete," Engineering Journal, AISC, Vol. 8, No. 2, pp. 55-64.

OSHA (2015), Safety and Health Regulations for Construction, Standards-29 CFR 1926 Subpart R-Steel Erection, Occupational Safety and Health Administration, Washington, DC.

Packer, J.A., Birkemoe, P.C. and Tucker, W.J. (1984), "Canadian Implementation of CIDECT Monograph No. 6," CIDECT Report No. 5AJ-84/9-E, University of Toronto, Toronto, Canada.

Packer, J.A., Wardenier, J., Kurobane, Y., Dutta, D. and Yeomans, N. (1992), "Design Guide for Rectangular Hollow Section (RHS) Joints under Predominantly Static Loading," CIDECT Design Guide No. 3, CIDECT (ed.) and Verlag TÜV Rheinland, Köln, Germany.

Packer, J.A. and Cassidy, C.E. (1995), "Effective Weld Length for HSS T, Y and X Connections," Journal of Structural Engineering, ASCE, Vol. 121, No. 10, pp. 1,402-1,408.

Packer, J.A. and Henderson, J.E. (1997), Hollow Structural Section Connections and Trusses-A Design Guide, 2nd Ed., CISC, Toronto, Canada.

Packer, J.A. (2004), "Reliability of Welded Tubular K-Connection Resistance Expressions," International Institute of Welding (IIW) Document XV-E-04-291, University of Toronto, Toronto, Canada.

Packer, J.A., Mashiri, F.R., Zhao, X.L. and Willibald, S. (2007), "Static and Fatigue Design of CHS-to-RHS Welded Connections Using a Branch Conversion Method," Journal of Constructional Research, Elsevier, Vol. 63, No. 1, pp. 82-95.

Packer, J.A., Wardenier, J., Zhao, X.-L., van der Vegte, G.L. and Kurobane, Y. (2009), Design Guide for Rectangular Hollow Section (RHS) Joints under Predominately Static Loading, 2nd Ed., CIDECT, Geneva, Switzerland.

Pallarés, L. and Hajjar, J.F. (2010a), "Headed Steel Stud Anchors in Composite Structures: Part II. Tension and Interaction," Journal of Constructional Steel Research, Elsevier, Vol. 66, No. 2, February, pp. 213-228.

Pallarés, L. and Hajjar, J.F. (2010b), "Headed Steel Stud Anchors in Composite Structures: Part I. Shear," Journal of Constructional Steel Research, Elsevier, Vol. 66, No. 2, February, pp. 198-212.

Pate-Cornell, E. (1994), "Quantitative Safety Goals for Risk Management of Industrial Facilities," Structural Safety, Elsevier, Vol. 13, No. 3, pp. 145-157.

Peköz, T. (1987), Development of a Unified Approach to the Design of Cold-Formed Steel Members, AISI, Washington, DC.

Picard, A. and Beaulieu, D. (1987), "Design of Diagonal Cross Bracings Part 1: Theoretical Study," Engineering Journal, AISC, Vol. 24, No. 3, pp. 122-126.

Popov, E.P. and Stephen, R.M. (1977), "Capacity of Columns with Splice Imperfections," Engineering Journal, AISC, Vol. 14, No. 1, pp. 16-23.

Popov, E.P. (1980), "An Update on Eccentric Seismic Bracing," Engineering Journal, AISC, Vol. 17, No. 3, pp. 70-71.

Prado, E. and White, D.W. (2015), "Assessment of Basic Steel I-Section Beam Bracing Requirements by Test Simulation," Research Report to the Metal Building Manufacturers Association, School of Civil and Environmental Engineering, Georgia Institute of Technology, June, 243 p.

Preece, F.R. (1968), "AWS-AISC Fillet Weld Study—Longitudinal and Transverse Shear Tests," Testing Engineers, Inc., Los Angeles, CA, May.

Prion, H.G.L. and Boehme, J. (1994), "Beam-column behaviour of steel tubes filled with high strength concrete," Canadian Journal of Civil Engineering, NRC Research Press, Vol. 21, No. 2, pp. 207-218.

Prochnow, S.D., Ye, Y., Dexter, R.J., Hajjar, J.F. and Cotton, S.C. (2000), "Local Flange Bending and Local Web Yielding Limit States in Steel Moment Resisting Connections," Connections in Steel Structures IV-Behavior, Strength and Design, R.T. Leon and W.S. Easterling (eds.), AISC, Chicago, IL, pp. 318-328.

Rahal, K.N. and Harding, J.E. (1990a), "Transversely Stiffened Girder Webs Subjected to Shear Loading—Part 1: Behaviour," Proceedings of the Institution of Civil Engineers, Part 2, ICE, March, pp. 47-65.

Rahal, K.N. and Harding, J.E. (1990b), "Transversely Stiffened Girder Webs Subjected to Shear Loading—Part 2: Stiffener Design," Proceedings of the Institution of Civil Engineers, Part 2, ICE, March, pp. 67-87.

Rahal, K.N. and Harding, J.E. (1991), "Transversely Stiffened Girder Webs Subjected to Combined In-Plane Loading," Proceedings of the Institution of Civil Engineers, Part 2, ICE, June, pp. 237-258.

Ravindra, M.K. and Galambos, T.V. (1978), "Load and Resistance Factor Design for Steel," Journal of the Structural Division, ASCE, Vol. 104, No. ST9, pp. 1,337-1,353.

RCSC (2014), Specification for Structural Joints Using High Strength Bolts, Research Council on Structural Connections, AISC, Chicago, IL.

Ricles, J.M. and Yura, J.A. (1983), "Strength of Double-Row Bolted Web Connections," Journal of the Structural Division, ASCE, Vol. 109, No. ST1, pp. 126-142.

Roberts, R., Fisher, J.E., Irwin, G.R., Boyer, K.D., Hausamann, H., Krishna, G.V., Morf, V. and Slockbower, R.E. (1980), Fatigue and Fracture Resistance of a Welded Bridge Detail, Advances in Fracture Research, Pergamon Press, pp. 2,101-2,108.

Roberts, T.M. (1981), "Slender Plate Girders Subjected to Edge Loading," Proceedings of the Institution of Civil Engineers, Part 2, ICE, No. 71, September.

Robinson, H. and Naraine, K.S. (1988), "Slip and Uplift Effects in Composite Beams," Proceedings, Engineering Foundation Conference on Composite Construction, ASCE, pp. 487-497.

Roddenberry, M.R., Easterling, W.S. and Murray, T.M. (2002a), "Behavior and Strength of Welded Stud Shear Connectors," Report No. CE/VPI-02/04, Virginia Polytechnic Institute and State University, Blacksburg, VA.

Roddenberry, M.R., Lyons, J.C., Easterling, W.S. and Murray, T.M. (2002b), "Performance and Strength of Welded Shear Studs," Composite Construction in Steel and Concrete IV, J.F. Hajjar, M. Hosain, W.S. Easterling and B.M. Shahrooz (eds.), ASCE, Reston, VA, pp. 458-469.

Roeder, C.W., Cameron, B. and Brown, C.B. (1999), "Composite Action in Concrete Filled Tubes," Journal of Structural Engineering, ASCE, Vol. 125, No. 5, pp. 477-484.

Roik, K. and Bergmann, R. (1992), "Composite Column," Constructional Steel Design: An International Guide, P.J. Dowling, J.E. Harding and R. Bjorhovde, (eds.), Elsevier, London.

Rolloos, A. (1969), "The Effective Weld Length of Beam to Column Connections without Stiffening Plates," Stevin Report 6-69-7-HL, Delft University of Technology, Delft, the Netherlands.

Ruddy, J. (1986), "Ponding of Concrete Deck Floors," Engineering Journal, AISC, Vol. 23, No. 3, pp. 107-115.

Ruddy, J.L., Marlo, J.P., Ioannides, S.A. and Alfawakhiri, F. (2003), Fire Resistance of Structural Steel Framing, Design Guide 19, AISC, Chicago, IL.

Sakino, K., Nakahara, H., Morino, S. and Nishiyama, I. (2004), "Behavior of Centrally Loaded Concrete-Filled Steel-Tube Short Columns," Journal of Structural Engineering, ASCE, Vol. 130, No. 2, pp. 180-188.

Salari, M., Spacone, E., Shing, P. and Frangopol, D. (1998), "Nonlinear Analysis of Composite Beams with Deformable Shear Connectors," Journal of Structural Engineering, ASCE, Vol. 124, No. 10, 1,148-1,158.

Salari, M. and Spacone, E. (2001), "Analysis of Steel-Concrete Composite Frames with Bond Slip," Journal of Structural Engineering, ASCE, Vol. 127, No. 11, pp. 1,243-1,250.

Salkar, R., Salkar, A. and Davids, W. (2015), "Crippling of Webs with Partial-Depth Stiffeners under Patch Loading," Engineering Journal, AISC, Vol. 52, No. 4, pp. 221-231.

Salmon, C.G., Johnson, J.E. and Malhas, F.A. (2008), Steel Structures: Design and Behavior, Prentice-Hall, Upper Saddle River, NJ.

Salvadori, M. (1956), "Lateral Buckling of Eccentrically Loaded I-Columns," Transactions, ASCE, Vol. 122, No. 1.

Sato, A. and Uang, C.M. (2007), "Modified Slenderness Ratio for Built-up Members," Engineering Journal, AISC, Vol. 44, No. 3, pp. 269-280.

Schilling, C.G. (1965), Buckling Strength of Circular Tubes, Journal of the Structural Division, ASCE, Vol. 91, No. ST5, pp. 325-348.

Schuster, J.W. (1997), Structural Steel Fabrication Practices, McGraw-Hill, New York, NY. SDI (2001), Standard Practice Details, Steel Deck Institute, Fox River Grove, IL. SDI (2015), Diaphragm Design Manual, Steel Deck Institute, Fox River Grove, IL.

Seaburg, P.A. and Carter, C.J. (1997), Torsional Analysis of Structural Steel Members, Design Guide 9, AISC, Chicago, IL.

Seif, M. and Schafer, B.W. (2010), "Local Buckling of Structural Steel Shapes," Journal of Constructional Steel Research, Elsevier, Vol. 66, No. 10, pp. 1,232-1,247.

Selden, K. (2014), "Structural Behavior and Design of Composite Beams Subjected to Fire," Ph.D. Dissertation, Purdue University, School of Civil Engineering.

Selden, K., Varma, A.H. and Mujagic, J. (2015), "Consideration of Shear Stud Slip in the Design of Partially Composite Beams," Structures Congress, Portland Oregon, ASCE, pp. 888-899.

Selden, K., Fischer, E. and Varma, A.H. (2016), "Experimental Investigation of Composite Beams with Shear Connections Subjected to Fire Loading," Journal of Structural Engineering, ASCE, Vol. 142, No. 2.

Selden, K. and Varma, A.H. (2016), "Flexural Capacity of Composite Beams Subjected to Fire: Fiber-Based Models and Benchmarking," Fire Technology, Springer Science + Business Media New York, July, Vol. 52, Issue 4, pp. 995-1,014.

SFPE (2002), Handbook of Fire Protection Engineering, 3rd Ed., P.J. DiNenno (ed.), NFPA, Quincy, MA.

SFPE (2011), Engineering Standard on Calculating Fire Exposures to Structures, SFPE S.01, Society of Fire Protection Engineers, Bethesda, MD.

SFSA (1995), Steel Castings Handbook, Steel Founders' Society of America and ASM International, Crystal Lake, IL.

SFSA (2009), Steel Castings Handbook, Supplement 2, Steel Founders' Society of America, Crystal Lake, IL.

Shanmugam, N.E. and Lakshmi, B. (2001), "State of the Art Report on Steel-Concrete Composite Columns," Journal of Constructional Steel Research, Elsevier, Vol. 57, No. 10, pp. 1,041-1,080.

Sherbourne, A.N. and Jensen, C.D. (1957), "Direct Welded Beam Column Connections," Report. No. 233.12, Fritz Engineering Laboratory, Lehigh University, Bethlehem, PA.

Sherman, D.R. (1976), "Tentative Criteria for Structural Applications of Steel Tubing and Pipe," AISI, Washington, DC, August.

Sherman, D.R. and Tanavde, A.S. (1984), "Comparative Study of Flexural Capacity of Pipes," Internal Report, Department of Civil Engineering, University of WisconsinMilwaukee, WI, March.

Sherman, D.R. and Ales, J.M. (1991), "The Design of Shear Tabs with Tubular Columns," Proceedings of the National Steel Construction Conference, Washington, DC, AISC, Chicago, IL, pp. 1.2-1.22.

Sherman, D.R. (1992), "Tubular Members," Constructional Steel Design—An International Guide, P.J. Dowling, J.H. Harding and R. Bjorhovde (eds.), Elsevier, London, pp. 91-104.

Sherman, D.R. (1995a), "Stability Related Deterioration of Structures," Proceedings of the Annual Technical Session and Meeting, Kansas City, MO, SSRC, Bethlehem, PA.

Sherman, D.R. (1995b), "Simple Framing Connections to HSS Columns," Proceedings, National Steel Construction Conference, San Antonio, TX, AISC, pp. 30.1-30.16.

Sherman, D.R. (1996), "Designing with Structural Tubing," Engineering Journal, AISC, Vol. 33, No. 3, pp.101-109.

Shi,Y.I., Wang, L., Wang, Y.Q., Ma, J.S. and Bai, R.S. (2011), "Proposed Design Method of Combined Connections with Bolts and Longitudinal Welds," Applied Mechanics and Materials, Trans Tech Publications, Inc., Vols. 94-96, pp. 923-928.

Slutter, R.G. and Driscoll, G.C. (1965), "Flexural Strength of Steel-Concrete Composite Beams," Journal of the Structural Division, ASCE, Vol. 91, No. ST2, pp. 71-99.

SSPC (2002), SSPC Painting Manual Volume 1 Good Painting Practices, 4th Ed., The Society for Protective Coatings, Pittsburgh, PA.

SSPC (2012), SSPC Painting Manual Volume 2 Systems and Specifications, The Society for Protective Coatings, Pittsburgh, PA.

Stang, A.H. and Jaffe, B.S. (1948), Perforated Cover Plates for Steel Columns, Research Paper RP1861, National Bureau of Standards, Washington, DC.

Stanway, G.S., Chapman, J.C. and Dowling, P.J. (1993), "Behaviour of a Web Plate in Shear with an Intermediate Stiffener," Proceedings of the Institution of Civil Engineers, Structures and Buildings, ICE, Vol. 99, August, pp. 327-344.

Stanway, G.S., Chapman, J.C. and Dowling, P.J. (1996), "A Design Model for Intermediate Web Stiffeners," Proceedings of the Institution of Civil Engineers, Structures and Buildings, ICE, Vol. 116, February, pp. 54-68.

Studer, R.P., Binion, C.D. and Davis, D.B. (2015), "Shear Strength of Tapered I-Shaped Steel Members," Journal of Constructional Steel Research, Elsevier, Vol. 112, No. 9, pp. 167-174.

Summers, P.A. and Yura, J.A. (1982), "The Behavior of Beams Subjected to Concentrated Loads," Report No. 82-5, Phil M. Ferguson Structural Engineering Laboratory, University of Texas, Austin, TX, August.

Surovek, A., White, D. and Leon, R. (2005), "Direct Analysis for Design Evaluation of Partially Restrained Steel Framing Systems," Journal of Structural Engineering, ASCE, Vol. 131, No. 9, pp. 1,376-1,389.

Surovek, A.E. (ed.) (2010), Guidelines for the Use of Direct Second-Order Inelastic Analysis in Steel Frame Design, Report of the Special Project Committee on Advanced Analysis, Technical Committee on Compression and Flexural Members of the Structural Engineering Institute, ASCE.

Takagi, J. and Deierlein, G.G. (2007), "Strength Design Criteria for Steel Members at Elevated Temperatures," Journal of Constructional Steel Research, Elsevier, Vol. 63, pp. 1,036-1,050.

Taylor, A.C. and Ojalvo, M. (1966), "Torsional Restraint of Lateral Buckling," Journal of the Structural Division, ASCE, Vol. 92, No. ST2, pp. 115-129.

Thoft-Christensen, P. and Murotsu, Y. (1986), Application of Structural System Reliability Theory, Springer Verlag, Berlin.

Tide, R.H.R. (1985), "Reasonable Column Design Equations," Proceedings of the Annual Technical Session and Meeting, Cleveland, OH, SSRC, Bethlehem, PA.

Tide, R.H.R. (1999), "Evaluation of Steel Properties and Cracking in the 'k'-area of W Shapes," Engineering Structures, Elsevier, Vol. 22, pp. 128-124.

Tide, R.H.R. (2001), "A Technical Note: Derivation of the LRFD Column Design Equations," Engineering Journal, AISC, Vol. 38, No. 3, pp. 137-139.

Tide, R.H.R. (2010), "Bolt Shear Design Considerations," Engineering Journal, AISC, Vol. 47, No. 1, pp. 47-64.

Timoshenko, S.P. (1956), Strength of Materials, Vol. II, 3rd Ed., D. Van Nostrand, New York, NY.

Timoshenko, S.P. and Gere, J.M. (1961), Theory of Elastic Stability, McGraw-Hill Book Company, New York, NY.

Togay, O., Jeong, W.Y., Bishop, C.D. and White, D.W. (2015), "Toward a More Comprehensive Approach for Design Using Buckling Analysis," Proceedings of the Annual Stability Conference, Nashville, TN, SSRC, pp. 391-410.

Troup, E.W. (1999), "Effective Contract and Shop Drawings for Structural Steel," Proceedings of the AISC National Steel Construction Conference, Toronto, Ontario, AISC, Chicago, IL, pp. 37-1-37-15.

Van der Sanden, P.G.F.J. (1996), "The Behaviour of a Headed Stud Connection in a 'New' Push Test including a Ribbed Slab. Tests: Main Report," BKO Report No. 95-15, Eindhoven University of Technology, Eindhoven, the Netherlands, March.

Varma, A.H., Ricles, J.M., Sause, R. and Lu, L.W. (2002), "Experimental Behavior of High Strength Square Concrete Filled Steel Tube (CFT) Columns," Journal of Structural Engineering, ASCE, Vol. 128, No. 3, pp. 309-318.

Vickery, B.J., Isyumov, N. and Davenport, A.G. (1983), "The Role of Damping, Mass and Stiffness in the Reduction of Wind Effects on Structures," Journal of Wind Engineering and Industrial Aerodynamics, Elsevier, Vol. 11, Nos. 1-3, pp. 285-294.

Viest, I.M., Siess, C.P., Appleton, J.H. and Newmark, N. (1952), "Full-Scale Tests of Channel Shear Connectors and Composite T-Beams," Bulletin Series No. 405, Vol. 50, No. 29, University of Illinois Engineering Experiment Station, University of Illinois, Urbana, IL.

Viest, I.M., Colaco, J.P., Furlong, R.W., Griffis, L.G., Leon, R.T. and Wyllie, L.A., Jr. (1997), Composite Construction: Design for Buildings, McGraw-Hill, New York, NY.

Vincent, G.S. (1969), "Tentative Criteria for Load Factor Design of Steel Highway Bridges," Bulletin No. 15, AISI, Washington, D.C.
von Kármán, T., Sechler, E.E. and Donnell, L.H. (1932), "The Strength of Thin Plates in Compression," Transactions, ASME, Vol. 54.

Wardenier, J., Davies, G. and Stolle, P. (1981), "The Effective Width of Branch Plate to RHS Chord Connections in Cross Joints," Stevin Report 6-81-6, Delft University of Technology, Delft, the Netherlands.

Wardenier, J. (1982), Hollow Section Joints, Delft University Press, Delft, the Netherlands.
Wardenier, J., Kurobane, Y., Packer, J.A., Dutta, D. and Yeomans, N. (1991), Design Guide for Circular Hollow Section (CHS) Joints Under Predominantly Static Loading, CIDECT Design Guide No. 1, CIDECT (ed.) and Verlag TÜV Rheinland, Köln, Germany.

Wardenier, J., Kurobane, Y., Packer, J.A., van der Vegte, G.L. and Zhao, X.L. (2008), Design Guide for Circular Hollow Section (CHS) Joints under Predominately Static Loading 2nd Ed., CIDECT, Geneva, Switzerland.

West, M.A. and Fisher, J.M. (2003), Serviceability Design Considerations for Steel Buildings, Design Guide 3, 2nd Ed., AISC, Chicago, IL.

Wheeler, A. and Bridge, R. (2006), "The Behaviour of Circular Concrete-Filled ThinWalled Steel Tubes in Flexure," Proceedings, Composite Construction in Steel and Concrete V, Kruger National Park, South Africa, July 18-23, 2004, R.T. Leon and Lange, J. (eds.), ASCE, Reston, Virginia, pp. 413-423.

White, D.W. and Chen, W.F. (ed.) (1993), Plastic Hinge Based Methods for Advanced Analysis and Design of Steel Frames: An Assessment of State-of-the-Art, SSRC, Bethlehem, PA.

White, D.W. and Hajjar, J.F. (1997a), "Design of Steel Frames without Consideration of Effective Length," Engineering Structures, Elsevier, Vol. 19, No. 10, pp. 797-810.

White, D.W. and Hajjar, J.F. (1997b), "Buckling Models and Stability Design of Steel Frames: a Unified Approach," Journal of Constructional Steel Research, Elsevier, Vol. 42, No. 3, pp. 171-207.

White, D.W. and Jung, S.K (2003), "Simplified Lateral-Torsional Buckling Equations for Singly-Symmetric I-Section Members," Structural Engineering, Mechanics and Materials Report No. 24b, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA.

White, D.W. and Grubb, M.A. (2005), "Unified Resistance Equations for Design of Curved and Tangent Steel Bridge I-Girders," Proceedings, 6th International Bridge Engineering Conference, Boston, MA, TRB, July, pp. 121-128.

White, D.W. and Chang, C.J. (2007), "Improved Flexural Stability Design of I-Section Members in AISC (2005)—A Case Study Comparison to AISC (1989) ASD," Engineering Journal, AISC, Vol. 44, No. 4, pp. 291-304.

White, D.W. (2008), "Unified Flexural Resistance Equations for Stability Design of Steel I-Section Members-Overview," Journal of Structural Engineering, ASCE, Vol. 134, No. 9, pp. 1,405-1,424.

White, D.W. and Barker, M. (2008), "Shear Resistance of Transversely-Stiffened Steel I-Girders," Journal of Structural Engineering, ASCE, Vol. 134, No. 9, pp. 1,425-1,436.

White, D.W., Barker, M.G. and Azizinamini, A. (2008), "Shear Strength and Moment-Shear Interaction in Transversely Stiffened Steel I-Girders," Journal of Structural Engineering, ASCE, Vol. 134, No. 9, 1,437-1,449.

White, D.W. and Goverdhan, A.V. (2008), "Design of PR Frames Using the AISC Direct Analysis Method," in Connections in Steel Structures VI, R. Bjorhovde, F.S.K. Bijlaard and L.F. Geschwindner (eds.), AISC, Chicago, IL, pp. 255-264.

White, D.W., Sharma, A., Kim, Y.D. and Bishop, C.D. (2011), "Flange Stability Bracing Behavior in Metal Building Frame Systems," Research Report to Metal Building Manufacturers Association, Structural Engineering Mechanics and Materials Report No. 11-74, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 353 p.
Wilkinson, T. and Hancock, G.J. (1998), "Tests to Examine Compact Web Slenderness of Cold-Formed RHS," Journal of Structural Engineering, ASCE, Vol. 124, No. 10, pp. 1,166-1,174.

Wilkinson, T. and Hancock, G.J. (2002), "Predicting the Rotation Capacity of Cold-Formed RHS Beams Using Finite Element Analysis," Journal of Constructional Steel Research, Elsevier, Vol. 58, No. 11, pp. 1,455-1,471.
Wilson, W.M. (1934), "The Bearing Value of Rollers," Bulletin No. 263, University of Illinois Engineering Experiment Station, Urbana, IL.

Winter, G. (1947), "Strength of Thin Steel Compression Flanges," Transactions, ASCE, Vol. 112, p. 547.

Winter, G. (1958), "Lateral Bracing of Columns and Beams," Journal of the Structural Division, ASCE, Vol. 84, No. ST3, pp. 1,561-1-1,561-22.

Winter, G. (1960), "Lateral Bracing of Columns and Beams," Transactions, ASCE, Vol. 125, Part 1, pp. 809-825.

Winter, G. (1968), Commentary on the Specification for the Design of Cold-Formed Steel Members, AISI, Washington, DC.

Winter, G. (1970), Light Gage Cold-Formed Steel Design Manual: Commentary of the 1968 Edition, AISI, Washington, DC.

Wong, M.B. (2009), Plastic Analysis and Design of Steel Structures, Butterworth-Heinemann, Burlington, MA.

Wong, E. and Driver, R. (2010), Critical Evaluation of Equivalent Moment Factor Procedures for Laterally Unsupported Beams, Engineering Journal, AISC, Vol. 47, No. 1, pp. 1-20 and Closure, Vol. 47, No. 4, pp. 281-283.

Xie, M. and Chapman, J.C. (2003), "Design of Web Stiffeners: Axial Forces," Journal of Constructional Steel Research, Elsevier, Vol. 59, pp. 1,035-1,056.
Yam, M. and Cheng, J. (1990), "Fatigue Strength of Coped Steel Beams," Journal of Structural Engineering, Vol. 116, No. 9, pp. 2,447-2,463.

Yu, L. and Frank, K. (2009), "Shear Behavior of A325 and A490 High-Strength Bolts in Fire and Post-Fire," Engineering Journal, AISC, Vol. 46, No. 2, pp. 99-106.

Yuan, H. (1996), "The Resistances of Stud Shear Connectors with Profiled Sheeting," Ph.D. Dissertation, Department of Engineering, The University of Warwick, Coventry, England.

Yuan, Q., Swanson, J. and Rassati, G.A. (2004), "An Investigation of Hole Making Practices in the Fabrication of Structural Steel," Internal Report, Department of Civil and Environmental Engineering, University of Cincinnati, Cincinnati, OH.

Yura, J.A. (1971), "The Effective Length of Columns in Unbraced Frames," Engineering Journal, AISC, Vol. 8, No. 2, pp. 37-42.

Yura, J.A., Galambos, T.V. and Ravindra, K. (1978), "The Bending Resistance of Steel Beams," Journal of the Structural Division, ASCE, Vol. 104, No. ST9, pp. 1,355-1,370.

Yura, J.A., Birkemoe, P.C. and Ricles, J.M. (1982), "Beam Web Shear Connections: An Experimental Study," Journal of the Structural Division, ASCE, Vol. 108, No. ST2, pp. 311-326.

Yura, J., Phillips, B., Raju, S. and Webb, S. (1992), "Bracing of Steel Beams in Bridges," Research Report 1239-4F, Center for Transportation Research, University of Texas, Austin, TX, 80 p.

Yura, J.A. (1995), "Bracing for Stability—State-of-the-Art," Proceedings of the ASCE Structures Congress XIII, Boston, MA, ASCE, New York, NY, pp. 88-103.

Yura, J.A. (2001), "Fundamentals of Beam Bracing," Engineering Journal, AISC, Vol. 38, No.1, pp. 11-26.

Yura, J.A. and Helwig, T.A. (2010), "Buckling of Beams with Inflection Points," Proceedings, Annual Stability Conference, Orlando, FL, North American Steel Construction Conference, SSRC.

Zahn, C.J. and Haaijer, G. (1987), "Effect of Connector Spacing on Double Angle Compressive Strength," Materials and Member Behavior, Proceedings, Structures Congress, ASCE, Orlando, FL, pp. 199-212.

Zandonini, R. (1985), "Stability of Compact Built-Up Struts: Experimental Investigation and Numerical Simulation," Costruzioni Metalliche, No. 4.

Zhang, J., Denavit, M.D., Hajjar, J.F. and Lu, X. (2012), "Bond Behavior of Concrete-Filled Steel Tube (CFT) Structures," Engineering Journal, AISC, Vol. 49, No. 4, pp. 169-185. (Errata: Vol. 50, No. 3, pp. 201-203).

Zhao, B., Roosefid, M. and Vassart, O. (2008), "Full-scale Test of a Steel and Concrete Composite Floor Exposed to ISO Fire," Structures in Fire, Proceedings of the 5th International Conference, Singapore.

Zhao, H. and Leon, R.T. (2013), Elastic Load-Deflection Behavior of Simply-Supported Composite Beams, SEM Report 13/09, Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 95 p.

Ziemian, R.D, McGuire, W. and Deierlein, G. (1992), "Inelastic Limit States Design, Part I: Planar Frame Studies, and Part II: Three-Dimensional Frame Study," Journal of Structural Engineering, ASCE, Vol. 118, No. 9, pp. 2,532-2,567.

Ziemian, R.D. and Miller, A.R. (1997), "Inelastic Analysis and Design: Frames With Members in Minor-Axis Bending," Journal of Structural Engineering, ASCE, Vol. 123, No. 2, pp. 151-157.

Ziemian, R.D. and McGuire, W. (2002), "Modified Tangent Modulus Approach, A Contribution to Plastic Hinge Analysis," Journal of Structural Engineering, ASCE, Vol. 128, No. 10, pp. 1,301-1,307.

Ziemian, R.D., McGuire, W. and Seo, D.W. (2008), "On the Inelastic Strength of BeamColumns under Biaxial Bending," Proceedings-Annual Stability Conference, SSRC, Nashville, TN.

Ziemian, R.D. (ed.) (2010), Guide to Stability Design Criteria for Metal Structures, 6th Ed., John Wiley \& Sons, Inc., Hoboken, NJ.

Zona, A. and Ranzi, G. (2014), "Shear Connection Slip Demand in Composite Steel-Concrete Beams With Solid Slab," Journal of Constructional Steel Research, Elsevier, Vol. 102, pp. 266-281.

# Metric Conversion Factors for Common Steel Design Units Used in the AISC Specification 

Unit	Multiply	By	to Obtain
length	inch (in.)	25.4	millimeters (mm)
length	foot (ft)	0.3048	meters (m)
mass	pound-mass (lbm)	0.4536	kilogram (kg)
stress	ksi	6.895	megapascals (MPa), N/mm²
moment	kip-in	113000	$\mathrm{~N}-\mathrm{mm}$
energy	ft-lbf	1.356	joule (J)
force	kip (1000 lbf)	4448	newton (N)
force	psf	47.88	pascal (Pa), N/m²
force	plf	14.59	$\mathrm{~N} / \mathrm{m}$
temperature	To convert ${ }^{\circ} \mathrm{F} \mathrm{to}{ }^{\circ} \mathrm{C}: t_{c}{ }^{\circ}=\left(t_{f}{ }^{\circ}-32\right) / 1.8$		
force in lbf or $\mathrm{N}=$ mass $\times \mathrm{g}$   where $g$, acceleration due to gravity $=32.2 ~ f t / s e c^{2}$${ }^{2}=9.81 \mathrm{~m} / \mathrm{sec}^{2}$			

# Specification for Structural Joints Using High-Strength Bolts 

August 1, 2014

Supersedes the December 31, 2009 Specification for Structural Joints Using High-Strength Bolts.

Prepared by RCSC Committee A.1-Specifications and approved by the Research Council on Structural Connections.
www.boltcouncil.org
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS c/o AISC, One East Wacker Drive, Suite 700, Chicago, Illinois 60601

RCSC © 2014<br>by<br>Research Council on Structural Connections

All rights reserved. This book or any part thereof must not be reproduced in any form without the written permission of the publisher.

The information presented in this publication has been prepared in accordance with recognized engineering principles and is for general information only. While it is believed to be accurate, this information should not be used or relied upon for any specific application without competent professional examination and verification of its accuracy, suitability, and applicability by a licensed professional engineer, designer, or architect. The publication of the material contained herein is not intended as a representation or warranty on the part of the Research Council on Structural Connections or of any other person named herein, that this information is suitable for any general or particular use or of freedom from infringement of any patent or patents. Anyone making use of this information assumes all liability arising from such use.

Caution must be exercised when relying upon other specifications and codes developed by other bodies and incorporated by reference herein since such material may be modified or amended from time to time subsequent to the printing of this edition. The Institute bears no responsibility for such material other than to refer to it and incorporate it by reference at the time of the initial publication of this edition.

Printed in the United States of America

## PREFACE

The purpose of the Research Council on Structural Connections (RCSC) is:
(1) To stimulate and support such investigation as may be deemed necessary and valuable to determine the suitability, strength and behavior of various types of structural connections;
(2) To promote the knowledge of economical and efficient practices relating to such structural connections; and,
(3) To prepare and publish related specifications and such other documents as necessary to achieving its purpose.

The Council membership consists of qualified structural engineers from academic and research institutions, practicing design engineers, suppliers and manufacturers of fastener components, fabricators, erectors and code-writing authorities.

The first Specification approved by the Council, called the Specification for Assembly of Structural Joints Using High Tensile Steel Bolts, was published in January 1951. Since that time the Council has published seventeen successive editions. Each was developed through the deliberations and approval of the full Council membership and based upon past successful usage, advances in the state of knowledge and changes in engineering design practice. This edition of the Council's Specification for Structural Joints Using High-Strength Bolts continues the tradition of earlier editions. The major changes are:

- Appendix B provisions were incorporated directly into Section 5 of the Specification.
- Tolerances for the Turn-of- Nut method were adjusted.
- Glossary definitions for "pretension" were added.
- F1136 coating on F1852 and F2280 bolts was deleted from Table 2.1 in recognition that this coating has not been approved by ASTM for use on TC bolts.
- Slip critical equations in Section 5.4 were updated for consistent with the AISC Specification.
- Clarification language was provided for approval requirements for hole sizes other than standard holes.
- The snug-tightened joint definition was redefined back to the 2004 definition due to issues regarding turn-of-nut tension requirements.

In addition, typographical changes have been made throughout this Specification.

By the Research Council on Structural Connections,

Allen J. Harrold	Salim V. Brahimi	Joe Greeenslade
Chairman	Vice Chairman	Secretary/Treasurer
Toby Anderson	Lawrence Kruth	
Rick Babik	Geoffrey L. Kulak	
Rodney L. Baxter	Chad M. Larson	
Peter C. Birkemoe	Bill R. Lindley, II	
David W. Bogaty	Kenneth B. Lohr	
David Bornstein	Hussam N. Mahmoud	
Richard C. Brown	Curtis Mayes	
Bruce M. Butler	Carly McGee	
Garret O. Byrne	Jonathan C. McGormley	
Charles J. Carter	David L. McKenzie	
Helen H. Chen	Neil L. McMillan	
Robert J. Connor	Jinesh K. Mehta	
Bastiaan E. Cornelissen	Kevin Menke	
Chris Curven	Eugene R. Mitchell	
Nick E. Deal	Thomas M. Murray	
Jamie Deckard	Justin Ocel	
Dean G. Droddy	Aaron Prchlik	
Peter Dusicka	Gian A. Rassati	
Mattew R. Eatherton	James M. Ricles	
Douglas B. Ferrell	Thomas J. Schlafly	
John W. Fisher	Gerald E. Schroeder	
Patrick J. Fortney	Rachel Shanley	
Karl H. Frank	David F. Sharp	
Michael C. Friel	Robert E. Shaw, Jr.	
James B. Gialamas	Victor Shneur	
Rodney D. Gibble	W. Lee Shoemaker	
Bill Germuga	Jim Soma	
Jerome F. Hajjar	James A. Swanson	
Robert A. Hay III	Thomas S. Tarpy, Jr.	
Todd Helwig	William A. Thornton	
Paul Herbst	Raymond H.R. Tide	
Ian C. Hodgson	Brad Tinney	
Charles E. Hundley	Todd C. Ude	
Emmanuel P. Jefferson	Amit H. Varma	
Ronald B. Johnson	Floyd J. Vissat	
Charles J. Kanapicki	Charles J. Wilson	
Peter F. Kasper	Alfred F. Wong	
Daniel J. Kaufman	Joseph A. Yura	
James S. Kennedy		
Richard F. Knobloch		

## TABLE OF CONTENTS

Symbols ..... vii
Glossary ..... ix
Section 1. General Requirements ..... 1
1.1. Scope ..... 1
1.2. Loads, Load Factors and Load Combinations ..... 1
1.3. Design for Strength Using Load and Resistance Factor Design (LRFD) ..... 1
1.4. Design for Strength Using Allowable Strength Design (ASD) ..... 2
1.5. Referenced Standards and Specifications ..... 3
1.6. Drawing Information ..... 4
Section 2. Fastener Components ..... 5
2.1. Manufacturer Certification of Fastener Components ..... 5
2.2. Storage of Fastener Components ..... 5
2.3. Heavy-Hex Structural Bolts ..... 6
2.4. Heavy-Hex Nuts ..... 13
2.5. Washers ..... 14
2.6. Washer-Type Indicating Devices ..... 14
2.7. Twist-Off-Type Tension-Control Bolt Assemblies ..... 15
2.8. Alternative-Design Fasteners ..... 16
Section 3. Bolted Parts ..... 17
3.1. Connected Plies ..... 17
3.2. Faying Surfaces ..... 17
3.3. Bolt Holes ..... 21
3.4. Burrs ..... 25
Section 4. Joint Type ..... 26
4.1. Snug-Tightened Joints ..... 28
4.2. Pretensioned Joints ..... 29
4.3. Slip-Critical Joints ..... 29
Section 5. Limit States in Bolted Joints ..... 31
5.1. Nominal Shear and Tensile Strengths ..... 32
5.2. Combined Shear and Tension ..... 35
5.3. Nominal Bearing Strength at Bolt Holes ..... 36
5.4. Design Slip Resistance ..... 38
5.5. Tensile Fatigue ..... 42
Section 6. Use of Washers ..... 44
6.1. Snug-Tightened Joints ..... 44
6.2. Pretensioned Joints and Slip-Critical Joints ..... 44
Section 7. Pre-Installation Verification ..... 47
7.1. Tension Calibrator ..... 47
7.2. Required Testing ..... 49
Section 8. Installation ..... 51
8.1. Snug-Tightened Joints ..... 51
8.2. Pretensioned Joints and Slip-Critical Joints ..... 52
Section 9. Inspection ..... 60
9.1. Snug-Tightened Joints ..... 60
9.2. Pretensioned Joints ..... 60
9.3. Slip-Critical Joints ..... 63
Section 10. Arbitration ..... 64
Appendix A. Testing Method to Determine the Slip Coefficient for Coatings Used in Bolted Joints ..... 66
A1. General Provisions ..... 66
A2. Test Plates and Coating of the Specimens ..... 67
A3. Slip Tests ..... 70
A4. Tension Creep Tests ..... 74
References ..... 76
Index ..... 79

## SYMBOLS

The following symbols are used in this Specification.
$A_{b} \quad$ Cross-sectional area based upon the nominal diameter of bolt, in. ${ }^{2}$
$D \quad$ Slip probability factor as described in Section 5.4.2
$D_{u} \quad$ Multiplier that reflects the ratio of the mean installed bolt pretension to the specified minimum bolt pretension, $T_{m}$, as described in Section 5.4.1
$F_{n} \quad$ Nominal strength (per unit area), ksi
$F_{u} \quad$ Specified minimum tensile strength (per unit area), ksi
I Moment of inertia of the built-up member about the axis of buckling (see the Commentary to Section 5.4), in. ${ }^{4}$
$L \quad$ Total length of the built-up member (see the Commentary to Section 5.4), in.
$L_{s} \quad$ Length of a connection measured between extreme bolt hole centers parallel to the line of force (see Table 5.1), in.
$L_{c} \quad$ Clear distance, in the direction of load, between the edge of the hole and the edge of the adjacent hole or the edge of the material, in.
$N_{b} \quad$ Number of bolts in the joint
$P_{u} \quad$ Required strength in compression, kips; Axial compressive force in the built-up member (see the Commentary to Section 5.4), kips
$Q \quad$ First moment of area of one component about the axis of buckling of the built-up member (see the Commentary to Section 5.4), in. ${ }^{3}$
$R_{n} \quad$ Nominal strength, kips
$T \quad$ Applied service load in tension, kips
$T_{m} \quad$ Specified minimum bolt pretension (for pretensioned joints as specified in Table 8.1), kips
$T_{u} \quad$ Required strength in tension (factored tensile load), kips
16.2-viii
$V_{u} \quad$ Required strength in shear (factored shear load), kips
$d_{b} \quad$ Nominal diameter of bolt, in.
$t \quad$ Thickness of the connected material, in.
$t^{\prime} \quad$ Total thickness of fillers or shims (see Section 5.1), in.
$k_{s} \quad$ Slip coefficient for an individual specimen determined in accordance with Appendix A
$\phi \quad$ Resistance factor
$\phi R_{n} \quad$ Design strength, kips
$\mu \quad$ Mean slip coefficient

## GLOSSARY

The following terms are used in this Specification. Where used, they are italicized to alert the user that the term is defined in this Glossary.

Allowable Strength. Nominal strength, $R_{n}$, divided by the safety factor, $\Omega$.
Available Strength. Design Strength or Allowable Strength, as appropriate.

ASD Load. Load due to a load combination in the applicable building code intended for allowable strength design (allowable stress design).

Coated Faying Surface. A faying surface that has been primed, primed and painted or protected against corrosion, except by hot-dip galvanizing.

Connection. An assembly of one or more joints that is used to transmit forces between two or more members.

Contractor. The party or parties responsible to provide, prepare and assemble the fastener components and connected parts described in this Specification.

Design Strength. $\phi R_{n}$, the resistance provided by an element or connection; the product of the nominal strength, $R_{n}$, and the resistance factor $\phi$.

Engineer of Record. The party responsible for the design of the structure and for the approvals that are required in this Specification (see Section 1.6 and the corresponding Commentary).

Fastener Assembly. An assembly of fastener components that is supplied, tested and installed as a unit.

Faying Surface. The plane of contact between two plies of a joint.
Firm Contact. The condition that exists on a faying surface when the plies are solidly seated against each other, but not necessarily in continuous contact.

Galvanized Faying Surface. A faying surface that has been hot-dip galvanized.
Grip. The total thickness of the plies of a joint through which the bolt passes, exclusive of washers or direct-tension indicators.

Guide. The Guide to Design Criteria for Bolted and Riveted Joints, $2^{\text {nd }}$ Edition (Kulak et al., 1987).

## 16.2-x

High-Strength Bolt. An ASTM A325 or A490 bolt, an ASTM F1852 or F2280 twist-off-type tension-control bolt or an alternative-design fastener that meets the requirements in Section 2.8.

Inspector. The party responsible to ensure that the contractor has satisfied the provisions of this Specification in the work.

Joint. A bolted assembly with or without collateral materials that is used to join two structural elements.

Lot. In this Specification, the term lot shall be taken as that given in the ASTM Standard as follows:

Product	ASTM Standard	See Lot Definition   in ASTM Section
Conventional bolts	A 325	9.4
	A 490	11.4
Twist-off-type tension-   control bolt assemblies	F 1852	13.4
	F 2280	3.1 .1
Washers	A 563	9.2
Compressible-washer-type   direct tension indicators	F 436	9.2

LRFD Load. Load due to a load combination in the applicable building code intended for strength design (load and resistance factor design).

Manufacturer. The party or parties that produce the components of the fastener assembly.
Mean Slip Coefficient. $\mu$, the ratio of the frictional shear load at the faying surface to the total normal force when slip occurs.

Nominal Strength. The capacity of a structure or component to resist the effects of loads, as determined by computations using the specified material strengths and dimensions and equations derived from accepted principles of structural mechanics or by field tests or laboratory tests of scaled models, allowing for modeling effects and differences between laboratory and field conditions.

Pretension (noun). A level of tension achieved in a fastener assembly through its installation, as required for pretensioned and slip-critical joints.

Pretension (verb). The act of tightening a fastener assembly to a level required for pretensioned and slip-critical joints.

Pretensioned Joint. A joint that transmits shear and/or tensile loads in which the bolts have been installed in accordance with Section 8.2 to provide a pretension in the installed bolt.

Protected Storage. The continuous protection of fastener components in closed containers in a protected shelter as described in the Commentary to Section 2.2.

Prying Action. Lever action that exists in connections in which the line of application of the applied load is eccentric to the axis of the bolt, causing deformation of the fitting and an amplification of the axial tension in the bolt.

Required Strength. The load effect acting on an element or connection determined by structural analysis from the factored loads using the most appropriate critical load combination.

Routine Observation. Periodic monitoring of the work in progress.
Shear/Bearing Joint. A snug-tightened joint or pretensioned joint with bolts that transmit shear loads and for which the design criteria are based upon the shear strength of the bolts and the bearing strength of the connected materials.

Slip-Critical Joint. A joint that transmits shear loads or shear loads in combination with tensile loads in which the bolts have been installed in accordance with Section 8.2 to provide a pretension in the installed bolt (clamping force on the faying surfaces), and with faying surfaces that have been prepared to provide a calculable resistance against slip.

Snug-Tightened Joint. A joint in which the bolts have been installed in accordance with Section 8.1. The snug tightened condition is the tightness that is attained with a few impacts of an impact wrench or the full effort of an ironworker using an ordinary spud wrench to bring the plies into firm contact.

Start of Work. Any time prior to the installation of high-strength bolts in structural connections in accordance with Section 8.

Sufficient Thread Engagement. Having the end of the bolt extending beyond or at least flush with the outer face of the nut; a condition that develops the strength of the bolt.

Supplier. The party that sells the fastener components to the party that will install them in the work.

Tension Calibrator. A calibrated tension-indicating device that is used to verify the acceptability of the pretensioning method when a pretensioned joint or slip-critical joint is specified.
16.2-xii

Uncoated Faying Surface. A faying surface that has neither been primed, painted, nor galvanized and is free of loose scale, dirt and other foreign material.

## SPECIFICATION FOR STRUCTURAL JOINTS USING HIGH-STRENGTH BOLTS

## SECTION 1. GENERAL REQUIREMENTS

### 1.1. Scope

This Specification covers the design of bolted joints and the installation and inspection of the assemblies of fastener components listed in Section 1.5, the use of alternative-design fasteners as permitted in Section 2.8 and alternative washer-type indicating devices as permitted in Section 2.6.2, in structural steel joints. This Specification relates only to those aspects of the connected materials that bear upon the performance of the fastener components. The Symbols, Glossary and Appendices are a part of this Specification.

## Commentary:

This Specification deals principally with two strength grades of high-strength bolts, ASTM A325 and A490, and with their design, installation and inspection in structural steel joints. Equivalent fasteners, however, such as ASTM F1852 (equivalent to ASTM A325) and F2280 (equivalent to ASTM A490) twist-offtype tension-control bolt assemblies, are also covered. These provisions may not be relied upon for high-strength fasteners of other chemical composition, mechanical properties, or size. These provisions do not apply when material other than steel is included in the grip; nor are they applicable to anchor rods.

This Specification relates only to the performance of fasteners in structural steel joints and those few aspects of the connected material that affect this performance. Many other aspects of connection design and fabrication are of equal importance and must not be overlooked. For more general information on design and issues relating to high-strength bolting and the connected material, refer to current steel design textbooks and the Guide to Design Criteria for Bolted and Riveted Joints, $2^{\text {nd }}$ Edition (Kulak et al., 1987).

### 1.2. Loads, Load Factors and Load Combinations

The design and construction of the structure shall conform to either an applicable load and resistance factor design specification for steel structures or to an applicable allowable strength design specification for steel structures. Because factored load combinations account for the reduced probabilities of maximum loads acting concurrently, the design strengths given in this Specification shall not be increased.

### 1.3 Design for Strength Using Load and Resistance Factor Design (LRFD)

Design according to the provisions for load and resistance factor design (LRFD) satisfies the requirements of this Specification when the design strength of each
structural component or assemblage equals or exceeds the required strength determined on the basis of the LRFD load combinations.

Design shall be performed in accordance with Equation 1.1

$$
\begin{equation*}
R_{u} \leq \phi R_{n} \tag{Equation1.1}
\end{equation*}
$$

Where
$R_{u}=$ required strength using LRFD load combinations
$R_{n}=$ nominal strength
$\phi=$ resistance factor
$\phi R_{n}=$ design strength

### 1.4 Design for Strength Using Allowable Strength Design (ASD)

Design according to the provisions for allowable strength design (ASD) satisfies the requirements of this Specification when the design strength of each structural component or assemblage equals or exceeds the required strength determined on the basis of the ASD load combinations.

Design shall be performed in accordance with Equation 1.2

$$
\begin{equation*}
R_{a} \leq R_{n} / \Omega \tag{Equation1.2}
\end{equation*}
$$

Where
$R_{a}=$ required strength using ASD load combinations
$R_{n}=$ nominal strength
$\Omega=$ safety factor
$R_{n} / \Omega=$ allowable strength

## Commentary:

This Specification is written in a dual format covering both load and resistance factor design (LRFD) and allowable strength design (ASD). Both approaches provide a method of proportioning structural components such that no applicable limit state is exceeded when the structure is subject to all appropriate load combinations. When a structure or structural component ceases to fulfill the intended purpose in some way, it is said to have exceeded a limit state. Strength limit states concern maximum load-carrying capability, and are related to safety. Serviceability limit states are usually related to performance under normal service conditions, and usually are not related to strength or safety. The term "resistance" includes both strength limit states and serviceability limit states.

Although loads, load factors and load combinations are not explicitly specified in this Specification, the safety and resistance factors herein are based upon the loads, load factors and load combinations specified in ASCE 7. When the design is governed by other load criteria, the safety and resistance factors specified herein should be adjusted as appropriate.

### 1.5 Referenced Standards and Specifications

The following standards and specifications are referenced herein:

## American Institute of Steel Construction

Specification for Structural Steel Buildings, June 22, 2010

## American National Standards Institute

ANSI/ASME B18.2.6-10 Fasteners for Use in Structural Applications

## ASTM International

ASTM A123-13 Standard Specification for Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products
ASTM A194-14 Specification for Carbon and Alloy Steel Nuts for Bolts for High Pressure or High-Temperature Service, or Both
ASTM A325-14 Standard Specification for Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength
ASTM A490-12 Standard Specification for Heat-Treated Steel Structural Bolts, 150 ksi Minimum Tensile Strength
ASTM A563-07a(2014) Standard Specification for Carbon and Alloy Steel Nuts
ASTM B695-04(2009) Standard Specification for Coatings of Zinc Mechanically Deposited on Iron and Steel
ASTM F436-11 Standard Specification for Hardened Steel Washers
ASTM F959-13 Standard Specification for Compressible-Washer-Type Direct Tension Indicators for Use with Structural Fasteners
ASTM F1136-11 Standard Specification for Zinc/Aluminum Corrosion Protective Coatings for Fasteners
ASTM F1852-14 Standard Specification for "Twist Off" Type Tension Control Structural Bolt/Nut/Washer Assemblies, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength
ASTM F2280-14 Standard Specification for "Twist Off" Type Tension Control Structural Bolt/Nut/Washer Assemblies, Steel, Heat Treated, 150 ksi Minimum Tensile Strength
ASTM F2329-13 Standard Specification for Zinc Coating, Hot-Dip, Requirements for Application to Carbon and Alloy Steel Bolts, Screws, Washers, Nuts, and Special Threaded Fasteners

## American Society of Civil Engineers

ASCE 7-10 Minimum Design Loads for Buildings and Other Structures

## IFI: Industrial Fastener Institute

IFI 144 (2000) Test Evaluation Procedures for Coating Qualification Intended for Use on High-Strength Structural Bolts

# SSPC: The Society for Protective Coatings 

SSPC-PA2 (5/2012) Measurement of Dry Coating Thickness With Magnetic Gages

## Commentary:

Familiarity with the referenced AISC, ASCE, ASME, ASTM and SSPC specification requirements is necessary for the proper application of this Specification. The discussion of referenced specifications in this Commentary is limited to only a few frequently overlooked or misunderstood items.

### 1.6 Drawing Information

The Engineer of Record shall specify the following information in the contract documents:
(1) The ASTM designation and type (Section 2) of bolt to be used;
(2) The joint type (Section 4) and;
(3) The required class of slip resistance if slip-critical joints are specified (Section 4).

## Commentary:

A summary of the information that the Engineer of Record is required to provide in the contract documents is provided in this Section. The parenthetical reference after each listed item indicates the location of the actual requirement in this Specification. In addition, the approval of the Engineer of Record is required in this Specification in the following cases:
(1) For the reuse of non-galvanized ASTM A325 bolts (Section 2.3.3);
(2) For the use of alternative washer-type indicating devices that differ from those that meet the requirements of ASTM F959, including the corresponding installation and inspection requirements that are provided by the manufacturer (Section 2.6.2);
(3) For the use of alternative-design fasteners, including the corresponding installation and inspection requirements that are provided by the manufacturer (Section 2.8);
(4) For the use of faying-surface coatings in slip-critical joints that provide a mean slip coefficient determined per Appendix A, but differing from Class A or Class B (Section 3.2.2(b));
(5) For the use of thermal cutting of bolt holes produced free hand or for use in cyclically loaded joints(Section 3.3);
(6) For the use of oversized (Section 3.3.2), short-slotted (Section 3.3.3) or long slotted holes (Section 3.3.4) in lieu of standard holes;
(7) For the use of a value of $D_{u}$ other than 1.13 (Section 5.4).

## SECTION 2. FASTENER COMPONENTS

### 2.1. Manufacturer Certification of Fastener Components

Manufacturer certifications documenting conformance to the applicable specifications required in Sections 2.3 through 2.8 for all fastener components used in the fastener assemblies shall be available to the Engineer of Record and inspector prior to assembly or erection of structural steel.

## Commentary:

Certification by the manufacturer or supplier of high-strength bolts, nuts, washers and other components of the fastener assembly is required to ensure that the components to be used are identifiable and meet the requirements of the applicable ASTM Specifications.

### 2.2. $\quad$ Storage of Fastener Components

Fastener components shall be protected from dirt and moisture in closed containers at the site of installation. Only as many fastener components as are anticipated to be installed during the work shift shall be taken from protected storage. Fastener components that are not incorporated into the work shall be returned to protected storage at the end of the work shift. Fastener components shall not be cleaned or modified from the as-delivered condition.

Fastener components that accumulate rust or dirt shall not be incorporated into the work unless they are requalified as specified in Section 7. ASTM F1852 and F2280 twist-off-type tension-control bolt assemblies and alternative-design fasteners that meet the requirements in Section 2.8 shall not be relubricated, except by the manufacturer.

## Commentary:

Protected storage requirements are specified for high-strength bolts, nuts, washers and other fastener components with the intent that the condition of the components be maintained as nearly as possible to the as-manufactured condition until they are installed in the work. This involves:
(1) The storage of the fastener components in closed containers to protect from dirt and corrosion;
(2) The storage of the closed containers in a protected shelter;
(3) The removal of fastener components from protected storage only as necessary; and,
(4) The prompt return of unused fastener components to protected storage.

To facilitate manufacture, prevent corrosion and facilitate installation, the manufacturer may apply various coatings and oils that are present in the asmanufactured condition. As such, the condition of supplied fastener components or the fastener assembly should not be altered to make them unsuitable for pretensioned installation.

If fastener components become dirty, rusty, or otherwise have their asreceived condition altered, they may be unsuitable for pretensioned installation. It is also possible that a fastener assembly may not pass the preinstallation verification requirements of Section 7. Except for ASTM F1852 and F2280 twist-off-type tension-control bolt assemblies (Section 2.7) and some alternative-design fasteners (Section 2.8), fastener components can be cleaned and lubricated by the fabricator or the erector. Because the acceptability of their installation is dependent upon specific lubrication, ASTM F1852 and F2280 twist-off-type tension-control bolt assemblies and some alternativedesign fasteners are suitable only if the manufacturer lubricates them.

### 2.3. Heavy-Hex Structural Bolts

2.3.1. Specifications: Heavy-hex structural bolts shall meet the requirements of ASTM A325 or ASTM A490. The Engineer of Record shall specify the ASTM designation and type of bolt (see Table 2.1) to be used.
2.3.2. Geometry: Heavy-hex structural bolt dimensions shall meet the requirements of ANSI/ASME B18.2.6. The bolt length used shall be such that the end of the bolt extends beyond or is at least flush with the outer face of the nut when properly installed.
2.3.3 Reuse: ASTM A490 bolts, ASTM F1852 and F2280 twist-off-type tensioncontrol bolt assemblies, and galvanized or Zn/Al Inorganic coated ASTM A325 bolts shall not be reused. When approved by the Engineer of Record, black ASTM A325 bolts are permitted to be reused. Touching up or re-tightening bolts that may have been loosened by the installation of adjacent bolts shall not be considered to be a reuse.

## Commentary:

ASTM A325 and ASTM A490 currently provide for two types (according to metallurgical classification) of high-strength bolts, supplied in diameters from $1 / 2$ in. to $11 / 2$ in. inclusive. Type 1 covers medium carbon steel for ASTM A325 bolts and alloy steel for ASTM A490 bolts. Type 3 covers high-strength bolts that have improved atmospheric corrosion resistance and weathering characteristics. (Reference to Type 2 ASTM A325 and Type 2 A490 bolts, which appeared in previous editions of this Specification, has been removed following the removal of similar reference within the ASTM A325 and A490 Specifications). When the bolt type is not specified, either Type 1 or Type 3 may be supplied at the option of the manufacturer. Note that ASTM F1852 and ASTM F2280 twist-off-type tension-control bolt assemblies may be manufactured with a button head or hexagonal head; other requirements for these fastener assemblies are found in Section 2.7.

Table 2.1. Acceptable ASTM A563 Nut Grade and Finish
and ASTM F436 Washer Type and Finish

ASTM   Desig	Bolt Type	Bolt Finish ${ }^{\text {d }}$	ASTM A563 Nut Grade and Finish ${ }^{\text {d }}$	ASTM F436 Washer Type and Finish ${ }^{\text {a,d }}$
A325	1	Plain (uncoated)	C, C3, D, DH ${ }^{\text {c }}$ and DH3; plain	1; plain
		Galvanized	DH ${ }^{\text {c }}$; galvanized and lubricated	1; galvanized
		Zn/Al Inorganic, per ASTM F1136 Grade 3	DH ${ }^{\text {c }} ; \mathbf{Z n} / \mathrm{Al}$ Inorganic, per ASTM F1136 Grade 5	1; Zn/Al Inorganic, per ASTM F1136 Grade 3
	3	Plain	C3 and DH3; plain	3; plain
F1852	1	Plain (uncoated)	$\mathrm{C}, \mathrm{C} 3, \mathrm{DH}^{\mathrm{C}}$ and DH3; plain	1; plain ${ }^{\text {b }}$
		Mechanically Galvanized	$\mathrm{DH}^{\text {c }}$; mechanically galvanized and lubricated	1; mechanically galvanized
	3	Plain	C3 and DH3; plain	3; plain ${ }^{\text {b }}$
A490	1	Plain	$\mathrm{DH}^{\mathrm{c}}$ and DH3; plain	1; plain
		Zn/Al Inorganic, per ASTM F1136 Grade 3	DH ${ }^{\text {c }}$; Zn/Al Inorganic, per ASTM F1136 Grade 5	1; Zn/Al Inorganic, per ASTM F1136 Grade 3
	3	Plain	DH3; plain	3; plain
F2280	1	Plain	DH ${ }^{\text {c }}$ and DH3; plain	1; plain ${ }^{\text {b }}$
	3	Plain	DH3; plain	3; plain ${ }^{\text {b }}$
a Applicable only if washer is required in Section 6.   ${ }^{b}$ Required in all cases under nut per Section 6.   c The substitution of ASTM A194 grade 2 H nuts in place of ASTM A563 grade DH nuts is permitted.   d "Galvanized" as used in this table refers to hot-dip galvanizing in accordance with ASTM F2329 or mechanical galvanizing in accordance with ASTM B695.   e " $\mathrm{Zn} / \mathrm{Al}$ Inorganic" as used in this table refers to application of a $\mathrm{Zn} / \mathrm{Al}$ Corrosion Protective Coating in accordance with ASTM F1136 which has met all the requirements of IFI-144.				

Regular heavy-hex structural bolts and twist-off-type tension-control bolt assemblies are required by ASTM Specifications to be distinctively marked. Certain markings are mandatory. In addition to the mandatory markings, the manufacturer may apply additional distinguishing markings. The mandatory and sample optional markings are illustrated in Figure C-2.1.

ASTM Specifications permit the galvanizing of ASTM A325 bolts but not ASTM A490 bolts. Similarly, the application of zinc to ASTM A490 bolts by metallizing or mechanical coating is not permitted because the effect of mechanical galvanizing on embrittlement and delayed cracking of ASTM A490 bolts has not been fully investigated to date.
Bolt/Nut $\quad$ ASTM A325 bolt

1. XYZ represents the manufacturer's identification mark.
2. ASTM F1852 and ASTM F2280 twist-off-type tension-control bolt assemblies are also produced with a heavy-hex head that has similar markings.
Figure C-2.1. Required marks for acceptable bolt and nut assemblies.

An extensive investigation conducted in accordance with IFI-144 was completed in 2006 and presented to the ASTM F16 Committee on Fasteners (F16 Research Report RR: F16-1001). The investigation demonstrated that $\mathrm{Zn} / \mathrm{Al}$ Inorganic Coating, when applied per ASTM F1136 Grade 3 to ASTM A490 bolts, does not cause delayed cracking by internal hydrogen embrittlement, nor does it accelerate environmental hydrogen embrittlement by cathodic hydrogen absorption. It was determined that this is an acceptable finish to be used on Type 1 ASTM A325 and A490 bolts.

Although these bolts are typically not used in this manner, prior to embedding bolts coated with $\mathrm{Zn} / \mathrm{Al}$ Inorganic Coating in concrete, it should be confirmed that there is no negative impact (to the bolt or the concrete) caused by the reaction of the intended concrete mix and the aluminum in the coating.

Galvanized high-strength bolts and nuts must be considered as a manufactured fastener assembly. Insofar as the hot-dip galvanized bolt and nut assembly is concerned, four principal factors must be considered so that the provisions of this Specification are understood and properly applied. These are:
(1) The effect of the hot-dip galvanizing process on the mechanical properties of high-strength steels;
(2) The effect of over-tapping for hot-dip galvanized coatings on the nut stripping strength;
(3) The effect of galvanizing and lubrication on the torque required for pretensioning; and,
(4) Shipping requirements.

Birkemoe and Herrschaft (1970) showed that, in the as-galvanized condition, galvanizing increases the friction between the bolt and nut threads as well as the variability of the torque-induced pretension. A lower required torque and more consistent results are obtained if the nuts are lubricated. Thus, it is required in ASTM A325 that a galvanized bolt and lubricated galvanized or $\mathrm{Zn} / \mathrm{Al}$ Inorganic coated nut be assembled in a steel joint with an equivalently coated washer and tested by the supplier prior to shipment. This testing must show that the galvanized or $\mathrm{Zn} / \mathrm{Al}$ Inorganic coated nut with the lubricant provided may be rotated from the snug-tight condition well in excess of the rotation required for pretensioned installation without stripping. This requirement applies to hot-dip galvanized, mechanically galvanized, and $\mathrm{Zn} / \mathrm{Al}$ Inorganic coated fasteners. The above requirements clearly indicate that:
(1) Galvanized and $\mathrm{Zn} / \mathrm{Al}$ Inorganic coated high-strength bolts and nuts must be treated as a fastener assembly;
(2) The supplier must supply nuts that have been lubricated and tested with the supplied high-strength bolts;
(3) Nuts and high-strength bolts must be shipped together in the same shipping container; and,
(4) The purchase of galvanized high-strength bolts and galvanized nuts from separate suppliers is not in accordance with the intent of the ASTM Specifications because the control of over-tapping, the testing and application of lubricant and the supplier responsibility for the performance of the assembly would clearly not have been provided as required.

Because some of the lubricants used to meet the requirements of ASTM Specifications are water soluble, it is advisable that galvanized highstrength bolts and nuts be shipped and stored in plastic bags or in sealed wood or metal containers. Containers of fasteners with hot-wax-type lubricants should not be subjected to heat that would cause depletion or change in the properties of the lubricant.

Both the hot-dip galvanizing process (ASTM F2329) and the mechanical galvanizing process (ASTM B695) are recognized in ASTM A325. The effects of the two processes upon the performance characteristics and requirements for proper installation are distinctly different. Therefore, distinction between the two must be noted in the comments that follow. In accordance with ASTM A325, all threaded components of the fastener assembly must be galvanized by the same process and the supplier's option is limited to one process per item with no mixed processes in a lot. Mixing high-strength bolts that are galvanized by one process with nuts that are galvanized by the other may result in an unworkable assembly.

Steels in the 200 ksi and higher tensile-strength range are subject to embrittlement if hydrogen is permitted to remain in the steel and the steel is subjected to high tensile stress. The minimum tensile strength of ASTM A325 bolts is 105 ksi or 120 ksi , depending upon the diameter, and maximum hardness limits result in production tensile strengths well below the critical range. The maximum tensile strength for ASTM A490 bolts was set at 170 ksi to provide a little more than a ten-percent margin below 200 ksi. However, because manufacturers must target their production slightly higher than the required minimum, ASTM A490 bolts close to the critical range of tensile strength must be anticipated. For black high-strength bolts, this is not a cause for concern. However, if the bolt is hot-dip galvanized, delayed brittle fracture in service is a concern because of the possibility of the introduction of hydrogen during the pickling operation of the hot-dip galvanizing process and the subsequent "sealing-in" of the hydrogen by the zinc coating. There also exists the possibility of cathodic hydrogen absorption arising from the corrosion process in certain aggressive environments.

ASTM A325 and A490 bolts are manufactured to dimensions as specified in ANSI/ASME B18.2.6. The basic dimensions, as defined in Figure C-2.2, are shown in Table C-2.1.

Table C-2.1. Bolt and Nut Dimensions

Nominal Bolt Diameter, $d_{b}$, in.	Heavy-Hex Bolt Dimensions, in.			Heavy-Hex Nut Dims., in.	
	Width across flats, $F$	Height, $\boldsymbol{H}_{1}$	Thread Length, $T$	Width across flats, $W$	Height, $H_{2}$
1/2	7/8	5/16	1	7/8	${ }^{31} 64$
5/8	11/66	25/64	$11 / 4$	11/16	39/64
3/4	$11 / 4$	15/32	13/8	$11 / 4$	47/64
7/8	17/16	35/64	$11 / 2$	17/16	55/64
1	15/8	39/64	13/4	15/8	63/64
11/8	$113 / 16$	11/16	2	13/16	$1^{7 / 64}$
11/4	2	25/32	2	2	$1^{7 / 32}$
13/8	213/16	27/32	$21 / 4$	23/16	$1^{11 / 3}$
$11 / 2$	23/8	15/16	$21 / 4$	23/8	$1^{15 / 32}$

The principal geometric features of heavy-hex structural bolts that distinguish them from bolts for general application are the size of the head and the unthreaded body length. The head of the heavy-hex structural bolt is specified to be the same size as a heavy-hex nut of the same nominal diameter so that the ironworker may use the same wrench or socket either on the bolt head and/or on the nut. With the specific exception of fully threaded ASTM A325T bolts as discussed below, heavy-hex structural bolts have shorter threaded lengths than bolts for general applications. By making the body length of the bolt the control dimension, it has been possible to exclude the thread from all shear planes when desirable, except for the case of thin outside parts adjacent to the nut.


Figure C-2.2. Heavy-hex structural bolt and heavy-hex nut.

The shorter threaded lengths provided with heavy-hex structural bolts tend to minimize the threaded portion of the bolt within the grip. Accordingly, care must also be exercised to provide adequate threaded length between the nut and the bolt head to enable appropriate installation without jamming the nut on the thread run-out.

Depending upon the increments of supplied bolt lengths, the full thread may extend into the grip for an assembly without washers by as much as $3 / 8 \mathrm{in}$. for $1 / 2,5 / 8,3 / 4,7 / 8,11 / 4$, and $11 / 2$ in. diameter high-strength bolts and as much as $1 / 2$ in. for $1,11 / 8$, and $13 / 8$ in. diameter high-strength bolts. When the thickness of the ply closest to the nut is less than the $3 / 8$ in. or $1 / 2$ in. dimensions given above, it may still be possible to exclude the threads from the shear plane, when required, depending upon the specific combination of bolt length, grip and number of washers used under the nut (Carter, 1996). If necessary, the next increment of bolt length can be specified with ASTM F436 washers in sufficient number to both exclude the threads from the shear plane and ensure that the assembly can be installed with adequate threads included in the grip for proper installation.

At maximum accumulation of tolerances from all components in the fastener assembly, the thread run-out will cross the shear plane for the critical combination of bolt length and grip used to select the foregoing rules of thumb for ply thickness required to exclude the threads. This condition is not of concern, however, for two reasons. First, it is too unlikely that all component tolerances will accumulate at their maximum values to warrant consideration. Second, even if the maximum accumulation were to occur, the small reduction in shear strength due to the presence of the thread run-out (not a full thread) would be negligible.

There is an exception to the foregoing thread length requirements for ASTM A325 bolts, but not for ASTM A490 bolts, ASTM F1852 or ASTM F2280 twist-off-type tension-control bolt assemblies. Supplementary requirements in ASTM A325 permit the purchaser to specify a bolt that is threaded for the full length of the shank, when the bolt length is equal to or less than four times the nominal diameter. This exception is provided to increase economy through simplified ordering and inventory control in the fabrication and erection of some structures. It is particularly useful in those structures in which the strength of the connection is dependent upon the bearing strength of relatively thin connected material rather than the shear strength of the bolt, whether with threads in the shear plane or not. As required in ASTM A325, high-strength bolts ordered to such supplementary requirements must be marked with the symbol A325T.

To determine the required bolt length, the value shown in Table C-2.2 should be added to the grip (i.e., the total thickness of all connected material, exclusive of washers). For each ASTM F436 washer that is used, add $5 / 32$ in.; for each beveled washer, add $15 / 16 \mathrm{in}$. The tabulated values provide appropriate allowances for manufacturing tolerances and also provide sufficient thread

## Table C-2.2. Bolt Length Selection Increment

Nominal Bolt   Diameter, $\boldsymbol{d}_{b}$, in.	To Determine the   Required Bolt Length,   Add to Grip, in.
$1 / 2$	$11 / 16$
$5 / 8$	$7 / 8$
$3 / 4$	1
$7 / 8$	$11 / 8$
1	$11 / 4$
$11 / 8$	$11 / 2$
$11 / 4$	$15 / 8$
$11 / 8$	$13 / 4$

engagement with an installed heavy-hex nut. The length determined by the use of Table C- 2.2 should be adjusted to the nearest $1 / 4$-in. length increment ( $1 / 2-\mathrm{in}$. length increment for lengths exceeding 6 in.). A more extensive table for bolt length selection based upon these rules is available (Carter, 1996).

Pretensioned installation involves the inelastic elongation of the portion of the threaded length between the nut and the thread run-out. ASTM A490 bolts and galvanized ASTM A325 bolts possess sufficient ductility to undergo one pretensioned installation, but are not consistently ductile enough to undergo a second pretensioned installation. Black ASTM A325 bolts, however, possess sufficient ductility to undergo more than one pretensioned installation as suggested in the Guide (Kulak et al., 1987). As a simple rule of thumb, a black ASTM A325 bolt is suitable for reuse if the nut can be run up the threads by hand.

### 2.4. Heavy-Hex Nuts

2.4.1. Specifications: Heavy-hex nuts shall meet the requirements of ASTM A563. The grade and finish of such nuts shall be as given in Table 2.1.
2.4.2. Geometry: Heavy-hex nut dimensions shall meet the requirements of ANSI/ASME B18.2.6.

## Commentary:

Heavy-hex nuts are required by ASTM Specifications to be distinctively marked. Certain markings are mandatory. In addition to the mandatory markings, the manufacturer may apply additional distinguishing markings. The
mandatory markings and sample optional markings are illustrated in Figure C2.1.

Hot-dip galvanizing affects the stripping strength of the bolt-nut assembly because, to accommodate the relatively thick zinc coatings of nonuniform thickness on bolt threads, it is usual practice to hot-dip galvanize the blank nut and then to tap the nut over-size. This results in a reduction of thread engagement with a consequent reduction of the stripping strength. Only the stronger hardened nuts have adequate strength to meet ASTM thread strength requirements after over-tapping. Therefore, as specified in ASTM A325, only ASTM A563 grade DH are suitable for use as galvanized nuts. This requirement should not be overlooked if non-galvanized nuts are purchased and then sent to a local galvanizer for hot-dip galvanizing. Because the mechanical galvanizing process results in a more uniformly distributed and smooth zinc coating, nuts may be tapped over-size before galvanizing by an amount that is less than that required for the hot-dip process before galvanizing.

Despite the thin-film of the $\mathrm{Zn} / \mathrm{Al}$ Inorganic Coating, tapping the nuts over-size may be necessary. Similar to mechanical galvanizing, the process results in a comparatively uniform and evenly distributed coating.

In earlier editions, this Specification permitted the use of ASTM A194 grade 2 H nuts in the same finish as that permitted for ASTM A563 nuts in the following cases: with ASTM A325 Type 1 plain, Type 1 galvanized and Type 3 plain bolts and with ASTM A490 Type 1 plain bolts. Reference to ASTM A194 grade 2 H nuts has been removed following the removal of similar reference within the ASTM A325 and A490 Specifications. However, it should be noted that ASTM A194 grade 2 H nuts remain acceptable in these applications as indicated by footnote in Table 2.1, should they be available.

ASTM A563 nuts are manufactured to dimensions as specified in ANSI/ASME B18.2.6. The basic dimensions, as defined in Figure C-2.2, are shown in Table C-2.1

### 2.5. Washers

Flat circular washers and square or rectangular beveled washers shall meet the requirements of ASTM F436, except as provided in Table 6.1. The type and finish of such washers shall be as given in Table 2.1.
2.6. Washer-Type Indicating Devices

The use of washer-type indicating devices is permitted as described in Sections 2.6.1 and 2.6.2.
2.6.1. Compressible-Washer-Type Direct Tension Indicators: Compressible-washertype direct tension indicators shall meet the requirements of ASTM F959.
2.6.2. Alternative Washer-Type Indicating Devices: When approved by the Engineer of Record, the use of alternative washer-type indicating devices that differ from those that meet the requirements of ASTM F959 is permitted.

Detailed installation instructions shall be prepared by the manufacturer in a supplemental specification that is approved by the Engineer of Record and shall provide for:
(1) The required character and frequency of pre-installation verification;
(2) The alignment of bolt holes to permit insertion of the bolt without undue damage to the threads;
(3) The placement of fastener assemblies in all types and sizes of holes, including placement and orientation of the alternative and regular washers;
(4) The systematic assembly of the joint, progressing from the most rigid part of the joint until the connected plies are in firm contact; and,
(5) The subsequent systematic pretensioning of all bolts in the joint, progressing from the most rigid part of the joint in a manner that will minimize relaxation of previously pretensioned bolts.

Detailed inspection instructions shall be prepared by the manufacturer in a supplemental specification that is approved by the Engineer of Record and shall provide for:
(1) Observation of the required pre-installation verification testing; and,
(2) Subsequent routine observation to ensure the proper use of the alternative washer-type indicating device.

### 2.7. Twist-Off-Type Tension-Control Bolt Assemblies

2.7.1. Specifications: Twist-off-type tension-control bolt assemblies shall meet the requirements of ASTM F1852 or F2280. The Engineer of Record shall specify the type of bolt (Table 2.1) to be used.
2.7.2. Geometry: Twist-off-type tension-control bolt assembly dimensions shall meet the requirements of ASTM F1852 or ASTM F2280. The bolt length used shall be such that the end of the bolt extends beyond or is at least flush with the outer face of the nut when properly installed.

## Commentary:

It is the policy of the Research Council on Structural Connections to directly recognize only those fastener components that are manufactured to meet the requirements in an approved ASTM specification. Prior to this edition, the RCSC Specification provided for the use of ASTM A325 and A490 bolts, and F1852 twist-off-type tension-control bolt assemblies directly and alternativedesign fasteners meeting detailed requirements similar to those in Section 2.8 when approved by the Engineer of Record. With this edition, ASTM F2280 twist-off-type tension-control bolt assemblies are now recognized directly. Essentially, ASTM F2280 relates an ASTM A490-equivalent product to a specific method of installation that is suitable for use in all joint types as described in Section 8. Provision has also been retained for approval by the

Engineer of Record of other alternative-design fasteners that meet the detailed requirements in Section 2.8.

If galvanized, ASTM F1852 twist-off-type tension-control bolt assemblies are required in ASTM F1852 to be mechanically galvanized.

### 2.8. Alternative-Design Fasteners

When approved by the Engineer of Record, the use of alternative-design fasteners is permitted if they:
(1) Meet the materials, manufacturing and chemical composition requirements of ASTM A325 or ASTM A490, as applicable;
(2) Meet the mechanical property requirements of ASTM A325 or ASTM A490 in full-size tests;
(3) Have a body diameter and bearing area under the bolt head and nut that is equal to or greater than those provided by a bolt and nut of the same nominal dimensions specified in Sections 2.3 and 2.4; and,
(4) Are supplied and used in the work as a fastener assembly.

Such alternative-design fasteners are permitted to differ in other dimensions from those of the specified high-strength bolts and nuts.

Detailed installation instructions shall be prepared by the manufacturer in a supplemental specification that is approved by the Engineer of Record and shall provide for:
(1) The required character and frequency of pre-installation verification;
(2) The alignment of bolt holes to permit insertion of the alternative-design fastener without undue damage;
(3) The placement of fastener assemblies in all holes, including any washer requirements as appropriate;
(4) The systematic assembly of the joint, progressing from the most rigid part of the joint until the connected plies are in firm contact; and,
(5) The subsequent systematic pretensioning of all fastener assemblies in the joint, progressing from the most rigid part of the joint in a manner that will minimize relaxation of previously pretensioned bolts.

Detailed inspection instructions shall be prepared by the manufacturer in a supplemental specification that is approved by the Engineer of Record and shall provide for:
(1) Observation of the required pre-installation verification testing; and,
(2) Subsequent routine observation to ensure the proper use of the alternative-design fastener.

## SECTION 3. BOLTED PARTS

### 3.1. Connected Plies

All connected plies that are within the grip of the bolt and any materials that are used under the head or nut shall be steel with faying surfaces that are uncoated, coated or galvanized as defined in Section 3.2. Compressible materials shall not be placed within the grip of the bolt. The slope of the surfaces of parts in contact with the bolt head and nut shall be equal to or less than $1: 20$ with respect to a plane that is normal to the bolt axis.

## Commentary:

The presence of gaskets, insulation or any compressible materials other than the specified coatings within the grip would preclude the development and/or retention of the installed pretensions in the bolts, when required.

ASTM A325, A490, F1852, and F2280 bolt assemblies are ductile enough to deform to a surface with a slope that is less than or equal to $1: 20$ with respect to a plane normal to the bolt axis. Greater slopes are undesirable because the resultant localized bending decreases both the strength and the ductility of the bolt.

### 3.2. Faying Surfaces

Faying surfaces and surfaces adjacent to the bolt head and nut shall be free of dirt and other foreign material. Additionally, faying surfaces shall meet the requirements in Sections 3.2.1 or 3.2.2.
3.2.1. Snug-Tightened Joints and Pretensioned Joints: The faying surfaces of snugtightened joints and pretensioned joints as defined in Sections 4.1 and 4.2 are permitted to be uncoated, coated with coatings of any formulation or galvanized.

## Commentary:

In both snug-tightened joints and pretensioned joints, the ultimate strength is dependent upon shear transmitted by the bolts and bearing of the bolts against the connected material. It is independent of any frictional resistance that may exist on the faying surfaces. Consequently, since slip resistance is not an issue, the faying surfaces are permitted to be uncoated, coated, or galvanized without regard to the resulting slip coefficient obtained.

For pretensioned joints, caution should be used in the specification and application of thick coatings within the faying surface. Although slip resistance is not required, fastener assemblies in joints with thick or multi-layer coatings may exhibit significant loss of pretension because of compressive creep in softer coatings such as epoxies, alkyds, vinyls, acrylics, and urethanes. Previous bolt relaxation studies have been conducted using uncoated steel with black bolts or galvanized steel with galvanized bolts. Galvanized surfaces ranged up to approximately 4 mils of thickness, of which approximately half the thickness
was the compressible soft pure zinc surface layer. The underlying zinc-iron layers are very hard and would exhibit little creep. See Guide, Section 4.4. Tests have indicated that significant bolt pretension may be lost when the total coating thickness within the joint approaches 15 mils per surface, and that surface coatings beneath the bolt head and nut can contribute to additional reduction in pretension.
3.2.2 Slip-Critical Joints: The faying surfaces of slip-critical joints as defined in Section 4.3, including those of filler plates and finger shims, shall meet the following requirements:
(1) Uncoated Faying Surfaces: Uncoated faying surfaces shall be free of scale, except tight mill scale, and free of coatings, including inadvertent overspray, in areas closer than one bolt diameter but not less than 1 in . from the edge of any hole and in all areas within the bolt pattern or shall be blast cleaned (Class B).
(2) Coated Faying Surfaces: Coated faying surfaces shall first be blast cleaned and subsequently coated with a coating that is qualified in accordance with the requirements in Appendix A as a Class A or Class B coating as defined in Section 5.4. Alternatively, when approved by the Engineer of Record, coatings that provide a mean slip coefficient that differs from Class A or Class B are permitted when:
(i) The mean slip coefficient $\mu$ is established by testing in accordance with the requirements in Appendix A; and,
(ii) The design slip resistance is determined in accordance with Section 5.4 using this coefficient, except that, for design purposes, a value of $\mu$ greater than 0.50 shall not be used.

The plies of slip-critical joints with coated faying surfaces shall not be assembled before the coating has cured for the minimum time that was used in the qualifying tests.
(3) Galvanized Faying Surfaces: Galvanized faying surfaces shall first be hot dip galvanized in accordance with the requirements of ASTM A123 and subsequently roughened by means of hand wire brushing. Power wire brushing is not permitted. When prepared by roughening, the galvanized faying surface is designated as Class C for design.

## Commentary:

Slip-critical joints are those joints that have specified faying surface conditions that, in the presence of the clamping force provided by pretensioned fasteners, resist a design load solely by friction and without displacement at the faying
surfaces. Consequently, it is necessary to prepare the faying surfaces in a manner so that the desired slip performance is achieved.

Clean mill scale steel surfaces (Class A, see Section 5.4.1) and blastcleaned steel surfaces (Class B, see Section 5.4.1) can be used within slipcritical joints. When used, it is necessary to keep the faying surfaces free of coatings, including inadvertent overspray.

Corrosion often occurs on uncoated blast-cleaned steel surfaces (Class B, see Section 5.4.1) due to exposure between the time of fabrication and subsequent erection. In normal atmospheric exposures, this corrosion is not detrimental and may actually increase the slip resistance of the joint. Yura et al. (1981) found that the Class B slip coefficient could be maintained for up to one year prior to joint assembly.

Polyzois and Frank (1986) demonstrated that, for plate material with thickness in the range of $3 / 8$ in. to $3 / 4$ in., the contact pressure caused by bolt pretension is concentrated on the faying surfaces in annular rings around and close to the bolts. In this study, unqualified paint on the faying surfaces away from the edge of the bolt hole by not less than 1 in . nor the bolt diameter did not reduce the slip resistance. However, this would not likely be the case for joints involving thicker material, particularly those with a large number of bolts on multiple gage lines; the Table 8.1 minimum bolt pretension might not be adequate to completely flatten and pull thicker material into tight contact around every bolt. Instead, the bolt pretension would be balanced by contact pressure on the regions of the faying surfaces that are in contact. To account for both possibilities, it is required in this Specification that all areas between the bolts be free of coatings, including overspray, as illustrated in Figure C-3.1.

As a practical matter, the smaller coating-free area can be laid out and protected more easily using masking located relative to the bolt-hole pattern than relative to the limits of the complete area of faying surface contact with varying and uncertain edge distance. Furthermore, the narrow coating strip around the perimeter of the faying surface minimizes the required field touch-up of uncoated material outside of the joint.

Polyzois and Frank (1986) also investigated the effect of various degrees of inadvertent overspray on slip resistance. It was found that even a small amount of overspray of unqualified paint (that is, not qualified as a Class A or Class B coating) within the specified coating-free area on clean mill scale can reduce the slip resistance significantly. On blast-cleaned surfaces, however, the presence of a small amount of overspray was not as detrimental. For simplicity, this Specification requires that all overspray be prohibited from areas that are required to be free of coatings in slip-critical joints regardless of whether the surface is clean mill scale steel or blast-cleaned steel.

In the 1980 edition of this Specification, generic names for coatings applied to faying surfaces were the basis for categories of allowable working stresses in slip-critical (friction) joints. Frank and Yura (1981) demonstrated that the slip coefficients for coatings described by a generic type are not unique values for a given generic coating description or product, but rather depend also
upon the type of vehicle used. Small differences in formulation from manufacturer to manufacturer or from lot to lot with a single manufacturer can significantly affect slip coefficients if certain essential variables within a generic type are changed. Consequently, it is unrealistic to assign coatings to categories with relatively small incremental differences between categories based solely upon a generic description.


Figure C-3.1. Faying surfaces of slip-critical connections painted with unqualified paints.

When the faying surfaces of a slip-critical joint are to be protected against corrosion, a qualified coating must be used. A qualified coating is one that has been tested in accordance with Appendix A, the sole basis for qualification of any coating to be used in conjunction with this Specification. Coatings can be qualified as follows:
(1) As a Class A coating as defined in Section 5.4;
(2) As a Class B coating as defined in Section 5.4; or,
(3) As a coating with a mean slip coefficient $\mu$ of 0.30 (Class A) but not greater than 0.50 (Class B).

Requalification is required if any essential variable associated with surface preparation, paint manufacture, application method or curing requirements is changed. See Appendix A.

For slip-critical joints, coating testing as prescribed in Appendix A includes creep tests, which incorporate relaxation in the fastener and the effect of the coating itself. Users should verify the coating thicknesses used in the Appendix A testing and ensure that the actual coating thickness does not exceed that tested. See Appendix A, Commentary to Section A3.

Frank and Yura (1981) also investigated the effect of varying the time between coating the faying surfaces and assembly of the joint and pretensioning the bolts in order to ascertain if partially cured paint continued to cure within the assembled joint over a period of time. The results indicated that all curing effectively ceased at the time the joint was assembled and paint that was not fully cured at that time acted as a lubricant. The slip resistance of a joint that was assembled after a time less than the curing time used in the qualifying tests was severely reduced. Thus, the curing time prior to mating the faying surfaces is an essential parameter to be specified and controlled during construction.

The mean slip coefficient for clean hot-dip galvanized surfaces is on the order of 0.19 as compared with a factor of about 0.33 for clean mill scale. Birkemoe and Herrschaft (1970) showed that this mean slip coefficient can be significantly improved by treatments such as hand wire brushing or light "brush-off" grit blasting. In either case, the treatment must be controlled to achieve visible roughening or scoring. Power wire brushing is unsatisfactory because it may polish rather than roughen the surface, or remove the coating.

Field experience and test results have indicated that galvanized assemblies may continue to slip under sustained loading (Kulak et al., 1987; pp. 198-208). Tests of hot-dip galvanized joints subjected to sustained loading show a creep-type behavior that was not observed in short-duration or fatigue-type load application. See also the Commentary to Appendix A.

### 3.3. Bolt Holes

The nominal dimensions of standard, oversized, short-slotted and long-slotted holes for high-strength bolts shall be equal to or less than those shown in Table 3.1. Holes larger than those shown in Table 3.1 are permitted when specified or
approved by the Engineer of Record. When complete connection design is not shown in the structural design drawings, the Engineer of Record shall be notified of the type and dimensions of holes to be used. Oversized holes, short slots not perpendicular to the applied load and long slots in any direction shall be subject to approval by the Engineer of Record. Any restrictions on the use of hole types permitted in Sections 3.3.1, 3.3.2, 3.3.3 and 3.3.4 shall be specified in the design documents.

Thermally cut holes produced by mechanically guided means are permitted in statically loaded joints. The surface roughness profile of the hole shall not exceed 1,000 microinches as defined in ASME B46.1. Occasional gouges not more than $1 / 16 \mathrm{in}$. in depth are permitted. Thermally cut holes produced free hand shall be permitted in statically loaded joints if approved by the Engineer of Record. For cyclically loaded joints, thermally cut holes shall be permitted if approved by the Engineer of Record.

## Commentary:

The footnotes in Table 3.1 provide for slight variations in the dimensions of bolt holes from the nominal dimensions. When the dimensions of bolt holes are such that they exceed these permitted variations, the bolt hole must be treated as the next larger type.

Slots longer than standard long slots may be required to accommodate construction tolerances or expansion joints. Larger oversized holes may be necessary to accommodate construction tolerances or misalignments. In the latter two cases, the Specification provides no guidance for further reduction of design strengths or allowable loads. Engineering design considerations should include, as a minimum, the effects of edge distance, net section, reduction in clamping force in slip-critical joints, washer requirements, bearing capacity, and hole deformation.

For thermally cut holes produced free hand, it is usually necessary to grind the hole surface after thermal cutting in order to achieve a maximum surface roughness profile of 1,000 microinches.

Slotted holes in statically loaded joints are often produced by punching or drilling the hole ends and thermally cutting the sides of the slots by mechanically guided means. The sides of such slots should be ground smooth, particularly at the junctures of the thermal cuts to the hole ends.

For cyclically loaded joints, test results have indicated that when no major slip occurs in the joint, fretting fatigue failure usually occurs in the gross section prior to fatigue failure in the net section (Kulak et al., 1987, pp. 116, 117). Conversely, when slip occurs in the joints of cyclically loaded connections, failure usually occurs in the net section and the edge of a bolt hole becomes the point of crack initiation (Kulak et al., 1987, pp. 118). Therefore, for cyclically loaded joints designed as slip critical, the method used to produce bolt holes (either thermal cutting or drilling) should not influence the ultimate failure load, as failure usually occurs in the gross section when no major slip occurs.
3.3.1. Standard Holes: Standard holes are permitted to be used in all plies of bolted joints.

Table 3.1. Nominal Bolt Hole Dimensions

Nominal   Bolt   Diameter,   $\boldsymbol{d}_{b}$, in.	Nominal Bolt Hole Dimensions ${ }^{\text {a,b }}$, in.      (diameter)			
	Oversized   (diameter)	Short-slotted   (width $\times$ length)	Long-slotted   (width $\times$ length)	
$5 / 8$	$9 / 16$	$5 / 8$	$9 / 16 \times 11 / 16$	$9 / 16 \times 11 / 4$
$3 / 4$	$11 / 16$	$13 / 16$	$11 / 16 \times 7 / 8$	$11 / 16 \times 19 / 16$
$7 / 8$	$15 / 16$	$11 / 16$	$3 / 16 \times 1$	$13 / 16 \times 17 / 8$
$\mathbf{1}$	$11 / 16$	$11 / 4$	$5 / 16 \times 11 / 8$	$15 / 16 \times 23 / 16$
$\geq 11 / 8$	$d_{b}+1 / 16$	$d_{b}+5 / 16$	$\left(d_{b}+1 / 16\right) \times\left(d_{b}+3 / 8\right)$	$\left(d_{b}+1 / 16\right) \times\left(2.5 d_{b}\right)$

${ }^{\text {a }}$ The upper tolerance on the tabulated nominal dimensions shall not exceed $1 / 32$ in. Exception: In the width of slotted holes, gouges not more than $1 / 16$ in. deep are permitted.
b The slightly conical hole that naturally results from punching operations with properly matched punches and dies is acceptable.

## Commentary:

The use of bolt holes $1 / 16 \mathrm{in}$. larger than the bolt installed in them has been permitted since the first publication of this Specification. Allen and Fisher (1968) showed that larger holes could be permitted for high-strength bolts without adversely affecting the bolt shear or member bearing strength. However, the slip resistance can be reduced by the failure to achieve adequate pretension initially or by the relaxation of the bolt pretension as the highly compressed material yields at the edge of the hole or slot.
3.3.2. Oversized Holes: When approved by the Engineer of Record, oversized holes are permitted in any or all plies of slip-critical joints as defined in Section 4.3.

## Commentary:

The provisions for oversized holes in this Specification are based upon the findings of Allen and Fisher (1968) and the additional concern for the consequences of a slip of significant magnitude that can occur as permitted by the oversized hole.
3.3.3. Short-Slotted Holes: Short-slotted holes are permitted in any one ply at each faying surface of snug-tightened joints as defined in Section 4.1, pretensioned joints as defined in Section 4.2 and slip critical joints as defined in Section 4.3,
provided the applied load is approximately perpendicular (between 80 and 100 degrees) to the axis of the slot. When complete connection design is not shown in the structural design drawings, the Engineer of Record shall be notified when short-slotted holes are used in this manner. When approved by the Engineer of Record, short-slotted holes are permitted in more than one or all plies snug tightened joints as defined in Section 4.1 and pretensioned joints as defined in Section 4.2 provided the applied load is approximately perpendicular (between 80 and 100 degrees) to the axis of the slot and in any or all plies of slip-critical joints as defined in Section 4.3 without regard for the direction of the applied load.

## Commentary:

For beam end connections, the use of short-slotted holes approximately perpendicular to the applied load in conjunction with snug tight bolts can provide the shear capacity and may allow the beam to rotate consistent with the design assumptions. Deformation of connections can be a concern where the beam is not laterally or torsionally restrained by floor, roof or other framing.

Short slots are used to account for minor adjustments in main members such as web thickness differences and member length. This practice is prevalent enough that this specification recognizes it and permits it unless it is specifically prohibited by the Engineer of Record in the design documents. This specification requires the Engineer of Record to be notified of the hole types and dimensions by showing this information on shop detail drawings or by obtaining prior approval of the Engineer of Record.

The provision of limiting the use of short slotted holes to one ply with snug tight bolts is to avoid the use of short slotted holes in opposing plies of a faying surface. The use of short slotted holes with snug tight bolts in connections with multiple plies that do not share a faying surface is still permitted. An example that would be permitted with multiple plies includes beam end connections on opposing sides of a column web.
3.3.4. Long-Slotted Holes: When approved by the Engineer of Record, long-slotted holes are permitted in only one ply at any individual faying surface of snugtightened joints as defined in Section 4.1, and pretensioned joints as defined in Section 4.2, provided the applied load is approximately perpendicular (between 80 and 100 degrees) to the axis of the slot. When approved by the Engineer of Record, long-slotted holes are permitted in one ply only at any individual faying surface of slip-critical joints as defined in Section 4.3 without regard for the direction of the applied load. Fully inserted finger shims between the faying surfaces of load-transmitting elements of bolted joints are not considered a long-slotted element of a joint; nor are they considered to be a ply at any individual faying surface. However, finger shims must have the same faying surface as the rest of the plies.

## Commentary:

See the Commentary to Section 3.3.1.
Finger shims are devices that are often used to permit the alignment and plumbing of structures. When these devices are fully and properly inserted, they do not have the same effect on bolt pretension relaxation or the connection performance, as do long-slotted holes in an outer ply. When fully inserted, the shim provides support around approximately 75 percent of the perimeter of the bolt in contrast to the greatly reduced area that exists with a bolt that is centered in a long slot. Furthermore, finger shims are always enclosed on both sides by the connected material, which should be effective in bridging the space between the fingers.

### 3.4. Burrs

Burrs less than or equal to $1 / 16 \mathrm{in}$. in height are permitted to remain on faying surfaces of all joints. Burrs larger than $1 / 16 \mathrm{in}$. in height shall be removed or reduced to $1 / 16 \mathrm{in}$. or less from the faying surfaces of all joints.

## Commentary:

Polyzois and Yura (1985) and McKinney and Zwerneman (1993) demonstrated that the slip resistance of joints was either unchanged or slightly improved by the presence of burrs. Therefore, small ( $1 / 16 \mathrm{in}$. or less) burrs need not be removed. On the other hand, parallel tests in the same program demonstrated that large burrs (over $1 / 16 \mathrm{in}$.) could cause a small increase in the required nut rotation from the snug-tight condition to achieve the specified pretension with the turn-of-nut pretensioning method. Therefore, the Specification requires that all large burrs be removed or reduced in height.

Note that prior to pretensioning, the snug-tightening procedure is required to bring the plies into firm contact. If firm contact has not been achieved after snugging due to the presence of burrs, additional snugging is required to flatten the burrs, bringing the plies into firm contact.

## SECTION 4. JOINT TYPE

For joints with fasteners that are loaded in shear or combined shear and tension, the Engineer of Record shall specify the joint type in the contract documents as snugtightened, pretensioned or slip-critical. For slip-critical joints, the required class of slip resistance in accordance with Section 5.4 shall also be specified. For joints with fasteners that are loaded in tension only, the Engineer of Record shall specify the joint type in the contract documents as snug-tightened or pretensioned. Table 4.1 summarizes the applications and requirements of the three joint types.

Table 4.1. Summary of Applications and Requirements for Bolted Joints

Load Transfer	Application	Joint   Type	Faying Surface Prep.?	Install per Section	Inspect per Section	$\begin{gathered} \text { Arbitrate } \\ \text { per Section } \\ 10 ? \end{gathered}$
Shear only	Resistance to shear load by shear/bearing	ST	No	8.1	9.1	No
	Resistance to shear by shear/bearing. Bolt pretension is required, but for reasons other than slip resistance.	PT	No	8.2	9.2	No
	Shear-load resistance by friction on faying surfaces is required.	SC	Yes ${ }^{\text {d }}$	8.2	9.3	If req'd to resolve dispute
Combined shear and tension	Resistance to shear load by shear/bearing. Tension load is static only.	ST	No	8.1	9.1	No
	Resistance to shear by shear/bearing. Bolt pretension is required, but for reasons other than slip resistance.	PT	No	8.2	9.2	If req'd to resolve dispute
	Shear-load resistance by friction on faying surfaces is required.	SC	Yes ${ }^{\text {d }}$	8.2	9.3	If req'd to resolve dispute
Tension only	Static loading only. ${ }^{\text {c }}$	ST	No	8.1	9.1	No
	All other conditions of tensiononly loading.	PT	No	8.2	9.2	If req'd to resolve dispute
a Under Joint Type: ST = snug-tightened, PT = pretensioned and SC = slip-critical; See Section 4.   b See Sections 4 and 5 for the design requirements for each joint type.   c Per Section 4.2, the use of ASTM A490 or F2280 bolts in snug-tightened joints with tensile loads is not permitted.						

## Commentary:

When first approved by the Research Council on Structural Connections, in January, 1951, the "Specification for Assembly of Structural Joints Using High-Strength Bolts" merely permitted the substitution of a like number of ASTM A325 bolts for hot driven ASTM A141 ${ }^{1}$ steel rivets of the same nominal diameter. Additionally, it was required that all bolts be pretensioned and that all faying surfaces be free of paint; hence, satisfying the requirements for a slip-critical joint by the present-day definition. As revised in 1954, the omission of paint was required to apply only to "joints subject to stress reversal, impact or vibration, or to cases where stress redistribution due to joint slippage would be undesirable." This relaxation of the earlier provision recognized the fact that, in many applications, movement of the connected parts that brings the bolts into bearing against the sides of their holes is in no way detrimental. Bolted joints were then designated as "bearing type," "friction type," or "direct tension." With the 1985 edition of this Specification, these designations were changed to "shear/bearing," "slip-critical," and "direct tension," respectively, and snug-tightened installation was permitted for many shear/bearing joints. Snug-tightened joints are also permitted for qualified applications involving ASTM A325 bolts in direct tension.

If non-pretensioned bolts are used in the type of joint that places the bolts in shear, load is transferred by shear in the bolts and bearing stress in the connected material. At the ultimate limit state, failure will occur by shear failure of the bolts, by bearing failure of the connected material or by failure of the member itself. On the other hand, if pretensioned bolts are used in such a joint, the frictional force that develops between the connected plies will initially transfer the load. Until the frictional force is exceeded, there is no shear in the bolts and no bearing stress in the connected components. Further increase of load places the bolts into shear and against the connected material in bearing, just as was the case when non-pretensioned bolts were used. Since it is known that the pretension in bolts will have been dissipated by the time bolt shear failure takes place (Kulak et al., 1987; p. 49), the ultimate limit state of a pretensioned bolted joint is the same as an otherwise identical joint that uses non-pretensioned bolts.

Because the consequences of slip into bearing vary from application to application, the determination of whether a joint can be designated as snug-tightened or as pretensioned or rather must be designated as slip-critical is best left to judgment and a decision on the part of the Engineer of Record. In the case of joints with three or more bolts in holes with only a small clearance, the freedom to slip generally does not exist. It is probable that normal fabrication tolerances and erection procedures are such that one or more bolts are in bearing even before additional load is applied. Such is the case for standard holes and for slotted holes loaded transverse to the axis of the slot.

Joints that are required to be slip-critical joints include:
(1) Those cases where slip movement could theoretically exceed an amount deemed by the Engineer of Record to affect the serviceability of the structure or through excessive distortion to cause a reduction in strength or stability, even though the

[^52]resistance to fracture of the connection and yielding of the member may be adequate; and,
(2) Those cases where slip of any magnitude must be prevented, such as in joints subject to significant load reversal and joints between elements of built-up compression members in which any slip could cause a reduction of the flexural stiffness required for the stability of the built-up member.

In this Specification, the provisions for the design, installation and inspection of bolted joints are dependent upon the type of joint that is specified by the Engineer of Record. Consequently, it is required that the Engineer of Record identify the joint type in the contract documents.

### 4.1. Snug-Tightened Joints

Except as required in Sections 4.2 and 4.3, snug-tightened joints are permitted.
Bolts in snug-tightened joints shall be designed in accordance with the applicable provisions of Sections 5.1, 5.2 and 5.3, installed in accordance with Section 8.1 and inspected in accordance with Section 9.1. As indicated in Section 4 and Table 4.1, requirements for faying surface condition shall not apply to snug-tightened joints.

## Commentary:

Recognizing that the ultimate strength of a connection is independent of the bolt pretension and slip movement, there are numerous practical cases in the design of structures where, if slip occurs, it will not be detrimental to the serviceability of the structure. Additionally, there are cases where slip of the joint is desirable to permit rotation in a joint or to minimize the transfer of moment. To provide for these cases while at the same time making use of the shear strength of highstrength bolts, snug-tightened joints are permitted.

The maximum amount of slip that can occur in a joint is, theoretically, equal to twice the hole clearance. In practical terms, it is observed in laboratory and field experience to be much less; usually, about one-half the hole clearance. Acceptable inaccuracies in the location of holes within a pattern of bolts usually cause one or more bolts to be in bearing in the initial, unloaded condition. Furthermore, even with perfectly positioned holes, the usual method of erection causes the weight of the connected elements to put some of the bolts into direct bearing at the time the member is supported on loose bolts and the lifting crane is unhooked. Additional loading in the same direction would not cause additional joint slip of any significance.

Snug-tightened joints are also permitted for statically loaded applications involving ASTM A325 bolts and ASTM F1852 twist-off-type tension-control bolt assemblies in direct tension. However, snug-tightened installation is not permitted for these fasteners in applications involving nonstatic loading, nor for applications involving ASTM A490 bolts and ASTM F2280 twist-off-type tension-control bolt assemblies.

### 4.2. Pretensioned Joints

Pretensioned joints are required in the following applications:
(1) Joints in which fastener pretension is required in the specification or code that invokes this Specification;
(2) Joints that are subject to significant load reversal;
(3) Joints that are subject to fatigue load with no reversal of the loading direction;
(4) Joints with ASTM A325 or F1852 bolts that are subject to tensile fatigue; and,
(5) Joints with ASTM A490 or F2280 bolts that are subject to tension or combined shear and tension, with or without fatigue.

Bolts in pretensioned joints subject to shear shall be designed in accordance with the applicable provisions of Sections 5.1 and 5.3, installed in accordance with Section 8.2 and inspected in accordance with Section 9.2. Bolts in pretensioned joints subject to tension or combined shear and tension shall be designed in accordance with the applicable provisions of Sections 5.1, 5.2, 5.3 and 5.5, installed in accordance with Section 8.2 and inspected in accordance with Section 9.2. As indicated in Section 4 and Table 4.1, requirements for faying surface condition shall not apply to pretensioned joints.

## Commentary:

Under the provisions of some other specifications, certain shear connections are required to be pretensioned, but are not required to be slip-critical. Several cases are given, for example, in AISC Specification Section J1.10 (AISC, 2010) wherein certain bolted joints in bearing connections are to be pretensioned regardless of whether or not the potential for slip is a concern. The AISC Specification requires that joints be pretensioned in the following circumstances:
(1) Column splices in buildings with high ratios of height to width;
(2) Connections of members that provide bracing to columns in tall buildings;
(3) Various connections in buildings with cranes over 5-ton capacity; and,
(4) Connections for supports of running machinery and other sources of impact or stress reversal.

When pretension is desired for reasons other than the necessity to prevent slip, a pretensioned joint should be specified in the contract documents.

### 4.3. Slip-Critical Joints

Slip-critical joints are required in the following applications involving shear or combined shear and tension:
(1) Joints that are subject to fatigue load with reversal of the loading direction;
(2) Joints that utilize oversized holes;
(3) Joints that utilize slotted holes, except those with applied load approximately normal (within 80 to 100 degrees) to the direction of the long dimension of the slot; and,
(4) Joints in which slip at the faying surfaces would be detrimental to the performance of the structure.

Bolts in slip-critical joints shall be designed in accordance with the applicable provisions of Sections 5.1, 5.2, 5.3, 5.4 and 5.5 , installed in accordance with Section 8.2 and inspected in accordance with Section 9.3.

## Commentary:

In certain cases, slip of a bolted joint in shear under service loads would be undesirable or must be precluded. Clearly, joints that are subject to reversed fatigue load must be slip-critical since slip may result in back-and-forth movement of the joint and the potential for accelerated fatigue failure. Unless slip is intended, as desired in a sliding expansion joint, slip in joints with longslotted holes that are parallel to the direction of the applied load might be large enough to invalidate structural analyses that are based upon the assumption of small displacements.

For joints subject to fatigue load with respect to shear of the bolts that does not involve a reversal of load direction, there are two alternatives for fatigue design. The designer can provide either a slip-critical joint that is proportioned on the basis of the applied stress range on the gross section, or a pretensioned joint that is proportioned on the basis of applied stress range on the net section.

## SECTION 5. LIMIT STATES IN BOLTED JOINTS

The available shear strength and available tensile strength of bolts shall be determined in accordance with Section 5.1. The interaction of combined shear and tension on bolts shall be limited in accordance with Section 5.2. The available bearing strength of the connected parts at bolt holes shall be determined in accordance with Section 5.3. Each of these available strengths shall be equal to or greater than the required strength. The axial load in bolts that are subject to tension or combined shear and tension shall be calculated with consideration of the effects of the externally applied tensile load and any additional tension resulting from prying action produced by deformation of the connected parts.

When slip resistance is required at the faying surfaces subject to shear or combined shear and tension, slip resistance shall be checked at either the LRFD-load level or ASD-load level, at the option of the Engineer of Record. When slip of the joint under applied loads would affect the ability of the structure to support the loads, the available strength determined in accordance with Section 5.4 shall be equal to or greater than the required strength. In addition, slip-critical connections must meet the strength requirements of shear/bearing joints. Therefore, the strength requirements of Sections 5.1, 5.2 and 5.3 shall also be met.

When bolts are subject to cyclic application of axial tension, the stress determined in accordance with Section 5.5 shall be equal to or greater than the stress due to the effect of the service loads, including any additional tension resulting from prying action produced by deformation of the connected parts.

## Commentary:

This section of the Specification provides the design requirements for high-strength bolts in bolted joints. However, this information is not intended to provide comprehensive coverage of the design of high-strength bolted connections. Other design considerations of importance to the satisfactory performance of the connected material, such as block shear rupture, shear lag, prying action and connection stiffness and its effect on the performance of the structure, are beyond the scope of this Specification and Commentary.

The design of bolted joints that transmit shear requires consideration of the shear strength of the bolts and the bearing strength of the connected material. If such joints are designated as slip-critical joints, the slip resistance must also be checked. This serviceability check can be made at the LRFD-load level or at the ASD-load level. Regardless of which load level is selected for the check of slip resistance, the prevention of slip in the service-load range is the design criterion.

Parameters that influence the shear strength of bolted joints include:
(1) Geometric parameters - the ratio of the net area to the gross area of the connected parts, the ratio of the net area of the connected parts to the total shear-resisting area of the bolts and the length of the joint; and,
(2) Material parameter - the ratio of the yield strength to the tensile strength of the connected parts.

Using both mathematical models and physical testing, it was possible to study the influences of these parameters (Kulak et al., 1987; pp. 89-116 and 126-132). These showed that, under the rules that existed at that time the longest (and often the most important) joints had the lowest factor of safety, about 2.0 based on ultimate strength.

In general, bolted joints that are designed in accordance with the provisions of this Specification will have a higher reliability than will the members they connect. This occurs primarily because the resistance factors used in limit states for the design of bolted joints were chosen to provide a reliability higher than that used for member design. Additionally, the controlling strength limit state in the structural member, such as yielding or deflection, is usually reached well before the strength limit state in the connection, such as bolt shear strength or bearing strength of the connected material. The installation requirements vary with joint type and influence the behavior of the joints within the service-load range, however, this influence is ignored in all strength calculations. Secondary tensile stresses that may be produced in bolts in shear/bearing joints, such as through the flexing of double-angle connections to accommodate the simple-beam end rotation, need not be considered.

It is sometimes necessary to use high-strength bolts and fillet welds in the same connection, particularly as the result of remedial work. When these fastening elements act in the same shear plane, the combined strength is a function of whether the bolts are snug-tightened or pretensioned, the location of the bolts relative to the holes in which they are located and the orientation of the fillet welds. The fillet welds can be parallel or transverse to the direction of load. Manuel and Kulak (1999) provide an approach that can be used to calculate the design strength of such joints.

### 5.1. Nominal Shear and Tensile Strengths

Shear and tensile strengths shall not be reduced by the installed bolt pretension. For joints, the nominal shear and tensile strengths shall be taken as the sum of the strengths of the individual bolts.

The design strength in shear or tension for an ASTM A325, A490, F1852 or F2280 bolt is $\phi R_{r 0}$ where $\phi=0.75$ and the allowable strength in shear or tension is $R_{n} / \Omega$, where $\Omega=2.00$ and:

$$
\begin{equation*}
R_{n}=F_{n} A_{b} \tag{Equation5.1}
\end{equation*}
$$

Where

$$
\begin{aligned}
R_{n}= & \text { nominal strength (shear strength per shear plane or tensile strength) } \\
& \text { of a bolt, kips; }
\end{aligned}
$$

Table 5.1. Nominal Strengths per Unit Area of Bolts

Applied Load Condition			Nominal Strength per Unit Area, $F_{n}$, ksi	
			ASTM A325 or F1852	ASTM A490 or F2280
Tension ${ }^{\text {a }}$	Static		90	113
	Fatigue		See Section 5.5	
Shear ${ }^{\text {a,b }}$	Threads included in shear plane	$L_{s} \leq 38 \mathrm{in}$.	54	68
		$L_{s}>38 \mathrm{in}$.	45	56
	Threads excluded from shear plane	$L_{s} \leq 38 \mathrm{in}$.	68	84
		$L_{s}>38 \mathrm{in}$.	56	70
b Reduction for values for $L_{s}>38 \mathrm{in}$. applies only when the joint is end loaded, such as splice plates on a beam or column flange.				

$F_{n}=$ nominal strength per unit area from Table 5.1 for the appropriate applied load conditions, ksi, adjusted for the presence of fillers as required below, and,
$A_{b}=$ cross-sectional area based upon the nominal diameter of bolt, in. ${ }^{2}$
When a bolt that carries load passes through fillers or shims in a shear plane that are equal to or less than $1 / 4 \mathrm{in}$. thick, $F_{n}$ from Table 5.1 shall be used without reduction. When a bolt that carries load passes through fillers or shims that are greater than $1 / 4 \mathrm{in}$. thick, the connection shall be designed in accordance with one of the following procedures:
(1) $F_{n}$ from Table 5.1 shall be multiplied by the factor [1-0.4( $\left.t^{\prime}-0.25\right)$ ] but not less than 0.85 , where $t^{\prime}$ is the total thickness of fillers or shims, in.;
(2) The fillers or shims shall be extended beyond the joint and the filler or shim extension shall be secured with enough bolts to uniformly distribute the total force in the connected element over the combined cross-section of the connected element and the fillers or shims;
(3) The size of the joint shall be increased to accommodate a number of bolts that is equivalent to the total number required in (2) above; or,
(4) The joint shall be designed as a slip-critical joint using Class A surfaces with Turn-of-Nut pretensioning; or,
(5) The joint shall be designed as a slip-critical joint using Class B faying surfaces.

## Commentary:

The nominal shear and tensile strengths of ASTM A325, F1852, A490 and F2280 bolts are given in Table 5.1. These values are based upon the work of a large number of researchers throughout the world, as reported in the Guide (Kulak et al., 1987; Tide, 2010).

The nominal shear strength is based upon the observation that the shear strength of a single high-strength bolt is about 0.62 times the tensile strength of that bolt (Kulak et al., 1987; pp. 44-50). In addition, a reduction factor of 0.90 is applied to joints up to 38 in. in length to account for an increase in bolt force due to minor secondary effects resulting from simplifying assumptions made in the modeling of structures that are commonly accepted in practice (e.g. truss bolted connections assumed pinned in the analysis model). Second order effects such as those resulting from the action of the applied loads on the deformed structure, should be accounted for through a second order analysis of the structure. As noted in Table 5.1, the average shear strength of bolts in joints longer than 38 in. in length is reduced by a factor of 0.75 instead of 0.90 . This factor accounts for both the non-uniform force distribution between the bolts in a long joint and the minor secondary effects discussed above. Note that the 0.75 reduction factor does not apply in cases where the distribution of force is essentially uniform along the joint, such as the bolted joints in a shear connection at the end of a deep plate girder.

The average ratio of nominal shear strength for bolts with threads included in the shear plane to the nominal shear strength for bolts with threads excluded from the shear plane is 0.83 with a standard deviation of 0.03 (Frank and Yura, 1981). Conservatively, a reduction factor of 0.80 is used to account for the reduction in shear strength for a bolt with threads included in the shear plane but calculated with the area corresponding to the nominal bolt diameter. The case of a bolt in double shear with a non-threaded section in one shear plane and a threaded section in the other shear plane is not covered in this Specification for two reasons. First, the manner in which load is shared between these two dissimilar shear areas is uncertain. Second, the detailer's lack of certainty as to the orientation of the bolt placement might leave both shear planes in the threaded section. Thus, if threads are included in one shear plane, the conservative assumption is made that threads are included in all shear planes.

The tensile strength of a high-strength bolt is the product of its ultimate tensile strength per unit area and some area through the threaded portion. This area, called the tensile stress area, is a derived quantity that is a function of the relative thread size and pitch. For the usual sizes of structural bolts, it is about 75 percent of the nominal cross-sectional area of the bolt. Hence, the nominal tensile strengths per unit area given in Table 5.1 are 0.75 times the tensile strength of the bolt material. According to Equation 5.1, the nominal area of the bolt is then used to calculate the design strength or allowable strength in tension. The strengths so-calculated are intended to form the basis for comparison with the externally applied bolt tension plus any additional tension
that results from prying action that is produced by deformation of the connected elements.

If pretensioned bolts are used in a joint that loads the bolts in tension, the question arises as to whether the pretension and the applied tension are additive. Because the compressed parts are being unloaded during the application of the external tensile force, the increase in bolt tension is minimal until the parts separate (Kulak et al., 1987; pp. 263-266). Thus, there will be little increase in bolt force above the pretension load under service loads. After the parts separate, the bolt acts as a tension member, as expected.

Pretensioned bolts have torsion present during the installation process. Once the installation is completed, any residual torsion is quite small and will disappear entirely when the fastener is loaded to the point of plate separation. Hence, there is no question of torsion-tension interaction when considering the ultimate tensile strength of a high-strength bolt (Kulak et al., 1987; pp. 41-47).

When required, pretension is induced in a bolt by imposing a small axial elongation during installation, as described in the Commentary to Section 8. When the joint is subsequently loaded in shear, tension or combined shear and tension, the bolts will undergo significant deformations prior to failure that have the effect of overriding the small axial elongation that was introduced during installation, thereby removing the pretension. Measurements taken in laboratory tests confirm that the pretension that would be sustained if the applied load were removed is essentially zero before the bolt fails in shear (Kulak et al., 1987; pp. 93-94). Thus, the shear and tensile strengths of a bolt are not affected by the presence of an initial pretension in the bolt.

See also the Commentary to Section 5.5.
Tests of 24 bolt A490 $11 / 8$ diameter connections indicated the reduction in bolt shear strength in connections with filler as required in Section 5.1 (1) is limited to $85 \%$. (Borello et al., 2009). Review of available data on slip critical connections revealed that connections with Class A surfaces pretensioned by Turn-of-Nut and connections with Class B surfaces provide a sufficient reliability against slip to eliminate the need to fasten the fills outside the connection or reduce the bolt shear capacity. (Grondin et al., 2008).

### 5.2. Combined Shear and Tension

When combined shear and tension loads are transmitted by an ASTM A325, A490, F1852 or F2280 bolt, the factored limit-state interaction shall be:

$$
\begin{equation*}
\left[\frac{T_{u}}{\left(\phi R_{n}\right)_{t}}\right]^{2}+\left[\frac{V_{u}}{\left(\phi R_{n}\right)_{v}}\right]^{2} \leq 1 \tag{Equation5.2a}
\end{equation*}
$$

Where
$T_{u}=$ required strength in tension (factored tensile load) per bolt, kips;

Specification for Structural Joints Using High-Strength Bolts, August 1, 2014
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS

$$
\begin{aligned}
& V_{u}=\text { required strength in shear (factored shear load) per bolt, kips; } \\
& \left(\phi R_{n}\right)_{t}=\text { design strength in tension determined in accordance with } \\
& \\
& \left(\phi R_{n}\right)_{v}=\begin{array}{l}
\text { Section 5.1, kips; and, } \\
\text { design strength in shear determined in accordance with } \\
\text { Section 5.1, kips. }
\end{array}
\end{aligned}
$$

When combined shear and tension loads are transmitted by an ASTM A325, A490, F1852 or F2280 bolt, the allowable limit-state interaction shall be:

$$
\begin{equation*}
\left[\frac{T_{a}}{\left(R_{n} / \Omega\right)_{t}}\right]^{2}+\left[\frac{V_{a}}{\left(R_{n} / \Omega\right)_{v}}\right]^{2} \leq 1 \tag{Equation5.2b}
\end{equation*}
$$

Where
$T_{a}=$ required strength in tension (service tensile load) per bolt, kips;
$V_{a}=$ required strength in shear (service shear load) per bolt, kips;
$\left(R_{n} / \Omega\right)_{t}=$ allowable strength in tension determined in accordance with Section 5.1, kips; and,
$\left(R_{n} / \Omega\right)_{v}=$ allowable strength in shear determined in accordance with Section 5.1, kips.

## Commentary:

When both shear forces and tensile forces act on a bolt, the interaction can be conveniently expressed as an elliptical solution (Chesson et al., 1965) that includes the elements of the bolt acting in shear alone and the bolt acting in tension alone. Although the elliptical solution provides the best estimate of the strength of bolts subject to combined shear and tension and is thus used in this Specification, the nature of the elliptical solution is such that it can be approximated conveniently using three straight lines (Carter et al., 1997). Earlier editions of this specification have used such linear representations for the convenience of design calculations. The elliptical interaction equation in effect shows that, for design purposes, significant interaction does not occur until either force component exceeds 20 percent of the limiting strength for that component.

### 5.3. Nominal Bearing Strength at Bolt Holes

For joints, the nominal bearing strength shall be taken as the sum of the strengths of the connected material at the individual bolt holes.

The design bearing strength is $\phi R_{n}$, where $\phi=0.75$ and the allowable bearing strength is $R_{n} / \Omega$, where $\Omega=2.00$ of the connected material at a standard bolt hole, oversized bolt hole, short-slotted bolt hole independent of the direction of loading or long-slotted bolt hole with the slot parallel to the direction of the bearing load and:
(1) when deformation of the bolt hole at service load is a design consideration;

$$
\begin{equation*}
R_{n}=1.2 L_{c} t F_{u} \leq 2.4 d_{b} t F_{u} \tag{Equation5.3}
\end{equation*}
$$

(2) when deformation of the bolt hole at service load is not a design consideration;

$$
\begin{equation*}
R_{n}=1.5 L_{c} t F_{u} \leq 3 d_{b} t F_{u} \tag{Equation5.4}
\end{equation*}
$$

The design bearing strength is $\phi R_{n}$, where $\phi=0.75$ and the allowable bearing strength is $R_{n} / \Omega$, where $\Omega=2.00$ of the connected material at a long-slotted bolt hole with the slot perpendicular to the direction of the bearing load and:

$$
\begin{equation*}
R_{n}=L_{c} t F_{u} \leq 2 d_{b} t F_{u} \tag{Equation5.5}
\end{equation*}
$$

In Equations 5.3, 5.4 and 5.5,

```
\(R_{n}=\) nominal strength (bearing strength of the connected material), kips;
\(F_{u}=\) specified minimum tensile strength per unit area of the connected material, ksi;
\(L_{c}=\) clear distance, in the direction of load, between the edge of the hole and the edge of the adjacent hole or the edge of the material, in.;
\(d_{b}=\) nominal diameter of bolt, in.; and,
\(t=\) thickness of the connected material, in.
```


## Commentary:

The contact pressure at the interface between a bolt and the connected material can be expressed as a bearing stress on the bolt or on the connected material. The connected material is always critical. For simplicity, the bearing area is expressed as the bolt diameter times the thickness of the connected material in bearing. The governing value of the bearing stress has been determined from extensive experimental research and a further limitation on strength was derived from the case of a bolt at the end of a tension member or near another fastener.

The design equations are based upon the models presented in the Guide (Kulak et al., 1987; pp. 141-143), except that the clear distance to another hole or edge is used in the Specification formulation rather than the bolt spacing or end distance as used in the Guide (see Figure C-5.1). Equation 5.3 is derived from tests (Kulak et al., 1987; pp. 112-116) that showed that the total elongation, including local bearing deformation, of a standard hole that is loaded to obtain the ultimate strength equal to $3 d_{b} t F_{u}$ in Equation 5.4 was on the order of the diameter of the bolt.

This apparent hole elongation results largely from bearing deformation of the material that is immediately adjacent to the bolt. The lower value of $2.4 d_{b} t F_{u}$ in Equation 5.3 provides a bearing strength limit-state that is attainable at reasonable deformation ( $1 / 4 \mathrm{in}$.). Strength and deformation limits were thus used to jointly evaluate bearing strength test results for design.

When long-slotted holes are oriented with the long dimension perpendicular to the direction of load, the bending component of the deformation in the material between adjacent holes or between the hole and the edge of the plate is increased. The nominal bearing strength is limited to $2 d_{b} t F_{u}$, which again provides a bearing strength limit-state that is attainable at reasonable deformation.

The design bearing strength has been expressed as that of a single bolt, although it is really that of the connected material that is immediately adjacent to the bolt. In calculating the design bearing strength of a connected part, the total bearing strength of the connected part can be taken as the sum of the bearing strengths of the individual bolts.


Figure. C-5.1. Bearing strength formulation.

### 5.4. Design Slip Resistance

Slip-critical connections shall be designed to prevent slip and for the limit states of bearing-type connections in accordance with Sections 5.1, 5.2 and 5.3. When slip-critical bolts pass through fillers, all faying surfaces subject to slip shall be prepared to achieve design slip resistance.

At LRFD load levels the design slip resistance is $\phi R_{n}$ and at ASD load levels the allowable slip resistance is $\mathrm{R}_{\mathrm{n}} / \Omega$ where $\mathrm{R}_{\mathrm{n}}, \phi$ and $\Omega$ are defined below.

The nominal slip resistance per bolt for the limit state of slip shall be determined as follows:

$$
\begin{equation*}
R_{n}=\mu D_{u} h_{f} T_{b} n_{s} k_{s c} \tag{Equation5.6}
\end{equation*}
$$

For standard size and short-slotted holes perpendicular to the direction of the load

$$
\phi=1.00(\mathrm{LRFD}) \quad \Omega=1.50(\mathrm{ASD})
$$

For oversized and short-slotted holes parallel to the direction of the load

$$
\phi=0.85(\mathrm{LRFD}) \quad \Omega=1.76(\mathrm{ASD})
$$

For long-slotted holes

$$
\phi=0.70(\mathrm{LRFD}) \quad \Omega=2.14(\mathrm{ASD})
$$

Where
$\mu=\quad$ mean slip coefficient for Class A or B surfaces, as applicable, and determined as follows, or as established by tests:
(1) For Class A surfaces (unpainted clean mill scale steel surfaces or surfaces with Class A coatings on blast-cleaned steel or hot-dipped galvanized and roughened surfaces)

$$
\mu=0.30
$$

(2) For Class B surfaces (unpainted blast-cleaned steel surfaces or surfaces with Class B coatings on blast-cleaned steel)

$$
\mu=0.50
$$

$D_{u}=\quad 1.13$; a multiplier that reflects the ratio of the mean installed bolt pretension to the specified minimum bolt pretension; the use of other values may be approved by the engineer of record.
$T_{b}=$ minimum fastener tension given in Table 8.1, kips
$h_{f}=$ factor for fillers, determined as follows:
(1) Where there are no fillers or bolts have been added to distribute loads in the filler

$$
h_{f}=1.0
$$

(2) Where bolts have not been added to distribute the load in the filler:
(i) For one filler between connected parts

$$
h_{f}=1.0
$$

(ii) For two or more fillers between connected parts

$$
h_{f}=0.85
$$

$n_{s}=$ number of slip planes required to permit the connection to slip

$$
\begin{align*}
k_{s c} & =1-\frac{T_{u}}{D_{u} T_{b} n_{b}} \geq 0  \tag{LRFD}\\
& =1-\frac{1.5 T_{a}}{D_{u} T_{b} n_{b}} \geq 0 \tag{ASD}
\end{align*}
$$

Where
$T_{a}=$ required tension force using $A S D$ load combinations, kips
$T_{u}=$ required tension force using $L R F D$ load combinations, kips
$n_{b}=$ number of bolts carrying the applied tension

## Commentary:

The nominal strength $R_{n}$ represents the mean resistance, which is a function of the mean slip coefficient $\mu$ and the specified minimum bolt pretension (clamping force) $T_{m}$. The 1.13 multiplier in Equation 5.6 accounts for the statistical relationship between calculated slip resistance and historical measured test results. In the absence of other field test data, this value is used for all methods.

For most applications, the assumption that the slip resistance at each fastener is equal and additive with that at the other fasteners is based on the fact that all locations must develop the slip force before a total joint slip can occur at that plane. Similarly, the forces developed at various slip planes do not necessarily develop simultaneously, but one can assume that the full slip resistances must be mobilized at each plane before full joint slip can occur.

The nominal resistance in Section 5.4 results in a reliability consistent with the reliability of structural member design. The engineer should not need to design to a higher reliability in normal structural applications. The following comments reflect the collective thinking of the Council and are provided as guidance and an indication of the intent of the Specification (see also the Commentary to Sections 4.2 and 4.3):
(1) In built-up compression members, such as double-angle struts in trusses, a small relative slip between the elements especially at the end connections can increase the
effective length of the combined cross-section to that of the individual components and significantly reduce the compressive strength of the strut. Therefore, the connection between the elements at the ends of built-up members are checked to prevent slip, whether or not a slip-critical joint is required for serviceability. As given by Sherman and Yura (1998), the required slip resistance is $0.008 P_{u} L Q / I$, where $P_{u}$ is the axial compressive force in the built-up member, kips, $L$ is the total length of the built-up member, in., $Q$ is the first moment of area of one component about the axis of buckling of the built-up member, in. ${ }^{3}$, and $I$ is the moment of inertia of the built-up member about the axis of buckling, in. ${ }^{4}$;
(2) In joints with long-slotted holes that are parallel to the direction of the applied load, the joint is designed to prevent slip, however, the effect of the factored loads acting on the deformed structure (deformed by the maximum amount of slip in the long slots at all locations) must be included in the structural analysis; and,
(3) In joints subject to fatigue, design should be based upon service-load criteria and the design slip resistance of the governing cyclic design specification because fatigue is a function of the service load performance rather than that of the factored load.

Extensive data developed through research sponsored by the Council and others has been statistically analyzed to provide improved information on slip probability of joints in which the bolts have been pretensioned to the requirements of Table 8.1. Two variables, the mean slip coefficient of the faying surfaces and the bolt pretension, were found to affect the slip resistance of joints. Field studies (Kulak and Birkemoe, 1993) of installed bolts in various structural applications indicate that the Table 8.1 pretensions have been achieved as anticipated in the laboratory research.

An examination of the slip-coefficient data for a wide range of surface conditions indicates that the data are distributed normally and the standard deviation is essentially the same for each surface condition class. This means that different reduction factors should be applied to classes of surfaces with different mean slip coefficients-the smaller the mean value of the coefficient of friction, the smaller (more severe) the appropriate reduction factor-to provide equivalent reliability of slip resistance.

The bolt clamping force data indicate that bolt pretensions are distributed normally for each pretensioning method. However, the data also indicate that the mean value of the bolt pretension is different for each method. If the calibrated wrench method is used to pretension ASTM A325 bolts, the mean value of bolt pretension is about 1.13 times the specified minimum pretension in Table 8.1. If the turn-of-nut pretensioning method is used, the mean pretension is about 1.35 times the specified minimum pretension for ASTM A325 bolts and about 1.26 for ASTM A490 bolts.

The combined effects of the variability of the mean slip coefficient and bolt pretension have been accounted for approximately in the single value of the slip probability factor $D_{u}$ in the equation for nominal slip resistance. This implies that slip will not occur with a reliability index, beta, of at least 2.6 regardless of the method of pretensioning.

The calibrated wrench installation method targets a specific bolt pretension, which is 5 percent greater than the specified minimum value given in Table 8.1. Thus, regardless of the actual strength of production bolts, this target value is unique for a
given fastener grade. On the other hand, the turn-of-nut installation method imposes an elongation on the fastener. Consequently, the inherent strength of the bolts being installed will be reflected in the resulting pretension because this elongation will bring the fastener to its proportional limit under combined torsion and tension. As a result of these differences, the mean value and nature of the frequency distribution of pretensions for the two installation methods differ. Turn-of-nut installations result in higher mean levels of pretension than do calibrated wrench installations. Twist-off tension control bolt and direct tension indicator pretensions are similar to those of calibrated wrench. These differences were taken into account when the design criteria for slip-critical joints were developed.

In any of the foregoing installation methods, it can be expected that a portion of the bolt assembly (the threaded portion of the bolt within the grip length and/or the engaged threads of the nut and bolt) will reach the inelastic region of behavior. This permanent distortion has no undesirable effect on the subsequent performance of the bolt.

Although the design philosophy for slip-critical joints presumes that they do not slip into bearing when subject to loads in the service range, it is mandatory that slipcritical joints also meet the requirements of Sections 5.1, 5.2 and 5.3. Thus, they must meet the strength requirements to resist the factored loads as shear/bearing joints.

Section 3.2.2(b) permits the Engineer of Record to authorize the use of faying surfaces with a mean slip coefficient, $\mu$, that is less than 0.50 (Class B) and other than 0.30 (Class A). This authorization requires that the mean slip coefficient, $\mu$, must be determined in accordance with Appendix A.

Prior to the 1994 edition of this Specification, $\mu$ for galvanized surfaces was taken as 0.40 . This value was reduced to 0.35 in the 1994 edition for better agreement with the available research (Kulak et al., 1987; pp. 78-82) and to 0.30 in the 2014 edition to be consistent with slip coefficients cited previously.

### 5.5. Tensile Fatigue

The tensile stress in the bolt that results from the cyclic application of externally applied service loads and the prying force, if any, but not the pretension, shall not exceed the stress in Table 5.2. The nominal diameter of the bolt shall be used in calculating the bolt stress. The connected parts shall be proportioned so that the calculated prying force does not exceed 30 percent of the externally applied load. Joints that are subject to tensile fatigue loading shall be specified as pretensioned in accordance with Section 4.2 or slip-critical in accordance with Section 4.3.

Table 5.2. Maximum Tensile Stress for Fatigue Loading

Number of Cycles	Maximum Bolt Stress for Design at Service Loads ${ }^{\text {a }}$, ksi	
	ASTM A325 or F1852	ASTM A490 or F2280
Not more than 20,000	45	57
From 20,000 to 500,000	40	49
More than 500,000	31	38
Including the effects of prying action, if any, but excluding the pretension.		

## Commentary:

As described in the Commentary to Section 5.1, high-strength bolts in pretensioned joints that are nominally loaded in tension will experience little, if any, increase in axial stress under service loads. For this reason, pretensioned bolts are not adversely affected by repeated application of service-load tensile stress. However, care must be taken to ensure that the calculated prying force is a relatively small part of the total applied bolt tension (Kulak et al., 1987; p. 272). The provisions that cover bolt fatigue in tension are based upon research results where various single-bolt assemblies and joints with bolts in tension were subjected to repeated external loads that produced fatigue failure of the pretensioned fasteners. A limited range of prying effects was investigated in this research.

## SECTION 6. USE OF WASHERS

### 6.1. Snug-Tightened Joints

Washers are not required in snug-tightened joints, except as required in Sections 6.1.1 and 6.1.2.
6.1.1. Sloping Surfaces: When the outer face of the joint has a slope that is greater than $1: 20$ with respect to a plane that is normal to the bolt axis, an ASTM F436 beveled washer shall be used to compensate for the lack of parallelism.
6.1.2. Slotted Hole: When a slotted hole occurs in an outer ply, an ASTM F436 washer or $5 / 16$ in. thick common plate washer shall be used as required to completely cover the hole.
6.2. Pretensioned Joints and Slip-Critical Joints

Washers are not required in pretensioned joints and slip-critical joints, except as required in Sections 6.1.1, 6.1.2, 6.2.1, 6.2.2, 6.2.3, 6.2.4 and 6.2.5.
6.2.1. Specified Minimum Yield Strength of Connected Material Less Than 40 ksi : When ASTM A490 or F2280 bolts are pretensioned in connected material of specified minimum yield strength less than 40 ksi, ASTM F436 washers shall be used under both the bolt head and nut, except that a washer is not needed under the head of an ASTM F2280 round head twist-off bolt.
6.2.2. Calibrated Wrench Pretensioning: When the calibrated wrench pretensioning method is used, an ASTM F436 washer shall be used under the turned element.
6.2.3. Twist-Off-Type Tension-Control Bolt Pretensioning: When the twist-off-type tension-control bolt pretensioning method is used, an ASTM F436 washer shall be used under the nut as part of the fastener assembly.
6.2.4. Direct-Tension-Indicator Pretensioning: When the direct-tension-indicator pretensioning method is used, an ASTM F436 washer shall be used as follows:
(1) When the nut is turned and the direct tension indicator is located under the bolt head, an ASTM F436 washer shall be used under the nut;
(2) When the nut is turned and the direct tension indicator is located under the nut, an ASTM F436 washer shall be used between the nut and the direct tension indicator;
(3) When the bolt head is turned and the direct tension indicator is located under the nut, an ASTM F436 washer shall be used under the bolt head; and,

Table 6.1. Washer Requirements for Pretensioned and Slip-Critical Bolted Joints with Oversized and Slotted Holes in the Outer Ply

ASTM   Designation	Nominal Bolt Diameter, $d_{b}$, in.	Hole Type in Outer Ply		
		Oversized	Short-Slotted	Long-Slotted
A325 or F1852	$1 / 2-11 / 2$	ASTM F436 ${ }^{\text {a }}$		5/16 in. thick plate washer or continuous bar ${ }^{\mathrm{b}, \mathrm{c}}$
A490 or F2280	$\leq 1$			
	>1	ASTM F436 extra thick ${ }^{\text {a,b,d }}$		ASTM F436 washer with either a $3 / 8 \mathrm{in}$. thick plate washer or continuous bar ${ }^{\text {b,c }}$
This requirement shall not apply to heads of round head tension-control bolt assemblies that meet the requirements in Section 2.7 and provide a bearing circle diameter that meets the requirements of ASTM F1852 or F2280.				
See ASTM F436 Section 1.2.2.4. Multiple washers with a combined thickness of $5 / 16$ in. or larger do not satisfy this requirement.				
The plate washer or bar shall be of structural-grade steel material, but need not be hardened.				
Alternatively, $a 3 / 8$ in. thick plate washer and an ordinary thickness F436 washer may be used. The plate washer need not be hardened.				

(4) When the bolt head is turned and the direct tension indicator is located under the bolt head, an ASTM F436 washer shall be used between the bolt head and the direct tension indicator.
6.2.5. Oversized or Slotted Hole: When an oversized or slotted hole occurs in an outer ply, the washer requirements shall be as given in Table 6.1. The washer used shall be of sufficient size to completely cover the hole.

## Commentary:

It is important that shop drawings and connection details clearly reflect the number and disposition of washers when they are required, especially the thick hardened washers or plate washers that are required for some slotted hole applications. The total thickness of washers in the grip affects the length of bolt that must be supplied and used.

The primary function of washers is to provide a hardened non-galling surface under the turned element, particularly for torque-based pretensioning methods such as the calibrated wrench pretensioning method and twist-off-type tension-control bolt pretensioning method. Circular flat washers that meet the requirements of ASTM F436 provide both a hardened non-galling surface and an increase in bearing area that is approximately 50 percent larger than that provided by a heavy-hex bolt head or nut. However, tests have shown that washers of the standard $5 / 32$ in. thickness have a minor influence on the pressure distribution of the induced bolt pretension. Furthermore, they
showed that a larger thickness is required when ASTM A490 bolts are used with material that has a minimum specified yield strength that is less than 40 ksi . This is necessary to mitigate the effects of local yielding of the material in the vicinity of the contact area of the head and nut. The requirement for standard thickness hardened washers, when such washers are specified, is waived for alternative design fasteners that incorporate a bearing surface under the head of the same diameter as the hardened washer.

With the 2011 revision of ASTM F436, special $5 / 16$ in.-thick ASTM F436 washers are now called "extra thick". Extra thick ASTM F436 washers are required to cover oversized and short-slotted holes in external plies, when ASTM A490 or F2280 bolts of diameter larger than 1 in . are used, except as permitted by Table 6.1 footnotes a and d . This was found necessary to distribute the high clamping pressure so as to prevent collapse of the hole perimeter and enable the development of the desired clamping force. Preliminary investigation has shown that a similar but less severe deformation occurs when oversized or slotted holes are in the interior plies. The reduction in clamping force may be offset by "keying," which tends to increase the resistance to slip. These effects are accentuated in joints of thin plies. When long-slotted holes occur in an outer ply, $3 / 8 \mathrm{in}$. thick plate washers or continuous bars and one ASTM F436 washer are required in Table 6.1. This requirement can be satisfied with material of any structural grade. Alternatively, either of the following options can be used:
(1) The use of material with $F_{y}$ greater than 40 ksi will eliminate the need to also provide ASTM F436 washers in accordance with the requirements in Section 6.2.1 for ASTM A490 or F2280 bolts of any diameter; or,
(2) Material with $F_{y}$ equal to or less than 40 ksi can be used with ASTM F436 washers in accordance with the requirements in Section 6.2.1.

This specification previously required a washer under bolt heads with a bearing area smaller than that provided by an ASTM F436 washer. Tests indicate that the pretension achieved with a bolt having the minimum ASTM F1852 or F2280 bearing circle diameter is the same as that of a bolt with the larger bearing circle diameter equal to the size of an ASTM F436 washer, provided that the hole size meets the RCSC Specification limitations (Schnupp, 2003).

## SECTION 7. PRE-INSTALLATION VERIFICATION

The requirements in this Section shall apply only as indicated in Section 8.2 to verify that the fastener assemblies and pretensioned installation procedures perform as required prior to installation.

### 7.1. Tension Calibrator

A tension calibrator shall be used where bolts are to be installed in pretensioned joints and slip-critical joints to:
(1) Confirm the suitability of the complete fastener assembly, including lubrication, for pretensioned installation; and,
(2) Confirm the procedure and proper use by the bolting crew of the pretensioning method to be used.

The accuracy of a hydraulic tension calibrator shall be confirmed through calibration at least annually.

## Commentary:

A tension calibrator is a device that indicates the pretension that is developed in a bolt. It must be readily available whenever high-strength bolts are to be pretensioned. A bolt tension calibrator is essential for:
(1) The pre-installation verification of the suitability of the fastener assembly, including the lubrication that is applied by the manufacturer or specially applied, to develop the specified minimum pretension;
(2) Verifying the adequacy and proper use of the specified pretensioning method to be used;
(3) Determining the installation torque for the calibrated wrench pretensioning method; and,
(4) Determining an arbitration torque as specified in Section 10, if required to resolve dispute.

Hydraulic tension calibrators undergo a slight deformation during bolt pretensioning. Hence, when bolts are pretensioned according to Section 8.2.1, the nut rotation corresponding to a given pretension reading may be somewhat larger than it would be if the same bolt were pretensioned in a solid steel assembly. Stated differently, the reading of a hydraulic tension calibrator tends to underestimate the pretension that a given rotation of the turned element would induce in a bolt in a pretensioned joint.

Direct tension indicators (DTIs) may be used as tension calibrators, except in the case of turn-of-nut installation. This method is especially useful for, but not restricted to, bolts that are too short to fit into a hydraulic tension calibrator. The DTIs to be used for verification testing must first have the

Table 7.1 Minimum Bolt Pretension for Pre-Installation Verification

Nominal Bolt   Diameter, $\boldsymbol{d}_{\boldsymbol{b}}$, in.	Minimum Bolt Pretension for   Pre-Installation Verification, kips ${ }^{\text {a }}$	
	ASTM A325   and F1852	ASTM A490   and F2280
$1 / 2$	13	16
$5 / 8$	20	25
$3 / 4$	29	37
$7 / 8$	41	51
$\mathbf{1}$	54	67
$\mathbf{1 1 / 8}$	59	84
$\mathbf{1 1 / 4}$	75	107
$\mathbf{1 3 / 8}$	89	127
1/1/2	108	155
a Equal to 1.05 times the specified minimum bolt pretension		
required in Table 8.1, rounded to the nearest kip.		

average gap determined for the specific level of pretension required by Table 7.1 , measured to the nearest 0.001 in . This is termed the "calibrated gap." Such measurements should be made for each lot of DTIs being used for verification testing, termed the "verification lot." The fastener assembly may then be installed in a standard size hole with the additional verification DTI. The prescribed pretensioning procedure is followed, and it is verified that the average gap in the verification DTI is equal to or less than the calibrated gap for the verification lot. For calibrated wrench installation, the verification DTI should be placed at the fastener end opposite the installation wrench. For twistoff bolt installation, the verification DTI must be placed beneath the bolt head, with an additional ASTM F436 washer between bolt head and verification DTI, and the bolt head is not permitted to turn. For DTI installation, the verification DTI must be placed at the end opposite the placement of the production DTI.

This technique cannot be used for the turn-of-nut method because the deformation of the DTI consumes a portion of the turns provided. For turn-ofnut pre-installation verification of bolts too short to fit into a hydraulic calibration device, installing the fastener assembly in a solid plate with the proper size hole and applying the required turns is adequate. No verification is required for achieved pretension to meet Table 7.1.

### 7.2. $\quad$ Required Testing

A representative sample of not fewer than three complete fastener assemblies of each combination of diameter, length, grade and lot to be used in the work shall be checked at the site of installation in a tension calibrator to verify that the pretensioning method develops a pretension that is equal to or greater than that specified in Table 7.1. Washers shall be used in the pre-installation verification assemblies as required in the work in accordance with the requirements in Section 6.2.

If the actual pretension developed in any of the fastener assemblies is less than that specified in Table 7.1, the cause(s) shall be determined and resolved before the fastener assemblies are used in the work. Cleaning, lubrication and retesting of these fastener assemblies, except ASTM F1852 or F2280 twist-off-type tension-control bolt assemblies, (see Section 2.2) are permitted, provided that all assemblies are treated in the same manner.

Impact wrenches, if used, shall be of adequate capacity and supplied with sufficient air to perform the required pretensioning of each bolt within approximately 10 seconds for bolts to $11 / 4-\mathrm{in}$. diameter, and within approximately 15 seconds for larger bolts.

## Commentary:

The fastener components listed in Section 1.5 are manufactured under separate ASTM specifications, each of which includes tolerances that are appropriate for the individual component covered. While these tolerances are intended to provide for a reasonable and workable fit between the components when used in an assembly, the cumulative effect of the individual tolerances permits a significant variation in the installation characteristics of the complete fastener assembly. It is the intent in this Specification that the responsibility rests with the supplier for proper performance of the fastener assembly, the components of which may have been produced by more than one manufacturer.

When pretensioned installation is required, it is essential that the effects of the accumulation of tolerances, surface condition and lubrication be taken into account. Hence, pre-installation verification testing of the complete fastener assembly is required as indicated in Section 8 to ensure that the fastener assemblies and installation method to be used in the work will provide a pretension that exceeds those specified in Table 8.1. It is not, however, intended simply to verify conformance with the individual ASTM specifications.

It is recognized in this Specification that a natural scatter is found in the results of the pre-installation verification testing that is required in Section 8. Furthermore, it is recognized that the pretensions developed in tests of a representative sample of the fastener components that will be installed in the work must be slightly higher to provide confidence that the majority of fastener assemblies will achieve the minimum required pretension as given in Table 8.1. Accordingly, the minimum pretension to be used in pre-installation verification is 1.05 times that required for installation and inspection, rounded to the nearest kip.

Pre-installation verification testing of as-received bolts and nuts is also a requirement in this Specification because of instances of under-strength and counterfeit bolts and nuts. Pre-installation verification testing provides a practical means for ensuring that non-conforming fastener assemblies are not incorporated into the work. Experience on many projects has shown that bolts and/or nuts not meeting the requirements of the applicable ASTM Specification would have been identified prior to installation if they had been tested as an assembly in a tension calibrator. The expense of replacing bolts installed in the structure when the non-conforming bolts were discovered at a later date would have been avoided.

Additionally, pre-installation verification testing clarifies for the bolting crew and the inspector the proper implementation of the selected pretensioning method and the adequacy of the installation equipment. It will also identify potential sources of problems, such as the need for lubrication to prevent failure of bolts by combined high torque with tension, under-strength assemblies resulting from excessive over-tapping of hot-dip galvanized nuts or other failures to meet strength or geometry requirements of applicable ASTM specifications.

The pre-installation verification requirements in this Section presume that fastener assemblies so verified will be pretensioned before the condition of the fastener assemblies, the equipment and the steelwork have changed significantly. Research by Kulak and Undershute (1998) on twist-off-type tension-control bolt assemblies from various manufacturers showed that installed pretensions could be a function of the time and environmental conditions of storage and exposure. The reduced performance of these bolts was caused by a deterioration of the lubricity of the assemblies. Furthermore, all bolt pretensioning that is achieved through rotation of the nut (or the head) is affected by the presence of torque, the excess of which has been demonstrated to adversely affect the development of the desired pretension. Thus, it is required that the condition of the fastener assemblies must be replicated in preinstallation verification. When time of exposure between the placement of fastener assemblies in the field work and the subsequent pretensioning of those fastener assemblies is of concern, pre-installation verification can be performed on fastener assemblies removed from the work or on extra fastener assemblies that, at the time of placement, were set aside to experience the same degree of exposure.

## SECTION 8. INSTALLATION

Prior to installation, the fastener components shall be stored in accordance with Section 2.2. For joints that are designated in the contract documents as snug-tightened joints, the bolts shall be installed in accordance with Section 8.1. For joints that are designated in the contract documents as pretensioned or slip-critical, the bolts shall be installed in accordance with Section 8.2.

### 8.1. Snug-Tightened Joints

All bolt holes shall be aligned to permit insertion of the bolts without undue damage to the threads. Bolts shall be placed in all holes with washers positioned as required in Section 6.1 and nuts threaded to complete the assembly. Compacting the joint to the snug-tight condition shall progress systematically from the most rigid part of the joint. Snug tight is the condition that exists when all of the plies in a connection have been pulled into firm contact by the bolts in the joint and all of the bolts in the joint have been tightened sufficiently to prevent the removal of the nuts without the use of a wrench.

## Commentary:

As discussed in the Commentary to Section 4, the bolted joints in most shear connections and in many tension connections can be specified as snug-tightened joints. The snug tightened condition is typically achieved with a few impacts of an impact wrench, application of an electric torque wrench until the wrench begins to slow or the full effort of a worker on an ordinary spud wrench. More than one cycle through the bolt pattern may be required to achieve the snugtightened joint. The splines on twist-off type tension-control bolts may be twisted off or left in place in snug tightened joints.

The actual pretensions that result in individual fasteners in snugtightened joints will vary from joint to joint depending upon the thickness, flatness, and degree of parallelism of the connected plies, as well as the effort applied. In most joints, plies of joints involving material of ordinary thickness and flatness can be drawn into complete contact at relatively low levels of pretension. However, in some joints in thick material or in material with large burrs, it may not be possible to reach continuous contact throughout the faying surface area as is commonly achieved in joints of thinner plates. This is generally not detrimental to the performance of the joint.

As used in Section 8.1, the term "undue damage" is intended to mean damage that would be sufficient to render the product unfit for its intended use.

The definition of a snug-tightened joint was temporarily changed in the 2009 specification and has now reverted back to the same definition specified in 2004. While the 2009 definition was suitable for inspection of bearing type connections, that definition was found to be inadequate to define a suitable starting point for the turn-of-nut method.

### 8.2. Pretensioned Joints and Slip-Critical Joints

One of the pretensioning methods in Sections 8.2.1 through 8.2.4 shall be used, except when alternative-design fasteners that meet the requirements of Section 2.8 or alternative washer-type indicating devices that meet the requirements of Section 2.6.2 are used, in which case, installation instructions provided by the manufacturer and approved by the Engineer of Record shall be followed.

## Table 8.1. Minimum Bolt Pretension, Pretensioned and Slip-Critical Joints

Nominal Bolt Diameter, $d_{b}$, in.	Specified Minimum Bolt Pretension, $\boldsymbol{T}_{\boldsymbol{m}}$, kips ${ }^{\text {a }}$	
	ASTM A325 and F1852	ASTM A490 and F2280
1/2	12	15
5/8	19	24
$3 / 4$	28	35
7/8	39	49
1	51	64
11/8	56	80
11/4	71	102
13/8	85	121
11/2	103	148
${ }^{\text {a }}$ Equal to 70 percent of the specified minimum tensile strength of bolts as specified in ASTM Specifications for tests of fullsize ASTM A325 and A490 bolts with UNC threads loaded in axial tension, rounded to the nearest kip.		

When it is impractical to turn the nut, pretensioning by turning the bolt head is permitted while rotation of the nut is prevented, provided that the washer requirements in Section 6.2 are met. A pretension that is equal to or greater than the value in Table 8.1 shall be provided. The pre-installation verification procedures specified in Section 7 shall be performed using fastener assemblies that are representative of the condition of those that will be pretensioned in the work.

Pre-installation testing shall be performed for each fastener assembly lot prior to the use of that assembly lot in the work. The testing shall be done at the start of the work. For calibrated wrench pretensioning, this testing shall be performed daily for the calibration of the installation wrench.

## Commentary:

The minimum pretension for ASTM A325 and A490 bolts is equal to 70 percent of the specified minimum tensile strength. As tabulated in Table 8.1, the values have been rounded to the nearest kip.

Four pretensioning methods are provided without preference in this Specification. Each method may be relied upon to provide satisfactory results when conscientiously implemented with the specified fastener assembly components in good condition. However, it must be recognized that misuse or abuse is possible with any method. With all methods, it is important to first install bolts in all holes of the joint and to compact the joint until the connected plies are in firm contact. Only after completion of this operation can the joint be reliably pretensioned. Both the initial phase of compacting the joint and the subsequent phase of pretensioning should begin at the most rigidly fixed or stiffest point.

In some joints in thick material, it may not be possible to reach continuous contact throughout the faying surface area, as is commonly achieved in joints of thinner plates. This is not detrimental to the performance of the joint. If the specified pretension is present in all bolts of the completed joint, the clamping force, which is equal to the total of the pretensions in all bolts, will be transferred at the locations that are in contact and the joint will be fully effective in resisting slip through friction.

If individual bolts are pretensioned in a single continuous operation in a joint that has not first been properly compacted or fitted up, the pretension in the bolts that are pretensioned first may be relaxed or removed by the pretensioning of adjacent bolts. The resulting reduction in total clamping force will reduce the slip resistance.

In the case of hot-dip galvanized coatings, especially if the joint consists of many plies of thickly coated material, relaxation of bolt pretension may be significant and re-pretensioning of the bolts may be required subsequent to the initial pretensioning. Munse (1967) showed that a loss of pretension of approximately 6.5 percent occurred for galvanized plates and bolts due to relaxation as compared with 2.5 percent for uncoated joints. This loss of bolt pretension occurred in five days; loss recorded thereafter was negligible. Either this loss can be allowed for in design, or pretension may be brought back to the prescribed level by re-pretensioning the bolts after an initial period of "settlingin."

As stated in the Guide (Kulak et al 1987; p. 61), "...it seems reasonable to expect an increase in bolt force relaxation as the grip length is decreased. Similarly, increasing the number of plies for a constant grip length might also lead to an increase in bolt relaxation."
8.2.1. Turn-of-Nut Pretensioning: All bolts shall be installed in accordance with the requirements in Section 8.1, with washers positioned as required in Section 6.2. Subsequently, the nut or head rotation specified in Table 8.2 shall be applied to all fastener assemblies in the joint, progressing systematically from the most
rigid part of the joint in a manner that will minimize relaxation of previously pretensioned bolts. The part not turned by the wrench shall be prevented from rotating during this operation. Upon completion of the application of the required nut rotation for pretensioning, it is not permitted to turn the nut in the loosening direction except for the purpose of complete removal of the individual

Table 8.2. Nut Rotation from Snug-Tight Condition for Turn-of-Nut Pretensioning ${ }^{\text {a,b }}$

fastener assembly. Such fastener assemblies shall not be reused except as permitted in Section 2.3.3.

## Commentary:

The turn-of-nut pretensioning method results in more uniform bolt pretensions than is generally provided with torque-controlled pretensioning methods. Strain-control that reaches the inelastic region of bolt behavior is inherently more reliable than a method that is dependent upon torque control. However, proper implementation is dependent upon ensuring that the joint is properly compacted prior to application of the required partial turn and that the bolt head (or nut) is securely held when the nut (or bolt head) is being turned.

Match-marking of the nut and protruding end of the bolt after snugtightening can be helpful in the subsequent installation process and is certainly an aid to inspection.

As indicated in Table 8.2, there is no available research that establishes the required nut rotation for bolt lengths exceeding $12 d_{b}$. The required turn for such bolts can be established on a case-by-case basis using a tension calibrator.

Significant research indicates that, at rotations exceeding those specified in Table 8.2, the level of pretension in the bolt will still be above the specified minimum pretension. In addition, the pretension is likely to remain high until just prior to twist-off of the fastener. The rotational margin against twist-off is large. A325 and A490 bolts $7 / 8$ in. diameter and $51 / 2$ in. long with $1 / 8$ in. of thread in the grip were tested. The installation condition for bolts of this length and diameter is $1 / 2$ turn past snug. The A325 bolts did not fail until about $13 / 4$ turns past snug, and the A490 bolts did not fail until about $11 / 4$ turns past snug. Bolts with additional threads in the grip would exhibit additional ductility and tolerance for over-rotation.

Non-heat-treated nuts (A563 Grades C, C3 and D) manufactured near the lower range of permitted strength and hardness may strip if the bolt is tightened far beyond the specified level of pretension. For A325 bolts, nuts with a hardness of 89 HRB or higher should have adequate resistance to thread stripping. For A490 bolts, only heat-treated nuts are used. Deliberate overrotation should be avoided to minimize risk of inducing nut stripping with lowhardness nuts, and inducing nut cracking with high-hardness and heat-treated nuts. Nut stripping or cracking would be considered cause for rejection of the installed fastener.
8.2.2. Calibrated Wrench Pretensioning: The pre-installation verification procedures specified in Section 7 shall be performed daily for the calibration of the installation wrench. Torque values determined from tables or from equations that claim to relate torque to pretension without verification shall not be used.

All bolts shall be installed in accordance with the requirements in Section 8.1, with washers positioned as required in Section 6.2. Subsequently, the installation torque determined in the pre-installation verification of the fastener assembly (Section 7) shall be applied to all bolts in the joint, progressing systematically from the most rigid part of the joint in a manner that will minimize relaxation of previously pretensioned bolts. The part not turned by the wrench shall be prevented from rotating during this operation. Application of the installation torque need not produce a relative rotation between the bolt and nut that is greater than the rotation specified in Table 8.2.

## Commentary:

The scatter in installed pretension can be significant when torque-controlled methods of installation are used. The variables that affect the relationship between torque and pretension include:
(1) The finish and tolerance on the bolt and nut threads;
(2) The uniformity, degree and condition of lubrication;
(3) The shop or job-site conditions that contribute to dust and dirt or corrosion on the threads;
(4) The friction that exists to a varying degree between the turned element (the nut face or bearing area of the bolt head) and the supporting surface;
(5) The variability of the air supply parameters on impact wrenches that results from the length of air lines or number of wrenches operating from the same source;
(6) The condition, lubrication and power supply for the torque wrench, which may change within a work shift; and,
(7) The repeatability of the performance of any wrench that senses or responds to the level of the applied torque.

In the first edition of this Specification, which was published in 1951, a table of torque-to-pretension relationships for bolts of various diameters was included. It was soon demonstrated in research that a variation in the torque-to-pretension of as high as $\pm 40$ percent must be anticipated unless the relationship is established individually for each bolt lot, diameter, and fastener condition. Hence, in the 1954 edition of this Specification, recognition of relationships between torque and pretension in the form of tabulated values or equations was withdrawn. Recognition of the calibrated wrench pretensioning method was retained however until 1980, but with the requirement that the torque required for installation be determined specifically for the bolts being installed on a daily basis. Recognition of the method was withdrawn in 1980 because of the continuing controversy that resulted from the failure of users to adhere to the requirements for the valid use of the method during both installation and inspection.

In the 1985 edition of this Specification, the calibrated wrench pretensioning method was reinstated, but with more emphasis on detailed requirements that must be carefully followed. For calibrated wrench pretensioning, wrenches must be calibrated:
(1) Daily;
(2) When the lot of any component of the fastener assembly is changed;
(3) When the lot of any component of the fastener assembly is relubricated;
(4) When significant differences are noted in the surface condition of the bolt threads, nuts or washers; or,
(5) When any major component of the wrench including lubrication, hose and air supply are altered.

It is also important that:
(1) Fastener components be protected from dirt and moisture at the shop or job site as required in Section 2;
(2) Washers be used as specified in Section 6; and,
(3) The time between removal from protected storage and wrench calibration and final pretensioning be minimal.
8.2.3. Twist-Off-Type Tension-Control Bolt Pretensioning: Twist-off-type tensioncontrol bolt assemblies that meet the requirements of ASTM F1852 or F2280 shall be used.

All fastener assemblies shall be installed in accordance with the requirements in Section 8.1 without severing the splined end and with washers positioned as required in Section 6.2. If a splined end is severed during this operation, the fastener assembly shall be removed and replaced. Subsequently, all bolts in the joint shall be pretensioned with the twist-off-type tension-control bolt installation wrench, progressing systematically from the most rigid part of the joint in a manner that will minimize relaxation of previously pretensioned bolts.

## Commentary:

ASTM F1852 and F2280 twist-off-type tension-control bolt assemblies have a splined end that extends beyond the threaded portion of the bolt. During installation, this splined end is gripped by a specially designed wrench chuck and provides a means for turning the nut relative to the bolt. This product is, in fact, based upon a torque-controlled installation method to which the fastener assembly variables affecting torque that were discussed in the Commentary to Section 8.2 .2 apply, except for wrench calibration, because torque is controlled within the fastener assembly.

Twist-off-type tension-control bolt assemblies must be used in the asdelivered, clean, lubricated condition as specified in Section 2. Adherence to the requirements in this Specification, especially those for storage, cleanliness and verification, is necessary for their proper use.
8.2.4. Direct-Tension-Indicator Pretensioning: Direct tension indicators that meet the requirements of ASTM F959 shall be used. The pre-installation verification procedures specified in Section 7 shall demonstrate that, when the pretension in the bolt reaches that required in Table 7.1, the gap is not less than the job inspection gap in accordance with ASTM F959.

All bolts shall be installed in accordance with the requirements in Section 8.1, with washers positioned as required in Section 6.2. The installer shall verify that the direct-tension-indicator protrusions have not been compressed to a gap that is less than the job inspection gap during this operation, and if this has occurred, the direct tension indicator shall be removed and replaced. Subsequently, all bolts in the joint shall be pretensioned, progressing systematically from the most rigid part of the joint in a manner that will minimize relaxation of previously pretensioned bolts. The installer shall verify that the direct tension indicator protrusions have been compressed to a gap that is less than the job inspection gap.

## Commentary:

ASTM F959 direct tension indicators are recognized in this Specification as a bolt-tension-indicating device. Direct tension indicators are hardened, washershaped devices incorporating small arch-like protrusions on the bearing surface that are designed to deform in a controlled manner when subjected to compressive load.

During installation, care must be taken to ensure that the direct-tensionindicator arches are oriented to bear against the hardened bearing surface of the bolt head or nut, or against a hardened flat washer if used under turned element, whether that turned element is the nut or the bolt. Proper use and orientation is illustrated in Figure C-8.1.

In some cases, more than a single cycle of systematic partial pretensioning may be required to deform the direct-tension-indicator protrusions to the gap that is specified by the manufacturer. If the gaps fail to close or when the washer lot is changed, another verification procedure using the tension calibrator must be performed.

Provided the connected plies are in firm contact, partial compression of the direct tension indicator protrusions is commonly taken as an indication that the snug-tight condition has been achieved.


Note: See Section 6, for general requirements for the use of washers.

Figure C-8.1. Proper use and orientation of ASTM F959 direct-tension indicator

## SECTION 9. INSPECTION

When inspection is required in the contract documents, the inspector shall ensure while the work is in progress that the requirements in this Specification are met. When inspection is not required in the contract documents, the contractor shall ensure while the work is in progress that the requirements in this Specification are met.

For joints that are designated in the contract documents as snug-tightened joints, the inspection shall be in accordance with Section 9.1. For joints that are designated in the contract documents as pretensioned, the inspection shall be in accordance with Section 9.2. For joints that are designated in the contract documents as slip-critical, the inspection shall be in accordance with Section 9.3.

### 9.1. Snug-Tightened Joints

Prior to the start of work, it shall be ensured that all fastener components to be used in the work meet the requirements in Section 2. Subsequently, it shall be ensured that all connected plies meet the requirements in Section 3.1 and all bolt holes meet the requirements in Sections 3.3 and 3.4. After the connections have been assembled, it shall be visually ensured that the plies of the connected elements have been brought into firm contact and that washers have been used as required in Section 6. It shall be determined that all of the bolts in the joint have been tightened sufficiently to prevent the turning of the nuts without the use of a wrench. No further evidence of conformity is required for snugtightened joints. Where visual inspection indicates that the fastener may not have been sufficiently tightened to prevent the removal of the nut by hand, the inspector shall physically check for this condition for the fastener.

## Commentary:

Inspection requirements for snug-tightened joints consist of verification that the proper fastener components were used, the connected elements were fabricated properly, the bolted joint was drawn into firm contact, and that the nuts could not be removed without the use of a wrench. Because pretension, beyond what is required to ensure that the nut cannot be removed from the bolt without the use of a wrench, is not required for the proper performance of a snug-tightened joint, the installed bolts should not be inspected to determine the actual installed pretension. Likewise, the arbitration procedures described in Section 10 are not applicable.

### 9.2. Pretensioned Joints

For pretensioned joints, the following inspection shall be performed in addition to that required in Section 9.1:
(1) When the turn-of-nut pretensioning method is used for installation, the inspection shall be in accordance with Section 9.2.1;
(2) When the calibrated wrench pretensioning method is used for installation, the inspection shall be in accordance with Section 9.2.2;
(3) When the twist-off-type tension-control bolt pretensioning method is used for installation, the inspection shall be in accordance with Section 9.2.3;
(4) When the direct-tension-indicator pretensioning method is used for installation, the inspection shall be in accordance with Section 9.2.4; and,
(5) When alternative-design fasteners that meet the requirements of Section 2.8 or alternative washer-type indicating devices that meet the requirements of Section 2.6.2 are used, the inspection shall be in accordance with inspection instructions provided by the manufacturer and approved by the Engineer of Record.

## Commentary:

When joints are designated as pretensioned, they are not subject to the same faying-surface-treatment inspection requirements as is specified for slip-critical joints in Section 9.3.
9.2.1. Turn-of-Nut Pretensioning: The inspector shall observe the pre-installation verification testing required in Section 8.2. Subsequently, it shall be ensured by routine observation that the bolting crew properly rotates the turned element relative to the unturned element by the amount specified in Table 8.2. Alternatively, when fastener assemblies are match-marked after the initial fitup of the joint but prior to pretensioning, visual inspection after pretensioning is permitted in lieu of routine observation. No further evidence of conformity is required. A pretension that is greater than the value specified in Table 8.1 shall not be cause for rejection. A rotation that exceeds the required values, including tolerance, specified in Table 8.2 shall not be cause for rejection.

## Commentary:

Match-marking of the assembly during installation as discussed in the Commentary to Section 8.2.1 improves the ability to inspect bolts that have been pretensioned with the turn-of-nut pretensioning method. The sides of nuts and bolt heads that have been impacted sufficiently to induce the Table 8.1 minimum pretension will appear slightly peened.

The turn-of-nut pretensioning method, when properly applied and verified during the construction, provides more reliable installed pretensions than after-the-fact inspection testing. Therefore, proper inspection of the method is for the inspector to observe the required pre-installation verification testing of the fastener assemblies and the method to be used, followed by monitoring of the work in progress to ensure that the method is routinely and properly applied, or visual inspection of match-marked assemblies.

Some problems with the turn-of-nut pretensioning method have been encountered with hot-dip galvanized bolts. In some cases, the problems have been attributed to an especially effective lubricant applied by the manufacturer to ensure that bolts and nuts from stock will meet the ASTM Specification requirements for minimum turns testing of galvanized fasteners. Job-site testing in the tension calibrator demonstrated that the lubricant reduced
the coefficient of friction between the bolt and nut to the degree that "the full effort of an ironworker using an ordinary spud wrench" to snug-tighten the joint actually induced the full required pretension. Also, because the nuts could be removed with an ordinary spud wrench, they were erroneously judged by the inspector to be improperly pretensioned. Excessively lubricated high-strength bolts may require significantly less torque to induce the specified pretension. The required pre-installation verification will reveal this potential problem.

Conversely, the absence of lubrication or lack of proper over-tapping can cause seizing of the nut and bolt threads, which will result in a twist failure of the bolt at less than the specified pretension. For such situations, the use of a tension calibrator to check the bolt assemblies to be installed will be helpful in establishing the need for lubrication.
9.2.2. Calibrated Wrench Pretensioning: The inspector shall observe the preinstallation verification testing required in Sections 8.2 and 8.2.2. Subsequently, it shall be ensured by routine observation that the bolting crew properly applies the calibrated wrench to the turned element. No further evidence of conformity is required. A pretension that is greater than the value specified in Table 8.1 shall not be cause for rejection.

## Commentary:

For proper inspection of the method, it is necessary for the inspector to observe the required pre-installation verification testing of the fastener assemblies and the method to be used, followed by monitoring of the work in progress to ensure that the method is routinely and properly applied within the limits on time between removal from protected storage and final pretensioning.
9.2.3. Twist-Off-Type Tension-Control Bolt Pretensioning: The inspector shall observe the pre-installation verification testing required in Section 8.2. Subsequently, it shall be ensured by routine observation that the splined ends are properly severed during installation by the bolting crew. No further evidence of conformity is required. A pretension that is greater than the value specified in Table 8.1 shall not be cause for rejection.

## Commentary:

The sheared-off splined end of an installed twist-off-type tension-control bolt assembly merely signifies that at some time the bolt was subjected to a torque that was adequate to cause the shearing. If in fact all fasteners are individually pretensioned in a single continuous operation without first properly snug-tightening all fasteners, they may give a misleading indication that the bolts have been properly pretensioned. Therefore, it is necessary that the inspector observe the required pre-installation verification testing of the fastener assemblies, and the ability to apply partial tension prior to twist-off is demonstrated. This is followed by monitoring of the work in progress to ensure
that the method is routinely and properly applied within the limits on time between removal from protected storage and final twist-off of the splined end.
9.2.4. Direct-Tension-Indicator Pretensioning: The inspector shall observe the preinstallation verification testing required in Sections 8.2 and 8.2.4. Subsequently, but prior to pretensioning, it shall be ensured by routine observation that the appropriate feeler gage is accepted in at least half of the spaces between the protrusions of the direct tension indicator and that the protrusions are properly oriented away from the work. If the appropriate feeler gage is accepted in fewer than half of the spaces, the direct tension indicator shall be removed and replaced. After pretensioning, it shall be ensured by routine observation that the appropriate feeler gage is refused entry into at least half of the spaces between the protrusions. No further evidence of conformity is required. A pretension that is greater than that specified in Table 8.1 shall not be cause for rejection.

## Commentary:

When the joint is initially snug tightened, the direct tension indicator arch-like protrusions will generally compress partially. Whenever the snug-tightening operation causes one-half or more of the gaps between these arch-like protrusions to close to 0.015 in . or less $(0.005 \mathrm{in}$. or less for coated direct tension indicators), the direct tension indicator should be replaced. Only after this initial operation should the bolts be pretensioned in a systematic manner. If the bolts are installed and pretensioned in a single continuous operation, direct tension indicators may give the inspector a misleading indication that the bolts have been properly pretensioned. Therefore, it is necessary that the inspector observe the required pre-installation verification testing of the fastener assemblies with the direct-tension indicators properly located and the method to be used. Following this operation, the inspector should monitor the work in progress to ensure that the method is routinely and properly applied.

### 9.3. Slip-Critical Joints

Prior to assembly, it shall be visually verified that the faying surfaces of slipcritical joints meet the requirements in Section 3.2.2. Subsequently, the inspection required in Section 9.2 shall be performed.

## Commentary:

When joints are specified as slip-critical, it is necessary to verify that the faying surface condition meets the requirements as specified in the contract documents prior to assembly of the joint and that the bolts are properly pretensioned after they have been installed. Accordingly, the inspection requirements for slipcritical joints are identical to those specified in Section 9.2, with additional faying surface condition inspection requirements.

## SECTION 10. ARBITRATION

When it is suspected after inspection in accordance with Section 9.2 or Section 9.3 that bolts in pretensioned or slip-critical joints do not have the proper pretension, the following arbitration procedure is permitted.
(1) A representative sample of five bolt and nut assemblies of each combination of diameter, length, grade and lot in question shall be installed in a tension calibrator. The material under the turned element shall be the same as in the actual installation, that is, structural steel or hardened washer. The bolt shall be partially pretensioned to approximately 15 percent of the pretension specified in Table 8.1. Subsequently, the bolt shall be pretensioned to the minimum value specified in Table 8.1;
(2) A manual torque wrench that indicates torque by means of a dial, or one that may be adjusted to give an indication that a defined torque has been reached, shall be applied to the pretensioned bolt. The torque that is necessary to rotate the nut or bolt head five degrees (approximately 1 in . at 12 in . radius) relative to its mating component in the tightening direction shall be determined. The arbitration torque shall be determined by rejecting the high and low values and averaging the remaining three; and,
(3) Bolts represented by the above sample shall be tested by applying, in the tightening direction, the arbitration torque to 10 percent of the bolts, but no fewer than two bolts, selected at random in each joint in question. If no nut or bolt head is turned relative to its mating component by application of the arbitration torque, the joint shall be accepted as properly pretensioned.

If verification of bolt pretension is required after the passage of a period of time and exposure of the completed joints, an alternative arbitration procedure that is appropriate to the specific situation shall be used.

If any nut or bolt is turned relative to its mating component by an attempted application of the arbitration torque, all bolts in the joint shall be tested. Those bolts whose nut or head is turned relative to its mating component by application of the arbitration torque shall be re-pretensioned by the Fabricator or Erector and reinspected. Alternatively, the Fabricator or Erector, at their option, is permitted to re-pretension all of the bolts in the joint and subsequently resubmit the joint for inspection.

## Commentary:

When bolt pretension is arbitrated using torque wrenches after pretensioning, such arbitration is subject to all of the uncertainties of torque-controlled calibrated wrench installation that are discussed in the Commentary to Section 8.2.2. Additionally, the reliability of after-the-fact torque wrench arbitration is reduced by the absence of many of the controls that are necessary to minimize the variability of the torque-to-pretension relationship, such as:
(1) The use of hardened washers ${ }^{2}$;
(2) Careful attention to lubrication; and,
(3) The uncertainty of the effect of passage of time and exposure in the installed condition.

Furthermore, in many cases such arbitration may have to be based upon an arbitration torque that is determined either using bolts that can only be assumed to be representative of the bolts used in the actual job or using bolts that are removed from completed joints. Ultimately, such arbitration may wrongly reject bolts that were subjected to a properly implemented installation procedure. The arbitration procedure contained in this Specification is provided, in spite of its limitations, as the most feasible available at this time.

Arbitration using an ultrasonic extensometer or a mechanical one capable of measuring changes in bolt length can be performed on a sample of bolts that is representative of those that have been installed in the work. Several manufacturers produce equipment specifically for this application. The use of appropriate techniques, which includes calibration, can produce a very accurate measurement of the actual pretension. The method involves measurement of the change in bolt length during the release of the nut, combined with either a load calibration of the removed fastener assembly or a theoretical calculation of the force corresponding to the measured elastic release or "stretch." Reinstallation of the released bolt or installation of a replacement bolt is required.

The required release suggests that the direct use of extensometers as an inspection tool be used in only the most critical cases. The problem of reinstallation may require bolt replacement unless torque can be applied slowly using a manual or hydraulic wrench, which will permit the restoration of the original elongation.

[^53]
## APPENDIX A. TESTING METHOD TO DETERMINE THE SLIP COEFFICIENT FOR COATINGS USED IN BOLTED JOINTS

## SECTION A1. GENERAL PROVISIONS

## A1.1. Purpose and Scope

The purpose of this testing procedure is to determine the mean slip coefficient of a coating for use in the design of slip-critical joints. Adherence to this testing method provides that the creep deformation of the coating due to both the clamping force of the bolt and the service-load joint shear are such that the coating will provide satisfactory performance under sustained loading.

## Commentary:

The Research Council on Structural Connections on June 14, 1984, first approved the testing method developed by Yura and Frank (1985). It has since been revised to incorporate changes resulting from the intervening years of experience with the testing method, and is now included as an appendix to this Specification.

The slip coefficient under short-term static loading has been found to be independent of the magnitude of the clamping force, variations in coating thickness and bolt hole diameter.

The proposed test methods are designed to provide the necessary information to evaluate the suitability of a coating for slip-critical joints and to determine the mean slip coefficient to be used in the design of the joints. The initial testing of the compression specimens provides a measure of the scatter of the slip coefficient.

The creep tests are designed to measure the creep behavior of the coating under the service loads, determined by the slip coefficient of the coating based upon the compression test results. The slip test conducted at the conclusion of the creep test is to ensure that the loss of clamping force in the bolt does not reduce the slip load below that associated with the design slip coefficient. ASTM A490 bolts are specified, since the loss of clamping force is larger for these bolts than that for ASTM A325 bolts. Qualification of the coating for use in a structure at an average thickness of 2 mils less than that to be used for the test specimen is to ensure that a casual buildup of the coating due to overspray and other causes does not jeopardize the coating's performance.

## A1.2. Definition of Essential Variables

Essential variables are those that, if changed, will require retesting of the coating to determine its mean slip coefficient. The essential variables and the relationship of these variables to the limitations of application of the coating for structural joints are given below. The slip coefficient testing shall be repeated if there is any change in these essential variables.

A1.2.1. Time Interval: The time interval between application of the coating and the time of testing is an essential variable. The time interval must be recorded in hours and any special curing procedures detailed. Curing according to published manufacturer's recommendations would not be considered a special curing procedure. The coatings are qualified for use in structural connections that are assembled after coating for a time equal to or greater than the interval used in the test specimens. Special curing conditions used in the test specimens will also apply to the use of the coating in the structural connections.

A1.2.2. Coating Thickness: The coating thickness is an essential variable. The maximum average coating thickness, as per SSPC PA2 (SSPC 1993; SSPC 1991), allowed on the faying surfaces is 2 mils less than the average thickness, rounded to the nearest whole mil, of the coating that is used on the test specimens.

A1.2.3. Coating Composition and Method of Manufacture: The composition of the coating, including the thinners used, and its method of manufacture are essential variables.

## A1.3. Retesting

A coating that fails to meet the creep or the post-creep slip test requirements in Section A4 may be retested in accordance with methods in Section A4 at a lower slip coefficient without repeating the static short-term tests specified in Section A3. Essential variables shall remain unchanged in the retest.

## SECTION A2. TEST PLATES AND COATING OF THE SPECIMENS

## A2.1. Test Plates

The test specimen plates for the short-term static tests are shown in Figure A1. The plates are 4 in. $\times 4 \mathrm{in} . \times 5 / 8$ in. thick, with a 1 in. diameter hole drilled $11 / 2$ in. $\pm 1 / 16$ in. from one edge. The test specimen plates for the creep tests are shown in Figure A2. The plates are $4 \mathrm{in} . \times 7 \mathrm{in} . \times 5 / 8 \mathrm{in}$. thick with two 1 in . diameter holes drilled $11 / 2 \mathrm{in} . \pm 1 / 16 \mathrm{in}$. from each end. The edges of the plates may be milled, as-rolled or saw-cut; thermally cut edges are not permitted. The plates shall be flat enough to ensure that they will be in reasonably full contact over the faying surface. All burrs, lips or rough edges shall be removed. The arrangement of the specimen plates for the testing is shown in Figure A2. The plates shall be fabricated from a steel with a specified minimum yield strength that is between 36 and 50 ksi .

If specimens with more than one bolt are desired, the contact surface per bolt shall be $4 \mathrm{in} . \times 3 \mathrm{in}$. as shown for the single-bolt specimen in Figure A1.

## Commentary:

The use of 1 in .-diameter bolt holes in the specimens is to ensure that adequate clearance is available for slip. Fabrication tolerances, coating buildup on the holes, and assembly tolerances tend to reduce the apparent clearances.

## A2.2. Specimen Coating

Coatings are to be applied to the specimens in a manner that is consistent with that to be used in the actual intended structural application. The method of applying the coating and the surface preparation shall be given in the test report. The specimens are to be coated to an average thickness that is 2 mils greater than the maximum thickness to be used in the structure on both of the plate surfaces (the faying and outer surfaces). The thickness of the total coating and the primer, if used, shall be measured on the contact surface of the specimens. The thickness shall be measured in accordance with SSPC-PA2 (SSPC, 1993; SSPC, 1991). Two spot readings (six gage readings) shall be made for each contact surface. The overall average thickness from the three plates comprising a specimen is the average thickness for the specimen. This value shall be reported for each specimen. The average coating thickness of the creep specimens shall be calculated and reported.

The time between application of the coating and specimen assembly shall be the same for all specimens within $\pm 4$ hours. The average time shall be calculated and reported.


All plates are $5 / 8$-in. thick All dimensions are in inches

Figure A-1. Compression slip test specimen.


## All dimensions are typical <br> All plates are 5/8-in. thick <br> All dimensions are in inches

Figure A-2. Creep test specimen assembly.

## 16.2-70

## SECTION A3. SLIP TESTS

The methods and procedures described herein are used to experimentally determine the mean slip coefficient under short-term static loading for high-strength bolted joints. The mean slip coefficient shall be determined by testing one set of five specimens.

## Commentary:

The slip load measured in this setup yields the slip coefficient directly since the clamping force is controlled and measured directly. The resulting slip coefficient has been found to correlate with both tension and compression tests of bolted specimens. However, tests of bolted specimens revealed that the clamping force may not be constant but decreases with time due to the compressive creep of the coating on the faying surfaces and under the nut and bolt head. The reduction in clamping force can be considerable for joints with high clamping force and thick coatings (as much as a 20 percent loss). This reduction in clamping force causes a corresponding reduction in the slip load. The resulting reduction in slip load must be considered in the procedure used to determine the design allowable slip loads for the coating.

The loss in clamping force is a characteristic of the coating. Consequently, it cannot be accounted for by an increase in the factor of safety or a reduction in the clamping force used for design without unduly penalizing coatings that do not exhibit this behavior.

## A3.1. Compression Test Setup

The test setup shown in Figure A3 has two major loading components, one to apply a clamping force to the specimen plates and another to apply a compressive load to the specimen so that the load is transferred across the faying surfaces by friction.

A3.1.1. Clamping Force System: The clamping force system consists of a $7 / 8 \mathrm{in}$. diameter threaded rod that passes through the specimen and a centerhole compression ram. An ASTM A563 grade DH nut is used at both ends of the rod and a hardened washer is used at each side of the test specimen. Between the ram and the specimen is a specially modified $7 / 8 \mathrm{in}$. diameter ASTM A563 grade DH nut in which the threads have been drilled out so that it will slide with little resistance along the rod. When oil is pumped into the centerhole ram, the piston rod extends, thus forcing the special nut against one of the outside plates of the specimen. This action puts tension in the threaded rod and applies a clamping force to the specimen, thereby simulating the effect of a pretensioned bolt. If the diameter of the centerhole ram is greater than 1 in., additional plate washers will be necessary at the ends of the ram. The clamping force system shall have a capability to apply a load of at least 49 kips and shall maintain this load during the test with an accuracy of 0.5 kips .

## Commentary:

The slip coefficient can be easily determined using the hydraulic bolt test setup included in this Specification. The clamping force system simulates the clamping action of a pretensioned high-strength bolt. The centerhole ram
applies a clamping force to the specimen, simulating that due to a pretensioned bolt.

A3.1.2. Compressive Load System: A compressive load shall be applied to the specimen until slip occurs. This compressive load shall be applied with a compression test machine or a reaction frame using a hydraulic loading device. The loading device and the necessary supporting elements shall be able to support a force of 120 kips. The compression loading system shall have a minimum accuracy of 1 percent of the slip load.


Rod and nuts are 7/8-in. diameter
Figure A-3. Compression slip test setup.

## A3.2. Instrumentation

A3.2.1. Clamping Force: The clamping force shall be measured within 0.5 kips. This is accomplished by measuring the pressure in the calibrated ram or placing a load cell in series with the ram.

A3.2.2. Compression Load: The compression load shall be measured during the test by direct reading from a compression testing machine, a load cell in series with the specimen and the compression loading device or pressure readings on a calibrated compression ram.

A3.2.3. Slip Deformation: The displacement of the center plate relative to the two outside plates shall be measured. This displacement, called "slip" for simplicity, shall be the average or that which occurs at the centerline of the specimen. This can be accomplished by using the average of two gages placed on the two exposed edges of the specimen or by monitoring the movement of the loading head relative to the base. If the latter method is used, due regard shall be taken for any slack that may be present in the loading system prior to application of the load. Deflections shall be measured by dial gages or any other calibrated device that has an accuracy of at least 0.001 in .

## A3.3. Test Procedure

The specimen shall be installed in the test setup as shown in Figure A3. Before the hydraulic clamping force is applied, the individual plates shall be positioned so that they are in, or close to, full bearing contact with the $7 / 8 \mathrm{in}$. threaded rod in a direction that is opposite to the planned compressive loading to ensure obvious slip deformation. Care shall be taken in positioning the two outside plates so that the specimen is perpendicular to the base with both plates in contact with the base. After the plates are positioned, the centerhole ram shall be engaged to produce a clamping force of 49 kips. The applied clamping force shall be maintained within $\pm 0.5 \mathrm{kips}$ during the test until slip occurs.

The spherical head of the compression loading machine shall be brought into contact with the center plate of the specimen after the clamping force is applied. The spherical head or other appropriate device ensures concentric loading. When 1 kip or less of compressive load is applied, the slip gages shall be engaged or attached. The purpose of engaging the deflection gage(s), after a slight load is applied, is to eliminate initial specimen settling deformation from the slip reading.

When the slip gages are in place, the compression load shall be applied at a rate that does not exceed 25 kips per minute nor 0.003 in . of slip displacement per minute until the slip load is reached. The test should be terminated when a slip of 0.05 in . or greater is recorded. The load-slip relationship should preferably be monitored continuously on an X-Y plotter throughout the test, but in lieu of continuous data, sufficient load-slip data shall be recorded to evaluate the slip load defined below.

## A3.4. Slip Load

Typical load-slip response is shown in Figure A4. Three types of curves are usually observed and the slip load associated with each type is defined as follows:

Curve (a) Slip load is the maximum load, provided this maximum occurs before a slip of 0.02 in . is recorded.
Curve (b) Slip load is the load at which the slip rate increases suddenly.
Curve (c) Slip load is the load corresponding to a deformation of 0.02 in . This definition applies when the load vs. slip curves show a gradual change in response.


Figure A-4. Definition of slip load.

## A3.5. Slip Coefficient

The slip coefficient for an individual specimen $k_{s}$ shall be calculated as follows:

$$
\begin{equation*}
k_{s}=\frac{\text { slip load }}{2 \times \text { clamping force }} \tag{EquationA3.1}
\end{equation*}
$$

The mean slip coefficient $\mu$ for one set of five specimens shall be reported.

## A3.6. Alternative Test Methods

Alternative test methods to determine slip are permitted, provided the accuracy of load measurement and clamping satisfies the conditions presented in the previous sections. For example, the slip load may be determined from a tensiontype test setup rather than the compression-type test setup as long as the contact surface area per bolt of the test specimen is the same as that shown in Figure A1. The clamping force of at least 49 kips may be applied by any means, provided the force can be established within $\pm 1$ percent.

## Commentary:

Alternative test procedures and specimens may be used as long as the accuracy of load measurement and specimen geometry are maintained as prescribed. For example, strain-gaged bolts can usually provide the desired accuracy. However, bolts that are pretensioned by the turn-of-nut, calibrated wrench, alternativedesign fastener, or direct-tension-indicator pretensioning method usually show too much variation to meet the $\pm 1$ percent requirement of the slip test.

## SECTION A4. TENSION CREEP TEST

The test method outlined is intended to ensure that the coating will not undergo significant creep deformation under sustained service loading. The test also indicates the loss in clamping force in the bolt due to the compression or creep of the coating. Three replicate specimens are to be tested.

## Commentary:

The creep deformation of the bolted joint under the applied shear loading is also an important characteristic and a function of the coating applied. Thicker coatings tend to creep more than thinner coatings. Rate of creep deformation increases as the applied load approaches the slip load. Extensive testing has shown that the rate of creep is not constant with time, rather it decreases with time. After about 1,000 hours of loading, the additional creep deformation is negligible.

## A4.1. Test Setup

Tension-type specimens, as shown in Figure A2, are to be used. The replicate specimens are to be linked together in a single chain-like arrangement, using loose pin bolts, so the same load is applied to all specimens. The specimens shall be assembled so the specimen plates are bearing against the bolt in a
direction opposite to the applied tension loading. Care shall be taken in the assembly of the specimens to ensure the centerline of the holes used to accept the pin bolts is in line with the bolts used to assemble the joint. The load level, specified in Section A4.2, shall be maintained constant within $\pm 1$ percent by springs, load maintainers, servo controllers, dead weight or other suitable equipment. The bolts used to clamp the specimens together shall be $7 / 8 \mathrm{in}$. diameter ASTM A490 bolts. All bolts shall come from the same lot.

The clamping force in the bolts shall be a minimum of 49 kips. The clamping force shall be determined by calibrating the bolt force with bolt elongation, if standard bolts are used. Alternatively, special fastener assemblies that control the clamping force by other means, such as calibrated bolt torque or strain gages, are permitted. A minimum of three bolt calibrations shall be performed using the technique selected for bolt force determination. The average of the three-bolt calibration shall be calculated and reported. The method of measuring bolt force shall ensure the clamping force is within $\pm 2$ kips of the average value.

The relative slip between the outside plates and the center plates shall be measured to an accuracy of 0.001 in . These slips are to be measured on both sides of each specimen.

## A4.2. Test Procedure

The load to be placed on the creep specimens is the service load permitted by Equation 5.7 for $7 / 8$ in. diameter ASTM A490 bolts in slip-critical joints for the particular slip coefficient category under consideration. The load shall be placed on the specimen and held for 1,000 hours. The creep deformation of a specimen is calculated using the average reading of the two displacements on either side of the specimen. The difference between the average after 1,000 hours and the initial average reading taken within one-half hour after loading the specimens is defined as the creep deformation of the specimen. This value shall be reported for each specimen. If the creep deformation of any specimen exceeds 0.005 in ., the coating has failed the test for the slip coefficient used. The coating may be retested using new specimens in accordance with this Section at a load corresponding to a lower value of slip coefficient.

If the value of creep deformation is less than 0.005 in . for all specimens, the specimens shall be loaded in tension to a load that is equal to the average clamping force times the design slip coefficient times 2 , since there are two slip planes. The average slip deformation that occurs at this load shall be less than 0.015 in . for the three specimens. If the deformation is greater than this value, the coating is considered to have failed to meet the requirements for the particular mean slip coefficient used. The value of deformation for each specimen shall be reported.

## Commentary:

See Commentary in Section A1.1.

## REFERENCES

Allen, R.N. and J.W. Fisher, 1968, "Bolted Joints With Oversize or Slotted Holes," Journal of the Structural Division, Vol. 94, No. ST9, September, ASCE, Reston, VA.

American Institute of Steel Construction, 2010, Specification for Structural Steel Buildings, AISC, Chicago, IL.

Birkemoe, P.C. and D.C. Herrschaft, 1970, "Bolted Galvanized Bridges-Engineering Acceptance Near," Civil Engineering, April, ASCE, Reston, VA.

Borello, Denavit, Hajjar, 2009, "Behavior of Bolted Steel Slip Critical Connections with Fillers", UIUC.

Brahimi, Salim, 2006, "Qualification of DACROMET ${ }^{\circledR}$ for use with ASTM A490 HighStrength Structural Bolts," IBECA Technologies Corp., ASTM F16 Research Report RR: F16-1001.

Carter, C.J., R.H.R. Tide and J.A. Yura, 1997, "A Summary of Changes and Derivation of LRFD Bolt Design Provisions," Engineering Journal, Vol. 34, No. 3, (3rd Qtr.), AISC, Chicago, IL.

Carter, C.J., 1996, "Specifying Bolt Length for High-Strength Bolts," Engineering Journal, Vol. 33, No. 2, (2nd Qtr.), AISC, Chicago, IL.

Chesson, Jr., E, N.L. Faustino and W.H. Munse, 1965, "High-Strength Bolts Subjected to Tension and Shear," Journal of the Structural Division, Vol. 91, No. ST5, October, ASCE, Reston, VA.

Fisher, J.W. and J.L. Rumpf, 1965, "Analysis of Bolted Butt Joints," Journal of the Structural Division, Vol. 91, No. ST5, October, ASCE, Reston, VA.

Frank, K.H. and J.A. Yura, 1981, "An Experimental Study of Bolted Shear Connections," FHWA/RD-81/148, December, Federal Highway Administration, Washington, D.C.

Grondin, Ming, Josi, 2008, "Slip Critical Bolted Connections - A Reliability Analysis for Design at the Ultimate Limit State", University of Alberta.

Kulak, G.L., J.W. Fisher and J.H.A. Struik, 1987, Guide to Design Criteria for Bolted and Riveted Joints, Second Edition, John Wiley \& Sons, New York, NY.

Kulak, G.L. and P.C. Birkemoe, 1993, "Field Studies of Bolt Pretension," Journal of Constructional Steel Research, No. 25, pp. 95-106.

Kulak, G.L. and S.T. Undershute, 1998, "Tension Control Bolts: Strength and Installation," Journal of Bridge Engineering, Vol. 3 No. 1, February, ASCE, Reston, VA.

Manuel, T.J. and G.L. Kulak, 2000, "Strength of Joints that Combine Bolts and Welds," Journal of Structural Engineering, Vol. 126, No. 3, March, ASCE, Reston, VA.

McKinney, M. and F.J. Zwerneman, 1993, "The Effect of Burrs on the Slip Capacity in Multiple Bolt Connections," Final Report to the Research Council on Structural Connections, August.

Munse, W. H., 1967, "Structural Behavior of Hot Galvanized Bolted Connections," Proceedings of the 8th International Conference on Hot-dip Galvanizing, June, London, England.

Polyzois, D. and K.H. Frank, 1986, "Effect of Overspray and Incomplete Masking of Faying Surfaces on the Slip Resistance of Bolted Connections," Engineering Journal, Vol. 23, No. 2, (2nd Qtr), AISC, Chicago, IL.

Polyzois, D. and J.A. Yura, 1985, "Effect of Burrs on Bolted Friction Connections," Engineering Journal, Vol.22, No. 3, (3rd Qtr), AISC, Chicago, IL.

Schnupp, K. O.; Murray, T. M. (2003), "Effects of Head Size on the Performance of Twist-Off Bolts," Virginia Polytechnic Institute and State University, CC/VTI-ST 03/09, July 2003.

Sherman, D.R. and J.A. Yura, 1998, "Bolted Double-Angle Compression Members," Journal of Constructional Steel Research, 46:1-3, Paper No. 197, Elsevier Science Ltd., Kidlington, Oxford, UK.

SSPC, 1993, Steel Structures Painting Manual, Vol. 1, Third Edition, SSPC: The Society for Protective Coatings, Pittsburgh, PA.

SSPC, 1991, Steel Structures Painting Manual, Vol. 2, Sixth Edition, SSPC: The Society for Protective Coatings, Pittsburgh, PA.

Tide, R.H.R., 2010, "Bolt Shear Design Considerations," Engineering Journal, Vol. 47, No. 1, ( $1^{\text {st }} \mathrm{Qtr}$.), AISC, Chicago, IL.

Yura, J.A. and K.H. Frank, 1985, "Testing Method to Determine Slip Coefficient for Coatings Used in Bolted Joints," Engineering Journal, Vol. 22, No. 3, (3rd Qtr.), AISC, Chicago, IL.
16.2-78

Yura, J.A., K.H. Frank and L. Cayes, 1981, "Bolted Friction Connections with Weathering Steel," Journal of the Structural Division, Vol. 107, No. ST11, November, ASCE, Reston, VA.

## INDEX

Alternative-design fasteners ..... 16
Alternative washer-type indicating device ..... 14
Arbitration ..... 64
Bearing strength ..... 36
Bolt holes
Bearing strength at ..... 36
Use of ..... 21
Bolt pretensioning ..... 52
Using calibrated wrench pretensioning ..... 55
Using direct-tension-indicator pretensioning ..... 57
Using turn-of-nut pretensioning ..... 53
Using twist-off-type tension-control bolt pretensioning ..... 57
Bolted joints, limit states in ..... 31
Bolted parts ..... 17
Bolts
Alternative-design fasteners ..... 16
Geometry ..... 6
Heavy-hex structural ..... 6
Reuse ..... 6
Specifications ..... 6
Twist-off-type tension-control bolt assemblies ..... 15
Burrs ..... 25
Calibrated wrench pretensioning
Inspection of. ..... 62
Installation using ..... 55
Use of washers in ..... 44
Calibrator, tension ..... 47
Certification of fastener components, manufacturer ..... 5
Coatings
On faying surfaces ..... 17
Testing method to determine the slip coefficient for ..... 66
Combined shear and tension ..... 35
Components, fastener ..... 5
Compressible-washer-type direct tension indicators ..... 14
Connected plies ..... 17
Design
Bearing strength at bolt holes ..... 36
Combined shear and tension ..... 35
General ..... 31
Shear strength ..... 32
Slip resistance ..... 38
Tensile fatigue ..... 42
Tensile strength ..... 32
Direct tension indicators
Compressible-washer-type, general ..... 14
Inspection of. ..... 63
Installation using ..... 57
Use of washers with ..... 44
Drawing information ..... 4
Fasteners
Alternative-design ..... 16
Manufacturer certification of ..... 5
Storage of ..... 5
Fatigue, tensile ..... 42
Faying surfaces ..... 17
Coated ..... 18
Galvanized ..... 18
In pretensioned joints ..... 17
In slip-critical joints ..... 18
In snug-tightened joints ..... 17
Uncoated ..... 18
Galvanized faying surfaces ..... 18
General requirements ..... 1
Geometry
Bolts ..... 6
Nuts ..... 13
Twist-off-type tension-control bolt assemblies ..... 15
Heavy-hex nuts ..... 13
Heavy-hex structural bolts ..... 6
Holes
Bolt ..... 21
Long-slotted ..... 24
Oversized ..... 23
Oversized, use of washers with ..... 45
Short-slotted ..... 23
Slotted, use of washers with ..... 44,45
Standard ..... 23
Indicating devices
Alternative washer-type ..... 14
Twist-off-type tension-control bolt assemblies ..... 15
Washer-type ..... 14
Inspection ..... 60
Of calibrated wrench pretensioning ..... 62
Of direct-tension-indicator pretensioning ..... 63
Of pretensioned joints ..... 60
Of slip-critical joints ..... 63
Of snug-tightened joints ..... 60
Of turn-of-nut pretensioning ..... 61
Of twist-off-type tension-control bolt pretensioning ..... 62
Installation ..... 51
In pretensioned joints ..... 52
In slip-critical joints ..... 52
In snug-tightened joints ..... 51
Using calibrated wrench pretensioning ..... 55
Using direct-tension-indicator pretensioning ..... 57
Using turn-of-nut pretensioning ..... 53
Using twist-off-type tension-control bolt pretensioning ..... 57
Joints
Limit states in ..... 31
Pretensioned ..... 29
Faying surfaces in ..... 17
Inspection of ..... 60
Installation in ..... 52
Slip-critical ..... 29
Faying surfaces in ..... 18
Inspection of ..... 63
Installation in ..... 52
Snug-tightened ..... 28
Faying surfaces ..... 17
Inspection of ..... 60
Installation in ..... 51
Type ..... 26
Limit states in bolted joints ..... 31
Loads ..... 1
Combinations ..... 1
Factors ..... 1
Long-slotted holes
General ..... 24
Use of washers with ..... 44,45
Manufacturer certification of fastener components. ..... 5
Nuts
Geometry ..... 13
Heavy-hex ..... 13
Specifications ..... 13
Oversized holes
General ..... 23
Use of washers with ..... 45
Parts, bolted ..... 17
Plies, connected ..... 17
Pre-installation verification ..... 47
Pretensioned joints
Faying surfaces in ..... 17
General ..... 29
Inspection of. ..... 60
Installation in ..... 52
Use of washers in ..... 44
Using calibrated wrench pretensioning ..... 55
Using direct-tension-indicator pretensioning ..... 57
Using turn-of-nut pretensioning ..... 53
Using twist-off-type tension-control bolt pretensioning ..... 57
References ..... 76
Requirements, general ..... 1
Reuse, bolts ..... 6
Shear, nominal strength ..... 32
Short-slotted holes
General ..... 23
Use of washers with ..... 44,45
Slip coefficient for coatings, testing to determine ..... 66
Slip-critical joints
Faying surfaces in ..... 18
General ..... 29
Inspection of. ..... 63
Installation in ..... 52
Use of washers in ..... 44
Slip resistance ..... 38
Slotted hole, use of washers with ..... 44,45
Snug-tightened joints
Faying surfaces in ..... 17
General ..... 28
Inspection of. ..... 60
Installation in ..... 51
Snug-tightened joints (cont'd)
Use of washers in ..... 44
Specifications
Bolts ..... 6
General ..... 3
Nuts ..... 13
Twist-off-type tension-control bolt assemblies ..... 15
Washers ..... 14
Standard holes ..... 23
Standards ..... 3
Storage of fastener components ..... 5
Strength
Combined shear and tension ..... 35
Bearing ..... 36
Shear ..... 32
Slip resistance ..... 38
Tensile ..... 32
Tensile fatigue ..... 42
Surfaces, faying ..... 17
Tensile design strength ..... 32
Tensile fatigue ..... 42
Tension calibrator ..... 47
Testing, slip coefficient for coatings. ..... 66
Turn-of-nut pretensioning
Inspection of. ..... 61
Installation using ..... 53
Twist-off-type tension-control bolt assemblies
Geometry ..... 15
Inspection of. ..... 62
Installation using ..... 57
Specifications ..... 15
Use of washers in ..... 44
Uncoated faying surfaces ..... 18
Use of washers ..... 44
Verification, pre-installation. ..... 47
Washers
General ..... 14
Use of ..... 44
Washer-type indicating devices ..... 14

www.boltcouncil.org
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
c/o AISC, One East Wacker Drive, Suite 700, Chicago, Illinois 60601

AISC 348-14

# Code of Standard Practice for Steel Buildings and Bridges 

June 15, 2016

Supersedes the Code of Standard Practice for Steel Buildings and Bridges dated April 14, 2010 and all previous versions

Approved by the Committee on the Code of Standard Practice

© AISC 2016
by

American Institute of Steel Construction

> All rights reserved. This book or any part thereof must not be reproduced in any form without the written permission of the publisher. The AISC logo is a registered trademark of AISC.

The information presented in this publication has been prepared by a balanced committee following American National Standards Institute (ANSI) consensus procedures and recognized principles of design, construction and contract interpretation. This document is intended as a statement of custom and usage in structural steel construction. Competent design, construction and legal advice should be sought when applying the provisions of this document to a specific construction project or contract document. The publication of this information is not a representation or warranty on the part of the American Institute of Steel Construction, its officers, agents, employees or committee members, or of any other person named herein. All representations or warranties, express or implied, other than as stated above, are specifically disclaimed. Anyone making use of the information presented in this publication assumes all liability arising from such use.

Caution must be exercised when relying upon standards and guidelines developed by other bodies and incorporated by reference herein, since such material may be modified or amended from time to time subsequent to the publication of this edition. The American Institute of Steel Construction bears no responsibility for such material other than to refer to it and incorporate it by reference at the time of the initial publication of this edition.

Printed in the United States of America

Revision May 2017

## PREFACE

(This Preface is not part of ANSI/AISC 303-16, but is included for informational purposes only.)

As in any industry, trade practices have developed among those that are involved in the design, purchase, fabrication and erection of structural steel. This Code provides a useful framework for a common understanding of the acceptable standards when contracting for structural steel. As such, it is useful for owners, architects, engineers, general contractors, construction managers, fabricators, steel detailers, erectors and others associated with construction in structural steel. Unless specific provisions to the contrary are contained in the contract documents, the existing trade practices contained herein are considered to be the standard custom and usage of the industry and are thereby incorporated into the relationships between the parties to a contract.

It is important to note the differences in design requirements between buildings and bridges. ANSI/AISC 360 and 341 establish the design requirements for buildings and buildinglike structures, and this Code sets complementary commercial and technical requirements. For highway bridges, the governing design requirements are established by AASHTO and implemented by the contracting agency; the commercial provisions of the Code are applicable, but technical provisions, such as tolerances, are not addressed.

The Symbols and Glossary are an integral part of this Code. In many sections of this Code, a nonmandatory Commentary has been prepared to provide background and further explanation for the corresponding Code provisions. The user is encouraged to consult it.

This Code is written-and intended to be utilized in practice-as a unified document. Contract documents may supercede individual provisions of the Code as provided in Section 1.1, except when doing so would violate a requirement of the applicable building code.

Since the first edition of this Code was published in 1924, AISC has continuously surveyed the structural steel design community and construction industry to determine standard trade practices. Since then, this Code has been periodically updated to reflect new and changing technology and industry practices.

The 2000 edition was the fifth complete revision of this Code since it was first published. Like the 2005 and 2010 editions, the 2016 edition is not a complete revision but does add important changes and updates. It is the result of the deliberations of a fair and balanced Committee, the membership of which included structural engineers, architects, a code official, a general contractor, fabricators, a steel detailer, erectors, inspectors and an attorney. The following changes have been made in this revision:

- This Code is formally accredited by ANSI as an American National Standard.
- The language throughout the entire Code has been generalized to address contracts that utilize drawings, models, or drawings and models in combination, and Appendix A, which previously addressed models separately, has been eliminated.
- The Commentary in Section 1.1 has been updated to acknowledge that some portions of ANSI/AISC 303 are incorporated into the International Building Code through reference to those provisions in ANSI/AISC 360 and 341.
- The list of dates of referenced documents in Section 1.2 has been editorially updated.
- A new Section 1.4 has been added to address responsibility for identifying contract documents; subsequent sections have been renumbered.
- Section 1.10 has increased emphasis that the absence of a tolerance in this Code does not mean that tolerance is zero.
- Section 1.11 has been added to address marking requirements for protected zones in frames designed to meet the requirements of ANSI/AISC 341.
- A reference has been added in the Commentary to Section 2.2 to AISC Design Guide 27 for stainless steel.
- In Section 3.1, two items are added to the list of required information: preset requirements for free ends of cantilevered members and the drawing information required in ANSI/AISC 341.
- Sections 3.1.1 and 3.1.2 have been editorially switched in order. The resulting Section 3.1.2 (formerly Section 3.1.1) also has been improved to better address what is required for bidding when the owner's designated representative for design delegates the determination and design of member reinforcement at connections to the licensed engineer in responsible charge of the connection design.
- Section 3.2 has been updated to address revisions, if they are necessary, when referenced contract documents are not available at the time of design, bidding, detailing or fabrication.
- Section 3.3 has added emphasis that the fabricator need not discover design discrepancies.
- Sections 3.7 and 4.2.2 have been added to address intellectual property rights of the owner's designated representative for design and the fabricator, respectively.
- Section 4.4 has been clarified to better reflect the role of the connection design criteria required in Section 3.1.1 when connection design work is delegated.
- Commentary has been added to Section 4.5 to address potential pitfalls when fabrication and erection documents are not furnished by the fabricator.
- In Section 6.1.1, the listed shop-standard material grades have changed for HP-shapes and HSS.
- In Section 6.4.2, the tolerance for curved members has been improved.
- In Section 7.5.1, tolerances for anchor-rod placement have been revised for consistency with the hole sizes provided the AISC Steel Construction Manual and the tolerances given in ACI 117.
- In Section 7.8.3, the number of extra bolts required to be supplied has been increased to account for bolt loss and pre-installation verification testing requirements; also, backing has been clarified as steel backing.
- In Section 7.8.4, non-steel backing is now addressed.
- In Section 7.13, the term "building line" has been changed to "building exterior."
- Commentary has been added in Section 7.13.1.2(e) to coordinate with the cantilevered member preset information added in Section 3.1.
- Section 9.1.5 has been added to address allowances, when used.
- Section 10 has been significantly revised with multiple categories for AESS and different treatments required for each.
- The document has been editorially revised for consistency with current terms and other related documents.

The Committee thanks Jeffrey Dave, Douglas Fitzpatrick, Angela Stephens and Lawrence Kruth for their contributions to integrating treatment of model-based contracts throughout this Code; Walter Koppelaar, Terri Boake and Jack Petersen for their contributions to the update of Section 10; and, George Wendt, Charles Wood, John Rogers and Brian Smith for their contributions to the improvement of tolerances for curved members.

The Committee thanks Michael J. Tylk, Donald G. Moore and Paul M. Brosnahan for their contributions as members of the Committee for part of this cycle, and honors Committee member Keith G. Landwehr, who passed away during this cycle.

By the AISC Committee on the Code of Standard Practice,

Babette C. Freund, Chair
William A. Andrews, Vice Chair
Jon D. Andrews
Scott F. Armbrust
Barry L. Barger, Emeritus
William R. Davidson
Theodore L. Droessler
Donald T. Engler
Lawrence G. Griffis
Samuel G. Haldiman
Timothy J. Hanenburg
D. Kirk Harman

Lawrence A. Kloiber

Viji Kuruvilla
James L. Larson
H. Scott Metzger

James A. Minkkinen
David B. Ratterman
David I. Ruby
James A. Stori
Thomas S. Tarpy, Jr.
James G. Thompson
Steven F. Weiss
Michael A. West
Charles J. Carter, Secretary
Timothy J. Bradshaw, Asst. Secretary

## TABLE OF CONTENTS

GLOSSARY ..... ix
SECTION 1. GENERAL PROVISIONS ..... 1
1.1. Scope ..... 1
1.2. Dates of Referenced Specifications, Codes and Standards ..... 1
1.3. Units ..... 3
1.4. Responsibility for Identifying Contract Documents .....  3
1.5. Design Criteria ..... 3
1.6. Responsibility for Design ..... 4
1.7. Patents and Copyrights ..... 4
1.8. Existing Structures ..... 4
1.9. Means, Methods and Safety of Erection ..... 4
1.10. Tolerances ..... 5
1.11. Marking of Protected Zones in High-Seismic Applications ..... 5
SECTION 2. CLASSIFICATION OF MATERIALS ..... 6
2.1. Definition of Structural Steel ..... 6
2.2. Other Steel, Iron or Metal Items ..... 7
SECTION 3. DESIGN DOCUMENTS AND SPECIFICATIONS ..... 9
3.1. Structural Design Documents and Specifications ..... 9
3.2. Architectural, Electrical and Mechanical Design Documents and Specifications ..... 16
3.3. Discrepancies ..... 16
3.4. Legibility of the Design Drawings ..... 16
3.5. Revisions to the Design Documents and Specifications ..... 17
3.6. Fast-Track Project Delivery ..... 18
3.7. Intellectual Property ..... 18
SECTION 4. APPROVAL DOCUMENTS ..... 19
4.1. Owner Responsibility ..... 19
4.2. Fabricator Responsibility ..... 20
4.3. Use of Digital Files or Copies of the Design Documents ..... 21
4.4. Approval .....  23
4.5. Fabrication and/or Erection Documents Not Furnished by the Fabricator ..... 25
4.6. The RFI Process ..... 25
4.7. Erection Documents ..... 26
SECTION 5. MATERIALS ..... 27
5.1. Mill Materials ..... 27
5.2. Stock Materials ..... 28
SECTION 6. SHOP FABRICATION AND DELIVERY ..... 30
6.1. Identification of Material ..... 30
6.2. Preparation of Material ..... 31
6.3. Fitting and Fastening ..... 31
6.4. Fabrication Tolerances ..... 32
6.5. Shop Cleaning and Painting ..... 35
6.6. Marking and Shipping of Materials ..... 37
6.7. Delivery of Materials ..... 38
SECTION 7. ERECTION ..... 39
7.1. Method of Erection ..... 39
7.2. Job-Site Conditions ..... 39
7.3. Foundations, Piers and Abutments ..... 39
7.4. Lines and Benchmarks ..... 40
7.5. Installation of Anchor Rods, Foundation Bolts, and Other Embedded Items ..... 40
7.6. Installation of Bearing Devices ..... 41
7.7. Grouting ..... 41
7.8. Field Connection Material ..... 42
7.9. Loose Material ..... 43
7.10. Temporary Support of Structural Steel Frames ..... 43
7.11. Safety Protection ..... 46
7.12. Structural Steel Frame Tolerances ..... 46
7.13. Erection Tolerances ..... 47
7.14. Correction of Errors ..... 57
7.15. Cuts, Alterations and Holes for Other Trades ..... 57
7.16. Handling and Storage ..... 58
7.17. Field Painting ..... 58
7.18. Final Cleaning Up ..... 58
SECTION 8. QUALITY CONTROL ..... 59
8.1. General ..... 59
8.2. Inspection of Mill Material ..... 59
8.3. Nondestructive Testing ..... 60
8.4. Surface Preparation and Shop Painting Inspection ..... 60
8.5. Independent Inspection ..... 60
SECTION 9. CONTRACTS ..... 61
9.1. Types of Contracts ..... 61
9.2. Calculation of Weights ..... 61
9.3. Revisions to the Contract Documents ..... 63
9.4. Contract Price Adjustment ..... 63
9.5. Scheduling ..... 63
9.6. Terms of Payment ..... 64
SECTION 10. ARCHITECTURALLY EXPOSED STRUCTURAL STEEL ..... 65
10.1. General Requirements ..... 65
10.2. Contract Documents ..... 66
10.3. Approval Documents ..... 66
10.4. Fabrication ..... 68
10.5. Delivery of Materials ..... 69
10.6. Erection ..... 69

## GLOSSARY

The following abbreviations and terms are used in this Code. Where used, terms are italicized to alert the user that the term is defined in this Glossary.

AASHTO. American Association of State Highway and Transportation Officials.
Adjustable items. See Section 7.13.1.3.
AESS. See architecturally exposed structural steel.
AISC. American Institute of Steel Construction.

Allowance. A monetary amount included in a contract as a placeholder for work that is anticipated but not defined at the time the contract is executed.

Anchor bolt. See anchor rod.
Anchor rod. A mechanical device that is either cast or drilled and chemically adhered, grouted or wedged into concrete and/or masonry for the purpose of the subsequent attachment of structural steel.

ANSI. American National Standards Institute.
Approval documents. The structural steel shop drawings, erection drawings, and embedment drawings, or where the parties have agreed in the contract documents to provide digital model(s), the fabrication and erection models. A combination of drawings and digital models also may be provided.

Architect. The entity that is professionally qualified and duly licensed to perform architectural services.

Architecturally exposed structural steel. See Section 10.
AREMA. American Railway Engineering and Maintenance of Way Association.
ASME. American Society of Mechanical Engineers.
ASTM. American Society for Testing and Materials.
AWS. American Welding Society.
Bearing devices. Shop-attached base and bearing plates, loose base and bearing plates, and leveling devices, such as leveling plates, leveling nuts and washers, and leveling screws.

CASE. Council of American Structural Engineers.

Clarification. An interpretation, of the design drawings or specifications that have been released for construction, made in response to an RFI or a note on an approval drawing and providing an explanation that neither revises the information that has been released for construction nor alters the cost or schedule of performance of the work.

The Code, This Code. This document, the AISC Code of Standard Practice for Steel Buildings and Bridges as adopted by the American Institute of Steel Construction.

Column line. The grid line of column centers set in the field based on the dimensions shown on the structural design documents and using the building layout provided by the owner's designated representative for construction. Column offsets are taken from the column line. The column line may be straight or curved as shown in the structural design documents.

Connection. An assembly of one or more joints that is used to transmit forces between two or more members and/or connection elements.

Contract documents. The documents that define the responsibilities of the parties that are involved in bidding, fabricating and erecting structural steel. These documents normally include the design documents, the specifications and the contract.

Design documents. The design drawings, or where the parties have agreed in the contract documents to provide digital model(s), the design model. A combination of drawings and digital models also may be provided.

Design drawings. The graphic and pictorial portions of the contract documents showing the design, location and dimensions of the work. These documents generally include, but are not necessarily limited to, plans, elevations, sections, details, schedules, diagrams and notes.

Design model. A dimensionally accurate 3D digital model of the structure that conveys the structural steel requirements given in Section 3.1 for the building.

Detailer. See steel detailer.
Embedment drawings. Drawings that show the location and placement of items that are installed to receive structural steel.

EOR, engineer, engineer of record. See structural engineer of record.
Erection bracing drawings. Drawings that are prepared by the erector to illustrate the sequence of erection, any requirements for temporary supports and the requirements for raising, bolting and/or welding. These drawings are in addition to the erection drawings.

Erection documents. The erection drawings, or where the parties have agreed in the contract documents to provide digital model(s), the erection model. A combination of drawings and digital models also may be provided.

Erection drawings. Field-installation or member-placement drawings that are prepared by the fabricator to show the location and attachment of the individual structural steel shipping pieces.

Erection model. A dimensionally accurate 3D digital model produced to convey the information necessary to erect the structural steel. This may be the same digital model as the fabrication model, but it is not required to be.

Erector. The entity that is responsible for the erection of the structural steel.
Established column line. The actual field line that is most representative of the erected column centers along a line of columns placed using the dimensions shown in the structural design drawings or design model and the lines and benchmarks established by the owner's designated representative for construction, to be used in applying the erection tolerances given in this Code for column shipping pieces.

Fabrication documents. The shop drawings, or where the parties have agreed in the contract documents to provide digital model(s), the fabrication model. A combination of drawings and digital models also may be provided.

Fabrication model. A dimensionally accurate 3D digital model produced to convey the information necessary to fabricate the structural steel. This may be the same digital model as the erection model, but it is not required to be.

Fabricator. The entity that is responsible for detailing (except in Section 4.5) and fabricating the structural steel.

Hazardous materials. Components, compounds or devices that are either encountered during the performance of the contract work or incorporated into it containing substances that, not withstanding the application of reasonable care, present a threat of harm to persons and/or the environment.

Inspector. The owner's testing and inspection agency.
Levels of development, LOD. The levels of completeness of the digital model(s) or digital model elements.

MBMA. Metal Building Manufacturers Association.
Mill material. Steel mill products that are ordered expressly for the requirements of a specific project.

Owner. The entity that is identified as such in the contract documents.
Owner's designated representative for construction. The owner or the entity that is responsible to the owner for the overall construction of the project, including its planning, quality, and completion. This is usually the general contractor, the construction manager or similar authority at the job site.

Owner's designated representative for design. The owner or the entity that is responsible to the owner for the overall structural design of the project, including the structural steel frame. This is usually the structural engineer of record.

Plans. See design drawings.

RCSC. Research Council on Structural Connections.
Released for construction. The term that describes the status of contract documents that are in such a condition that the fabricator and the erector can rely upon them for the performance of their work, including the ordering of material and the preparation of shop and erection drawings or fabrication and erection models.

Revision. An instruction or directive providing information that differs from information that has been released for construction. A revision may, but does not always, impact the cost or schedule of performance of the work.

RFI. A written request for information or clarification generated during the construction phase of the project.

SER. See structural engineer of record.
Shop drawings. Drawings of the individual structural steel shipping pieces that are to be produced in the fabrication shop.

## SJI. Steel Joist Institute.

Specifications. The portion of the contract documents that consists of the written requirements for materials, standards and workmanship.

SSPC. SSPC: The Society for Protective Coatings, which was formerly known as the Steel Structures Painting Council.

Standard structural shapes. Hot-rolled W-, S-, M- and HP-shapes, channels and angles listed in ASTM A6/A6M; structural tees split from the hot-rolled W-, S- and M- shapes listed in ASTM A6/A6M; hollow structural sections produced to ASTM A500/A500M, A501/A501M, A618/A618M, A847/A847M, A1065/A1065M, or A1085/A1085M; and, steel pipe produced to ASTM A53/A53M.

Steel detailer. The entity that produces the approval documents.
Structural engineer of record. The licensed professional who is responsible for sealing the contract documents, which indicates that he or she has performed or supervised the analysis, design and document preparation for the structure and has knowledge of the load-carrying structural system.

Structural steel. The elements of the structural frame as given in Section 2.1.
Substantiating connection information. Information submitted by the fabricator, if requested by the owner's designated representative for design in the contract documents, when Option 2 or Option 3 is designated for connections per Section 3.1.1.

Tier. The structural steel framing defined by a column shipping piece.
Weld show-through. In architecturally exposed structural steel, visual indication of the presence of a weld or welds on the side of the member opposite the weld.

# CODE OF STANDARD PRACTICE FOR STEEL BUILDINGS AND BRIDGES 

## SECTION 1. GENERAL PROVISIONS

### 1.1. Scope

This Code sets forth criteria for the trade practices involved in steel buildings, bridges and other structures, where other structures are defined as those structures designed, fabricated and erected in a manner similar to buildings, with building-like vertical and lateral force-resisting elements. In the absence of specific instructions to the contrary in the contract documents, the trade practices that are defined in this Code shall govern the fabrication and erection of structural steel.

## Commentary:

The practices defined in this Code are the commonly accepted standards of custom and usage for structural steel fabrication and erection, which generally represent the most efficient approach. Some provisions in this Code have been incorporated by reference into the International Building Code; see www.aisc.org/303IBC.

This Code is not intended to define a professional standard of care for the owner's designated representative for design; change the duties and responsibilities of the owner, contractor, architect or structural engineer of record from those set forth in the contract documents; nor assign to the owner, architect or structural engineer of record any duty or authority to undertake responsibility inconsistent with the provisions of the contract documents.

This Code is not applicable to steel joists or metal building systems, which are addressed by SJI and MBMA, respectively.

### 1.2. Dates of Referenced Specifications, Codes and Standards

The following dated versions of documents are referenced in this Code:
AASHTO Specification-2014 AASHTO LRFD Bridge Design Specifications, $7^{\text {th }}$ Edition, with 2015 and 2016 Interim Revisions.
ANSI/AISC 341—ANSI/AISC 341-16, AISC Seismic Provisions for Structural Steel Buildings.
ANSI/AISC 360—ANSI/AISC 360-16, AISC Specification for Structural Steel Buildings.
ASME B46.1—ASME B46.1-09, Surface Texture (Surface Roughness, Waviness, and Lay).
AREMA Specification-2015 AREMA Manual for Railway Engineering, Volume II-Structures, Chapter 15.

ASTM A6/A6M-14, Standard Specification for General Requirements for Rolled Structural Steel Bars, Plates, Shapes, and Sheet Piling.
ASTM A36/A36M-14, Standard Specification for Carbon Structural Steel.
ASTM A53/A53M-12, Standard Specification for Pipe, Steel, Black and HotDipped, Zinc-Coated, Welded and Seamless.
ASTM A500/A500M-13, Standard Specification for Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes.
ASTM A501/A501M-14, Standard Specification for Hot-Formed Welded and Seamless Carbon Steel Structural Tubing.
ASTM A572/A572M-15, Standard Specification for High-Strength Low-Alloy Columbium-Vanadium Structural Steel.
ASTM A618/A618M-04(2015), Standard Specification for Hot-Formed Welded and Seamless High-Strength Low-Alloy Structural Tubing.
ASTM A847/A847M-14, Standard Specification for Cold-Formed Welded and Seamless High-Strength, Low-Alloy Structural Tubing with Improved Atmospheric Corrosion Resistance.
ASTM A992/A992M-11(2015), Standard Specification for Structural Steel Shapes.
ASTM A1065/A1065/M-15, Standard Specification for Cold-Formed ElectricFusion (Arc) Welded High-Strength Low-Alloy Structural Tubing in Shapes, with 50 ksi [345 MPa] Minimum Yield Point.
ASTM A1085/A1085M-15, Standard Specification for Cold-Formed Welded Carbon Steel Hollow Structural Sections (HSS).
AWS D1.1/D1.1M—AWS D1.1/D1.1M:2015 Structural Welding Code—Steel.
RCSC Specification—Specification for Structural Joints Using High-Strength Bolts, 2014.

SSPC SP1—SSPC Surface Preparation Specification No. 1, Solvent Cleaning, 2015.
SSPC SP2—SSPC Surface Preparation Specification No. 2, Hand Tool Cleaning, 2004.

SSPC SP6-SSPC Surface Preparation Specification No. 6, Commercial Blast Cleaning, 2007.

## Commentary:

Additionally, the following dated versions of documents are referenced in the Commentary on this Code:
AIA Document E202-2008 Building Information Modeling Protocol Exhibit
AIA Document E203-2013 Building Information Modeling and Digital Data Exhibit
AIA Document G201-2013 Project Digital Data Protocol Form
AIA Document G202-2013 Project Building Information Modeling Protocol Form
ASTM A563-15, Standard Specification for Carbon and Alloy Steel Nuts.
ASTM A563M-07(2013), Standard Specification for Carbon and Alloy Steel Nuts (Metric).
ASTM F3125/F3125M-15, Standard Specification for High Strength Structural Bolts, Steel and Alloy Steel, Heat Treated, 120 ksi ( 830 MPa ) and 150 ksi (1040 MPa) Minimum Tensile Strength, Inch and Metric Dimensions.

BIMFORUM 2013 Level of Development Specification.
CASE Document 962—National Practice Guidelines for the Structural Engineer of Record, 2012.
Consensus Docs 301-2013 BIM Addendum.

### 1.3. Units

In this Code, the values stated in either U.S. customary units or metric units shall be used. Each system shall be used independently of the other.

## Commentary:

In this Code, dimensions, weights and other measures are given in U.S. customary units with rounded or rationalized metric-unit equivalents in brackets. Because the values stated in each system are not exact equivalents, the selective combination of values from each of the two systems is not permitted.

### 1.4 Responsibility for Identifying Contract Documents

The owner's designated representative for construction shall identify all contract documents. When the design drawings and a design model are both provided, the owner's designated representative for design shall specify which document is the controlling contract document. The contract documents shall establish the procedures for communicating changes to the contract documents, permitted use of design and other digital models, and restrictions on the release of these digital models to other parties.

## Commentary:

There can be many combinations of drawings and digital models used as part of the contract documents, and to transfer information between the many entities in the design and construction processes. The communication of design information to the fabricator through the design model is permitted in this Code. This Code does not designate which of these possible documents takes precedence because of the variation in current practice. The document hierarchy is left to the owner's designated representative for design and communicated through the owner's designated representative for construction. The owner's designated representative for construction must provide guidance as to which information is to be considered to have precedence if conflicts exist.

### 1.5. Design Criteria

For buildings and other structures, in the absence of other design criteria, the provisions in ANSI/AISC 360 shall govern the design of the structural steel. For bridges, in the absence of other design criteria, the provisions in the AASHTO Specification and AREMA Specification shall govern the design of the structural steel, as applicable.

### 1.6. Responsibility for Design

1.6.1. When the owner's designated representative for design provides the design, design documents and specifications, the fabricator and the erector are not responsible for the suitability, adequacy or building-code conformance of the design.
1.6.2. When the owner enters into a direct contract with the fabricator to both design and fabricate an entire, completed steel structure, the fabricator shall be responsible for the suitability, adequacy, conformance with owner-established performance criteria, and building-code conformance of the structural steel design. The owner shall be responsible for the suitability, adequacy and building-code conformance of the nonstructural steel elements and shall establish the performance criteria for the structural steel frame.

### 1.7. Patents and Copyrights

The entity or entities that are responsible for the specification and/or selection of proprietary structural designs shall secure all intellectual property rights necessary for the use of those designs.

### 1.8. Existing Structures

1.8.1. Demolition and shoring of any part of an existing structure are not within the scope of work that is provided by either the fabricator or the erector. Such demolition and shoring shall be performed in a timely manner so as not to interfere with or delay the work of the fabricator or the erector.
1.8.2. Protection of an existing structure and its contents and equipment, so as to prevent damage from normal erection processes, is not within the scope of work that is provided by either the fabricator or the erector. Such protection shall be performed in a timely manner so as not to interfere with or delay the work of the fabricator or the erector.
1.8.3. Surveying or field dimensioning of an existing structure is not within the scope of work that is provided by either the fabricator or the erector. Such surveying or field dimensioning, which is necessary for the completion of the approval documents and fabrication, shall be performed and furnished to the fabricator in a timely manner so as not to interfere with or delay the work of the fabricator or the erector.
1.8.4. Abatement or removal of hazardous materials is not within the scope of work that is provided by either the fabricator or the erector. Such abatement or removal shall be performed in a timely manner so as not to interfere with or delay the work of the fabricator or the erector.

### 1.9. Means, Methods and Safety of Erection

1.9.1. The erector shall be responsible for the means, methods and safety of erection of the structural steel frame.
1.9.2. The structural engineer of record shall be responsible for the structural adequacy of the design of the structure in the completed project. The structural engineer of record shall not be responsible for the means, methods and safety of erection of the structural steel frame. See also Sections 3.1.4 and 7.10.

### 1.10. Tolerances

Tolerances for materials, fabrication and erection shall be as stipulated in Sections 5, 6,7 and 10 . Tolerances absent from this Code or the contract documents shall not be considered zero by default.

## Commentary:

Tolerances are not necessarily specified in this Code for every possible variation that could be encountered. For most projects, where a tolerance is not specified or covered in this Code, it is not needed to ensure that the fabricated and erected structural steel complies with the requirements in Section 6 and 7. If a special design concept or system component requires a tolerance that is not specified in this Code, the necessary tolerance should be specified in the contract documents. If a tolerance is not shown and is deemed by the fabricator and/or erector to be important to the successful fabrication and erection of the structural steel, it should be requested from the owner's designated representative for design. The absence of a tolerance in this Code for a particular condition does not mean that the tolerance is zero; rather, it means that no tolerance has been established. In any case, the default tolerance is not zero.

### 1.11. Marking of Protected Zones in High-Seismic Applications

The fabricator shall permanently mark protected zones that are designated on the structural design documents in accordance with ANSI/AISC 341 Section A4.1. If these markings are obscured in the field, such as after the application of fire protection, the owner's designated representative for construction shall re-mark the protected zones as they are designated on the structural design documents.

## SECTION 2. CLASSIFICATION OF MATERIALS

### 2.1. Definition of Structural Steel

Structural steel shall consist of the elements of the structural frame that are shown and sized in the structural design documents, essential to support the design loads and described as:

Anchor rods that will receive structural steel.
Base plates, if part of the structural steel frame.
Beams, including built-up beams, if made from standard structural shapes and/or plates.
Bearing plates, if part of the structural steel frame.
Bearings of steel for girders, trusses or bridges.
Bracing, if permanent.
Canopy framing, if made from standard structural shapes and/or plates.
Columns, including built-up columns, if made from standard structural shapes and/ or plates.
Connection materials for framing structural steel to structural steel.
Crane stops, if made from standard structural shapes and/or plates.
Door frames, if made from standard structural shapes and/or plates and if part of the structural steel frame.
Edge angles and plates, if attached to the structural steel frame or steel (open-web) joists.
Embedded structural steel parts, other than bearing plates, that will receive structural steel.
Expansion joints, if attached to the structural steel frame.
Fasteners for connecting structural steel items: permanent shop bolts, nuts and washers; shop bolts, nuts and washers for shipment; field bolts, nuts and washers for permanent connections; and, permanent pins.
Floor-opening frames, if made from standard structural shapes and/or plates and attached to the structural steel frame or steel (open-web) joists.
Floor plates (checkered or plain), if attached to the structural steel frame.
Girders, including built-up girders, if made from standard structural shapes and/or plates.
Girts, if made from standard structural shapes.
Grillage beams and girders.
Hangers, if made from standard structural shapes, plates and/or rods and framing structural steel to structural steel.
Leveling nuts and washers.
Leveling plates.
Leveling screws.
Lintels, if attached to the structural steel frame.
Marquee framing, if made from standard structural shapes and/or plates.
Machinery supports, if made from standard structural shapes and/or plates and attached to the structural steel frame.
Monorail elements, if made from standard structural shapes and/or plates and attached to the structural steel frame.

Posts, if part of the structural steel frame.
Purlins, if made from standard structural shapes.
Relieving angles, if attached to the structural steel frame.
Roof-opening frames, if made from standard structural shapes and/or plates and attached to the structural steel frame or steel (open-web) joists.
Roof-screen support frames, if made from standard structural shapes.
Sag rods, if part of the structural steel frame and connecting structural steel to structural steel.
Shear stud connectors, if specified to be shop attached.
Shims, if permanent.
Struts, if permanent and part of the structural steel frame.
Tie rods, if part of the structural steel frame.
Trusses, if made from standard structural shapes and/or built-up members.
Wall-opening frames, if made from standard structural shapes and/or plates and attached to the structural steel frame.
Wedges, if permanent.

## Commentary:

The fabricator normally fabricates the items listed in Section 2.1. Such items must be shown, sized and described in the structural design documents. Bracing includes vertical bracing for resistance to wind and seismic load and structural stability, horizontal bracing for floor and roof systems, and permanent stability bracing for components of the structural steel frame.

### 2.2. Other Steel, Iron or Metal Items

Structural steel shall not include other steel, iron or metal items that are not generally described in Section 2.1, even where such items are shown in the structural design documents or are attached to the structural steel frame. Other steel, iron or metal items include but are not limited to:

Base plates, if not part of the structural steel frame.
Bearing plates, if not part of the structural steel frame.
Bearings, if non-steel.
Cables for permanent bracing or suspension systems.
Castings.
Catwalks.
Chutes.
Cold-formed steel products.
Cold-rolled steel products, except those that are specifically covered in ANSI/AISC 360.
Corner guards.
Crane rails, splices, bolts and clamps.
Crane stops, if not made from standard structural shapes or plates.
Door guards.
Embedded steel parts, other than bearing plates, that do not receive structural steel or that are embedded in precast concrete.
Expansion joints, if not attached to the structural steel frame.

Flagpole support steel.
Floor plates (checkered or plain), if not attached to the structural steel frame.
Forgings.
Gage-metal products.
Grating.
Handrail.
Hangers, if not made from standard structural shapes, plates and/or rods or not framing structural steel to structural steel.
Hoppers.
Items that are required for the assembly or erection of materials that are furnished by trades other than the fabricator or erector.
Ladders.
Lintels, if not attached to the structural steel frame.
Masonry anchors.
Ornamental metal framing.
Other miscellaneous metal not already listed.
Pressure vessels.
Reinforcing steel for concrete or masonry.
Relieving angles, if not attached to the structural steel frame.
Roof screen support frames, if not made from standard structural shapes.
Safety cages.
Shear stud connectors, if specified to be field installed.
Stacks.
Stairs.
Steel deck.
Steel (open-web) joists.
Steel joist girders.
Tanks.
Toe plates.
Trench or pit covers.

## Commentary:

Section 2.2 includes many items that may be furnished by the fabricator if contracted to do so by specific notation and detail in the contract documents. When such items are contracted to be provided by the fabricator, coordination will normally be required between the fabricator and other material suppliers and trades. The provisions in this Code are not intended to apply to items in Section 2.2.

In previous editions of this Code, provisions regarding who should normally furnish field-installed shear stud connectors and cold-formed steel deck support angles were included in Section 7.8. These provisions have been eliminated since field-installed shear stud connectors and steel deck support angles are not defined as structural steel in this Code.

Stainless steel is not covered in this Code. AISC Design Guide 27, Structural Stainless Steel, is a source of useful information regarding the practical fabrication and installation issues associated with structural stainless steel components.

## SECTION 3. DESIGN DOCUMENTS AND SPECIFICATIONS

### 3.1. Structural Design Documents and Specifications

Unless otherwise indicated in the contract documents, the structural design documents shall be based upon consideration of the design loads and forces to be resisted by the structural steel frame in the completed project.

The structural design documents shall clearly show or note the work that is to be performed and shall give the following information with sufficient dimensions to accurately convey the quantity and complexity of the structural steel to be fabricated:
(a) The size, section, material grade and location of all members.
(b) All geometry and working points necessary for layout.
(c) Floor elevations.
(d) Column centers and offsets.
(e) The camber requirements for members.
(f) Preset elevation requirements, if any, at free ends of cantilevered members relative to their fixed-end elevations.
(g) Joining requirements between elements of built-up members.
(h) When the requirements of ANSI/AISC 341 are applicable, the information required in ANSI/AISC 341 Section A4.
(i) The information required in Sections 3.1.1 through 3.1.6.

The structural steel specifications shall include any special requirements for the fabrication and erection of the structural steel.

The structural design documents, specifications and addenda shall be numbered and dated for the purposes of identification. 3D digital models shall contain a unique identifier.

## Commentary:

Contract documents vary greatly in complexity and completeness. Nonetheless, the fabricator and the erector must be able to rely upon the accuracy and completeness of the contract documents. This allows the fabricator and the erector to provide the owner with bids that are adequate and complete. It also enables the preparation of the approval documents, the ordering of materials, and the timely fabrication and erection of shipping pieces.

In some cases, the owner can benefit when reasonable latitude is allowed in the contract documents for alternatives that can reduce cost without compromising quality. However, critical requirements that are necessary to protect the owner's interest, that affect the integrity of the structure or that are necessary for the fabricator and the erector to proceed with their work must be included in the contract documents. Some examples of critical information may include, when applicable:

Standard specifications and codes that govern structural steel design and construction, including bolting and welding.
Material specifications.
Special material requirements to be reported on the material test reports.
Welded-joint configuration.

Weld-procedure qualification.
Special requirements for work of other trades.
Final disposition of backing and runoff tabs.
Lateral bracing.
Stability bracing.
Connections or data for connection selection and/or completion.
Restrictions on connection types.
Column stiffeners (also known as continuity plates).
Column web doubler plates.
Bearing stiffeners on beams and girders.
Web reinforcement.
Openings for other trades.
Surface preparation and shop painting requirements.
Shop and field inspection requirements.
Nondestructive testing requirements, including acceptance criteria.
Special requirements on delivery.
Special erection limitations.
Identification of non-structural steel elements that interact with the structural steel frame to provide for the lateral stability of the structural steel frame (see Section 3.1.4).
Column differential shortening information (see Commentary to Section 7.13).
Anticipated deflections and the associated loading conditions for major structural elements, such as transfer girders and trusses, supporting columns and hangers (see Commentary to Section 7.13).
Special fabrication and erection tolerances for AESS.
Special pay-weight provisions.
It may be necessary to specify a relative elevation to which the free end of a cantilever must be erected (preset) prior to load application, with the fixed end stabilized before the member is released from the crane or temporary support and any other load is applied to it. This is needed so that the cantilevered member can be detailed and fabricated to allow for any required preset. This does not apply to a beam that is continuous over a support, which is controlled by camber, not preset.
3.1.1. The owner's designated representative for design shall indicate one of the following options for each connection:
(1) Option 1: the complete connection design shall be shown in the structural design documents.
(2) Option 2: in the structural design documents or specifications, the connection shall be designated to be selected or completed by an experienced steel detailer.
(3) Option 3: in the structural design documents or specifications, the connection shall be designated to be designed by a licensed engineer working for the fabricator.

In all of the above options,
(a) The requirements of Section 3.1 .2 shall apply.
(b) The approvals process in Section 4.4 shall be followed.

When Option 2 is specified, the experienced steel detailer shall utilize information provided in the structural design documents in the selection or completion of the connections. When such information is not provided, tables in the AISC Steel Construction Manual, or other reference information as approved by the owner's designated representative for design, shall be used.

When Option 2 or 3 is specified, the owner's designated representative for design shall provide the following connection design criteria in the structural design documents and specifications:
(a) Any restrictions on the types of connections that are permitted.
(b) Data concerning the loads, including shears, moments, axial forces and transfer forces, that are to be resisted by the individual members and their connections, sufficient to allow the selection, completion, or design of the connection details while preparing the approval documents.
(c) Whether the data required in (b) is given at the service-load level or the factoredload level.
(d) Whether LRFD or ASD is to be used in the selection, completion, or design of connection details.
(e) What substantiating connection information, if any, is to be provided with the approval documents to the owner's designated representative for design.

When Option 3 is specified:
(a) The fabricator shall submit in a timely manner representative samples of the required substantiating connection information to the owner's designated representatives for design and construction. The owner's designated representative for design shall confirm in writing in a timely manner that these representative samples are consistent with the requirements in the contract documents, or shall advise what modifications are required to bring the representative samples into compliance with the requirements in the contract documents. This initial submittal and review is in addition to the requirements in Section 4.4.
(b) The licensed engineer in responsible charge of the connection design shall review and confirm in writing as part of the substantiating connection information, that the approval documents properly incorporate the connection designs. However, this review by the licensed engineer in responsible charge of the connection design does not replace the approval process of the approval documents by the owner's designated representative for design in Section 4.4.
(c) The fabricator shall provide a means by which the substantiating connection information is referenced to the related connections on the approval documents for the purpose of review.

## Commentary:

There are three options covered in this Section:
(1) In Option 1, the owner's designated representative for design shows the complete design of the connections in the structural design documents. The following information is included:
(a) All weld types, sizes, lengths and strengths.
(b) All bolt sizes, locations, quantities and grades.
(c) All plate and angle sizes, thicknesses, dimensions and grades.
(d) All work point locations and related information.

The intent of this approach is that complete design information necessary for detailing the connection is shown in the structural design documents. Typical details are shown for each connection type, set of geometric parameters, and adjacent framing conditions. The steel detailer will then be able to transfer this information to the approval documents, applying it to the individual pieces being detailed.
(2) In Option 2, the owner's designated representative for design allows an experienced steel detailer to select or complete the connections. This is commonly done by referring to loads embedded in the digital model, tables or schematic information in the structural design documents, tables in the AISC Steel Construction Manual, or other reference information approved by the owner's designated representative for design, such as journal papers and recognized software output. Tables and schematic information in the structural design documents should provide such information as weld types and sizes, plate thicknesses, and quantities of bolts. However, there may be some geometry and dimensional information that the steel detailer must develop. The steel detailer will then configure the connections based upon the design loads and other information given in the structural design documents and specifications.

The intent of this method is that the steel detailer will select the connection materials and configuration from the referenced tables or complete the specific connection configuration (e.g., dimensions, edge distances and bolt spacing) based upon the connection details that are shown in the structural design documents.

The steel detailer must be experienced and familiar with AISC requirements for connection configurations, the use of the connection tables in the AISC Steel Construction Manual, the calculation of dimensions, and adaptation of typical connection details to similar situations. Notations of loadings in the structural design documents are only to facilitate selection of the connections from the referenced tables. It is not the intent that this method be used when the practice of engineering is required.
(3) Option 3 reflects a practice in some areas of the U.S. to have a licensed engineer working for or retained by the fabricator design the connections, and recognizes the information required by the fabricator to do this work. The owner's designated representative for design, who has the knowledge of the structure as a whole, must review and approve the approval documents, and take such action on substantiating connection information as the owner's designated representative for design deems appropriate. See Section 4.4 for the approval process.

When, under Section 3.1.1, the owner's designated representative for design designates that connections are to be designed by a licensed engineer
employed or retained by the fabricator, this work is incidental to, and part of, the overall means and methods of fabricating and constructing the steel frame. The licensed engineer performing the connection design is not providing a peer review of the contract documents.

The owner's designated representative for design reviews the approval documents during the approvals process as specified in Section 4.4 for conformance with the specified criteria and compatibility with the design of the primary structure.

One of these options should be indicated for each connection in a project. It is acceptable to group connection types and utilize a combination of these options for the various connection types involved in a project. Option 3 is not normally specified for connections that can be selected or completed as noted in Option 2 without practicing engineering.

If there are any restrictions as to the types of connections to be used, it is required that these limitations be set forth in the structural design documents and specifications. There are a variety of connections available in the AISC Steel Construction Manual for a given situation. Preference for a particular type will vary between fabricators and erectors. Stating these limitations, if any, in the structural design documents and specifications will help to avoid repeated changes to the approval documents due to the selection of a connection that is not acceptable to the owner's designated representative for design, thereby avoiding additional cost and/or delay for revising the approval documents.

The structural design documents must indicate the method of design used as LRFD or ASD. In order to conform to the spirit of ANSI/AISC 360, the connections must be selected using the same method and the corresponding references.

Substantiating connection information, when required, can take many forms. When Option 2 is designated, the approval documents may suffice with no additional substantiating connection information required. When Option 3 is designated, the substantiating connection information may take the form of hand calculations and/or software output.

When substantiating connection information is required, it is recommended that representative samples of that information be agreed upon prior to preparation of the approval documents, in order to avoid additional cost and/or delay for the connection redesign and/or revising that might otherwise result.

The owner's designated representative for design may require that the substantiating connection information be signed and sealed for Option 3. The signing and sealing of the cover letter transmitting the approval documents and substantiating connection information may suffice. This signing and sealing indicates that a licensed engineer performed the work but does not replace the approval process provided in Section 4.4.

A requirement to sign and seal each sheet of the shop and erection drawings is discouraged as it may serve to confuse the design responsibility between the owner's designated representative for design and the licensed engineer's work in performing the connection design. Such a requirement may not be possible when submitting fabrication and erection models.
3.1.2. Permanent bracing, openings in structural steel for other trades, and other special details, where required, shall be designed by the owner's designated representative for design and shown in sufficient detail in the structural design documents issued for bidding so that the quantity, detailing and fabrication requirements for these items can be readily understood.

At locations away from connections, stiffeners, web doubler plates, bearing stiffeners, and other member reinforcement, where required, shall be designed by the owner's designated representative for design and shown in sufficient detail in the structural design documents issued for bidding so that the quantity, detailing and fabrication requirements for these items can be readily understood.

At locations of connections, the following requirements shall apply to column stiffeners, web doubler plates, beam bearing stiffeners, and all other member reinforcement required to satisfy strength and equilibrium of forces through the connection:
(1) When Option 1 or 2 in Section 3.1.1 is specified for a connection, these items shall be designed by the owner's designated representative for design and shown in the structural design documents issued for bidding so that the quantity, detailing and fabrication requirements for member reinforcement at connections can be readily understood.
(2) When Option 3 in Section 3.1.1 is specified for a connection, two subsidiary options are available to the owner's designated representative for design; either:
(a) Option 3A: member reinforcement at connections shall be designed by the owner's designated representative for design and shown in the structural design documents issued for bidding so that the quantity, detailing and fabrication requirements for member reinforcement at connections can be readily understood, or;
(b) Option 3B: the owner's designated representative for design shall provide a bidding quantity of items required for member reinforcement at connections with corresponding project-specific details that show the conceptual configuration of reinforcement appropriate for the order of magnitude of forces to be transferred. These quantities and project-specific conceptual configurations will be relied upon for bidding purposes. If no quantities or conceptual configurations are shown, member reinforcement at connections will not be included in the bid.

Subsequently, member reinforcement at connections, where required, shall be designed in its final configuration by the licensed engineer in responsible charge of the connection design.

When the actual quantity and/or details of any of the foregoing items differ from the bidding quantity and/or details, the contract price and schedule shall be adjusted equitably in accordance with Sections 9.4 and 9.5 .

Any limitations regarding type and connection of reinforcing shall be clearly provided.

## Commentary:

Option 3A is most useful when the owner's designated representative for design delegates connection design work but has selected member sizes to eliminate or
minimize the need for member reinforcement at connections. Option 3A should not be used if the intent is to delegate the determination and design of member reinforcement at connections to the licensed engineer in responsible charge of the connection design.

Option 3B is necessary if the intent is to delegate the determination and design of member reinforcement at connections to the licensed engineer in responsible charge of the connection design. Because these requirements will not be known until connections are designed after award of the contract, bids prepared by multiple fabricators will not be comparable unless all bidders use the same assumptions in preparing their bids. The approach provided here allows for all bids to be comparable. The owner's final cost for the actual member reinforcement requirements at connections will be determined through equitable contract price adjustment.

When no quantities and details are shown for column stiffeners, web doubler plates, beam bearing stiffeners, and/or other member reinforcement required to satisfy strength and equilibrium of forces through connections, the fabricator's bid reflects no allowance for these items. Should it subsequently be determined that member reinforcement at connections is required, the provisions of Sections 9.4 and 9.5 then apply.
3.1.3. When leveling plates are to be furnished as part of the contract requirements, their locations and required thickness and sizes shall be specified in the contract documents.
3.1.4. When the structural steel frame, in the completely erected and fully connected state, requires interaction with non-structural steel elements (see Section 2) for strength and/or stability, those non-structural steel elements shall be identified in the contract documents as required in Section 7.10.

## Commentary:

Examples of non-structural steel elements include diaphragms made of steel deck, diaphragms made of concrete on steel deck, and masonry and/or concrete shear walls.
3.1.5. When camber is required, the magnitude, direction and location of camber shall be specified in the structural design documents.

## Commentary:

For cantilevers, the specified camber may be up or down, depending upon the framing and loading.
3.1.6. Specific members or portions thereof that are to be left unpainted shall be identified in the contract documents. When shop painting is required, the painting requirements shall be specified in the contract documents, including the following information:
(a) The identification of specific members or portions thereof to be painted.
(b) The surface preparation that is required for these members.
(c) The paint specifications and manufacturer's product identification, including color requirements, if any, that are required for these members.
(d) The minimum dry-film shop-coat thickness that is required for these members.

## Commentary:

Some members or portions thereof may be required to be left unpainted, such as those that will be in contact and acting compositely with concrete, or those that will receive spray-applied fire protection materials.

### 3.2. Architectural, Electrical and Mechanical Design Documents and Specifications

All requirements for the quantities, sizes and locations of structural steel shall be shown or noted in the structural design documents. The structural design documents are permitted to reference the architectural, electrical and/or mechanical design documents as a supplement to the structural design documents for the purposes of defining detail configurations and construction information.

When the referenced information is not available at the time of structural design, bidding, detailing or fabrication, subsequent revisions shall be the responsibility of the owner and shall be made in accordance with Sections 3.5 and 9.3.

### 3.3. Discrepancies

When discrepancies exist between the design documents and specifications, the design documents shall govern. When discrepancies exist between scale dimensions in the design documents and the figures written in them, the figures shall govern. When discrepancies exist between the structural design documents and the architectural, electrical or mechanical design documents, or the design documents for other trades, the structural design documents shall govern. When discrepancies exist between the design drawings and the design model, the governing document shall be as identified per Section 1.4.

When a discrepancy is discovered in the contract documents in the course of the fabricator's work, the fabricator shall promptly notify the owner's designated representative for construction so that the discrepancy can be resolved. Such resolution shall be timely so as not to delay the fabricator's work. See Sections 3.5 and 9.3.

It is not the fabricator's responsibility to discover discrepancies, including those that are associated with the coordination of the various design disciplines.

### 3.4. Legibility of Design Drawings

Design drawings shall be clearly legible and drawn to an identified scale that is appropriate to clearly convey the information.

## Commentary:

Historically, the most commonly accepted scale for structural steel drawings has been $1 / 8$ in. per $\mathrm{ft}(10 \mathrm{~mm}$ per 1000 mm$)$. There are, however, situations where a
smaller or larger scale is appropriate. Ultimately, consideration must be given to the clarity of the drawing.

The scaling of the design drawings to determine dimensions is not an accepted practice for detailing the approval documents. However, it should be remembered when preparing design drawings that scaling may be the only method available when early-submission drawings are used to determine dimensions for estimating and bidding purposes.

### 3.5. Revisions to the Design Documents and Specifications

Revisions to the design documents and specifications shall be made either by issuing new design documents and specifications or by reissuing the existing design documents and specifications. In either case, all revisions, including revisions that are communicated through responses to RFIs or the annotation of the approval documents (see Section 4.4.2), shall be clearly and individually indicated in the contract documents. The contract documents shall be dated and identified by revision number. When the design documents are communicated using design drawings, each design drawing shall be identified by the same drawing number throughout the duration of the project, regardless of the revision. See also Section 9.3.

When revisions are communicated using design models, revisions shall be made evident in the revised design model submitted by identifying within the design model which items are changed. Alternatively, the changes shall be submitted with a written document describing in explicit detail the items that are changed. A historic tracking of changes must either be present in the revised design model or maintained in the written record of changes.

The party or entity that is contractually assigned responsibility for managing the design model shall maintain accurate accounting and tracking records of the most current design model, as well as previously superseded design models, and shall facilitate a tracking mechanism so that all contracted parties are aware of, and have access to, the most current design model.

## Commentary:

Revisions to the design documents and specifications can be made by issuing sketches and supplemental information separate from the design documents and specifications. These sketches and supplemental information become amendments to the design documents and specifications and are considered new contract documents. All sketches and supplemental information must be uniquely identified with a number and date as the latest instructions until such time as they may be superseded by new information.

When revisions are made by revising and reissuing the existing structural design documents and/or specifications, a unique revision number and date must be added to those documents to identify that information as the latest instructions until such time as they may be superseded by new information. When the design documents are communicated using design drawings, the same unique drawing number must identify each design drawing throughout the duration of the project so that revisions can be properly tracked, thus avoiding confusion and miscommunication among the various entities involved in the project.

When revisions are communicated through the annotation of the approval documents or contractor submissions, such changes must be confirmed in writing by one of the aforementioned methods. This written confirmation is imperative to maintain control of the cost and schedule of a project and to avoid potential errors in fabrication.

When design models are used, a similar unique method of identifying each revision must be used. This method can vary in various digital modeling software, but the same level of notation of changes must be present in the revised design model as would be used on design drawings.

### 3.6. Fast-Track Project Delivery

When the fast-track project delivery system is selected, release of the structural design documents and specifications shall constitute a release for construction, regardless of the status of the architectural, electrical, mechanical and other interfacing designs and contract documents. Subsequent revisions, if any, shall be the responsibility of the owner and shall be made in accordance with Sections 3.5 and 9.3.

## Commentary:

The fast-track project delivery system generally provides for a condensed schedule for the design and construction of a project. Under this delivery system, the owner elects to release for construction the structural design documents and specifications, which may be partially complete, at a time that may precede the completion of and coordination with architectural, mechanical, electrical and other design work and contract documents. The release of the structural design documents and specifications may also precede the release of the General Conditions and Division 1 Specifications.

Release of the structural design documents and specifications to the fabricator for ordering of material constitutes a release for construction. Accordingly, the fabricator and the erector may begin their work based upon those partially complete documents. As the architectural, mechanical, electrical and other design elements of the project are completed, revisions may be required in design and/or construction. Thus, when considering the fast-track project delivery system, the owner should balance the potential benefits to the project schedule with the project cost contingency that may be required to allow for these subsequent revisions.

### 3.7 Intellectual Property

Any copyright or other property or proprietary rights owned by the owner's designated representative for design in any content included within the contract documents, whether created specifically for an individual project or otherwise made available for use on an individual project, shall remain the exclusive property of the owner's designated representative for design.

## SECTION 4. APPROVAL DOCUMENTS

### 4.1. Owner Responsibility

The owner shall furnish, in a timely manner and in accordance with the contract documents, the complete structural design documents and specifications that have been released for construction. Unless otherwise noted, design documents and specifications that are provided as part of the contract bid documents shall constitute authorization by the owner that the design documents and specifications are released for construction.

## Commentary:

When the owner issues design documents and specifications that are released for construction, the fabricator and the erector rely on the fact that these are the owner's requirements for the project. This release is required by the fabricator prior to the ordering of material and the preparation and completion of the approval documents.

To ensure the orderly flow of material procurement, detailing, fabrication and erection activities, on phased construction projects, it is essential that designs are not continuously revised after they have been released for construction. In essence, once a portion of a design is released for construction, the essential elements of that design should be "frozen" to ensure adherence to the contract price and construction schedule. Alternatively, all parties should reach a common understanding of the effects of future changes, if any, as they affect scheduled deliveries and added costs.

A pre-detailing conference, held after the structural steel fabrication contract is awarded, can benefit the project. Typical attendees may include the owner's designated representative for construction, the owner's designated representative for design, the fabricator, the steel detailer, and the erector. Topics of the meeting should relate to the specifics of the project and might include:

- Contract document review and general project overview, including clarifications of scope of work, tolerances, layouts and sequences, and special considerations.
- Detailing and coordination needs, such as bolting, welding, and connection considerations, constructability considerations, OSHA requirements, coordination with other trades, and the advanced bill of materials.
- The project communication system, including distribution of contact information for relevant parties to the contract, identification of the primary and alternate contacts in the general contractor's office, and the RFI system to be used on the project.
- The submittal schedule, including the method of submitting (electronic or hard copy); for hard copy, how many copies of documents are required; connection submittals; and identification of schedule-critical areas of the project, if any.
- If digital models will be used as part of the delivery method for the design documents, the parties should determine and convey the levels of development $(L O D)$, the digital model types that will be furnished, the authorized uses of
such digital models, the transmission of digital models to prevent the loss or alteration of data, interoperability, and methods of review and approval. The term levels of development refers to the level of completeness of elements within the digital model (see the BIMFORUM Level of Development Specification). The term "authorized uses" refers to the permitted uses of the digital model(s) and the digital data associated with the digital model(s). Such authorized uses may include the right to (1) store and view the digital model(s) for informational purposes only, (2) rely upon, store and view the digital model(s) to carry out the work on the project, (3) reproduce and distribute the digital model(s) for informational purposes only, (4) rely upon, reproduce and distribute the digital model(s) to carry out the work, (5) incorporate additional digital data into the digital model(s) without modifying the data received to carry out the work on the project, (6) modify the digital model(s) as required to carry out the work on the project, (7) produce the digital model(s) in an archival format for the owner to use as a reference for as-built construction data and/or for the operation of the project after completion, and/or (8) other authorized uses specified in the contract documents.
- Review of quality and inspection requirements, including the approvals process for corrective work.

Record of the meeting should be written and distributed to all parties. Subsequent meetings to discuss progress and issues that arise during construction also can be helpful, particularly when they are held on a regular schedule.

### 4.2. Fabricator Responsibility

4.2.1. Except as provided in Section 4.5, the fabricator shall produce the approval documents for the fabrication and erection of the structural steel and is responsible for the following:
(a) The transfer of information from the contract documents into accurate and complete approval documents.
(b) The development of accurate, detailed dimensional information to provide for the fit-up of parts in the field.

## Commentary:

The fabricator is permitted to use the services of independent steel detailers to produce approval documents and to perform other support services, such as producing advanced bills of material and bolt summaries.

As the fabricator develops the detailed dimensional information for production of the approval documents, there may be discrepancies, missing information or conflicts discovered in the contract documents. See Section 3.3.
4.2.2. Any copyright or other property or proprietary rights owned by the fabricator in any content included within the approval documents, whether created specifically for an individual project or otherwise made available for use on an individual project, shall remain the exclusive property of the fabricator.
4.2.3. When the approval documents are shop and erection drawings, each shop and erection drawing shall be identified by the same drawing number throughout the duration of the project and shall be identified by revision number and date, with each specific revision clearly identified. When the approval documents are fabrication and erection models, each submittal shall be uniquely identified.

When the fabricator submits a request to change connection details that are described in the contract documents, the fabricator shall notify the owner's designated representatives for design and construction in writing in advance of the submission of the approval documents. The owner's designated representative for design shall review and approve or reject the request in a timely manner.

When requested to do so by the owner's designated representative for design, the fabricator shall provide to the owner's designated representatives for design and construction its schedule for the submittal of approval documents so as to facilitate the timely flow of information between all parties.

## Commentary:

When the fabricator intends to make a submission of alternative connection details to those shown in the contract documents, the fabricator must notify the owner's designated representatives for design and construction in advance. This will allow the parties involved to plan for the increased effort that may be required to review the alternative connection details. In addition, the owner will be able to evaluate the potential for cost savings and/or schedule improvements against the additional design cost for review of the alternative connection details by the owner's designated representative for design. This evaluation by the owner may result in the rejection of the alternative connection details or acceptance of the submission for review based upon cost savings, schedule improvements and/or job efficiencies.

The owner's designated representative for design may request the fabricator's schedule for the submittal of the approval documents. This process is intended to allow the parties to plan for the staffing demands of the submission schedule. The contract documents may address this issue in more detail. In the absence of the requirement to provide this schedule, none need be provided.

When the fabricator provides a schedule for the submission of the approval documents, it must be recognized that this schedule may be affected by revisions and the response time to requests for missing information or the resolution of discrepancies.

### 4.3. Use of Digital Files or Copies of the Design Documents

The fabricator shall neither use nor reproduce any part of the design documents as part of the approval documents without the written permission of the owner's designated representative for design. When digital files or copies of the design documents are made available for the fabricator's use as part of the approval documents, the fabricator shall accept this information under the following conditions:
(a) All information contained in the digital files or copies of the design documents shall be considered instruments of service of the owner's designated representative for design and shall not be used for other projects, additions to the project
or the completion of the project by others. Digital files or copies of the design documents shall remain the property of the owner's designated representative for design and in no case shall the transfer of these copies of the design documents be considered a sale or unrestricted license.
(b) CAD files or copies of the design drawings shall not be considered to be contract documents. In the event of a conflict between the design drawings and the CAD files or copies thereof, the design drawings shall govern.
(c) When a design model is made available for use by the fabricator, the owner's designated representative for construction shall designate whether the design model and/or other documents are to be considered the contract documents. See Section 1.4.
(d) Any party or entity that creates a copy of the design model does so at their own risk.
(e) The use of copies of the design documents shall not in any way obviate the fabricator's responsibility for proper checking and coordination of dimensions, details, member sizes and fit-up, and quantities of materials as required to facilitate the preparation of approval documents that are complete and accurate as required in Section 4.2.
(f) If copies of design drawings are used by the fabricator, the fabricator shall remove information that is not required for the fabrication or erection of the structural steel from the copies of the design drawings.

## Commentary:

Copies of the design documents often are readily available to the fabricator. As a result, the owner's designated representative for design may have reduced control over the unauthorized use of the design documents. There are many copyright and other legal issues to be considered.

The owner's designated representative for design may choose to make copies of the design documents available to the fabricator, and may charge a service or licensing fee for this convenience. In doing so, a carefully negotiated agreement should be established to set out the specific responsibilities of both parties in view of the liabilities involved for both parties. For sample contracts, see Consensus Docs 301 BIM Addendum, AIA Document E202 Building Information Modeling Protocol Exhibit, AIA Document E203 Building Information Modeling and Digital Data Exhibit, AIA Document G201 Project Digital Data Protocol Form, and AIA Document G202 Project Building Information Modeling Protocol Form.

Once the design model has been accessed and/or modified by any entity other than the owner's designated representative for design, the resulting model is considered a copy of the design model and is no longer part of the contract documents.

The copies of the design documents are provided to the fabricator for convenience only. The information therein should be adapted for use only in reference to the placement of structural steel members during erection. The fabricator should treat this information as if it were fully produced by the fabricator and undertake the same level of checking and quality assurance. When amendments or revisions are made to the contract documents, the fabricator must update this reference material.

When copies of the design drawings are provided to the fabricator, they often contain other information, such as architectural backgrounds or references to other contract documents. This additional material should be removed when producing the approval documents to avoid the potential for confusion.

Just like the transmission of the design documents created by the owner's designated representative for design does not convey ownership rights in the design documents, the transmission of the approval documents created by the fabricator does not convey ownership rights in the approval documents.

### 4.4. Approval

Except as provided in Section 4.5, the approval documents shall be submitted to the owner's designated representatives for design and construction for review and approval. The approval documents shall be returned to the fabricator within 14 calendar days.

Final substantiating connection information, if any, shall also be submitted with the approval documents. The owner's designated representative for design is the final authority in the event of a disagreement between parties regarding the design of connections to be incorporated into the overall structural steel frame. The fabricator and licensed engineer in responsible charge of connection design are entitled to rely upon the connection design criteria provided in accordance with Section 3.1.1. Revisions to these criteria shall be addressed in accordance with Sections 9.3 and 9.4.

Approved approval documents shall be individually annotated by the owner's designated representatives for design and construction as either approved or approved subject to corrections noted. When so required, the fabricator shall subsequently make the corrections noted and furnish corrected fabrication and erection documents to the owner's designated representatives for design and construction.

## Commentary:

As used in this Code, the 14-day allotment for the return of approval documents is intended to represent the fabricator's portal-to-portal time. The intent in this Code is that, in the absence of information to the contrary in the contract documents, 14 days may be assumed for the purposes of bidding, contracting and scheduling. When additional time is desired, such as when substantiating connection information is part of the submittals, the modified allotment should be specified in the contract documents. A submittal schedule is commonly used to facilitate the approval process.

If the approval documents are approved subject to corrections noted, the owner's designated representative for design may or may not require that it be resubmitted for record purposes following correction. If the approval documents are not approved, revisions must be made and the documents resubmitted until approval is achieved.
4.4.1. Approval, approval subject to corrections noted, and similar approvals of the approval documents shall constitute the following:
(a) Confirmation that the fabricator has correctly interpreted the contract documents in the preparation of those submittals.
(b) Confirmation that the owner's designated representative for design has reviewed and approved the connection details shown in the approval documents and submitted in accordance with Section 3.1.1, if applicable.
(c) Release by the owner's designated representatives for design and construction for the fabricator to begin fabrication using the approved submittals.
Such approval shall not relieve the fabricator of the responsibility for either the accuracy of the detailed dimensions in the approval documents or the general fit-up of parts that are to be assembled in the field.

The fabricator shall determine the fabrication schedule that is necessary to meet the requirements of the contract.

## Commentary:

When considering the current language in this Section, the Committee sought language that would parallel the practices of CASE. In CASE Document 962, CASE indicates that when the design of some element of the primary structural system is left to someone other than the structural engineer of record, "...such elements, including connections designed by others, should be reviewed by the structural engineer of record. He [or she] should review such designs and details, accept or reject them and be responsible for their effects on the primary structural system." Historically, this Code has embraced this same concept.

From the inception of this Code, AISC and the industry in general have recognized that only the owner's designated representative for design has all the information necessary to evaluate the total impact of connection details on the overall structural design of the project. This authority traditionally has been exercised during the approval process for the approval documents. The owner's designated representative for design has thus retained responsibility for the adequacy and safety of the entire structure since at least the 1927 edition of this Code.
4.4.2. Unless otherwise noted, any additions, deletions or revisions that are indicated in responses to RFIs or on the approved approval documents shall constitute authorization by the owner that the additions, deletions or revisions are released for construction. The fabricator and the erector shall promptly notify the owner's designated representative for construction when any direction or notation in responses to RFIs or on the approval documents or other information will result in an additional cost and/or a delay. See Sections 3.5 and 9.3.

## Commentary:

When the fabricator notifies the owner's designated representative for construction that a direction or notation in responses to RFIs or on the approval documents will result in an additional cost or a delay, it is then normally the responsibility of the owner's designated representative for construction to subsequently notify the owner's designated representative for design.

### 4.5. Fabrication and/or Erection Documents Not Furnished by the Fabricator

When the fabrication and erection documents are not prepared by the fabricator, but are furnished by others, they shall be delivered to the fabricator in a timely manner, or as agreed upon in the contract documents. These fabrication and erection documents shall be prepared, insofar as is practical, in accordance with the shop fabrication and detailing standards of the fabricator. The fabricator shall not be responsible for the completeness, coordination, or accuracy of fabrication and erection documents so furnished, nor for the general fit-up of the members that are fabricated from them.

## Commentary:

This delivery system of fabrication and erection documents is discouraged. The preparation of the fabrication and erection documents is very specific to the needs of the fabricator performing the work, and an integral part of the constructability and coordination assurance of the project. If the project team chooses to use this delivery method, the contract documents should be very clear as to the managing of this process, including, but not limited to, who and how the following will be handled:

- Standards, format and contents of the fabrication and erection documents, or representative documents that will be part of the contract documents, for the mill order and for fabrication, including field bolts.
- Provisions for proper risk management (errors and omissions or product liability, as applicable).
- Normal "pre-detailing" sequencing, OSHA erection aids, and other Sub Part R requirements incorporated.
- Schedule updates for documents, and impact to overall project schedule and contract, as these dates are impacted.
- Revision of fabrication and erection documents and control of in order to maintain the integrity of all parts of the fabrication and erection documents.
- Late released items.
- Shop question support, including those that arise on night shifts and weekends.
- Joist, deck and other commodity item question and coordination support.
- Field question support.


### 4.6. The RFI Process

When requests for information (RFIs) are issued, the process shall include the maintenance of a written record of inquiries and responses related to interpretation and implementation of the contract documents, including the clarifications and/or revisions to the contract documents that result, if any. RFIs shall not be used for the incremental release for construction of the design documents. When RFIs involve discrepancies or revisions, see Sections 3.3, 3.5 and 4.4.2.

When a design model is used as the design documents, the changes and/or clarifications made in response to RFIs shall be incorporated into the design model.

## Commentary:

The RFI process is most commonly used during the detailing process, but can also be used to forward inquiries by the erector or to inform the owner's designated representative for design in the event of a fabricator or erector error and to develop corrective measures to resolve such errors.

The RFI process is intended to provide a written record of inquiries and associated responses but not to replace all verbal communication between the parties on the project. RFIs should be prepared and responded to in a timely fashion so as not to delay the work of the steel detailer, fabricator and erector. Discussion of the RFI issues and possible solutions between the fabricator, erector and owner's designated representatives for design and construction often can facilitate timely and practical resolution. Unlike submittals in Section 4.4, RFI response time can vary depending on the urgency of the issue, the amount of work required by the owner's designated representatives for design and construction to develop a complete response, and other circumstances, such as building official approval.

RFIs should be prepared in a standardized format, including RFI number and date, identity of the author, reference to a specific location(s) in the design documents or specification section, the needed response date, a description of a suggested solution (graphic depictions are recommended for more complex issues), and an indication of possible schedule and cost impacts. RFIs should be limited to one question each (unless multiple questions are interrelated to the same issue) to facilitate the resolution and minimize response time. Questions and proposed solutions presented in RFIs should be clear and complete. RFI responses should be equally clear and complete in the depictions of the solutions, and signed and dated by the responding party.

Unless otherwise noted, the fabricator and erector can assume that a response to an RFI constitutes a release for construction. However, if the response will result in an increase in cost or a delay in schedule, Section 4.4.2 requires that the fabricator and/or erector promptly inform the owner's designated representatives for design and construction.

### 4.7 Erection Documents

The erection documents shall be provided to the erector in a timely manner so as to allow the erector to properly plan and perform the work.

## Commentary:

For planning purposes, this may include release of preliminary erection documents, if requested by the erector.

## SECTION 5. MATERIALS

### 5.1. Mill Materials

Unless otherwise noted in the contract documents, the fabricator is permitted to order the materials that are necessary for fabrication when the fabricator receives contract documents that have been released for construction.

## Commentary:

The fabricator may purchase materials in stock lengths, exact lengths or multiples of exact lengths to suit the dimensions shown in the structural design documents. Such purchases will normally be job-specific in nature and may not be suitable for use on other projects or returned for full credit if subsequent design changes make these materials unsuitable for their originally intended use. The fabricator should be paid for these materials upon delivery from the mill, subject to appropriate additional payment or credit if subsequent unanticipated modification or reorder is required. Purchasing materials to exact lengths is not considered fabrication.
5.1.1. Unless otherwise specified by means of special testing requirements in the contract documents, mill testing shall be limited to those tests that are required for the material in the ASTM specifications indicated in the contract documents. Materials ordered to special material requirements shall be marked by the supplier as specified in ASTM A6/A6M Section 12 prior to delivery to the fabricator's shop or other point of use. Such material not so marked by the supplier, shall not be used until:
(a) Its identification is established by means of testing in accordance with the applicable ASTM specifications.
(b) A fabricator's identification mark, as described in Section 6.1.2 and 6.1.3, has been applied.
5.1.2. When mill material does not satisfy ASTM A6/A6M tolerances for camber, profile, flatness or sweep, the fabricator shall be permitted to perform corrective procedures, including the use of controlled heating and/or mechanical straightening, subject to the limitations in ANSI/AISC 360.

## Commentary:

Mill dimensional tolerances are completely set forth in ASTM A6/A6M. Normal variations in the cross-sectional geometry of standard structural shapes must be recognized by the designer, the fabricator, the steel detailer, and the erector (for example, see Figure C-5.1). Such tolerances are mandatory because roll wear, thermal distortions of the hot cross section immediately after leaving the forming rolls and differential cooling distortions that take place on the cooling beds are all unavoidable. Geometric perfection of the cross section is not necessary for either structural or architectural reasons, if the tolerances are recognized and provided for.

ASTM A6/A6M also stipulates tolerances for straightness that are adequate for typical construction. However, these characteristics may be controlled or corrected to closer tolerances during the fabrication process when the added cost is justified by the special requirements for an atypical project.
5.1.3. When variations that exceed ASTM A6/A6M tolerances are discovered or occur after the receipt of mill material the fabricator shall, at the fabricator's option, be permitted to perform the ASTM A6/A6M corrective procedures for mill reconditioning of the surface of structural steel shapes and plates.
5.1.4. When special tolerances that are more restrictive than those in ASTM A6/A6M are required for mill materials, such special tolerances shall be specified in the contract documents. The fabricator shall, at the fabricator's option, be permitted to order material to ASTM A6/A6M tolerances and subsequently perform the corrective procedures described in Sections 5.1.2 and 5.1.3.

### 5.2. Stock Materials

5.2.1. If used for structural purposes, materials that are taken from stock by the fabricator shall be of a quality that is at least equal to that required in the ASTM specifications indicated in the contract documents.
5.2.2. Material test reports shall be accepted as sufficient record of the quality of materials taken from stock by the fabricator. The fabricator shall review and retain the material test reports that cover such stock materials. However, the fabricator need not maintain records that identify individual pieces of stock material against individual material test reports, provided the fabricator purchases stock materials that meet the requirements for material grade and quality in the applicable ASTM specifications.
5.2.3. Stock materials that are purchased under no particular specification, under a specification that is less rigorous than the applicable ASTM specifications or without material test reports or other recognized test reports shall not be used without the approval of the owner's designated representative for design.


Fig. C-5.1. Mill tolerances on the cross section of a W-shape.

## SECTION 6. SHOP FABRICATION AND DELIVERY

### 6.1. Identification of Material

6.1.1. The fabricator shall be able to demonstrate by written procedure and actual practice a method of material identification, visible up to the point of assembling members as follows:
(a) For shop-standard material, identification capability shall include shape designation. Representative material test reports shall be furnished by the fabricator if requested to do so by the owner's designated representative for design, either in the contract documents or in separate written instructions given to the fabricator prior to ordering mill materials.
(b) For material of grade other than shop-standard material, identification capability shall include shape designation and material grade. Representative material test reports shall be furnished by the fabricator if requested to do so by the owner's designated representative for design, either in the contract documents or in separate written instructions given to the fabricator prior to ordering mill materials.
(c) For material ordered in accordance with an ASTM supplement or other special material requirements in the contract documents, identification capability shall include shape designation, material grade and heat number. The corresponding material test reports shall be furnished by the fabricator if requested to do so by the owner's designated representative for design, either in the contract documents or in separate written instructions given to the fabricator prior to ordering mill materials.

Unless an alternative system is established in the fabricator's written procedures, shop-standard material shall be as follows:
Material
W and WT
M, S, MT and ST
HP
L
C and MC
HSS
Steel Pipe
Plates and Bars

Shop-Standard Material Grade
ASTM A992/A992M
ASTM A36/A36M
ASTM A572/A572M Grade 50
ASTM A36/A36M
ASTM A36/A36M
ASTM A500/A500M Grade C
ASTM A53/A53M Grade B
ASTM A36/A36M

## Commentary:

The requirements in Section 6.1.1(a) will suffice for most projects. When material is of a strength level that differs from the shop-standard grade, the requirements in Section 6.1.1(b) apply. When special material requirements apply, such as ASTM A6/A6M supplement S5 or S30 for CVN testing or ASTM A6/A6M supplement S 8 for ultrasonic testing, the requirements in Section 6.1.1(c) are applicable.
6.1.2. During fabrication, up to the point of assembling members, each piece of material that is ordered to special material requirements shall carry a fabricator's identification mark or an original supplier's identification mark. The fabricator's identification mark shall be in accordance with the fabricator's established material identification system, which shall be on record and available prior to the start of fabrication for the information of the owner's designated representative for construction, the building code authority and the inspector.
6.1.3. Members that are made of material that is ordered to special material requirements shall not be given the same assembling or erection mark as members made of other material, even if they are of identical dimensions and detail.

### 6.2. Preparation of Material

6.2.1. The thermal cutting of structural steel by hand-guided or mechanically guided means is permitted.
6.2.2. Surfaces that are specified as "finished" in the contract documents shall have a roughness height value measured in accordance with ASME B46.1 that is equal to or less than $500 \mu \mathrm{in}$. $(12.7 \mu \mathrm{~m})$. The use of any fabricating technique that produces such a finish is permitted.

## Commentary:

Most cutting processes, including friction sawing and cold sawing, and milling processes meet a surface roughness limitation of $500 \mu \mathrm{in}$. ( $12.7 \mu \mathrm{~m}$ ) per ASME B46.1.

### 6.3. Fitting and Fastening

6.3.1. Projecting elements of connection materials need not be straightened in the connecting plane, subject to the limitations in ANSI/AISC 360.
6.3.2. Backing and runoff tabs shall be used in accordance with AWS D1.1/D1.1M as required to produce sound welds. The fabricator or erector need not remove backing or runoff tabs unless such removal is specified in the contract documents. When the removal of backing is specified in the contract documents, such removal shall meet the requirements in AWS D1.1/D1.1M. When the removal of runoff tabs is specified in the contract documents, hand flame-cutting close to the edge of the finished member with no further finishing is permitted, unless other finishing is specified in the contract documents.

## Commentary:

In most cases, the treatment of backing and runoff tabs is left to the discretion of the owner's designated representative for design. In some cases, treatment beyond the basic cases described in this Section may be required. As one example, special treatment is required for backing and runoff tabs in beam-to-column moment connections when the requirements in ANSI/AISC 341 must be met. In all cases, the owner's designated representative for design should specify the required treatments in the contract documents.
6.3.3. Unless otherwise noted in the fabrication documents, high-strength bolts for shopattached connection material shall be installed in the shop in accordance with the requirements in ANSI/AISC 360.

### 6.4. Fabrication Tolerances

The tolerances on structural steel fabrication shall be in accordance with the requirements in Section 6.4.1 through 6.4.6.

## Commentary:

Fabrication tolerances are stipulated in several specifications and codes, each applicable to a specialized area of construction. Basic fabrication tolerances are stipulated in this Section. For architecturally exposed structural steel, see Section 10. Other specifications and codes are also commonly incorporated by reference in the contract documents, such as ANSI/AISC 360, the RCSC Specification, AWS D1.1/D1.1M, and the AASHTO Specification.
6.4.1. For members that have both ends finished (see Section 6.2.2) for contact bearing, the variation in the overall length shall be equal to or less than $1 / 32 \mathrm{in}$. ( 1 mm ). For other members that frame to other structural steel elements, the variation in the detailed length shall be as follows:

For members that are equal to or less than $30 \mathrm{ft}(9000 \mathrm{~mm})$ in length, the variation shall be equal to or less than $1 / 16$ in. $(2 \mathrm{~mm})$.

For members that are greater than $30 \mathrm{ft}(9000 \mathrm{~mm})$ in length, the variation shall be equal to or less than $1 / 8 \mathrm{in}$. $(3 \mathrm{~mm})$.
6.4.2. For straight and curved structural members, whether of a single standard structural shape or built-up, the permitted variation in specified straightness or curvature shall be as listed below. In all cases, completed members shall be free of twists (except as allowed by ASTM standards), bends and open joints. Sharp kinks or sharp bends shall be cause for rejection.
(a) For straight structural members other than compression members, the variation in straightness shall be equal to or less than that specified for structural shapes in the applicable ASTM standards except when a smaller variation is specified in the contract documents.

For straight compression members, the variation in straightness shall be equal to or less than $1 / 1000$ of the axial length between points that are to be laterally supported.
(b) For curved structural members, the variation in the chord length shall be as defined in Section 6.4.1. The variation in curvature measured at the middle ordinate shall be equal to or less than the permissible variations in straightness as specified in applicable ASTM standards for camber in the strong direction and sweep in the weak direction, inside or outside of the theoretical arc, except when a smaller variation is specified in the contract documents. Should no applicable ASTM standard exist, the maximum variation in curvature measured at the
middle ordinate shall be plus or minus $1 / 8$ in. $(3 \mathrm{~mm})$ times one-fifth the total arc length in ft (times two-thirds the total arc length in m ) for members $10 \mathrm{ft}(3 \mathrm{~m})$ or greater in length. For members less than $10 \mathrm{ft}(3 \mathrm{~m})$ in length, the permissible variation in curvature measured at the middle ordinate shall be plus or minus $1 / 8 \mathrm{in}$. ( 3 mm ). The middle ordinate is located between work points as shown in Figure C-6.1.

## Commentary:

Curved structural members, as referred to in this section, are defined as those members intended to maintain a specified curvature while in use. This section does not apply to members specified for camber. The location of the arc length is defined by the contract drawings and may be either at the member's inside radius, the outside radius, or the radius between work points.
6.4.3. For beams that are detailed without specified camber, the member shall be fabricated so that, after erection, any incidental camber due to rolling or shop fabrication is upward. For trusses that are detailed without specified camber, the components shall be fabricated so that, after erection, any incidental camber in the truss due to rolling or shop fabrication is upward.
6.4.4. For beams that are specified in the contract documents with camber, beams received by the fabricator with $75 \%$ of the specified camber shall require no further cambering. Otherwise, the variation in camber shall be as follows:
(a) For beams that are equal to or less than $50 \mathrm{ft}(15000 \mathrm{~mm})$ in length, the variation shall be equal to or less than minus zero / plus $1 / 2 \mathrm{in}$. ( 13 mm ).


Fig. C-6.1. Illustration of the tolerance on curved structural steel member.
(b) For beams that are greater than $50 \mathrm{ft}(15000 \mathrm{~mm})$ in length, the variation shall be equal to or less than minus zero / plus $1 / 2$ in. plus $1 / 8$ in. for each 10 ft or fraction thereof ( 13 mm plus 3 mm for each 3000 mm or fraction thereof) in excess of $50 \mathrm{ft}(15000 \mathrm{~mm})$ in length.

For the purpose of inspection, camber shall be measured in the fabricator's shop in the unstressed condition.

## Commentary:

There is no known way to inspect beam camber after the beam is received in the field because of factors that include:
(a) The release of stresses in members over time and in varying applications.
(b) The effects of the dead weight of the member.
(c) The restraint caused by the end connections in the erected state.
(d) The effects of additional dead load that may ultimately be intended to be applied, if any.
Therefore, inspection of the fabricator's work on beam camber must be done in the fabrication shop in the unstressed condition.
6.4.5. For fabricated trusses that are specified in the contract documents with camber, the variation in camber at each specified camber point shall be equal to or less than plus or minus $1 / 800$ of the distance to that point from the nearest point of support. For the purpose of inspection, camber shall be measured in the fabricator's shop in the unstressed condition. For fabricated trusses that are specified in the contract documents without indication of camber, the foregoing requirements shall be applied at each panel point of the truss with a zero camber ordinate.

## Commentary:

There is no known way to inspect truss camber after the truss is received in the field because of factors that include:
(a) The effects of the dead weight of the member.
(b) The restraint caused by the truss connections in the erected state.
(c) The effects of additional dead load that may ultimately be intended to be applied, if any.

Therefore, inspection of the fabricator's work on truss camber must be done in the fabrication shop in the unstressed condition. See Figure C-6.2.
6.4.6. When permissible variations in the depths of beams and girders result in abrupt changes in depth at splices, such deviations shall be accounted for as follows:
(a) For splices with bolted joints, the variations in depth shall be taken up with filler plates.
(b) For splices with welded joints, the weld profile shall be adjusted to conform to the variations in depth, the required cross section of weld shall be provided and the slope of the weld surface shall meet the requirements in AWS D1.1/D1.1M.


Taking $L$ as the distance from the point at which truss camber is specified to the closer point of support, in. [mm], the tolerance on russ camber at that point is calculated as $L / 800$. $L$ must be equal to or less than one-half the span.

Fig. C-6.2. Illustration of the tolerance on camber for fabricated trusses with specified camber.

### 6.5. Shop Cleaning and Painting (see also Section 3.1.6)

Structural steel that does not require shop paint shall be cleaned of oil and grease with solvent cleaners, and of dirt and other foreign material by sweeping with a fiber brush or other suitable means. For structural steel that is required to be shop painted, the requirements in Sections 6.5.1 through 6.5.4 shall apply.

## Commentary:

Extended exposure of unpainted structural steel that has been cleaned for the subsequent application of fire protection materials can be detrimental to the fabricated product. Most levels of cleaning require the removal of all loose mill scale, but permit some amount of tightly adhering mill scale. When a piece of structural steel that has been cleaned to an acceptable level is left exposed to a normal environment, moisture can penetrate behind the scale, and some "lifting" of the scale by the oxidation process is to be expected. Cleanup of "lifted" mill scale is not the responsibility of the fabricator, but is to be assigned by contract requirement to an appropriate contractor.

Section 6.5.4 of this Code is not applicable to weathering steel, for which special cleaning specifications are always required in the contract documents.
6.5.1. The fabricator is not responsible for deterioration of the shop coat that may result from exposure to ordinary atmospheric conditions or corrosive conditions that are more severe than ordinary atmospheric conditions.

## Commentary:

The shop coat of paint is the prime coat of the protective system. It is intended as protection for only a short period of exposure in ordinary atmospheric conditions, and is considered a temporary and provisional coating.
6.5.2. Unless otherwise specified in the contract documents, the fabricator shall, as a minimum, hand clean the structural steel of loose rust, loose mill scale, dirt and other foreign matter, prior to painting, by means of wire brushing or by other methods elected by the fabricator, to meet the requirements of SSPC-SP2. If the fabricator's workmanship on surface preparation is to be inspected by the inspector, such inspection shall be performed in a timely manner prior to the application of the shop coat.

## Commentary:

The selection of a paint system is a design decision involving many factors including:
(a) The owner's preference.
(b) The service life of the structure.
(c) The severity of environmental exposure.
(d) The cost of both initial application and future renewals.
(e) The compatibility of the various components that comprise the paint system (surface preparation, shop coat and subsequent coats).

Because the inspection of shop painting must be concerned with workmanship at each stage of the operation, the fabricator provides notice of the schedule of operations and affords the inspector access to the work site. Inspection must then be coordinated with that schedule so as to avoid delay of the scheduled operations.

Acceptance of the prepared surface must be made prior to the application of the shop coat because the degree of surface preparation cannot be readily verified after painting. Time delay between surface preparation and the application of the shop coat can result in unacceptable deterioration of a properly prepared surface, necessitating a repetition of surface preparation. This is especially true with blastcleaned surfaces. Therefore, to avoid potential deterioration of the surface, it is assumed that surface preparation is accepted unless it is inspected and rejected prior to the scheduled application of the shop coat.

The shop coat in any paint system is designed to maximize the wetting and adherence characteristics of the paint, usually at the expense of its weathering capabilities. Deterioration of the shop coat normally begins immediately after exposure to the elements and worsens as the duration of exposure is extended. Consequently, extended exposure of the shop coat will likely lead to its deterioration and may necessitate repair, possibly including the repetition of surface preparation and shop coat application in limited areas. With the introduction of high-performance paint systems, avoiding delay in the application of the shop coat has become more critical. High-performance paint systems generally require a greater degree of surface preparation, as well as early application of weathering protection for the shop coat.

Since the fabricator does not control the selection of the paint system, the compatibility of the various components of the total paint system, or the length of exposure of the shop coat, the fabricator cannot guarantee the performance of the shop coat or any other part of the system. Instead, the fabricator is responsible only for accomplishing the specified surface preparation and for applying the shop coat (or coats) in accordance with the contract documents.

This Section stipulates that the structural steel is to be cleaned to meet the requirements in SSPC-SP2. This stipulation is not intended to represent an exclusive cleaning level, but rather the level of surface preparation that will be furnished unless otherwise specified in the contract documents if the structural steel is to be painted.
6.5.3. Unless otherwise specified in the contract documents, paint shall be applied by brushing, spraying, rolling, flow coating, dipping or other suitable means, at the election of the fabricator. When the term "shop coat," "shop paint," or other equivalent term is used with no paint system specified, the fabricator's standard shop paint shall be applied to a minimum dry-film thickness of one mil ( $25 \mu \mathrm{~m}$ ).
6.5.4. Touch-up of abrasions caused by handling after painting shall be the responsibility of the contractor that performs touch-up in the field or field painting.

## Commentary:

Touch-up in the field and field painting are not normally part of the fabricator's or the erector's contract.

### 6.6. Marking and Shipping of Materials

6.6.1. Unless otherwise specified in the contract documents, erection marks shall be applied to the structural steel members by painting or other suitable means.

Bolt assemblies and loose bolts, nuts and washers shall be shipped in separate closed containers according to length and diameter, as applicable. Pins and other small parts and packages of bolts, nuts and washers shall be shipped in boxes, crates, kegs or barrels. A list and description of the material shall appear on the outside of each closed container.

## Commentary:

In most cases, bolts, nuts and other components in a fastener assembly can be shipped loose in separate containers. However, there are exceptions:

- ASTM F3125/F3125M Grades F1852 and F2280 twist-off-type tension-control bolt assemblies must be assembled and shipped in containers according to grade, length and diameter.
- Galvanized ASTM F3125/F3125M Grade A325 bolts and their corresponding ASTM A563 or A563M nuts must be shipped in the same container according to length and diameter.

See these ASTM standards for the applicable requirements and the RCSC Specification for further explanation.

### 6.7. Delivery of Materials

6.7.1. Fabricated structural steel shall be delivered in a sequence that will permit efficient and economical fabrication and erection, and that is consistent with requirements in the contract documents. If the owner or owner's designated representative for construction wishes to prescribe or control the sequence of delivery of materials, that entity shall specify the required sequence in the contract documents. If the owner's designated representative for construction contracts separately for delivery and for erection, the owner's designated representative for construction shall coordinate planning between contractors.
6.7.2. Anchor rods, washers, nuts and other anchorage or grillage materials that are to be built into concrete or masonry shall be shipped so that they will be available when needed. The owner's designated representative for construction shall allow the fabricator sufficient time to fabricate and ship such materials before they are needed.
6.7.3. If any shortage is claimed relative to the quantities of materials that are shown in the shipping statements, the owner's designated representative for construction or the erector shall promptly notify the fabricator so that the claim can be investigated.

## Commentary:

The quantities of material that are shown in the shipping statement are customarily accepted as correct by the owner's designated representative for construction, the fabricator and the erector.
6.7.4. Unless otherwise specified in the contract documents, and subject to the approved approval documents, the fabricator shall limit the number of field splices to that consistent with minimum project cost.

## Commentary:

This Section recognizes that the size and weight of structural steel assemblies may be limited by shop capabilities, the permissible weight and clearance dimensions of available transportation or job-site conditions.
6.7.5. If material arrives at its destination in damaged condition, the receiving entity shall promptly notify the fabricator and carrier prior to unloading the material, or promptly upon discovery prior to erection.

## SECTION 7. ERECTION

### 7.1. Method of Erection

Fabricated structural steel shall be erected using methods and a sequence that will permit efficient and economical performance of erection, and that is consistent with the requirements in the contract documents. If the owner or owner's designated representative for construction wishes to prescribe or control the method and/ or sequence of erection, or specifies that certain members cannot be erected in their normal sequence, that entity shall specify the required method and sequence in the contract documents. If the owner's designated representative for construction contracts separately for fabrication services and for erection services, the owner's designated representative for construction shall coordinate planning between contractors.

## Commentary:

Design modifications are sometimes requested by the erector to allow or facilitate the erection of the structural steel frame. When this is the case, the erector should notify the fabricator prior to the preparation of the approval documents so that the fabricator may refer the erector's request to the owner's designated representatives for design and construction for resolution.

### 7.2. Job-Site Conditions

The owner's designated representative for construction shall provide and maintain the following for the fabricator and the erector:
(a) Adequate access roads into and through the job site for the safe delivery and movement of the material to be erected and of derricks, cranes, trucks and other necessary equipment under their own power.
(b) A firm, properly graded, drained, convenient and adequate space at the job site for the operation of the erector's equipment, free from overhead obstructions, such as power lines, telephone lines or similar conditions.
(c) Adequate storage space, when the structure does not occupy the full available job site, to enable the fabricator and the erector to operate at maximum practical speed.

Otherwise, the owner's designated representative for construction shall inform the fabricator and the erector of the actual job-site conditions and/or special delivery requirements prior to bidding.

### 7.3. Foundations, Piers and Abutments

The accurate location, strength and suitability of, and access to, all foundations, piers and abutments shall be the responsibility of the owner's designated representative for construction.

### 7.4. Lines and Benchmarks

The owner's designated representative for construction shall be responsible for the accurate location of lines and benchmarks at the job site and shall furnish the erector with a plan that contains all such information. The owner's designated representative for construction shall establish offset lines and reference elevations at each level for the erector's use in the positioning of adjustable items (see Section 7.13.1.3), if any.

### 7.5. Installation of Anchor Rods, Foundation Bolts, and Other Embedded Items

7.5.1. Anchor rods, foundation bolts, and other embedded items shall be set by the owner's designated representative for construction in accordance with embedment drawings that have been approved by the owner's designated representatives for design and construction. The variation in location of these items from the dimensions shown in the approved embedment drawings shall be as follows:
(a) The vertical variation in location from the specified top of anchor rod location shall be equal to or less than plus or minus $1 / 2 \mathrm{in}$. ( 13 mm ).
(b) The horizontal variation in location from the specified position of each anchor rod centerline at any location along its projection above the concrete shall be equal to or less than the dimensions given for the anchor rod diameters listed as follows:

## Anchor Rod Diameter, in. (mm)

$$
\begin{aligned}
& 3 / 4 \text { and }{ }^{7 / 8}(19 \text { and } 22) \\
& 1,1^{1 / 4,} 1^{1 / 2}(25,31,38) \\
& 1^{3 / 4}, 2,2^{1 / 2}(44,50,63)
\end{aligned}
$$

## Horizontal Variation, in. (mm)

$1 / 4$ (6)
3/8 (10)
$1 / 2$ (13)

## Commentary:

The tolerances established in this Section have been selected for compatibility with the holes sizes that are recommended for base plates in the AISC Steel Construction Manual. If special conditions require more restrictive tolerances, such as for smaller holes, the required tolerances should be stated in the contract documents. When the anchor rods are set in sleeves, the adjustment provided may be used to satisfy the required anchor-rod setting tolerances.
7.5.2. Unless otherwise specified in the contract documents, anchor rods shall be set with their longitudinal axis perpendicular to the theoretical bearing surface.
7.5.3. Embedded items and connection materials that are part of the work of other trades, but that will receive structural steel, shall be located and set by the owner's designated representative for construction in accordance with an approved embedment drawing. The variation in location of these items shall be limited to a magnitude that is consistent with the tolerances that are specified in Section 7.13 for the erection of the structural steel.
7.5.4. All work that is performed by the owner's designated representative for construction shall be completed so as not to delay or interfere with the work of the fabricator and the erector. The owner's designated representative for construction shall conduct a survey of the as-built locations of anchor rods, foundation bolts and other embedded items, and shall verify that all items covered in Section 7.5 meet the corresponding tolerances. When corrective action is necessary, the owner's designated representative for construction shall obtain the guidance and approval of the owner's designated representative for design.

## Commentary:

Few fabricators or erectors have the capability to provide this survey. Under standard practice, it is the responsibility of others.

### 7.6. Installation of Bearing Devices

All leveling plates, leveling nuts and washers, and loose base and bearing plates that can be handled without a derrick or crane are set to line and grade by the owner's designated representative for construction. Loose base and bearing plates that require handling with a derrick or crane shall be set by the erector to lines and grades established by the owner's designated representative for construction. The fabricator shall clearly scribe loose base and bearing plates with lines or other suitable marks to facilitate proper alignment.

Promptly after the setting of bearing devices, the owner's designated representative for construction shall check them for line and grade. The variation in elevation relative to the established grade for all bearing devices shall be equal to or less than plus or minus $1 / 8 \mathrm{in}$. ( 3 mm ). The final location of bearing devices shall be the responsibility of the owner's designated representative for construction.

## Commentary:

The ${ }^{1 / 8}$ in. ( 3 mm ) tolerance on elevation of bearing devices relative to established grades is provided to permit some variation in setting bearing devices, and to account for the accuracy that is attainable with standard surveying instruments. The use of leveling plates larger than 22 in . by 22 in . ( 550 mm by 550 mm ) is discouraged and grouting is recommended with larger sizes. For the purposes of erection stability, the use of leveling nuts and washers is discouraged when base plates have less than four anchor rods.

### 7.7. Grouting

Grouting shall be the responsibility of the owner's designated representative for construction. Leveling plates and loose base and bearing plates shall be promptly grouted after they are set and checked for line and grade. Columns with attached base plates, beams with attached bearing plates and other similar members with attached bearing devices that are temporarily supported on leveling nuts and washers, shims or other similar leveling devices, shall be promptly grouted after the structural steel frame or portion thereof has been plumbed.

## Commentary:

In the majority of structures the vertical load from the column bases is transmitted to the foundations through structural grout. In general, there are three methods by which support is provided for column bases during erection:
(a) Pre-grouted leveling plates or loose base plates.
(b) Shims.
(c) Leveling nuts and washers on the anchor rods beneath the column base.

Standard practice provides that loose base plates and leveling plates are to be grouted as they are set. Bearing devices that are set on shims or leveling nuts are grouted after plumbing, which means that the weight of the erected structural steel frame is supported on the shims or washers, nuts and anchor rods. The erector must take care to ensure that the load that is transmitted in this temporary condition does not exceed the strength of the shims or washers, nuts and anchor rods. These considerations are presented in greater detail in AISC Design Guide 1, Base Plate and Anchor Rod Design, and AISC Design Guide 10, Erection Bracing of Low-Rise Structural Steel Frames.

### 7.8. Field Connection Material

7.8.1. The fabricator shall provide field connection details that are consistent with the requirements in the contract documents and that will, in the fabricator's opinion, result in economical fabrication and erection.
7.8.2. When the fabricator is responsible for erecting the structural steel, the fabricator shall furnish all materials that are required for both temporary and permanent connection of the component parts of the structural steel frame.
7.8.3. When the erection of the structural steel is not performed by the fabricator, the fabricator shall furnish the following field connection material:
(a) Bolts, nuts and washers in sufficient quantity for all structural steel-to-structural steel field connections that are to be permanently bolted. The fabricator shall include an extra $2 \%$ plus 3 bolts, subject to a minimum of 5 extra bolts, of each grade, type, diameter, length, and production lot number.
(b) Shims that are shown as necessary for make-up of permanent structural steel-tostructural steel field connections.
(c) Steel backing and run-off tabs that are required for field welding.
7.8.4. The erector shall furnish all welding electrodes, fit-up bolts and drift pins used for the erection of the structural steel. Non-steel backing, if used, shall be furnished by the erector.

Commentary:
See the Commentary for Section 2.2.

### 7.9. Loose Material

Unless otherwise specified in the contract documents, loose structural steel items that are not connected to the structural steel frame shall be set by the owner's designated representative for construction without assistance from the erector.

### 7.10. Temporary Support of Structural Steel Frames

7.10.1. The owner's designated representative for design shall identify the following in the contract documents:
(a) The lateral force-resisting system and connecting diaphragm elements that provide for lateral strength and stability in the completed structure.
(b) Any special erection conditions or other considerations that are required by the design concept, such as the use of shores, jacks or loads that must be adjusted as erection progresses to set or maintain camber, position within specified tolerances or prestress.

## Commentary:

The intent of Section 7.10.1 of the Code is to alert the owner's designated representative for construction and the erector of the means for lateral force resistance in the completed structure so that appropriate planning can occur for construction of the building. Examples of a description of the lateral force-resisting system as required in Section 7.10.1(a) are shown in the following.

Example 1 is an all-steel building with a composite metal deck and concrete floor system. All lateral force resistance is provided by welded moment frames in each orthogonal building direction. One suitable description of this lateral forceresisting system is:
All lateral force resistance and stability of the building in the completed structure is provided by moment frames with welded beam to column connections framed in each orthogonal direction (see plan sheets for locations). The composite metal deck and concrete floors serve as horizontal diaphragms that distribute the lateral wind and seismic forces horizontally to the vertical moment frames. The vertical moment frames carry the applied lateral loads to the building foundation.

Example 2 is a steel-framed building with a composite metal deck and concrete floor system. All beam-to-column connections are simple connections and all lateral force resistance is provided by reinforced concrete shear walls in the building core and in the stairwells. One suitable description of this lateral force-resisting system is: All lateral force resistance and stability of the building in the completed structure is provided exclusively by cast-in-place reinforced concrete shear walls in the building core and stairwells (see plan sheets for locations). These walls provide all lateral force resistance in each orthogonal building direction. The composite metal deck and concrete floors serve as horizontal diaphragms that distribute the lateral wind and seismic forces horizontally to the concrete shear walls. The concrete shear walls carry the applied lateral loads to the building foundation.

See also Commentary Section 7.10.3.
Section 7.10.1(b) is intended to apply to special requirements inherent in the design concept that could not otherwise be known by the erector. Such conditions might include designs that require the use of shores or jacks to impart a load or to obtain a specific elevation or position in a subsequent step of the erection process in a sequentially erected structure or member. These requirements would not be apparent to an erector, and must be identified so the erector can properly bid, plan and perform the erection.

The erector is responsible for installation of all members (including cantilevered members) to the specified plumbness, elevation and alignment within the erection tolerances specified in this Code. The erector must provide all temporary supports and devices to maintain elevation or position within these tolerances. These works are part of the means and methods of the erector and the owner's designated representative for design need not specify these methods or related equipment.

See also the preset requirements for cantilevered members in Section 3.1.
7.10.2. The owner's designated representative for construction shall indicate to the erector, prior to bidding, the installation schedule for non-structural steel elements of the lateral force-resisting system and connecting diaphragm elements identified by the owner's designated representative for design in the contract documents.

## Commentary:

See Commentary Section 7.10.3.
7.10.3. Based upon the information provided in accordance with Sections 7.10.1 and 7.10.2, the erector shall determine, furnish and install all temporary supports, such as temporary guys, beams, falsework, cribbing or other elements required for the erection operation. These temporary supports shall be sufficient to secure the bare structural steel framing or any portion thereof against loads that are likely to be encountered during erection, including those due to wind and those that result from erection operations.

The erector need not consider loads during erection that result from the performance of work by, or the acts of, others, except as specifically identified by the owner's designated representatives for design and construction, nor those that are unpredictable, such as loads due to hurricane, tornado, earthquake, explosion or collision.

Temporary supports that are required during or after the erection of the structural steel frame for the support of loads caused by non-structural steel elements, including cladding, interior partitions and other such elements that will induce or transmit loads to the structural steel frame during or after erection, shall be the responsibility of others.

## Commentary:

Many structural steel frames have lateral force-resisting systems that are activated during the erection process. Such lateral force-resisting systems may consist of
welded moment frames, braced frames or, in some instances, columns that cantilever from fixed-base foundations. Such frames are normally braced with temporary guys that, together with the steel deck floor and roof diaphragms or other diaphragm bracing that may be included as part of the design, provide stability during the erection process. The guy cables are also commonly used to plumb the structural steel frame. The erector normally furnishes and installs the required temporary supports and bracing to secure the bare structural steel frame, or portion thereof, during the erection process. When erection bracing drawings are required in the contract documents, those drawings show this information.

If the owner's designated representative for construction determines that steel decking is not installed by the erector, temporary diaphragm bracing may be required if a horizontal diaphragm is not available to distribute loads to the vertical and lateral force-resisting system. If the steel deck will not be available as a diaphragm during structural steel erection, the owner's designated representative for construction must communicate this condition to the erector prior to bidding. If such diaphragm bracing is required, it must be furnished and installed by the erector.

Sometimes structural systems that are employed by the owner's designated representative for design rely upon other elements besides the structural steel frame for lateral force resistance. For instance, concrete or masonry shear walls or precast spandrels may be used to provide resistance to vertical and lateral forces in the completed structure. Because these situations may not be obvious to the contractor or the erector, it is required in this Code that the owner's designated representative for design must identify such situations in the contract documents. Similarly, if a structure is designed so that special erection techniques are required, such as jacking to impose certain loads or position during erection, it is required in this Code that such requirements be specifically identified in the contract documents.

In some instances, the owner's designated representative for design may elect to show erection bracing in the structural design documents. When this is the case, the owner's designated representative for design should then confirm that the bracing requirements were understood by review and approval of the erection documents during the submittal process.

Sometimes during construction of a building, collateral building elements, such as exterior cladding, may be required to be installed on the bare structural steel frame prior to completion of the lateral force-resisting system. These elements may increase the potential for lateral loads on the temporary supports. Such temporary supports may also be required to be left in place after the structural steel frame has been erected. Special provisions should be made by the owner's designated representative for construction for these conditions.
7.10.4. All temporary supports that are required for the erection operation and furnished and installed by the erector shall remain the property of the erector and shall not be modified, moved or removed without the consent of the erector. Temporary supports provided by the erector shall remain in place until the portion of the structural steel frame that they brace is complete and the lateral force-resisting system and connecting
diaphragm elements identified by the owner's designated representative for design in accordance with Section 7.10.1 are installed. Temporary supports that are required to be left in place after the completion of structural steel erection shall be removed when no longer needed by the owner's designated representative for construction and returned to the erector in good condition.

### 7.11. Safety Protection

7.11.1. The erector shall provide floor coverings, handrails, walkways and other safety protection for the erector's personnel as required by law and the applicable safety regulations. Unless otherwise specified in the contract documents, the erector is permitted to remove such safety protection from areas where the erection operations are completed.
7.11.2. When safety protection provided by the erector is left in an area for the use of other trades after the structural steel erection activity is completed, the owner's designated representative for construction shall:
(a) Accept responsibility for and maintain this protection.
(b) Indemnify the fabricator and the erector from damages that may be incurred from the use of this protection by other trades.
(c) Ensure that this protection is adequate for use by other affected trades.
(d) Ensure that this protection complies with applicable safety regulations when being used by other trades.
(e) Remove this protection when it is no longer required and return it to the erector in the same condition as it was received.
7.11.3. Safety protection for other trades that are not under the direct employment of the erector shall be the responsibility of the owner's designated representative for construction.
7.11.4. When permanent steel decking is used for protective flooring and is installed by the owner's designated representative for construction, all such work shall be scheduled and performed in a timely manner so as not to interfere with or delay the work of the fabricator or the erector. The sequence of installation that is used shall meet all safety regulations.
7.11.5. Unless the interaction and safety of activities of others, such as construction by others or the storage of materials that belong to others, are coordinated with the work of the erector by the owner's designated representative for construction, such activities shall not be permitted until the erection of the structural steel frame or portion thereof is completed by the erector and accepted by the owner's designated representative for construction.

### 7.12. Structural Steel Frame Tolerances

The accumulation of the mill tolerances and fabrication tolerances shall not cause the erection tolerances to be exceeded.

## Commentary:

In editions of this Code previous to the 2005 edition, it was stated that "...variations are deemed to be within the limits of good practice when they do not exceed the cumulative effect of rolling tolerances, fabricating tolerances and erection tolerances." It is recognized in the current provision in this Section that accumulations of mill tolerances and fabrication tolerances generally occur between the locations at which erection tolerances are applied, and not at the same locations.

### 7.13. Erection Tolerances

Erection tolerances shall be defined relative to member working points and working lines, which shall be defined as follows:
(a) For members other than horizontal members, the member work point shall be the actual center of the member at each end of the shipping piece.
(b) For horizontal members, the working point shall be the actual centerline of the top flange or top surface at each end.
(c) The member working line shall be the straight line that connects the member working points.

The substitution of other working points is permitted for ease of reference, provided they are based upon the preceding definitions.

The tolerances on structural steel erection shall be in accordance with the requirements in Sections 7.13.1 through 7.13.3.

## Commentary:

The erection tolerances defined in this Section have been developed through longstanding usage as practical criteria for the erection of structural steel. Erection tolerances were first defined in the 1924 edition of this Code in Section 7(f), "Plumbing Up." With the changes that took place in the types and use of materials in building construction after World War II, and the increasing demand by architects and owners for more specific tolerances, AISC adopted new standards for erection tolerances in Section 7(h) of the March 15, 1959 edition of this Code. Experience has proven that those tolerances can be economically obtained.

Differential column shortening may be a consideration in design and construction. In some cases, it may occur due to variability in the accumulation of dead load among different columns (see Figure C-7.1). In other cases, it may be characteristic of the structural system that is employed in the design. Consideration of the effects of differential column shortening may be very important, such as when the slab thickness is reduced, when electrical and other similar fittings mounted on the structural steel are intended to be flush with the finished floor, and when there is little clearance between bottoms of beams and the tops of door frames or ductwork.


Fig. C-7.1. Effects of differential column shortening.

The effects of the deflection of transfer girders and trusses on the position of columns and hangers supported from them may be a consideration in design and construction. As in the case of differential column shortening, the deflection of these supporting members during and after construction will affect the position and alignment of the framing tributary to these transfer members.

Expansion and contraction in a structural steel frame may be a consideration in design and construction. Steel will expand or contract approximately
$1 / 8 \mathrm{in}$. per 100 ft for each change of $15^{\circ} \mathrm{F}(2 \mathrm{~mm}$ per 10000 mm for each change of $15^{\circ} \mathrm{C}$ ) in temperature. This change in length can be assumed to act about the center of rigidity. When anchored to their foundations, end columns will be plumb only when the steel is at normal temperature (see Figure C-7.2). It is therefore necessary to correct field measurements of offsets to the structure from established baselines for the expansion or contraction of the exposed structural steel frame. For example, a $200-\mathrm{ft}$-long ( $60000-\mathrm{m}-\mathrm{long}$ ) building that is plumbed up at $100^{\circ} \mathrm{F}\left(38^{\circ} \mathrm{C}\right)$ should have working points at the tops of the end columns positioned $\frac{1}{2} \mathrm{in}$. ( 14 mm ) further apart than the working points at the corresponding bases in order for the columns to be plumb at $70^{\circ} \mathrm{F}$ $\left(21^{\circ} \mathrm{C}\right)$. Differential temperature effects on column length should also be taken into account in plumbing surveys when tall structural steel frames are subjected to sun exposure on one side.

The alignment of lintels, spandrels, wall supports and similar members that are used to connect other building construction units to the structural steel frame should have an adjustment of sufficient magnitude to allow for the accumulation of mill tolerances and fabrication tolerances, as well as the erection tolerances. See Figure C-7.3.
7.13.1. The tolerances on position and alignment of member working points and working lines shall be as described in Sections 7.13.1.1 through 7.13.1.3.
7.13.1.1. For an individual column shipping piece, the angular variation of the working line from a plumb line shall be equal to or less than $1 / 500$ of the distance between working points, subject to the following additional limitations:
(a) For an individual column shipping piece that is adjacent to an elevator shaft, the displacement of member working points shall be equal to or less than 1 in. $(25 \mathrm{~mm})$ from the established column line in the first 20 stories. Above this level, an increase in the displacement of $1 / 32 \mathrm{in}$. ( 1 mm ) is permitted for each additional story up to a maximum displacement of 2 in . ( 50 mm ) from the established column line.
(b) For an exterior individual column shipping piece, the displacement of member working points from the established column line in the first 20 stories shall be equal to or less than 1 in . $(25 \mathrm{~mm})$ toward and 2 in . $(50 \mathrm{~mm})$ away from the building exterior. Above this level, an increase in the displacement of $1 / 16$ in. ( 2 mm ) is permitted for each additional story up to a maximum displacement of 2 in . ( 50 mm ) toward and 3 in . $(75 \mathrm{~mm}$ ) away from the building exterior.

## Commentary:

The limitations that are described in this Section and illustrated in Figures C-7.4 and C-7.5 make it possible to maintain built-in-place or prefabricated facades in a true vertical plane up to the 20th story, if connections that provide for 3 in . $(75 \mathrm{~mm}$ ) of adjustment are used. Above the 20th story, the facade may be maintained within $1 / 16 \mathrm{in}$. $(2 \mathrm{~mm}$ ) per story with a maximum total deviation of 1 in . ( 25 mm ) from a true vertical plane, if connections that

When plumbing columns, apply a temperature adjustment at a rate of $1 / 8 \mathrm{in}$. per 100 ft . for each change of $15^{\circ} \mathrm{F}$ [ 2 mm per 10000 mm for each change of $15^{\circ} \mathrm{C}$ ] between the temperature at the time of erection and the working temperature.


Fig. C-7.2. Tolerances in plan location of column.


Fig. C-7.3. Clearance required to accommodate fascia.
provide for 3 in. ( 75 mm ) of adjustment are used. Connections that permit adjustments of plus 2 in . ( 50 mm ) to minus 3 in . $(75 \mathrm{~mm}$ )—a total of 5 in . ( 125 mm )-will be necessary in cases where it is desired to construct the facade to a true vertical plane above the 20th story.
(c) For an exterior individual column shipping piece, the member working points at any splice level for multi-tier buildings and at the tops of columns for sin-gle-tier buildings shall fall within a horizontal envelope, parallel to the exterior established column line, that is equal to or less than $1^{1} / 2 \mathrm{in}$. ( 38 mm ) wide for buildings up to $300 \mathrm{ft}(90000 \mathrm{~mm}$ ) in length. An increase in the width of this horizontal envelope of $1 / 2$ in. $(13 \mathrm{~mm})$ is permitted for each additional $100 \mathrm{ft}(30000 \mathrm{~mm})$ in length up to a maximum width of 3 in . $(75 \mathrm{~mm})$.

## Commentary:

This Section limits the position of exterior column working points at any given splice elevation to a narrow horizontal envelope parallel to the exterior established column line (see Figure $\mathrm{C}-7.6$ ). This envelope is limited to a width of $1 \frac{1}{2} \mathrm{in}$. ( 38 mm ), normal to the exterior established column line, in up to 300 ft ( 90000 mm ) of building length. The horizontal location of this envelope is not necessarily directly above or below the corresponding envelope at the adjacent splice elevations, but should be within the limitation of the 1 in 500 plumbness tolerance specified for the controlling columns (see Figure C-7.5).
(d) For an exterior column shipping piece, the displacement of member working points from the established column line that is nominally parallel to the building exterior shall be equal to or less than 2 in . $(50 \mathrm{~mm}$ ) in the first 20 stories. Above this level, an increase in the displacement of $1 / 16 \mathrm{in}$. ( 2 mm ) is permitted for each additional story up to a maximum displacement of 3 in. $(75 \mathrm{~mm})$ in the direction nominally parallel to the building exterior.
7.13.1.2. For members other than column shipping pieces, the following limitations shall apply:
(a) For a member that consists of an individual, straight shipping piece without field splices, other than a cantilevered member, the variation in alignment shall be acceptable if it is caused solely by variations in column alignment and/or primary supporting member alignment that are within the permissible variations for the fabrication and erection of such members.
(b) For a member that consists of an individual, straight shipping piece that connects to a column, the variation in the distance from the member working point to the upper finished splice line of the column shall be equal to or less than plus $3 / 16$ in. ( 5 mm ) and minus $5 / 16 \mathrm{in}$. ( 8 mm ).
(c) For a member that consists of an individual shipping piece that does not connect to a column, the variation in elevation shall be acceptable if it is caused solely by the variations in the elevations of the supporting members within the permissible variations for the fabrication and erection of those members.


For enclosures or attachments that may follow column alignment.


For enclosures or attachments that must be held to precise plan location.
$\mathrm{L}=$ Actual center to center of columns = plan dimensions $\pm$ column cross section tolerance of columns $\pm$ beam length tolerance.
$\mathrm{T}_{\mathrm{a}}=$ Plumbness tolerance away from building exterior (varies, see Fig. C-7.5)
$T_{t}=$ Plumbness tolerance toward building exterior (varies, see Fig. C-7.5)
$T_{p}=$ Plumbness tolerance parallel to building exterior $\left(=T_{a}\right)$

Fig. C-7.4. Clearance required to accommodate accumulated column tolerance.


Note: The plumb line through the base working point for an individual column is not necessarily the precise plan location because Sect. 7.13.1.1 deals only with plumbness tolerances and does not include inaccuracies in location of the Established Column Line, foundations and anchor rods beyond the Erector's control

Fig. C-7.5. Exterior column plumbness tolerances normal to building exterior.


Fig. C-7.6. Tolerances in plan at any splice elevation of exterior columns.
(d) For a member that consists of an individual, straight shipping piece and that is a segment of a field assembled unit containing field splices between points of support, the plumbness, elevation and alignment shall be acceptable if the angular variation, vertically and horizontally, of the working line from a straight line between points of support is equal to or less than $1 / 500$ of the distance between working points.

## Commentary:

The angular misalignment of the working line of all fabricated shipping pieces relative to the line between support points of the member as a whole in erected position must not exceed 1 in 500 . Note that the tolerance is not stated in terms of a linear displacement at any point and is not to be taken as the overall length between supports divided by 500 . Typical examples are shown in Figure C-7.7. Numerous conditions within tolerance for these and other cases are possible. The condition described in (d) applies to both plan and elevation tolerances.
(e) For a cantilevered member that consists of an individual, straight shipping piece, the plumbness, elevation and alignment shall be acceptable if the


Fig. C-7.7. Alignment tolerances for members with field splices.
angular variation of the working line from a straight line that is extended in the plan direction from the working point at its supported end is equal to or less than $1 / 500$ of the distance from the working point at the free end.

## Commentary:

This tolerance is evaluated after the fixed end condition is sufficient to stabilize the cantilever and before the temporary support is removed. The preset specified in the contract documents should be calculated accordingly. The temporary support cannot be used to induce artificial deflection into the cantilever to meet this tolerance after the fixed end is restrained.
(f) For a member of irregular shape, the plumbness, elevation and alignment shall be acceptable if the fabricated member is within its tolerances and the members that support it are within the tolerances specified in this Code.
(g) For a member that is fully assembled in the field in an unstressed condition, the same tolerances shall apply as if fully assembled in the shop.
(h) For a member that is field-assembled, element-by-element, in place, temporary support shall be used or an alternative erection plan shall be submitted to the owner's designated representatives for design and construction. The tolerance in Section 7.13.1.2(d) shall be met in the supported condition with working points taken at the point(s) of temporary support.

## Commentary:

Trusses fabricated and erected as a unit or as an assembly of truss segments
normally have excellent controls on vertical position regardless of fabrication and erection techniques. However, a truss fabricated and erected by assembling individual components in place in the field is potentially more sensitive to deflections of the individual truss components and the partially completed work during erection, particularly the chord members. In such a case, the erection process should follow an erection plan that addresses this issue.
7.13.1.3. For members that are identified as adjustable items by the owner's designated representative for design in the contract documents, the fabricator shall provide adjustable connections for these members to the supporting structural steel frame. Otherwise, the fabricator is permitted to provide nonadjustable connections. When adjustable items are specified, the owner's designated representative for design shall indicate the total adjustability that is required for the proper alignment of these supports for other trades. The variation in the position and alignment of adjustable items shall be as follows:
(a) The variation in the vertical distance from the upper finished splice line of the nearest column to the support location specified in the structural design documents shall be equal to or less than plus or minus $3 / 8$ in. ( 10 mm ).
(b) The variation in the horizontal distance from the established finish line at the particular floor shall be equal to or less than plus or minus $3 / 8 \mathrm{in}$. ( 10 mm ).
(c) The variation in vertical and horizontal alignment at the abutting ends of adjustable items shall be equal to or less than plus or minus $3 / 16 \mathrm{in}$. ( 5 mm ).

## Commentary:

When the alignment of lintels, wall supports, curb angles, mullions and similar supporting members for the use of other trades is required to be closer than that permitted by the foregoing tolerances for structural steel, the owner's designated representative for design must identify such items in the contract documents as adjustable items.
7.13.2. In the design of steel structures, the owner's designated representative for design shall provide for the necessary clearances and adjustments for material furnished by other trades to accommodate the mill tolerances, fabrication tolerances and erection tolerances in this Code for the structural steel frame.

## Commentary:

In spite of all efforts to minimize inaccuracies, deviations will still exist; therefore, in addition, the designs of prefabricated wall panels, partition panels, fenestrations, floor-to-ceiling door frames, and similar elements must provide for clearance and details for adjustment as described in Section 7.13.2. Designs must provide for adjustment in the vertical dimension of prefabricated facade
panels that are supported by the structural steel frame because the accumulation of shortening of loaded steel columns will result in the unstressed facade supported at each floor level being higher than the structural steel framing to which it must be attached. Observations in the field have shown that where a heavy facade is erected to a greater height on one side of a multistory building than on the other, the structural steel framing will be pulled out of alignment. Facades should be erected at a relatively uniform rate around the perimeter of the structure.
7.13.3. Prior to placing or applying any other materials, the owner's designated representative for construction shall determine that the location of the structural steel is acceptable for plumbness, elevation and alignment. The erector shall be given either timely notice of acceptance by the owner's designated representative for construction or a listing of specific items that are to be corrected in order to obtain acceptance. Such notice shall be rendered promptly upon completion of any part of the work and prior to the start of work by other trades that may be supported, attached or applied to the structural steel frame.

### 7.14. Correction of Errors

The correction of minor misfits by moderate amounts of reaming, grinding, welding or cutting, and the drawing of elements into line with drift pins, shall be considered to be normal erection operations. Errors that cannot be corrected using the foregoing means, or that require major changes in member or connection configuration, shall be promptly reported to the owner's designated representatives for design and construction and the fabricator by the erector, to enable the responsible entity to either correct the error or approve the most efficient and economical method of correction to be used by others.

## Commentary:

As used in this Section, the term "moderate" refers to the amount of reaming, grinding, welding or cutting that must be done on the project as a whole, not the amount that is required at an individual location. It is not intended to address limitations on the amount of material that is removed by reaming at an individual bolt hole, for example, which is limited by the bolt-hole size and tolerance requirements in ANSI/AISC 360 and the RCSC Specification.

### 7.15. Cuts, Alterations and Holes for Other Trades

Neither the fabricator nor the erector shall cut, drill or otherwise alter their work, nor the work of other trades, to accommodate other trades, unless such work is clearly specified in the contract documents. When such work is so specified, the owner's designated representatives for design and construction shall furnish complete information as to materials, size, location and number of alterations in a timely manner so as not to delay the preparation of the approval documents.

### 7.16. Handling and Storage

The erector shall take reasonable care in the proper handling and storage of the structural steel during erection operations to avoid the accumulation of excess dirt and foreign matter. The erector shall not be responsible for the removal from the structural steel of dust, dirt or other foreign matter that may accumulate during erection as the result of job-site conditions or exposure to the elements. The erector shall handle and store all bolts, nuts, washers and related fastening products in accordance with the requirements of the RCSC Specification.

## Commentary:

During storage, loading, transport, unloading and erection, blemish marks caused by slings, chains, blocking, tie-downs, etc., occur in varying degrees. Abrasions caused by handling or cartage after painting are to be expected. It must be recognized that any shop-applied coating, no matter how carefully protected, will require touching up in the field. Touching up these blemished areas is the responsibility of the contractor performing the field touch-up or field painting.

The erector is responsible for the proper storage and handling of fabricated structural steel at the job site during erection. Shop-painted structural steel that is stored in the field pending erection should be kept free of the ground and positioned so as to minimize the potential for water retention. The owner or owner's designated representative for construction is responsible for providing suitable job-site conditions and proper access so that the fabricator and the erector may perform their work.

Job-site conditions are frequently muddy, sandy, dusty or a combination thereof during the erection period. Under such conditions, it may be impossible to store and handle the structural steel in such a way as to completely avoid any accumulation of mud, dirt or sand on the surface of the structural steel, even though the fabricator and the erector manages to proceed with their work.

Repairs of damage to painted surfaces and/or removal of foreign materials due to adverse job-site conditions are outside the scope of responsibility of the fabricator and the erector when reasonable attempts at proper handling and storage have been made.

### 7.17. Field Painting

Neither the fabricator nor the erector is responsible to paint field bolt heads and nuts or field welds, nor to touch up abrasions of the shop coat, nor to perform any other field painting.

### 7.18. Final Cleaning Up

Upon the completion of erection and before final acceptance, the erector shall remove all of the erector's falsework, rubbish and temporary buildings.

## SECTION 8. QUALITY CONTROL

### 8.1. General

8.1.1. The fabricator shall maintain a quality control program to ensure that the work is performed in accordance with the requirements in this Code, ANSI/AISC 360 and the contract documents. The fabricator shall have the option to use the AISC Quality Certification Program to establish and administer the quality control program.


#### Abstract

Commentary: The AISC Quality Certification Program confirms to the construction industry that a certified structural steel fabrication shop has the capability by reason of commitment, personnel, organization, experience, procedures, knowledge and equipment to produce fabricated structural steel of the required quality for a given category of work. The AISC Quality Certification Program is not intended to involve inspection and/or judgment of product quality on individual projects. Neither is it intended to guarantee the quality of specific fabricated structural steel products.


8.1.2. The erector shall maintain a quality control program to ensure that the work is performed in accordance with the requirements in this Code, ANSI/AISC 360 and the contract documents. The erector shall be capable of performing the erection of the structural steel, and shall provide the equipment, personnel and management for the scope, magnitude and required quality of each project. The erector shall have the option to use the AISC Erector Certification Program to establish and administer the quality control program.

## Commentary:

The AISC Erector Certification Program confirms to the construction industry that a certified structural steel erector has the capability by reason of commitment, personnel, organization, experience, procedures, knowledge and equipment to erect fabricated structural steel to the required quality for a given category of work. The AISC Erector Certification Program is not intended to involve inspection and/or judgment of product quality on individual projects. Neither is it intended to guarantee the quality of specific erected structural steel products.
8.1.3. When the owner requires more extensive quality control procedures, or independent inspection by qualified personnel, or requires that the fabricator must be certified under the AISC Quality Certification Program and/or requires that the erector must be certified under the AISC Erector Certification Program, this shall be clearly stated in the contract documents, including a definition of the scope of such inspection.

### 8.2. Inspection of Mill Material

Material test reports shall constitute sufficient evidence that the mill product satisfies material order requirements. The fabricator shall make a visual inspection of material that is received from the mill, but need not perform any material tests unless the owner's designated representative for design specifies in the contract documents that additional testing is to be performed at the owner's expense.

### 8.3. Nondestructive Testing

When nondestructive testing is required, the process, extent, technique and standards of acceptance shall be clearly specified in the contract documents.

### 8.4. Surface Preparation and Shop Painting Inspection

Inspection of surface preparation and shop painting shall be planned for the acceptance of each operation as the fabricator completes it. Inspection of the paint system, including material and thickness, shall be made promptly upon completion of the paint application. When wet-film thickness is to be inspected, it shall be measured during the application.

### 8.5. Independent Inspection

When inspection by personnel other than those of the fabricator and/or erector is specified in the contract documents, the requirements in Sections 8.5.1 through 8.5.6 shall be met.
8.5.1. The fabricator and the erector shall provide the inspector with access to all places where the work is being performed. A minimum of 24 hours notification shall be given prior to the commencement of work.
8.5.2. Inspection of shop work by the inspector shall be performed in the fabricator's shop to the fullest extent possible. Such inspections shall be timely, in-sequence and performed in such a manner as will not disrupt fabrication operations and will permit the repair of nonconforming work prior to any required painting while the material is still in-process in the fabrication shop.
8.5.3. Inspection of field work shall be promptly completed without delaying the progress or correction of the work.
8.5.4. Rejection of material or workmanship that is not in conformance with the contract documents shall be permitted at any time during the progress of the work. However, this provision shall not relieve the owner or the inspector of the obligation for timely, in-sequence inspections.
8.5.5. The fabricator, erector, and owner's designated representatives for design and construction shall be informed of deficiencies that are noted by the inspector promptly after the inspection. Copies of all reports prepared by the inspector shall be promptly given to the fabricator, erector, and owner's designated representatives for design and construction. The necessary corrective work shall be performed in a timely manner.
8.5.6. The inspector shall not suggest, direct or approve the fabricator or erector to deviate from the contract documents or the approved approval documents, or approve such deviation, without the written approval of the owner's designated representatives for design and construction.

## SECTION 9. CONTRACTS

### 9.1. Types of Contracts

9.1.1. For contracts that stipulate a lump sum price, the work that is required to be performed by the fabricator and the erector shall be completely defined in the contract documents.
9.1.2. For contracts that stipulate a price per pound, the scope of work that is required to be performed by the fabricator and the erector, the type of materials, the character of fabrication and the conditions of erection shall be based upon the contract documents, which shall be representative of the work to be performed.
9.1.3. For contracts that stipulate a price per item, the work that is required to be performed by the fabricator and the erector shall be based upon the quantity and the character of the items that are described in the contract documents.
9.1.4. For contracts that stipulate unit prices for various categories of structural steel, the scope of work that is required to be performed by the fabricator and the erector shall be based upon the quantity, character and complexity of the items in each category as described in the contract documents, and shall also be representative of the work to be performed in each category.
9.1.5. When an allowance for work is called for in the contract documents and the associated work is subsequently defined as to the quantity, complexity and timing of that work after the contract is executed, the contract price for this work shall be adjusted by change order.

## Commentary:

Allowances, if used, are not a true definition of the cost of work to be performed. By nature, an allowance is only an estimate and placeholder in the bid. Once the actual work is defined, the actual cost can be provided. It must be recognized that the actual cost can be higher or lower than the allowance. See Section 9.4.

Allowances required by the contract documents or proposed by the bidder should be as thoroughly defined as practicable as to the distinct nature of the work covered by the allowance, including whether the allowance is to include materials only, fabrication costs and/or erection costs.

### 9.2. Calculation of Weights

Unless otherwise specified in the contract, for contracts stipulating a price per pound for fabricated structural steel that is delivered and/or erected, the quantities of materials for payment shall be determined by the calculation of the gross weight of materials as shown in the fabrication documents.

## Commentary:

The standard procedure for calculation of weights that is described in this Code meets the need for a universally acceptable system for defining "pay weights" in contracts based upon the weight of delivered and/or erected materials. These
procedures permits the owner to easily and accurately evaluate price-per-pound proposals from potential suppliers and enables all parties to a contract to have a clear and common understanding of the basis for payment.

The procedure in this Code affords a simple, readily understood method of calculation that will produce pay weights that are consistent throughout the industry and that may be easily verified by the owner. While this procedure does not produce actual weights, it can be used by purchasers and suppliers to define a widely accepted basis for bidding and contracting for structural steel. However, any other system can be used as the basis for a contractual agreement. When other systems are used, both the supplier and the purchaser should clearly understand how the alternative procedure is handled.
9.2.1. The unit weight of steel shall be taken as $490 \mathrm{lb} / \mathrm{ft}^{3}\left(7850 \mathrm{~kg} / \mathrm{m}^{3}\right)$. The unit weight of other materials shall be in accordance with the manufacturer's published data for the specific product.
9.2.2. The weights of standard structural shapes, plates and bars shall be calculated on the basis of fabrication documents that show the actual quantities and dimensions of material to be fabricated, as follows:
(a) The weights of all standard structural shapes shall be calculated using the nominal weight per ft (mass per m ) and the detailed overall length.
(b) The weights of plates and bars shall be calculated using the detailed overall rectangular dimensions.
(c) When parts can be economically cut in multiples from material of larger dimensions, the weight shall be calculated on the basis of the theoretical rectangular dimensions of the material from which the parts are cut.
(d) When parts are cut from standard structural shapes, leaving a nonstandard section that is not useable on the same contract, the weight shall be calculated using the nominal weight per ft (mass per m ) and the overall length of the standard structural shapes from which the parts are cut.
(e) Deductions shall not be made for material that is removed for cuts, copes, clips, blocks, drilling, punching, boring, slot milling, planing or weld joint preparation.
9.2.3. The items for which weights are shown in tables in the AISC Steel Construction Manual shall be calculated on the basis of the tabulated weights shown therein.
9.2.4. The weights of items that are not shown in tables in the AISC Steel Construction Manual shall be taken from the manufacturer's catalog and the manufacturer's shipping weight shall be used.

## Commentary:

Many items that are weighed for payment purposes are not tabulated with weights in the AISC Steel Construction Manual. These include, but are not limited to, anchor rods, clevises, turnbuckles, sleeve nuts, recessed-pin nuts, cotter pins and similar devices.
9.2.5. The weights of shop or field weld metal and protective coatings shall not be included in the calculated weight for the purposes of payment.

### 9.3. Revisions to the Contract Documents

Revisions to the contract documents shall be confirmed by change order or extra work order. Unless otherwise noted, the issuance of a revision to the contract documents shall constitute authorization by the owner that the revision is released for construction. The contract price and schedule shall be adjusted in accordance with Sections 9.4 and 9.5.

### 9.4. Contract Price Adjustment

9.4.1. When the scope of work and responsibilities of the fabricator and the erector are changed from those previously established in the contract documents, an appropriate modification of the contract price shall be made. In computing the contract price adjustment, the fabricator and the erector shall consider the quantity of work that is added or deleted, the modifications in the character of the work, and the timeliness of the change with respect to the status of material ordering, detailing, fabrication and erection operations.

## Commentary:

The fabrication and erection of structural steel is a dynamic process. Typically, material is being acquired at the same time that the approval documents are being prepared. Additionally, the fabrication shop will normally fabricate pieces in the order that the structural steel is being shipped and erected.

Items that are revised or placed on hold generally upset these relationships and can be very disruptive to the digital modeling/detailing, fabricating and erecting processes. The provisions in Sections 3.5, 4.4.2 and 9.3 are intended to minimize these disruptions so as to allow work to continue. Accordingly, it is required in this Code that the reviewer of requests for contract price adjustments recognize this and allow compensation to the fabricator and the erector for these inefficiencies and for the materials that are purchased and the detailing, fabrication and erection that has been performed, when affected by the change.
9.4.2. Requests for contract price adjustments shall be presented by the fabricator and/or the erector in a timely manner and shall be accompanied by a description of the change that is sufficient to permit evaluation and timely approval by the owner.
9.4.3. Price-per-pound and price-per-item contracts shall provide for additions or deletions to the quantity of work that are made prior to the time the work is released for construction. When changes are made to the character of the work at any time, or when additions and/or deletions are made to the quantity of the work after it is released for detailing, fabrication or erection, the contract price shall be equitably adjusted.

### 9.5. Scheduling

9.5.1. The contract schedule shall state when the design documents will be released for construction, if the design documents are not available at the time of bidding, and when the job site, foundations, piers and abutments will be ready, free from obstructions and accessible to the erector, so that erection can start at the designated time and continue without interference or delay caused by the owner's designated representative for construction or other trades.
9.5.2. The fabricator and the erector shall advise the owner's designated representatives for design and construction, in a timely manner, of the effect any revision has on the contract schedule.
9.5.3. If the fabrication or erection is significantly delayed due to revisions to the requirements of the contract, or for other reasons that are the responsibility of others, the fabricator and/or erector shall be compensated for the additional costs incurred.

### 9.6. Terms of Payment

The fabricator shall be paid for mill materials and fabricated product that is stored off the job site. Other terms of payment for the contract shall be outlined in the contract documents.

## Commentary:

These terms include such items as progress payments for material, fabrication, erection, retainage, performance and payment bonds, and final payment. If a performance or payment bond, paid for by the owner, is required by contract, no retainage shall be required.

## SECTION 10. ARCHITECTURALLY EXPOSED STRUCTURAL STEEL

### 10.1. General Requirements

When members are specifically designated as architecturally exposed structural steel or AESS in the contract documents, the requirements in Sections 1 through 9 shall apply as modified in Section 10. Surfaces exposed to view of AESS members and components shall be fabricated and erected with the care and dimensional tolerances that are stipulated in Sections 10.2 through 10.6.

## Commentary:

The designation of steel as AESS adds cost, and that cost is higher as the level of the AESS designation increases. However, not all exposed steel must be designated as AESS. There are many applications in which the as-produced appearance of fabricated and erected structural steel may be deemed sufficient without any special additional work.
10.1.1. The following categories shall be used when referring to $A E S S$ :

AESS 1: Basic elements.
AESS 2: Feature elements viewed at a distance greater than $20 \mathrm{ft}(6 \mathrm{~m})$.
AESS 3: Feature elements viewed at a distance less than $20 \mathrm{ft}(6 \mathrm{~m})$.
AESS 4: Showcase elements with special surface and edge treatment beyond fabrication.
AESS C: Custom elements with characteristics described in the contract documents.

## Commentary:

The categories are listed in the AESS matrix shown in Table 10.1. Each category describes characteristics with successively more detailed—and costly—requirements.

- Basic elements in AESS 1 are those that have workmanship requirements that exceed what would be done in non-AESS construction.
- Feature elements in AESS 2 and 3 exceed the basic requirements, but the intent is to allow the viewer to see the art of metalworking. AESS 2 is achieved primarily through geometry without finish work, and treats things that can be seen at a larger viewing distance, like enhanced treatment of bolts, welds, connection and fabrication details, and tolerances for gaps, copes and similar details. AESS 3 is achieved through geometry and basic finish work, and treats things that can be seen at a closer viewing distance or are subject to touch by the viewer, with welds that are generally smooth but visible. AESS 3 involves the use of a mockup and acceptance is based upon the approved conditions of the mock-up.
- Showcase elements in AESS 4 are those for which the designer intends that the form is the only feature showing in an element. All welds are ground and filled, edges are ground square and true. All surfaces are filled and sanded to a smoothness that doesn't catch on a cloth or glove. Tolerances of fabricated forms are more stringent-generally half of standard tolerance. AESS 4 involves the use of a mock-up and acceptance is based upon the approved conditions of the mock-up.
- Custom elements in AESS C are those with other requirements defined in the contract documents.
10.1.2. A mock-up shall be required for AESS 3, 4 and C. If a mock-up is to be used in other AESS categories, it shall be specified in the contract documents. When required, the nature and extent of the mock-up shall be specified in the contract documents. Alternatively, when a mock-up is not practical, the first piece of an element or connection can be used to determine acceptability.


## Commentary:

Generally, a mock-up is produced and approved in the shop and subsequently placed in the field. The acceptability of the mock-up can be affected by many factors, including distance of view, lighting and finishing. The expectations for the location and conditions of the mock-up at time of approval should be defined in the contract documents.

### 10.2. Contract Documents

The following additional information shall be provided in the contract documents when $A E S S$ is specified:
(a) Specific identification of members or components that are AESS using the AESS Categories listed in Section 10.1.2 and Table 10.1.
(b) Fabrication and/or erection tolerances that are to be more restrictive than provided for in this Appendix, if any.
(c) For Category AESS C, the AESS matrix included in Table 10.1 shall be used to specify the required treatment of the element.
(d) Any variations from the AESS characteristics of Table 10.1.
(e) Any other special requirements for AESS members and components, such as the orientation of HSS weld seams and bolt heads.

### 10.3. Approval Documents

All members designated as AESS shall be clearly identified to a Category, either AESS 1, 2, 3, 4 or C, in the approval documents. Tack welds, temporary braces, backing and fixtures used in fabrication of AESS shall be shown in the fabrication documents. Architecturally sensitive connection details shall be submitted for approval by the owner's designated representative for design prior to completion of the approval documents.

## Commentary:

Variations, if any, from the AESS Categories listed must be clearly noted. These variations could include machined surfaces, locally abraded surfaces, and forgings. In addition, if distinction is to be made between different surfaces or parts of members, the transition line/plane must be clearly identified/defined on the approval documents.

# TABLE 10.1 <br> AESS Category Matrix 

	Category	AESS C	AESS 4	AESS 3	AESS 2	AESS 1	SSS
Id	Characteristics	Custom Elements	Showcase Elements	Feature Elements in close view	Feature Elements not in close view	Basic Elements	Standard Structural Steel
1.1	Surface preparation to SSPC-SP 6		-	-	-	-	
1.2	Sharp edges ground smooth		-	-	-	-	
1.3	Continuous weld apprearance		-	-	-	-	
1.4	Standard structural bolts		-	-	-	-	
1.5	Weld spatters removed		-	-	-	-	
2.1	Visual samples		-	-	optional		
2.2	One-half standard fabrication tolerances		-	-	-		
2.3	Fabrication marks not apparent		-	-	-		
2.4	Welds uniform and smooth		-	-	-		
3.1	Mill marks removed		-	-			
3.2	Butt and plug welds ground smooth and filled		-	-			
3.3	HSS weld seam oriented for reduced visibility		-	-			
3.4	Cross sectional abutting surface aligned		-	-			
3.5	Joint gap tolerances minimized		-	-			
3.6	All welded connections		optional	optional			
4.1	HSS seam not apparent		-				
4.2	Welds contoured and blended		-				
4.3	Surfaces filed and sanded		-				
4.4	Weld show-through minimized		-				
C. 1							
C. 2							
C. 3							
C. 4							
C. 5							

## User Note:

1.1 Prior to blast cleaning, grease and oil are removed by solvent cleaning to meet SSPC-SP1.
1.2 Rough surfaces are deburred and ground smooth. Sharp edges resulting from flame cutting, grinding and especially shearing are softened.
1.3 Intermittent welds are made continuous, either with additional welding, caulking or body filler. For corrosive enviroments, all joints are seal welded. Seams of hollow structural sections are acceptable as produced.
1.4 All bolt heads in connections are on the same side, as specified, and consistent from one connection to another.
1.5 Weld spatter, slivers, surface discontinuities are removed. Weld projection up to $1 / 16 \mathrm{in}$. ( 2 mm ) is acceptable for butt and plug welded joints.
2.1 Visual samples are either a 3-D rendering, a physical sample, a first-off inspection, a scaled mock-up or a fullscale mock-up, as specifed in the contract documents.
2.2 These tolerances are one-half of those for standard structural steel as specified in this Code.
2.3 Members markings during the fabrication and erection processes are not visible.
3.1 All mill marks are not visible in the finished product.
3.2 Caulking or body filler is acceptable.
3.3 Seams are oriented away from view or as indicated in the contract documents.
3.4 The matching of abutting cross sections is required.
3.5 This characteristic is similar to 2.2 above. A clear distance between abutting members of $1 / 8 \mathrm{in}$. $(3 \mathrm{~mm})$ is required.
3.6 Hidden bolts may be considered.
4.1 HSS seams are treated so they are not apparent.
4.2 In addidtion to a contoured and blended appearance, welded transitions between members also are contoured and blended.
4.3 The steel surface imperfections are filled and sanded.
4.4 Weld show-through on the back side of a welded element can be minimized by hand grinding the back side surface. The degree of weld-through is a function of weld size and material.
C. Aditional characteristics may be added for custom elements.

### 10.4. Fabrication

10.4.1. The fabricator shall handle the steel with care to avoid marking or distorting the steel members:
(a) Slings shall be nylon-type or chains or wire rope with softeners.
(b) Care shall be taken to minimize damage to any shop paint or coating.
(c) When temporary braces or fixtures are required during fabrication or shipment, or to facilitate erection, care shall be taken to avoid blemishes or unsightly surfaces resulting from the use or removal of such temporary elements.
(d) Tack welds not incorporated into final welds shall be treated consistently with requirements for final welds.
(e) All backing and runoff tabs shall be removed and the welds ground smooth.
(f) All bolt heads in connections shall be on the same side, as specified, and consistent from one connection to another.
10.4.2. Members fabricated of unfinished, reused, galvanized or weathering steel that are to be AESS may still have erection marks, painted marks or other marks on surfaces in the completed structure. Special requirements, if any, shall be specified as Category AESS C.
10.4.3. The permissible tolerances for member depth, width, out of square, and camber and sweep shall be as specified in ASTM A6/A6M and ASTM A500/A500M. The following exceptions apply:
(a) For Categories AESS 3 and 4, the matching of abutting cross sections shall be required.
(b) For Categories AESS 2, 3 and 4, the as-fabricated straightness tolerance shall be one-half of that specified in ASTM A6/A6M and ASTM A500/A500M.
10.4.4. For curved structural members, whether composed of a single standard structural shape or built-up, the as-fabricated variation from the theoretical curvature shall be equal to or less than the standard camber and sweep tolerances permitted for straight members in the applicable ASTM standard.

## Commentary:

The curvature tolerance for curved AESS members is not reduced from that used for curved non-AESS members because curved members have no straight line to sight and the resulting deviations are therefore indistinguishable. See also the Commentary to Section 6.4.2.
10.4.5. The tolerance on overall profile dimensions of welded built-up members shall meet the requirements in AWS D1.1/D1.1M. For Categories AESS 2, 3 and 4, the as-fabricated straightness tolerance for the member as a whole shall be one-half of that specified in AWS D1.1/D1.1M.
10.4.6. For Categories AESS 3 and 4, copes, miters and cuts in surfaces exposed to view shall have a gap that is uniform within $1 / 8$ in. ( 3 mm ), if shown to be an open joint. If instead the joint is shown to be in contact, the contact shall be uniform within $1 / 16 \mathrm{in}$. ( 2 mm ).
10.4.7. For Categories AESS 1, 2 and 3, the surface condition of steel given in ASTM A6/A6M shall be acceptable. For Category AESS 4, surface imperfections shall be filled and sanded to meet the acceptance criteria established with the mock-up required in Section 10.1.2.
10.4.8. For Categories AESS 1, 2 and 3, welds shall meet AWS D1.1/D1.1M requirements, except that weld spatter exposed to view, if any, shall be removed. For Category AESS 4, welds shall be contoured and blended, and spatter exposed to view, if any, shall be removed.
10.4.9. For Categories AESS 1 and 2, weld projection up to $1 / 16 \mathrm{in}$. ( 2 mm ) is acceptable for butt and plug welded joints. For Categories AESS 3 and 4, welds shall be ground smooth/filled.
10.4.10. For Categories AESS 1, 2 and 3, weld show-through shall be acceptable as produced. For Category AESS 4, the fabricator shall minimize the weld show-through.

## Commentary:

Weld show-through is a visual indication of the presence of a weld or welds on the opposite surface from the viewer. It is a function of weld size and material thickness and can't be eliminated in thin material with thick welds. When weld show-through is a concern, this should be addressed in the mock-up.
10.4.11. AESS shall be prepared to meet the requirement of SSPC-SP 6. Prior to blast cleaning:
(a) Grease or oil, if any is present, shall be removed by solvent cleaning to meet the requirements of SSPC-SP 1.
(b) Weld spatter, slivers and similar surface discontinuities shall be removed.
(c) Sharp corners resulting from shearing, flame cutting or grinding shall be eased.
10.4.12. For Categories AESS 1 and 2, seams of hollow structural sections shall be acceptable as produced. For Category AESS 3, seams shall be oriented as specified in the contract documents. For Category AESS 4, seams shall be treated so they are not apparent.

### 10.5. Delivery of Materials

The fabricator shall use special care to avoid bending, twisting or otherwise distorting AESS. All tie-downs on loads shall be nylon straps or chains with softeners to avoid damage to edges and surfaces of members. The standard for acceptance of delivered and erected members shall be equivalent to the standard employed at fabrication.

### 10.6. Erection

The erector shall use special care in unloading, handling and erecting AESS to avoid marking or distorting the AESS. The erector shall plan and execute all
operations in such a manner that allows the architectural appearance of the structure to be maintained:
(a) Slings shall be nylon-type or chains or wire rope with softeners.
(b) Care shall be taken to minimize damage to any shop paint or coating.
(c) When temporary braces or fixtures are required to facilitate erection, care shall be taken to avoid any blemishes, holes or unsightly surfaces resulting from the use or removal of such temporary elements.
(d) Tack welds not incorporated into final welds shall be ground smooth.
(e) All backing and runoff tabs shall be removed and the welds ground smooth.
(f) All bolt heads in connections shall be on the same side, as specified, and consistent from one connection to another.
(g) For Category AESS 4, open holes shall be filled with weld metal or body filler and smoothed by grinding or filling to the standards applicable to the shop fabrication of the materials.

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
130 East Randolph Street, Suite 2000, Chicago, Illinois 60601 www.aisc.org

## PART 17 MISCELLANEOUS DATA AND MATHEMATICAL INFORMATION

SI EQUIVALENTS OF STANDARD U.S. SHAPE PROFILES ..... 17-3
Table 17-1. W-Shapes ..... 17-3
Table 17-2. M-, S- and HP-Shapes ..... 17-6
Table 17-3. Channels ..... 17-7
Table 17-4. Angles ..... 17-8
Table 17-5. WT-Shapes ..... $17-10$
Table 17-6. MT- and ST-Shapes ..... 17-13
Table 17-7. Rectangular HSS ..... 17-14
Table 17-8. Square HSS ..... 17-18
Table 17-9. Round HSS and Pipes ..... $17-20$
MISCELLANEOUS DATA ..... 17-23
Table 17-10. Wire and Sheet Metal Gages ..... $17-23$
Table 17-11. Coefficient of Expansion ..... $17-24$
Table 17-12. Densities of Common Materials ..... $17-25$
Table 17-13. Weights of Building Materials ..... $17-27$
Table 17-14. Weights and Measures-United States System ..... 17-28
SI UNITS FOR STRUCTURAL STEEL DESIGN ..... 17-29
Table 17-15. Base SI Units for Steel Design ..... 17-29
Table 17-16. SI Prefixes for Steel Design ..... $17-29$
Table 17-17. Derived SI Units for Steel Design ..... $17-29$
Table 17-18. Summary of SI Conversion Factors ..... $17-29$
Table 17-19. SI Equivalents of Fractions of an Inch ..... 17-30
Table 17-20. SI Bolt Designation ..... 17-30
Table 17-21. SI Steel Yield Stresses ..... $17-30$
Table 17-22. Weights and Measures-International System of Units (SI) ..... 17-31
Table 17-23. SI Conversion Factors ..... $17-32$
GEOMETRIC AND TRIGONOMETRIC DATA ..... 17-34
Table 17-24. Bracing Formulas ..... 17-34
Table 17-25. Properties of the Parabola and Ellipse ..... 17-35
Table 17-26. Properties of the Circle ..... 17-36
Table 17-27. Properties of Geometric Sections ..... 17-37
Table 17-28. Trigonometric Formulas ..... 17-44

	Equi	ents hape   W-S	ftan Profiles apes		
Shape	SI Equivalent	Shape	SI Equivalent	Shape	SI Equivalent
in. $\times$ lb/ft	$\mathbf{m m} \times \mathbf{k g} / \mathbf{m}$	in. $\times$ lb/ft	$\mathbf{m m} \times \mathbf{k g} / \mathbf{m}$	in. $\times$ lb/ft	$\mathbf{m m} \times \mathbf{k g} / \mathbf{m}$
$\begin{array}{r} W 44 \times 335 \\ \times 290 \\ \times 262 \\ \times 230 \end{array}$	W1100×499	W $36 \times 925$	W920×1377	W30×391	W760×582
	$\times 433$	$\times 853$	$\times 1269$	$\times 357$	$\times 531$
	$\times 390$	$\times 802$	$\times 1194$	$\times 326$	$\times 484$
	$\times 343$	$\times 723$	$\times 1077$	$\times 292$	$\times 434$
	W1000×976	$\times 652$	$\times 970$	$\times 261$	$\times 389$
W $40 \times 655$ $\times 593$	$\times 883$	$\times 529$	$\times 787$	$\times 235$	$\times 350$
$\times 503$	$\times 883$ $\times 748$	$\times 487$	$\times 725$	$\times 211$	$\times 314$
	$\times 748$ $\times 642$	$\times 441$	$\times 656$	$\times 191$	$\times 284$
$\times 431$	$\times 642$ $\times 591$	$\times 395$	$\times 588$	$\times 173$	$\times 257$
$\times 431$ $\times 397$	$\times 591$	$\times 361$	$\times 537$	10×148	
+362	$\times 554$ $\times 539$	$\times 330$	$\times 491$	-	+196
$\times 362$ $\times 324$	$\times 483$	$\times 302$	$\times 449$	$\times 124$	$\times 195$
$\times 324$ $\times 297$	$\times 483$ $\times 443$	$\times 282$	$\times 420$	+124	-
$\times 277$	$\times 443$ $\times 412$	$\times 262$	$\times 390$	$\times 116$ $\times 108$	$\times 173$ $\times 161$
$\times 249$	$\times 371$	$\times 247$	$\times 368$	$\times 99$	$\times 147$
$\times 215$	$\times 321$	$\times 231$	$\times 344$	$\times 90$	$\times 134$
$\times 199$	$\times 296$	W $36 \times 256$	W920×381		
W40×392	W1000×584	$\times 232$	$\times 345$	$\begin{array}{r} \text { W } 27 \times 539 \\ \times 368 \end{array}$	W690×802 $\times 548$
$\times 331$	+ $\times 494$	$\times 210$	$\times 313$	$\times 336$	$\times 500$
$\times 327$	+486	$\times 194$	$\times 289$	$\times 336$ $\times 307$	$\times$ +457
$\times 294$	$\times 438$	$\times 182$	$\times 271$	$\times 281$	$\times 419$
$\times 278$	$\times 415$	$\times 170$	$\times 253$	+258	$\times 384$
$\times 264$	$\times 393$	$\times 160$	$\times 238$	$\times 235$	$\times 350$
$\times 235$	$\times 350$	$\times 150$	$\times 223$	$\times 217$	$\times 323$
$\times 211$	$\times 314$	$\times 135$	$\times 201$	$\times 194$	$\times 289$
$\times 183$	$\times 272$	W $33 \times 387$	W840×576	$\times 178$	$\times 265$
$\times 167$	$\times 249$	$\times 354$	$\times 527$	$\times 161$	$\times 240$
$\times 149$	$\times 222$	$\times 318$	$\times 473$	$\times 146$	$\times 217$
		$\times 291$	$\times 433$	W $27 \times 129$	W690×192
		$\times 263$	$\times 392$	W27 $\times 114$	$\times 170$
		$\times 241$	$\times 359$	+102 $\times 102$	$\times 152$
		$\times 221$	$\times 329$	$\times 94$ $\times 94$	$\times 140$
		$\times 201$	$\times 299$	$\times 84$	$\times 125$
		W $33 \times 169$	W840×251		
		$\times 152$	$\times 226$		
		$\times 141$	$\times 210$		
		$\times 130$	$\times 193$		
		$\times 118$	$\times 176$		


	Equi	le 17ents hape   W-	continued Stan Profiles apes		
Shape	SI Equivalent	Shape	SI Equivalent	Shape	SI Equivalent
in. $\times \mathrm{lb} / \mathrm{ft}$	$\mathbf{m m} \times \mathbf{k g} / \mathbf{m}$	in. $\times$ lb/ft	$\mathbf{m m} \times \mathbf{k g} / \mathrm{m}$	in. $\times$ lb/ft	$\mathbf{m m} \times \mathbf{k g} / \mathbf{m}$
W $24 \times 370$		W $21 \times 57$	W530×85	W14×873	W360×1299
$\times 335$	W610 $\times 551$ $\times 498$	$\begin{aligned} & \times 50 \\ & \times 44 \end{aligned}$	$\begin{aligned} & \times 74 \\ & \times 66 \end{aligned}$	$\begin{aligned} & \times 808 \\ & \times 730 \end{aligned}$	$\times 1202$
$\times 306$	$\times 455$				$\times 1086$
$\times 279$	$\times 415$	$\times 44$	$\times 66$	$\times 665$	$\times 990$
$\times 250$	$\times 372$	W18×311	W460×464	$\times 605$	$\times 900$
$\times 229$	$\times 341$	$\times 283$	$\begin{array}{r} \times 421 \\ \times 384 \end{array}$	$\times 550$	$\times 818$
$\times 207$	$\times 307$	$\times 258$	$\begin{array}{r} \times 384 \\ \times 349 \end{array}$	$\times 500$	$\times 744$
$\times 192$	$\times 285$	$\times 234$	$\times 349$ $\times 315$	$\times 455$	$\times 677$
$\times 176$	$\times 262$	$\times 211$	$\times 315$	$\times 426$	$\times 634$
$\times 162$	$\times 241$	$\begin{aligned} & \times 192 \\ & \times 175 \end{aligned}$	$\times 286$	$\times 398$	$\times 592$
$\times 146$	$\times 217$	$\begin{aligned} & \times 175 \\ & \times 158 \end{aligned}$	$\times 260$	$\times 370$	$\times 551$
$\times 131$	$\times 195$	$\begin{aligned} & \times 158 \\ & \times 143 \end{aligned}$	$\times 235$	$\times 342$	$\times 509$
$\times 117$	$\times 174$	+143 $\times 130$	$\times 213$	$\times 311$	$\times 463$
$\times 104$	$\times 155$	+130 $\times 119$	$\times 177$	$\times 283$	$\times 421$
W24×103	W610×153	+106	$\times 158$	$\times 257$	$\times 382$
$\times 94$	$\times 140$	$\times 106$ $\times 97$	$\times 144$	$\times 233$	$\times 347$
$\times 94$ $\times 84$	+140 $\times 125$	+ $\times 86$ $\times 86$		$\times 211$	$\times 314$
$\times 76$	$\times 113$	$\times 86$ $\times 76$	$\times 128$	$\times 193$	$\times 287$
$\times 76$ $\times 68$	+101	$\times 76$	$\times 113$	$\times 176$	$\times 262$
8	$\times 10$	W18×71	W460×106	$\times 159$	$\times 237$
W24×62	W610×92	$\times 65$	$\times 97$	$\times 145$	$\times 216$
$\times 55$	$\times 82$	$\begin{array}{r} \times 60 \\ \times 55 \end{array}$	$\times 89$	W14×132	W360×196
W $21 \times 275$	W530×409		$\times 82$	W14 $\times 120$	$\times 179$
+ $\times 248$	+ $\times 369$	$\begin{aligned} & \times 55 \\ & \times 50 \end{aligned}$	$\times 74$	$\times 109$	$\times 179$ $\times 162$
$\times 223$	$\times 332$	W18×46	W460×68	$\times 99$	$\times 147$
$\times 201$	$\times 300$	$\begin{array}{r} \times 40 \\ \times 35 \end{array}$	$\begin{array}{r} \times 60 \\ \times 52 \end{array}$	$\times 90$	$\times 134$
$\times 182$	$\times 272$				
$\times 166$	$\times 248$	W16×100	W410×149	W14×82 $\times 74$	W360×122 $\times 110$
$\times 147$	$\times 219$	$\times 89$	$\times 132$$\times 114$	$\times 68$	$\times 101$
$\times 132$	$\times 196$	$\begin{aligned} & \times 77 \\ & \times 67 \end{aligned}$		$\times 61$	$\times 91$
$\times 122$	$\times 182$		$\begin{array}{r} \times 114 \\ \times 100 \end{array}$	$\times 1$	- $\times 1$
$\times 111$	$\times 165$	$\times 67$		W14×53	W360×79
$\times 101$	$\times 150$	W16×57	W410×85	$\times 48$	$\times 72$
W21×93	W530×138	$\times 50$		$\times 43$	$\times 64$
W21 $\times 83$	$\times 123$	$\times 45$	$\times 67$	W14×38	W360×58
$\times 73$	$\times 109$	$\begin{array}{r} \times 40 \\ \times 36 \end{array}$	$\begin{array}{r} \times 60 \\ \times 53 \end{array}$	+ $\times 34$	$\times 560$
$\times 68$	$\times 101$			$\times 30$	$\times 44.6$
$\times 62$	$\times 92$	W16×31	W410×46.1	W14×26	$\text { W } 360 \times 39$
$\times 55$	$\begin{array}{r} \times 82 \\ \times 70 \end{array}$	$\times 26$	$\times 38.8$	$\times 22$	$\times 32.9$


Table 17-1 (continued) SI Equivalents of Standard U.S. Shape Profiles   W-Shapes					
Shape	SI Equivalent	Shape	SI Equivalent	Shape	SI Equivalent
in. $\times$ lb/ft	$\mathbf{m m} \times \mathbf{k g} / \mathbf{m}$	in. $\times$ lb/ft	$\mathbf{m m} \times \mathbf{k g} / \mathbf{m}$	in. $\times$ lb/ft	$\mathbf{m m} \times \mathbf{k g} / \mathbf{m}$
W12×336	W310×500	W12×22	W $310 \times 32.7$	W8×67	W200×100
$\times 305$	$\times 454$	$\times 19$	$\times 28.3$	$\times 58$	$\times 86$
$\times 279$	$\times 415$	$\times 16$	$\times 23.8$	$\times 48$	$\times 71$
$\times 252$	$\times 375$	$\times 14$	$\times 21.0$	$\times 40$	$\times 59$
$\times 230$	$\times 342$	W10×112	W250×167	$\times 35$	$\times 52$
$\times 210$	$\times 313$	W $\times 100$	$\times 149$	$\times 31$	$\times 46.1$
$\times 190$	$\times 283$	$\times 88$	$\times 1$	W8×28	W200×41.7
$\times 170$ $\times 152$	$\times 253$	$\times 77$	$\times 115$	$\times 24$	$\times 35.9$
$\times 152$	$\times 226$	$\times 68$	$\times 101$		
$\times 136$	$\times 202$ $\times 179$	$\times 60$	$\times 89$	W8×21	W200×31.3
$\times 120$ $\times 106$	$\times 179$ $\times 158$	$\times 54$	$\times 89$ $\times 80$	$\times 18$	$\times 26.6$
$\times 106$	$\times 158$	$\times 49$	$\times 73$	W8×15	W200×22.5
$\times 96$ $\times 87$	$\times 143$ $\times 129$	W10×45	W250×67	$\times 13$	$\times 19.3$
$\times 79$	$\times 117$	$\times 39$	$\times 58$	$\times 10$	$\times 15.0$
$\times 72$	$\times 107$	$\times 33$	$\times 49.1$	W6x25	W150×37.1
$\times 65$	$\times 97$			$\times 20$	$\times 29.8$
W12×58	W310×86	W10×30 $\times 26$	W250×44.8 $\times 38.5$	$\times 15$	$\times 22.5$
$\times 53$	$\times 79$	$\times 22$	$\times 32.7$	W6x16	W150×24.0
W12×50	W310×74	W10×19	W250×28.4	$\times 12$	$\times 18.0$
$\times 45$	$\times 67$	$\times 17$	W250 $\times 25.3$	$\times 9$	$\times 13.5$
$\times 40$	$\times 60$	$\times 15$	+22.3	$\times 8.5$	$\times 13.0$
W12×35	W310×52	$\times 12$	$\times 17.9$	W5×19	W130×28.1
$\times 30$	$\times 44.5$			$\times 16$	$\times 23.8$
$\times 26$	$\times 38.7$			W4×13	W100x19.3



Table 17-3   SI Equivalents of Stand Shape Profiles   Channels			
Shape	SI Equivalent	Shape	SI Equivalent
in. $\times$ lb/ft	$\mathbf{m m} \times \mathrm{kg} / \mathrm{m}$	in. $\times$ lb/ft	$\mathbf{m m} \times \mathrm{kg} / \mathrm{m}$
$\begin{aligned} & \hline \mathrm{C} 15 \times 50 \\ & \times 40 \\ & \times 33.9 \end{aligned}$	$\begin{gathered} \hline \text { C380 } 774 \\ \times 60 \\ \times 50.4 \end{gathered}$	$\begin{array}{r} \hline \text { MC18 } \times 58 \\ \times 51.9 \\ \times 45.8 \\ \times 42.7 \end{array}$	$\begin{array}{r} \text { MC460×86 } \\ \times 77.2 \\ \times 68.2 \\ \times 63.5 \end{array}$
C12×30	C310×45	$\times 42.7$	$\times 63.5$
$\begin{aligned} & \times 25 \\ & \times 20.7 \end{aligned}$	$\begin{aligned} & \times 37 \\ & \times 30.8 \end{aligned}$	$\begin{array}{r} \text { MC13 } \times 50 \\ \times 40 \end{array}$	MC330×74   $\times 60$
$\mathrm{C} 10 \times 30$	$\mathrm{C} 250 \times 45$	$\begin{aligned} & \times 35 \\ & \times 31.8 \end{aligned}$	$\begin{aligned} & \times 52 \\ & \times 47.3 \end{aligned}$
$\begin{aligned} & \times 20 \\ & \times 15.3 \end{aligned}$	$\begin{aligned} & \times 30 \\ & \times 22.8 \end{aligned}$	$\begin{array}{r} \text { MC1 } 2 \times 50 \\ \times 45 \end{array}$	$\begin{array}{r} \text { MC310 } \times 74 \\ \times 67 \end{array}$
$\begin{gathered} \mathrm{C} 9 \times 20 \\ \times 15 \\ \times 13.4 \end{gathered}$	$\begin{gathered} \mathrm{C} 230 \times 30 \\ \times 22 \\ \times 19.9 \end{gathered}$	$\begin{aligned} & \times 40 \\ & \times 35 \\ & \times 31 \end{aligned}$	$\begin{array}{r} \times 60 \\ \times 52 \\ \times 46 \end{array}$
C8×18.75	C200×27.9	MC12×14.3	MC310×21.3
$\times 13.75$	$\times 20.5$	MC12×10.6	MC310×15.8
$\times 11.5$	$\times 17.1$	MC10×41.1	MC250×61.2
$\begin{gathered} \mathrm{C} 7 \times 14.75 \\ \times 12.25 \\ \times 9.8 \end{gathered}$	C180×22   $\times 18.2$	$\begin{array}{r} \times 33.6 \\ \times 28.5 \end{array}$	$\begin{aligned} & \times 50 \\ & \times 42.4 \end{aligned}$
$\begin{array}{r} \times 9.8 \\ C 6 \times 13 \end{array}$	$\begin{array}{r} \times 14.6 \\ C 150 \times 19.3 \end{array}$	$\begin{array}{r} \text { MC10×25 } \\ \times 22 \end{array}$	$\begin{array}{r} \text { MC250 } \times 37 \\ \times 33 \end{array}$
$\begin{aligned} & \times 10.5 \\ & \times 8.2 \end{aligned}$	$\begin{array}{r} \times 15.6 \\ \times 12.2 \end{array}$	$\begin{array}{r} \text { MC10×8.4 } \\ \times 6.5 \end{array}$	$\begin{gathered} \text { MC250×12.5 } \\ \times 9.7 \end{gathered}$
C5×9 $\times 6.7$	$\begin{array}{r} \mathrm{C} 130 \times 13 \\ \times 10.4 \end{array}$	$\begin{array}{r} \text { MC9×25.4 } \\ \times 23.9 \end{array}$	$\begin{array}{r} \text { MC230 } \times 37.8 \\ \times 35.6 \end{array}$
$\begin{gathered} C 4 \times 7.25 \\ \times 6.25 \\ \times 5.4 \end{gathered}$	$\begin{gathered} \mathrm{C} 100 \times 10.8 \\ \times 9.3 \\ \times 8 \end{gathered}$	MC8×22.8 $\times 21.4$	$\begin{array}{r} \text { MC200 } \times 33.9 \\ \times 31.8 \end{array}$
$\begin{array}{r} \times 5.4 \\ \times 4.5 \\ C 3 \times 6 \end{array}$	$\times 6.7$   C75×8.9	$\begin{gathered} \text { MC8×20 } \\ \times 18.7 \end{gathered}$	$\begin{array}{r} \text { MC200×29.8 } \\ \times 27.8 \end{array}$
$\times 5$	C75×8.9 $\times 7.4$	MC8×8.5	MC200×12.6
$\begin{array}{r} \times 4.1 \\ \times 3.5 \end{array}$	$\begin{aligned} & \times 6.1 \\ & \times 5.2 \end{aligned}$	$\begin{array}{r} \text { MC7×22.7 } \\ \times 19.1 \end{array}$	$\begin{array}{r} \text { MC180×33.8 } \\ \times 28.4 \end{array}$
		$\begin{aligned} & \text { MC6 } \times 18 \\ & \quad \times 15.3 \end{aligned}$	$\begin{array}{r} \text { MC150×26.8 } \\ \times 22.8 \end{array}$
		$\begin{array}{r} \text { MC6 } \times 16.3 \\ \times 15.1 \end{array}$	$\begin{array}{r} \text { MC150×24.3 } \\ \times 22.5 \end{array}$
		MC6×12	MC150×17.9
		MC6×7 $\times 6.5$	$\begin{gathered} \text { MC150×10.4 } \\ \times 9.7 \end{gathered}$
		MC4×13.8	MC100×20.5
		MC3×7.1	MC75×10.6


Shape	SI Equivalent	Shape	SI Equivalent
in. $\times$ in. $\times$ in.	$\mathbf{m m} \times \mathbf{m m} \times \mathbf{m m}$	in. $\times$ in. $\times$ in.	$\mathbf{m m} \times \mathbf{m m} \times \mathbf{m m}$
L $12 \times 12 \times 1^{3 / 8}$	L $305 \times 305 \times 34.9$	L6×6×1	L152×152×25.4
$\times 1 \frac{1}{4}$	$\times 31.8$	$\times^{7 / 8}$	$\times 22.2$
$\times 1 \frac{1}{1 / 8}$	$\times 28.6$	$\times^{3 / 4}$	$\times 19.0$
$\times 1$	$\times 25.4$	$\times 5 / 8$	$\times 15.9$
$110 \times 10 \times 13 / 8$	$1254 \times 254 \times 34.9$	$\times 9 / 16$	$\times 14.3$
$\times 1^{1 / 4}$	$\times 31.8$	$\times 1 / 2$	$\times 12.7$
$\times 11 / 8$	$\times 31.8$ $\times 28.6$	$\times{ }^{7 / 16}$	$\times 11.1$
$\times 1$	$\times 25.4$	$x^{3 / 8}$	$\times 9.5$
$\times^{7} / 8$	$\times 25.4$ $\times 22.2$	$\times 5 / 16$	$\times 7.9$
$\times 3 / 4$	$\times 19.0$	L6×4×7/8	L152×102×22.2
$18 \times 8 \times 1 \frac{1 / 8}{}$	$1203 \times 203 \times 28.6$	$\times^{3 / 4}$	$\times 19.0$
L8×8×1¹/8	$\times 25.4$	$\times 5 / 8$	$\times 15.9$
$\times 1$ $\times 7$	$\begin{aligned} & \times 25.4 \\ & \times 22.2 \end{aligned}$	$\times 9 / 16$	$\times 14.3$
$\times 7 / 8$ $\times 3 / 4$	$\times 22.2$ $\times 19.0$	$\times 1 / 2$	$\times 12.7$
$\times 3 / 4$ $\times 5 / 8$	$\times 19.0$ $\times 15.9$	$\times{ }^{7 / 16}$	$\times 11.1$
	$\times 15.9$ $\times 14.3$	$\times 3 / 8$	$\times 9.5$
$\times 16$ $\times 1 / 2$	$\times 12.7$	$\times 5 / 16$	$\times 7.9$
$8 \times 6 \times 1$	$1203 \times 152 \times 25.4$	$L 6 \times 3^{11 / 2} \times 1 / 2$	L152×89×12.7
$8 \times 6 \times 1$ $\times 7 / 8$	$\times 22.2$	$x^{3 / 8}$	$\times 9.5$
$x / 8$ $\times 3 / 4$	+ $\times 19.0$	$\times 5 / 16$	$\times 7.9$
$\times 5 / 8$	$\times 15.9$	L5 $\times 5 \times 1 / 8$	L127×127×22.2
$\times 9 / 16$	$\times 14.3$	$\times^{3 / 4}$	$\times 19.0$
$\times^{1 / 2}$	$\times 12.7$	$\times 5 / 8$	$\times 15.9$
$\times{ }^{7 / 16}$	$\times 11.1$	$\times 1 / 2$	$\times 12.7$
L8×4×1		$\times 7 / 16$	$\times 11.1$
L8×4×1	$L 203 \times 102 \times 25.4$ $\times 22.2$	$\times 3 / 8$	$\times 9.5$
$\begin{aligned} & \times^{7} / 8 \\ & \times^{3} / 4 \end{aligned}$	$\begin{array}{r} \times 22.2 \\ \times 19.0 \end{array}$	$\times 5 / 16$	$\times 7.9$
$\times 5 / 8$	$\times 15.9$	L5 $\times 31 / 2 \times 3 / 4$	L127×89×19.0
$\times 9 / 16$	$\times 14.3$	$\times 5 / 8$	$\times 15.9$
$\times^{1 / 2}$	$\times 12.7$	$\times^{1 / 2}$	$\times 12.7$
$\times^{7 / 16}$	$\times 11.1$	$\times^{3 / 8}$	$\times 9.5$
L7 $\times 4 \times 3 / 4$	$1178 \times 102 \times 19.0$	$\times 5 / 16$	$\times 7.9$
$x^{5} / 8$	$\times 15.9$	$\times 1 / 4$	$\times 6.4$
$x^{1 / 2}$	$\times 12.7$	L $5 \times 3 \times 1 / 2$	L127×76×12.7
$\times^{7 / 16}$	$\times 11.1$	$\times^{7 / 16}$	$\times 11.1$
$\times^{3} / 8$	$\times 9.5$	$\times 3 / 8$	$\times 9.5$
		$\times 5 / 16$	$\times 7.9$
		$\times 1 / 4$	$\times 6.4$


	Table 17 uivalents Shap	ontinued) Standa Profiles S	.S.
Shape	SI Equivalent	Shape	SI Equivalent
in. $\times$ in. $\times$ in.	$\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$	in. $\times$ in. $\times$ in.	$\mathbf{m m} \times \mathbf{m m} \times \mathbf{m m}$
L $4 \times 4 \times 3 / 4$ $\times 5 / 8$ $\times 1 / 2$ $x^{7 / 16}$ $\times 3 / 8$ $\times 5 / 16$ $x^{1 / 4}$	$\begin{array}{r} \hline \text { L102×102×19.0 } \\ \times 15.9 \\ \times 12.7 \\ \times 11.1 \\ \times 9.5 \\ \times 7.9 \\ \times 6.4 \end{array}$	$\begin{gathered} \hline \mathrm{L} 3 \times 2^{1 / 2} \times \times^{1 / 2} \\ \times^{7 / 16} \\ \times^{3 / 8} \\ x^{5 / 16} \\ x^{1 / 4} \\ x^{3 / 16} \end{gathered}$	$\begin{gathered} \hline \text { L76 } \times 64 \times 12.7 \\ \times 11.1 \\ \times 9.5 \\ \times 7.9 \\ \times 6.4 \\ \times 4.8 \end{gathered}$
		$\mathrm{L} 3 \times 2 \times 1 / 2$	L76×51×12.7
L4×31/2×1/2	L102×89×12.7	$\times 3 / 8$	$\times 9.5$
$\times 3 / 8$	$\times 9.5$	$\times 5 / 16$	$\times 7.9$
$\times 5 / 16$	$\times 7.9$	$\times 1 / 4$	$\times 6.4$
$\times{ }^{1 / 4}$	$\times 6.4$	$\times 3 / 16$	$\times 4.8$
L4×3×5/8	L102×76×15.9	$\mathrm{L} 2^{1 / 2} \times 2^{1 / 1 / 2 \times 1 / 2}$	L64×64×12.7
$\times^{1 / 2}$	$\times 12.7$	$x^{3 / 8}$	$\times 9.5$
$\times^{3 / 8}$	$\times 9.5$	$\times 5 / 16$	$\times 7.9$
$\times 5 / 16$	$\times 7.9$	$\times 1 / 4$	$\times 6.4$
$\times 1 / 4$	$\times 6.4$	$\times 3 / 16$	$\times 4.8$
$\mathrm{L} 3^{1 / 2} \times 3^{1 / 2} \times{ }^{1 / 2}$	L $89 \times 89 \times 12.7$	$\mathrm{L} 2^{1 / 2} \times 2 \times 3 / 8$	L64×51×9.5
$\times^{7 / 16}$	$\times 11.1$	$\times 5 / 16$	$\times 7.9$
$x^{3} / 8$	$\times 9.5$	$x^{1 / 4}$	$\times 6.4$
$\times 5 / 16$	$\times 7.9$	$\times 3 / 16$	$\times 4.8$
$\times{ }^{1 / 4}$	$\times 6.4$	$\mathrm{L} 2^{1 / 2} \times 1^{11 / 2} \times 1 / 4$	L64×38×6.4
L3 ${ }^{1} / 2 \times 3 \times 1 / 2$	L89×76×12.7	$x^{3} / 16$	$\times 4.8$
$x^{7} / 16$	$\times 11.1$ $\times 9.5$	$\mathrm{L} 2 \times 2 \times 3 / 8$	L51×51×9.5
$\times 3 / 8$   $x^{5 / 16}$	$\times 9.5$ $\times 7.9$	$\times^{5 / 16}$	$\times 7.9$
$\times 1 / 4$ $\times 1 / 4$	$\times 6.4$	$\times 1 / 4$	$\times 6.4$
		$\times 3 / 16$	$\times 4.8$
$\begin{array}{r} \mathrm{L} 3^{1} / 2 \times 2^{1 / 2} 2 \times 1 / 2 \\ x^{3 / 8} \end{array}$	$\mathrm{L} 89 \times 64 \times 12.7$ $\times 9.5$	$\times 1 / 8$	$\times 3.2$
$\times 5 / 16$	$\times 7.9$		
$\times{ }^{1 / 4}$	$\times 6.4$		
$\mathrm{L} 3 \times 3 \times 1 / 2$	L76×76×12.7		
$\times{ }^{7 / 16}$	$\times 11.1$		
$\times 3 / 8$	$\times 9.5$		
$\times 5 / 16$	$\times 7.9$		
$\times 1 / 4$	$\times 6.4$		
$\times^{3} / 16$	$\times 4.8$		


SI Equivalents of Standard U.S. Shape Profiles					
Shape	SI Equivalent	Shape	SI Equivalent	Shape	SI Equivalent
in. $\times$ lb/ft	$\mathbf{m m} \times \mathbf{k g} / \mathbf{m}$	in. $\times$ lb/ft	$\mathbf{m m} \times \mathbf{k g} / \mathbf{m}$	in. $\times$ lb/ft	$\mathbf{m m} \times \mathbf{k g} / \mathbf{m}$
$\begin{gathered} \text { WT22 } 2 \times 167.5 \\ \times 145 \\ \times 131 \\ \times 115 \end{gathered}$	WT550×249.5	WT18×462.5	WT460×688.5	WT15×195.5	WT380×291
	$\times 216.5$	$\times 426.5$	$\times 634.5$	$\times 178.5$	$\times 265.5$
	$\times 195$	$\times 401$	$\times 597$	$\times 163$	$\times 242$
	$\times 171.5$	$\times 361.5$	$\times 538.5$	$\times 146$	$\times 217$
	WT500×488	$\times 326$	$\times 485$	$\times 130.5$	$\times 194.5$
WT20×327.5	$\times 4415$	$\times 264.5$	$\times 393.5$	$\times 117.5$	$\times 175$
$\times 296.5$ $\times 251.5$	$\times 441.5$ $\times 374$	$\times 243.5$	$\times 362.5$	$\times 105.5$	$\times 157$
$\times 251.5$$\times 215.5$	$\times 374$ $\times 321$	$\times 220.5$	$\times 328$	$\times 95.5$	$\times 142$
	$\times 321$ $\times 2955$	$\times 197.5$	$\times 294$	$\times 86.5$	$\times 128.5$
$\times 198.5$ $\times 186$	$\times 295.5$	$\times 180.5$	$\times 268.5$	T15×74	
$\times 181$	+269.5	$\times 165$	$\times 245.5$	r $\times 66$	$\times 98$
$\times 162$	$\times 269.5$ $\times 241.5$	$\times 151$	$\times 224.5$	$\times 66$ $\times 62$	$\times 98$ $\times 92.5$
$\times 162$ $\times 148.5$	$\times 221.5$	$\times 141$	$\times 210$	$\times 58$	$\times 86.5$
$\times 138.5$	$\times 206$	$\times 131$	$\times 195$	$\times 54$	$\times 80.5$
$\times 138.5$ $\times 124.5$	$\times 185.5$	$\times 123.5$	$\times 184$	$\times 49.5$	$\times 73.5$
$\times 107.5$	$\times 160.5$		$\times 172.5$	$\times 45$	$\times 67$
$\times 99.5$	$\times 148$	WT18×128	WT460×190.5	WT13.5×269.5	
WT20×196	WT500×292	$\times 116$	$\times 172.5$	$\times 184$	$\times 274$
$\times 165.5$	$\times 247$	$\times 105$	$\times 156.5$	$\times 168$	+250
$\times 163.5$	$\times 243$	$\times 97$	$\times 144.5$	$\times 153.5$	$\times 228.5$
$\times 147$	+219	$\times 91$	$\times 135.5$	$\times 140.5$	$\times 209.5$
$\times 139$	$\times 207.5$	$\times 85$	$\times 126.5$	$\times 129$	$\times 192$
$\times 132$	$\times 196.5$	$\times 80$	$\times 119$	$\times 117.5$	$\times 175$
$\times 117.5$	$\times 175$	$\times 75$	$\times 111.5$	$\times 108.5$	$\times 161.5$
$\times 105.5$	$\times 157$	$\times 67.5$	$\times 100.5$	$\times 97$	$\times 144.5$
$\times 91.5$	$\times 136$	WT16.5×193.5	WT420×288	$\times 89$	$\times 132.5$
$\times 83.5$	$\times 124.5$	$\times 177$	$\times 263.5$	$\times 80.5$	$\times 120$
$\times 74.5$	$\times 111$	$\times 159$	$\times 236.5$	$\times 73$	$\times 108.5$
	$\bigcirc \times 11$	$\times 145.5$	$\times 216.5$	WT13.5×64.5	WT345×96
		$\times 131.5$	$\times 196$	WT13.5×64.5 $\times 57$	
		$\times 120.5$	$\times 179.5$	$\times 57$ $\times 51$	$\times 76$
		$\times 110.5$	$\times 164.5$	$\times 47$ $\times 47$	+76
		$\times 100.5$	$\times 149.5$	$\times 42$	$\times 62.5$
		WT16.5×84.5	WT460×125.5		
		$\times 76$	$\times 113$		
		$\times 70.5$	$\times 105$		
		$\times 65$	$\times 96.5$		
		$\times 59$	$\times 88$		


SI Equivalents of Stand Shape Profiles WT-Shapes					
Shape	SI Equivalent	Shape	SI Equivalent	Shape	SI Equivalent
in. $\times$ lb/ft	$\mathbf{m m} \times \mathbf{k g} / \mathbf{m}$	in. $\times$ lb/ft	$\mathbf{m m} \times \mathbf{k g} / \mathbf{m}$	in. $\times$ lb/ft	$\mathbf{m m} \times \mathbf{k g} / \mathbf{m}$
WT12×185	WT305×275.5	WT10.5×28.5	WT265×42.5	WT7×436.5	WT180×649.5
$\times 167.5$	$\times 249$	$\times 25$	$\times 37$	$\times 404$	$\times 601$
$\times 153$	$\times 227.5$	$\times 22$	$\times 33$	$\times 365$	$\times 543$
$\times 139.5$	$\times 207.5$	WT9×155.5	WT230×232	$\times 332.5$	$\times 495$
$\times 125$	$\times 186$	WT9×155.5	WT230×232	$\times 302.5$	$\times 450$
$\times 114.5$	$\times 170.5$	$\times 129$ $\times 129$	$\times 192$	$\times 275$	$\times 409$
$\times 103.5$	$\times 153.5$	$\times 129$ $\times 117$	$\begin{aligned} & \times 192 \\ & \times 174.5 \end{aligned}$	$\times 250$	$\times 372$
$\times 96$	$\times 142.5$	$\times 117$ $\times 105.5$		$\times 227.5$	$\times 338.5$
$\times 88$	$\times 131$	$\times 105.5$	$\begin{aligned} & \times 157.5 \\ & \times 143 \end{aligned}$	$\times 213$	$\times 317$
$\times 81$	$\times 120.5$	$\times 96$	$\times 143$	$\times 199$	$\times 296$
$\times 73$	$\times 108.5$	$\times 87.5$ $\times 79$	$\times 130$	$\times 185$	$\times 275.5$
$\times 65.5$	$\times 97.5$	$\times 79$ $\times 715$	$\times 117.5$	$\times 171$	$\times 254.5$
$\times 58.5$	$\times 87$	$\times 71.5$ $\times 65$	$\times 106.5$ $\times 96.5$	$\times 155.5$	$\times 231.5$
$\times 52$	$\times 77.5$	$\times 65$ $\times 59.5$	$\times 96.5$ $\times 88.5$	$\times 141.5$	$\times 210.5$
WT12×51.5	WT305×76.5	$\times 59.5$ $\times 53$	$\times 88.5$ $\times 79$	$\times 128.5$	$\times 191$
$\times 47$	$\times 70$	$\times 48.5$	$\times 72$	$\times 116.5$	$\times 173.5$
$\times 42$	$\times 62.5$	$\times 43$	$\times 64$	$\times 105.5$	$\times 157$
$\times 38$	$\times 56.5$	$\times 38$	$\times 56.5$	$\times 96.5$	$\times 143.5$
$\times 34$	$\times 50.5$	¢ $\times 38$	- $\times 56.5$	$\times 88$	$\times 131$
$\times 34$	$\times 50.5$	WT9×35.5	WT230×53	$\times 79.5$	$\times 118.5$
WT12×31	WT12×46	$\times 32.5$	$\times 48.5$	$\times 72.5$	$\times 108$
$\times 27.5$	$\times 41$	$\times 30$	$\times 44.5$	WT7×66	WT180×98
WT10.5×137.5	WT265×204.5	$\times 27.5$	$\times 41$	$\times 60$	$\times 89.5$
$\times 124$	$\times 184.5$	$\times 25$	$\times 37$	$\times 54.5$	$\times 81$
$\times 111.5$	$\times 166$	WT9×23	WT230×34	$\times 49.5$	$\times 73.5$
$\times 100.5$	$\times 150$	$\times 20$	$\times 30$	$\times 45$	$\times 67$
$\times 91$	$\times 136$	$\times 17.5$	$\times 26$	WT7×41	WT180×61
$\times 83$	$\times 124$	WT8×50	WT205×74.5	$\times 37$	$\times 55$
$\times 73.5$	$\times 109.5$		$\times 66$	$\times 37$ $\times 34$	$\times 50.5$
$\times 66$	$\times 98$	$\times 38.5$		$\times 34$ $\times 30.5$	$\begin{array}{r} \times 50.5 \\ \times 45.5 \end{array}$
$\times 61$	$\times 91$	$\times 38.5$ $\times 33.5$	$\times 50$	$\times 30.5$	$\times 45.5$
$\times 55.5$	$\times 82.5$	$\times 33.5$	$\times 50$	WT7×26.5	WT180×39.5
$\times 50.5$	$\times 75$	WT8×28.5	WT205×42.5	$\times 24$	$\times 36$
WT10.5×46.5	WT265×69	$\times 25$ $\times 225$	$\times 37.5$	$\times 21.5$	$\times 32$
+41.5	$\times 61.5$	$\times 22.5$	$\times 33.5$	WT7×19	WT180×29
$\times 36.5$	$\times 54.5$	$\times 20$ $\times 18$	$\begin{aligned} & \times 30 \\ & \times 265 \end{aligned}$	$\times 17$	$\times 25.5$
$\times 34$	$\times 50.5$	$\times 18$	$\times 26.5$	$\times 15$	$\times 22.3$
$\times 31$	$\times 46$	WT8×15.5	WT205×23.05		
$\times 27.5$	$\begin{array}{r} \times 41 \\ \times 36 \end{array}$	$\times 13$	$\times 19.4$	$\times 11$	$\times 16.45$




# Table 17-7 <br> SI Equivalents of Standard U.S. Shape Profiles 

Rectangular HSS

Shape	SI Equivalent	Shape	SI Equivalent
in. $\times$ in. $\times$ in.	$\mathbf{m m} \times \mathbf{m m} \times \mathbf{m m}$	in. $\times$ in. $\times$ in.	$\mathbf{m m} \times \mathbf{m m} \times \mathbf{m m}$
HSS24×12x ${ }^{3 / 4}$	HSS609.6×304.8×19.0	HSS14×10×5/8	HSS355.6×254×15.9
$\times 5 / 8$	$\times 15.9$	$\times^{1 / 2}$	$\times 12.7$
$\times 1 / 2$	$\times 12.7$	$\times^{3 / 8}$	$\times 9.5$
HSS20x12x ${ }^{3 / 4}$	HSS508×304.8×19.0	$\times 5 / 16$	$\times 7.9$
- $\times^{5 / 8}$	HSS508×304.8×19.0 $\times 15.9$	$\times 1 / 4$	$\times 6.4$
$\times^{1 / 2}$	$\times 12.7$	HSS14×6×5/8	HSS355.6×152.4×15.9
$\times^{3 / 8}$	$\times 9.5$	$\times 1 / 2$	$\times 12.7$
$\times{ }^{5 / 16}$	$\times 7.9$	$\times^{3 / 8}$	$\times 9.5$
HSS $20 \times 8 \times 5 / 8$	HSS508×203.2×15.9	$\times 5 / 16$	$\times 7.9$
+	$\begin{array}{r}1 \\ \times 12.7 \\ \hline 9.503 \\ \hline\end{array}$	$\times 1 / 4$	$\times 6.4$
+3/8	$\times 12.7$ $\times 9.5$	$\times 3 / 16$	$\times 4.8$
$\times 5 / 16$	$\times 7.9$	HSS $14 \times 4 \times 5 / 8$	HSS355.6×101.6×15.9
		$\times 1 / 2$	$\times 12.7$
HSS20	HSS508×101.6×12.7	$\times^{3 / 8}$	$\times 9.5$
$x^{3 / 8}$ $x^{5} / 16$	$\times 9.5$ $\times 7.9$	$\times 5 / 16$	$\times 7.9$
$\times^{5} / 16$ $\times 1 / 4$	$\times 7.9$ $\times 6.4$	$\times 1 / 4$	$\times 6.4$
$\times 1 / 4$	$\times 6.4$	$\times 3 / 16$	$\times 4.8$
HSS $18 \times 6 \times 5 / 8$	HSS457.2×152.4×15.9	HSS12×10× $\times^{1 / 2}$	HSS304.8×254×12.7
$\times 1 / 2$ $\times 3 / 8$	$\times 12.7$	$\times 3$	$\times 9.5$
$\times 3 / 8$	$\times 9.5$	$\times 5 / 16$	$\times 7.9$
$\times 5 / 16$ $\times 1 / 4$	$\times 7.9$ $\times 6.4$	$\times 1 / 4$	$\times 6.4$
		HSS $12 \times 8 \times 5 / 8$	HSS304.8×203.2×15.9
HSS16x $\times 12 \times 3 / 4$	HSS406.4×304.8×19.0	$\times{ }^{1 / 2}$	$\times 12.7$
x/8/8 $\times 1 / 2$	$\times 15.9$ $\times 12.7$	$\times 3 / 8$	$\times 9.5$
	$\times 12.7$ $\times 9.5$	$\times 5 / 16$	$\times 7.9$
+ ${ }^{\text {x/8/16 }}$	$\times 9.5$ $\times 7.9$	$\times 1 / 4$	$\times 6.4$
${ }^{5 / 16}$	$\times 7.9$	$\times^{3} / 16$	$\times 4.8$
HSS16 $\times 8 \times 5 / 8$	HSS406.4×203.2×15.9		HSS304.8×152.4×15.9
$\times{ }^{1 / 2}$	$\times 12.7$	$\begin{aligned} \\ \times 1 / 1 / 2 \end{aligned} x^{2}$	
$\times 3 / 8$	$\times 9.5$	$x^{3} / 8$	$\times 9.5$
$\times{ }^{5} / 16$	$\times 7.9$	$x^{5} / 16$	$\times 7.9$
$\times{ }^{1 / 4}$	$\times 6.4$	$\times 1 / 4$	$\times 6.4$
HSS $16 \times 4 \times 5 / 8$	HSS406.4×101.6×15.9	$\times{ }^{3} / 16$	$\times 4.8$
$\times{ }^{1 / 2}$	$\times 12.7$	HSS12x4×5/8	HSS304.8×101.6×15.9
$\times 3 / 8$	$\times 9.5$	$x^{1} / 2$	$\times 12.7$
$\times{ }^{5} / 16$	$\times 7.9$	$x^{3 / 8}$	$\times 9.5$
$\times 1 / 4$	$\times 6.4$	$x^{5 / 16}$	$\times 7.9$
$\times 3 / 16$	$\times 4.8$	$\times 1 / 4$	$\times 6.4$
		$\times^{3} / 16$	$\times 4.8$

\begin{tabular}{|c|c|c|c|}
\hline s! \& \begin{tabular}{l}
Table 17-7 \\
uivalents Shape \\
Rectan
\end{tabular} \& tinued) Standa files HSS \& J.S. \\
\hline Shape \& SI Equivalent \& Shape \& SI Equivalent \\
\hline in. \(\times\) in. \(\times\) in. \& \(\mathbf{m m} \times \mathbf{m m} \times \mathbf{m m}\) \& in. \(\times\) in. \(\times\) in. \& \(\mathbf{m m} \times \mathbf{m m} \times \mathbf{m m}\) \\
\hline \multirow[t]{2}{*}{\[
\begin{array}{r}
\hline \text { HSS } 12 \times 3^{1 / 2} \times 3 / 8 \\
x^{5 / 16}
\end{array}
\]} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
\text { HSS } 304.8 \times 88.9 \times 9.5 \\
\times 7.9
\end{array}
\]} \& HSS10 \(\times 3 \times 3 / 8\) \& HSS254×76.2×9.5 \\
\hline \& \& \(\times 5 / 16\) \& \(\times 7.9\) \\
\hline \multirow[t]{2}{*}{HSS \(12 \times 3 \times 5 / 16\)} \& \& \(\times 1 / 4\) \& \(\times 6.4\) \\
\hline \& HSS304.8×76.2×7.9
\(\times 6.4\) \& \(\times 3 / 16\)
\(\times 1 / 8\) \& \(\times 4.8\) \\
\hline \(\times^{3 / 16}\) \& \(\times 6.4\)
\(\times 4.8\) \& \(\times 1 / 8\) \& \(\times 3.2\) \\
\hline HSS12×2×5/16 \& HSS304.8×50.8×7.9 \& HSS \(10 \times 2 \times 3 / 8\) \& HSS254×50.8×9.5 \\
\hline \[
x^{1 / 4}
\] \& \[
\times 6.4
\] \& \(\times^{5 / 16}\)
\(\times 1 / 4\) \& \(\times 7.9\)
\(\times 6.4\) \\
\hline \[
x^{3} / 16
\] \& \[
\times 4.8
\] \& \[
\begin{aligned}
\& \times 1 / 4 \\
\& x^{3} / 16
\end{aligned}
\] \& \[
\begin{aligned}
\& \times 6.4 \\
\& \times 4.8
\end{aligned}
\] \\
\hline HSS10x8× \({ }^{5 / 8}\) \& HSS254×203.2×15.9 \& \(\times 1 / 8\) \& \(\times 3.2\) \\
\hline + \(\times^{1 / 2}\) \& \multirow[t]{2}{*}{+ \(\times 1.5\)} \& HSS9× \(7 \times 5 / 8\) \& HSS228.6×177.8×15.9 \\
\hline \(\times^{3 / 8}\)
\(\times 5 / 16\) \& \& + \(\times 1 / 2\) \& \(\times 12.7\) \\
\hline \(\times 5 / 16\)
\(\times 1 / 4\) \& \(\times 7.9\) \& \(x^{3 / 8}\) \& \multirow[t]{2}{*}{\(\times 9.5\)
\(\times 7.9\)} \\
\hline \(\times 1 / 4\)
\(\times 3 / 16\) \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \times 6.4 \\
\& \times 4.8
\end{aligned}
\]} \& \(\times{ }^{5} / 16\) \& \\
\hline \& \& \(\times 1 / 4\) \& \[
\times 6.4
\] \\
\hline HSS \(10 \times 6 \times 5 / 8\) \& HSS254×152.4×15.9 \& \(\times 3 / 16\) \& \(\times 4.8\) \\
\hline +1/2 \& \multirow[t]{2}{*}{\[
\times 9.5
\]} \& HSS9×5 \(\times\) /8 \& HSS228.6×127×15.9 \\
\hline \begin{tabular}{l}
\(x^{3 / 8}\) \\
\(\times^{5 / 16}\)
\end{tabular} \& \& \multirow[t]{2}{*}{+1/2

$\times 3 / 8$} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& \times 12.7 \\
& \times 9.5
\end{aligned}
$$} <br>

\hline $$
x^{5} / 16
$$

$$
x^{1} / 4
$$ \& $\times 6.4$ \& \& <br>

\hline $$
\begin{gathered}
x^{1 / 4} \\
x^{3} / 16
\end{gathered}
$$ \& \multirow[t]{2}{*}{\[

\times 4.8
\]} \& $x^{3 / 8} 8$

$\times 5 / 16$ \& $$
\times 7.9
$$ <br>

\hline \& \& $$
x^{1 / 4}
$$ \& $\times 6.4$ <br>

\hline HSS $10 \times 5 \times 3 / 8$ \& HSS254×127×9.5 \& $$
x^{3} / 16
$$ \& $\times 4.8$ <br>

\hline $$
x^{5 / 16}
$$ \& \multirow[t]{2}{*}{\[

\times 6.4
\]} \& HSS $\times 3 \times 1 / 2$ \& HSS228.6×76.2×12.7 <br>

\hline $x^{1 / 4}$ \& \& \multirow[t]{2}{*}{\[
$$
\begin{aligned}
& \times^{3} / 8 \\
& \times^{5} / 16
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
\times 9.5 \\
\times 7.9
\end{array}
$$
\]} <br>

\hline $\times 3 / 16$ \& $\times 4.8$ \& \& <br>

\hline HSS10×4×5/8 \& HSS254×101.6×15.9 \& $$
x^{1 / 4}
$$ \& \multirow[b]{2}{*}{\[

\times 4.8
\]} <br>

\hline $\times^{1 / 2}$ \& $\times 12.7$ \& $$
x^{3} / 16
$$ \& <br>

\hline $x^{3 / 8}$ \& \multirow[t]{2}{*}{$$
\begin{array}{r}
\times 9.5 \\
\times 7.9
\end{array}
$$} \& \multirow[t]{2}{*}{HSS8×6×5/8} \& <br>

\hline $$
\times 5 / 16
$$

$$
x^{1 / 4}
$$ \& \& \& \[

\times 12.7
\] <br>

\hline \& $\times 6.4$ \& \multicolumn{2}{|r|}{| $\times 3 / 8$ | $\times 9.5$ |
| :--- | :--- |} <br>

\hline $\times 1 / 16$

$\times 1 / 8$ \& \[
$$
\begin{aligned}
& \times 4.8 \\
& \times 3.2
\end{aligned}
$$

\] \& \multirow[t]{2}{*}{\[

x^{1 / 4}
\]} \& <br>

\hline ${ }^{1} \times 10 \times{ }^{1 / 8}$ \& \& \& $\times 6.4$ <br>
\hline HSS $10 \times 3^{11 / 2 \times 1 / 2}$ \& HSS254×88.9×4.8 \& $\times 3 / 16$ \& $\times 4.8$ <br>

\hline $$
x^{3} / 8
$$ \& $\times 9.5$ \& HSS8×4×5/8 \& HSS203. $2 \times 101.6 \times 15.9$ <br>

\hline \& \multirow[t]{2}{*}{$$
\times 6.4
$$} \& - $\times^{1 / 2}$ \& $\times 12.7$ <br>

\hline \& \& $\times^{3 / 8}$ \& $$
\times 9.5
$$ <br>

\hline +

$\times 1 / 1 / 8$ \& \multirow[t]{4}{*}{} \& \multirow[t]{4}{*}{| $x^{5} / 16$ |
| :--- |
| $\times 1 / 4$ |
| $\times^{3} / 16$ |
| $\times 1 / 8$ |} \& \[

\times 7.9
\] <br>

\hline \& \& \& $$
\times 6.4
$$ <br>

\hline \& \& \& $$
\times 4.8
$$ <br>

\hline \& \& \& $$
\times 3.2
$$ <br>

\hline
\end{tabular}

Shape	Table 17-7 (continued) ivalents of Standard U.S. Shape Profiles Rectangular HSS		
	SI Equivalent	Shape	SI Equivalent
in. $\times$ in. $\times$ in.	$\mathbf{m m} \times \mathbf{m m} \times \mathbf{m m}$	in. $\times$ in. $\times$ in.	$\mathbf{m m} \times \mathbf{m m} \times \mathbf{m m}$
$\begin{aligned} & \hline \text { HSS } 8 \times 3 \times 1 / 2 \\ & x^{3} / 8 \\ & x^{5} / 16 \\ & x^{1 / 4} \\ & x^{3 / 16} \\ & \times 1 / 8 \end{aligned}$	$\begin{aligned} & \hline \text { HSS203.2×76.2 } \times 12.7 \\ & \times 9.5 \\ & \times 7.9 \\ & \times 6.4 \\ & \times 4.8 \\ & \times 3.2 \end{aligned}$	$\begin{array}{r} \hline \text { HSS6×4} \times 1 / 2 \\ \times^{3} / 8 \\ \times^{5} / 16 \\ \times^{1 / 4} \\ \times^{3} / 16 \\ x^{1 / 8} \end{array}$	$\begin{aligned} & \text { HSS152.4×101.6 } \times 12.7 \\ & \times 9.5 \\ & \times 7.9 \\ & \times 6.4 \\ & \times 4.8 \\ & \times 3.2 \end{aligned}$
HSS8×2×3/8	HSS203.2×50.8×9.5	HSS6× $3 \times 1 / 2$	HSS152.4×76.2×12.7
$\times 5 / 16$	$\times 7.9$	$\times 3 / 8$	$\times 9.5$
$\times 1 / 4$	$\times 6.4$	$\times 5 / 16$	$\times 7.9$
$x^{3} / 16$	$\times 4.8$	$\times 1 / 4$	$\times 6.4$
$\times 1 / 8$	$\times 3.2$	$\times^{3} / 16$	$\times 4.8$
HSS7 $\times 5 \times 1 / 2$	HSS177.8×127×12.7	$\times^{1 / 8}$	$\times 3.2$
$x^{3 / 8}$	$\times 9.5$	HSS6×2×3/8	HSS152.4×50.8×9.5
$\times^{5} / 16$	$\times 7.9$	$\times 5 / 16$	$\times 7.9$
$\times 1 / 4$	$\times 6.4$	$\times 1 / 4$	$\times 6.4$
$\times^{3 / 16}$	$\times 4.8$	$\times^{3} / 16$	$\times 4.8$
$\times 1 / 8$	$\times 3.2$	$\times 1 / 8$	$\times 3.2$
HSS7×4×1/2	HSS177.8×101.6×12.7	HSS5 $\times 4 \times 1 / 2$	HSS127×101.6×12.7
$x^{3} / 8$	$\times 9.5$	$x^{3} / 8$	$\times 9.5$
$\times 5 / 16$	$\times 7.9$	$\times 5 / 16$	$\times 7.9$
$\times^{1 / 4}$	$\times 6.4$	$\times 1 / 4$	$\times 6.4$
$x^{3 / 16}$	$\times 4.8$	$\times^{3 / 16}$	$\times 4.8$
$\times 1 / 8$	$\times 3.2$	$\times 1 / 8$	$\times 3.2$
HSS7 $\times 3 \times 1 / 2$	HSS177.8×76.2×12.7	HSS5 $\times 3 \times 1 / 2$	HSS127×76.2×12.7
$\times 3 / 8$	$\times 9.5$	$\times 3 / 8$	$\times 9.5$
$\times 5 / 16$	$\times 7.9$	$x^{5} / 16$	$\times 7.9$
$x^{1 / 4}$	$\times 6.4$	$x^{1 / 4}$	$\times 6.4$
$x^{3} / 16$	$\times 4.8$	$x^{3} / 16$	$\times 4.8$
$x^{1 / 8}$	$\times 3.2$	$x^{1 / 8}$	$\times 3.2$
HSS7 $\times 2 \times 1 / 4$	HSS177.8×50.8×6.4	HSS5 $\times 2^{1 / 2} \times{ }^{1 / 1 / 4}$	HSS127×63.5×6.4
$x^{3} / 16$	$\times 4.8$	$\times^{3 / 16}$	$\times 4.8$
$\times 1 / 8$	$\times 3.2$	$\times 1 / 8$	$\times 3.2$
HSS6 $\times 5 \times 1 / 2$	HSS152.4×127×12.7	HSS5 $\times 2 \times 3 / 8$	HSS127×50.8×9.5
$\times 3 / 8$	$\times 9.5$	$\times 5 / 16$	$\times 7.9$
$x^{5} / 16$	$\times 7.9$	$x^{1 / 4}$	$\times 6.4$
$x^{1 / 4}$	$\times 6.4$	$x^{3 / 16}$	$\times 4.8$
$x^{3} / 16$	$\times 4.8$	$x^{1} / 8$	$\times 3.2$
$\times 1 / 8$	$\times 3.2$		



SI	Tabl   uivalents Shape   Squa	-8   Standar   files SS	J.S.
Shape	SI Equivalent	Shape	SI Equivalent
in. $\times$ in. $\times$ in.	$\mathbf{m m} \times \mathbf{m m} \times \mathbf{m m}$	in. $\times$ in. $\times$ in.	$\mathbf{m m} \times \mathbf{m m} \times \mathbf{m m}$
HSS22×22×7/8$\times^{3} / 4$	HSS558.8×558.8×22.2	HSS9 $\times 9 \times 5 / 8$	HSS228.6×228.6×15.9
	$\times 19.0$	$\times^{1 / 2}$	$\times 12.7$
HSS20×20x ${ }^{7 / 8}$	HSS508×508×22.2	$\times 3 / 8$	$\times 9.5$
	HSS508 $\times 508 \times 22.2$ $\times 19.0$	$\times^{5 / 16}$	$\times 7.9$
$x^{5 / 8}$	$\times 15.9$	$\times 1 / 4$ $\times 1 / 4$ $\times 3 / 16$	$\times 6.4$ $\times 4.8$
$x^{1 / 2}$	$\times 12.7$	+ ${ }^{3 / 16}$ $\times 1 / 8$	$\times 4.8$ $\times 3.2$
HSS18x $\times 18 \times 7 / 8$	HSS457.2×457.2×22.2	HSS8 $\times 8 \times 5 / 8$	HSS203.2×203.2×15.9
	$\times 19.0$ $\times 15.9$ $\times 12.7$	$\times{ }^{1 / 2}$	$\times 12.7$
$\begin{aligned} & x^{5 / 8} \\ & x^{1 / 2} \end{aligned}$	$\times 15.9$ $\times 12.7$	$\times 3 / 8$	$\times 9.5$
		$\times 5 / 16$	$\times 7.9$
HSS16 $\times 16 \times 7 / 8$	HSS406.4×406.4×22.2	$\times 1 / 4$	$\times 6.4$
$\times 3 / 4$	$\times 19.0$	$\times 3 / 16$	$\times 4.8$
$\times 5 / 8$	$\times 15.9$	$\times 1 / 8$	$\times 3.2$
$x^{1} / 2$	$\times 12.7$	HSS7×7× ${ }^{5} / 8$	
$x^{5 / 16}$	$\times 9.5$ $\times 7.9$	HSS $\times 7 \times{ }^{1 / 8} 8$ $\times 1 / 2$	Hesini. $\times 12.7$
	$\times 7.9$	+3/8	$\times 12.7$ $\times 9.5$
HSS14×14× ${ }^{7} / 8$	HSS355.6×355.6×22.2	$\times 5 / 16$	$\times 7.9$
$x^{3 / 4}$	$\times 19.0$	$\times 1 / 4$	$\times 6.4$
$\times 5 / 8$	$\times 15.9$	$\times 3 / 16$	$\times 4.8$
$\times 1 / 2$	$\times 12.7$	$\times 1 / 8$	$\times 3.2$
$\times^{3 / 8}$ $\times 5 / 16$	$\times 9.5$	HSS6x6x5 ${ }^{\text {a }}$	HSS152.4×152.4×15.9
$x^{5} / 16$	$\times 7.9$	HSS $6 \times 6 \times 5 / 8$ $\times 1 / 2$	HSS $52.4 \times 152.4 \times 15.9$
HSS12x12x ${ }^{3 / 4}$	HSS304.8×304.8×19.0	$\times 3 / 8$	$\times 9.5$
$\times^{5 / 8}$	$\times 15.9$	$\times 5 / 16$	$\times 7.9$
$\times{ }^{1 / 2}$	$\times 12.7$	$\times 1 / 4$	$\times 6.4$
$\times 3 / 8$	$\times 9.5$	$\times 3 / 16$	$\times 4.8$
$\times^{5 / 16}$	$\times 7.9$	$\times 1 / 8$	$\times 3.2$
$x^{1 / 4}$	$\times 6.4$	HSS5 ${ }^{1 / 2 \times 51 / 2 \times 3 / 8}$	
$x^{3} / 16$	$\times 4.8$	HSS5 ${ }^{1 / 2 \times 55^{1 / 2} x^{3} / 8}{ }^{5} / 16$	HSSI39.7×139.7 $\times 9.5$ $\times 7.9$
HSS10×10x ${ }^{3 / 4}$	HSS254×254×19.0	$\times^{1 / 4}$	$\times 6.4$
$\times^{5} / 8$$\times^{1 / 2}$	$\times 15.9$	$x^{3} / 16$	$\times 4.8$
	$\times 12.7$	$\times 1 / 8$	$\times 3.2$
+3/8	$\times 9.5$	HSS5 $\times 5 \times 1 / 2$	HSS127×127×12.7
$\times 5 / 16$$\times 1 / 4$	$\times 7.9$	$x^{3 / 8}$	$\times 9.5$
		$\times{ }^{5} / 16$	$\times 7.9$
$\times 3 / 16$		$\times 1 / 4$	$\times 6.4$
		$\times 3 / 16$	$\times 4.8$
		$\times 1 / 8$	$\times 3.2$





Table 17-9 (continued)   SI Equivalents of Standard U.S. Shape Profiles   Round HSS and Pipes			
Shape	SI Equivalent	Shape	SI Equivalent
PIPE 26 Std. PIPE 24 Std. PIPE 20 Std. PIPE 18 Std. PIPE 16 Std. PIPE 14 Std. PIPE 12 Std. PIPE 10 Std. PIPE 8 Std. PIPE 6 Std. PIPE 5 Std. PIPE 4 Std. PIPE $31 / 2$ Std. PIPE 3 Std. PIPE $2^{11 / 2}$ Std. PIPE 2 Std. PIPE $1 \frac{1}{2}$ Std. PIPE 11/4 Std. PIPE 1 Std. PIPE $3 / 4$ Std. PIPE $1 / 2$ Std.   PIPE 26 x-Strong PIPE 24 x-Strong PIPE $20 x$-Strong PIPE 18 x-Strong PIPE 16 x-Strong PIPE 14 x-Strong PIPE $12 x$-Strong PIPE $10 x$-Strong PIPE 8 x-Strong PIPE $6 x$-Strong PIPE 5 x-Strong PIPE $4 x$-Strong PIPE $3^{1} 1 / 2 x$-Strong PIPE $3 x$-Strong PIPE $2^{1} / 2 x$-Strong PIPE $2 x$-Strong PIPE $11 / 2 x$-Strong PIPE $1 \frac{1}{1} / 4 x$-Strong PIPE 1 x-Strong PIPE $3 / 4 x$-Strong PIPE $1 / 2 x$-Strong	PIPE 650 Std. PIPE 600 Std. PIPE 500 Std. PIPE 450 Std. PIPE 400 Std. PIPE 350 Std. PIPE 300 Std. PIPE 250 Std. PIPE 200 Std. PIPE 150 Std. PIPE 125 Std. PIPE 100 Std. PIPE 90 Std. PIPE 80 Std. PIPE 65 Std. PIPE 50 Std. PIPE 40 Std. PIPE 32 Std. PIPE 25 Std. PIPE 20 Std. PIPE 15 Std.   PIPE $650 x$-Strong PIPE $600 x$-Strong PIPE 500 x -Strong PIPE $450 x$-Strong PIPE 400 x -Strong PIPE 350 x-Strong PIPE 300 x -Strong PIPE 250 x-Strong PIPE 200 x-Strong PIPE 150 x-Strong PIPE 125 x-Strong PIPE 100 x -Strong PIPE 90 x-Strong PIPE $80 x$-Strong PIPE 65 x-Strong PIPE 50 x-Strong PIPE 40 x-Strong PIPE 32 x-Strong PIPE 25 x-Strong PIPE $20 x$-Strong PIPE 15 x-Strong	PIPE 12 xx-Strong PIPE 10 xx-Strong PIPE 8 xx-Strong PIPE 6 xx-Strong PIPE 5 xx-Strong PIPE 4 xx-Strong PIPE 3 xx-Strong PIPE $2^{1} / 2 x x$-Strong PIPE 2 xx-Strong	PIPE 300 xx-Strong PIPE 250 xx-Strong PIPE 200 xx-Strong PIPE 150 xx-Strong PIPE 125 xx-Strong PIPE 100 xx-Strong PIPE 80 xx-Strong PIPE 65 xx-Strong PIPE 50 xx-Strong


	W		Table She valent		in.	eS	
Gage No.	U.S. Standard Gage for Uncoated Hot- \& ColdRolled Sheets ${ }^{\text {b }}$	Galvanized   Sheet Gage for HotDipped Zinc Coated Sheets ${ }^{\text {b }}$	USA   Steel Wire Gage	Gage No.	U.S. Standard Gage for Uncoated Hot- \& ColdRolled Sheets ${ }^{\text {b }}$	Galvanized Sheet Gage for HotDipped Zinc Coated Sheets ${ }^{\text {b }}$	USA   Steel Wire Gage
7/0	-	-	0.490	13	0.0897	0.0934	$0.092{ }^{\text {a }}$
$6 / 0$	-	-	$0.462^{\text {a }}$	14	0.0747	0.0785	0.080
5/0	-	-	$0.430^{\text {a }}$	15	0.0673	0.0710	0.072
4/0	-	-	$0.394^{\text {a }}$	16	0.0598	0.0635	$0.062^{\text {a }}$
$3 / 0$	-	-	$0.362^{\text {a }}$	17	0.0538	0.0575	0.054
$2 / 0$	-	-	0.331	18	0.0478	0.0516	$0.048^{\text {a }}$
1/0	-	-	0.306	19	0.0418	0.0456	0.041
1	-	-	0.283	20	0.0359	0.0396	$0.035^{\text {a }}$
2	-	-	$0.262^{\text {a }}$	21	0.0329	0.0366	-
3	0.2391	-	$0.244^{\text {a }}$	22	0.0299	0.0336	-
4	0.2242	-	$0.225^{\text {a }}$	23	0.0269	0.0306	-
5	0.2092	-	0.207	24	0.0239	0.0276	-
6	0.1943	-	0.192	25	0.0209	0.0247	-
7	0.1793	-	0.177	26	0.0179	0.0217	-
8	0.1644	0.1681	0.162	27	0.0164	0.0202	-
9	0.1495	0.1532	$0.148^{\text {a }}$	28	0.0149	0.0187	-
10	0.1345	0.1382	0.135	29	-	0.0172	-
11	0.1196	0.1233	$0.120^{\text {a }}$	30	-	0.0157	-
12	0.1046	0.1084	$0.106^{\text {a }}$				
${ }^{\text {a }}$ Rounded value. The steel wire gage has been taken from ASTM A510, "Standard Specification for General Requirements for Wire Rods and Coarse Round Wire, Carbon Steel, and Alloy Steel." Sizes originally quoted to four decimal equivalent places have been rounded to three decimal places in accordance with rounding procedures of ASTM E29, "Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications."   ${ }^{\mathrm{b}}$ The equivalent thicknesses are for information only. The product is commonly specified to decimal thickness (mils), not to gage number.							

## Table 17-11 <br> Coefficient of Expansion

The coefficient of linear expansion, $\varepsilon$, is the change in length, per unit of length, for a change of one degree of temperature. The coefficient of surface expansion is approximately two times the linear coefficient, and the coefficient of volume expansion, for solids, is approximately three times the linear coefficient.
A bar, free to move, will increase in length with an increase in temperature and will decrease in length with a decrease in temperature. The change in length will be $\varepsilon t l$, where $\varepsilon$ is the coefficient of linear expansion, $t$, the change in temperature, and $l$, the length. If the ends of a bar are fixed, a change in temperature, $t$, will cause a change in the unit stress of Ect, and in the force of $A E \varepsilon t$, where $A$ is the cross-sectional area of the bar and $E$ the modulus of elasticity.
The following table gives the coefficient of linear expansion for $100^{\circ}$, or 100 times the value indicated above.
Example: A piece of mild steel is 40 ft long at $60^{\circ} \mathrm{F}$. Find the length at $90^{\circ} \mathrm{F}$ assuming the ends are free to move.

$$
\text { change of length }=\varepsilon t l=\frac{0.00065 \times 30 \times 40}{100}=0.0078 \mathrm{ft}
$$

The length at $90^{\circ} \mathrm{F}$ is 40.0078 ft .
Example: A piece of mild steel is 40 ft long and the ends are fixed. If the temperature increases $30^{\circ} \mathrm{F}$, what is the resulting change in the unit stress?

$$
\text { change in unit stress }=E \varepsilon t=\frac{29,000 \times 0.00065 \times 30}{100}=5.7 \mathrm{ksi}
$$

Coefficients of Expansion for 100 Degrees $=100 \varepsilon$					
Materials	Linear Expansion		Materials	Linear Expansion	
	Celsius	Fahrenheit		Celsius	Fahrenheit
METALS AND ALLOYS			STONE AND MASONRY		
Aluminum, wrought	0.00231	0.00128	Ashlar masonry	0.00063	0.00035
Brass	0.00188	0.00104	Brick masonry	0.00061	0.00034
Bronze	0.00181	0.00101	Cement, portland	0.00126	0.00070
Copper	0.00168	0.00093	Concrete	0.00099	0.00055
Iron, cast, gray	0.00106	0.00059	Granite	0.00080	0.00044
Iron, wrought	0.00120	0.00067	Limestone	0.00076	0.00042
Iron, wire	0.00124	0.00069	Marble	0.00081	0.00045
Lead	0.00286	0.00159	Plaster	0.00166	0.00092
Magnesium, various alloys	0.0029	0.0016	Rubble masonry	0.00063	0.00035
Nickel	0.00126	0.00070	Sandstone	0.00097	0.00054
Steel, mild	0.00117	0.00065	Slate	0.00080	0.00044
Steel, stainless, 18-8	0.00178	0.00099			
Zinc, rolled	0.00311	0.00173			
TIMBER			TIMBER		
Fir	0.00037	0.00021	Fir	0.0058	0.0032
Maple parallel to fiber	0.00064	0.00036	Maple perpendicular to	0.0048	0.0027
Oak parallel to fiber	0.00049	0.00027	Oak fiber	0.0054	0.0030
Pine $\quad$	0.00054	0.00030	Pine	0.0034	0.0019

## Expansion of Water

Maximum Density = 1

${ }^{\circ} \mathbf{C}$	Volume	${ }^{\circ} \mathbf{C}$	Volume	${ }^{\circ} \mathbf{C}$	Volume	${ }^{\circ} \mathbf{C}$	Volume	${ }^{\circ} \mathbf{C}$	Volume	${ }^{\circ} \mathbf{C}$	Volume
0	1.000126	10	1.000257	30	1.004234	50	1.011877	70	1.022384	90	1.035829
4	1.000000	20	1.001732	40	1.007627	60	1.016954	80	1.029003	100	1.043116

Table 17-12
Densities of Common Materials

Substance	Density, $\mathrm{lb} / \mathrm{ft}^{3}$	Substance	Density, $\mathrm{lb} / \mathrm{ft}^{3}$
ASHLAR, MASONRY		River mud	90.0
Granite, syenite, gneiss	143-187	Soil	70.0
Limestone, marble	143-174	Stone riprap	65.0
Sandstone, bluestone	131-150		
		MINERALS	
MORTAR RUBBLE MASONRY		Asbestos	131-174
Granite, syenite, gneiss	137-174	Barytes	280
Limestone, marble	137-162	Basalt	168-199
Sandstone, bluestone	125-137	Bauxite	159
		Borax	106-112
DRY RUBBLE MASONRY		Chalk	112-162
Granite, syenite, gneiss	118-143	Clay, marl	112-162
Limestone, marble	118-131	Dolomite	181
Sandstone, bluestone	112-118	Feldspar, orthoclase	156-162
		Gneiss, serpentine	150-168
BRICK MASONRY		Granite, syenite	156-193
Pressed brick	137-143	Greenstone, trap	174-199
Common brick	112-125	Gypsum, alabaster	143-174
Soft brick	93.5-106	Hornblende	187
		Limestone, marble	156-174
CONCRETE MASONRY		Magnesite	187
Cement, stone, sand	137-150	Phosphate rock, apatite	199
Cement, slag, etc.	118-143	Porphyry	162-181
Cement, cinder, etc.	93.5-106	Pumice, natural	23.1-56.1
		Quartz, flint	156-174
VARIOUS BUILDING MATERIALS		Sandstone, bluestone	137-156
Ashes, cinders	40.0-45.0	Shale, slate	168-181
Cement, portland, loose	90.0	Soapstone, talc	162-174
Cement, portland, set	168-199		
Lime, gypsum, loose	53.0-64.0	STONE, QUARRIED, PILED	
Mortar, set	87.2-118	Basalt, granite, gneiss	96.0
Slags, bank slag	67.0-72.0	Limestone, marble, quartz	95.0
Slags, bank screenings	98.0-117	Sandstone	82.0
Slags, machine slag	96.0	Shale	92.0
Slag, slag sand	49.0-55.0	Greenstone, hornblende	107
EARTH, ETC., EXCAVATED		BITUMINOUS SUBSTANCES	
Clay, dry	63.0	Asphaltum	68.5-93.5
Clay, damp, plastic	110	Coal, anthracite	87.2-106
Clay and gravel, dry	100	Coal, bituminous	74.8-93.5
Earth, dry, loose	76.0	Coal, lignite	68.5-87.2
Earth, dry, packed	95.0	Coal, peat, turf, dry	40.5-53.0
Earth, moist, loose	78.0	Coal, charcoal, pine	17.4-27.4
Earth, moist, packed	96.0	Coal, charcoal, oak	29.3-35.5
Earth, mud, flowing	108	Coal, coke	62.3-87.2
Earth, mud, packed	115	Graphite	118-143
Riprap, limestone	80.0-85.0	Paraffin	54.2-56.7
Riprap, sandstone	90.0	Petroleum	54.2
Riprap, shale	105	Petroleum, refined	49.2-51.1
Sand, gravel, dry, loose	90.0-105	Petroleum, benzine	45.5-46.7
Sand, gravel, dry, packed	100-120	Petroleum, gasoline	41.1-43.0
Sand, gravel, wet	118-120	Pitch	66.7-71.6
		Tar, bituminous	74.8
EXCAVATIONS IN WATER			
Sand or gravel	60.0	COAL AND COKE, PILED	
Sand or gravel and clay	65.0	Coal, anthracite	47.0-58.0
Clay	80.0	Coal, bituminous, lignite	40.0-54.0


Table 17-12 (continued)			
Densities of Common Materials			
Substance	Density, $\mathrm{lb} / \mathrm{ft}^{3}$	Substance	Density, $\mathrm{lb} / \mathrm{ft}^{3}$
Coal, peat, turf	20.0-26.0	Starch	95.3
Coal, charcoal	10.0-14.0	Sulphur	120-129
Coal, coke	23.0-32.0	Wool	82.2
METALS, ALLOYS, ORES		TIMBER, U.S. SEASONED	
Aluminum, cast, hammered	159-171	Moisture content by weight:	
Brass, cast, rolled	523-542	Seasoned timber 15 to 20\%	
Bronze, 7.9 to 14\% Sn	461-554	Green timber up to 50\%	
Bronze, aluminum	480	Ash, white, red	38.6-40.5
Copper, cast, rolled	548-561	Cedar, white, red	19.9-23.7
Copper ore, pyrites	255-268	Chestnut	41.1
Gold, cast, hammered	1200-1210	Cypress	29.9
Iron, cast, pig	449	Fir, Douglas spruce	31.8
Iron, wrought	473-492	Fir, eastern	24.9
Iron, speigel-eisen	467	Elm, white	44.9
Iron, ferro-silicon	417-455	Hemlock	26.2-32.4
Iron ore, hematite	324	Hickory	46.1-52.3
Iron ore, hematite in bank	160-180	Locust	45.5
Iron ore, hematite loose	130-160	Maple, hard	42.4
Iron ore, limonite	224-249	Maple, white	33.0
Iron ore, magnetite	305-324	Oak, chestnut	53.6
Iron slag	156-187	Oak, live	59.2
Lead	710	Oak, red, black	40.5
Lead ore, galena	455-473	Oak, white	46.1
Magnesium, alloys	108-114	Pine, Oregon	31.8
Manganese	449-498	Pine, red	29.9
Manganese, ore, pyrolusite	231-287	Pine, white	25.5
Mercury	847	Pine, yellow, long-leaf	43.6
Monel Metal	548-561	Pine, yellow, short-leaf	38.0
Nickel	554-573	Poplar	29.9
Platinum, cast, hammered	1310-1340	Redwood, California	26.2
Silver, cast, hammered	648-668	Spruce, white, black	24.9-28.7
Steel, rolled	490	Walnut, black	38.0
Tin, cast, hammered	449-467	Walnut, white	25.5
Tin ore, cassiterite	399-436		
Zinc, cast, rolled	430-449	VARIOUS LIQUIDS	
Zinc, ore, blende	243-262	Alcohol, $100 \%$	49.2
VARIOUS SOLIDS		Acids, muriatic 40\% Acids, nitric $91 \%$	74.8 93.5
Cereals, oats, bulk	32.0	Acids, sulphuric 87\%	112
Cereals, barley, bulk	39.0	Lye, soda $66 \%$	106
Cereals, corn, rye, bulk	48.0	Oils, vegetable	56.7-58.6
Cereals, wheat, bulk	48.0	Oils, mineral, lubricants	56.1-57.9
Hay and straw, bales	20.0	Water, $4^{\circ} \mathrm{C}$ max. density	62.3
Cotton, flax, hemp	91.6-93.5	Water, $100^{\circ} \mathrm{C}$	59.7
Fats	56.1-60.4	Water, ice	54.8-57.3
Flour, loose	24.9-31.2	Water, sea water	63.5-64.2
Flour, pressed	43.6-49.8		
Glass, common	150-162	GASES	
Glass, plate or crown	153-169	Air, $0^{\circ} \mathrm{C} 760 \mathrm{~mm}$	0.0871
Glass, crystal	181-187	Ammonia	0.0478
Leather	53.6-63.5	Carbon dioxide	0.123
Paper	43.6-71.6	Carbon monoxide	0.078
Potatoes, piled	42.0	Gas, illuminating	0.028-0.036
Rubber, caoutchouc	57.3-59.8	Gas, natural	0.038-0.039
Rubber goods	62.3-125	Hydrogen	0.00559
Salt, granulated, piled	48.0	Nitrogen	0.0784
Saltpeter	67.0	Oxygen	0.0892




## SI UNITS FOR STRUCTURAL STEEL DESIGN

Although there are seven metric base units in the SI system, only four are currently used by AISC in structural steel design. These base units are listed in Table 17-15.

Table 17-15. Base SI Units for Steel Design		
Quantity	Unit	Symbol
length	meter	m
mass	kilogram	kg
time	second	s
temperature	celsius	${ }^{\circ} \mathrm{C}$

Similarly, of the numerous decimal prefixes included in the SI system, only three are used in steel design; see Table 17-16.

Table 17-16. SI Prefixes for Steel Design			
Prefix	Symbol	Order of   Magnitude	Expression
mega	M	$10^{6}$	$1,000,000$ (one million)
kilo	k	$10^{3}$	1,000 (one thousand)
milli	m	$10^{-3}$	0.001 (one thousandth)

In addition, three derived units are applicable to the present conversion. They are shown in Table 17-17.

Table 17-17. Derived SI Units for Steel Design			
Quantity	Name	Symbol	Expression
force			
stress			
energy	newton   pascal   joule	N	$\mathrm{N}=\mathrm{kg} \times \mathrm{m} / \mathrm{s}^{2}$
Pa	$\mathrm{Ja}=\mathrm{N} / \mathrm{m}^{2}$		
J	$\mathrm{~J} \times \mathrm{m}$		

Although specified in SI, the pascal is not universally accepted as the unit of stress. Because section properties are expressed in millimeters, it is more convenient to express stress in newtons per square millimeter ( $\left.1 \mathrm{~N} / \mathrm{mm}^{2}=1 \mathrm{MPa}\right)$. This is the practice followed in recent international structural design standards. It should be noted that the joule, as the unit of energy, is used to express energy absorption requirements for impact tests. Moments are expressed in terms of $\mathrm{N}-\mathrm{mm}$.
A summary of the conversion factors relating traditional U.S. units of measurement to the corresponding SI units is given in Table 17-18.

Multiply	by:	to obtain:
inch (in.) foot (ft) pound-mass (lb) pound-force (lbf) ksi ft-lbf psf plf	25.4 0.3048 0.4536 4.448 6.895 1.356 47.88 14.59	millimeters $(\mathrm{mm})$ meters $(\mathrm{m})$ kilogram $(\mathrm{kg})$ newton $(\mathrm{N})$ megapascals $(\mathrm{MPa}), \mathrm{N} / \mathrm{mm}^{2}$ joule $(\mathrm{JJ})$ $\mathrm{N} / \mathrm{m}^{2}$ $\mathrm{~N} / \mathrm{m}$

Note that fractions resulting from metric conversion should be rounded to whole millimeters. Common fractions of inches and their metric equivalents are in Table 17-19.

Table 17-19. SI Equivalents of Fractions of an Inch		
Fraction, in.	Exact Conversion, $\mathbf{m m}$	Rounded, $\mathbf{m m}$
$1 / 16$	1.5875	2
$1 / 8$	3.175	3
$3 / 16$	4.7625	5
$1 / 4$	6.35	6
$5 / 16$	7.9375	8
$3 / 8$	9.525	10
$7 / 16$	12.1125	11
$1 / 2$	15.875	13
$5 / 8$	19.05	16
$3 / 4$	22.225	19
$7 / 8$	25.4	22
1		25

Bolt diameters are taken directly from the ASTM F3125 rather than converting the diameters of SI bolts dimensioned in inches, since metric bolts are of different physical sizes. The metric bolt designations are in Table 17-20.

Table 17-20. SI Bolt Designation		
Designation	Diameter, mm	Diameter, in.
M12	12	0.47
M16	16	0.63
M20	20	0.79
M22	22	0.87
M24	24	0.94
M27	27	1.06
M30	30	1.18
M36	36	1.42

The yield strengths of structural steels are taken from the metric ASTM Specifications. It should be noted that the yield points are slightly different from the traditional values. See Table 17-21. The modulus of elasticity of steel, $E$, is taken as 200000 MPa . The shear modulus of elasticity of steel, $G$, is 77000 MPa .

Table 17-21. SI Steel Yield Stresses		
AstM Designation	Yield stress, N/mm	
A36M	Yield stress, ksi	
A572M Gr. 345, A588M	250	36
A514M	345	50



Table 17-23   SI Conversion Factors ${ }^{\text {a }}$				
$\frac{\text { Quantity }}{\text { Length }}$	Multiply	$\begin{array}{r} \text { by } \\ \hline 25.400 \end{array}$	to obtain	
	inch   foot   yard   mile (U.S. statute)	$\begin{array}{r} 25.400 \\ 0.305 \\ 0.914 \\ 1.609 \end{array}$	millimeter   meter   meter   kilometer	$\begin{gathered} \mathrm{mm} \\ \mathrm{~m} \\ \mathrm{~m} \\ \mathrm{~km} \end{gathered}$
Area	millimeter   meter   meter   kilometer	$\begin{gathered} 39.370 \times 10^{-3} \\ 3.281 \\ 1.094 \\ 0.621 \end{gathered}$	inch   foot   yard   mile	in.   ft   yd   mi
	square inch   square foot   square yard   square mile (U.S. statute)   acre   acre	$\begin{aligned} & 0.645 \times 10^{3} \\ & 0.093 \\ & 0.836 \\ & 2.590 \\ & 4.047 \times 10^{3} \\ & 0.405 \end{aligned}$	square millimeter square meter square meter square kilometer square meter hectare	$\begin{gathered} \mathrm{mm}^{2} \\ \mathrm{~m}^{2} \\ \mathrm{~m}^{2} \\ \mathrm{~km}^{2} \\ \mathrm{~m}^{2} \end{gathered}$
Volume	square millimeter square meter square meter square kilometer square meter hectare	$\begin{aligned} & 1.550 \times 10^{-3} \\ & 10.764 \\ & 1.196 \\ & 0.386 \\ & 0.247 \times 10^{-3} \\ & 2.471 \end{aligned}$	square inch square foot square yard square mile acre acre	$\begin{gathered} \mathrm{in}_{2}^{2} \\ \mathrm{ft}^{2} \\ \mathrm{yd}^{2} \\ \mathrm{mi}^{2} \end{gathered}$
	cubic inch cubic foot cubic yard gallon (U.S. liquid) quart (U.S. liquid)	$\begin{gathered} 16.387 \times 10^{3} \\ 28.317 \times 10^{-3} \\ 0.765 \\ 3.785 \\ 0.946 \end{gathered}$	cubic millimeter cubic meter cubic meter liter liter	$\begin{gathered} \mathrm{mm}^{3} \\ \mathrm{~m}^{3} \\ \mathrm{~m}^{3} \\ \mathrm{l} \\ \mathrm{I} \end{gathered}$
Mass	cubic millimeter cubic meter cubic meter liter liter	$\begin{gathered} 61.024 \times 10^{-6} \\ 35.315 \\ 1.308 \\ 0.264 \\ 1.057 \end{gathered}$	cubic inch cubic foot cubic yard gallon (U.S. liquid) quart (U.S. liquid)	$\begin{aligned} & \mathrm{in}^{3}{ }^{3} \\ & \mathrm{ft}^{3} \\ & \mathrm{yd}^{3} \\ & \mathrm{gal} \\ & \mathrm{qt} \end{aligned}$
	ounce (avoirdupois) pound (avoirdupois) short ton	$\begin{aligned} & 28.350 \\ & 0.454 \\ & 0.907 \times 10^{3} \end{aligned}$	gram   kilogram   kilogram	$\begin{gathered} \mathrm{g} \\ \mathrm{~kg} \\ \mathrm{~kg} \end{gathered}$
	gram kilogram kilogram	$\begin{aligned} & 35.274 \times 10^{-3} \\ & 2.205 \\ & 1.102 \times 10^{-3} \end{aligned}$	ounce (avoirdupois) pound (avoirdupois) short ton	oz av $\mathrm{lb} \text { av }$
${ }^{\text {a }}$ Refer to ASTM IEEE/ASTM SI10 for more complete information on SI. Note: The conversion factors tabulated herein have been rounded.				


Table 17-23 (continued)   SI Conversion Factors ${ }^{\text {a }}$				
Quantity	Multiply	by	to obtain	
Force	ounce-force	0.278	newton	N
	pound-force	4.448	newton	N
	newton	3.597	ounce-force	
	newton	0.225	pound-force	lbf
Bending Moment	pound-force-inch	0.113	newton-meter	$\mathrm{N}-\mathrm{m}$
	pound-force-foot	1.356	newton-meter	$\mathrm{N}-\mathrm{m}$
	newton-meter	8.851	pound-force-inch	Ibf-in.
	newton-meter	0.738	pound-force-foot	lbf-ft
Pressure, Stress	pound-force per square inch	6.895	kilopascal	kPa
	foot of water ( $39.2{ }^{\circ} \mathrm{F}$ )	2.989	kilopascal	kPa
	inch of mercury ( $32^{\circ} \mathrm{F}$ )	3.386	kilopascal	kPa
	kilopascal	0.145	pound-force per square inch	$\mathrm{lbf} / \mathrm{in} .^{2}$
	kilopascal	0.335	foot of water ( $39.2{ }^{\circ} \mathrm{F}$ )	
	kilopascal	0.295	inch of mercury ( $32^{\circ} \mathrm{F}$ )	
Energy, Work, Heat	foot-pound-force	1.356	joule	J
	${ }^{\text {b }}$ British thermal unit	$1.055 \times 10^{3}$	joule	J
	${ }^{\text {b }}$ calorie	4.187	joule	J
	kilowatt hour	$3.600 \times 10^{6}$	joule	J
	joule	0.738	foot-pound-force	ft -lbf
	joule	$0.948 \times 10^{-3}$	${ }^{\text {b }}$ British thermal unit	Btu
	joule	0.239	${ }^{\text {b }}$ calorie	
	joule	$0.278 \times 10^{-6}$	kilowatt hour	kW-h
Power	foot-pound-force/second	1.356	watt	W
	${ }^{\text {b }}$ British thermal unit per hour	0.293	watt	W
	horsepower ( $550 \mathrm{ft} \mathrm{lbf/s}$ )	0.746	kilowatt	kW
	watt	0.738	foot-pound-force/ second	$\mathrm{ft-lbf} / \mathrm{s}$
	watt	3.412	${ }^{\text {b }}$ British thermal units/ hour	Btu/h
	kilowatt	1.341	horsepower ( $550 \mathrm{ft}-\mathrm{lbf} / \mathrm{s}$ )	hp
Angle	degree radian	$\begin{aligned} & 17.453 \times 10^{-3} \\ & 57.296 \end{aligned}$	radian degree	rad
Temperature	degree Fahrenheit	$\mathrm{t}^{\circ} \mathrm{C}=\left(\mathrm{t}^{\circ} \mathrm{F}-32\right) / 1.8$	degree Celsius	${ }^{\circ} \mathrm{F}$
	degree Celsius	$\mathrm{t}^{\circ} \mathrm{F}=1.8 \times \mathrm{t}^{\circ} \mathrm{C}+32$	degree Fahrenheit	${ }^{\circ} \mathrm{C}$
${ }^{\text {a }}$ Refer to ASTM IEEE/ASTM SI10 for more complete information on SI.   ${ }^{\mathrm{b}}$ International Table.   Note: The conversion factors tabulated herein have been rounded.				



Table 17-25   Properties of the Parabola and Ellipse			
Parabola		Ellipse	
	Parameter, $P=\frac{B^{2}}{H}$   $x=\frac{y^{2}}{P}$   Area, $A=\frac{2}{3} H B$ $y=\sqrt{x P}$	  Approximate	$\begin{aligned} & x^{2}+\frac{y^{2}}{B^{2}}=1 \quad x=\frac{H}{B} \sqrt{B^{2}-y^{2}} \\ & y=\frac{B}{H} \sqrt{H^{2}-x^{2}} \\ & \text { Ordinate }=y, \\ & \text { C.G.O } \\ & 0.424 B \\ & \hline \end{aligned}$   _Minor semi-axis $=B$ $\begin{aligned} & \frac{1}{\frac{1}{4} \text { perimeter }=\frac{\pi}{4} \sqrt{2\left(H^{2}+B^{2}\right)}} \text { Area }=0.7854 D d \end{aligned}$
Area Between Parabolic Curve and Secant			

## Table 17-26 Properties of the Circle

$$
\begin{aligned}
& \text { Circumference }=6.28318 \quad r=3.14159 d \\
& \text { Diameter }=0.31831 \text { circumference } \\
& \text { Area }=3.14159 r^{2} \\
& \text { Arc } a=\frac{\pi r A^{\circ}}{180^{\circ}}=0.017453 r A^{\circ} \\
& \text { Angle } A^{\circ}=\frac{180^{\circ} a}{\pi r}=57.29578 \frac{a}{r} \\
& \text { Angle } A^{\circ}=2 \sin ^{-1}(c / 2 r) \\
& \text { Angle } A^{\circ}=4 \tan ^{-1}(2 b / c) \\
& \text { Radius } r=\frac{4 b^{2}+c^{2}}{8 b} \\
& \text { Chord } c=2 \sqrt{2 b r-b^{2}}=2 r \sin \frac{A}{2} \\
& \text { Rise } b=r-\frac{1}{2} \sqrt{4 r^{2}-c^{2}}=\frac{c}{2} \tan \frac{A}{4} \\
& \quad=2 r \sin ^{2} \frac{A}{4}=r+y-\sqrt{r^{2}-x^{2}} \\
& y=b-r+\sqrt{r^{2}-x^{2}} \\
& x=\sqrt{r^{2}-(r+y-b)^{2}}
\end{aligned}
$$

Diameter of circle of equal periphery as square $=1.27324$ side of square
Side of square of equal periphery as circle $=0.78540$ diameter of circle
Diameter of circle circumscribed about square $=1.41421$ side of square
Side of square inscribed in circle
$=0.70711$ diameter of circle

Circular Sector	$r=$ radius of circle   $y=$ angle ncp in degrees $\begin{aligned} \text { Area of Sector } n c p o & =1 / 2 \text { (length of arc nop } \times r \text { ) } \\ & =\text { Area of circle } \times \frac{y}{360} \\ & =0.0087266 \times r^{2} \times y \end{aligned}$
Circular Segment	$r=$ radius of circle   $x=$ chord   $b=$ rise   Area of segment nop $=$ Area of sector ncpo - Area of triangle ncp $=\frac{(\text { Length of arc } n o p \times r)-x(r-b)}{2}$   $r=$ radius of circle   $y=$ angle ncp in degrees $\begin{aligned} \text { Area of sector ncpo } & =1 / 2 \text { (length of arc } n o p \times r \text { ) } \\ & =\text { Area of circle } \times \frac{y}{360} \\ & =0.0087266 \times r^{2} \times y \end{aligned}$


Table 17-27   Properties of Geometric Sections	
Square Axis of moments through center	$\begin{aligned} & A=d^{2} \\ & C=\frac{d}{2} \\ & I=\frac{d^{4}}{12} \\ & S=\frac{d^{3}}{6} \\ & r=\frac{d}{\sqrt{12}}=.288675 d \\ & Z=\frac{d^{3}}{4} \end{aligned}$
Square   Axis of moments on base	$\begin{aligned} & A=d^{2} \\ & C=d \\ & I=\frac{d^{4}}{3} \\ & S=\frac{d^{3}}{3} \\ & r=\frac{d}{\sqrt{3}}=.577350 d \end{aligned}$
Square   Axis of moments on diagonal	$\begin{aligned} & A=d^{2} \\ & C=\frac{d}{\sqrt{2}}=.707107 d \\ & I=\frac{d^{4}}{12} \\ & S=\frac{d^{3}}{6 \sqrt{2}}=.117851 d^{3} \\ & r=\frac{d}{\sqrt{12}}=.288675 d \\ & Z=\frac{2 c^{3}}{3}=\frac{d^{3}}{3 \sqrt{2}}=.235702 d^{3} \end{aligned}$
Rectangle Axis of moments through center	$\begin{aligned} & A=b d \\ & C=\frac{d}{2} \\ & I=\frac{b d^{3}}{12} \\ & S=\frac{b d^{2}}{6} \\ & r=\frac{d}{\sqrt{12}}=288675 d \\ & Z=\frac{b d^{2}}{4} \end{aligned}$


| Properties Of Geometric Sections |
| :--- | :--- | :--- |


Table 17-27 (continued)   Properties of Geometric Sections	
Equal Rectangles Axis of moments through center of gravity	$\begin{aligned} & A=b\left(d-d_{1}\right) \\ & C=\frac{d}{2} \\ & I=\frac{b\left(d^{3}-d_{1}^{3}\right)}{12} \\ & S=\frac{b\left(d^{3}-d_{1}^{3}\right)}{6 d} \\ & r=\sqrt{\frac{d^{3}-d_{1}^{3}}{12\left(d-d_{1}\right)}} \\ & Z=\frac{b}{4}\left(d^{2}-d_{1}^{2}\right) \end{aligned}$
Unequal Rectangles Axis of moments through center of gravity	$\begin{aligned} & A=b t+b_{1} t_{1} \\ & c=\frac{1 / 2 b t^{2}+b_{1} t_{1}\left(d-1 / 2 t_{1}\right)}{A} \\ & I=\frac{b t^{3}}{12}+b t y^{2}+\frac{b_{1} t_{1}^{3}}{12}+b_{1} t_{1} y_{1}^{2} \\ & S=\frac{I}{c} \quad S_{1}=\frac{I}{c_{1}} \\ & r=\sqrt{\frac{I}{A}} \\ & z=b t y+b_{1} t_{1} y_{1} \end{aligned}$
Triangle   Axis of moments through center of gravity	$\begin{aligned} & A=\frac{b d}{2} \\ & C=\frac{2 d}{3} \\ & I=\frac{b d^{3}}{36} \\ & S=\frac{b d^{2}}{24} \\ & r=\frac{d}{\sqrt{18}}=.235702 d \end{aligned}$
Triangle   Axis of moments on base	$\begin{aligned} & A=\frac{b d}{2} \\ & C=d \\ & I=\frac{b d^{3}}{12} \\ & S=\frac{b d^{2}}{12} \\ & r=\frac{d}{\sqrt{6}}=.408248 d \end{aligned}$


Table 17-27 (continued)   Properties of Geometric Sections	
Trapezoid Axis of moments through center of gravity	$\begin{aligned} & A=\frac{d\left(b+b_{1}\right)}{2} \\ & C=\frac{d\left(2 b+b_{1}\right)}{3\left(b+b_{1}\right)} \\ & I=\frac{d^{3}\left(b^{2}+4 b b_{1}+b_{1}^{2}\right)}{36\left(b+b_{1}\right)} \\ & S=\frac{d^{2}\left(b^{2}+4 b b_{1}+b_{1}^{2}\right)}{12\left(2 b+b_{1}\right)} \\ & r=\frac{d}{6\left(b+b_{1}\right)} \sqrt{2\left(b^{2}+4 b b_{1}+b_{1}^{2}\right)} \end{aligned}$
Circle Axis of moments through center	$\begin{aligned} & A=\frac{\pi d^{2}}{4}=\pi R^{2}=.785398 d^{2}=3.141593 R^{2} \\ & C=\frac{d}{2}=R \\ & I=\frac{\pi d^{4}}{64}=\frac{\pi R^{4}}{4}=.049087 d^{4}=.785398 R^{4} \\ & S=\frac{\pi d^{3}}{32}=\frac{\pi R^{3}}{4}=.098175 d^{3}=.785398 R^{3} \\ & r=\frac{d}{4}=\frac{R}{2} \\ & Z=\frac{d^{3}}{6} \end{aligned}$
Hollow Circle Axis of moments through center	$\begin{aligned} & A=\frac{\pi\left(d^{2}-d_{1}^{2}\right)}{4}=.785398\left(d^{2}-d_{1}^{2}\right) \\ & C=\frac{d}{2} \\ & I=\frac{\pi\left(d^{4}-d_{1}^{4}\right)}{64}=.049087\left(d^{4}-d_{1}^{4}\right) \\ & S=\frac{\pi\left(d^{4}-d_{1}^{4}\right)}{32 d}=.098175 \frac{d^{4}-d_{1}^{4}}{d} \\ & r=\frac{\sqrt{d^{2}+d_{1}^{2}}}{4} \\ & z=\frac{d^{3}}{6}-\frac{d_{1}^{3}}{6} \end{aligned}$
Half Circle   Axis of moments through center of gravity	$\begin{aligned} & A=\frac{\pi R^{2}}{2}=1.570796 R^{2} \\ & C=R\left(1-\frac{4}{3 \pi}\right)=.575587 R \\ & I=R^{4}\left(\frac{\pi}{8}-\frac{8}{9 \pi}\right)=.109757 R^{4} \\ & S=\frac{R^{3}}{24} \frac{\left(9 \pi^{2}-64\right)}{(3 \pi-4)}=.190687 R^{3} \\ & r=R \frac{\sqrt{9 \pi^{2}-64}}{6 \pi}=.264336 R \end{aligned}$


Table 17-27 (continued)   Properties of Geometric Sections	
	$\begin{aligned} & A=\frac{4}{3} a b \\ & m=\frac{2}{5} a \\ & I_{1}=\frac{16}{175} a^{3} b \\ & I_{2}=\frac{4}{15} a b^{3} \\ & I_{3}=\frac{32}{105} a^{3} b \end{aligned}$
Half Parabola	$\begin{aligned} & A=\frac{2}{3} a b \\ & m=\frac{2}{5} a \\ & n=\frac{3}{8} b \\ & I_{1}=\frac{8}{175} a^{3} b \\ & I_{2}=\frac{19}{480} a b^{3} \\ & I_{3}=\frac{16}{105} a^{3} b \\ & I_{4}=\frac{2}{15} a b^{3} \end{aligned}$
Complement of Half Parabola	$\begin{aligned} & A=\frac{1}{3} a b \\ & m=\frac{7}{10} a \\ & n=\frac{3}{4} b \\ & I_{1}=\frac{37}{2,100} a^{3} b \\ & I_{2}=\frac{1}{80} a b^{3} \end{aligned}$
	$\begin{aligned} & a=\frac{t}{2 \sqrt{2}} \\ & b=\frac{t}{\sqrt{2}} \\ & A=\frac{1}{6} t^{2} \\ & m=n=\frac{4}{5} t \\ & I_{1}=I_{2}=\frac{11}{2,100} t^{4} \end{aligned}$

## Table 17-27 (continued) Properties of Geometric Sections

	$\begin{aligned} & A=\frac{1}{2} \pi a b \\ & m=\frac{4 a}{3 \pi} \\ & I_{1}=a^{3} b\left(\frac{\pi}{8}-\frac{8}{9 \pi}\right) \\ & I_{2}=\frac{1}{8} \pi a b^{3} \\ & I_{3}=\frac{1}{8} \pi a^{3} b \end{aligned}$
Quarter Ellipse*	$\begin{aligned} & A=\frac{1}{4} \pi a b \\ & m=\frac{4 a}{3 \pi} \\ & n=\frac{4 b}{3 \pi} \\ & I_{1}=a^{3} b\left(\frac{\pi}{16}-\frac{4}{9 \pi}\right) \\ & I_{2}=a b^{3}\left(\frac{\pi}{16}-\frac{4}{9 \pi}\right) \\ & I_{3}=\frac{1}{16} \pi a^{3} b \\ & I_{4}=\frac{1}{16} \pi a b^{3} \end{aligned}$
Elliptic Complement*	$\begin{aligned} & A=a b\left(1-\frac{\pi}{4}\right) \\ & m=\frac{a}{6\left(1-\frac{\pi}{4}\right)} \\ & n=\frac{b}{6\left(1-\frac{\pi}{4}\right)} \\ & I_{1}=a^{3} b\left(\frac{1}{3}-\frac{\pi}{16}-\frac{1}{36\left(1-\frac{\pi}{4}\right)}\right) \\ & I_{2}=a b^{3}\left(\frac{1}{3}-\frac{\pi}{16}-\frac{1}{36\left(1-\frac{\pi}{4}\right)}\right) \end{aligned}$

*To obtain properties of half circle, quarter circle, and circular complement, substitute $a=b=R$.

Table 17-27 (continued)	
Regular Polygon Axis of moments through center	$\begin{aligned} n & =\text { Number of sides } \\ \theta & =\frac{180^{\circ}}{n} \\ a & =2 \sqrt{R^{2}-R_{1}^{2}} \\ R & =\frac{a}{2 \sin \theta} \\ R_{1} & =\frac{a}{2 \tan \theta} \\ A & =\frac{1}{4} n a^{2} \cot \theta=\frac{1}{2} n R^{2} \sin 2 \theta=n R_{1}^{2} \tan \theta \\ I_{1}=I_{2} & =\frac{A\left(6 R^{2}-a^{2}\right)}{24}=\frac{A\left(12 R_{1}^{2}+a^{2}\right)}{48} \\ r_{1}=r_{2} & =\sqrt{\frac{6 R^{2}-a^{2}}{24}}=\sqrt{\frac{12 R_{1}^{2}+a^{2}}{48}} \end{aligned}$
Angle   Axis of moments through center of gravity	$\tan 2 \theta=\frac{2 K}{I_{Y}-I_{X}}$ $\begin{aligned} A & =t(b+c), \quad x=\frac{b^{2}+c t}{2(b+c)}, y=\frac{d^{2}+a t}{2(b+c)} \\ K & =\text { Product of Inertia about } X-X \text { and } Y-Y \text { axes } \\ & = \pm \frac{a b c d t}{4(b+c)} \\ I_{X} & =\frac{1}{3}\left[t(d-y)^{3}+b y^{3}-a(y-t)^{3}\right] \\ I_{Y} & =\frac{1}{3}\left[t(b-x)^{3}+d x^{3}-c(x-t)^{3}\right] \\ I_{Z} & =I_{X} \sin ^{2} \theta+I_{Y} \cos ^{2} \theta+K \sin 2 \theta \\ I_{W} & =I_{X} \cos ^{2} \theta+I_{Y} \sin ^{2} \theta-K \sin 2 \theta \end{aligned}$   $K$ is negative when heel of angle, with respect to center of gravity, is in 1st or 3rd quadrant, positive when in 2 nd or 4 th quadrant.   Note that this is an idealized angle configuration and it differs from that provided by producers with dimensions given in Table 1-7.
Beams and Channels Transverse force oblique through center of gravity	$\begin{aligned} & I_{3}=I_{X} \sin ^{2} \theta+I_{Y} \cos ^{2} \theta \\ & I_{4}=I_{X} \cos ^{2} \theta+I_{Y} \sin ^{2} \theta \\ & f_{b}=M\left(\frac{y}{I_{X}} \sin \theta+\frac{x}{I_{Y}} \cos \theta\right) \end{aligned}$   where $M$ is bending moment due to force $F$.



## GENERAL NOMENCLATURE

The following definitions apply, as these variables are used in the AISC Steel Construction Manual. Additional nomenclature used in both the Manual and the AISC Specification can be found in the AISC Specification for Structural Steel Buildings, in Part 16 of this Manual.

A Cross-sectional area, in. ${ }^{2}$
$A \quad$ Gross area of the truss chord, in. ${ }^{2}$
A Minimum side dimension for square or rectangular beveled washer, in.
$A_{b} \quad$ Nominal unthreaded body area of bolt, in. ${ }^{2}$
$A_{b} \quad$ Required transverse force from adjacent bay, kips
$A_{c} \quad$ Area of concrete, in. ${ }^{2}$
$A_{e} \quad$ Effective net area, in. ${ }^{2}$
$A_{f} \quad$ Flange area, in. ${ }^{2}$
$A_{g} \quad$ Gross cross-sectional area of the shear plate, in. ${ }^{2}$
$A_{g} \quad$ Total cross-sectional area of member, in. ${ }^{2}$
$A_{g t} \quad$ Gross area subject to tension, in. ${ }^{2}$
$A_{g v} \quad$ Gross area subject to shear, in. ${ }^{2}$
$A_{n t} \quad$ Net area subject to tension, in. ${ }^{2}$
$A_{n v} \quad$ Net area subject to shear, in. ${ }^{2}$
$A_{p b} \quad$ Projected area in bearing, in. ${ }^{2}$
$A_{s} \quad$ Cross-sectional area of the steel section, in. ${ }^{2}$
$A_{s r} \quad$ Area of continuous reinforcing bars, in. ${ }^{2}$
$A_{s r s} \quad$ Area of all continuous reinforcing bars at the centerline, in. ${ }^{2}$
$A_{w} \quad$ Area of web, $(d-2 k) t_{w}$, in.
$A_{w} \quad$ Area of web, the overall depth times the web thickness, $d t_{w}$, in. 2
$A_{w e i} \quad$ Effective weld area, in. ${ }^{2}$
$B \quad$ Bearing plate width, in.
$B \quad$ HSS width, in.
$B \quad$ Base plate width, in.
$B_{b} \quad$ Overall width of rectangular HSS branch member or plate, measured $90^{\circ}$ to the plane of the connection, in.
$B_{c} \quad$ Available tension per bolt based on the limit state of tension only or the combined limit states of tension and shear rupture, kips
$B_{e} \quad$ Effective width of rectangular HSS branch member or plate in.
C Coefficient for eccentrically loaded bolt and weld groups
$C \quad$ HSS torsional constant, in. ${ }^{3}$
$C \quad$ Width across points of square or hex bolt head or nut, or maximum diameter of countersunk bolt head, in.
$C_{b} \quad$ Lateral-torsional buckling modification factor for nonuniform moment diagrams when both ends of the segment are braced
$C_{w} \quad$ Warping constant, in. ${ }^{6}$
$C_{1} \quad$ Loading constant used in deflection calculations
$C_{1} \quad$ Clearance for tightening, in.
$C_{1} \quad$ Electrode strength coefficient where, for E70 electrodes, $C_{1}=1.00$
$C_{2} \quad$ Clearance for entering, in.
$C_{3} \quad$ Clearance for fillet based on one standard hardened washer, in.
$C^{\prime} \quad$ Coefficient for eccentrically loaded bolt groups subjected to moment only
$D \quad$ Required number of sixteenths of an inch in the weld size on each side of the connecting element
$D \quad$ Weld size in sixteenths of an inch
$E \quad$ Minimum effective throat thickness for partial-joint-penetration groove weld, in.
$E \quad$ Modulus of elasticity of steel $=29,000 \mathrm{ksi}$
$E_{T} \quad$ Tangent modulus, ksi
ENA Elastic neutral axis
$F \quad$ Clearance for tightening staggered bolts, in.
$F \quad$ Width across flats of bolt head, in.
$F_{c} \quad$ Available stress in main member, ksi
$F_{c r} \quad$ Critical stress, ksi
$F_{c r} \quad$ Flexural local buckling stress, ksi
$F_{e}^{\prime} \quad$ Euler stress for a prismatic member divided by safety factor, ksi
$F_{E X X} \quad$ Filler metal classification strength, ksi
$F_{n w i} \quad$ Nominal stress in the $i$ th weld element, ksi
$F_{n t} \quad$ Nominal tensile strength from AISC Specification Table J3.2, ksi
$F_{n v} \quad$ Nominal shear strength from AISC Specification Table J3.2, ksi
$F_{p} \quad$ Nominal bearing stress on fastener, ksi
$F_{u} \quad$ Specified minimum tensile strength, ksi
$F_{y} \quad$ Specified minimum yield strength, ksi
$F_{y b} \quad F_{y}$ of a beam, ksi
$F_{y c} \quad F_{y}$ of a cap plate, ksi
$F_{y f} \quad$ Specified minimum yield stress of the flange, ksi
$F_{y w} \quad$ Specified minimum yield stress of the web, ksi
$G \quad$ Ratio of the total column stiffness framing into a joint to that of the stiffening members framing into the same joint
H Flexural constant
$H \quad$ Horizontal component of the required axial force, kips
$H_{b} \quad$ Required shear force on the gusset-to-beam connection, kips
$H_{c} \quad$ Required axial force on the gusset-to-column connection, kips
$H_{1} \quad$ Height of bolt head, in.
$H_{2}$ Maximum bolt shank extension based on one standard hardened washer, in.
$I \quad$ Moment of inertia, in. ${ }^{4}$
$I \quad$ Moment of inertia of the combined cross section, in. ${ }^{4}$
$I_{c} \quad$ Moment of inertia of column section about axis perpendicular to plane of buckling, in. ${ }^{4}$
$I_{g} \quad$ Moment of inertia of girder about axis perpendicular to plane of buckling, in. ${ }^{4}$
$I_{p} \quad$ Polar moment of inertia of bolt and weld groups, $\left(I_{p}=I_{x}+I_{y}\right)$, in. ${ }^{4}$ per in. ${ }^{2}$
$I_{x} \quad$ Combined moment of inertia of the bolt group and compression block about the neutral axis, in. ${ }^{4}$
$I_{x}, I_{y} \quad$ Moment of inertia about the principal axes, in. ${ }^{4}$
IC Instantaneous center of rotation for bolt and weld groups
$J \quad$ Torsional constant, in. ${ }^{4}$
$K \quad$ Effective length factor
$K_{\text {dep }} \quad$ Fillet depth, $\left(k-t_{f}\right)$, in.
$L \quad$ Distance over which the load is delivered, measured along the longer dimension of the plate element, in.
$L \quad$ Length of connection in the direction of loading, in.
$L \quad$ Length over which the load is delivered, measured parallel to the supported edges, in.
$L \quad$ Span length, in.
$L \quad$ Total length of beam between reaction points, ft
$L_{b} \quad$ Length between points that are either braced against lateral displacement of compression flange or braced against twist of the cross section, in.
$L_{c} \quad$ Effective length of member, in.
$L_{c x} \quad$ Effective length of member for buckling about $x$-axis, in.
$L_{c y} \quad$ Effective length of member for buckling about $y$-axis, in.
$L_{c z} \quad$ Effective length of member for buckling about longitudinal axis, in.
$L_{p}^{\prime} \quad$ Limiting laterally unbraced length for the maximum design flexural strength for noncompact shapes, uniform moment case ( $C_{b}=1.0$ ), in. or ft , as indicated
$L_{p} \quad$ Limiting laterally unbraced length for the limit state of yielding, in.
$L_{r} \quad$ Limiting laterally unbraced length for the limit state of inelastic lateral-torsional buckling, in.
$M \quad$ Applied moment, kip-in.
$M \quad$ Maximum service-load moment, kip-ft
$M \quad$ Beam bending moment, kip-in. or kip-ft, as indicated
$M_{a} \quad$ Required beam end moment using ASD load combinations, kip-in.
$M_{a} \quad$ Required flexural strength using ASD load combinations, kip-in. or kip-ft, as indicated
$M_{a} \quad$ Required moment in the beam at the splice using ASD load combinations, kip-in.
$M_{b} \quad$ Required beam moment, kip-in. or kip-ft, as indicated
$M_{c} \quad$ Available flexural strength, kip-in.
$M_{c} \quad$ Required column moment, kip-in. or kip-ft, as indicated
$M_{c y} \quad$ Available flexural strength about the $y$-axis based on the LRFD or ASD load combinations, kip-in.
$M_{l t} \quad$ First-order moment using LRFD or ASD load combinations, due to lateral translation of the structure only, kip-in.
$M_{\max } \quad$ Maximum moment, kip-in.
$M_{n t} \quad$ First-order moment using LRFD or ASD load combinations, with the structure restrained against lateral translation, kip-in.
$M_{p} \quad$ Plastic bending moment, kip-in.
$M_{p}^{\prime} \quad$ Maximum available flexural strength for noncompact shapes, when $L_{b} \leq L_{p}^{\prime}$, kip-in. or kip-ft, as indicated
$M_{p x} \quad$ Plastic bending moment about the $x$-axis, kip-ft
$M_{r} \quad$ Limiting buckling moment, $M_{c r}$, when $\lambda=\lambda_{r}$ and $C_{b}=1.0$, kip-in. or kip-ft, as indicated
$M_{r} \quad$ Required second-order flexural strength using LRFD or ASD load combinations, kip-in.
$M_{r} \quad$ Required flexural strength, kip-in.
$M_{r o} \quad$ Required moment of the HSS using ASD or LRFD load combinations, kip-in.
$M_{r x}, M_{r y}$ Required flexural strength, kip-in.
$M_{u} \quad$ Required beam end moment using LRFD load combinations, kip-in.
$M_{u} \quad$ Required flexural strength using LRFD load combinations, kip-in. or kip-ft, as indicated
$M_{u} \quad$ Required moment in the beam at the splice using LRFD load combinations, kip-in.
$M_{y} \quad$ Flexural yield moment, kip-in.
$N \quad$ Applied normal force, kips
$N \quad$ Length of base plate, in.
$N_{b} \quad$ Number of bolts in a joint
$P \quad$ Axial force due to service loads, kips
$P \quad$ Bolt stagger, in.
$P \quad$ Concentrated load, kips
$P \quad$ Required force, kips
$P_{a} \quad$ Required axial strength (tension or compression) using ASD load combinations, kips
$P_{a f} \quad$ Beam flange force, tensile or compressive, using ASD load combinations, kips
$P_{c} \quad$ Available axial strength, kips
$P_{e} \quad$ Elastic Euler buckling load, kips
$P_{e x} P_{e y} \quad$ Elastic Euler buckling load about the $x$ - and $y$-axis, kips
$P_{f b} \quad$ Resistance to flange local bending per AISC Specification Equation J10-1 (used to check need for column web stiffeners), kips
$P_{l t} \quad$ First-order axial force using LRFD or ASD load combinations, due to lateral translation of the structure only, kips
$P_{n t} \quad$ First-order axial force using LRFD or ASD load combinations, with the structure restrained against lateral translation, kips
$P_{r} \quad$ Required axial strength, kips
$P_{r} \quad$ Required second-order axial strength using LRFD or ASD load combinations, kips
$P_{r o} \quad$ Required strength of the HSS using LRFD or ASD load combinations, kips
$P_{u} \quad$ Required axial strength (tension or compression) using LRFD load combinations, kips
$P_{u f} \quad$ Beam flange force, tensile or compressive, using LRFD load combinations, kips
$P_{w b} \quad$ Resistance to web compression buckling per AISC Specification Equation J10-8 (used to check need for column web stiffening), kips
$P_{w i} \quad$ A factor consisting of terms from the second portion of AISC Specification Equation J10-2 (used in a column web stiffener check for web local yielding), kip/in.
$P_{w o} \quad$ A factor consisting of the first portion of AISC Specification Equation J10-2 (used in a column web stiffener check for web local yielding), kips
PNA Plastic neutral axis
$Q \quad$ First moment of the channel area about the neutral axis of the combined cross section, in. ${ }^{3}$
$Q_{n} \quad$ Nominal shear strength of one steel headed stud anchor, kips
$R \quad$ Nominal reaction, kips
$R \quad$ Nominal shear strength of one bolt at a deformation $\Delta$, kips
$R_{a} \quad$ Beam end reaction based on ASD load combinations, kips
$R_{a} \quad$ Required strength determined by analysis for the ASD load combinations, kips
$R_{b} \quad$ Required end reaction of the beam, kips
$R_{C} \quad$ Required column axial load above the connection, kips
$R_{M} \quad$ Coefficient to account for influence of $P-\delta$ on $P-\Delta$
$R_{\max } \quad$ Upper limit for corner radius of HSS, in.
$R_{\min } \quad$ Lower limit for corner radius of HSS, in.
$R_{n} \quad$ Nominal strength determined according to the AISC Specification provisions, kips
$R_{u} \quad$ Beam end reaction based on LRFD load combinations, kips
$R_{u} \quad$ Required strength determined by analysis for the LRFD load combinations, kips
$R_{\text {ult }} \quad$ Ultimate shear strength of one bolt, kips
$R_{1} \quad$ Beam bearing constant for web local yielding, see Part 9, kips
$R_{1} \quad$ Left end beam reaction, kips
$R_{2} \quad$ Beam bearing constant for web local yielding, see Part 9, kip/in.
$R_{2} \quad$ Right end or intermediate beam reaction, kips
$R_{3} \quad$ Beam bearing constant for web local crippling, see Part 9, kips
$R_{3} \quad$ Right end beam reaction, kips
$R_{4} \quad$ Beam bearing constant for web local crippling, see Part 9, kip/in.
$R_{5} \quad$ Beam bearing constant for web local crippling, see Part 9, kips
$R_{6} \quad$ Beam bearing constant for web local crippling, see Part 9, kip/in.
$S \quad$ Elastic section modulus about the axis of bending, in. ${ }^{3}$
$S \quad$ Spacing, in. or ft , as indicated
$S \quad$ Groove depth for partial-joint-penetration groove welds, in.
$S_{\text {net }} \quad$ Elastic section modulus at the cope, in. ${ }^{3}$
$S_{\text {net }} \quad$ Net elastic section modulus, in. ${ }^{3}$
$S_{x} \quad$ Minimum elastic section modulus taken about the $x$-axis, in. ${ }^{3}$
$S_{1}, S_{2} \quad$ Elastic section modulus about the $x$-axis referred to the designated edge of member, in. ${ }^{3}$
$T \quad$ Distance between web toes of fillets at top and at bottom of web, in. $=d-2 k$
$T \quad$ Tension force due to service loads, kips
$T \quad$ Required strength, kips
$T \quad$ Thickness of flat circular washer or mean thickness of square or rectangular beveled washer, in.
$T \quad$ Width of element, in.
$T_{a} \quad$ Required tension force per bolt using ASD load combinations, kips
$T_{c} \quad$ Available tensile strength including the effects of prying action, kips
$T_{u} \quad$ Required tension force per bolt using LRFD load combinations, kips
$U \quad$ Shear lag coefficient
$V \quad$ Maximum vertical shear for any condition of symmetrical loading, kips
$V \quad$ Shear force, kips
$V \quad$ Vertical component of the required force, kips
$V \quad$ Vertical shear, kips
$V^{\prime} \quad$ Horizontal shear strength at the steel-concrete interface, kips
$V_{a} \quad$ Required shear strength using ASD load combinations, kips
$V_{b} \quad$ Shear force component, kips
$V_{b} \quad$ Required axial force on the gusset-to-beam connection, kips
$V_{c} \quad$ Required shear force on the gusset-to-column connection, kips
$V_{c} \quad$ Available shear strength, kips
$V_{n x} \quad$ Nominal strong-axis shear strength, kips
$V_{r} \quad$ Required shear strength, kips
$V_{u} \quad$ Required shear strength using LRFD load combinations, kips
$W \quad$ Dimension of the stiffening element parallel to the beam web, in.
$W \quad$ Width across flats of nut, in.
$W_{a} \quad$ Total factored uniformly distributed load using ASD load combinations, kips
$W_{c} \quad$ Uniform load constant for beams, kip-ft
$W_{u} \quad$ Total factored uniformly distributed load using LRFD load combinations, kips
$Y \quad$ Fillet weld length, in.
$Y_{\text {con }} \quad$ Distance from top of steel beam to top of concrete, in.
$Y 1 \quad$ Distance from top of steel beam to the plastic neutral axis, in.
Distance from top of steel beam to the concrete flange force in a composite beam, in.
$Z \quad$ Gross plastic section modulus, in. ${ }^{3}$
$Z_{\text {net }} \quad$ Plastic section modulus at the cope, in. ${ }^{3}$
$Z_{n e t} \quad$ Net plastic section modulus, in. ${ }^{3}$
$Z_{p l} \quad$ Plastic section modulus of the shear plate, in. ${ }^{3}$
$Z_{s} \quad$ Full $x$-axis plastic section modulus of steel shape, in. ${ }^{3}$
$Z_{S E} \quad$ Plastic section modulus of the steel shape about the $y$-axis, in. ${ }^{3}$
$Z_{x} \quad$ Plastic section modulus about the $x$-axis, in. ${ }^{3}$
$Z_{y} \quad$ Plastic section modulus about the $y$-axis, in. ${ }^{3}$
$a \quad$ Depth of bracket plate, in.
$a \quad$ Distance from bolt centerline to edge of fitting subjected to prying action, but not greater than $1.25 b$, in.
$a \quad$ Distance from the support to the bolt line in a single plate connection, in.
$a \quad$ Distance from the support to the first line of bolts, in.
Distance from the weld line to the bolt line closest to the support, in.
Distance measured along width of the plate element from one edge of connected element to the nearest support, in.
$a \quad$ Effective concrete flange thickness of a composite beam, in.
$a^{\prime} \quad$ Length of free edge of bracket plate, in.
$a^{\prime} \quad$ Weld length, in.
$b \quad$ For a tee-type connecting element, the distance from bolt centerline to the face of the tee stem, in.; for angle-type connecting element, the distance from bolt centerline to centerline of angle leg, in.
$b \quad$ Distance measured along width of the plate element from one edge of connected element to the farthest support, in.
$b \quad$ Effective concrete flange width in a composite beam, in.
$b \quad$ Flexible width in connecting element, in.
$b \quad$ Measured distance along beam which may be greater or less than $a$, in.
$b \quad$ Width of the flat wall of square or rectangular HSS, or the width of the longer leg for angles, or width of the back-to-back legs of long legs back-to-back double angles, or the width of outstanding legs of short legs back-to-back double angles, in.
$b_{A} \quad$ Flange-plate width, in.
$b_{\text {eff }} \quad$ Effective width, in.
$b_{f} \quad$ Width of flange, in.
$b_{f} \quad$ Connection element width, in.
$c \quad$ Cope length, in.
$c \quad$ Distance over which the load is delivered, measured along the shorter dimension of the plate element, in.
c Radial distance from center of gravity to center of bolt most remote from center of gravity, in.
c Radial distance from center of gravity to point in weld group most remote from center of gravity, in.
$c_{b} \quad$ Length of bottom cope, in.
$c_{e f f}$ Effective width of the attached element accounting for uneven stress distribution, in.
$c_{t} \quad$ Length of top cope, in.
$c_{x}, c_{y}$ Horizontal and vertical components of the diagonal distance $c$, in.
c.g. Center of gravity
$d$ Beam depth, in.
$d$ Bolt diameter, in.
$d$ Depth of compression block, in.
$d \quad$ Fastener diameter, in.
$d \quad$ Overall depth of member, or width of shorter leg for angles, or width of the outstanding legs of long legs back-to-back double angles, or the width of the back-to-back legs of short legs back-to-back double angles, in.
$d_{b} \quad$ Nominal bolt diameter, in.
$d_{c} \quad$ Cope depth, in.
$d_{c t} \quad$ Cope depth at the compression flange, in.
$d_{h} \quad$ Hole diameter, in.
$d_{m} \quad$ Moment arm between resultant tensile force and resultant compressive force, in.
$d^{\prime} \quad$ Width of the hole along the length of the fitting, in.
$d_{h}^{\prime} \quad$ Hole diameter $+{ }^{1} / 16$ in., in.
$e \quad$ Eccentricity, in.
$e \quad$ Base of natural logarithm $=2.718 \ldots$
$e \quad$ Distance from the face of the supporting member to the face of the cope, unless a lower value can be justified, in.
$e \quad$ Distance of the beam end reaction with respect to the weld lines, in.
$e \quad$ Width of the leg of the connection angle attached to the support, in.
$e_{b} \quad$ One-half the depth of the beam, in.
$e_{c} \quad$ One-half the depth of the column, in.
$e_{o} \quad$ Horizontal distance from designated member edge to member shear center, in.
$e_{x} \quad$ Horizontal component of eccentricity of $P$ with respect to centroid of weld group, in.
$e_{x} \quad$ Horizontal distance from the centroid of the bolt group to the line of action $P$, in.
$f \quad$ Computed compressive stress in the stiffened element, ksi
$f \quad$ Plate buckling adjustment factor for beams coped at top flange only
$f_{a} \quad$ Computed axial stress, ksi
$f_{a} \quad$ Shear per linear inch of weld due to the applied normal force, kip/in.
$f_{b} \quad$ Maximum bending stress, ksi
$f_{b} \quad$ Shear per linear inch of weld due to the applied moment, kip/in.
$f_{v} \quad$ Shear per linear inch of weld due to the applied shear, kip/in.
$f_{w} \quad$ Total design stress, kip/in.
$h \quad$ Clear distance between flanges less the fillet or corner radius for rolled shapes, in.
$h \quad$ Depth of the flat wall or square or rectangular HSS, in.
$h \quad$ Hook length for hooked anchor rods, in.
$h_{o} \quad$ Distance between flange centroids, in.
$h_{o} \quad$ Reduced beam depth of coped beam, in.
$k \quad$ Plate buckling coefficient for beams coped at top flange only
$k \quad$ Distance from outer face of flange to the web toe of fillet, in.
$k_{c} \quad$ Coefficient for slender unstiffened elements
$k_{\text {des }} \quad$ Distance from outer face of flange to the web toe of fillet used for design, in.
$k_{d e t} \quad$ Distance from outer face of flange to the web toe of fillet used for detailing, in.
$k_{1} \quad$ Distance from web center line to flange toe of fillet, in.
$k_{1} \quad$ Modified plate buckling coefficient
$l \quad$ Critical base plate cantilever dimension, in.
$l \quad$ Depth of plate, in.
$l$ Depth of connecting element, in.
$l \quad$ Length of weld, in.
$l \quad$ Span length, in.
$l \quad$ Total length of beam between reaction points, in.
$l \quad$ Vertical leg dimension of the seat angle, in.
$l_{a} \quad$ Length of weld over which the applied normal force is distributed, in.
$l_{b} \quad$ Length of bearing, in.
$l_{b, \text { req }} \quad$ Required bearing length, in.
$l_{e h} \quad$ Horizontal edge distance, in.
$l_{e v} \quad$ Vertical edge distance, in.
$l_{i} \quad$ Distance from the center of gravity of the bolt group to the $i$ th bolt, in.
$l_{\max } \quad$ Distance from the center of gravity of the bolt group to the center of the farthest bolt, in.
$l_{p} \quad$ Length of the single-plate shear connection, in.
$l_{w} \quad$ Length of each weld, in.
$m \quad$ Cantilever dimension for base plate, in.
$n \quad$ Cantilever dimension for bearing plate, in.
$n \quad$ Number of bolts in a vertical row
$n \quad$ Number of bolts in the connection
$n \quad$ Number of bolt rows
$n \quad$ Number of fasteners
$n^{\prime} \quad$ Number of bolts above the neutral axis (in tension)
$p \quad$ Tributary length used in determining prying action, in.
$p_{i} \quad$ Ratio of element $i$ deformation to its deformation at maximum stress
$q \quad$ Horizontal shear, kip/in.
$q_{r} \quad$ Prying force per bolt, kips
$r \quad$ Radius of gyration, in.
$r_{a} \quad$ Required shear strength per bolt using ASD load combinations, kip/bolt
$r_{a t} \quad$ Required tensile strength per bolt or per inch of weld using ASD load combinations (force per bolt or per inch of weld due to a tensile force), kips
$r_{a v} \quad$ Required shear strength per bolt or per inch of weld using ASD load combinations (force per bolt or per inch of weld due to a shear force), kips
$r_{c r} \quad$ Distance from instantaneous center of rotation to weld element with minimum $\Delta_{u i} / r_{i}$ ratio, in.
$r_{m a} \quad$ Required shear force on the bolt most remote from the center of gravity, due to moment using ASD load combinations, kips
$r_{m u}$ Required shear force on the bolt most remote from the center of gravity, due to moment using LRFD load combinations, kips
$r_{n} \quad$ Nominal strength of one bolt, kips
$\bar{r}_{o} \quad$ Polar radius of gyration about the shear center, in.
$r_{p} \quad$ Required shear strength per bolt due to a concentric force, kips/bolt
$r_{p a} \quad$ Shear per linear inch of weld due to the concentric force using ASD load combinations, kip/in.
$r_{p u}$ Shear per linear inch of weld due to the concentric force using LRFD load combinations, kip/in.
$r_{t s} \quad$ Effective radius of gyration, in.
$r_{u} \quad$ Required shear strength per bolt using LRFD load combinations, kip/bolt
$r_{u t} \quad$ Required tensile strength per bolt or per inch of weld using LRFD load combinations (force per bolt or per inch of weld due to a tensile force), kips
$r_{u v} \quad$ Required shear strength per bolt or per inch of weld using LRFD load combinations (force per bolt or per inch of weld due to a shear force), kips
$r_{x}, r_{y}$ Radius of gyration about $x$ and $y$ axes respectively, in.
$r_{z} \quad$ Radius of gyration about the minor principal axis, in.
$s \quad$ Separation between double angles or channels back-to-back, in.
$s \quad$ Vertical bolt row spacing, in.
$t \quad$ Initial temperature in ${ }^{\circ} \mathrm{F}$
$t \quad$ Thickness of angle leg, in.
$t \quad$ Thickness of bracket plate, in.
$t_{b} \quad$ Thickness of beam flange or connection plate delivering concentrated force, in.
$t_{c} \quad$ Flange or angle thickness required to develop design tensile strength of bolts with no prying action, in.
$t_{d e s} \quad$ Design thickness of an HSS wall, in.
$t_{d}$ req Required doubler-plate thickness, in.
$t_{f} \quad$ Lesser connection element thickness, in.
$t_{f} \quad$ Thickness of flange, in.
$t_{\text {min }} \quad$ Minimum base metal thickness required to match the shear rupture strength of the weld, in.
$t_{\text {nom }} \quad$ Nominal thickness of an HSS wall, in.
$t_{p} \quad$ Plate thickness, in.
$t_{s w} \quad$ Thickness of the tee stem, or supported beam web, in.
$t_{w} \quad$ Web thickness, in.
$w \quad$ Uniformly distributed load per unit of length, kip/in.
$w \quad$ Weld leg size, in.
$w_{\text {min }} \quad$ Minimum weld size, in.
$x \quad$ Horizontal distance from the support to the location of applied bearing force, in.
$\bar{x} \quad$ Horizontal distance from the designated edge of member to center of gravity, in.
$x_{p} \quad$ Horizontal distance from the designated edge of member to its plastic neutral axis, in.
$y \quad$ Distance from line X-X to the c.g. of the bolt group above the neutral axis, in.
$\bar{y} \quad$ Vertical distance from the designated edge of member to center of gravity, in.
$y_{p} \quad$ Vertical distance from the designated edge of member to its plastic neutral axis, in.
$\Delta \quad$ Deflection, in.
$\Delta \quad$ Deformation, in.
$\Delta \quad$ Elongation, in.
$\Delta \quad$ Total deformation, including shear, bearing and bending deformation in the bolt and bearing deformation of the connection elements, in.
$\Delta_{i} \quad$ Deformation of the $i$ th weld element at an intermediate stress level, linearly proportioned to the critical deformation based on distance from the instantaneous center of rotation, $r_{i}$, in.
$\Delta_{\max } \quad$ Maximum deflection, in.
$\Delta_{\max } \quad$ Maximum deformation, in.
$\Delta_{\max } \quad$ Maximum deformation on the bolt farthest from the center of gravity $=0.34 \mathrm{in}$.
$\Delta_{u c r} \quad$ Deformation of the weld element with minimum ratio $\Delta_{u i} / r_{i}$ at ultimate stress (rupture), usually in the element furthest from the instantaneous center of rotation, in.
$\Delta_{u i} \quad$ Deformation of the $i$ th weld element at ultimate stress (rupture), in.
$\Delta_{x} \quad$ Deflection at any point $x$ distance from left reaction, in.
$\Delta_{\alpha} \quad$ Deflection at point of load, in.
$\Omega \quad$ Safety factor given by the AISC Specification for a particular limit state
$\Omega_{b} \quad$ Safety factor for flexure
$\Omega_{c} \quad$ Safety factor for compression
$\Omega_{t} \quad$ Safety factor for tension
$\Omega_{v} \quad$ Safety factor for shear
$\alpha \quad$ Distance from the face of the column flange or web to the centroid of the gusset-to-beam connection for uniform force method, in.
$\alpha \quad$ Ratio of the moment at the bolt line to the moment at the face of the tee stem, or at the center of the unconnected angle leg thickness
$\bar{\alpha} \quad$ Actual distance from face of column flange or web to centroid of gusset-to-beam connection for uniform force method, in.
$\alpha^{\prime} \quad$ Value of a used for prying action that either maximizes the bolt available tensile strength for a given thickness or minimizes the thickness required for a given bolt available tensile strength
$\beta \quad$ Distance from the face of the beam flange to the centroid of the gusset-to-column connection for uniform force method, in.
$\bar{\beta} \quad$ Actual distance from face of beam flange to centroid of gusset-to-column connection for uniform force method, in.
$\delta \quad$ Deflection, in.
$\delta \quad$ Ratio of the net length at the bolt line to the gross length at the face of the stem or leg of angle
$\varepsilon \quad$ Coefficient of linear expansion, with units as indicated
$\tau_{b} \quad$ Stiffness reduction factor, for use with the alignment charts (AISC Specification Figures C-C2.3 and C-C2.4) in the determination of effective length factors, $K$, for columns
$\theta \quad$ Angle between the line of action of the required force and the weld longitudinal axis, degrees
$\theta_{1}$ Angle between the longitudinal axis of $i$ th weld element and the direction of the resultant force acting on the element, degrees
$\lambda \quad$ Width-to-thickness ratio for the element as defined in AISC Specification Section B4.1
$\lambda_{p} \quad$ Limiting width-to-thickness parameter for compact element
$\lambda_{p f} \quad$ Limiting width-to-thickness parameter for compact flange
$\lambda_{r} \quad$ Limiting width-to-thickness parameter for noncompact element
$\lambda_{r f} \quad$ Limiting width-to-thickness parameter for noncompact flange
$\phi \quad$ Resistance factor given by the AISC Specification for a particular limit state
$\phi_{b} \quad$ Resistance factor for flexure
$\phi_{c} \quad$ Resistance factor for compression
$\phi_{t} \quad$ Resistance factor for tension
$\phi_{v} \quad$ Resistance factor for shear
$\phi R_{n} \quad$ Design strength from AISC Specification; must equal or exceed required strength using LRFD load combinations, $R_{u}$
$\phi r_{n} \quad$ Design strength per bolt or per inch of weld from AISC Specification; must equal or exceed required strength per bolt or per inch of weld using LRFD load combinations, $r_{u}$
$R_{n} / \Omega \quad$ Allowable strength from AISC Specification; must equal or exceed required strength using ASD load combinations, $R_{a}$
$r_{n} / \Omega \quad$ Allowable strength per bolt or per inch of weld from AISC Specification; must equal or exceed required strength per bolt or per inch of weld using ASD load combinations, $r_{a}$
$\sigma_{o} \quad$ Nominal stress
$\tau_{b} \quad$ Stiffness reduction parameter

## INDEX

The following list of terms provides reference to items found in the AISC Steel Construction Manual, as well as selected supporting references. The locations of supporting references have been abbreviated as follows:
"DG\#" is used for items found in AISC's Design Guide series.
"SDM" is used for items found in the AISC Seismic Design Manual. "DSC" is used for items found in AISC"s Detailing for Steel Construction.
"AISC Design Examples" indicates that information can be found in the Design Examples posted on the AISC web site at www.aisc.org.

Allowable stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
Alternative washer-type indicating device . . . . . . . . . . . . . . 2-52, 16.1-5, 16.1-9, 16.2-14
American Standard beams; see S-shapes
American Standard channels (C); see Channels
Anchor rods . . . . . . . . . . . . . . . . . . . . . . . . 16.1-9, 16.1-141, see also DSC, DG1 and DG7
nut installation ........................................................................... . . 14-12
headed or threaded and nutted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-11
holes for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-6, 14-21, 16.1-170
hooked . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-11
installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8, 16.3-38
material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22, 2-52, 16.1-9
edge distance and embedment length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-10
washer requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-10, 14-21
Angles; see also DSC
dimensions and properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-44, 17-8
in compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9, 4-180, 16.1-36, 16.1-38
in eccentric compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9, 4-204

in tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4, 5-14
tolerances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-131, 1-132
workable gages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-52
Approvals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3-19, see also DSC
Arbitration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2-63
Architecturally Exposed Structural Steel (AESS) . . . . . . . . . . . . . . . 16.3-65, see also DSC
Areas ........................................................................................ 16.1-20
ASD ................................................................................... . . . . 2-10, 16.1-12
Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20, 2-24
Available strength . . . . . . . . . . . . . . . . . . . . . . . 2-11, 16.1-xli, 16.1-27, 16.1-246, 16.1-248

Backing bars; see Welding, backing bars
Bars
$1-9,2-21,2-47,2-50$, see also DSC
Base plates 14-4, 16.1-141, 16.1-169, 16.1-171, see also DG1
holes for anchor rods and grouting ..... 14-21
finishing requirements ..... 14-6, 14-20
grouting and leveling ..... 14-6
with tension, shear or moment ..... 14-8
Beam bearing plates; see Bearing, plates Beam bearing constants ..... 9-22, 9-44
Beam-columns; see Members subject to combined loadings
Beam copes; see Beams and girders, copes, blocks and cuts
Beams and girders; see also DSC
available flexural strength ..... 3-4, 16.1-44
available flexural strength vs. unbraced length ..... 3-11, 3-92
W-shapes, design tables ..... 3-9, 3-19, 3-35, 3-92
channels, design tables ..... 3-11, 3-79
available shear strength ..... 3-7, 16.1-70
available shear stress tables ..... 3-12, 3-144
braced, compact members ..... 3-4, 16.1-47
built-up sections, shear stress ..... 3-12, 3-144
camber ..... 16.1-xlii, 16.1-167
cantilevered beams ..... 3-16, 3-206
classification of cross sections ..... 3-6
compact 16.1-xlii, 16.1-16, 16.1-18, 16.1-47, 16.1-49, 16.1-50
composite design 16.1-86, see also DSC
available strength ..... 3-7, 3-152, 16.1-94
steel W-shape composite beams 3-7, 3-13, 3-152, 16.1-95, see also DG5
lower bound moment of inertia ..... 3-15, 3-186
shored and unshored construction ..... 3-8, 16.1-381
continuous beams
design properties of cantilevered beams ..... 3-16, 3-211
diagrams and formulas ..... 3-16, 3-210
moment and shear coefficients ..... 3-207
copes, blocks and cuts 9-6, 9-19, 9-20, 9-21, 9-28, 16.1-xliii,16.1-168, 16.1-200, 16.1-202
deflection; see Deflection diagrams and formulas ..... 3-16, 3-204
dimensions; see specific shape (e.g., W-shapes, channels, etc.)
fatigue 16.1-xliv, 16.1-15, 16.1-180, 16.1-196
heavy shapes and plates ..... 3-8, 16.1-7
hollow structural sections; see Hollow structural sections, beams
lateral-torsional buckling . . . ..... 3-6, 16.1-xlvi, 16.1-47, 16.1-49, 16.1-50, 16.1-54,16.1-58, 16.1-60, 16.1-63, 16.1-65, 16.1-66
local buckling 3-6, 16.1-xlvii, 16.1-16, 16.1-49, 16.1-53, 16.1-55, 16.1-56,16.1-57, 16.1-59, 16.1-61, 16.1-62, 16.1-65, 16.1-67
moment diagrams ..... 3-16, 3-213
moment gradient ..... 3-7
moment of inertia, selection tables ..... 3-10, 3-28, 3-33
noncompact 16.1-xlviii, 16.1-16, 16.1-18, 16.1-49, 16.1-50
noncompact or slender flanges ..... 16.1-16, 16.1-49, 16.1-57
noncompact or slender webs ..... 16.1-16, 16.1-57
OSHA requirements ..... 2-6
plate girders, shear stress; see Beams and girders, built-up sectionsponding; see Pondingproperties; see specific shape (e.g., W-shapes, channels, etc.)seismic applications16.1-2, see also SDM
selection tables
moment of inertia ..... 3-10, 3-33
plastic section modulus ..... 3-9, 3-10, 3-19, 3-30
serviceability ..... 3-8, 16.1-165
shear diagrams ..... 3-16, 3-204
stability bracing ..... 2-15, 16.1-240
torsion 16.1-36, 16.1-77, see also DG9
transverse stiffeners; see Transverse stiffeners uniform load tables ..... 3-11, 3-35
web openings 16.1-76, see also DG2
webs, local crippling ..... 16.1-liii, 16.1-143
width-to-thickness ratios ..... 3-6, 6-9, 16.1-16
with bolt holes in the tension flange ..... 16.1-67
with concentrated forces 9-19, 9-22, 9-44, 16.1-142
Bearing; see also DSC and Bolts, available strength, bearing
bolt holes7-6, 7-27, 9-10, 16.1-135, 16.2-36
in connecting elements 9-10, 16.1-140, see also DSC
constants ..... 9-22, 9-44
plates ..... 14-3, 16.1-140, 16.1-169
Bearing in bolted shear connections; see Bolts, available strength, bearing
Bearing piles; see HP-shapes
Bearing plates; see Bearing, plates
Block shear rupture ..... 9-5, 9-22, 9-37, 16.1-xli, 16.1-138
Bolt holes, reduction of area for; see Bolts, bolt holes
Bolt length, proper selection of; see Bolts, bolt length selection7-5, 16.1-116, 16.1-126, 16.2-29, 16.2-52
Bolted connections; see Connections
Bolted joints, limit states in ..... 16.1-126, 16.2-31
Bolts 7-1, 16.1-126, see also DG17 and DSC
available strength, bearing . . 7-6, 7-17, 7-27, 7-29, 9-10, 16.1-127, 16.1-131, 16.2-36
available strength, combined tension and shear ..... 16.1-133
available strength, shear ..... $7-5,7-17,7-22,16.1-125,16.1-131$
available resistance to slip ..... $7-5,7-6,7-17,7-24,16.1-134$
available strength, tearout ..... 7-6, 7-17, 7-27, 7-29, 16.1-135, 16.2-36
available strength, tension ..... 7-6, 7-17, 7-23, 16.1-131, 16.1-136
alternative-design fasteners ..... 16.2-16
anchor bolts; see anchor rods
A307 bolts7-17, 16.1-3, 16.1-8, 16.1-126
A449 bolts ..... 7-17, 16.1-3, 16.1-8, 16.1-128
bearing-type connections ..... 16.1-133
blind bolts ..... 7-13
bolt holes 9-21, 9-27, 16.1-20, 16.1-128, 16.2-21
bolt installation ..... 16.1-126, 16.2-51
bolt length selection ..... 7-3
bolted parts ..... 7-4
bolts in combination with welds or rivets ..... $7-15,8-17,16.1-115$
clearances ..... 7-16, 7-80
coefficients C for eccentrically loaded bolt groups ..... 7-6, 7-18, 7-31
combined shear and tension ..... 7-6
countersunk ..... $7-15,7-17,7-18,7-85$
dimensions ..... $7-19,7-20,7-79,7-83,7-85$
eccentrically loaded bolt groups ..... 7-6, 7-18, 7-31
fatigue ..... 7-16, 16.1-199
fully threaded ASTM A325 bolts ..... 7-17
galvanizing high-strength bolts ..... 7-15
geometry ..... 7-79, 16.2-6
heavy-hex structural ..... 16.2-6
bearing strength; see Bolts, available strength, bearing HSS bolted connections ..... 7-13
inspection ..... 16.1-181
material ..... 2-52, 16.1-8
reuse ..... 7-16
size and use of holes ..... 16.1-128
slip-critical connections ..... 16.1-134
slip-resistance 7-6, 16.1-134, 16.2-38
spacing and edge distance ..... 16.1-131
tearout; see Bolts, available strength, tearout threading dimensions ..... 7-19, 7-83
through-bolting to HSS ..... 7-13
twist-off tension-control bolt assemblies 16.1-5, 16.1-8, 16.2-15
washer requirements $7-4,16.1-5,16.1-8,16.1-128,16.2-44$
weights ..... 7-20, 7-84, 7-87
Box sections 16.1-xli, 16.1-19, 16.1-57, 16.1-74
Braced frames 16.1-xlii, 16.1-246, 16.1-251
Bracing 16.1-237, see also DSC
at supports ..... 2-15
connections ..... 13-2
diagonal bracing ..... 13-2, 13-10
formulas ..... 17-34
seismic; see SDM
Bracket plates ..... 15-3
net plastic section modulus 15-4, 15-10, 15-14
Brittle fracture 2-38, 16.1-256, 16.1-416, 16.1-524
Buckling, local . . . . . 4-3, 16.1-xlvii, 16.1-16, see also Beams and girders, local bucklingBuilding materials, weights17-27
Built-up members 16.1-xlii, see also DSC
beams ..... 16.1-69
columns ..... 16.1-39
heavy welded ..... 16.1-8
tension members ..... 16.1-29
Butt-plated column splices ..... 14-18
C-shapes; see Channels
CAD files ..... 16.3-20
Calibrated wrench pretensionin 16.1-439, 16.1-441, 16.2-41, 16.2-44, 16.2-47, 16.2-55
Camber 1-127, 1-129, 1-130, 1-131, 1-132, 1-137,2-12, 2-25, 2-32, 2-34, 16.1-163, see also DSC
Canted connections ..... 1-142, 10-149
Castellated beams ..... 2-23, DG31
Castings and forgings ..... 2-23, 16.1-8
Channels 1-4, 16.1-47, see also DSC
American Standard (C), dimensions and properties ..... 1-38, 17-7
available shear strength ..... 16.1-70
Miscellaneous (MC), dimensions and properties ..... 1-40, 17-7
tolerances ..... 1-129
used as beams, maximum total uniform loads; see Beams and girders, channels, design tables
used as beams, available flexural strength 16.1-47, 16.1-56, see also Beams and girders, channels, design tables
W-shapes with cap channels ..... 1-8, 1-122
Channel shear connectors, strength of ..... 16.1-106, 16.1-111
Circle, properties of ..... 17-36
Clamps, crane rail ..... 15-8
Clearancesentering and tightening; see Bolts, clearances
welding; see Welding, clearance requirements
Clevises 15-10, 15-16, 15-17, 15-21, see also DSC
Coatings ..... 16.1-170
on faying surfaces ..... 16.1-135
Code of Standard Practice ..... 16.3-i
Coefficients
for concentric loads on weld groups ..... 8-28, 8-33
for eccentric loads on fastener groups ..... 7-6, 7-31
for eccentric loads on weld groups ..... 8-31, 8-68
of expansion ..... 17-24
Column base plates; see also DG1 bearing on concrete ..... 16.1-140
for axial compression ..... 14-4
for axial tension, shear or moment ..... 14-8
Column slenderness; see Column, slenderness Column splices ..... $14-12,14-22,16.1-7,16.1-114,16.1-123,16.1-139$
Columns
available compressive strength ..... 4-1, 4-3, 4-4, 4-12, 16.1-33 angles ..... 4-8, 4-180, 4-204
double angles ..... 4-7, 4-139, 16.1-36, 16.1-39
HSS 4-7, 4-45, 16.1-35, 16.1-42
structural tees ..... 4-8, 4-106, 16.1-35, 16.1-36, 16.1-42
W-, M-, S- and HP-shapes ..... 4-4, 4-12, 16.1-35, 16.1-36, 16.1-42
base plates; see Column base plates
combined flexure and axial loading (interaction) ..... 6-2, 6-7, 16.1-77
composite design 4-4, 16.1-90, see also DG 6 andAISC Design Examples Part IV
critical stress ..... 4-229
effective length and physical length ..... 4-3, 16.1-35
flexural buckling ..... 16.1-35
flexural-torsional buckling ..... 16.1-36
hollow structural sections; see Hollow structural sections, columns OSHA requirements ..... 2-6
selection tables ..... 4-12
slender-element sections ..... 16.1-li, 16.1-16, 16.1-42
slenderness ..... 4-3, 16.1-28, 16.1-29, 16.1-35
splices, typical; see Column splices stability and alignment devices ..... 14-14
stability bracing ..... 2-16, 16.1-238
stiffening at moment connections ..... 16.1-142, see also DG13
stiffness reduction factor for inelastic buckling ..... 4-10, 4-228
width-to-thickness ratios ..... 4-3, 6-7
Column-web supports ..... 10-127
Combination sections, properties ..... 1-8, 1-122, 1-124
Compact section ..... 16.1-xlii, 16.1-16
Composite design
beams; see Beams and girders, composite design
columns; see Columns, composite designcombined flexure and compression6-4, 16.1-99
design of beams with web openings ..... see DG2
steel anchors; see Steel headed stud anchors
Composite connections, partially restrained; see DG8
Compressible-washer-type direct tension indicators ..... 16.1-5, 16.1-9
Compression members; see Columns
Concentrated forces ..... 9-19
flange local bending ..... 16.1-142
on HSS ..... 16.1-149
unframed ends of beams and girders ..... 16.1-146
web compression buckling ..... 16.1-145
web local crippling ..... 16.1-143
web local yielding ..... 16.1-143
web panel-zone shear ..... 16.1-145
web sidesway buckling ..... 16.1-144
Concentrated load equivalents ..... 3-16, 3-205
Concentrically loaded fillet weld groups ..... 8-9, 8-33
Connected plies ..... 16.2-17
Connections; see also DSCavailable strength of bolts, threaded parts and rivets7-1, 16.1-126
anchor rods and embedments ..... 14-9, 16.1-141
beam copes and weld access holes; see Beams and girders, copes, blocks and cuts;see also Welding, weld access holes
bearing strength; see Bearing
block shear rupture strength; see Block shear rupture
bolts and threaded parts; see Bolts
bolts in combination with welds; see Bolts, in combination with welds or rivets bracket plates; see Bracket plates
column bases and bearing on concrete; see Column bases compression members with bearing joints ..... 16.1-114
concentrated forces; see Concentrated forces connecting elements ..... 9-3, 16.1-137
double angle ..... $10-5,10-7,10-31,10-152$
ductility ..... 9-17
end-plate, moment ..... 12-8
end-plate, shear ..... 10-34
fillers ..... 9-19, 16.1-139
HSS 10-151, 12-23, 16.1-149, see also DG24
minimum strength of connections ..... 16.1-415
moment ..... 12-2
offset and skewed 10-132, 10-142, 10-144, 10-156, 10-158
placement of welds and bolts ..... 16.1-115
prying action ..... 9-10
raised beams ..... 10-139
seated ..... 10-69
shear end-plate ..... 10-34
shear tab; see Connections, single-plate shear single-angle ..... 10-116, 16.1-467
single-plate shear ..... 10-87
slip-critical connections ..... 16.1-134
splices; see Splices
10-123
tee
welded joints; see Welding
Contracts ..... 16.3-61
Continuity plates; see Transverse stiffeners
Copes; see Beams and girders, copes, blocks and cuts
Corner clips8-21
Corrosion 2-25, 2-36, 2-49, 2-50, 2-52, 2-53, 16.1-282, see also DG18
Cotter pins; see Pins, cotter
Cover plates16.1-68
Crane rails ..... 1-9, 1-126, 2-24
Crane-rail connections ..... 15-6
Deflection 3-8, 3-15, 3-16, 3-208, 16.1-165, see also DG3, DG11
Delivery of materials ..... 16.3-38, 16.3-69
Design documents ..... 16.1-1, 16.1-10, 16.3-9
Design examples; see AISC Design Examples
Design strength2-9, 2-11, 16.1-xliii, 16.1-12
Detailing; see DSC
Digital building product models ..... 16.3-21
Dimensions and weights clevises ..... $15-10,15-16,15-21$
cotter pins ..... 15-21
recessed-pin nuts ..... 15-20
sleeve nuts ..... 15-19
turnbuckles ..... 15-18
high-strength fasteners; see Bolts, dimensionsnon-high-strength bolts and nuts; see Bolts, dimensions
Direct tension indicators; see also DSC
compressible-washer-type, general ..... 16.1-5, 16.1-9, 16.2-3, 16.2-14
inspection of ..... 16.1-181, 16.2-63
installation using ..... 16.1-126, 16.2-57
twist-off-type tension-control bolt assemblies ..... 16.2-15
use of washers with ..... 16.2-44
Discrepancies ..... 16.3-16
Double-angle connections; see Connections, double angle Double angles 1-7, 1-108, 16.1-35, 16.1-36, 16.1-39, 16.1-42, 16.1-60
Double channels ..... $1-8,1-118,1-119$
Double connections ..... 10-5, 10-132
Drift ..... 16.1-165
Eccentric connections, single-angle ..... 16.1-38
Eccentrically loaded bolt groups; see Bolts, eccentrically loaded bolt groups
Eccentrically loaded weld groups; see Welding, eccentrically loaded weld groups Edge distance ..... 16.1-131, see also DSC
bearing ..... 16.1-135
Effective net area connecting elements ..... 9-3
tension members ..... 5-2, 16.1-27
Effective length ..... 16.1-35
Effective length method ..... 16.1-245
Elastic method ..... 7-8, 8-12
Electronic Data Interchange (EDI); see Digital building product models Elevated-temperature service ..... 2-38, 16.1-222
Ellipse, properties of ..... 17-35
End-plate connections
moment connections; see Connections, end-plate, moment
shear connections; see Connections, end-plate, shear
Entering and tightening clearances; see Bolts, clearances
Erection . . . . . . . . . . . . . . . . 16.1-21, 16.1-171, 16.3-4, 16.3-39, see also DG10 and DSC
Evaluation of existing structures 16.1-116, 16.1-233, 16.3-4, see also DG15
Examples; see AISC Design Examples
Expansion and contraction 2-36, 16.1-166, 16.1-482, 17-24, see also DG3
Eyebars ..... 16.1-31
Fabrication ..... 16.1-167
Fabricator responsibility ..... 16.3-20
Fast-track project delivery ..... 16.3-18
Fatigue 2-38, 8-17, 16.1-15, 16.1-196, 16.2-42, see also DG7 and DSC
Faying surfaces ..... 16.2-17
Field connection material ..... 16.3-42
Field painting ..... 16.3-58
Filler metal ..... 2-23, 16.1-xlv, 16.1-9, 16.1-114, 16.1-123, 16.1-125
Fillers 16.1-139, see also DSC
Fillet welds; see Welding, fillet welds Finishing ..... 14-6, 14-20, 16.1-168
Finishing, column base plates ..... 14-6, 16.1-169
Finishing, column splices ..... 14-12, 14-18
Fire protection and engineering 2-36, 16.1-15, 16.1-222, see also DG19
Fit of column compression joints and base plates ..... 14-12
Fitting and fastening ..... 16.3-31
Flat-rolled carbon steel ..... 2-47
Flexible moment connections ..... 11-1
Flexural members; see Beams and girders
Floor plates
weights ..... 1-9, 1-121
flexural strength ..... 3-12, 3-150
Floor vibration; see DG11
Fully restrained moment connections
across girder supports ..... 12-21
splices ..... 12-11
to column-web supports ..... 12-14
Frames
frame analysis ..... 2-14, 2-46, 16.1-22
frame stability ..... 2-14, 2-46, 16.1-22
braced frames 16.1-xlii, 16.1-22, 16.1-289, 16.1-511, 16.1-568
high-seismic ..... 2-40
low-seismic ..... 2-40
moment frames ..... 16.1-xlvii, 16.1-22, 16.1-234, 16.1-246
second-order effects ..... 2-14, 16.1-1, 16.1-22
stability bracing ..... 2-15, 16.1-237
web-tapered; see DG25 wind ..... 2-40
Gages 1-3, see also DSC
angle ..... 1-52
sheet metal and wire ..... 17-23
Geometric sections, properties of ..... 17-37
Girders; see Beams and girders
Gouging, air-arc ..... 8-3
Grip ..... 7-3
Groove welds ..... 16.1-117
complete-joint-penetration, prequalified ..... 8-28, 8-38
partial-joint-penetration, prequalified ..... 8-28, 8-53
Gross area ..... 16.1-20
connecting elements ..... 9-3
tension members ..... 5-2
Grouting and leveling ..... 14-7, 16.3-41
Hanger connections ..... $15-2,15-9,15-12$
Handling and storage of material ..... 16.3-58
Heavy-hex
nuts ..... 16.2-13
structural bolts ..... 16.2-6
High-seismic applications ..... 16.1-2
Holes
bolt ..... 16.1-128, 16.2-21
for anchor rods and grouting (base plates) ..... 14-6
long-slotted ..... 16.1-128, 16.2-21
oversized ..... 16.1-128, 16.2-21
oversized, use of washers with ..... 16.2-44
reduction of area for; see Bolts, bolt holes short-slotted ..... 16.1-128, 16.2-21
slotted, use of washers with ..... 16.2-44
standard ..... 16.1-128, 16.2-21
Hollow structural sections (HSS) ..... 1-5, 1-10, see also DSC
beams 3-12, 3-136, 16.1-xlviii, 16.1-15, ..... 16.1-57
columns ..... 4-7, 4-45
compactness criteria ..... 1-100
concentrated forces on ..... 16.1-150
connections and fasteners; see Connections, HSS dimensions and properties ..... 1-78, 1-96, 1-101, 1-106, 17-14
members under combined forces ..... 16.1-77, 16.1-83
standard mill practices ..... 1-10
tension members ..... 5-4, 5-28
tolerances ..... 1-133, 1-135
HP-shapes ..... 1-3, 1-36, 17-6
I-shapes; see M-shapes, S-shapes or W-shapes Identification of material ..... 16.3-30
Industrial buildings; see DG7
Inspection ..... 16.1-172
independent ..... 16.3-59
of calibrated wrench pretensioning ..... 16.1-181, 16.2-60
of direct-tension-indicator pretensioning ..... 16.1-181, 16.2-60
of mill material ..... 16.3-59
of pretensioned joints ..... 16.1-181, 16.2-60
of slip-critical joints ..... 16.1-181, 16.2-63
of snug-tightened joints ..... 16.1-181, 16.2-60
of turn-of-nut pretensioning ..... 16.1-181, 16.2-60
of twist-off-type tension-control bolt pretensioning ..... 16.1-181, 16.2-60
of welding ..... 8-4, 16.1-176
Installation
of anchor rods, foundation bolts and embodiments ..... 16.3-40
of bearing devices ..... 16.3-41
pretensioned joints ..... 16.1-126, 16.2-52
slip-critical joints ..... 16.2-52
snug-tightened joints ..... 16.1-126, 16.2-52
using calibrated wrench pretensioning ..... 16.1-126, 16.2-47, 16.2-52, 16.2-55
using direct-tension-indicator pretensioning ..... 16.1-126, 16.2-57
using turn-of-nut pretensioning ..... 16.1-126, 16.2-53
using twist-off-type tension-control bolt pretensioning ..... 16.1-126, 16.2-57
Instantaneous center of rotation method ..... 7-6, 7-18, 7-31, 8-9
Joint type, proper specification of ..... 7-4, 8-7
Joints; see also Connections
faying surfaces ..... 16.2-17
inspection of ..... 16.2-60
installation in ..... 16.2-51
limit states in ..... 16.2-31
pretensioned ..... 16.2-29
slip-critical ..... 16.2-29
snug-tightened ..... 16.2-28
type ..... 16.2-26
with fasteners in combined shear and tension ..... 16.1-133, 16.2-35
L-shapes; see angles
Lamellar tearing ..... 2-40, 8-23, see also DSC
Lifting devices ..... 14-13
Loads, load factors and load combinations ..... 16.1-xlvii, 16.1-11
Loose material ..... 16.3-43
Low-temperature service ..... 2-36
Low and medium rise steel buildings; see DG5 LRFD ..... 2-9
M-shapes ..... 1-3, 1-32, 17-6
Magnetic-particle testing (MT) ..... 8-5
Manufacturer certification of fastener components ..... 16.2-5
Marking and shipping of materials ..... 16.3-37
Material ..... 2-20, 2-46, 16.1-6, 16.3-27
Maximum total uniform load tables ..... 3-11, 3-35
MC-shapes; see Channels
Members subject to combined loadings6-1, 6-7, 16.1-77
Method of erection ..... 16.3-39
Metric; see SI equivalents of standard U.S. Shape profiles Mill materials ..... 16.3-27
Mill tolerances ..... 1-127
Minimum edge distance ..... 14-10, 16.1-131
Minimum embedment length; see Anchor rods, edge distance and embedment length Minimum shelf dimensions for fillet welds ..... 8-20
Minimum spacing ..... 16.1-130
Minimum strength of connections ..... 16.1-415
MT-shapes ..... $1-5,1-74,17-13$
Miscellaneous channels; see Channels
Miscellaneous shapes; see M-shapes
Moment connections; see Connections, moment
Moment diagrams, beams; see Beams and girders, moment diagrams
Moment frames for seismic resistance; see SDM
Moment frame connections for seismic resistance; see DG12 and SDM
Moment of inertia, selection tables; see Beams and girders, moment of inertia, selection tables
Net area ..... 16.1-20
tension members ..... 5-2
Net section of tension members ..... 16.1-20, 16.1-29
Net plastic section modulus
of bracket plates ..... 15-4, 15-10, 15-14
of coped beams ..... 9-21, 9-28
Nominal strength ..... 2-11
Nondestructive testing ..... 8-4, 16.1-180, 16.3-60
Notch toughness 16.1-xlviii, 16.1-7, 16.1-114, 16.1-234
Nuts
coatings ..... 7-15
compatibility with bolts ..... 7-3, 16.2-13
dimensions and weights ..... 7-19, 7-20, 7-79, 7-84, 7-86, 7-87, 7-88
geometry ..... 7-86, 16.2-13
heavy-hex ..... 16.2-13
installation on anchor rods; see Anchor rods, nut installation material ..... 2-23, 2-52
recessed pin ..... 15-20
sleeve ..... 2-23, 15-19
specifications ..... 16.2-13
OSHA requirements ..... 2-6
Oversize holes ..... 16.1-128
Owner responsibility ..... 16.3-19
Painting ..... $2-36,2-53,16.1-171,16.3-35,16.3-58$
Panel-point connections ..... 13-13
Parabola, properties of ..... 17-35Parking structures; see DG18
Partially restrained moment connections ..... 11-1
Parts, bolted ..... 16.2-17
Patents and copyrights ..... 16.3-4
Penetrant testing (PT) ..... 8-4
Piles; see HP-shapes
Pin-connected members ..... 16.1-29
Pin nuts, recessed ..... 15-20
Pins, cotter ..... 15-21
Pipe
bending members, available strength; see Hollow structural sections, beamscolumns, available strength; see Hollow structural sections, columnsdimensions and properties; see Hollow structural sections, dimensions and properties
plastic analysis ..... 16.1-xlviii
beams ..... 16.1-191, 16.1-518
Plate ..... 1-9, 1-10
Plate girders; see Beams and girders, built-up sections Plug and slot welds ..... 16.1-121
Ponding ..... 16.1-15, 16.1-192
Pre-installation verification ..... 16.2-47
Preparation of material ..... 2-36, 2-53
Prequalified welded joints ..... 8-28, 8-34
Pretensioned joints
faying surfaces in ..... 16.2-17
general ..... 16.2-29
inspection of ..... 16.2-60
installation in ..... 16.2-52
proper specification of joint type ..... 7-5
use of washers in ..... 16.2-44
using calibrated wrench pretensioning ..... 16.2-55
using direct-tension-indicator pretensioning ..... 16.2-57
using turn-of-nut pretensioning ..... 16.2-53
using twist-off-type tension-control bolt pretensioning ..... 16.2-57
Properties; see specific shape (e.g., W-shapes, channels, etc.)
of the circle; see Circle, properties
of the parabola and ellipse; see Parabola, properties of; and see Ellipse, properties of of various geometric sections ..... 17-37
Proportions of beams and girders ..... 16.1-67
Prying action ..... 9-10
Quality assurance and control ..... 16.1-172, 16.3-59, see also DSC
Radiographic testing (RT) ..... 8-7
Rail clamp fastenings ..... 15-8
Rail clip fastenings ..... 15-8
Raised-pattern floor plates ..... $1-9,1-121,2-23$
Ratholes; see Weld access holes
Recessed pin nuts; see Pin nuts, recessed
Reduction of area for holes; see Bolts, bolt holes
Referenced specifications, codes and standards ..... 16.1-2
Rehabilitation; see Evaluation of existing structures
Renovation and retrofit of existing structures . . . 2-36, 16.1-116, 16.1-233, see also DG15
Request for information (RFI) ..... 16.3-25
Required strength ..... 2-13, 16.1-12
Resistance factors ..... 2-11, 16.1-1, 16.1-12
Responsibility for design ..... 16.3-4
Restrained and unrestrained construction ..... 16.1-231, 232
Retrofit; see Evaluation of existing structures
Reuse, bolts ..... 7-16
Revisions ..... 16.3-17, 16.3-63
S-shapes ..... 1-3, 1-34, 17-6
S-shapes with cap channels ..... 1-8, 1-124
Safety factors ..... 2-11, 16.1-1, 16.1-12
Safety protection ..... 16.3-46
Scheduling ..... 16.3-63
Seated connections
unstiffened ..... 10-69
stiffened ..... 10-78
Second-order effects ..... 2-13, 2-14, 2-46, 16.1-1, 16.1-22
Seismic design ..... 2-4, 2-40, see also SDM
Serviceability ..... 2-11, 16.1-165
Shear ..... 16.1-70
available strengths ..... 16.1-70
bolts, threaded parts and rivets ..... 16.1-131
connection angles ..... 16.1-137
Shear diagrams, beams; see Beams and girders, shear diagrams Shear lag ..... 16.1-1, 16.1-29
Shear stud connectors; see Steel headed anchors Shear splices ..... 10-124
Shear stress, plate girders ..... 3-12, 3-144
Shear tabs; see Connections, single-plate shear Sheet and strip ..... 1-9, 1-10, 2-23, 2-47
Sheet metal gages ..... 17-23
Shims and fillers; see also DSC Shop and field considerations ..... 16.1-167
Shop cleaning and painting ..... 16.3-35
Short-slotted holes ..... 16.1-128
SI equivalents of standard U.S. shape profiles ..... 17-3
Simple shear connections ..... 10-1
accessibility in column webs ..... 10-6
bolted/welded unstiffened seated connections ..... 10-70
canted connections ..... 10-142, 10-149
column-web supports ..... 10-127
connections for raised beams ..... 10-139
constructability considerations ..... 10-5
double connections ..... $10-5,10-132$
double-angle connections ..... 10-7, 10-9
HSS considerations ..... 10-151
shear end-plate connections ..... 10-34
shear splices ..... 10-124
simple shear connections at stiffened column-web locations ..... 10-127
simple shear connections subject to axial forces ..... 10-126
single-angle connections ..... 10-116
single-plate connections ..... 10-87
skewed connections ..... $10-142,10-144,10-158,10-159,10-161$
sloped connections ..... 10-147
stiffened seated connections ..... 10-78
tee connections ..... 10-123
unstiffened seated connections ..... 10-69
Skewed connections; see Simple shear connections, skewed connections Sleeve nuts ..... 15-19
Slender-element compression sections ..... 16.1-16
Slip coefficient for coatings, testing to determine ..... 16.2-66
Slip resistance; see Bolts, slip resistance
Slip-critical joints ..... 7-5, see also DSC
faying surfaces in ..... 16.2-17
general ..... 16.2-29
inspection of ..... 16.2-63
installation in ..... 16.2-52
use of washers in ..... 16.2-44
Sloped connections ..... 10-147
Slotted hole, use of washers with ..... 16.2-44
Snug-tightened joints
faying surfaces in ..... 16.2-17
general ..... 16.2-28
inspection of ..... 16.2-60
installation in ..... 16.2-51
use of washers in ..... 16.2-44
Spacer bars ..... 8-22
Specification of appropriate material ..... 2-20, 2-46
Specification for Structural Steel Buildings ..... 16.1-i
Specification for Structural Joints Using High-Strength Bolts (RCSC) ..... 16.2-i
Specification of welded joints ..... 8-7
Splices 10-124, 12-11, 16.1-131, see also DSC
ST-shapes ..... 1-5, 1-76, 17-13
Stability ..... 16.1-22
Stability bracing ..... 2-15, 16.1-237
Standard holes ..... 16.1-128
Standard mill practices ..... 1-10
Steel headed stud anchors ..... 2-8, 2-23, 3-7, 3-209, 16.1-10, 16.1-104
Steel castings; see Castings and forgings
Stiffeners; see Transverse stiffeners
Stock materials ..... 16.3-28
Straightening ..... 2-35, see also DSC
Structural design drawings and specifications ..... 16.1-10, 16.3-9
Structural integrity ..... 16.1-14
Structural steel, definition ..... 16.1-lii, 16.3-6
Structural tubing; see hollow structural sections Strut and tie connections ..... 2-30
Surface and box areas of W-shapes; see DG19 Surface preparation ..... 2-36, 2-53
Symbols, AISC Specification ..... 16.1-xxvi
Symbols, welding; see Weld symbols
Tack welds ..... 8-23
Tearout ..... 7-6, 7-27
Tee ..... 1-5
WT ..... $1-5,1-54,17-10$
MT ..... $1-5,1-74,17-13$
ST ..... $1-5,1-76,17-13$
Tee connections; see Simple shear connections, tee connections Temperature, coefficients of expansion ..... 2-36, 17-24
Temporary support of structural steel frames ..... 16.3-43
Tension, bolts and threaded parts, available strengths ..... 16.1-131
Tension calibrator ..... 16.2-47
Tension members ..... 5-1, 5-2, 16.1-28
available tensile strength ..... 5-2, 5-5, 6-11, 16.1-28
combined tension and other forces ..... 6-2, 6-3, 6-4
effective net area ..... 5-2, 16.1-29
eyebars ..... 16.1-31
gross area ..... 5-2, 16.1-20
net area ..... 5-2, 16.1-18, 16.1-20
net section ..... 16.1-28
pin-connected members ..... 16.1-29
reduction of area for holes ..... 16.1-28
slenderness ..... 5-3, 16.1-28
special requirements for heavy shapes and plates ..... 5-3, 16.1-7
Terms of payment ..... 16.3-64
Testing, slip coefficient for coatings ..... 16.2-66
Thermal cutting ..... 8-3
Thermal effects ..... 2-36
Threaded parts; see Bolts
Threaded rods ..... 16.1-9, 16.1-126
Threading dimensions for high-strength and non-high-strength bolts; see Bolts, dimensions ..... 7-83
Tolerances; see also DSC camber and sweep ..... $1-127,1-129,1-130,1-131,1-132,1-137$
erection ..... 2-31, 16.3-47
mill ..... 1-127, 2-31
fabrication ..... 2-31, 16.3-32, 16.3-46
façade ..... 2-31
Torsion properties; see individual shape listings and also DG9
Torsion 16.1-36, 16.1-81, 16.1-241, see also DG9
Transverse stiffeners ..... 16.1-lii, 16.1-73
Trigonometric formulas ..... 17-44
Trusses; see also DSC
bracing ..... 13-11
camber ..... 2-35, see also DSC
chord splices ..... 13-17, see also DSC
connections 13-11, see also DSC
HSS connections ..... 13-17
panel-point connections-welded trusses ..... 13-13
Truss framing systems, staggered ..... see DG14
Tubing; see Hollow structural sections Turnbuckles ..... 15-10, 15-18, see also DSC
Ultrasonic testing (UT) ..... 8-6
Uncoated faying surfaces ..... 16.2-17
Uniform force method ..... 13-3
Uniform load tables; see Beams and girders, uniform load tables
Verification, pre-installation ..... 16.2-47
Visual testing (VT) ..... 8-4
W-shapes ..... $1-3,1-12,17-3$
W-shapes encased in concrete 16.1-90, 16.1-97, see also DG6
W-shapes with cap channels ..... 1-8, 1-122
Washers
coatings ..... 7-15
dimensions ..... 7-19, 7-79
for anchor rods ..... 14-21
for bolts ..... 7-4
general ..... 16.2-14
in pretensioned joints ..... 16.2-44
in slip-critical joints ..... 16.2-44
in snug-tightened joints ..... 16.2-44
material ..... 2-52
use of ..... 16.2-44
weight ..... 7-20, 7-84
Web compression buckling ..... 16.1-145
Web doubler plates ..... 16.1-142, 16.1-147, see also DG 13
Web local crippling ..... 9-22, 9-23, 16.1-143
Web local yielding ..... 9-22, 9-23, 16.1-143
Web openings; see DG2
Web panel-zone shear16.1-145
Web reinforcement of coped beams ..... 9-20
Web sidesway buckling ..... 16.1-144
Weights and measures ..... 17-31
Weld access holes; see Welding, weld access holes
Weld groups, placement of ..... 8-17
Weld metal ..... 16.1-liii, 16.1-125
Weld symbols ..... 8-8, 8-34, 8-35
Weld tabs ..... 8-22
Weld types ..... 8-7, 16.1-116
Welded connections; see Connections; and see Welding Welding; see also DSC
air-arc gouging ..... 8-3
backing bars 8-21, 8-22, 16.1-417, 16.1-419, 16.1-528
weld access holes ..... 8-21, 16.1-114, 16.1-115, 16.1-168, 16.1-200
clearance requirements ..... 8-17
complete-joint-penetration groove welds 8-38, 16.1-xlii, 16.1-117
corner clips ..... 8-21
eccentrically loaded weld groups ..... 8-9, 8-31, 8-68
effective area ..... 16.1-117, 16.1-119, 16.1-121
fatigue ..... 8-17, 16.1-197
filler metals ..... 16.1-xlv, 16.1-9, 16.1-125
fillet welds 8-7, 8-15, 8-17, 8-20, 8-36, 16.1-xlv, 16.1-119
flare bevel groove welds ..... 8-24, 8-26, 8-62
groove welds ..... 8-7, 16.1-117
in combination with bolts ..... 8-17, 16.1-115
combination of welds ..... 16.1-125
inspection ..... 8-4, 16.1-176
lamellar tearing ..... 8-23
minimum shelf dimensions for fillet welds ..... 8-20
one-sided fillet welds ..... 8-17
painting welded connections ..... 8-24
partial-joint-penetration groove welds 8-53, 16.1-xlviii, 16.1-117
placement of weld groups ..... 8-17
plug and slot welds ..... 16.1-xlviii, 16.1-121
prequalified joints ..... 8-28, 8-34
prior qualification of welding procedures ..... 8-23
proper specification of joint type ..... 8-7
selection of weld type ..... 8-7
spacer bars ..... 8-22
special requirements for heavy shapes and plates ..... 8-17, 16.1-7, 16.1-114
thermal cutting ..... 8-3
HSS connections ..... 8-24, 8-64
weld tabs ..... 8-22
welding clearance ..... 8-17
Whitmore section (effective width) ..... 9-3
Wide-flange shapes; see W-shapesWidth-to-thickness limits6-4, 6-7, 16.1-16
beams and girders; see Beams and girders, width-to-thickness ratios columns; see Columns, width-to-thickness ratios
Wind applications and low-seismic applications ..... 2-40, 16.1-2
Wire and sheet metal gages ..... 17-23
WT-shapes ..... $1-5,1-54,17-10$


[^0]:    ${ }^{1}$ LLBB stands for long legs back-to-back. SLBB stands for short legs back-to-back. Alternatively, the orientations LLV and SLV, which stand for long legs vertical and short legs vertical, respectively, can be used.

[^1]:    ${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$.
    ${ }^{9}$ The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility.
    ${ }^{\mathrm{h}}$ Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.
    ${ }^{v}$ Shape does not meet the $h / t_{w}$ limit for shear in AISC Specification Section G2.1(a) with $F_{y}=50 \mathrm{ksi}$.

[^2]:    ${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$.
    ${ }^{9}$ The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility.
    ${ }^{\mathrm{h}}$ Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.
    ${ }^{v}$ Shape does not meet the $h / t_{w}$ limit for shear in AISC Specification Section G2.1(a) with $F_{y}=50 \mathrm{ksi}$.

[^3]:    ${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$.
    ${ }^{\text {f }}$ Shape exceeds compact limit for flexure with $F_{y}=50 \mathrm{ksi}$.
    ${ }^{\mathrm{h}}$ Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.

[^4]:    ${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$.
    ${ }^{9}$ The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility.
    ${ }^{\mathrm{h}}$ Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.
    ${ }^{v}$ Shape does not meet the $h / t_{w}$ limit for shear in AISC Specification Section G2.1(a) with $F_{y}=50 \mathrm{ksi}$.

[^5]:    ${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$.
    ${ }^{\text {f }}$ Shape exceeds compact limit for flexure with $F_{y}=50 \mathrm{ksi}$.
    ${ }^{9}$ The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility.
    ${ }^{\mathrm{h}}$ Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.

[^6]:    ${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$.
    ${ }^{\mathrm{f}}$ Shape exceeds compact limit for flexure with $F_{y}=50 \mathrm{ksi}$.
    ${ }^{9}$ The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility.
    ${ }^{\mathrm{h}}$ Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.
    ${ }^{v}$ Shape does not meet the $h / t_{w}$ limit for shear in AISC Specification Section G2.1(a) with $F_{y}=50$ ksi.

[^7]:    ${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$.
    ${ }^{\text {f }}$ Shape exceeds compact limit for flexure with $F_{y}=50 \mathrm{ksi}$.
    ${ }^{9}$ The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility.

[^8]:    ${ }^{9}$ The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility.

    - Indicates flange is too narrow to establish a workable gage.

[^9]:    ${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=36 \mathrm{ksi}$.
    ${ }^{9}$ The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility.

    - Indicates flange is too narrow to establish a workable gage.

[^10]:    ${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$.
    ${ }^{9}$ The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility.
    ${ }^{\mathrm{h}}$ Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.
    ${ }^{v}$ Shear strength controlled by buckling effects $\left(C_{V 2}<1.0\right)$ with $F_{y}=50 \mathrm{ksi}$.

[^11]:    ${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=50 \mathrm{ksi}$.
    ${ }^{9}$ The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility.
    ${ }^{\mathrm{h}}$ Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.
    ${ }^{v}$ Shear strength controlled by buckling effects $\left(C_{V 2}<1.0\right)$ with $F_{y}=50 \mathrm{ksi}$.

[^12]:    ${ }^{\text {c }}$ Shape is slender for compression with $F_{y}=36 \mathrm{ksi}$.
    ${ }^{9}$ The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility.

    - Indicates flange is too narrow to establish a workable gage.

[^13]:    Note: For width-to-thickness criteria, refer to Table 1-7B.

[^14]:    ${ }^{1}$ This requirement applies only at the location of the column, not at locations away from the column.

[^15]:    a $Y 1=$ distance from top of the steel beam to plastic neutral axis
    b $Y 2=$ distance from top of the steel beam to concrete flange force
    ${ }^{\text {c }}$ See Figure 3-3(c) for PNA locations.
    ${ }^{\text {d }}$ Value in parentheses is $I_{x}$ (in. ${ }^{4}$ ) of noncomposite steel shape.

[^16]:    a $Y 1=$ distance from top of the steel beam to plastic neutral axis
    b $Y 2=$ distance from top of the steel beam to concrete flange force
    ${ }^{\text {c }}$ See Figure 3-3(c) for PNA locations.
    ${ }^{\text {d }}$ Value in parentheses is $I_{x}$ (in. ${ }^{4}$ ) of noncomposite steel shape.

[^17]:    a $Y 1=$ distance from top of the steel beam to plastic neutral axis
    b $Y 2=$ distance from top of the steel beam to concrete flange force
    ${ }^{\text {c }}$ See Figure 3-3(c) for PNA locations.
    ${ }^{\text {d }}$ Value in parentheses is $I_{X}$ (in. ${ }^{4}$ ) of noncomposite steel shape.

[^18]:    a $Y 1=$ distance from top of the steel beam to plastic neutral axis
    b $Y 2=$ distance from top of the steel beam to concrete flange force
    ${ }^{\text {c }}$ See Figure 3-3(c) for PNA locations.
    ${ }^{\text {d }}$ Value in parentheses is $I_{x}$ (in. ${ }^{4}$ ) of noncomposite steel shape.

[^19]:    a $Y 1=$ distance from top of the steel beam to plastic neutral axis
    b $Y 2=$ distance from top of the steel beam to concrete flange force
    c See Figure 3-3(c) for PNA locations.
    

[^20]:    a $Y 1=$ distance from top of the steel beam to plastic neutral axis
    b $Y 2=$ distance from top of the steel beam to concrete flange force
    ${ }^{\text {c }}$ See Figure 3-3(c) for PNA locations.
    ${ }^{\text {d }}$ Value in parentheses is $I_{x}$ (in. ${ }^{4}$ ) of noncomposite steel shape.

[^21]:    a $Y 1=$ distance from top of the steel beam to plastic neutral axis
    b $Y 2=$ distance from top of the steel beam to concrete flange force
    ${ }^{\text {c }}$ See Figure 3-3(c) for PNA locations.
    ${ }^{\mathrm{d}}$ Value in parentheses is $I_{x}$ (in. ${ }^{4}$ ) of noncomposite steel shape.

[^22]:    a $Y 1=$ distance from top of the steel beam to plastic neutral axis
    b $Y 2=$ distance from top of the steel beam to concrete flange force
    ${ }^{\text {c }}$ See Figure 3-3(c) for PNA locations.
    ${ }^{\mathrm{d}}$ Value in parentheses is $I_{x}$ (in. ${ }^{4}$ ) of noncomposite steel shape.

[^23]:    a $Y 1=$ distance from top of the steel beam to plastic neutral axis
    b $Y 2=$ distance from top of the steel beam to concrete flange force
    ${ }^{\text {c }}$ See Figure 3-3(c) for PNA locations.
    ${ }^{\text {d }}$ Value in parentheses is $I_{X}$ (in. ${ }^{4}$ ) of noncomposite steel shape.

[^24]:    a $Y 1=$ distance from top of the steel beam to plastic neutral axis
    b $Y 2=$ distance from top of the steel beam to concrete flange force
    ${ }^{\text {c }}$ See Figure 3-3(c) for PNA locations.
    ${ }^{\mathrm{d}}$ Value in parentheses is $I_{x}$ (in. ${ }^{4}$ ) of noncomposite steel shape.

[^25]:    a $Y 1=$ distance from top of the steel beam to plastic neutral axis
    b $Y 2=$ distance from top of the steel beam to concrete flange force
    ${ }^{\text {c }}$ See Figure 3-3(c) for PNA locations.
    ${ }^{\mathrm{d}}$ Value in parentheses is $I_{x}$ (in. ${ }^{4}$ ) of noncomposite steel shape.

[^26]:    a $Y 1=$ distance from top of the steel beam to plastic neutral axis
    b $Y 2=$ distance from top of the steel beam to concrete flange force
    ${ }^{\text {c }}$ See Figure 3-3(c) for PNA locations.
    ${ }^{\text {d }}$ Value in parentheses is $I_{x}$ (in. ${ }^{4}$ ) of noncomposite steel shape.

[^27]:    a Tolerances as specified in ASME B18.2.6
    ${ }^{\mathrm{b}}$ ASTM F436 washer tolerances, in.:

    Nominal outside diameter
    Nominal diameter of hole
    Flatness: max. deviation from straight-edge placed on cut side shall not exceed
    Concentricity: center of hole to outside diameter (full indicator runout)
    Burr shall not project above immediately adjacent washer surface more than
    c For clipped washers only
    d For use with American standard beams (S) and channels (C)
    e For Grades F1852 and F2280 only
    ${ }^{f}$ For beveled washers mean thickness, $T=5 / 16$ in.; taper in thickness $=2: 12$.

[^28]:    Note: Referenced clauses in this table are from AWS D1.1. "Notes" on this page refer to Table 8-2, pg. 8-34, of this manual.

[^29]:    Note: Referenced clauses in this table are from AWS D1.1. "Notes" on this page refer to Table 8-2, pg. 8-34, of this manual

[^30]:    Note: Referenced clauses in this table are from AWS D1.1. "Notes" on this page refer to Table 8-2, pg. 8-34, of this manual.

[^31]:    Note: Referenced clauses in this table are from AWS D1.1. "Notes" on this page refer to Table 8-2, pg. 8-34, of this manual.

[^32]:    Note: Referenced clauses in this table are from AWS D1.1. "Notes" on this page refer to Table 8-2, pg. 8-34, of this manual.

[^33]:    Note: Referenced clauses in this table are from AWS D1.1. "Notes" on this page refer to Table 8-2, pg. 8-34, of this manual.

[^34]:    Note: Referenced clauses in this table are from AWS D1.1. "Notes" on this page refer to Table 8-2, pg. 8-34, of this manual.

[^35]:    Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.

[^36]:    Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.

[^37]:    Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.

[^38]:    Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.

[^39]:    Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.

[^40]:    Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.

[^41]:    Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.

[^42]:    Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.

[^43]:    Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification Section J2.4.

[^44]:    - Indicates that cope depth is less than flange thickness.

[^45]:    - Indicates that cope depth is less than flange thickness.

[^46]:    Note: Values are omitted when cope depth exceeds $d / 2$.

[^47]:    Note: Values are omitted when cope depth exceeds $d / 2$.

[^48]:    ${ }^{1}$ This requirement applies only at the location of the column, not at locations away from the column.

[^49]:    a Gages shown may be modified if necessary to accommodate fittings elsewhere on the column. Note: For lifting devices, see Figure 14-10.

[^50]:    ${ }^{[a]}$ For high-strength bolts subject to tensile fatigue loading, see Appendix 3.
    ${ }^{[b]}$ For end loaded connections with a fastener pattern length greater than 38 in . $\left(950 \mathrm{~mm}\right.$ ), $F_{n v}$ shall be reduced to $83.3 \%$ of the tabulated values. Fastener pattern length is the maximum distance parallel to the line of force between the centerline of the bolts connecting two parts with one faying surface.
    ${ }^{[c]}$ For A307 bolts, the tabulated values shall be reduced by $1 \%$ for each $1 / 16 \mathrm{in}$. ( 2 mm ) over five diameters of length in the grip.
    ${ }^{[d]}$ Threads permitted in shear planes.

[^51]:    ${ }^{1}$ In many commercial analysis software, the default setting of including shear deformations should be turned off when making comparisons with the tabulated results provided.

[^52]:    ${ }^{1}$ ASTM A141 (discontinued in 1967) became identified as A502 Grade 1 (discontinued 1999).

[^53]:    ${ }^{2}$ For example, because the reliability of the turn-of-nut pretensioning method is not dependent upon the presence or absence of washers under the turned element, washers are not generally required, except for other reasons as indicated in Section 6. Thus, in the absence of washers, after-the-fact, torque-based arbitration is particularly unreliable when the turn-of-nut pretensioning method has been used for installation.

